

KERNFORSCHUNGSZENTRUM

KARLSRUHE

März 1975

KFK 2011

Institut für Material- und Festkörperforschung Projekt Nukleare Sicherheit

Binäre Metall-Keramik-Zustandsdiagramme und freie Bildungsenthalpien keramischer und intermetallischer Vebindungen

G. Ondracek, K. Splichal, H. Wedemeyer

GESELLSCHAFT FÜR KERNFORSCHUNG M.B.H.

KARLSRUHE

•

. .

.

Als Manuskript vervielfältigt

Für diesen Bericht behalten wir uns alle Rechte vor

GESELLSCHAFT FÜR KERNFORSCHUNG M.B.H. KARLSRUHE Kernforschungszentrum Karlsruhe

KFK 2011

Institut für Material- und Festkörperforschung Projekt Nukleare Sicherheit

Binäre Metall-Keramik-Zustandsdiagramme und freie Bildungsenthalpien keramischer und intermetallischer Verbindungen

G. Ondracek, K. Splichal, H. Wedemeyer

Gesellschaft für Kernforschung mbH Karlsruhe

.

<u>Zusammenfassung</u>

Nach der Präzisierung des Begriffs Cermet wird im ersten Teil des Berichtes die Berechnung der Anzahl möglicher Keramik-Metall-Kombinationen in binären, ternären und polynären Systemen erörtert. In systematischer Anordnung werden dann über 100 aus der Literatur bekannte binäre Zustandsdiagramme zusammengestellt, die Cermets in zweiphasigen Bereichen enthalten. Die Möglichkeiten zur thermodynamischen Berechnung binärer eutektischer Zustandsdiagramme ohne Randlöslichkeit und der stabilen Phasen bzw. Verbindungen in isothermen Schnitten ternärer Zustandsdiagramme werden auf konkrete Beispiele angewendet. Damit ist – wenn auch nur lose – auf den inneren Zusammenhang zwischen Zustandsdiagramm und freien Bildungsenthalpien bzw. deren partiellen Ausdruck, dem chemischen Potential, hingewiesen.

Die Temperaturfunktion dieser freien Bildungsenthalpien von Hydriden, Boriden, Carbiden, Nitriden, Phosphiden, Oxiden, Sulfiden, Haliden, Siliziden, Arseniden, Seleniden, Telluriden und intermetallischen Verbindungen sowie diejenigen der freien Reaktionsenthalpien von Aluminaten, Carbonaten, Chromaten, Ferraten, Niobaten, Molybdaten, Rhodanaten, Silikaten, Titanaten, Vanadaten und Wolframaten sind im zweiten Teil der Arbeit tabellarisch erfaßt. -Solche AG-T-Funktionen werden beispielsweise seit langem in der werkstofferzeugenden (z.B. Reaktionen zwischen metallurgischen Schmelzen und Tiegeln) und in der werkstoffverarbeitenden Industrie (z.B. Reaktionen zwischen Grafitmatrizen und Sauerstoff beim Drucksintern) verwendet, um die über Reaktionen entstehenden Reaktionsprodukte abzuschätzen. Sie sind Grundlage der "Verträglichkeitsforschung", deren Problematik im Rahmen der nuklearen Sicherheitsforschung den Anstoß zu der vorliegenden Zusammenstellung ergab. Sie soll die Möglichkeit sicherstellen, nötigenfalls vorgeschaltete bzw. begleitende thermodynamische Abschätzungen über die Zusammensetzung eines schmelzenden bzw. geschmolzenen Reaktorcores durchzuführen, sofern Experimente keine aussagekräftigen Ergebnisse liefern.

Abstract

Part I of the present report is introduced by a more precised definition of cermets as ceramic-metal-composites followed by a brief summary about the

calculation of the number of cermet combinations, possibly formed in binary, ternary or multicomponent systems. Literature sources provide detailed information about more than a 100 binary phase diagrams containing cermets in two phase regions, which have been compiled here systematically. It is shown then (and compared with real systems)how to calculate thermodynamically the eutectic type of binary phase diagrams in such cases, where the terminal solid solubility is negligible and - in ternary systems - which stable phases or compounds have to be expected. By doing this the internal relation between phase diagrams and free energy functions or their partial expressions, the thermodynamic potential, becomes reveal.

In part II of this article the temperature functions of the free energy of formation of hydrides, borides, carbides, nitrides, phosphides, oxides, sulphides, halides, silicides, arsenides, selenides, tellurides and intermetallic compounds as well as of the free energy of reaction of aluminates, carbonates, chromates, ferrates, niobates, molybdates, rhodanates, silicates, titanates, vanadates and tungstates as known today are compiled in extended tables. These ΔG -T-functions have been used frequently in materials technology (e.g. reactions between metallic melts and dies or graphite dies and oxygen during hot pressing) to assess the stable products formed by reaction of different materials. They also provide the basis to solve compatibility problems, which - arising in the special case of nuclear safety caused the present compilation of data: the work was done to open and ensure the possibility of thermodynamical assessments to support running experiments, if necessary, concerning the constitution of melting and molten nuclear cores and led to a "keep-up-arrangement" of free energy formations available today.

> (a) A set of the set of t set of the se

- 2 -

DEC U4/A42 DK 669.018.9 : 536.717 Ber. Dt. Keram. Ges. 48 (1971), H. 8

Cermets in Zustandsdiagrammen

Von G. Ondracek und K. Šplichal*)

Mitteilung aus dem Institut für Material- und Festkörperforschung, Kernforschungszentrum Karlsruhe

Zusammenfassung: Zunächst wird die Definition von Cermets als Metall-Keramik-Verbundwerkstoffte präzisiert. Es wird die Einteilung dieser Werk-stoffe in stabile und instabile Kombinationen begründet und auf die Berechnung der Zahl der möglichen Cermetkombinationen in Mehrstoffsystemen hingewiesen. In systematischer Anordnung wird dann eine Zusammenstellung der über 100 aus der Literatur bekannten binären Zustandsdiagramme mit Cermets wiedergegeben und besprochen. Auf die Berechnungsmöglichkeiten für solche Zustands-diagramme wird am Beispiel des eutektischen Typs ohne Löslichkeit der Phasen im festen Zustand eingegangen. Thermochemische Abschätzungen über die aus instabilen Cermets folgenden stabilen Kombinationen werden am Beispiel von Fe₃C-U-Cermets vorgenommen.

Cermets in phase diagrams

Summary

The article is a review introduced by a more precised definition of cermets as ceramic-metal-composites. The reasons are given for A short remark is made about the calculation of the number of cermets, possibly formed in multicomponent systems. This remark is followed by a systematical arrangement of the more than 100 binary phase diagrams containing cermets known from the literature. As an example the calculation of an eutectic type phase diagram with a very narrow range of terminal solid solution is considered. Thermochemical assessments are also made to decide which stable combinations should be formed by interaction of the phases of unstable cermets using $\mathrm{Fe}_3\mathrm{C}\text{-}\mathrm{U}\text{-}\mathrm{cermets}$ as an example.

Les cermets vus à travers les diagrammes d'équilibre

Résumé:

Le présent travail est une revue d'ensemble. La définition des comme des matériaux composites métal-céramique est ermets d'abord précisée. La division de ces matériaux en combinaisons stables et instables est motivée et des indications sont données sur le calcul du nombre des combinaisons possibles de cermets à l'intérieur des systèmes à plusieurs composants. Une présentation systé-matique des diagrammes d'équilibre binaires connues, relatifs aux

cermets, extraits de la littérature et dont le nombre dépasse la centaine est reproduit et commenté. Les possibilités de calcul de tels diagrammes d'équilibre sont abordées sur l'exemple du type eutectique sans solubilité des phases dans l'état solide. Des esti-mations thermochimiques sur les combinaisons stables dérivant de cermets instables sont entreprises en prenant comme exemple les cermets Fe₃C-U.

1. Definition und Klassifizierung von Cermets

Es gab und gibt eine Reihe von Diskussionen darüber, wie man Cermets am geeignetsten definieren soll ^{1, 8-10, 15, 17}). Geht man jedoch davon aus, daß Cermets eine Materialgruppe darstellen, wie die Metalle und Legierungen oder die keramischen Werkstoffe, so ergibt sich die Notwendigkeit zur Abgrenzung und damit ein gewisser Definitionszwang. Würde man etwa Metalle nach ihren Herstellungsverfahren als "durch Schmelzen und Gießen oder pulvermetallurgisch gewonnene Werkstoffe" definieren, so ergibt dies keine Abgrenzung gegen keramische Werkstoffe. Würde man andererseits z. B. Legierungen durch ihre metallischen Eigenschaften kennzeichnen wollen, so wäre dies etwa im Falle der Leitfähigkeit ebenfalls kein sicheres Unterscheidungsmerkmal gegenüber gewissen nichtmetallischen Verbindungen. Es sollen daher hier keine Hinweise auf Technologie oder Eigenschaften in eine Definition für Cermets aufgenommen werden. Metallische Werkstoffe sind aber durch ihren überwiegend metallischen, d. h. nichtlokalisierten, keramische dagegen durch ihren überwiegend lokalisierten Bindungszustand charakterisiert. Demzufolge soll für Cermets die folgende Definition gelten:

Cermets sind Materialkombinationen, die aus mindestens einer Phase mit überwiegend metallischer (nichtlokalisierter) Gitterbindung und mindestens einer Phase mit überwiegend nichtmetallisch (lokalisiert) gebundenem Gitter bestehen, wobei am Aufbau des letzteren Atome metallischer und nichtmetallischer Elemente beteiligt sein sollen.

Sinngemäß ist diese Definition genormt worden¹¹). Sie schließt, einem berechtigten Einwand entsprechend¹⁰), Materialkombinationen von den Cermets aus, deren beide Phasen überwiegend metallischen Bindungscharakter haben, also z.B. Dispersionen intermetallischer Phasen in einer metallischen Matrix sind. Ebenso ausgeschlossen sind Metall-Kunststoff- und Metall-Glas-Kombinationen sowie Mischkeramiken, wobei ausdrücklich darauf hingewiesen sei, daß als Keramik hier nur gelten soll, was eine Metall-Nichtmetall-Verbindung ist. Dieser definitionsgemäße Ausschluß anders aufgebauter Verbundstoffe bedeutet nicht, daß die an anderer Stelle erörterten Eigenschaftsbeziehungen für Cermets 105) für die genannten "Nicht-Cermet-Verbundwerkstoffe" ungültig sind.

Freilich ist auch die gegebene Definition unzureichend. Es bleibt offen, wie der Begriff "überwiegend" zu bestimmen ist. Demzufolge ist nicht klar festzulegen, wann ein Material keramisch ist. Eine schlüssige Aussage der Gittertheorie über den Bindungscharakter beispielsweise der Nitride oder Carbide liegt nicht vor. Das Bemühen um eine Definition im Sinn einer eindeutigen Festlegung für die erörterten Begriffe ist daher überhaupt fragwürdig. Die gegebenen Beschreibungen sind also als vorläufige Arbeitshypothesen aufzufassen, um für die zu behandelnden Probleme gewisse Grenzen abzustecken.

Bei der Betrachtung des Aufbaus von Cermets ist es zweckmäßig, zwischen dem stereometrischen und dem materialbedingten Aufbau zu unterscheiden¹²). Der stereometrische Aufbau erfaßt jene Faktoren, die, un-

^{*)} Dr. G. Ondracek, Kernforschungszentrum Karlsruhe, Institut für Material- und Festkörperforschung, D 75 Karlsruhe, Postfach 3640,

Dipl.-Ing. K. Šplichal, jetzt (ČSAV) Tschechoslowakisches Kernforschungszentrum, Rez via Prag, ČSSR

abhängig vom Materialtyp der Phasen, deren Geometrie und geometrische Anordnung bestimmen ¹³). Der materialbedingte Aufbau dagegen behandelt die durch die stoffliche Zusammensetzung und Struktur bestimmten Wechselwirkungen, Gleichgewichte und Bindungsverhältnisse zwischen den Cermetphasen. Er soll Gegenstand der nachfolgenden Betrachtungen sein.

Nach den Wechselwirkungen zwischen den Cermetphasen lassen sich folgende Typen von Cermetkombinationen unterscheiden:

"Instabile Cermets sind solche, deren ursprüngliche Phasen in bezug auf andere mögliche Phasen nicht stabil sind."

Die Phasenstabilität ist im thermochemischen Sinn so zu verstehen, daß es andere Phasen im System gibt, die sich von den ursprünglichen differentiell oder endlich unterscheiden und energetisch niedriger liegen als diese⁶). Die ursprünglichen Phasen gehen daher irreversibel in die stabileren Phasen über. Ein spezieller Fall der Instabilität liegt dann vor, wenn eine Phase oder mehrere Phasen zersetzen. Der allgemeinere Fall ist die Wechselwirkung zwischen den ursprünglichen Phasen durch chemische Reaktion oder Lösungsbildung.

Bild 1. Schematisches Zustandsdiagramm mit Cermets

Beispielsweise ist eine Cermetkombination mit "Phasen" der Zusammensetzungen A und B bei gegebener Temperatur instabil (Bild 1). Der Begriff "Phase" steht hier in Anführungsstrichen, da er in seiner korrekten Bedeutung Gleichgewicht voraussetzt¹⁴).

Die entsprechenden Gleichgewichtsphasen (C, D) in Bild 1 ergeben die stabile Cermetkombination:

"Stabile Cermets sind solche, deren ursprüngliche Phasen in bezug auf alle anderen möglichen Phasen stabil sind."

In solchen Cermetkombinationen finden keine irreversiblen Wechselwirkungen statt. Reversible Veränderungen, wie z. B. die temperaturabhängigen Konzentrationsverschiebungen der α - und β -Phase in Bild 1, sind dagegen auch bei stabilen Kombinationen möglich. Aus dieser Unterscheidung zwischen instabilen und stabilen Cermets folgt, daß die Temperaturfunktion von Eigenschaften instabiler Cermets immer irreversibel verläuft. Es sei vorweggenommen, daß diese Bedingung notwendig aber nicht hinreichend zur Unterscheidung ist, da stabile Kombinationen nicht bei allen Eigenschaften reversible Temperaturfunktionen aufweisen.

Neben den stabilen und instabilen Kombinationen ist grundsätzlich auch der metastabile Typ denkbar. Beispielsweise dann, wenn zwei "Phasen" eines Cermets instabil, aber durch eine dritte Phase getrennt sind, welche in bezug auf die beiden instabilen "Phasen" stabil ist. Eine solche Grenzphase könnte durch Bedampfung auf die Partikeln einer instabilen "Cermetphase" aufgebracht werden oder durch anfängliche Wechselwirkung in der ursprünglichen instabilen Cermetkombination entstehen. Jedoch ist über derartige metastabile Cermetkombinationen kaum etwas bekannt, deshalb werden sie hier nicht weiter erörtert.

2. Zahl der möglichen Cermetkombinationen

Gemäß ihrer Definition liegen Cermets nur im festen Aggregatzustand vor. Ihr Existenzbereich im Zustandsdiagramm in Bild 1 ist gestrichelt. Es handelt sich in diesem Fall um Zweiphasencermets. Je nach der Zahl der Komponenten eines Mehrstoffsystems bzw. der von ihnen gebildeten keramischen und metallischen Phasen können mehrphasige Cermetkombinationen gebildet werden. Die Anzahl der instabilen und stabilen Cermetkombinationen, die in einem beliebigen Mehrstoffsystem gebildet werden können, läßt sich mit Hilfe der Kombinatorik berechnen. Kennt man die Zahl der keramischen (N_k) und die Zahl der metallischen Phasen (N_m) , so ist die Summe (N_c) aller möglichen instabilen (N_{ci}) und stabilen (N_{cs}) Cermetkombinationen zu berechnen nach der Gleichung¹):

$$N_c = N_{ci} + N_{cs} = (2^{N_m} - 1) (2^{N_k} - 1)$$
(1)

Diese Gleichung gestattet allerdings keine Aussage über die Anzahl der auftretenden zweiphasigen, dreiphasigen bzw. *n*-phasigen Cermetkombinationen, sondern nur über ihre Summe. Bezeichnet man zweiphasige Cermets als Kombination zweiter Ordnung (p=2), dreiphasige als solche dritter Ordnung (p=3) usw. und berücksichtigt, daß die keramischen Phasen, ebenso wie die metallischen, untereinander keine Cermetkombinationen bilden, so ergibt sich aus den Grundbeziehungen der Kombinatorik die Gleichung

$$N_{c} = \sum_{p=2}^{n} \left(\frac{N!}{p! (N-p)!} - \frac{N_{m}!}{p! (N_{m}-p)!} - \frac{N_{k}!}{p! (N_{k}-p)!} \right) \quad (2)$$

mit $N = N_m + N_k$. Aus dieser Gleichung läßt sich die Zahl der zwei-, drei- und mehrphasigen Cermetkombinationen durch Einsetzen der jeweiligen Ordnung direkt berechnen $(2 \leq p \leq n)$. Ihre Summe ergibt die bereits durch Gl. (1) bestimmbare Gesamtzahl aller instabilen und stabilen Cermetkombinationen. In Bild 2 ist ein ternäres System schematisch durch einen isothermen Schnitt angegeben. In ihm kommen 4 metal-

Bild 2. Schema eines isothermen Schnittes (1000 $^{\circ}$ K) aus dem Dreistoffsystem Uran-Kohlenstoff-Eisen

Bild 3. Zustandsdiagramme mit Hydridcermets ^{22, 28, 39})

lische und 3 keramische Phasen vor. Die Rechnung nach Gl. (2) ergibt

- 12 zweiphasige Cermetkombinationen
- 30 dreiphasige Cermetkombinationen
- 34 vierphasige Cermetkombinationen
- 21 fünfphasige Cermetkombinationen
- 7 sechsphasige Cermetkombinationen
- und 1 siebenphasige Cermetkombination,

also 95 mögliche instabile und stabile Cermetkombinationen. Die 12 zweiphasigen Cermets (UC-U₆Fe, UC-UFe₂, UC-Fe, U₂C₃-Fe, UC-U, U₂C₃-UFe₂, U₂C₃-U₆Fe, U₂C₃-U, Fe₃C-Fe, Fe₃C-UFe₂, Fe₃C-U₆Fe, Fe₃C-U) sind aus Bild 2 leicht ablesbar. Bei der Berechnung ist zu beachten²), daß die Terme

$$\binom{N_i}{p} = \frac{N_i!}{p! (N_i - p)!} \tag{3}$$

der Gleichung (2) Null werden für $p > N_i$ bzw. Eins für $N_i = p$, also

$$\binom{N_i}{p}_{p>N_i} = 0 \qquad \binom{N_i}{0}_{p=N_i} = 1 \tag{4}$$

Wie die Ausführungen zeigen, ist die Anzahl der Cermetkombinationen verschiedener Ordnung berechenbar. Die Unterscheidung zwischen stabilen und instabilen Cermets dagegen kann nur durch thermochemische Abschätzungen erfolgen, deren Grundlage die Zustandsdiagramme und die freien Enthalpiefunktionen der Phasen sind.

3. Binäre Zustandsdiagramme von Cermets

Die aus der Literatur bekannten quasibinären Zustandsdiagramme bzw. Temperatur-Konzentrations-Schnitte mit Cermets sind in Bild 3 bis 14 zusammengestellt. Die Anordnung der Abbildungen folgt, für die keramische Phase, den Gruppen des Periodensystems. So sind zuerst die Zustandsdiagramme mit Hydrid- und Boridkomponenten, dann solche mit Carbid-, Nitrid-, Phosphid-, Oxid-, Sulfid- und Halogenidkomponenten aufgeführt; außerdem jene der Übergangsverbindungen. Die letzteren wurden der Vollständigkeit wegen aufgenommen. Ob ihre Kombinationen mit Metallen als Cermets zu betrachten sind, soll hier nicht entschieden werden. Innerhalb der einzelnen Gruppen von Zustandsschaubildern stehen jeweils zuerst diejenigen, deren keramische Verbindung die geringste Anzahl von Metallatomen enthält, gefolgt von solchen mit steigendem Metallatomanteil im Verbindungsgitter. Beispielsweise stehen in Bild 4 zuerst die Zustandsdiagramme, in denen die keramische Komponente ein Metallatom pro vier Boratome enthält (LaB₄-La). Dann folgen Zustandsdiagramme, in deren keramischer Komponente das Metall-zu-Boratom-Verhältnis geringer ist (1:2 für YB₂-Y, UB₂-U, ZrB₂-Zr und 1 : 1 für TiB-Ti, HfB-Hf). Haben die keramischen Komponenten verschiedener Zustandsdiagramme gleiches Metall-zu-Bor-Verhältnis, so wird ihre Reihenfolge durch die Folge der Gruppen des

Bild 5. Zustandsdiagramme mit Carbidcermets ^{22, 23-43, 68})

periodischen Systems bestimmt, zu denen die Metallatome der keramischen Verbindung gehören, also z. B. YB₂-Y vor UB₂-U und ZrB₂-Zr, da Yttrium in der III. Gruppe vor Uran steht und Zirkon erst in der IV. Gruppe folgt. Sind schließlich mehrere Systeme für eine keramische Komponente mit verschiedenen metallischen Komponenten aufgeführt, so bestimmt die Gruppenzugehörigkeit der Metallkomponente im Periodensystem die Aufeinanderfolge, also z. B. in Bild 5 UC-U, UC-Cr, UC-W, UC-Fe. So viel zur Anordnung der Zustandsdiagramme.

Bei welcher Temperatur die keramische Phase schmilzt oder zerfällt, ist an der Temperaturachse ablesbar. Sie ist bis zum Schmelz- bzw. Zersetzungspunkt verstärkt gezeichnet. Besitzt die keramische Phase einen Homogenitätsbereich und einen kongruenten Schmelzpunkt bei nichtstöchiometrischer Zusammensetzung, so ist diese Konzentration als linke Begrenzung des Zustands-

Bild 6. Zustandsdiagramme mit Nitridcermets 22, 39, 44-48)

Bild 7. Zustandsdiagramme mit Phosphidcermets 49-61, 101)

diagramms gewählt worden (siehe z. B. Bild 5, $ZrC_{0,67}$ -Zr oder HfC_{0,9}-Hf). Die zu den Symbolen gesetzten Klammern entsprechen thermochemischem Brauch [$\langle \rangle$ fest, () flüssig].

Bei der Betrachtung der so zusammengestellten Zustandsdiagramme fällt auf, daß bei solchen mit Oxid-, Sulfid- und Halogenidkomponenten (Bild 8 bis 10) verhältnismäßig häufig der monotektische Typ auftritt, während sonst der eutektische überwiegt. Im Fall der Oxidcermets tritt ein Monotektikum mit einer Ausnahme (PbO-Pb) nicht bei Monoxidkomponenten auf, dagegen immer bei Dioxiden als keramische Phase (Bild 8). In Zustandsdiagrammen mit Oxidkomponenten, deren Sauerstoffgehalt zwischen Monoxid und Dioxid liegt, findet sich ein Monotektikum dann, wenn Trimetallsesquioxid auftritt (Sn₃O₄-Sn, Cr₂O₃/Cr₃O₄-Cr, Fe₃O₄-Fe, Bild 8). In mehreren Fällen sind die Monotektika entartet, wie z. B. bei einigen Chlorid- (Bild 11: MgCl₂-Mg, ZnCl₂-Zn, PbCl₃·Pb, AlCl₃·Al) und Oxidsystemen (Bild 8: UO₂-Cu, UO₂-Mo).

Die Ansätze zur Berechnung von Zustandsdiagrammen aus thermochemischen Daten sind bedeutend erweitert worden ^{62, 102, 103}). Sie wurden bisher allerdings vorwiegend auf Metall-Metall-Systeme bezogen. Als Beispiel für die Berechnung eines Zustandsdiagramms mit Cermets soll im folgenden der schon länger bekannte Fall des eutektischen Typs behandelt werden. Zum besseren Verständnis wird zunächst das Prinzip der Rechnung noch einmal ausführlich dargestellt. Es bezieht sich auf jenen eutektischen Typ von Zustandsdiagrammen, in dem die Löslichkeit der Komponenten ineinander vernachlässigbar klein ist, d. h. die Komponenten praktisch identisch sind mit den beiden Grenzphasen. Dies ist beispielsweise für die Systeme von Uranmonocarbid mit Chrom oder Eisen der Fall. Die Berechnung beruht auf folgenden Ansätzen:

Bild 8. Zustandsdiagramme Oxidcermets ²², ²⁸, ³⁹, ⁷⁰⁻⁸³, ¹⁰¹)

Bild 9. Zustandsdiagramme mit Sulfidcermets 22, 39, 68, 84-97, 101)

Das chemische Potential einer Komponente i in kondensierten realen Mischungen ist ³⁻⁷)

$$u_i = \mu_{0i} + RT \ln a_i = \mu_{0i} + RT \ln x_i + RT \ln f_i \quad (5)$$

 $[\mu_i$ chemisches Potential der Komponente *i* in Lösung, μ_{0i} chemisches Potential der reinen Komponente *i* im selben Aggregatzustand und bei gleicher Temperatur und gleichem Druck wie die Lösung, *R* universelle Gaskonstante, *T* absolute Temperatur, *a_i* Aktivität der Komponente i in der Lösung, f_i Aktivitätskoeffizient der Komponente i in der Lösung, x_i Konzentration der Komponente i in der Lösung.]

Der Index 0 bezieht sich immer auf die Komponenten in reinem Zustand, also z. B. ΔG_0 ist die freie "Reaktionsenthalpie" bei Bildung aus den reinen Elementen, genannt freie Bildungsenthalpie.

An der Liquiduskurve sind Flüssigkeit (Phase ') und kristalliner Stoff (Phase '') im Gleichgewichtszustand

Bild 10. Zustandsdiagramme mit Alkalihalogenid-Cermets ⁶³⁻⁶⁷) und ⁹⁸⁻¹⁰¹)

und es gilt

(6)

$$\ln \frac{x_{t}'f_{t}''}{x_{t}''f_{t}'} = \frac{\mu_{0t}'' - \mu_{0t}'}{R T}$$

 $\mu'_i = \mu''_i$

$$\left[\frac{\partial \left(\mu_{0i}/T\right)}{\partial T}\right]_{P} = -\frac{H_{0i}}{T^{2}}$$

woraus durch Integration zwischen dem Schmelzpunkt (T_{Si}) des reinen Stoffes *i* und einer beliebigen

Bild 12. Zustandsdiagramme mit Arsenidkombinationen ^{22, 28, 30})

349

(7)

Bild 13. Zustandsdiagramme mit Selenidkombinationen^{22, 28, 39})

Temperatur (T) folgt

$$\frac{\mu_{0i}(T)}{T} - \frac{\mu_{0i}(T_{Si})}{T_{Si}} = -\int_{T_{Si}}^{T} \frac{H_{0i}(T)}{T^3} \,\mathrm{d}T \tag{8}$$

m

 $[H_{0i}(T) =$ Enthalpie der Komponente *i* bei der Temperatur T]

Am Schmelzpunkt besteht Gleichgewicht zwischen der reinen flüssigen Komponente i und ihren Kristallen

$$\mu'_{0i}(T_{Si}) = \mu''_{0i}(T_{Si}) \tag{9}$$

Setzt man Gl. (8) einmal für die flüssige Phase, dann für die feste Phase an, summiert und beachtet Gl. (9), so erhält man

$$\frac{\mu_{0l}''(T)}{T} - \frac{\mu_{0l}'(T)}{T} = \int_{T_{Sl}}^{T} \frac{H_{0l}' - H_{0l}''}{T^2} dT$$
(10)

Aus Gl. (10) mit $\Delta H_{0i} = H_{0i}^{''} - H_{0i}^{'}$ und Gl. (6) folgt

$$\ln \frac{x_i' f_i'}{x_i'' f_i'} = \int_{T_{Si}}^T \frac{\Delta H_{0i}}{R T^2} \, \mathrm{d}T \tag{11}$$

Für ein eutektisches System mit völliger Unlöslichkeit der Komponenten im festen Zustand ist die feste Phase

Bild 14. Zustandsdiagramme mit Telluridkombinationen^{22, 28, 39})

immer die reine Komponente, also $x_i'' f_i'' = 1$ und folglich gilt an der Liquiduskurve

$$\ln (x_i f_i)_{\rm liq} = \int_{T_{SI}}^{1} \frac{\Delta H_{0i}}{R T^2} \, \mathrm{d}T \tag{12}$$

Für die Integration dieser Gleichung muß die Temperaturabhängigkeit der Enthalpiedifferenz (ΔH_{0l}) bekannt sein. Sie läßt sich nach der Kirchhoffschen Regel^{3, 6}) schreiben

$$\Delta H_{0i}(T) = \Delta H_{0i}(T_{Si}) + \int_{T_{Si}}^{1} (C_{p \text{ flussig}} - C_{p \text{ fest}})_i \, \mathrm{d}T \quad (13)$$

 $[\Delta H_{0i}(T_S) =$ Schmelzwärme der reinen Komponente i; $C_p =$ Wärmekapazität der Komponente i im reinen flüssigen bzw. festen Zustand.]

Im allgemeinen darf der Ausdruck

Λ

1

$$C_p = C_{p \text{ flüssig}} - C_{p \text{ fest}}$$

(14)

für das Temperaturintervall zwischen eutektischer Temperatur und Schmelzpunkt der reinen Komponente als konstant angesehen werden. Ist diese Näherung in besonderen Fällen nicht hinreichend, so kann der Ausdruck (14) durch eine Reihenentwicklung als Temperaturfunktion dargestellt werden ⁶). Bei konstantem Ausdruck (14) folgt mit Gl. (13) aus Gl. (12)

$$-\ln (x_i f_i)_{\rm liq} = \frac{\Delta H_{0i}(T_{Si})}{R} \left(\frac{1}{T} - \frac{1}{T_s}\right) \\ + \frac{\Delta C_{p0i}}{R} \int \left(\ln \frac{T_s}{T} + 1 - \frac{T_s}{T}\right)$$
(15)

Dies ist die allgemeinste Beziehung zur Berechnung der Liquiduslinie in einem eutektischen System ohne Randlöslichkeit. Gleichung (15) vereinfacht sich zu

$$-\ln(x_i f_i)_{\rm liq} = \frac{\Delta H_{0i}(T_{Si})}{R} \left(\frac{1}{T} - \frac{1}{T_{Si}}\right)$$
(16)

mit der Annahme, die Schmelzwärme sei völlig temperaturunabhängig, s. Gl. (13), und zu

$$-\ln x_{i\,\text{liq}} = \frac{\Delta H_{0i}(T_{Si})}{R} \left(\frac{1}{T} - \frac{1}{T_{Si}}\right)$$
(17)

für ideale Mischung in der Schmelze (Schröder-van-Laar-Beziehung). Dann ist die Liquidustemperatur

$$T_{\rm liq} = \frac{T_{Si} \, \Delta H_{0i}(T_{Si})}{\Delta H_{0i}(T_{Si}) - R \, T_{Si} \ln x_i \, \mathrm{liq}} \tag{18}$$

Nach Gl. (18) kann die Liquiduskurve errechnet werden, ausgehend einmal von der keramischen Komponente, dann von der metallischen Komponente. Dort, wo die so berechneten Liquiduskurven sich einander schneiden, also für $T_{\text{lig Keramik}} = T_{\text{lig Metall}}$, liegt der eutektische Punkt. In Bild 5 sind für die Systeme von Uranmonocarbid mit Chrom und Eisen so berechnete Liquiduskurven mit gemessenen verglichen ¹⁵). Die gute Übereinstimmung zeigt, daß die gemachten Voraussetzungen

- a) ideale Mischung in der Schmelze,
- b) Unlöslichkeit der Komponenten im festen Zustand und
- c) Temperaturunabhängigkeit der Schmelzwärme

in diesen Fällen offenbar weitgehend erfüllt sind. Sind die Annahmen a) und c) nicht erfüllt, so kann versucht werden, mit Gl. (15) zu rechnen, wofür allerdings Aktivitätskoeffizienten und Wärmekapazitäten bekannt sein müßten.

Die Entscheidung, ob eine Cermetkombination instabil ist, kann immer dann eindeutig getroffen werden, wenn das zugehörige Zustandsdiagramm vollständig bekannt ist. Das ist jedoch, insbesondere bei Mehrkomponentensystemen, häufig nicht der Fall. Beruht die Instabilität auf der chemischen Reaktion der Komponenten, so läßt sie sich thermochemisch mit Hilfe der vielfach bekannten freien Reaktionsenthalpien für die Ausgangskomponenten der instabilen Cermetkombination und die Phasen der möglichen stabilen Reaktionsprodukte abschätzen. Dies soll abschließend an dem Beispiel der Cermetkombination Zementit (Fe₃C)-Uran erläutert werden.

Ein Vergleich der Temperaturfunktionen der freien Bildungsenthalpien aller möglichen Zweistoffverbindungen nach Bild 15 ergibt, daß Fe₃C-U-Cermets instabil sind. Alle möglichen Reaktionsprodukte ergeben sich aus den bekannten binären Randsystemen des Dreistoffsystems Uran-Kohlenstoff-Eisen. In Bild 15 sind die

Bild 15. Freie Bildungsenthalpien der möglichen Reaktionsprodukte von Fe₃C-U-Cermets

Werte der freien Bildungsenthalpien auf stöchiometrischen Umsatz bezogen. Bei den freien Reaktionsenthalpien ist deren Konzentrationsabhängigkeit mit in Betracht zu ziehen. Schließt man Vierphasengleichgewichte und höhere als binäre Phasen zunächst aus, so lassen sich die aus der Fe₃C-U-Reaktion resultierenden Kombinationen wie folgt abschätzen: Die 8 Randphasen ergeben nach Gl. (2) 56 dreiphasige Kombinationen;

C-Fe ₃ C-UFe ₂	C-Fe ₃ C-U ₆ Fe	C-Fe-UFe ₂
C-Fe-U ₆ Fe	C-Fe-U	C-Fe-UC
C-Fe-U ₂ C ₃	C-UFe ₂ -U ₆ Fe	C-UFe ₂ -U
C-UFe2-UC	C-UFe ₂ -U ₂ C ₃	C-U ₆ Fe-U
C-U6Fe-UC	C-U ₆ Fe-U ₂ C ₃	Fe ₃ C-Fe-UC
Fe ₃ C-Fe-U ₂ C ₃	Fe-UFe ₂ -UC	Fe-UFe2-U2C3
UFe2-U6Fe-UC	UFe_2 - U_6Fe - U_2C_3	U ₆ Fe-U-UC
U ₆ Fe-U-U ₂ C ₃	FeC-UFe2-UC	Fe ₃ C-UFe ₂ -U ₂ C ₃
Fe-U ₆ Fe-UC	Fe-U ₆ Fe-U ₂ C ₃	UFe2-U-UC
UFe_2 -U-U $_2C_3$	UFe2-UC-U2C3	$U_6Fe-UC-U_2C_3$
Fe ₃ C-U ₆ Fe-UC	$Fe_{3}C-U_{6}Fe-U_{2}C_{3}$	Fe-U-UC
$Fe-U-U_2C_3$	Fe-UC-U2C3	(C-Fe ₃ C-U)
(C-Fe ₃ C-UC)	(C-Fe ₃ C-Fe)	$(C-Fe_3C-U_2C_3)$
(C-U-UC)	$(C-U-U_2C_3)$	$(C-UC-U_2C_3)$
(Fe ₃ C-Fe-UFe ₂)	(Fe ₃ C-Fe-U ₆ Fe)	(Fe ₃ C-Fe-U)
(Fe ₃ C-UFe ₂ -U ₆ Fe)	(Fe-UFe ₂ -U)	(UFe ₂ -U ₆ Fe-U)
$(U-UC-U_2C_3)$	(Fe ₃ C-UFe ₂ -U ₆ Fe)	(Fe ₃ C-UFe ₂ -U)
(Fe-U ₆ Fe-U)	(Fe ₃ C-U ₆ Fe-U)	(Fe ₃ C-U-UC)
(Fe ₂ C-II-II ₂ C ₂)	(FeaCaUCaUaCa)	

Von diesen scheiden die eingeklammerten aus, da ihre möglichen Dreiphasenfelder nicht im Fe₃C-U-Schnitt liegen (siehe Bild 2). Die möglichen zweiphasigen Folgekombinationen aus der Fe₃C-U-Reaktion liegen an den Schnittpunkten (1-8) in Bild 2. Bei der Konzentration des Schnittpunktes 1 kann die zweiphasige U₆Fe-UC-Kombination entstehen oder eine jener dreiphasigen Komibnationen, in deren Feld der Punkt 1 gemäß seiner Konzentration liegt. In Tabelle I sind für diesen und die sieben anderen Punkte die möglichen Reaktionsproduktkombinationen angegeben. Mit Hilfe der freien Bildungsenthalpien der beteiligten Carbide und intermetallischen Verbindungen und unter Berücksichtigung der durch die Reaktionsgleichungen gegebenen Konzentrationsverhältnisse lassen sich die freien Reaktionsenthalpien für alle Kombinationen errechnen. Die Berechnung wurde mit den entsprechenden Werten der freien Bildungsenthalpien (bei 1000 °K in kcal/mol:

Tabelle I
Freie Reaktionsenthalpien für die instabile Cermetkombination Zementit-Uran

-	- 14						
Punkt Nr. in Bild 2	Ausgangs- mischung	mögliche Reaktionsprodukt- kombinationen	freie Reaktions- enthalpie (kcal/For- mel- umsatz)	Punkt Nr. in Bild 2	Ausgangs- mischung	mögliche Reaktionsprodukt- kombinationen	freie Reaktions- enthalpie (kcal/For- mel- umsatz)
1	Fe ₃ C+19 U	$\begin{array}{c} 3 \ \mathrm{U_6Fe} + \mathrm{UC} \\ \mathrm{C} + 3/2 \ \mathrm{UFe_2} + 17,5 \ \mathrm{U} \\ \mathrm{C} + 3 \ \mathrm{U_6Fe} + \ \mathrm{U} \\ 3 \ \mathrm{U_6Fe} + 1/3 \ \mathrm{U} + 1/3 \ \mathrm{U_2C_3} \\ 3/2 \ \mathrm{UFe_2} + 16,5 \ \mathrm{U} + \mathrm{UC} \\ 3/2 \ \mathrm{UFe_2} + 101/6 \ \mathrm{U} \\ + 1/3 \ \mathrm{U_2C_3} \\ 3 \ \mathrm{Fe} + 18 \ \mathrm{U\cdotUC} \\ 3 \ \mathrm{Fe} + 55/3 \ \mathrm{U} + 1/3 \ \mathrm{U_2C_3} \end{array}$	$\begin{array}{r} -51,7\\ -12,0\\ -28,6\\ -45,5\\ -35,1\\ -28,4\\ -23,5\\ -16,9\end{array}$	5	Fe ₃ C+13/6 U	$\begin{array}{c} 101/36 \ {\rm Fe} + 7/36 \ {\rm U_6Fe} + {\rm UC} \\ 11/4 \ {\rm Fe} + 1/4 \ {\rm U_6Fe} \\ + 1/3 \ {\rm U_2C_3} \\ 101/114 \ {\rm Fe_3C} + 13/38 \ {\rm U_6Fe} \\ + 13/114 \ {\rm UC} \\ 99/112 \ {\rm Fe_3C} + 39/112 \ {\rm U_6Fe} \\ + 13/336 \ {\rm U_2C_3} \\ 3 \ {\rm Fe} + 7/6 \ {\rm U} + {\rm UC} \\ 3 \ {\rm Fe} + 3/2 \ {\rm U} + 1/3 \ {\rm U_2C_3} \\ 2/3 \ {\rm Fe} + 7/6 \ {\rm Fe} + {\rm UC} \end{array}$	-25,4-19,1- 5,9- 5,2-23,6-16,9-32,5
2	Fe ₃ C+56/3 U	$\begin{array}{l} 1/3 \ U_2C_3+3 \ U_6Fe \\ C+3/2 \ UFe_2+103/6 \ U \\ C+3 \ U_6Fe+2/3 \ U \\ 1/3 \ C+3 \ U_6Fe+2/3 \ UC \\ 1/3 \ UFe_2+97/3 \ U_6Fe+UC \\ 1/3 \ UFe_2+97/3 \ U_6Fe+UC \\ 3/2 \ UFe_2+97/6 \ U+UC \\ 3/2 \ UFe_2+99/6 \ U+1/3 \ U_2C_3 \\ 1/57 \ Fe_3C+56/19 \ U_6Fe \\ +56/57 \ UC \\ 3 \ Fe+53/3 \ U+UC \\ 3 \ Fe+53/3 \ U+1/3 \ U_2C_3 \end{array}$	$\begin{array}{r} -45,1\\ -12,0\\ -28,6\\ -44,0\\ -51,4\\ -51,2\\ -35,1\\ -28,4\\ -50,8\\ -23,6\\ -16,9\end{array}$	6	Fe ₃ C+3/2 U	$\begin{array}{c} C+3/2 \ UFe_2 + 1/4 \ U_6Fe_2 + 1/4 \ U_6Fe_3C_4 + 1/4 \ U_6Fe_5 + 1/4 \ U_6Fe_5 + 1/4 \ U_6Fe_5 + 1/2 \ UFe_2 + UC_5 + 1/2 \ UFe_2 + 1/3 \ U_2C_3 \\ 2/5 \ Fe_3C + 9/10 \ UFe_2 + 1/3 \ U_2C_3 \\ 35/12 \ Fe_3/13 \ U_2C_3 \\ 35/12 \ Fe_5 + 1/12 \ U_6Fe_5 + UC_5 \end{array}$	$\begin{array}{r} -12,0\\ -2,4\\ -2,8\\ -27,4\\ -23,3\\ -21,1\\ -19,7\\ -24,3\end{array}$
3	Fe ₃ C+18 U	C+3 U ₆ Fe C+3/2 UFe ₂ +16,5 U 1/11 UFe ₂ +31/11 U ₆ Fe+UC 1/6 Fe+17/6 U ₆ Fe+UC 1/9 Fe+26/9 U ₆ Fe +1/3 U ₂ C ₃ 3/2 UFe ₂ +15,5 U+UC 3/2 UFe ₂ +95/5 U+1/3 U ₂ C ₃	$-28,7 \\ -12,0 \\ -50,7 \\ -50,2 \\ -44,0 \\ -35,1 \\ -28,4 \\ 0$			$\begin{array}{c} 103/36 \ {\rm Fe} + 5/36 \ \dot{\rm U}_6 {\rm Fe} \\ + 1/3 \ {\rm U}_2 {\rm C}_3 \\ 35/38 \ {\rm Fe}_3 {\rm C} + 9/38 \ {\rm U}_6 {\rm Fe} \\ + 3/38 \ {\rm UC} \\ 103/112 \ {\rm Fe}_3 {\rm C} + 27/112 \ {\rm U}_6 {\rm Fe} \\ + 3/112 \ {\rm U}_2 {\rm C}_3 \\ 3 \ {\rm Fe} + 1/2 \ {\rm U} + {\rm UC} \\ 3 \ {\rm Fe} + 5/6 \ {\rm U} + 1/3 \ {\rm U}_2 {\rm C}_3 \end{array}$	-18,2 -4,1 -3,6 -23,6 -16,9
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\begin{array}{c} UC+3 \ Fe \\ 2/3 \ C+1/3 \ Fe_3 C+UFe_2 \\ 1/18 \ C+17/18 \ Fe_3 C \\ +1/6 \ U_6 Fe \\ C+Fe+UFe_2 \\ C+17/6 \ Fe+1/6 \ U_6 Fe \end{array}$	-23,6 -8,0 -1,6 -8,2 -2,1			
4.	Fe ₃ C+5/2 U	$\begin{array}{c} UC + 3/2 \ UFe_2 \\ 5/36 \ C + 31/36 \ Fe_3C \\ + 5/12 \ U_6Fe \\ C + 31/12 \ Fe + 5/12 \ U_6Fe \\ C + 31/22 \ UFe_2 + 2/11 \ U_6Fe \\ C + 3/2 \ UFe_2 + U \\ 97/66 \ UFe_2 + 2/33 \ U_6Fe \\ + 1/3 \ U_2C_3 \\ 11/4 \ Fe + 1/4 \ U_6Fe + UC \\ 97/6 \ Fe + 11/36 \ U_6Fe \\ + 1/3 \ U_2C_3 \\ (a) \\ D \\ $	$ \begin{array}{r} -35,1 \\ -4,0 \\ -4,4 \\ -13,0 \\ -12,0 \\ -28,8 \\ -25,9 \\ -19,8 \\ \end{array} $	7	Fe ₃ C+U	$\begin{array}{c} 7/3 \ {\rm Fe} + 1/3 \ {\rm UFe}_2 + 1/3 \ {\rm U_2C_3} \\ 3/5 \ {\rm Fe}_3{\rm C} + 3/5 \ {\rm UFe}_2 + 2/5 \ {\rm UC} \\ 7/13 \ {\rm Fe}_3{\rm C} + 9/13 \ {\rm UFe}_2 \\ + 2/13 \ {\rm U_2C_3} \\ 53/18 \ {\rm Fe} + 1/18 \ {\rm U_6Fe} \\ + 1/3 \ {\rm U_2C_3} \\ 18/19 \ {\rm Fe}_3{\rm C} + 3/19 \ {\rm U_6Fe} \\ + 1/19 \ {\rm UC} \\ 53/56 \ {\rm Fe}_3{\rm C} + 9/56 \ {\rm U_6Fe} \\ + 1/56 \ {\rm U_2C_3} \\ 3 \ {\rm Fe} + 1/3 \ {\rm U} + 1/3 \ {\rm U_2C_3} \end{array}$	$ \begin{array}{r}19,4 \\ -14,0 \\ -13,1 \\ -17,4 \\ -2,7 \\ -2,7 \\ -2,4 \\ -16,9 \end{array} $
	$\begin{array}{c} 3/2 \ UFe_2 + 1/3 \ U + 1/3 \ U_2 C_3 \\ 33/38 \ Fe_3 C + 15/38 \ U_6 Fe \\ + 5/38 \ UC \\ 97/112 \ Fe_3 C + 45/112 \ U_6 Fe \\ + 5/112 \ U_2 C_3 \\ 3 \ Fe + 3/2 \ U + UC \\ 3 \ Fe + 11/6 \ U + 1/3 \ U_2 C_3 \end{array}$	-28,4 -6,8 -6,0 -23,6 -16,9			1/3 $U_2C_3 + 3$ Fe 4/9 C+5/9 Fe ₃ C+2/3 UFe ₂ 1/27 C+26/27 Fe ₃ C +1/9 U_6 Fe C+5/3 Fe+2/3 UFe ₂ C+26/9 Fe+1/9 U_6 Fe 1/3 C+3 Fe+2/3 UC	-16,9 -5,3 -1,1 -5,6 -1,5 -15,9	
5	Fe ₃ C+13/6 U	$\begin{array}{c} 1/3 \ U_2 C_3 + 3/2 \ UF e_2 \\ 13/108 \ C + 95/108 \ F e_3 C \\ + 13/36 \ U_6 F e \\ C + 95/36 \ F e + 13/36 \ U_6 F e \\ C + 95/66 \ UF e_2 + 4/33 \ U_6 F e \\ C + 3/2 \ UF e_2 + 2/3 \ U \\ 1/3 \ C + 3/2 \ UF e_2 + 2/3 \ U C \\ 2/15 \ F e_3 C + 13/10 \ UF e_2 \\ + 13/15 \ U C \end{array}$	$\begin{array}{r} -28,4 \\ -3,4 \\ -3,4 \\ -12,7 \\ -12,0 \\ -27,4 \\ -30,4 \end{array}$	8	${\rm Fe}_{3}{\rm C}+2/3~{\rm U}$	$\begin{array}{c} 1/3 \ {\rm Fe_3C+2} \ {\rm Fe_1+2/3} \ {\rm UC} \\ 11/15 \ {\rm Fe_3C+2/5} \ {\rm UFe_2} \\ +4/15 \ {\rm UC} \\ 9/13 \ {\rm Fe_3C+6/13} \ {\rm UFe_2} \\ +4/39 \ {\rm U_2C_3} \\ 55/57 \ {\rm Fe_3C+2/19} \ {\rm U_6Fe} \\ +2/57 \ {\rm UC} \\ 27/28 \ {\rm Fe_3C+3/28} \ {\rm U_6Fe} \\ +1/84 \ {\rm U_2C_3} \end{array}$	$-15,7 \\ -9,4 \\ - 8,7 \\ - 1,8 \\ - 1,6$

 $Fe_3C = +0.46$; UC = -23.1; $U_2C_3 = -49.3$; $UFe_2 =$ -7,7; U₆Fe = 9,4^{16,104}) durchgeführt. Ihre Resultate sind in der letzten Spalte von Tab. I wiedergegeben. Die instabile Cermetkombination führt danach im betrachteten Temperaturbereich (wegen UC2-Bildung >1300 °C) je nach Konzentration der Fe₃C- und U-Komponente zu den stabilen Folgekombinationen (siehe Bild $\hat{2}$ und 15):

Bis zum Punkt 1:

 $U_6Fe + UC + U$; am Punkt 1: $U_6Fe + UC$;

von Punkt 1 bis Punkt 4:

 $U_6Fe + UC + UFe_2$; am Punkt 4: $UC + UFe_2$;

von Punkt 4 bis Punkt 7:

 $UC + UFe_2 + Fe$; am Punkt 7: UC + Fe;

von Punkt 7 bis Punkt 8:

 $UC + U_2C_3 + Fe$; oberhalb Punkt 8: $U_2C_3 + Fe + C$.

Auf die Unsicherheiten solcher Abschätzungen wegen der Streubereiche bei den freien Bildungsenthalpien wird in einer anderen Arbeit eingegangen¹⁶).

Herrn G. Reiser sei für die Mitwirkung an dieser Arbeit gedankt.

Schrifttum

1) G. Petzow, N. Claussen und H. E. Exner: Z. Metallkde. 59 (1968)

2) K. Schröder und G. und R. Reissig: Mathematik

für die Praxis. Kap. 6. Verlag H. Deutsch, Frankfurt-Zürich 1964 3) G. Kortüm : Einführungen in die chemische Thermodynamik. Verlag Chemie, Weinheim 1960

4) R. Haase: Thermodynamik der Mischphasen. Springer-Verlag, Berlin 1956

⁵) O. Knacke und H. Lydtin: Rechenbeispiele zur physikalischen Chemie metallurgischer Reaktionen. Verlag Mayer, Aachen 1963

6) J. Prigogine und R. Defay: Chemische Thermodynamik. VEB Deutscher Verlag für Grundstoffindustrie, Leipzig 1962

- 7) O. Kubaschewsky, E. L. Evans und C. B. Alcock: Metallurgical thermochemistry, 4. Aufl. Pergamon Press, London 1967
 - 8) F. Thümmler: Ber. Dt. Keram. Ges. 46 (1969)

9) J.R. Tinklepaugh und W.B. Crandall: Cermets. Reinhold Publ. Corp., New York 1960
¹⁰) R. Kieffer, E. Eipeltauer und E. Gugel: Ber.

Dt. Keram. Ges. 46 (1969)

- ¹¹) Deutscher Normenausschuß, DIN-Entwurf 30 900, 1970 ¹²) G. Ondracek, B. Leder und C. Politis: Prakt. Metallogr. 5 (1968)
- ¹³) A. Jesse und G. Ondracek: KFK 845, Kap. 6, Kernforschungszentrum Karlsruhe 1969

¹⁴) F. N. Rhines: Phase diagrams in metallurgy. McGraw-Hill Book Co., New York 1956

- 15) G. Ondracek und K. Splichal: Proc. III. Internat. Pulvermetallurgiekonferenz, Karlsbad 1970 (Bd. II, Teil 2)
- ¹⁶) G. Ondracek: Sprechsaal/mr+v, demnächst ¹⁷) G. Jangg und Mitarb.: Ber. Dt. Keram. Ges. 47
- (1970)18) L. Kaufmann, in: P. S. Rudman, J. Stringer und R. J. Joffee: Phase stability in metals and alloys.

McGraw-Hill Book Co., New York 1967 19) F. H. Spedding und A. H. Daane: The rare earths.

- New York 1961
- ²⁰) R. W. Johnson und A. H. Daane: J. Phys. Chem. 65 (1961)
- ²¹) B. W. Howlett: J. Inst. Metals 88 (1959/60)
- ²²) R. P. Elliott: Constitution of binary alloys. London 1965
- ²³) P. Ehrlich: Z. anorg. Chem. **259** (1945)
 ²⁴) E. W. Glaser und B. Post: Trans. AIME **197** (1953) ²⁵) H. Nowotny, E. Rudy und F. Benesovsky: Radex-Rundsch. 6 (1960)
- ²⁶) H. Nowotny, F. Benesovsky und R. Kieffer: Z. Metallkde, 50 (1959)
- ²⁷) H. Nowotny und Mitarb.: Monatsh. Chemie 89 (1958) 28) F. A. Shunk: Constitution of binary alloys. London 1969

- ²⁹) G. Hannesen: Z. anorg. Chemie **88** (1914)
- ³⁰) P. T. Kolomytsev: Dokl. Akad. Nauk. SSSR 130 (1960)
- ³¹) P. T. Kolomytsev: Irv. Akad. Nauk. SSSR, Metri
- Toplivo 3 (1960) ³²) F. H. Spedding, K. Gschneider und A. H. Daane: Trans. AIME 215 (1959)
 - ³³) P. J. Fedorov: J. Chinese Chem. Soc. 23 (1957)
- ³⁴) F.A. Rough und A.A. Bauer: BMI-1300, 1958 ³⁵) G. Briggs und Mitarb.: Trans. Brit. Ceram. Soc. 62 (1963)
- ³⁶) R. T. Dolloff: NADD Techn. Report 60-143 Pt. I, 1960
- ³⁷) R. N. R. Mulford und F. H. Ellinger: Plutonium. London 1961
- ³⁸) A. J. Evstyukkin: High purity metals and alloys. Transl. Consult. Bur., New York 1967
- ³⁹) M. Hansen: Constitution of binary alloys. London 1958
- 40) E. K. Storms und R. J. McNeal: J. Phys. Chem. 66 (1962)

- ⁴¹) F. C. Kelley: Trans. ASST 19 (1932)
 ⁴²) E. Rudy, S. Windisch und J. A. Chang: AFML-TR.65-2 (AD-463 558), 1965
- ⁴³) R. V. Sari und R. T. Dolloff: AD 277 794, 1962 44) R. F. Domagela, D. J. McPherson und M. Hansen : Trans. AIME 206 (1956)
- ⁴⁵) J. Bugl und A. A. Bauer: J. Amer. Ceram. Soc. 47 (1964)
- ⁴⁶) K. A. Bolskakov, P. J. Federov und L. Stepina: Trv. Vysshikk. Uchebn. Zavedemié Trvetu., Met. 4 (1959)
- 47) R. P. Elliot und Komjathy: Colombium metal*lurgy*. New York 1969 ⁴⁸) E. Gebhardt, H. D. Seghezzi und E. Fromm:
- Z. Metallkde. 52 (1961)
 - ⁴⁹) W. Biltz und Mitarb.: Z. anorg. Chem. **223** (1935)
- ⁵⁰) L. Guillet: Rev. met. 2 (1906)
 ⁵¹) R. Vogel und G. W. Karsten: Arch. Eisenhüttenwes. 12 (1939)
 - ⁵²) J. E. Stead: J. Iron Steel Inst. 58 (1900)
- ⁵³) J. Koenemann und A. G. Metcalfe: Trans. AIME 212 (1958)
- ⁵⁴) D. Zemczuzny und J. Schepelew: Z. anorg. Chem. 64 (1909)
 - ⁵⁵) M. Zumbusch: Z. anorg. Chem. 243 (1940)
- ⁵⁶) G. Wiehage, F. Weibke und W. Biltz: Z. anorg. Chem. 228 (1936) ⁵⁷ A. C. Vivian : J. Inst. Metals 23 (1920)
- ⁵⁸) C. A. Jarovsky und R. Benz: J. Nucl. Mat. 23 (1967)
- ⁵⁹) A. G. Kelynzhnaya, S. K. Polnshina und D. N. Tretyakov: Zhur. Neorg. Khim. 9 (1964) ⁶⁰) A. J. Nashelskii, V. Z. Ostrovskaya und S. V.
- Jakobson: Zh. Fiz. Khim. 38 (1964)
- 61) B. Giessen und R. Vogel: Z. Metallkde. 50 (1959) ⁶²) O. Kubaschewsky : Proc. IAEA-Symp., SM 98/101, Wien 1968
- 63) G. W. Melors und S. Senderoff: J. Phys. Chem. 63 (1959) ⁶⁴) A. P. Palkin und V. T. Redchenko: Zhur. Neorg.
- Khim. 1 (1956)
- 65) A. P. Palkin und Belousov: Zhur. Neorg. Khim. 2 (1957)
- ⁶⁶) E. J. Elagina und A. P. Palkin: Zhur. Neorg. Khim. 1 (1956)
- 67) S. J. Josin und Mitarb.: J. Phys. Chem. 63 (1959) ⁶⁸) P. Asanti und E. J. Kohlmeyer: Z. anorg. Chem.
- 265 (1951) 69) M. H. Rand und O. Kubaschewsky: The thermo-
- chemical properties of uranium compounds. Oliver and Boyd, Edinburgh 1963
- 70) E. Rudy und P. Stecher: J. Less Common Metals
- 5 (1963) ⁷¹) B. Phillips und L. L. J. Chang: Trans. AIME 230 (1964)
- ⁷²) G. Ondracek und B. Kanellakopulos: J. Nucl. Mat. 29 (1969)
 - ⁷³) R. Benz: J. Nucl. Mat. 29 (1969)
 - ⁷⁴) R. B. Sosman: Trans. Brit. Ceram. Soc. 54 (1955)
 - ⁷⁵) E.S. Candidus und D. Tuomi: J. Chem. Phys. 23
- (1955) ⁷⁶) E. Gebhardt und G. Ondracek: J. Nucl. Mat. 13 (1964)

⁷⁷) A. J. Kazuroff und L. N. Grossmann: IAEA-Proc. Thermodyn. of Nucl. Mat., SM-98-39, 1967
⁷⁸) R. C. Tucker, E. D. Gibson und R. M. Carlson: Met. Soc. AIME, Spec. Report 13 (1964)
⁷⁹) B. Love: WADD Techn. Rept., 1961
⁸⁰) H. Spender und F. L. Kohlmeyer: 7 Metallide

⁸⁰) H. Spandau und E. J. Kohlmeyer: Z. Metallkde. 40 (1949)

⁸¹) T. D. Chikalla, C. E. McNeilly und R. E. Skav-dahl: J. Nucl. Mat. 12 (1964)
⁸²) R. P. Elliott: Trans. ASM 52 (1969)
⁸³) Bogatskii: Zhur. Obshchii Khim. 21 (1951)
⁸⁴) P. Vocol and W. V. Mässenhausen: Z. Metall-

⁸⁴) R. Vogel und W. V. Mässenhausen : Z. Metallkde. 41 (1950) ⁸⁵) R. Vogel und H. H. Weizenkorn: Arch. Eisen-

hüttenwes. 32 (1961)

⁸⁶) H. H. Woodbury: J. Phys. Chem. Solids 24 (1963)

⁸⁷) F. M. Jaeger: Akad. Amsterdam Verlag 20 (1911/12) ⁸⁸) E. D. Cater: ANL-6140, 1960

⁸⁹) M.F. Stubbs und J.A. Schufle: J. Amer. Chem. Soc. 74 (1952)

⁹⁰) C. H. Lin, A. S. Pashinkon und A. V. Novo-selova: Dokl. Akad. Nauk SSSR 151 (1963)

91) R. Vogel und W. Hotop: Arch. Eisenhüttenwes. 11 (1937/38)

⁹²) Kulleried und H.S. Joder: Econ Geol. 54 (1959) ⁹³) K. Friedrich und A. Leronx: Metallurgie 2 (1905)

⁹⁴) W. Biltz und A. Köcher: Z. anorg. Chem. 241 (1939)

⁹⁵) R. Vogel und R. Reinbach: Arch. Eisenhüttenwes.

 ¹⁰) R. Y 0 g 0 1 und R. A. 1998)
 ⁹⁶) K. Friedrich: Metallurgie 5 (1908)
 ⁹⁷) H. Pilabon: C. R. 145 (1907)
 ⁹⁸) M. A. Bredig und H. R. Bronstein: J. Phys. Chem. 64 (1960) ⁹⁹) M. A. Bredig und J. W. Johnson: J. Phys. Chem.

64 (1960) ¹⁰⁰) J. W. Johnson und M. A. Bredig: J. Phys. Chem.

¹⁰¹) E. M. Levin, C. R. Robbins und H. F. McMurdie: Phase diagrams for ceramists. Amer. Ceram. Soc., Columbus 1964

¹⁰²) L. Kaufmann und H. Bernstein: Computer calculation of phase diagrams. Academic Press, New York-London 1970

¹⁰³) A. M. Alper: Phase diagrams, Vol. I und II. Academic Press, New York 1970

¹⁰⁴) C. J. Smithells: Metals reference book, Vol. I. Butterworth, London 1967

¹⁰⁵) G. Ondracek und B. Schulz: Ber. Dt. Keram. Ges., demnächst

Eingegangen am 3. 12. 1970

Freie Bildungsenthalpien und Metall-Keramik-Wechselwirkungen*

G. Ondracek und H. Wedemeyer,

Institut für Material- und Festkörperforschung Kernforschungszentrum Karlsruhe

Zusammenfassung

Die freien Bildungsenthalpien keramischer und intermetallischer Verbindungen tragen überall dort zur Lösung von Materialproblemen bei, wo zwischen Werkstoffgefügebestandteilen oder aneinandergrenzenden verschiedenartigen Werkstoffen Reaktionen stattfinden können. Dies ist auch beispielsweise in der nuklearen Sicherheitsforschung der Fall, wenn es um die näherungsweise Abschätzung der Zusammensetzung - und der Eigenschaften eines ganz oder teilweise geschmolzenen Reaktorcores geht. Unter diesem Aspekt wurden die in der Literatur gegebenen Temperaturfunktionen der freien Bildungsenthalpien erneut zusammengestellt und dort ergänzt, wo experimentelle Literaturwerte die Angabe von Näherungsgleichungen zuließen. Die in der Arbeit wiedergegebenen Tabellen enthalten etwa 500 solcher Temperaturfunktionen der freien Bildungsenthalpien. Die generelle Aufgabe, nämlich die rechnerische Ermittlung von stabilen Reaktionsprodukten wird - wiederholend - aufgezeigt, die Einflüsse der Zustandsvariablen Druck, Temperatur und Konzentration der Komponenten werden erläutert.

1. Einleitung

Die freie Bildungsenthalpie einer keramischen oder intermetallischen Verbindung

ist diejenige Energie, die bei ihrer Bildung aus Elementen freigesetzt oder verbraucht wird. Sie erlaubt – durch Zahl und Vorzeichen – diejenigen Verbindungen abzuschätzen, die aus Reaktionen als die stabilsten hervorgehen. Solche Reaktionen können vorkommen

- zwischen den Komponenten eines Werkstoffs
- zwischen verschiedenen Werkstoffenl, die in einem Werkstück verbunden sind
 zwischen Werkstoffen (z. B. Tiegel) und
- zwischen Werkstoffen bzw. ihren
- Schmelzen und der umgebenden Gasatmosphäre.

Die Abschätzung der über solche Reaktionen entstehenden Reaktionsprodukte wird daher seit langem in der werkstofferzeugenden (z. B. Reaktionen zwischen metallurgischen Schmelzen und Tiegeln) sowie in der werkstoffverarbeitenden Industrie (z. B. Reaktionen zwischen Graphitmatrizen und Sauerstoff beim Drucksintern) durchgeführt. In der Werkstoff-Forschung werden freie Bildungsenthalpien beispielsweise im Rahmen der Verträglichkeit von Verbundwerkstoffen angewandt. wobei unter Verträglichkeit ganz allgemein die Wechselwirkung zwischen den Bestandteilen eines Materialsystems verstanden wird, soweit diese die Funktionsfähigkeit (»Betriebseignung«) des Systems beein-

flußt. Ein neues Anwendungsgebiet für die freien Bildungsenthalpien bietet jetzt die nukleare Sicherheitsforschung.

2. Freie Bildungsenthalpien in nuklearen Sicherheitsbetrachtungen

Im Rahmen der Sicherheitsforschung nimmt die Behandlung von Stör- und Unfällen bei Kernreaktoren erheblichen Raum ein. Dabei wird über die Unfallverhütung hinaus davon ausgegangen, daß kein Schutzsystem vollkommen sein kann, daß aber die Auswirkungen solcher – hypothetischer – Unfälle in für die Umgebung unschädlichem Maße beherrschbar sein müssen [29].

Der Größte Anzunehmende Unfall (GAU) in einem Leichtwasser-Reaktor ist der Kühlmittelverlustunfall, der hypothetisch so angenommen wird, daß der Primär-Kühlmittelkreislauf im kalten oder heißen Strang mit einem doppelseitigen Bruch versagt.

Um ihn zu beherrschen, wurden für jede einzelne Schleife des Primärkreislaufes Notkühlsysteme mit einer Redundanz installiert, daß beispielsweise von 4 Notkühlsystemen ohne weiteres 2 ausfallen können, ohne daß dadurch das sichere Abfangen des Kühlmittelverlustunfalles infrage gestellt wird.

In dem äußerst unwahrscheinlichen Fall, daß alle Notkühlsysteme gleichzeitig versagen, kommt es zur Aufheizung des Reaktorkerns durch »Nachzerfallswärme« mit – teilweisem oder völligem – Coreschmelzen. Der Aufbau der entstehenden Coreschmelze und ihre Eigenschaften entscheiden über die Beanspruchung des Reaktordruckbehälters [30].

Nach den bisher vorliegenden Abschätzungen wird die Coreschmelze möglicherweise ein mehrphasiges System sein: sie kann geschmolzene und nichtgeschmolzene Bestandteile des Brennelementes enthalten und sie wird Ausgangsmaterialien sowie durch Wechselwirkungen während des Hochheiz- und Abschmelzvorganges entstandene neue Werkstoffphasen enthalten.

★ modifizierte Fassung aus 108. Jahrg. • Sprechsaal "75

Diese Werkstoffkombination wird als Corium X bezeichnet.

Der Aufbau mehrphasiger Systeme läßt sich einteilen in

den materialbedingten Aufbau und
den stereometrischen Aufbau.

Materialbedingt sind die Phasen- und Grenzflächengleichgewichte (Benetzung) und damit auch Dampfdrücke und Wechselwirkungen der Komponenten. Unter dem stereometrischen Aufbau dagegen versteht man die Geometrie und geometrische Anordnung der Bestandteile des Corium X. So können beispielsweise bestimmte Phasen oder Komponenten diskontinuierlich in die kontinuierliche Matrix eines anderen Bestandteils eingelagert sein (Einlagerungsstruktur) oder es können sämtliche Phasen in Netzwerkanordnung kontinuierlich vorliegen (Durchdringungsstruktur). Auch die völlige Segregation der flüssigen und festen Coriumbestandteile ist möglich.

Wie erwähnt bestimmen materialbedingter und stereometrischer Aufbau das Verhalten der Coreschmelze und entscheiden damit über die Beanspruchung des Reaktordruckbehälters. So wird beispielsweise die Temperatur, der dieser Behälter ausgesetzt sein wird, von der spezifischen Wärme, der Schmelzwärme, dem Emissionsgrad und der Wärmeleitfähigkeit des Coriums abhängen. Diese Eigenschaften ihrerseits ergeben sich aus den Stoffwerten der im Corium auftretenden Bestandteile - und deren stereometrischer Anordnung. Die Coriumbestandteile sind es auch, die über mögliche Wechselwirkungen mit dem Material des Reaktordruckbehälters entscheiden. Aus diesem Grunde ist primär die Frage zu beantworten, welche Bestandteile das Corium X enthält.

Je nach Ablauf des Abschmelzvorganges werden gewisse Anteile der Ausgangsmaterialien des Brennelementes im Corium erhalten bleiben. Außerdem aber treten neue Phasen auf, die aus Wechselwirkungen (chemische Reaktion, Lösungsbildung) der im Brennelement enthaltenen Komponenten hervorgehen. Geht man von den vorkommenden Elementen aus, so zeigt sich, daß allein ihre Vielzahl exakte Konstitutionsuntersuchungen über Phasen-gleichgewichte aufwendig und schwierig macht. Vom Brennstoff stammen die Elemente Uran und Sauerstoff und - in geringer Konzentration - die Elemente der Spaltprodukte. Das Hüll- und Strukturmaterial liefert Eisen und die Legierungselemente des Stahls wie Chrom und Nickel sowie im Falle von Zirkaloy-Hüllen, Zirkon und entsprechende Legierungselemente wie Zinn. Außerdem kommt über die Was-Wasserstoff serdampfatmosphäre und nochmals Sauerstoff hinzu. Die zu erwartenden Zustandsdiagramme sind also polynär und im allgemeinen entsprechend

komplex, sogar dann, wenn Vereinfachungen wie beispielsweise quasibinäre Schnitte zwischen Verbindungen und Elementen auftreten [32].

Um mit möglichst geringem Aufwand dennoch zu einer hinreichend sicheren Aussage über den materialbedingten Aufbau des Corium X zu kommen, empfiehlt sich ein stufenweises Vorgehen:

- rechnerische Abschätzung der Zusammensetzung des Corium X
- qualitative Untersuchungen an Proben aus simulierten Abschmelzexperimenten
- Konstitutionsuntersuchungen an Proben im Phasengleichgewicht in speziellen
- Konzentrationsbereichen

Für rechnerische, d.h. thermochemische Abschätzungen sind vereinfachende Annahmen zu machen:

- die Wechselwirkungen zwischen den Bestandteilen der Coreschmelze erfolgen ausschließlich über chemische Reaktionen; d. h. Lösungsbildung findet nicht statt
- es bilden sich keine bisher unbekannten Verbindungen.

Diese Voraussetzungen gestatten mittels der Temperaturfunktionen der freien Bildungsenthalpien eine näherungsweise Abschätzung darüber, welche - stabilen -Phasen aus chemischen Reaktionen während des Abschmelzvorganges hervorgehen können. Solche Abschätzungen müssen durch experimentelle Untersuchungen geprüft werden, die sinnvollerweise in die zwei erwähnten Gruppen zu gliedern sind. Abschmelzexperimente liefern in praxisnaher Simulation Proben, die nicht im Gleichgewicht sein müssen. Ihre Untersuchung läßt aber qualitativ erkennen, ob die theoretischen Abschätzungen experimentell bestätigt werden oder nicht. - Konstitutionsuntersuchungen dagegen bringen dort - quantitative - Klärung im Detail, wo die theoretischen Abschätzungen nicht mit den experimentellen Ergebnissen an Abschmelzproben hinreichend übereinstimmen und ermöglichen eine exakte Aussage zum Gleichgewichtszustand.

Die Verwendungsmöglichkeit der Temperaturfunktionen der freien Bildungsenthalpien im Rahmen von nuklearen Sicherheitsbetrachtungen war der Anlaß für die vorliegende Arbeit. Andererseits wurde einleitend bereits festgestellt, daß das Interesse an solchen Funktionen im werkstoffkundlichen Sinne weit über den nuklearen Sicherheitsrahmen hinausreicht. Aus diesem Grunde ist ihre Behandlung und tabellarische Erfassung im folgenden nicht nur auf jene Verbindungen beschränkt worden. die für den nuklearen Sicherheitsfall in Betracht kommen, sondern wurde in der Absicht durchgeführt, eine »temporäre Kurzfassung« - ohne Anspruch auf Vollständigkeit-für jene Zwecke zusammenzustellen,

deren Probleme nicht von der Thermodynamik bestimmt sind. Eine kritische Auswahl oder Wertung konnte dabei nur in begrenzten Umfange erfolgen.

3. Chemische Reaktionen und Temperaturfunktionen der freien Bildungsenthalpien

Zum besseren Verständnis wird im folgenden die Abschätzung stabiler Reaktionsphasen an einem einfachen Beispiel erläuternd wiederholt. Da die freien Bildungsenthalpien stets Funktionen aller Zustandsgrößen (Druck, Konzentration der Komponenten und Temperatur) sind, werden auch diese Zusammenhänge noch einmal kurz dargestellt.

Gegeben sei eine Kombination aus drei Elementen (Metalle A, C; Metalloid B), die zu zwei Verbindungen ($AB_2 + C$; CB + A) führen kann:

$$2 AB_2 + 4 C \gtrsim 4 CB + 2 A$$
 (1)

Die Frage, welche der beiden Verbindungen die instabile ist, wird über die Bilanz ihrer freien Enthalpien entschieden.

$${}^{2} \operatorname{G}_{AB_{2}} + {}^{4} \operatorname{G}_{C} - {}^{4} \operatorname{G}_{CB} - {}^{2} \operatorname{G}_{A}$$
$$= {}^{2} \operatorname{A}_{B_{3}} - {}^{4} \operatorname{A}_{CB}$$
(2)

Diese Gleichung ergibt sich, wenn man die freien Bildungsenthalpien der Verbindungen berücksichtigt. Die freien Bildungsenthalpien sind die freien Reaktionsenthalpien für die Bildung einer Verbindung aus ihren Elementen:

$$\Delta G_{AB} = G_{AB} - G_{A} - 2 G_{B}$$
(3)

$$\mathcal{A}\mathbf{G}_{\mathbf{C}\mathbf{B}}^{2} = \mathbf{G}_{\mathbf{C}\mathbf{B}}^{2} - \mathbf{G}_{\mathbf{C}}^{2} - \mathbf{G}_{\mathbf{B}}^{2}$$
(4)

Die rechte Seite der Gleichung (2) entscheidet darüber, welche der beiden Phasenkombinationen stabil ist. Ist die Bilanz der freien Bildungsenthalpien negativ

$$4 \angle IG_{CB} > 2 \angle IG_{AB_{v}}$$

so ist die eine (CB+A), ist sie positiv

$$4 \Box G_{CB} < 2 \Box G_{AB_2}$$

so ist die andere Phasenkombination ($AB_2 + C$) nach Gleichung 1 stabil. Welcher Fall eintritt, hängt vom Einfluß der Zustandsgrößen Druck und Temperatur auf die freien Bildungsenthalpien und von der Konzentration der Komponenten ab.

Die Druckabhängigkeit der freien Bildungsenthalpien ergibt sich thermodynamisch

aus der bei der Bildung einer Verbindung aus ihren Elementen eintretenden Volumenänderung [31]

$$\left(\frac{\delta \left(\angle I \mathbf{G} \right)}{\delta p} \right)_{\mathrm{T, n}} = \angle I \mathrm{V}$$
 (5)

Sie ist daher nur merklich bei Bildung von keramischen Phasen wie Oxiden oder Nitriden, bei denen das metalloide Element in der Verbindung vor deren Bildung gasförmig vorliegt und notwendiger Bestandteil der druckbestimmenden Atmosphäre ist. Erfaßt man seine Volumenänderung ($_{2}$ IV) näherungsweise über das ideale Gasgesetz und integriert zwischen zwei Partialdrucken (p₁, p₂) der gasförmigen Komponente, so erhält man für die Druckabhängigkeit der freien Bildungsenthalpie [31]

$$\Delta \mathbf{G}(\mathbf{p}_2) = \Delta \mathbf{G}(\mathbf{p}_1) + \Delta \mathbf{n} \mathbf{R} \mathsf{T} \mathsf{ln} \frac{\mathbf{p}_2}{\mathbf{p}_1}$$
(6)

(. In = Differenz der Molzahlen vor und nach der Reaktion).

Der Einfluß der Konzentration der Komponenten auf die freien Bildungsenthalpien ist implizit bereits in der Druckabhängigkeit erhalten; denn bei dieser handelt es sich nicht primär um den Gesamtdruck sondern um den Partialdruck des gasförmigen Elementes, daß als Partner an der Bildung der neuen Verbindung teilhat. Partialdruck und Konzentration dieser gasförmigen Komponente sind aber proportional. Daß die Konzentration der Komponenten darüber mitentscheidet, welche Verbindung stabiler ist, d. h. welche gebildet wird, geht auch aus den Betrachtungen zu Gleichung I und Gleichung 2 hervor, denn die Molzahlen der Verbindungen (AB₂, CB) und damit die Molzahlen der an der Bildung beteiligten Elemente gehen in die freien Enthalpiedifferenzen ein.

Der für praktische Belange bedeutsamste Einfluß auf die freien Bildungsenthalpien ist derjenige der Temperatur. Die Temperaturabhängigkeit der freien Bildungsenthalpien ergibt sich aus den Gibbs-Helmholtz-Gleichungen der Thermodynamik über die Entropiedifferenz infolge Ablaufs der Bil-

dungsreaktion [31]. Durch Integration dieser Differentialgleichung läßt sich die Temperaturfunktion der freien Bildungsenthalpien auf meßbare thermodynamische Größen - wie z. B. Molwärmen - zurückführen. Die daraus bestimmbaren Näherungsgleichungen sind in den Abb. 1 bis 9 tabellarisch für bekannte Verbindungen zusammengefaßt#Mit ihnen läßt sich gemäß Gleichung 2 die Stabilität möglicher Phasen bei verschiedenen Temperaturen und für verschiedene Konzentration der Elemente bzw. Komponenten abschätzen. Einzelheiten einer solchen Abschätzung für ein spezielles Reaktorbrennstoffsystem (Uranmonocarbid-Eisen) wurden bereits in einer anderen Arbeit dargestellt [32, 37].

*siehe auch C. Müller
"databook 1975" Sprechsaal Verlag Coburg
^x siehe Teil I dieses
Berichtes

Verbindung		Indung				⊿G° (cal/mol)	Temperaturbereich
						A	В	(K)
(BeH)	•		•	•	•	+ 76 481 - 70 500	- 23,12 - 18,90	298–1417 1417–2500
(BeH ₂)	·	•			،	+ 28 938	- 5,18	298-1400
LiH .						- 21 500	- 16,6	2 98– 950
PH₃ .		•				+ 4100	- 27	139- 186
PuH _{1,9} PuH _{2,0} PuH	:	•			•	37 200 34 200	+ 33 + 33	600–1100 600–1100
PuH _{2,4} PuH _{2,4}	÷	·	•	•	•	- 23 700 - 16 000	+ 31,5 + 31 + 26	600–1100 400– 800 208 600
(SbH ₃)	·	•	÷	•		+ 34 600	- 2,1	298– 600 182– 255
$β$ -UH $_3$. $β$ -UD $_3$	•	÷	:		:	30 700 31 500	- 43,6 + 46,60	298 900 298 900
ZrH_2 .	·	•	•	•	٠	- 38 900	- 32,1	298- 961
HfB ₂ .	•	•	•		•	70 800 80 100	+ 4,5	1400–2323
Mo ₂ B.						- 21 300	- 5.1	298-1900
NbB_2 .	•		•	•	•	– 59 470 – 95 100	+ 1,9 + 15	1400–2323 2323–3200
Re₃B .		•				- 30 900	+ 7	298-1900
TaB ₂ .	•	•	•	•	•	– 57 450 – 68 450	+ 2,2 + 7	14002323 23233200
TiB ₂ .	•	·	•	•	·	70 100 83 600	+ 8,6 + 13,5	1400–2323 2323–3200
UB₂. W₂B.	•		•	:	:	- 36 600 - 23 000	- 1,00 - 0,4	1723–1823 298–1900
ZrB ₂ .	•	•	•	•	•	72 500 87 300	+ 5,5 + 12	1400–2323 2323–3200

Abb. 1:

 $\angle dG^{o} = A + BT + CT \lg T$; Gleichungen zur Temperaturfunktion der freien Bildungsenthalpien von hydrid- und boridkeramischen Verbindungen [Lit. 13, 15, 17, 19, 38]. Symbole: () = gasförmig, ohne Symbol = fest.

Verbindung	⊿G° (ca A	ll/mol) B	± Fehler (kcal)	Temperaturbereich (K)
Al ₄ C ₃	51 600 63 700	+ 10 + 23	2 2	298– 932 932–2000
Be ₂ C	– 28 111 – 28 695 – 34 780	+ 2,40 + 3,14 + 7,20		298 789 7891500 15002000
CaC ₂	13 600 11 620 13 700 51 210	5,9 - 8,6 - 6,8 + 12,3	3 3 3 5	298– 720 720–1123 1123–1963 1963–2200
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ 3 950 20 375 43 674 98 280 16 326	- 2,1 - 2,7 - 0,4 - 9,24 - 1,6	5 3 3 3 3 3	298–1200 298–1500 298–1500 298–1673 298–1673 298–1500
(FeU)C ₂ Fe ₃ C	33 230 35 050 +- 3 112	+ 3,46 + 5,19 - 4,7	 1	9951051 10511084 2981500
HfC	49 671 26 750	+ 3,6 - 0,5	3	298–1800 298–1500
Mn ₃ C MoC Mo₂C	- 3 330 - 2 246 - 10 086	+ 0,3 - 2,5 - 2,4	3	298–1010 298–1800 298–1800
NbC Ni ₃ C	- 31 100 + 8 110	+ 0,4 - 1,7	- 3	1180–1370 298–1000
PuC_{1-x} · · · · Pu $C_{0,87}$ · · · ·	11 600 12 000 11 487	- 0,3 - 1,25 - 0,74		600–1800 298–1450 1450–1848
Pu ₂ C ₃	26 301 14 098 7 117	5,1 2,20 5,84	-	298–1668 1668–1933 1933–2170
SIC	- 12 770 - 24 010	+ 1,66 + 8,33	3 4	298–1680 1683–2000
TaC .	34 900 29 246 31 000	+ 0,5 - 2,5 + 5,2		1250–1400 298–1800 1000–1273
TiC	- 43 750 - 44 600	+ 2,4 + 3,2	3 3	298–1155 1155–2000
$UWC_2 \cdot \cdot \cdot \cdot \cdot \cdot UC \cdot $	- 38 715 - 39 700 - 20 900	- 7,04 - 6,15 + 1,4	-	1048–1094 298–1405
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21 700 49 200 17 800 20 300	+ 2,0 + 2,8 - 2,8 - 0,7		1405–2000 298–2000 298–1405 1405–2000
VC WC ZrC	- 24 100 9 000 44 100	+ 1,5 + 0,4 + 2,2	3	1180–1370 298–2000 298–2200

Abb. 2 💠

 $\angle \mathbf{G^{o}} = \mathbf{A} + \mathbf{BT} + \mathbf{CT} \log \mathbf{T}$; Gleichungen zur Temperaturfunktion der freien Bildungsenthalpien von karbidkeramischen Verbindungen [Lit. 1, 4, 6, 7, 13, 16, 18, 19, 34, 36, 38]. Symbole: ohne Symbol = fest.

verbind	dun	g			⊿G A	° (cal/mol) B	С	<u>+</u> Fehler (kcal)	Temperaturbereich (K)
AIN		•			- 77 000	+ 22,3		8	298- 923
Ba _a N.,					- 87 000	+ 57,4		9	298-1000
Be ₃ N,					140 937	+ 44,6	_	_	298-1000
Ca ₃ N ₃					- 105 000	+ 50		11	298-1100
CeN					- 78 000	+ 25		85	298-1000
CrN					- 16 000	+ 20.8	- 2.9	13	298_1400
Cr ₂ N					- 25 950	+ 33	- 5,7	2,5	298-1400
Fe₄N					- 200	- 24,8	+ 11,6		298- 950
HfN					- 86 669	+ 21.5	_		473-1473
LaN					- 72 100	+ 25	_	9	298-1000
Li _a N					- 47 000	+ 34	_	0.5	298- 500
Ma N.					- 109 600	+ 47.4		3	298- 823
			-		- 115 970	+ 54,3	_	3	823-1061
					- 115 750	+ 54,1	-	. 3	1061-1300
Mn_5N_2					- 48 228	+ 36,4	-	1	298-1000
Mo ₂ N	•				- 17 200	+ 28,9	- 4,6	4	298-1300
Nb ₂ N					- 52 095	+ 15	-	· _	298-1273
PuN	•	•	•		- 69 695	+ 21,0	-	-	298-2500
Sl₃N₄					- 166 600	+ 60,00	-	6	298- 500
					- 166 500	+ 76,60	-	6	500-1500
0N					- 193 800	+ 89,20		6	1500-2000
	·	٠	•	•	- 81 929	+ 15,4	-	8	298 500
TaN Ta N	·	•	•	•	- 58 800	+ 39,8	- 6,9	3,5	298-2240
1021N TH N	•.	•	•	•	- 03 119	+ 10,7	-	-	298-1473
$11_3 N_4$	•	•	·	•	- 310 400	+ 89,7	-	20	298-2000
TIN	·	•	•	•	- 80 250	+ 22,2	-	2	298-1155
LIM					70 000	+ 20,5	-	2	200 1405
	•	·	•	•	- 71 200	+21.5	_		1405-2000
U _s N _o					- 170 300	+ 71.7	- 3.9		298-2000
VN	÷	•	•		- 52 709	+ 17 2	-	_	208-1473
7rN	•	•	•	·	- 87 000	+ 22 3	_	15	200-1475
	•	•	•	•	- 87 925	+ 23,1	-	1,5	1135–1500
AgPa					- 16 500	+ 4,4		·	298– 684
AğP₂					- 10 700	+ 0,2	-	-	298- 693
Au_2P_3	•	•	•	•	- 23 300	- 17,4			298- 774
Fø₄₽	•	•		•	- 51 000	+ 11,3	-	8	298-1439
CoD	-				6 500	- 3.4	-	· _	298- 800

Abb.3 :

 $\triangle G^{o} = A + BT + CT \lg T$; Gleichungen zur Temperaturfunktion der freien Bildungsenthalpien von nitrid- und phosphidkeramischen Verbindungen [Lit. 4, 5, 6, 7, 13, 16, 19, 38]. Symbole: ohne Symbol = fest.

/

Verbindung	A	⊿Gº (cal/mol) B	С	Temperaturbereich (K)
Ac.,O.,	- 446 090	+ 109,89	- 16,12	298-1000
Ag.,0	7740	+ 27,84	- 4,14	298-1000
Ag_2O_2	- 6 620	+ 52,17	- 3,22	298- 500
(Al ₂ O)	- 31 660	- 72,74	+ 14,97	298- 932
(Al ⁱ D)	- 38 670	- 51,53	+ 10,36	932-2000
(AIU)	+ 10740	- 34.85	+ 5.76	932-2000
α -Al ₂ O ₃	- 404 080	+ 123,64	- 15,68	298- 932
	- 407 950	+ 102,37	– 6,19	932–2000
Am_2O_3	- 422 090	+ 107,89	⁻ – 16,12	298-1000
AmO ₂	- 240 600	+ 55,91	- 4,61	298-1000
$As_2 O_3 (0)$	- 154 870 - 150 760	- 8,83	+ 29,54 + 29,54	298- 586
$\{As_3O_3, \{H, J, I, I, I, I\}$	- 156 260	+ 180,95	- 43,29	542-730
(As ₄ O ₆)	- 271 860	+ 53,76	+ 0,92	730- 883
A - O	- 308 900	+ 119,42	- 5,80	883-2000
As_2O_4	173 690	+ 67.22	+ 21,52	883-1500
As,0	- 217 080	+ 80,50	+ 12,32	298- 883
2 0	235 600	+ 113,33	+ 8,96	883-2000
Au ₂ O ₃	- 2160	+ 95,14	- 10,36	298- 500
BaO	- 134 590	+ 45,76	- 7,60	298- 648
	- 134 140	+ 34,01	- 3,34	648 977 977-1911
	- 176 400	+ 72.66	- 8.01	1911-2000
BaO ₂	- 154 830	+ 74,48	- 11,05	298- 648
	154 380	+ 62,73	- 6,79	648- 977
· · ·	156 140	+ 61,09	- 5,64	977-1000
BeO	- 144 220 - 144 300	+ 30,64	- 1,91 + 6.06	1556-2000
(BeO)	+ 27 950	- 20,30		298- 684
	+ 26 650	- 18,40	, . .	684-1500
	+ 20 933	- 14,60		1500-2500
(BeO) ₂	- 103 509 - 104 833	-2.40		750-1250
	106 300	- 1,20	· _	1250-1606
	- 116 900	+ 5,40		1606–2500
(P_0)	261.016	± 18 18		298- 845
$(DeO)_3$	- 264 750	+ 22,60	_	845-1589
	- 280 000	+ 32,20		1589-2500
(BeO) ₄	- 391 890	+ 37,64	· · <u>~</u>	298- 840
	395 050 412 900	+ 41,40 + 52.80		1566-2500
(BeO)	- 520 268	+ 61.99	·	298-1500
(100);	- 542 433	+ 76,90		1500-2500
(BeO) ₆	- 653 547	+ 85,16	-	298-1500
	- 678 800	+102,20 - 22,33		298- 750
(be ₂ 0)	- 22 170	- 20,16	_	750-1500
	- 32 467	- 13,30	-	1500-2500
BiO	- 50 450	+ 35,51	- 4,61	298- 544
	- 52 920	+ 40,05	4,61	298 544
BI_2O_3	- 142 270	+ 67.55	+ 2.30	544-1090
·{···} } ··· * ??*•	- 147 350	+ 174,59	- 32,84	10901600
CaO	- 151 850 💈	+ 43,93	- 6,56	298- 673
	- 151 730	+ 37,63	- 4,14	673-1124
	- 153 480	+ 31,49 + 73.84	- 1,39 - 7.18	1760-2000
CaO _a	- 158 230	+ 78.28	- 12.32	298- 500
CdO .	- 62 330	+ 29,17	- 2,05	298 594
	- 63 240	+ 20,14	+ 2,07	594-1038
	- 89 320	+ 60,05	- 2,83	1038-2000

Abb. 4a:

 $\angle | \mathbf{G}^{\circ} = \mathbf{A} + \mathbf{BT} + \mathbf{CT} | \mathbf{g} \mathbf{T};$ Gleichungen zur Temperaturfunktion der freien Bildungsenthalpien von oxidkeramischen Verbindungen [Lit. 4, 8, 13, 16, 19, 20, 23, 38]. Symbole: () = gasförmig, { } = flüssig, ohne Symbol = fest.

Verbindung	A	∠l G° (cal/mol) B	С	Temperaturbereich (K)
<u> </u>	425 600	0.00 04	4 60	000 1010
$00_{2}0_{3}$	- 440 400	+ 92,04 + 97.42	- 4,60 - 4,60	298-1048
CeO ₂	- 245 490	+ 67,79	- 6,42	298-1048
	- 247 930	+ 51,73	+ 0,71	1048-2000
CoO , , ,	- 56 910	+ 16,03	+ 0,69	298-1400
	- 58 160	+ 22,71	- 1,15	1400-1763
Cn.O.	- 00 080	+ 43,43	- 6,22	1763-2000
β ₁ β ₂ β ₁ β ₁ β ₁ β ₁ β ₁ β ₁ β ₁ β ₁	274 670	+ 30,50	→ 2,50 14.07	290-1000
$\mu^{-}O_{12}O_{3}$	-274070 -278030	+ 58.29	+ 2.33	1823-2000
CrO ₂	- 142 500	+ 42,00	-	298-1000
CrO_3	- 141 590	+ 103,90	- 13,82	298-471
$\{ \}$	- 141 580	+ 153,14	- 32,24	471- 600
Cs <u>.</u> O	- 75 900	+ 36,60	-	298- 302
۲)	- 76 900	+ 39,92	- 0.21	302 763
1 1	- 113 790	+ 145.60	-23.03	963-1500
Cs.,O.,	- 96 500	+ 62,30	- 2,30	298- 302
	- 97 800	+ 72,34	- 4,61	302- 870
{ }	- 96 060	+ 110,94	- 18,42	870-963
C = O	- 134 000	+ 188,11	- 31,08	963-1500
00_20_3	- 112 030	+ 116.77	- 12.66	302 - 775
{ }	- 110 740	+ 152,70	- 26,48	775-963
	- 148 680	+ 229,87	- 39,14	963-1500
CsO,	- 63 590	+ 72,29	- 11,51	298- 302
2	- 64 240	+ 77,30	- 12,66	302-705
$\{ \}$	- 61 770	+ 90,20	- 18,42	705- 963
	- 80 500	+ 120,83	- 24,18	963-1300
Cu_2O	- 40 550	+ 21,92	- 1,15	298-1357
1	- 37 710	+ 54.44	- 12.48	1502-2000
ĊuO ′	- 37 740	+ 24,87	- 0,64	298-1357
	- 39 410	+ 12,05	+ 4,17	1357-1720
$\{ \}$	- 41 060	+ 59,09	- 11,35	1720-2000
Dy ₂ O ₃	- 445 750	+ 73,5	-	298- 500
Er <u>2</u> O3	- 453 600	+ 72,0	-	298- 500
Fe _{0,947} O	- 65 320	+ 48,60	11,26	298-1033
	- 62 380	+ 3,00	+ 4,08	1033-1179
ε i	- 66 750	+ 42,20	- 18,04	1650-1674
() · · · ·	- 59 650	+ 34.81	- 6,84	1674-1803
	- 63 660	+ 39,12	- 7,48	1803-2000
Fe ₃ O ₄	- 268 310	+ 73,11	+ 5,87	298-900
$eta_{ ext{-}}Fe_{ ext{-}}O_{ ext{-}}$	272 300	+ 233,52	- 54,27	900-1033
	- 262 990	+ 21352	- 44.05	1179–1674
	- 262 560	+ 91.05	- 6,40	1674-1803
	- 275 280	+ 104,84	- 8,74	1803-1874
{Fe ₃ O ₄ }	- 257 240	+ 155,46	- 26,89	1874-2000
Fe ₂ O ₃	- 200 000	+ 108,26	- 13,84	298- 950
β-Fe ₂ O ₃	- 202 960	+ 188,40	- 42,04 10.27	1033-1050
γ -Fe,O ,	- 193 200	+ 59,96	- 0,39	1050-1179
/ 2 - 3	- 202 540	+ 142,85	- 25,95	1179-1674
	- 192 920	+ 61,21	- 0,85	1674–1800
Ga ₂ O	- 81 110	- 3,66	+ 10,32	298- 303
	- 83 360	- 4,08	+ 13,49	303-1000 298 303
Ga_2O_3	- 200 240 - 258 490	+ 32,23	+ 17.82	303-2000
Gd O.	_ 441 500	+ 94.0	_	298- 500
······································				

Abb. 4b:

 $[G^{\circ} = A + BT + CT]g T;$ Gleichungen zur Temperaturfunktion der freien Bildungsenthalpien von oxidkeramischen Verbindungen [Lit. 4, 8, 13, 16, 19, 20, 23, 38]. Symbole: () = gasförmig, { } = flüssig, ohne Symbol = fest.

Verbindung			.1G° (cal/mol)		Temperaturbereich
		A	B	C	(K)
GeO		- 60 900	+ 17,19	+ 1,27	298-1200
()		- 21 870	- 41,25	+ 6,72	298–1200
{[GeO ₂]} .		- 127 830	+ 30,54	+ 4,28	298-1200
Hg.,O .		- 22 400	+ 43,29	- 4,61	298- 630
02		- 53 800	+ 125,36	- 16,12	630-1000
HgO (rot) .		- 21 760	+ 24,81	+ 0,85	298- 630
		- 36 920	1 59,42	- 2,92	630-1500
HfO ₂ (m) .	•	- 268 380	+ 78,16	- 9,74	2982000
Ho ₂ O ₃		- 449 700	+ 72,0		298- 500
In O		- 220 410	+ 59.49	+ 5.43	298- 430
- "		- 220 970	+ 41,36	+ 13.22	430-2000
IrO		- 57 553	+ 52.4	- 3.56	298-1397
кŌ		- 86 400	± 33.00	0,00	200 226
	•	- 87 380	+ 33,90	+ 115	296- 330
		- 133 090	+ 129.64	- 16.12	1049-1500
К.,О.,		- 118 300	+ 59.60	- 2.30	298- 336
		- 119 780	+ 69,85	- 4,61	336- 763
{ }		- 118 250	+ 107,66	- 18,42	763-1049
		- 161 870	+ 187,49	- 31,08	1049-1500
K_2O_3	•	- 126 640	+ 111,75	- 12,66	298 - 33 6
		- 127 790	+ 115,16	- 12,66	336- 703
	•	- 125 330	+ 154,28	- 27,63	703–1000
кО ₂	•	- 68 940	+ 66,45	- 10,36	298- 336
()		- 69 510	+ 68,15	- 10,36	336- 653
k_0 i i	•	- 07 000	+ 88,34	- 18,42	653-1000
NO ₃	•	- 63 910	+ 00,00	- 10,30	298-330
1.0		- 00 010 .	+ 440.00	- 10,50	330- 300
La_2O_3	•	- 431 120	+ 112,50	- 13,31	298-1153
110		- 434 330	+ 31,17	- 4,00	1153-2000
LI ₂ O	•	- 142 220	+ 34,19	- 3,06	298-452
		- 141 360	- 17,00	+ 10,97	452-1600
L1202	•	- 153 260	+ 57.88	- 1,30	298- 452 452 500
Mao		- 100 200	+ 00.40	- 1,50	452- 500
wyo	·	- 144 090	+ 29,10	- 1,00	298 923
		- 140 010 - 180 700	+ 23,07	+ 1,04	1303 2000
MaQ.		-150230	+ 70.84	- 912	298_ 500
MnO	•	92 600	1 10,04	1.01	200 - 000
	•	- 91 900	+ 12 15	- 4,21	1000-1374
		- 89 810	- 6.05	+ 7.30	1374-1410
		- 89 390	- 10.70	+ 8.68	1410-1517
		- 93 350	- 5,90	+ 7,99	1517-2000
a-Mn₃O₄ .		- 322 400	+ 106,62	- 7,41	298-1000
		- 330 310	+ 54,07	+ 10,75	1000-1374
		- 324 050	- 0,50	+ 27,12	13741410
		- 322 800	- 14,46	+ 31,27	1410-1445
β-Mn ₃ O ₄ .	•	- 328 870	+ 95,20	- 4,56	1445-1517
		- 340 730	+ 109,60	- 6,63	1517-1800
Mn ₂ O ₃		- 230 610	+ 80,74	- 5,96	298-1000
		- 229 210	+ 45,70	+ 6,15	1000-1374
		- 225 030	+ 9,33	+ 17,06	1374-1410
		- 224 200	+ 0,05	+ 19,82	1410-1517
MnO		- 232 110	+ 3,00 + 701/	- 861	298_1000
MaO	•	140 400	7/ 10	0.70	200-1000
MoO	·	- 142 400 182 650	+ /4,49 1 00 07	- 3,12	200-2000
	•	- 102 000	+ 167 61	- 36.34	1068-1500
$1 $ $j $ $\cdot $	• •	00 000	, 50,01	7 51	202 271
1Va ₂ O	•	- 39 820 - 100 150	+ 50,45		230- 3/1
		- 156 200	+ 145.48	- 20.72	1187-1190
{ } .		- 150 250	+ 147.58	- 23.03	1190-2000
and man and the second second	• • •			an a	

Abb. 4c:

 $[G^{\circ} = A + BT + CT | g T;$ Gleichungen zur Temperaturfunktion der freien Bildungsenthal-pien von oxidkeramischen Verbindungen [Lit. 4, 8, 13, 16, 19, 20, 23 24, 25, 26; 28]. Sym-bole: () = gasförmig, { } = flüssig, ohne Symbol = fest.

Verbindung	A	∠l G ^o (cal/mol) B	С	Temperaturbereich (K)
Na ₂ O ₂	122 500	+ 57,51	- 2,30	298- 371
()	- 124 320	+ 71,30	- 5,76	371-733
$\{ \}$ · ·	123 220	+ 112,00	- 20,72	1187 1500
NaO	- 63 040	+ 107,97	- 806	298_ 371
MaO_2	- 64 220	+ 69.04	- 11.51	371-1000
NbO	- 97 900	+ 192	_	298-1000
Nh.O.	- 382 050	+ 116.23	- 9.67	298-2000
Nb.O.	458 640	+ 157,66	- 16,14	298-1785
{ " }	. – 463 630	+ 317,84	- 66,04	1785–2000
Nd.,O., (h)	. – 435 150	+ 125,68	16,19	298–1113
	- 437 090	+ 71,77	+ 4,03	1113-1500
NiO	. – 57 640	+ 34.41	- 4.61	298- 633
	- 57 460	+ 23,27	- 0,14	633–1725
	- 58 830	+ 1,76	+ 7,23	17252000
NpO.,	. – 246 450	+ 52,44	- 3,45	298-913
1 2	- 249 010	+ 58,68	4,61	913-1500
OsO.,	. – 69 800	+ 42,5		298-1200
OsO, (gelb)	92 260	+ 32,45	+ 14,97	298- 329
OsO, (weiß)	90 560	+ 27,60	+ 14,97	298- 315
{OSO ₄ } .	. – 88 970	+ 35,78	+ 9,67	315- 403
(OSO ₄)	. – 81 200	+ 20,34	+ 8,17	298–1000
PbO (rot) .	. – 52 800	+ 32,49	- 2,76	298- 600
	- 53 780	+ 28,44	- 0,51	600 - 762
PbO (gelb) .	. – 52 040	+ 22,13	+ 0,81	298-600
	- 53 020	+ 18,02	+ 3,06	600-1159
{PDO}	53 980	+ 64,22	- 12,94	1159-1745
()	, + 10270 + 9300	- 23,21	+ 1,91	600-2000
	+ 9,000	- 21,23	+ 4,17	200 -2000
$Pb_{3}O_{4}$	- 174 920	+ 12,10	+ 0,02	600-1000
	- 177 800	+ 00,07	+ 10,00	208 600
PbO ₂	- 66 120	+ 40,00	+ 0,04	600-1100
- 10	- 07100	+ 41,50	+ 2,00 6.0F	209 11/6
PdO	- 29 660	+ 40	0,23	200-1140
$PoO_2 \cdot \cdot \cdot$	- 61 510	+ 72,80	- 9,21	298- 900
Pr ₂ O ₃ (C-Typ) .	- 440 600	+ 78,38	- 4,60	298-1205
	- 446 100	+ 82,94	- 4,60	203-2000
$Pr_{5}O_{11}$		+ 241,04	-	1205-1200
DO	- 1 390 300	+ 254,15	- 642	298-1200
$P(O_2, \dots, V)$	- 200 000	0 03		1373-1823
(PtO_2)	+ 39210	- 0,55		1573 1973
PuO	- 22 360	- 10,0		298-2000
Pu_2O_3	- 400700	+ 02,71	_	1600-2100
$PuO_{1,61}$	213 600	+ 31.0	-	1600-2100
$PuO_{1,65}$	- 218 000	+ 31.5		1600-2100
PuQ	- 222 500	+ 32,1	-	1600-2100
PuO _{1,75}	- 227 100	+ 32,9	-	1600-2100
PuO1.85	- 232 100	+ 34,1	-	1600-2100
$PuO_{1.90}^{1,80}$	- 237 500	+ 35,7		1600-2100
PuO _{1.92}	- 239 700	+ 36,4	-	1600-2100
PuO _{1,95}	- 243 100	+ 37,6	-	1000-2100
PuO ₁₋₉₈	- 246 700	+ 39,0	- 215	298-1500
PuO _{2,00}	- 253 480	+ 02,40	- 3,40	1500-2100
	- 121000	+ 10,7		208 1000
наО,	- 130 000	+ 23,00	-	200-1000
Rb_2O	- 78 900	+ 32,20	-	290-012 310 750
()	- 79 950	+ 30,00	- 10 36	750- 952
{ }	. ⊶ /୪୪୪୦ 120.200	+ 105,00	- 23.03	952-1500
	- 120 290	T 140,14	20,00	

Abb. 4d:

4

·····		100 (Tanan and tank
Verbindung	А	B	С	(K)
ReO.	- 107 570	+ 61.40	- 5,16	298-1300
ReO.	- 149 090	+ 110.49	- 16.12	298-433
{ }	- 146 750	+ 145.16	- 31.32	433-1000
Ře.,0,'	- 301 470	+250,57	- 34,54	298- 569
$\{ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	- 295 810	+348,45	- 73,68	569- 635
()	- 256 460	+ 70,33	+ 3,45	635-1500
Ře.,O	- 313 870	+293,57	- 41,45	298- 420
$\{,,,,,,,,,,$	- 318 470	+ 425,32	- 87,50	420- 600
Rh _a O , , ,	- 23 740	+ 35,64	- 8,06	298-2000
RhÖ	- 22 650	+ 40,54		298-1500
Rh.,O.,	- 106 000	+ 76,5	_ →	298–1400
(RĥO,)	+ 45 140	4,94	· -	1473–1773
RuO.,	- 74 220	+ 70,94	- 9,46	298–1853
$Sh_{0}(k)$	- 169 450	+ 52.21	+ 6.12	298- 842
$Sb_{3}O_{3}(n)$	- 168 060	+ 50.56	+ 6.12	298-903
0.00203(0)	- 175 370	+ 33.12	+15.29	903- 928
{Sb.,O.,}	- 173 940	+166.52	- 32.84	928-1698
(Sb.O.).	- 132 760	+ 0,96	+ 10,91	1698-1713
	- 234 760	+ 98,17	- 0,74	1713-2000
Sb ₂ O ₄	- 208 310	+ 73,02	+ 6,31	298- 903
	. – 215 610	+ 55,61	+ 15,47	903-1500
Sb ₆ O ₁₃	- 649 160	+ 192,54	+ 38,46	298- 903
	- 691 370	+ 315,93	+ 14,13	903–1500
Sb <u>"</u> O"	- 226 060	+ 18,61	+ 37,12	298- 903
	– 240 130	+ 59,71	+ 29,01	903–1500
Sc ₂ O ₃	- 409 960	+ 52,73	+ 7,78	298–1673
	- 412 950	+ 21,88	+ 18,47	1673–2000
(SeO)	+ 9280	- 14,78	- 3,04	298- 490
	+ 9420	- 44,50	+ 8,70	490–1027
	- 7 400	- 0,80	- 0,37	1027–2000
(SeO <u>2</u>)	- 53 770	+ 6,94	+ 14,94	298-490
	- 53 640	- 25,05	+ 27,59	490- 595
	- 32 840	- 10,80	+ 6,79	595-1027
	- 49 000	+ 27,61	- 0,74	1027-2000
(SiO)	- 21 090	- 33,14	+ 3,84	298-1683
	- 30 170	- 40,01	- 7,78	1683-2000
α -SiO ₂ (Quarz) .	- 210 070	+ 34,59	+ 3,98	298- 848
β -SiO ₂ (Quarz) .	209 920	+ 53,44	- 3,36	848-1683
(0:0.)	- 219 000	+ 40,58	+ 0,58	1083-1883
$\{S U_2\}$	- 228 590	+ 103,97	- 10,00	1003-2000
a-SiO ₂ (Crist.)	- 207 330	9,70	+ 19,90	230- 323
p-SIO ₂ (Grist.).	209 020	+ 00,00	- 0,04	1683 2000
u-SiO (Trid)	- 210 900	+ 40,43	+ 0,00	298_ 390
$\beta_{\rm s} = \beta_{\rm s} = \beta_{\rm$	- 209 350	± 47.86	-159	390-1683
	- 218 430	+ 41.00	+ 2.35	1683-1953
Sm ₂ O ₂	- 430 600	+ 78.38	- 4.60	298-1623
0111203	- 438 000	+ 82,94	- 4,60	1623-2000
SnO	- 68 600	+ 32.59	- 3.57	298- 505
	- 69 670	+ 18.39	+ 3.06	505-1300
(SnO)	- 1000	- 17.41	- 0,97	298- 505
····-/	- 2070	- 31,62	+ 5,66	505-2000
SnO,	- 142 010	+ 90,74	- 14,00	298- 505
-	- 143 080	+ 76,53	- 7,37	505-1898
{ }	- 139 130	+ 120,11	- 21,97	1898-2000
SrO	- 142 410	+ 44,33	- 6,79	298-1043
	- 143 370	+ 32,77	- 2,42	1043-1657
	- 181 180	+ 74,32	- 8,24	1657-2000
SrO_2 , , ,	- 155 510	+ 75,44	- 11,40	2981000
Ta ₂ O ₅	- 492 790	+ 161,68	- 17,18	298-2000
TcO.	- 103 400	+ 41.00	-	298- 500
		· · · · · · · · · · · · · · · · · · ·		

Abb. 4e:

 $|G^{o} = A + BT + CT |g T$; Gleichungen zur Temperaturfunktion der freien Bildungsenthalpien von oxidkeramischen Verbindungen [Lit. 4, 8, 13, 16, 20, 26, 27, 36]. Symbole: () = gasförmig, { } = flüssig, ohne Symbol = fest.

Verbindung	A	∠lG (cal/mol) B	С	Temperaturbereich (K)
TcO ₃	- 129 000	+ 64,50	-	298 500
$\{ 0_1, 0_2, 0_3, \dots, 0_n\}$	- 256 000	+ 147,00 + 129,00	· _	298- 393 393- 500
(TeO)	+ 43 110	- 27.22	+ 191	298- 723
(100)	+ 39 750	- 33,94	+ 6,08	723–1360
TaO	+ 23 730	- 0,29	0,90	1360–2000
	- 8 1 530	+ 51,27 + 45.30	2,10 184	298– 723 723–1006
(ThO)	82 090	+ 113,04	- 21,74	1006-1300
ThO ₂ .	- 294 350	+ 62,81	- 5,25	298-2000
() · ·	138 600	+ 11,4	-	2000-3000
1110 //-TiO	10 300	- 14,4	- 4.01	20003000
10	- 125 040	+ 21,90	+ 1.17	1150-1264
<i>β</i> -TiO	. – 125 210	+ 30,83	- 1,77	1264–2000
(110) .	. + 11 710	- 35,50	+ 3,71	298-1150
α-Ti,,O,,	- 360 660	- 49,88	+ 32.08	298-473
β -Ti $_2^{\circ}O_3^{\circ}$	369 710	+ 162,79	- 30,95	473–1150
	- 369 760	+ 134,03	- 20,59	1150-2000
β -Ti ₃ O ₅ .	586 330	+ 131,05 + 159,98	- 4,19	298- 450 450-1150
12 113 2 3	- 586 420	+ 116,81	- 2,76	1150-2000
TiO_2 (Rutil) .	228 360	+ 82,81	- 12,80	298-1150
τιο	- 228 380	+ 68,34	- 7,62	1150-2000
H ₂ O	- 44 260	+ 42,50	- 6,91	505- 573
{ } .	40 880	+ 55,76	- 13,82	573- 576
()	- 42 320	+ 51,89	- 11,51	576- 773
() .	- 104 670	+ 41.59	+ 11,51	1730-2000
Tl ₂ O ₃ .	. – 99 410	+ 119,09	- 16,12	298- 505
	- 99 560	+ 119,39	- 16,12	505- 576 576 000
{ } .	- 94550	+ 115,55 + 150,39	- 13,82	990-1500
Ťl₂O₁ ′́.	. – 117 680	+ 161,19	- 23,03	298- 505
	- 117 830	+ 161,49	- 23,03	505- 576
UО	- 119 270	+ 157,63	- 20,72	576-1000 298 035
00_{2}	- 260 660	+ 55,50	- 4,28	935–1045
	- 262 830	+ 64,41	- 6,54	1045-1405
	- 264 790	+ 63,50	- 5,92	1405-1500
U,O,,	1 032 000	+ 160,0	- 10,4	298-1395
$U_3O_8^{'}$. – 863 370	+ 330,19	- 56,57	298 935
	- 856 720	+ 195,12	- 9,67	935-1045
	- 869 460	+221,79 + 208.82	- 10,44 - 10.91	1405-1500
UO ₃	294 090	+ 114,94	- 18,33	298- 935
	- 291 870	+ 69,90	- 2,69	935-1045
().	200 400	+ 20.7	,	1405-2000
VO , .	. – 101 090	+ 38,69	- 5,39	298-2000
(VO) .	. + 52 090	- 28,42	+ 1,80	298-2000
$V_2 U_3 $.	299 910	+ 118,83	- 17,98	298-2000
$\beta V_{3}O_{4}$	345 330	+ 155,55	- 24,36	345–1818
$\{V_2O_4\}$.	. – 339 880	+ 264,42	- 59,59	1818-2000
$V_{6}O_{13}$.	1 076 340	+ 557,61	- 95,33	298-1000
$\{ 0_5 \}$	365 840	+ 228,50	- 38,91	296– 943 943–2000
WO, .	. – 142 330	+ 70,32	- 8,45	298-2000
W ₄ O ₁₁ .	745 730	+ 321,84	- 32,70	298-1700
ννΟ ₃	-201180 -203140	+ 70,89 + 173.27	- 2,92 - 35,74	298–1743 Ab 1743–2000 Ab
Ý ₂ O ₃ .	419 600	+ 66,36	+ 2,76	298–1773 ⊿G
<u> </u>	- 422 850	+ 35,56	+ 13,36	1773-2000 ge
ZnO .	84 760	+ 43,25	- 6,40	298- 693 fre
	- 85 520 - 115 940	+ 31,25 + 74,94	- 1,45 - 7,28	1180-2000 ox
α -ZrO ₂ .	262 980	+ 65,00	- 6,10	298–1135 [Lit
-	- 264 190	+ 63,58	- 5,09	1135–1478 36]
eta -Zr ${\sf O}_2$.	. – 262 290	+ 69,50	- 7,76	1478–2000 { }

b. 4f:

• = A + BT + CT lg T; Gleichun n zur Temperaturfunktion der eien Bildungsnthal pien von idkeramischen Verbindungen t. 4, 8, 13, 16, 19, 20, 25], Symbole: () = gasförmig, = flüssig, ohne Symbol = fest.

Verbin	dun	п				o (cal/mol)		Eablar	Temporaturboroich
VCIDAR	uun	9			A	B	С	± remer (kcal)	(K)
u-Aq.S					- 22 400	+ 11		0.5	298_ 152
/i-Ag.S					- 20 990	+ 8,3	_ ·	0.5	452-1115
					- 25 900	+ 12,1		0,8	1234-1500
BaS				۰.	- 121 528	+ 21.4		5	298-1000
BeS					- 54 944	- 0.12	_	•	208 750
000	·	٠	·	•	- 70 790	+ 20.68	_	_	750-1500
CaS					120 / 35	1 20 8		4	200 672
040	•	•	•	·	- 129 550	+ 22.9	_	1	673_1121
					- 131 780	+ 24.9		1.5	1124-1760
					- 168 350	+ 45.7		2.5	1760-2000
CeS					- 133 500	+ 20	_	5	298-2200
CoS		•	•	•		5 1		1	600 000
Co.S.	÷			÷	- 140 080	+ 75.1	-	2	600 - 750
Co					- 316 960	+ 159.2		ล็	298-1048
u-CILS					- 35 655	+ 27.3	- 43	1	298 376
B-Cu.S	ż		÷		- 36 145	+ 50.8	- 13	1	376 - 623
y-Cu.S					- 34 150	+ 28,7	- 6,2	1	623-1360
{Cu ₂ S}					- 37 320	+ 25,90	- 4,60	2	1400-1600
n-FeS					- 37 160	+ 15.5	-	0.5	298-412
β-FeS				•	- 35 910	+ 14,5	-	0,5	412-1179
					- 36 070	+ 12,7		1	1179-1261
FeS ₂	•	• '		•	- 43 350	+ 45,0	-	1,5	600-1100
GeS					- 44 450	+ 21,5		8	298- 500
Ir_3S_3					- 96 750	+ 67		7,5	10001600
MaS					- 99 650	+ 22.8		5	298- 923
0					- 101 800	+ 25,6	_	5	923-1380
					- 134 350	+ 48,7	8	5	1380-2000
MnS					- 64 000	+ 15,3	-	1,5	298-1000
					- 64 540	+ 15,9		1,5	1000–1374
					- 65 510	+ 16,6		1,5	1410-1517
()					- 69 010	+ 18,9	-	2	1517-1803
{ }	•	·	•	·	- 62770	+ 15,4	_	2	1803-2000
Mo ₂ S ₃			•	•	- 128 550	+ 54,6	<u> </u>	3	1123-1473
MoS_2	•	•	•	•	- 85 700	+ 37,2	-	5	10001500
Na₂S	•	•	•	•	- 105 250	+ 31,4	_	5	371–1187
NiS					- 34 980	+ 17,2	-	1,5	670- 850
Ni_3S_2	·	•	•	٠	- 79 240	+ 39	-	2	650- 800
OsS_2		•	•		- 54 775	+ 37,9	-	4	. 298–1500
PbS					- 36 350	+ 17,1	<u> </u>	1,5	298-600
					- 37 580	+ 19,1		1,5	600–1380
PtS			•		- 33 050	+ 21,8		2,5	1000-1700
PtS_2	•	•		•	- 21 875	+ 21,9		2,5	700–1100
PuS	•				- 107 000	+ 22,0			298-2000
ReS ₂					- 64 200	+ 68,6	- 9,2	5	298-1500
RuS.				•	- 69 700	+ 39		5	298-1500
Sb ₃ S ₄					- 87 500	+ 65,00		7	298- 500
SrS					- 123 841	+ 23.85		10	298-1000
SrS.		÷	÷	÷	- 120 875	+ 13,9	_	10	298-1500
Th.S.					- 11778	+ 1.56			298-1173
ThS					- 8 900	+ 1,97			298-1173
US					- 109 000	+ 23	_	_	298-1405
					- 114 400	+ 26,8	_	_	1405-2000
WS.,					- 62 360	+ 23	_	10	298-1400
ZnŚ					- 63 650	+ 36.7		4	298- 693
	•	•		·	- 94 970	+ 74,9	-	5	1120-2000

Abb. 5. ;

AUD. 3.4 $\angle I G^\circ = A + BT + CT Ig T$; Gleichungen zur Temperaturfunktion der freien Bildungsenthal-pien von sulfidkeramischen Verbindungen [Lit. 4, 13, 16, 19, 36, 38]. Symbole: { } = flüssig, ohne Symbol = fest.

Verbindung	⊿G (cal/r A B	nol) C	± Fehler (kcal)	Temperaturbereich (K)
AgF AgF	$-83\ 000 + 34$ $-48\ 500 + 14$ $-45\ 500 + 14$	4 – 4 –	4 3	298– 963 298– 708
AgCI	-29850 + 12 -24200 + 3	2,5 <u>–</u>	3 0,2 0,2	708–1500 298– 728 728–1500
AgBr ¹	- 26 950 + 12 - 18 400 +	2,5 1,8	0,2 0,2	298– 707 707–1500
Agj { } Alf	-22150 + 12 -13000 + 2	2,5 2,00 -	0,2 0,2	298– 825 825–1500
AlBr ₃	$-125\ 800\ +12$	2	2 4 2 5	298- 500 298- 370
AuCl _a AuCl	-27500 + 46 -8550 + 14),0 = 0 = 1.5	2,5 2 1	298 419 298 500 298 - 443
AuBr ₃ AuBr AuJ	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$,5	5 1 1	298– 443 298– 433 298– 388 298– 393
BaF <u>.</u> BaBr <u>.</u> BaJ ₂	- 285 375 + 38 - 187 320 + 38 - 159 350 + 39	3,6 – 3,7 – 9,5 –	5 5 5	298–1500 298–1120 298– 985
{ }	$-150\ 300 + 29$ $-243\ 200 + 81$ $-237\ 390 + 87$,9	5 5	985-1500 298- 818
$BeCl_2$	$-118\ 170\ +\ 36$ $-116\ 900\ +\ 33$	- 19,6 6,14 - 8,60 -	5 	818-1455 298- 500 500- 750
BeBr2 BeJ <u>2</u>	- 90 107 + 31 - 48 994 + 11 59 300 + 32	,67 ,39	-	298- 750 298- 500
BeLiF ₃ {BeLi ₂ F ₄ }	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$,00 – ,40 – ,63 – ,20 – ,31 –		500 750 298 500 298 750 7501250 12502000
BIF ₃ BiCl ₃ { } BiJ ₃	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$,9 18,1 26,3	10 4,5 6 6	298 500 298 503 544 714 298 500
	$-293\ 300 + 64$ $-297\ 600 + 98$ $-285\ 000 + 35$,4 – 7,7 ,4 – 16,9 –	5 6 7	298–1123 1123–1424 1424–1691
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 189 900 + 34 - 195 400 + 112 - 168 655 + 34 - 143 100 + 38	,6 – 24,4 ,4 –	3 5 2,5 5	298–1055 1120–1900 298–1038 298– 848
CdF_2	- 165 630 + 37 - 82 500 + 35	,3 _	3 2	298–1000 298– 840
$\begin{array}{cccc} \operatorname{CeCl}_3 & \cdot & \cdot & \cdot & \cdot \\ \operatorname{CeJ}_3 & \cdot & \cdot & \cdot & \cdot \\ \end{array}$	- 255 200 + 114 - 178 120 + 53	,9 18,4 ,9	4 5	298 900 2981025
CoF_3	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$,8 ,7 ,1 6,9 .5 9.2	8 6 3 4	298–1000 298–1450 298–1000 1000–1222
CoBr2 . . . { } . . . CoJ2 { } 	- 58 300 + 32 - 46 300 + 17 - 40 550 + 40 - 24 300 + 17	,5	+ 5 5 5 5	298– 951 951–1500 298– 788 788–1500

Abb. 6a:

 $\Delta G^{o} = A + BT + CT \lg T$; Gleichungen zur Temperaturfunktion der freien Bildungsenthalpien von halidkeramischen Verbindungen [Lit. 4, 13, 16, 38]. Symbole: { } = flüssig, ohne Symbol = fest.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 285 750 - 265 795 - 131 100 - 93 900 - 86 900 - 51 920 - 127 650 - 123 020	+ 62,5 + 55,8 + 87,6 + 55 + 47,5 + 30,9 + 24,5	- 11,1 - 8,7 - 8,4	6 5 7,5 3	298- 500 298-1000 298-1200 298-1088
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 265 795 - 131 100 - 93 900 - 86 900 - 51 920 - 127 650 - 123 020	+ 55,8 + 87,6 + 55 + 47,5 + 30,9 + 24,5	- 11,1 - 8,7 - 8,4	5 7,5 3	298–1000 298–1200 298–1088
CrCl ₃ . . . CrCl ₂ . . . (} . . CrJ ₂ . . . CrJ ₂ . . .	- 131 100 - 93 900 - 86 900 - 51 920 - 127 650 - 123 020	+ 87,6 + 55 + 47,5 + 30,9 + 24,5	- 11,1 - 8,7 - 8,4	7,5 3	298-1200 298-1088
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	93 900 - 86 900 - 51 920 127 650 123 020	+ 55 + 47,5 + 30,9 + 24,5	- 8,7 - 8,4	3	298_1088
$\{ \begin{array}{c} \cdot \\ \cdot \\ \mathbf{CrJ}_2 \\ \cdot \\ $	- 86 900 - 51 920 - 127 650 - 123 020	+ 47,5 + 30,9 + 24,5	- 8,4	0	200-1000
ČrJ ₂	- 51 920 - 127 650 - 123 020	+ 30,9 + 24,5		১	1088-1577
	127 650 123 020	+ 24,5	-	3,5	298-1129
LSE	- 123 020	1 1 1 1 0	_	6	298- 957
	102 000	+ 19.40	_	ő	957-1500
CsCl		+ 24	_	ž	298-919
	- 98 220	+ 179		2	919-1500
CsBr	- 98 650	+ 245	_	3	298-909
	90 270	+ 14.8	_	3	909-1500
Cel	89 100	+ 14,0	·	25	298_ 894
000	75 375	+ 10.4	_	25	894-1500
0.5	~ 10 070	+ 10,4		2,0	000 4000
	- 126 820	+ 31,9		4	298-1000
	- 49 950	+ 30,5	-	3	298- 500
	- 32 050	+ 13,5	•	2	298-073
0.0	- 26 195	+ 4,3	-	2	673-1500
$CuBr_2$	- 40 500	+ 34	. –	4,5	298- 500
CuBr	- 28 400	+ 14	-	1	298- 765
· ·	- 22 675	+ 6,2		1	765-1500
Cuj	- 23 950	+ 16,5	-	1	298- 878
	- 15 445	+ 6,4		1	878-1500
FeF ₃	- 234 025	+ 51,2		13	298–1000
FeF,	– 167 000	+ 31,8	-	6	298–1350
FeCl _a	95 720	+ 70,2	- 7,0	1	400- 500
FeCl	82 770	+ 50,8	- 7,0	1	298- 950
$\{ \ \ \}$	- 68 450	+ 15,2		1	950–1300
FeBr _a	- 73 000	+ 44	-	4	298 - 500
FeBr ₂	66 400	+ 31		1	298- 957
{ · · · · · · · · · · · · · · · · · · ·	- 50 705	+ 13,5	-	1	957–1500
FeJ ₂	- 45 770	+ 51,2	- 6,9	5	298- 867
$\{ \ \}$	- 40 600	+ 58,6	- 11,5	6	867-1208
HaCl	- 54 600	+ 36	_	1	298- 500
HaCl	- 31 900	+ 23	_	0.3	298- 500
HaBr.	- 47 400	+ 37	_	0.3	298 - 500
HaBr	- 28 900	+ 23	_	0.3	298- 500
Hal	- 39 900	+ 38		0.4	298-500
Hal	- 22 100	+ 21		0.2	298- 500
	105 050	475		2,/	208 850
	100 500	+ +1,0	_	3 4	208 500
	- 100 300	+ 55	-	5	200- 000
	- 47 640	+ 45,8	-	3	298-1000
IrCl_2	- 32 720	+ 30,8	-	3	298-1000
IrCl	- 16 770	+ 14,6		3	298-1000
KF	- 135 000	+ 26.1		-	298-1000
KCI	- 104 900	+ 24	_	1	298-1043
{ }	- 116 600	+ 35.2		1.5	1043-1680
КВr	- 97 480	+ 22.6	_	0.5	298-1000
KJ .	- 86 200	+ 23		0.3	298- 996
{ }	- 80 635	+ 17.4	_	0.3	996-1500
	255 000	5/1		-,- 0	208 11/5
Laui _s	- 200 000	+ 54,1		۲ ۲	298-103/
Lav ₃	- 110 040	T 04,0	-	4,0	200-1004

Abb. 6b:

 $\Box G^{\circ} = A + BT + CT \lg T$; Gleichungen zur Temperaturfunktion der freien Bildungsenthalpien von halidkeramischen Verbindungen [Lit. 4, 13, 16]. Symbole: { } = flüssig, ohne Symbol = fest.

Verbindung	⊿G (cal/mol) A B	С	± Fehler (kcal)	Temperaturbereich (K)
Lif	- 145 895 + 22,8	_	2	298–1143
LiCI	- 97 250 + 20,5	-	2	298- 886
{ }	- 93 895 + 16,7		2	886-1500
	-72050 + 17.5	_	2	298- 820
MaE.	-267200 + 402	_	3	298- 923
	-269300 + 42,5		3	923-1276
MgCl ₂	- 154 440 + 68,2	- 9,9	1	298- 987
$\{ \}$,	- 147 850 + 72,8	- 13,6	1,5	987-1376
MaBr.	-184100 + 121,5 -130750 + 355	- 20,7	1,5 3	298-970
{ }	-116370 + 20,2		3	970-1500
MgJ ₂	- 101 000 + 36	-	3	298- 682
$\{ \} \cdot \cdot \cdot \cdot \cdot$	- 92 000 + 22,80	· -	3	682–1500
MnF ₂	- 189 615 + 32,7		6	298-1129
	-116300 + 56 -107970 + 492	- 8,4 - 91	1	298- 923 993-1373
χ γ \cdot \cdot \cdot \cdot	- 105 930 + 31,8	- 4,1	1,5	1400–1504
MnBr ₂	- 97 300 + 34		2	298-857
	- 85 300 + 20	··· — .	2	857-1500
MnJ_2	- 73 300 + 35		3	298-911
MoCl	87.250 4 62.5	— ·	25	208 /67
			2,0	
	- 137 000 + 24,9		3	271-1156
	- 99 000 + 23,6	-	1,5	298-1073
NaBr	-90420 + 22.3		0.4	298-1028
NaJ	- 77 250 + 22,5	<u> </u>	0,5	298- 924
$\{ \}$	- 69 800 + 14,3	. — '	0,5	924–1500
NdCl ₃	- 243 820 + 50,9	-	2	298-1057
NdJ_3	- 172 025 + 55,2	-	3	298-1048
	- 156 820 + 32,9	· . —	1,5	298-1000
NiBra	-58790 + 34.7		4	298-1274
NiJ ₂	- 38 890 + 36,5		4	298-1070
PbF ₄	- 221 250 + 64,5		4,5	298- 500
PbF ₂	- 157 040 + 33,7	·	0,8	298-1128
	- 85 000 + 34,3 - 83 600 + 73 3	_ 1/ 1	2	298- 771 771_1224
PbBrs	-73350 + 34.5	- 14,1	1	298- 646
PbJ ₂	- 56 950 + 34,5	· _ ·	0,8	298- 675
PdCl ₂	- 45 000 + 40	·	3	298- 773
PdBr <u>.</u>	- 32 750 + 34,5	- `	5	298- 500
PrGl ₃	-250615 + 516	-	1,2	298-1059
	- 174 320 + 33,9 52 750 + 62 5	. —	4,5	298-1010
	-28950 + 34.5	_	3	298- 854
PtBr ₄	- 47 500 + 65	_	4	298- 453
PtJ	- 39 750 + 67,5	· _ ·	4	298- 643
(PuF ₆)	- 418 000 + 71,4	<u> </u>	_	298-1500
	-424000 + 70 371 300 + 56 0		-	298-1300
	- 370 000 + 54.6		-	913-1700
{ }	- 350 200 + 43,1		-	1700-2230
PuCl ₃	- 229 400 + 82,8	-	-	298-1040
	-215400 $+ 39,4$		-	1040-2000 298- 954
	-182500 + 37.2	_	_	954-1736
RbF	- 131 900 + 23	.	2	298-1033
	- 128 300 + 18	-	2	10331500
RbCl	- 103 200 + 23		2	298-988
{ } BhBr	- 98095 + 17,9 - 96700 - 21	_	2	988-1500 298- 955
	-93910 + 18.1	_	2	955-1500
ŘbJ	- 86 050 + 20,5	<i>⊷</i> '	2	298- 915
{ }	- 84 105 + 18,6		2	915–1500

Abb. 6c: $\Delta G^{\circ} = A + BT + CT \ Ig T; \ Gleichungen zur Temperaturfunktion der freien Bildungsenthal pien von halidkeramischen Verbindungen [Lit. 4, 13, 16]. Symbole: { } = flüssig, ohne$ Symbol = fest.

Verbindung	∠1G A	i (cal/mol) B	С	± Fehler (kcal)	Temperaturbereich (K)
ReCl _a	63 100	+ 51	_	3	298- 500
ReBr _a	. – 50 550	+ 52,5	_	3	298- 773
RhCl ₃	52 640	+ 43,8		3	298-1073
RhCl.,	. – 38 720	+ 31,8		3	298-1000
RhCl	. – 20 870	+ 15,7		3	298–1000
RuCl _a	59 235	+ 53		3	298-1000
SbF ₃	. – 219 000	+ 50		6	298- 565
${SbCl_5}$.	103 300	+ 60	-	3	298- 413
$ScCl_3$	214 105	+ 54,1		12	298-1212
SCBr ₃	179 230	+ 52,4	-	12	298-1000
$\{SiCl_4\}$	152 350	+ 31,50	-	4	298- 500
[SIBr ₄]	120 500	+ 55,00	_	/	298- 500
$SnCl_2$,	83 600	+ 32,00		1,5	298- 500
$\{ \} \cdot \cdot \cdot$ SnBr	79 600	+ 20,3		4	520 925 304 475
SnBr.	- 70,900	+ 47,5		4	298_ 489
SnJ	49 700	+ 34	_	5	298- 593
SrCl.	- 196 385	+ 32.3		3	298-1146
SrBr,	178 250	+ 37,5	_	7	298-916
-	- 168 395	+ 26,3	· _	7	916-1500
SrJ_2	149 850	+ 37,5	-	6	298- 675
	- 143 000	+ 27	-	6	6751500
ThF ₄	. – 505 600	+ 99,6	- 7,92		298-1380
	283 615	+ 73,69	. —	1	298-1000
INBr ₄	241 600	+ /5	-	2,5	298- 883
IIF	74 750	+ 19,5	-	1,5	298- 500
TICI	- 71 000	+ 11,0	-	1,5	208 702
TIBr	49 450	+ 17,5	_	0,4	298- 703
TIJ	37 750	+ 16.5		0.6	298- 713
UF	521 500	+ 97.8	·	_	298- 337
	- 510 800	+ 64,60	_		337-1309
UF ₅	. – 489 700	+ 82,2	-	_	298- 565
UF ₄	448 500	+ 67,4	-	-	298-1309
	433 100	+ 55,6	. —	-	1309-1730
	. ~ 343 000	+ 52,7	14.2		298-1405
	- 263 200	+ 128.1	- 14.3		298- 600
UCI,	. – 253 100	+ 112,8	- 14.3	_	298- 861
{ }	. – 236 700	+ 52,0	_	-	861-1060
	. – 213 000	+ 51		-	298-1110
{ } · · ·	200 700	+ 40		-	1110-1405
UBr ₄	211 000	+ 70,9	-	—	298- 792
{ }· · · ·	194 000	+ 49,2	_		792-1050
$\{ \}$	190 500	+ 60.9	_	_	1000-1405
ÚJ, Í. Í. Í	153 500	+ 62	-	_	298- 779
{`}	. – 134 000	+ 37	_		779-1030
WCI ₆	. – 109 100	+ 117	-	4	29 8 548
YCl _a	. – 232 700	+ 53		3	298- 953
	- 218 370	+ 36,3	_	3	953-1500
YJ ₃	- 156 950	+ 54,2	-	10	298-1000
ZnF	. – 183 240	+ 34,2		3	298-1145
$2nCl_2$,	101 385	+ 75,5	- 12,9	3	298- 586
$\{ \} \cdot \cdot \cdot$	93 950 95 250	+ 21,4	-	5	586-1005
Znor ₂ · · · ·	65 250	+ 355	-	0,5	290- 007
7rCl	234 000	+ 60,0	_	0,4	200- 710
	234 000	+ 09	. —	I	298-710

Abb. 6d:

Abb. 60: /1G^o = A + BT + CT lg T; Gleichungen zur Temperaturfunktion der freien Bildungsenthalpien von halidkeramischen Verbindungen [Lit. 4, 13, 16, 19]. Symbole: () = gasförmig, { } = flüssig, ohne Symbol = fest.

Verbindung	⊿G A	(cal/mol) B	± Fehler (kcal)	Temperaturbereich (K)
BeO · Al _a O ₄	- 3 600	+ 0,40	0,8	1000–2000
3 CaO · Al ₃ O ₃	- 3 000	5,90	1	800-1800
CaO·Al₂Õ₃	- 4 300	- 4,50	0,5	800-1800
$CaO \cdot 2 Al_2O_3$	- 4 000	- 6,10	0.75	800-1800
$Ce_2O_3 \cdot Al_2O_3$	- 19 000	- 5,00	2,5	1400-1800
$CoO \cdot Al_2O_3$	- 9 000	+ 1,40	0,5	1000-1600
$FeO \cdot Al_2O_3$	- 9 500	- 1,70	2,5	298-1500
$Li_2O \cdot Al_2O_3$	- 25 600	- 2,53	1	800-1600
$MgO \cdot Al_2O_3$	- 8 500	0,50	0,75	298-1700
$MnO \cdot Al_2O_3$	- 11 500	+ 1,75	1,5	8001500
Na ₂ O · Al ₂ O ₃	- 44 150	-0,70	3	800-1193
$NIO \cdot Al_2O_3$	- 1 000	- 3,00	1,5	1000–1500
Ag ₂ CO ₃	- 19 300	+ 40	3	298- 491
BaCO ₃	- 62 285	+ 40,3	4	298-1079
CaCO ₃	42 820	+ 38,4	2	298-1167
CdCO ₃	- 23 500	+ 40	3	298- 500
FeCO _a	- 21 400	+ 43	3	298- 500
K.,CO.,	- 93 905	+ 40,2	·	298-1171
Li.CO.	- 77 950	+ 69	_	999–1125
MaCO,	- 28 100	+ 40.6	4	298-1000
MnCO.	- 27 900	+ 45	2	298- 500
Na.CO.	- 76 820	+ 32 4	4	298-1131
PhCO	- 20 900	+ 36	3	298- 588
SrCO	- 56 040	+ 10.8	4	298-1197
7nCO	- 17 000	+ 40,0	-1	298_ 500
	- 17 000	T 72	. 0	4400 4000
	20 900	- 5,30	. 2	1400-1600
$CoO \cdot Cr_2O_3$	- 14 200	+ 2,00	0,9	1000-1000
$CuO \cdot Cr_2O_3 . .$	- 6900	+ 1,85	1,5	1000-1300
	- 10 000	+ 1,75	1.0	1000-1300
FeO Cr_2O_3	- 10 800	+ 2,00	1,0	1000-1700
MgO· Cr_2O_3	- 10 200	+ 1,70	1,2	290-1000
$\frac{NIU \cdot Ur_2 U_3}{2} \cdot \cdot \cdot$	- 12 800	+ 2,00	·	1000-1500
$CaO \cdot Fe_{2}O_{3}$.	- 7 100	- 1,15	1	1000-1489
	- 12 700	- 0,60	1	1000-1600
	5 000	- 0,50	1	913-1310
	~ J 900	- 1,00	1,2	800-1500
	- 5000	- 1,25	2	298-1460
	- 9 500	- 0,05	1,2	298-
	~ 4 000	- 0,50	0,8	1000-1700
NIO·Fe ₂ O ₃ .	- 4750	- 0,90	1	855-1700
CaO Nb ₂ O ₅ 2 CaO Nb ₂ O ₅	32 800 53 700	- 2,00 3 00	2,5	800-1400 1050-1350
PaÓ MaO	14 400	<u> </u>	 	1400 4540
	- 14 400	- 5,60	· 1,5	1480-1540
	_ 50000	- 2,20 5 00	1 5	1172 1572
	- 40 000	- 5,60 - 1.00	1	298-1068
MgQ · MnQ	+ 3 300	- 5.40	1.5	1200-1450
MgO MoO	- 12 900	- 3,25	1	298-1068
MnO MoO	- 14 500	+ 0,20	2,5	298-1068
SrO · MoO.	- 12 600	- 6.40	1.5	1220-1660
SrO · MoO ₃	- 50 500	+ 0,40	1,5	298–1068
Ag ₂ O·Rh ₂ O ₂	- 18 500	+ 4.40	0.5	973–1173
CuO · Rh.O.	- 10 800	+ 4,50	0.4	1173–1323
$Cu_2O \cdot Rh_2O_3$.	- 16 100	+ 6,50	0,5	1250-1322

Abb. 7a:

Abb. 7a: /IG = A + BT + CT Ig T; Gleichungen zur Temperaturfunktion der freien Reaktionsenthal-pien von Aluminaten, Karbonaten aus der Reaktion von Metalloxid mit Al₃O₃ und CO₂ ,von Chromaten, Ferraten, Niobaten, Molybdaten und Rhodanaten aus der Reak-tion von Metalloxid mit Cr₂O₃, Fe₂O₃, Nb₂O₅, MoO₂, MoO₃ und Rh₂O₃ [Lit. 13, 16, 39]. Symbole: ohne Symbol = fest.

	Verbindung	.∕IG (cal/ A	'mol) B	<u>+</u> Fehler (kcal)	Temperaturbereich (K)
$\begin{array}{c} a_{c} c_{c} c_{c}$	BaSiO ₃ Ba ₃ SiO ₁	26 800 64 350	+ 0,1 - 0,5	3 3	298–1600 298– 500
$\begin{array}{llllllllllllllllllllllllllllllllllll$	u–CaSiO₃	- 21 300	+ 0,1	1	298–1483
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	β –CaSiO $_3$	- 19 900	- 0,8	2	1483-1813
$ \begin{array}{c} G_{a}, SiO_{a}, \ldots & -27460 & -1.8 & 2 & 280-100 \\ Fe_{a}, SiO_{a}, \ldots & -62420 & +0.4 & 10 & 290-1249 \\ MgSiO_{a}, \ldots & -68420 & +0.4 & 10 & 290-1249 \\ MgSiO_{a}, \ldots & -15120 & 0 & 2 & 298-1700 \\ MnSiO_{a}, \ldots & -5920 & +3.0 & 4 & 298-1600 \\ Na_{a}, SiO_{a}, \ldots & -5920 & +3.0 & 4 & 298-1600 \\ Na_{a}, SiO_{a}, \ldots & -5920 & +3.0 & 4 & 298-1600 \\ Na_{a}, SiO_{a}, \ldots & -60600 & -2 & 3.5 & 298-261 \\ Na_{a}, SiO_{a}, \ldots & -60600 & -2 & 3.5 & 298-261 \\ Na_{a}, SiO_{a}, \ldots & -60600 & -2 & 3.5 & 298-500 \\ PbSiO_{a}, \ldots & -2100 & -3.6 & 2 & 1039-1500 \\ PbSiO_{a}, \ldots & -7130 & +0.23 & 2 & 200-1500 \\ Zn_{a}, SiO_{a}, \ldots & -7130 & +0.23 & 2 & 298-1300 \\ Zn_{a}, SiO_{a}, \ldots & -7130 & +0.23 & 2 & 298-1300 \\ ZBAO+IIO_{a}, \ldots & -37400 & +3.75 & 3 & 298-1300 \\ ZBAO+IIO_{a}, \ldots & -37400 & +3.75 & 3 & 298-1300 \\ ZBAO+IIO_{a}, \ldots & -49500 & -2.75 & 2.5 & 298-1700 \\ GaO-TIO_{a}, \ldots & -19100 & -0.80 & 0.8 & 299-1700 \\ GaO-TIO_{a}, \ldots & -19100 & -0.80 & 0.8 & 299-1700 \\ GaO-TIO_{a}, \ldots & -49500 & -2.75 & 2.5 & 298-1700 \\ FeO-TIO_{a}, \ldots & -49500 & -2.75 & 2.5 & 298-1700 \\ FeO-TIO_{a}, \ldots & -6300 & +1.50 & 0.8 & 759-1700 \\ LI_{O}-TIO_{a}, \ldots & -6300 & +1.50 & 0.8 & 759-1700 \\ LI_{O}-TIO_{a}, \ldots & -6300 & +0.75 & 0.7 & 298-1800 \\ MgO-TIO_{a}, \ldots & -6300 & +0.75 & 0.7 & 298-1800 \\ MgO-ZTIO_{a}, \ldots & -6300 & +0.75 & 0.7 & 298-1800 \\ MgO-ZTIO_{a}, \ldots & -43000 & -0.80 & 3.5 & 298-1800 \\ NIO-TIO_{a}, \ldots & -39500 & +2.75 & 2.5 & 298-1800 \\ NIO-TIO_{a}, \ldots & -3900 & -3.75 & 3.5 & 298-1800 \\ ZnO-TIO_{a}, \ldots & -3900 & -1.12 & 298-943 \\ CaO-V,O_{b}, \ldots & -4500 & -1.15 & 298-943 \\ CaO-V,O_{b}, \ldots & -12800 & -1.5 & 298-943 \\ CaO-V,O_{b}, \ldots & -12800 & -1.5 & 298-943 \\ CaO-V,O_{b}, \ldots & -12800 & -1.15 & 298-943 \\ CaO-V,O_{b}, \ldots & -12800 & -1.15 & 298-943 \\ CaO-V,O_{b}, \ldots & -12800 & -1.15 & 298-943 \\ CaO-V,O_{b}, \ldots & -12800 & -1.15 & 298-943 \\ MgO-V,O_{b}, \ldots & -12800 & -1.5 & 298-943 \\ MgO-V,O_{b}, \ldots & -12800 & -1.5 & 298-943 \\ POO-V_{c}, \ldots & -12800 & -1.5 & 298-943 \\ POO-V_{c}, \ldots & -14800 & +0.50 & -1.5 & 298-943 \\ POO-V_{c}, $	Ca₂SiO₄	- 30 200	- 1,2	2,5	298-1700
	Ca_3SIO_5	- 27 460	- 1,8	2	298-1000
	Fe_2SIO_4	- 11 200	+ 4,5	3	298-1478
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$K_2 SiO_3$	- 62 420	+ 0,4	10	298-1249
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	MgSiO ₃	- 8 900	+ 1,1	1	298-1600
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Mg₂SIU₄	- 15 120	0	. 2	290-1700
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		- 5 920	+ 3,0	. 4	298-1000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Na_2SiO_3	- 55 550	- 1,40	8 10	298-1301
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Na SiO.	- 74 860	- 2.8	5	298-1291
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Na,Si,O ₅	- 60 600	- 2	3,5	298- 500
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PbSiO.	- 5 200	- 0,6	2	500-1039
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		- 2100	- 3,6	2	1039-1500
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Pb ₂ SiO ₄	5 235	- 3,9	2	500-1500
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Zn₂SiO₄	- 7130	+ 0,23	2	298–1300
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		07.400	. 0 75		208 1300
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		37 400	+ 3,73 - 1.20	4	298–1800
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		19 100	_ 0.80	0.8	298-1700
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$3 \text{ CaO} \cdot 2 \text{ TiO}$	- 49 500	- 2,75	2,5	298-1700
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 CaO · 3 TiO ₃ · · ·	- 70 000	4,20	2	298-1700
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	FeO · TiO,	- 8 000	+ 2,90	1	298-1600
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 FeO · TiO,	- 8 100	+ 1,40	2	298–1400
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CoO·TiO ₂	- 5 900	+ 1,50	0,8	750-1700
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Li ₃ O·TiO ₁	- 31 000	0,80	3,5	298-1200
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MgO·TiO,	- 6 300	+ 0,75	0,7	298-1800
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MgO·2 TiÔ₂	- 6 600	+ 0,15	0,8	298-1800
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	2 MgO · TiO₂	- 6100	+ 0,30	0,5	298-1800
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$NIO \cdot TIO_2 \cdot \cdot \cdot$	- 4 300	+ 2,00	0,8	750-1700
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SrO · TiO ₂ · · ·	32 800	+ 0,50	2,5	298-1200
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$2 \operatorname{SrO} \cdot \operatorname{TiO}_2$.	- 39 500	+ 2,75	2,0	298-1500
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$4 \text{ SrO} \cdot 3 \text{ HO}_2 \cdot \cdot \cdot$	-109 000	+ 0,75	0,5	500-1500
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$2210 \cdot 10_2$	- 700	- 1,00		000 040
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$CaO \cdot V_2O_5$	- 34 900	_	1,2	298-943
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$2 \text{ CaO} \cdot \text{V}_2 \text{O}_5$	- 03 300 - 79 400	-	1.5	298-943
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_0 O_1 V O_5$	- 4 500	_	_	1200-1400
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$E_0 \cap V_2 O_3$	- 20.000	_	1.4	298-943
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$FeO \cdot V_2O_5$	- 5 300		- · · ·	1000-1400
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$M_{1}O \cdot V_{1}O_{2}$	- 12 750	+ 2.00	1,5	298- 943
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$2 \text{ MgO} \cdot \text{V}_2 \text{O}_5$	- 20 900	_	1,5	298- 943
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MnO V₀O₅	- 15 750	_	1,4	298- 943
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Na ₉ O·V ₉ O ₅	- 77 800	- 3,60	4	298- 800
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$2 \tilde{N}a_2 O \cdot V_2 O_5$.	- 128 100	- 7,00	5	298- 900
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$3 \operatorname{Na}_2 O \cdot V_2 O_5$	- 172 500	-	5	298- 943
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$2 \text{ PbO} \cdot \text{V}_2\text{O}_5$	- 35 600		2	298- 943
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$3 \text{ PbO} \cdot \text{V}_2 \text{O}_5$	- 42 500		2,5	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(BaO·WO,)	- 67 500	+ 1,00		1200-1400
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(3 BaO · WO ₃)	- 114 000	-	—	1300
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CaO·WO ₃	- 35 500	+ 0,15	arra	298-1500
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 CaO · WÔ ₃	- 44 900	+ 0,90	·	298–1400
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$CdO \cdot WO_3$	- 19 000	- 4,00	4	298–1400
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$CoO \cdot WO_3$	- 14 500	+ 0,50	0,6	1000-1500
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$CuO \cdot WO_3$	6 600	- 0,50	1,5	800–1400
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$FeO \cdot WO_3$	- 13 100	- 2,40	1,2	10001425
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$MgO \cdot WO_3$	- 17 700	+ 2,60	0,75	298–1500
NiO \cdot WO31,5800-1400PbO \cdot WO314300-5,451,2298-1400(SrO \cdot WO3)47850+2,00-1000-1400ZnO \cdot WO310 200-4,001,5298-1400Abb. 7b:	$MnO \cdot WO_3$	- 18 400	+ 0,20	1,5	298-1400
PbO · WO ₃ - - 14 300 - 5,45 1,2 298–1400 $(SrO · WO_3)$ - - 47 850 + 2,00 - 1000–1400 $ZnO · WO_3$ - - 10 200 - 4,00 1,5 298–1400 Abb. 7b: - - 10 200 - 4,00 1,5 298–1400	$NIO \cdot WO_3$	- 11 000	-	1,5	800-1400
$(SrO \cdot WO_3)$ 47 850 + 2,00 - 1000-1400 ZnO $\cdot WO_3$ 10 200 - 4,00 1,5 298-1400 Abb. 7b:	$PbO \cdot WO_3$	- 14 300	- 5,45	1,2	298-1400
ZnO·WO ₃ – 10 200 – 4,00 1,5 298–1400 Abb. 7b:	(SrO · WO ₃)	- 47 850	+ 2,00		1000-1400
Abb. 7b:	ZnO·WO,	- 10 200	- 4,00	1,5	298-1400
	Abb. 7b:				1

 $\[\] G = A + BT + CT \] g T; Gleichungen zur Temperaturfunktion der freien Reaktionsenthal$ pien von Silikaten und Titanaten aus der Reaktion von Metalloxid mit SiO. und TiO.(Rutil) von Vanadaten und Wolframaten aus der Reaktion von Metalloxid mit V₂O₅ und WO₃ [Lit. 13, 16, 39]. Symbole: ohne Symbol = fest.

Verbindung				⊿G (c A	al/mol) B	± Fehler (kcal)	Temperaturbereich (K)	
CaSi					- 36 000	0,5	4	298-1123
{ }	•			•	- 25 750	- 6,58	5	1520-1717
Ca₂Si	٠	٠	·	•	- 42 600	4,65	5	1200–1717
FeSi	٠	•	•	•	- 19 200	– 1,0	-	298-1693
Mo₃Si	•			•	- 21 600	- 0,5	· —	298-2273
Re _a Si					- 24 600	- 5,0	-	1750-1970
ReSi	•	·	•	•	- 30 000	0,5	-	1750–1970
ReSI,	•	•	•	•	62 100	+ 1,7	-	1750–1970
U ₃ Si	•	•	•	٠	- 40 800	- 2,2	-	298-1940
U_3SI_2	·	·	·	•	- 43 050	+ 1,05	-	1673-1833
	·	•	•	•	- 20 200	+ 0,0	-	298-1873
USi.	:	•	•	•	-31000	+ 17	-	290-1773
USI ₃			;		- 32 360	+ 1,0	· _	298–1783
Co₅As					- 26 600	- 8,9		298–1200
Co ₂ As	•	•			– 13 500	- 0,2	-	298-1200
Co ₃ As ₂	2	•	•	•	- 27 200	+ 0,1	-	298-1300
CoAs	·	·	·	•	13 600	+ 0,2		2981450
	3	•	·	•	- 34 400	+ 0,4	-	298-1050
	•	•	•	•	- 22 000	+ 1,0	-	290-1000
MiA o	•	•	·	•	- 14 000	+ 4,2		198-1200
MAS	•	•	•	•	- 1300	+ 0,2		198–1240
Ag₂Se	•	•	•	•	- 10 300	– 5,3	-	298- 306
CdSe	•	•	•	•	- 33 200	+ 1,5	_	298–1620
CuSe	•				- 9450	_ 4,0	-	298- 973
GeSe					– 19 7 00	- 1,2	-	198-1350
PbSe					- 23 800	+ 0,8	-	298-1350
SnSe	•		•	•	- 21 500	+ 1,9	. –	298-1100
Ag ₂ Te					- 7 000	- 3,2	_	298–1230
Bi ₂ Te ₃					- 18 700	- 2,0	_	298- 850
CdTe					- 24 500	+ 1,8	_	298-1123
Ga,Te,					65 000	+ 1,8	· _	298-1063
GeTe "					- 8 000	- 0,5	·	298-1000
PbTe					16 600	+ 1,1		298-1200
SnTe	<u>.</u>				- 14 600	0.0		298-1080
ZnTe					- 28 800	+ 2.8	_	298-1510
	•		•	•				

Abb. 8 🗧

 $\Delta G^{\circ} = A + BT + CT \log T$; Gleichungen zur Temperaturfunktion der freien Bildungsenthalpien von Siliziden, Arseniden, Seleniden und Telluriden (Übergangsverbindungen) [Lit. 2, 3, 5, 9, 10, 11, 12, 13, 14]. Symbole: ohne Symbol = fest, { } = flüssig.

Verbindung	A	⊿G° (cal/mol) B	C	Temperaturbereich (K)
AgCd	2 200	- 1	· · · · · · · · · · · · · · · · · · ·	298- 584
	5 500	+ 0,9	-	298- 832
AlgPu Al Pu	39 100	+ 12,5		950-1850
Al Pu	- 53 500 - 53 500	+ 17,0	_	950-1500
Al ₄ Th	56 300	+ 18.7		950-1200
ALU	. – 22 790	+ 18,37	- 1.01	298-1113
Al ₃ U	. – 26 290	+ 10,6	- 0,57	298-1113
Al₄U	. – 32 040	+ 59,07	- 3,26	298–1000
AuCu _a	. – 6500	- 0,7		298 608
AuCu	. – 3 620	- 1,6	-	298 – 689
AuSb ₂	4 650	+ 4,6	-	298- 733
AuSn ₂	1500	- 6,0	-	298- 527
	- 0 800	+ 0,2	-	298-691
Bell .	53700	+ 58,6	· · .	298-1950
De ₁₃ 0	39300	+ 0,08	-	298-2273
	35 400	+ 4,6	-	750-1350
Bi ₄ m ₃	129 400	+ 15,7	_	750-1350
BiU	-24600	+ 7,5		298_1673
Bi.U.	- 90 900	+ 35.7	-	298-1423
Bi ₂ U	- 34 300	+ 14,7	-	298–1283
CaMa	. – 9700	+ 17.8	-	298- 987
Cd Pu	- 40.020	+ 27.33		676 843
Cd. Pu	- 48 440	+ 39.76	_	623~ 876
CdSb	- 3 600	+ 1.2		298-729
Cd ₁₁ U	- 27 200	+ 36,2	_	673- 765
Co,,Th,	- 74 800	+ 15,1		917-1233
$Co_3 Th_7$.	- 67 100	+ 7,93		917-1233
CoTh	- 22 400	+ 6,83	—	917–1233
$Co_7 Th_2 \cdot \cdot \cdot$. → 89 800	+ 30,7		917-1233
	- 42 800	+ 12,7	-	917-1233
$CO_{11}O_2$	- 49 500 51 940	- 3,42	_	993-1053
Culeb	2 000	- 1,10		1000-1100
Cu ₂ SD	14 600	+ 2,4	-	298-858
	-2470	- 2.49	_	993-1053
	- 4310	- 0.74	_	1053-1153
Fe,,Pu	. – 6 500	+ 9.5	~	298-1513
$Fe_3^{Th_7}$.	. – 12 100	- 4,0		928-1164
Fe ₃ Th .	- 23 700	+ 12	-	928-1164
Fe_7Th_2	. – 49 200	+ 24,1	-	928-1164
Fe ₅ Ih	27 600	+ 12,2	-	928–1164
Fe ₁₇ In ₂	50 600	+ 22,7	-	928-1164
Fell	9400	- 254		928-1083
1020	- 17 580	+ 3.23	_	1043-1153
GaSh	- 10.000	± 25		298 943
Ga _a U	- 41 420	+ 14.5	_	298-1573
Gell	56 300	± 0.68	_	298 19/3
GeU	14 700	+ 0.52		1343-1473
Ge ₅ U ₃	- 57 600	+ 2,32	·	1343–1473
Ge ₂ U	. – 21 000	+ 0,93		298-1723
Ge ₃ U	. – 25 600	+ 1,38	—	298-1743
HgNa ₃	. – 11 800	+ 1,3	_	298- 307
Hg ₂ Na ₃ .	23 000	+ 6	-	298 - 3 96
HgNa	- 10 200	+ 1,3		298- 492
Hg ₂ Na	. – 18 300	+ 4,9	-	298- 623
пg ₄ №а НаТь	20 000	+ 0,0		298-431
Ha.Th	98 000	+ 96	_	013- 093 713 773
Ha Th	- 118 000	+ 117	_	623- 743
Hg.U	. – 92	- 4.99	_	448- 648
Hg₃U	555	- 6,31		448- 648
Hg₄U	. – 1594	- 6,11		448- 573
	_ 3777	- 2,35		573- 648

Abb. 9a: $\Box G^{o} = A + BT + CT \lg T$; Gleichungen zur Temperaturfunktion der freien Bildungsenthal-pien von intermetallischen Verbindungen [Lit. 2, 3, 5, 9, 10, 11, 12, 13, 14, 22, 33]. Symbole: ohne Symbol = fest.

Verbindung	⊿G (e A	cal/mol) B	± Fehler	Temperaturbereich	
• - • • • • • • • • • • • • • • • • • •			(Koai)	(K)	
InSb In₃U	6 900 24 280	+ 4,2 + 7.44	-	298– 898 622 048	
Mg _a Th	- 14 300	+ 15.2		965 1085	
NiMg	- 12 400	+ 11.8	_	208 1033	
Ni₂Mg	- 13 500	+ 6,7		298-1418	
Ni ₃ Th ₇	- 65 900	+ 3,4	- 1 · 1	841-1141	
NiTh	- 21 600	+ 1,14	-	841-1141	
NI ₂ IN Ni Th		+ 2,31	<u> </u>	841-1141	
Ni Th	- 111 270	+ 10,1	_	841-1141	
Ni ₅ U	- 41 600	+ 5.1	an a Turan an an	298-1573	
PbMq.	- 12 500	+ 18.4	· · · · · · · · · · · · · · · · · · ·	298- 823	
Pb ₂ Na ₅	- 34 300	+ 10,7	_	298- 673	
PbNa	- 11 000	+ 4,1	-	298- 641	
$Pb_5Na_2 \dots$	- 23 000	+ 3,4	· · · · · · ·	298-593	
PD ₃ PU PhTh	- 32 200	+ 9,5	-	600-1200	
Pb _a Th	- 33 142	+ 14.3		873-1273	
Pb ₃ Th	- 45 116	+ 24,5	-	873-1273	
Pb ₄ Th	- 54 229	+ 33,3	· _ `	873-1273	
	- 10 200	+ 2,5	_	298-1553	
PU30 Pu7n	- 20 900	+ 9,4	n in a second	298-1473	
	- 00 300	+ 20,30	· . ·	973-1223	
Ru ₂ O Bu ₂ Th	- 13 080	+ 0,4 + 3,23	<u>-</u>	1000-1140	
Ru_3Th_3 .	- 13 450	+ 2,45	-	1020-1170	
RuTh	- 15 300	+ 3,65	unit i i i	1020-1170	
Ru _a Th	- 11 870	+ 3,24		1020–1170	
Sb_2Zn_3	- 7 300	1,9 ·		298-838	
SDZII	- 3 600	- 0,2		298~ 818	
Sn_2O_3	- 74 400 - 99 410	+ 19,2 + 30.12		298-1573	
Sn ₂ U	- 41 030	+ 14.3		298-1623	
τΙ₀U	<u> </u>	+ 6.7		298- 623	
.	- 13 300	+ 1,2	_	653- 943	
Th ₂ Zn ₁₇	- 92 378	- 59,17	+ 14,875	298- 693	
	- 106 879	- 263,79	+ 99,04	693-1181	
lhZn _i	- 32,869	- 12,58	+ 3,5	298- 693	
ThZn.	- 22 047	- 516	+ 20,0	298_ 693	
Theng i i i	- 23 753	- 29,18	+ 11,65	693–1181	
Th₂Zn	- 13 164	- 2,38	+ 0,875	298- 693	
4	- 14 017	- 14,39	+ 5,83	693–1181	
UZn_{12}	· - 54 100	+ 38,2	· _	693-973	
$U_{2}Zn_{17}$	- 81 400	+ 47,3		298-1173	
ZrZn ₄ ZrZn	- 70 200 53 300	+ 50 $+ 337$	-	773-1023	
$ZrZn_3$	- 31 500	+ 25.5		773-1173	
ZrZn	- 30 860	+ 20	· - · · ·	773–1173	

Abb. 9b:

 $\angle I G^{o} = A + BT + CT Ig T$; Gleichungen zur Temperaturfunktion der freien Bildungsenthalpien von intermetallischen Verbindungen [Lit. 2, 3, 5, 9, 10, 11, 12, 13, 14, 22, 33]. Symbole: ohne Symbol = fest.

Literatur

- Knacke, O., Krahe, J., Müller, F., Z. Metallkde., 58 (1967), 814.
- [2] Kaufmann, L., IMD Special Rep. Nr. 13, (1964), 203.
- [3] Johnson, L., IMD Special Rep. Nr. 13, (1964), 171.
- [4] Rand, M. H., Kubaschewski, O., The Thermochemical Properties of Uranium Compounds, Oliver and Boyd, Edinburgh (1963).
- [5] Holleck, H., Kleykamp, H., J. Nucl. Mat., 35 (1970), 158.
- [6] Eberle, L., Nixdorf, J., Rochow, H., Ber. DKG, 43 (1966).
- [7] Allbutt, M., Junkison, A. R., AERE-R-5466 (1967).
- [8] Weast, R. C., Handbook of Chemistry and Physics, The Chemical Rubber Co., Cleveland (1968). – Siehe auch JANAF Thermochemical Tables, Clearinghouse (periodically).
- [9] Westbrook, J. H., Intermetallic Compounds, John Wiley and Sons, New York (1967).
- [10] Götzmann, O., Dissertation Universität Karlsruhe (1968).
- [11] Passeford, S., Anselin, T., Calais, U., Sci. Ceram., 4 (1968), 421.
- [12] Chiotti, P., Kateley, J., J. Nucl. Mat., 32 (1969).
- [13] Kubaschewski, O., Evans, E. L., Alcock, C. B., Metallurgical Thermochemistry, Pergamon Press (1967).
- [14] Kubaschewski, O., in Thermodynamics of Nuclear Materials, IAEA-Symp. Vienna, Paper SM 98/101 (1967/68).
- [15] Flotow, H. E., Osborne, D. W., O'Hare P. A. G., Settle, J. L., Mrazek F. C., Hubbard, W. N., J. Chem. Physics, **51**, Nr. 2 (1969), 583.
- [16] Smithells, C. J., Metals Ref. Book, Butterworths, London (1967).
- [17] Baehren, F. D., Vollrath, D., Planseeberichte für Pulvermetallurgie, 17 (1969).
- [18] Holleck, H., Kleykamp, H., J. Nucl. Mat., 32 (1969), 1.
- [19] Gmelins Handbuch der anorganischen Chemie, Bd. 4, Transurane, Teil C, System Nr. 73, Ergänzung zur 8. Aufl., Verlag Chemie GmbH, Weinheim (1972).

- [20] Franco, J. I., Kleykamp, H., Ber. Bunsen-Gesellschaft f. phys. Chemie, 75 (1971), 934.
- [21] Tanaka, H., Kishida, J., Moriyama, J., J. Jap. Inst. Met., 37 (1973), 564 (translated to English by Corssen, Kernforschungszentrum, D-75 Karlsruhe, Postfach 3640/LA).
- [22] Kleykamp, H., Murabayashi, M., J. Less Common Metals, **35** (1974), 227.
- [23] Kleykamp, H., Paneth, L. J., J. Inorg. und Chem., **15** (1973), 477.
- [24] Franco, J. I., Kleykamp, H., Ber. Bunsengesellschaft, **76** (1972), 691.
- [25] King, E. G., Weller, W. W., Christensen, BMRI-5664 (1960).
- [26] Kleykamp, H., Z. phys. Chemie, 71 (1970), 142.
- [27] Friedrickson, H., Chasanov, M. G., J. chem. Eng. Data, 17 (1972), 21.
- [28] Rapp, R. A., Trans. Met. Soc. AIME, 227 (1963), 371.
- [29] Mayinger, F., Vortrag auf der Reaktortagung des Deutschen Atomforums, Berlin (1974).
- [30] Körber, H., Barth, K. L., Unger, H., IKE-Bericht Nr. K-33 (1973).
- [31] Kortüm, G., Einführung in die chemische Thermodynamik, Verlag Chemie, Weinheim/Bergstraße (1960).
- [32] Ondracek, G., Splichal, K., Berichte Deutsche Keram. Ges., 48 (1971), 343,
- [33] Kanno, M., J. Nucl. Mat., 51 (1974), 24.
- [34] Holley, C. E., J. Nucl. Mat., 51 (1974), 136.
- [35] Tagawa; H.; J. Nucl. Mat., 51 (1974), 78.
- [36] Smith, J. F., J. Nucl. Mat., 51 (1974), 136.
- [37] Ondracek, G., Splichal, K., Wedemeyer, H., KFK 2011 (1974).
- [38] Spencer, P. J., in O. Kubaschewski (Ed.), Atomic Energy Review Special Issue No. 4 (Beryllium), International Atomic Energy, Vienna (1973).
- [39] High Temperatures High Pressures, Int. J. of Research, Vol. 4 (1972), 1.

Danksagung

. . .

Die Verfasser danken den Herren Dr. M. Fischer, Dr. O. Götzmann, Dr. P. Hofmann und Dr. H. Kleykamp für wertvolle Hinweise. Herr Prof. O. Kubaschewsky hat das Manuskript gelesen und wertvolle Ergänzungen angeregt, wofür sich die Verfasser ebenfalls sehr bedanken.