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Abstract

In a reactor transient analysis, the friction factor and the heat
transfer coefficient are assumed equal to the steady state values
even in a transient state. This quasi-static assumption has been

examined in the present paper.

The transient turbulent flow in a circular tube subjected to a step
change of pressure drop was calculated numerically. Transient
variations of the friction factor and the heat transfer coefficient
were obtained. Effects of the Reynolds number and a wall heat

capacity were studied.

The gquasi-static momentum equation was found to be approximately
valid for both accelerated and decelerated turbulent flow. The
quasi-static energy equation was also valid for the transients

of gas cooled reactors.

Zusammenfassung

Instationire Hydrodynamik und instationirer Wirmellbergang in

turbulenten Stromungen

In instationdren Analysen von Kernresktoren wird angenommen, daB die
Widerstandsbeiwerte und die Wirmelbergangszahlen flir den stationfren
und instationédren Zustand gleich sind. Diese quasistationire N&herung

wird im vorliegenden Bericht untersucht.

Die instationdre turbulente Strémung in einem runden Rohr wurde
numerisch berechnet, Der Druckabfall wurde stufenweise geédndert.

Die instationidre Verdnderung des Widerstandsbeiwertes und der Wirme-
ibergangszahl wurde bestimmt, und der EinfluB von Reynoldszahl und
Wandwirmekapazit8t wurde untersucht. Es konnte gezeigt werden, daB
die quasistationfire Impulsgleichung gliltig ist flr beschleunigte

und verzdgerte turbulente Strémungen. Die quasistationire Energie-

gleichung ist auch glltig flir gasgekilhlte Kernreaktoren.
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i. Introduction

In a reactor transient analysis, the momentum equation and the energy
equation for a coolant flow must be solved. The friction factor and

the heat transfer coefficient are introduced into these equations,

but these are always assumed equal to the steady state values even

in a transient state. This assumption is made in almost all the safety
analysis codes, but has not been examined well. The purpose of the
present paper is to examine the validity of the quasi-static assumption

by analyzing the transient turbulent hydraulics and heat transfer.

The momentum equation solved in the reactor transient analysis is

ol

3
3

ox p/2 °?

+
]

where f is the friction factor defined as

1 =2
£=1/70m" . (2)
The energy equation is
3T T
f - °f i -
55t U TS e (Ty T Te) (3)

n’ w f) ‘ (1)

By introducing f and a, one need not solve transient profiles of the
velocity or temperature. These equations are suited for a large safety
analysis code. However, as the transient values of f and o are not
known, the steady state values are always used in the transient state

also. 30, these equations are called quasi-static equations.
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Many works have been made for the transient laminar heat transfer, but

relatively few works for the transient turbulent heat transfer.

(1)

Sparrow—-Siegel solved the transient energy equation for stepwise

(2)

heat transfer from a plate of a finite heat capacity to a developing

(3)

heat transfer in an annulus. The flow was steady and the heat input

time variation of wall temperature. Soliman studied the transient

flow of water. The present author analyzed the transient turbulent
was lncreased stepwisely. The conditions for the quasi-static

assumption were studied.

In the present paper, the transient two—dimensional momentum and energy
equations are formulated and solved for the step change of the pressure
drop with a constant heat input. These solutions are compared with those
of the quasi-static equations. Effects of the Reynolds number and the
wall heat capacity are studied, and the validity of the quasi-static

equation is examined.

This work was done in the course of the development of a transient
anglysis code for Gas Cooled Fast Reactor (GCFR). So, the primary
interest lies in GCFR, but attentions are paid also for other types

of reactors such as PWR and LMFBR.

2. Numerical Analysis

2.1 Assumptions

1) A very long circular tube is assumed, so the flow is fully

developed.

2) The heating wall has a finite thermal capacity, but the tempera-

ture distribution inside the wall is neglected.

3) The outer surface of the wall is insulated.

4) Properties are independent of the temperature.

5) The Prandtl's mixing length theory is applicable.



2.2 Two—-dimensional equations

A co-ordinate is shown in Fig. 1. A wall is heated from x = 0. The

momentum equstion is

g , -
ou _ Be|api 1 8 2u
9t Pe axl+ r ar L(EM tv)r or ]' (5)
The energy equation is

3T
ot

or _ 1.3 3T ]
x ~ r ar [kEH tQg)r 8r,J' (6)

+u
These both equations contain two co-ordinates x and r, but Eq. (5) is
one-dimensional because u does not vary in the direction of x. However,
Eq. (5) will be called also as two—-dimensional for convenience.

Boundary conditions are

r = D/2, (at the wall)

u(r _, t) =0 | (1)

T(x, ros t) = TQ (x, t) (8)
T

4y (x, t) = - Af ?r /r=rw. (9)

The heat balance in the wall is

= -y 9
qn(x, t) = 9, ~ H =t Tw(x, t), (10)

where g is the heat generation rate in the wall and independent of

time. Other conditions are

r = 0, (at the center)



x = 0, (at entrance)

T(0, r, t) =T, =0 (13)

The pressure drop changes stepwisely as follows:
|,9£'= PX,O th
o7 t >0,
X, 1

Initial steady state profiles of u and T for Px o vere calcﬁlated
?

at first, then the transient calculation was made.

The momentum eddy diffusivity e, in the steady state has been studied

M

intensively; however, e, in the transient state is not knownyet. Some

sophisticated turbulencf models are proposed, but many of them are so
complicated that even the calculation of a steady flow needs a very
long time. Some turbulence models can calculate a transient flow, but
those are still not suited for calculating the transient heat transfer
at the same time. Here, a simple turbulence model, Prandtl's mixing

length theory, is adopted to calculate the momentum eddy diffusivity.

The momentum eddy diffusivity is calculated by

-
€y = P

Bu

e (15)

Here, % is the Prandtl's mixing length, calculated by the following

()

method of Patankar and Spalding .

In the central region of a tube, % is usually taken as uniform. It
is nearly 8 - 10 % of the boundary layer thickness; that is, 4-5 %

of the tube diameter.



In the present calculation Az is 0.0L5.
Near the well, % is proportional to the distance from the wall, y.
The proportionality constant is 0.36 - O0.L4. Very close to the wall,

2 is damped as postulated by van Driest(S):

+, +

b,o=x, v [1 - exp (-y/a7) ] (17)
+ . + . 3

where A 1is a damping constant and y 1is yu /v.

+ . .
The constant A 1is about 20 - 30 depending on the Reynolds number.

Figure 2 illustrates 2C and Qw. To avoid a broken point at the inter-

section of Rc and lw’ the following equation is used for & finally.

L R
2T T2t T2 (18)

L L L
c W

This equation (18) gives e, with Eq. (15). However, e,, becomes zero

M M
where du/dr = 0; i.e; at the center of the tube. To avoid this defect,

the following assumption is made:

ou|_ . Ju
[ 3y<—xuu, if 2 5y < Auu ’ (19)

where u is a local velocity and Au is a constant equal to o0.01. The
condition of Eq. (19) is satisfied at only a few meshes near the

center,

The thermal eddy diffusivity is obtained from the eddy diffusivity
(5)

ratio ¢ = eH/eM. Mizushina proposed a correlation of ¢ as follows:
o =1.5¢ [1 - exp (-1/¢)] €0 )

(eM/v) Pr
¢ = (21)

§.13 + 0.7h3 (eM/\))1/2 pr /3
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These methods are widely accepted for the calculation of the steady
state turbulent flow., Here, it is assumed that these are spplicable
also for the transient flow. The momentum eddy diffusivity represents
the momentum exchange between turbulent eddies. The scale of the
eddies are so small that the time scale of the momentum exchange

is smaller than the time scale of the whole transient. So, the steady

state mixing length theory is assumed in the transient state also.

The order of time for the momentum exchange between eddies is roughly

2
n 2o (22)
eddy €M

t

The order of time for the flow to reach the steady state will be

obtained in the latter section of the present paper as follows:

1 D°

Yerow ¥ TeRe v (23)

The ratio of these two time scales is

t
ggéél n feRe - (%)2 A (2h)
flow eM

At Re = 105, for example, f is 4.5 X 103, (eM/v) n 100 gnd /D ~ 0.0L5.

/t " 102,

So, the ratio becomes t £low

eddy

This ratio does not depend much on the Reynolds number.

Although the steady state mixing theory is used for €y the value of €m

is not equal to its steady state value. The momentum equation Eq. (5)

gives a transient velocity profile, and then Eq. (15) gives a transient

EM.



2.3 Humerical calculation

The equations in the preceding section were transformed into non-
dimensional forms, and then finite difference formulae were obtained.
The non-dimensional forms are listed in Appendix A. It can be shown
that the whole solution is determined by the following non-dimen-—

sional variables and their combinations.

Initial and final Reynold number, Re,, Re
Prandtl number, Pr,

Heasting length, x/D

(pey), a,

(pcp)f D

Heat capacity ratio, ¥ = (1 + dw/D) (25)

The numerical calculation is made by the implicit method. The solution

is always stable irrespective of the time mesh.

The biggest difficulty in the numerical calculation is that the thick-
ness of the laminar sublayer near the wall tends to be very small
compared with the tube diameter. The laminar sublayer is the layer
where the velocity increases nearly linearly. This thickness is

about 10 ' of the tube diameter at Re = 10,

The radial mesh size adjacent to the wall must be less thaﬁ this thick-
ness, so the total radial mesh number becomes more than 10, The steady
state may be calculated with this mesh number, but not the transient

state.

In the present study, the radial mesh is given in geometrical progression

as follows.

Ark = g Ark+1 s

where Ar, = r_ - r . and



=D/2, r, =0

Iy 1

(27)

_ %
Ty T Ty = h (v/u™)

The mesh size Ar, is limited up to 0.020 D to avoid large mesh in
the tube center. The values used for a and h are 1.2 = 1.3 and 1-3
respectively. The total mesh number can be reduced down to less

than 70 even at Re = 107,

The diffusion term in Egs. (5) and (6) has the common form:

where E denotes either E = SM + vor E = EM +&. In the present
analysis, the diffusion coefficient E and the radial mesh size are
both a function of r. A new difference formula of Eq. (28) has been

derived as shown in Table 1.

2.4 Quasi-static calculation

The quasi-static equations are

dt = p. |ox st D/2
T 3T
£ = °°F L -
55 T %35 T %t Dlp oo (T T Tp) (30)
p’'f
- 3

0Lst (Tw - Tf) - qG H ot Tw(x’t) (31)
x =0 Tf =T, = 0 (32)

The steady state friction factor fst and heat transfer coefficient oy
are obtained from the numerical calculation of Egs. (5), (6). These
quasi~static equations are also transformed into finite difference

formulae and solved numerically.



2.5 Steady state calculation

The steady state was calculated at first to test the validity of the
present calculational method. Figure 3 shows the velocity distribution
in the steady state. A solid line is the universal velocity profile.

The present numerical results coincide well with the solid line.

Figure U4 illustrates the heat transfer coefficient and the friction
factor in the steady state. Solid lines are the steady state corre-
lations accepted usually. The numerical values of the heat transfer
coefficient are given for Pr =7, 1, 0.7, The friction factor does
not depend on Pr. The numerical values agree fairly well with the

steady state correlations.

3. Transient Hydraulics

3.1 Variation of velocity

Figure 5 illustrates an example of the transient numerical calculation.
The pressure drop increases stepwisely at t = O. The flow is accelerated
from Re = 10h to 105. The velocity reaches a new steady state at about

1 sec in this example. The time in the abscissa is given for a water
flow in a tube with D = 2 cm. The other abscissa Z is a non-dimensional
time which will be explained later. The suffix 1 represents the final
steady state, while st represents the steady state value for the

instantaneous Reynolds number,

The friction factor ratio f/fst increases temporarily, and then
decreases asymptotically down to 1. The peak value is sbout 1.7 in
this example. The friction factor becomes much larger than the quasi-

static value in case of the acceleration.

4

Figure 6 illustrates a case of deceleration from Re = 105 to 107,
The flow reaches a new steady state at about 4 sec. The friction
factor ratio f/fst is slightly less than 1. The friction factor is

nearly equal to the quasi-static value in case of the deceleration.
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3.2 Time for the flow to reach the steady state

The time required for the flow to attain a steady state will be
examined here. Since the approach to steady state is an asymptotic

process, 1t is enough to know only an order of the time.

Let u = 61 + Au , then Eq. (1) can be written as:

i Lo

- - 2
Y (u1 + Au) = 2 5

_.2 —_ -
uj 2 (u1 + Au)

i

(33)

When the velocity u has reached nearly the new steady state value 31,

one can assume that ﬁ1 >> Au and £ ~ f,+ Then, Eq. (33) becomes

3 - oo -
—= Au=-14 T U, Au. (34)

Boundary conditions for Au are

Au = 0 t >+ o
‘ (35)
AG=I_JO‘I_11 t =0
then the solution of Eq. (3k4) is
— — -— f‘l_
Au = (ug - u1) exp (- k4 T 9y t). (36)

This equation is valid only when t is large. Since e—3 nv 0.05 and
e_h A~ 0.02, one can find that the velocity reaches the steady state

nearly at

|

1
Sor,u v (W T (31)
1

ol

By substituting Re, = 51‘D/v, one obtains



2
t r\,__._1—..—]2—

(38)

4]
purs
o
H
jov)
[
<

This is the same equation as Eq. (23) used in the preceding chapter.

Now a new non—-dimensional time 7 is introduced:

£

It is found from Eq. (36) that the velocity reaches the new steady
state at Z = 3-4 (Figs. 5 and 6).

3.3 Variation of f/:f‘St

Figure 7 illustrates the variation of the friction factor ratio f/fSt
for various initial and final Reynolds numbers. In case of the accele-
ration, the ratio f/fSt increases very much as the ratio Re1/ReO
increases. In case of verysevere transient Re = 10 » 107, the ratio

f/f , comes up as high as T.

st

In case of the deceleration, f/fs does not differ much from

t
unity. Even in case of the severe transient Re = 107 » 10, the

ratio is only slightly less than unity. The reason will be discussed

below.

Figure 8 illustrates the variation of the velocity profile in the
case of acceleration. Solid lines are the transient velocity profiles
while broken lines are the steady state velocity profiles. The mean

velocities of both lines are equal.

One can see that the transient velocity profile is flatter than the
steady state one in the central region and is steeper near the wall.
The two terms on the right hand side of Eq. (5) 8reequal in the
initial steady state. Then, the first term in the right hand side,
i.e. the pressure drop term, increases stepwisely in case of the

p)

acceleration. To accelerate the flow from Re = 10h to 107, the
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pressure drop must increase roughly by a factor of 50. The second
term is nearly negligible compared to the first term at the initial
moment of the transient.

The flow is accelerated nearly uniformly in the central region. So,
the velocity profile becomes relatively flat in the center. On the
other hand, the velocity is kept zero at the wall, then the velocity
profile cannot but be steep near the wall. This is the reason why
the friction factor is larger than its steady state value in case

of the acceleration.

Figure 9 shows the variation of the velocity profile in the case of
deceleration. The velocity profile is nearly equal to the steady
state profile; so the friction factor is also nearly equal to its

steady state value.

In case of the deceleration, the pressure drop term in Eq. (5) is
negligible compared with the second term on the right hand side,
i.e. the friction term. The decay of the flow is determined by its

friction itself.

This means that the steady state velocity profile is retained if a

turbulent flow decays by itself. A further study is needed for this

point.

3.4 Comparison with the quasi-—static calculation

The present interest lies rather in the validity of the quasi-static
equation than in the variation of the friction factor. The solution
of the quasi-static momentum equation aquasi is compared with the
mean velocity u obtained from the two-dimensional momentum equation
in Fig. 10. The ratio aquasi/ﬁ is very close to unity in case of
acceleration; while it deviates nearly 5 - 10 % from unity in case

of deceleration. .
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In acceleration, the friction factor deviates very much from its
steady state value; nevertheless, the velocity variation is nearly
quasi-static. This can be explained by comparing the two terms on
the right hand side of Eq. .(1). These two terms have the same value
at the initial state, then the pressure drop term increases much
quicker than the friction term. So, the friction factor has a
smaller effect on the velocity variation even when it changes much.
In other words, the inertia of the fluid is dominant, and the
friction is negligible at the initial stage of the transient. As
time elapses; the dissipation term becomes important again. At

that time, however, the friction factor has already come to its

new steady state value. This is the reason why the quasi-static
momentum equation is valid in the acceleration.

In case of the deceleration, the friction term is dominant. Only a
slight error in the friction factor results in a relatively large
error in the velocity calculation. As the error is less than 10 %
even in the severest transient of Re = 106 to 10 ', one can conclude
that the quasi-static assumption is approximately valid in the

deceleration, too.

In conclusion, the quasi-static momentum equation is roughly valid
for both the acceleration and the deceleration. The error due to the
quasi-static assumption is very small in case of the acceleration

and is relatively large but less than 10 % in case of deceleration.

L., Transient Heat Transfer

4,1 Variation of heat transfer coefficient

An example of the transient calculation with heat transfer is shown
in Fig. 11. The flow is accelerated from Re = 10& to 105, so the wall
temperature difference, ATW = TW -_E%, decreases. The heat transfer
coefficient ratio a/cxst decreases down to about 0.6 and then comes
back to 1. An example of deceleration is shown in Fig. 12. The heat

transfer coefficient does not deviate much in case of deceleration.
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Figure 13 shows the variation of a/ast for various initial and final

Reynolds numbers. The heat transfer coefficient ratio a/as depends very

t
much upon the initial and final Reynolds numbers in case of the acceler-
ation. In case of the deceleration, however, it does not depend much upon

the initial and the final Reynolds numbers and it is always near to unity.

4.2 Case of deceleration

The variation of AT - /AT and a/a_, are illustrated in Fig. 1hL.
wyquasi’' W st

Here, ATw,quasi is obtained from the quasi-static equations (29)-(31),

while AT is obtained from the two~dimensional equations (5) and (6).

The parameter B is a non-dimensional number pertinent to the wall heat

capacity. It is defined as follows:

I\' .
_ H Pr
B =L f, Re, i, (L0)

This parameter has been derived rather intuitively than mathematically.

Its physical meaning is

[time for T, to reach steady state in]
. hcase of a large wall heat capacity.

[time for u to reach steady state]

/AT

w,quasi’ w
is more dependent on the wall heat capacity. The error in the quasi-

Fig. 14 shows that a/ast is slightly dependent while AT

static ATW is due to the combined effects of both errors in u and in
a. When the wall heat capacity B becomes larger, the error in AT .
w,quasl
becomes smaller. The error is almost 15 % even when B = O. Figure 1k
6 i

shows a severe transient from Re = 10° to 10 . The same tendency can

be obtained in all other decelerations.

The difference between the wall and the mean fluid temperature is
dominant to determine the wall temperature in case of cooling by

normal fluids. However, the variation of the mean fluid temperature
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was examined too, and the ratio (Tf - Tin)quasi

found nearly equal to 1. So, one can conclude that the quasi-static

/(Tf - Tin) was also

energy equation is approximately valid in case of the deceleration.
Moreover, the quasi-static assumption results in a slightly higher
wall temperature than the actual one. This error is usually on the

safe side in reactor accident analyses.

This conclusion is of importance because the flow deceleration is

to be solved in almost all the cases of reactor safety analysis.

4.3 Case of acceleration

for B = O and 1 at various axial

v l 6

positions for the acceleration from Re = 10 to 10, The arrow shows

Figure 15 shows variations of a/as

the time when a "new fluid" comes to that position; the "new fluid"
means that the fluld which was just at the entrance of the heating
section at t = 0. To calculate the arrows, all the fluid is assumed

to flow with the mean velocity.

The curve for B = O is discussed at first. The ratio a/ast decreases
well below 1, and has a plateau. The flow has already come to a new
steady state at about Z = L, but the plateau continues even after

the flow has reached the steady state. The heat transfer coefficient
comes back to its steady state value after the '"mew fluid" has come
to that position.

The minimum at the initial stage of the transient does not mean that
the heat transfer coefficient itself exhibits a minimum. The ordinate

is the heat transfer coefficient ratio a/as . At the initial stage of

t
the transient, the flow is accelerated very quickly, so the corres-

ponding steady state heat transfer coefficient o_, increases very

guickly. The temperature profile tends to changeszo match the new
velocity profile. However, the temperature profile can not change so
quickly partly because the fluid has a finite heat capacity and
partly because the thermal eddy diffusivity is small at the first

moment .
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So, the heat transfer coefficient o changes relatively slowly compared
with ot at small times. When the time elapses and the flow has been
accelerated, the thermal eddy diffusivity near the wall increases.

So, the temperature profile can redistribute quickly, and the heat
transfer coefficient increases rapidly. This is the reason for the

minimum of a/ag at the initial stage of transient.

t

The broken line in Fig. 15 shows the variation of a/ast for B = 1.
The general tendency is the same as that of B = O except that the
plateau is very near to unity. The first dip is very remarkable, but
this minimum has the same reason as discussed above. One can see
again that the heat transfer coefficient reaches its steady state

value after the "new fluid" comes to that position.

The transient temperature profiles are compared with the steady state
ones in Fig.. 16. The ordinate is normalized by the temperature
difference between the wall and the mean fluid flow. The figure at

Z = L4 shows the temperature profile at the plateau. The flow has

been already accelerated up to a new steady state; one can see however
that relatively hot fluid still exists near the wall. This tends to

decrease the heat transfer coefficient.

The initial thermal sublayer near the wall is thicker than the final
one in case of the acceleration. So, the relatively hot layer initially
exists upstream and is flowing downstream during the transient. The

hot layer near the wall begins to disappear when the "new fluid" comes

to that position. This is the reason for a/aS to reach unity after

t
the "new fluid" has come to that position.

Figure 17 compares the temperature profiles for 8 = 0 and 1 at early
times. The ordinate is normalized by the initial wall temperature.

In case of B = O, the wall temperature drops so quickly that the
temperature profile near the wall becomes relatively flat. In case

of B = 1, the wall temperature drops slowly; so the steep temperature

gradient can be retained even if the hot fluid layer still exists
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near the wall. This is the reason for the transient heat transfer

coefficient to be higher when the wall heat capacity is larger.

As already known from the previous section, the heat transfer coefficient
is nearly equal to its steady state value in case of deceleration.

In this case, the wall temperature rises during the transient. No

hot layer exists initially near the wall. A new temperature profile

can develop into the fluid as the wall temperature rises. The tempera-
ture profile can develop fast enough in turbulent flow, and the

velocity has nearly its steady state profile as known in the previous
chapter. So, the temperature has nearly its steady state profile,

and the heat transfer coefficient is nearly equal to its steady

state value in case of the deceleration.

Figure 18 illustrates the effects of the wall heat capacity B and

Prandtl number Pr upon the variation of a/aS in the accelerated

t

flow. The variation of a/aS does not depend much on Pr if B > O.

t
Especially, the values of a/ast at the plateau are nesrly equsal

for different Pr, holding B constant and assuming that g8 > O.

The wall temperature obtained from the quasi-static equation is compared
with the one obtained from the two-dimensional equation in Fig. 19.
The ordinate is the ratio AT ./AT , where AT =T =~ T_, When
w,quasi w \ W f
B & 1, the ratio is nearly equal to unity independent of Pr. This
figure illustrates the example of the severe acceleration from
in 6

Re = 10" to 10 . In case of less severe accelerations, the ratio

is closer to wunity.

The variation of mean fluid temperature was also examined, and was
found approximately quasi-static when B R 1. So, it can be concluded
that the quasi-static energy equation is valid also for acceleration
when B & 1.



b4 Liquid metal cooling

The conclusions about the transient hydraulics obtained in chapter 3
are exactly applicable to liquid metal cooling also, Some sample
calculations of the transient heat transfer will be given in the
present chapter. The steady state heat transfer coefficients are
compared in Fig. 20 with two correlations by Lubarsky & Kaufman(6),

and Skupinski et al.(T). It can be found in Fig. 20 that € calcu-
lated with Eq. (20) gives a lower heat transfer coefficient than
these correlations. So, Eq. (20) is simply doubled to get a better

result.

o =3.0¢ [1-exp (-1/¢)] - (42)

One can see in Fig. 20 that Eq. (U42) gives a better result than
Eq. (20).

Examples of transient heat transfer for the flow acceleration and
deceleration are shown in Figs. 21 and 22. Each figure contains
the transients for ¥ = O and 0.7. The latter is a plausible value

in & LMFBR. The ratio (T - T. ) /(T - T. ) is plotted in
W in‘quasi W in

Fig. 21 and 22 instead of (Tw - Tf)quasi/Tw - Tf)

chapter. The temperature difference (TW —'Tf) is dominant in

in the preceding

case of normal fluid cooling. In liquid metal cooling, however,

(T, - Tp)

(ﬁf - Tin) because the heat transfer coefficient is very large.

is less dominant than the axial fluid temperature rise

One can see in Figs. 21 and 22 that the transient variation of the
heat transfer coefficient at early times is similar to that of

the normal fluid cooling. The ratio a/as decreases below unity

t
in the acceleration, while it is a little bit larger than unity

in the deceleration. The transient variation of oz/aS at large

t
times 1s more or less different from that of the normal fluid
cooling when ¥ = 0.7. The ratio a/astbecomes larger than unity

in the acceleration while it becomes smaller in the deceleration.
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The variation of the ratio (T~ T. )/(T_ - T. ) shows a quite similar
w in W in

tendency as that of the normal fluid cooling. The ratioc stays nearer
to unity as the wall heat capacity becomes larger. The error in the

quasi-static wall temperature is small when H = 0.7.

Further studies are of course needed for the liquid metal cooling

especially for more severe transients and various wall heat capacities.

5. Application to Reactors

Some parameters which have been derived in the present analysis are
calculated for several types of power reactors. Table 2 lists the

time for the flow to reach a new steady state ts » the ratio of

t,u
heat capacity ﬁ, and the non-dimensional heat capacity B. The heat
capacity of the clad is included in the wall heat capacity. These

numbers are not so precise but give the order of magnitude.

The time required for the flow to reach a new steady state is very
short in GCFR and relatively long in PWR. The LMFBR lies in the
middle. In GCFR, the flow can follow a change of the pressure drop
very quickly. In PWR, a rather large time lag is expected.

The ratio of heat capacity ¥ and the non-dimensional heat capacity B
are very large in GCFR. So, the quasi-static energy equation is
valid for accelerated and decelerated flows. The reason for ﬁ and

B to be so large in GCFR is that pcp of the fuel is much larger

than that of the coolant. So, one can expect that the quasi-static

energy equation is valid for all gas cooled reactors.

The non-dimensional heat capacity B is nearly 1 in PWR and a little
bit less than 1 in LMFBR. The present conclusion has been that the
quasi-static energy equation is always roughly valid for deceleration,
while it is valid only when B R 1 for acceleration. So, the quasi-

static assumption is roughly valid for deceleration, but these B's
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are rather critical for acceleration. From only the present results,

one can expect that the quasi-static assumption will not bring a

serious error in PWR and LMFBR. However, the fluid properties vary

and the thermal resistance in the fuel can not be neglected. Further

studies are needed to get a definite conclusion for these reactors,

especially for LMFBR.

6.

Conclusions

Transient Hydraulics

1)

In a decelerated flow, the transient friction factor is slightly
less than its steady state value, and quasi-static assumption

is roughly valid.

In an accelerated flow, the friction factor temporarily increases
very much. However, a correct flow variation can be obtained from

the quasi-static momentum equation.

The quasi-static momentum equation is approximately applicable to
both the accelerated and the decelerated flows. The error due to

the quasi-static assumption is larger in case of deceleration.

Transient heat transfer

L)

In a decelerated flow, the transient heat transfer coefficient
is a little bit larger than its steady state value, and quasi-

static assumption is roughly valid.

In an accelerated flow, the transient heat transfer coefficient
decreases well below its steady state value if the heating wall
has no heat capacity. When the wall has a large heat capacity,

the heat transfer coefficient does not decrease so much and the

quasi-static assumption is approximately valid.
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6) The quasi-static energy equation can be applied to flow accelerstion

and deceleration of GCFRs.

The present conclusions are concerning the flow transient in the
turbulent region. A further study is needed for the flow transient
from turbulent region to laminar and/or transition region. The effect
of property variation and the case of liquid metal cooling need to

be investigated further.
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damping factor

thermal diffusivity mz/sec

sfecific heat capacity, kéal/kgm deg

diameter of a tube, m

thickness of & heating wall, m

friction factor

standard acceleration kgm/kgf-m/sec2

Nusselt number aD/)\f

wall heat capacity per unit heat transfer surface,
heat capacity ratio, Eq. (25)

mixing length, m

pressure, kgf/m2
Prandtl number = v./0p

heat generation rate per unit heat transfer

surface, kcal/m2 sec

net heat flux to fluid, kcal/m2 sec
Reynolds number = t—lD/\)f

radius, m

temperature, deg, OC

mixed mean temperature of fluid, deg, °c
time, sec

velocity, m/sec

mean velocity m/sec

friction velocity = /E; """ ?75;\ m/sec
axial distance, m

distance from a wall, m

non-dimensional time, Eq. (39)



Greek

Subscripts

in:

quasi:

st:

_23._

heat transfer coefficient

non-dimensional wall heat capacity, Eq. (40)
Thermal eddy diffusivity, m2/sec

momentum eddy diffusivity, m2/sec

thermal conductivity, kcal/m sec deg
coefficient in the mixing length

kinematic viscosity of fluid, mg/sec
density, kgm/m3

wall shear stress, kgf/m2

fluid

in;et

mixing length
quasi-static solution
steady state

heating wall

initial

final
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Appendix A  Non-dimensional formula

Equations in chapter 2 are transformed into non-dimensional forms. New

non-dimensional variables are

R =1r/D | (A-1)
X = x/D (a-3)
T = tv/D° (A-L)
Y=y/D=1-R (A-5)
U = up/v (4-6)
g = 2,1/(Dq,) (A-T)
Q, = 9,79, (A-8)

Transformed formulae are listed below with the equation number in the
text,

%:%“%% (EM+1)R—g-gJ (5), (A-9)

Ey = €/ (A-11)

EH = EH/V (A-12)
at R = 0.5

U=0 (1), (A-13)

@:@ (8), (A-14)



% 38 /R = 0.5
-1 _ Y 28
Qn = 1 H Pr nt
i Q—
(p cp)f D
at R =0
U
3R - ©
28
3R - O
at X =0
&= 0

The pressure drop term in Eq. (A-9) is

2 £, Re
%x - 0 0
2 £, Re

1 1

Eddy diffusivities are:

- 12 [8U
By =L IBR
L =4/D
Lc = R’c/D = AQ
A%

e
+

]

(o]

%

2

2

=t
]
o
~
[w)}
i
~
o
<
!
1
=
3
N
<
+
~
=
+
Pt

(1),

(12),

(A-15)

(A-16)

(A-17)

(A-18)

(A-19)

(A-19)

(A-20)

(A-21)

(A-22)

(A-23)

(A-2k)

(A-25)

(A-26)
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, if L I%%I < Au

Quasi-static equations are:

Uy
= Bx - 2 £, U

-
aLf

B
oT

=2
t

_ 4 =
= pr Vugy (6 T

(A-27)

(A-28)

(A-29)

(A-30)

(A-31)

(A-32)
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Table 1 Difference formula of the Laplace operator for unequal

radial mesh

—1~£ Era_(é I =Ardis1+Brdr1— Dir
rOr.  0r_x

Ar= EpDut PERYECZ M Crpdrad
. ri ]
Bi= i EnDy EﬁR—E/;Z]P*/(ArJ,Ar,,,)
Y

D= [E,.D,HM*+ E,,,D‘,P*—(P*—~M*-)(EA-Z—%EH\’)J
i
1(drpdrm)
Arp=risi—rr, drm=ri—rea
Ep=(Ern+E)/2, En=(Er+Er.1)/2
Dy=2drp/CArm+drp),  Du=2dru/(drn-+dr,)
Pr=drp/drw, R=drpdrn/(dratdry)
Mr=dran/dry,  Z=2(drp—dru)!(drn+dr,)




Table 2 Transient parameters for reactors.

Reactor type ocrr(®) pyyg (%) LMFER("H)
Final Reynolds number, Re1 7 1o 1o5 10h 1o5 101‘l 1o5
Steady state time for u, totu (sec) - 0.1k | 0.023 T.0 1.2 7.8 0.31
Heat capacity ratio, ¥ 2.3 0.67 0.7T1
Non-dimensional heat capacity B 150 1ko 1.6 1.5 0.20| 0.85

(%) GA 300 MWe demonstration plant(a)

(9)

(¥x) Indian Point

(xxx) GE looo MWe design study(1o)

- 62 -
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| R,=K,y[1-exp(-y*/A")]
Il/ )
/ Jp ";\2
L |
| /\
1 _ 1 1
= + |
¢ 2 @
=
0 y, y* y=D/2

Fig. 2 Mixing length.
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Fig. 5 An example of accelerated transient flow.
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Fig. 6 An example of decelerated transient flow.
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Fig., 8 Transient variation of the velocity profile (accelerated flow).
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Fig, 9 Transient variation of the velocity profile (decelerated flow).
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Fig. 16 Variation of the transient temperature profile in accelerated flow.
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Fig. 20 Steady state heat transfer coefficient for a small Prandtl number.
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Fig. 22 Transient heat transfer of a liquid metal cooling in decelerated flow.
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