KERNFORSCHUNGSZENTRUM

KARLSROPE

Januar 1976 Institut für Angewandte Kernphysik KFK 2247

Realistische Coulomb-Potentiale bei Coupled-Channel-Rechnungen für die Streuung von α -Teilchen und ¹⁶O-Ionen an deformierten Kernen

H. Rebel

GESELLSCHAFT FÜR KERNFORSCHUNG M.B.H.

KARLSRUHE

Als Manuskript vervielfältigt

Für diesen Bericht behalten wir uns alle Rechte vor

GESELLSCHAFT FÜR KERNFORSCHUNG M.B.H. KARLSRUHE

,

KERNFORSCHUNGSZENTRUM KARLSRUHE

KFK 2247

Institut für Angewandte Kernphysik

Realistische Coulomb-Potentiale bei Coupled-Channel-Rechnungen für die Streuung von α -Teilchen und ¹⁶0-Ionen an deformierten Kernen.

H. Rebel

Gesellschaft für Kernforschung mbH., Karlsruhe

4 . . . t

Zusammenfassung:

Der Einfluß der üblichen Approximationen bei der Behandlung eines deformierten Coulomb-Potentials in DWBA- und Coupled-Channel-Analysen wurde an einigen Beispielen untersucht. Der der Berechnung realistischer Coulomb-Potentiale zugrunde liegende Formalismus und die entsprechenden Rechenprogramme wurden zusammengestellt. Die Resultate der Berechnungen der differentiellen Wirkungsquerschnitte für die Streuung von 50 MeV α-Teilchen an ²³⁸U und 55 MeV ¹⁶O-Ionen an ²⁸Si zeigen deutlich den Einfluß der Form des Coulomb-Potentials bei Energien, die nur relativ wenig über dem Coulomb-Wall liegen.

Realistic Coulomb potentials for Coupled Channel calculations of α -particle- and 16 O-scattering

Abstract:

The customary approximations in treating the Coulomb potentials in DWBA- and Coupled Channel calculations of nuclear scattering from deformed nuclei are studied. The formalism and numerical procedures for computing the potentials and Coulomb excitation form factors from realistic charge distributions of projectile and target nucleus are described. The calculated differential cross sections for the cases 238 U(α, α') 238 U and 28 Si(16 O, 16 O') 28 Si demonstrate the distinct influence of the shape of the Coulomb potential for bombarding energies not far away from the Coulomb barrier. Die Coulombanregung spielt bei der inelastischen Streuung nuklearer Teilchen bei Energien, die nicht allzu hoch über der Coulombbarriere liegen, eine wichtige Rolle. Bei DWBA-oder "Coupled-Channel"-Rechnungen für die inelastische Streuung an deformierten Kernen muß ihr Einfluß durch ein deformiertes Coulomb-Potential

$$\mathbb{V}_{c}(\vec{r}) = \mathbb{Z}_{t} \cdot \mathbb{Z}_{p} e^{2} \int \frac{\rho_{t}(\vec{r}_{t}) \rho_{p}(\vec{r}_{p})}{|\vec{r} + \vec{r}_{p} - \vec{r}_{t}|} d\vec{r}_{t} d\vec{r}_{p}$$

berücksichtigt werden.

Es ist üblich – und bei höheren Energien sowie bei kleinen Z_t·Z_p-Werten auch berechtigt – hier einige vereinfachende Näherungen einzuführen.^{1,2}

- a) Das Projektil wird als Punktladung behandelt
- b) Der Targetkern wird als homogene deformierte Verteilung mit scharfem Rand vorausgesetzt.

(1.1)
$$\rho_{t}(\vec{r}_{t}) = \rho_{ot} \theta(R_{c}(\hat{r}_{t}) - r_{t})$$
$$\theta(r) = \begin{cases} 1 & r > 0 \\ 0 & r < 0 \end{cases}$$

Eine axialsymmetrische (permanente) Deformation wird z.B. durch

$$R_{c}(\hat{r}_{t}) = R_{co}(1+\beta_{2} Y_{20} (\hat{r}_{t})+\beta_{4} Y_{40} (\hat{r}_{t}) \dots)$$

parametrisiert und ferner die zentrale Dichte

$$\rho_{ot} \approx \frac{3}{4\pi R_{co}^3}$$

gesetzt.

Diese Vereinfachungen sind jedoch nicht unproblematisch in einem Energiebereich, der nur wenig die Coulombbarriere überschreitet, insbesondere im Gebiet, wo die Coulomb- und die nukleare Anregung deutlich und in empfindlicher Weise interferieren. Bei früheren Analysen der Streuung von 40 MeV ¹⁶O-Teilchen an ²⁸Si zeigte sich eine große Empfindlichkeit der Resultate von der Wahl des Coulombpotentials, ebenso bei Testrechnungen³ für den Fall ²³⁸U(α, α') mit E_{α} = 50 MeV. Ferner fanden Kurepin et al.⁴ bei der Analyse der Streuung von 12 MeV Protonen an ¹⁴⁸Sm und ¹⁵⁴Sm eine Abhängigkeit der gewonnenen Deformationsparameter von der Wahl der Ladungsverteilung des Targets, indem sie für die Verteilung ρ_t eine Fermiverteilung einführten und damit das deformierte Coulomb-Potential

(1.2)
$$V_{c} = Z_{p}Z_{t}e^{2} \int \rho_{t}(r_{t}-R_{c})/|\vec{r}-\vec{r}_{t}| d\vec{r}_{t}$$

erzeugten.

Der vorliegende Bericht steht im Zusammenhang mit etwas detaillierteren Untersuchungen^{*)} des Einflusses der Deformation des Coulombpotentials für die Streuung von ¹⁶O- und α -Teilchen an deformierten Kernen. Hierbei wird auch für die Ladungsverteilung des Projektils eine realistische Verteilung angesetzt. Der wesentliche Zweck des Berichtes ist die Darstellung des Verfahrens, das den numerischen Rechnungen zugrunde liegt, sowie die Ergänzung und Dokumentation der entsprechenden Subroutinen, die an den Coupled Channel Code ECIS ⁵ anschließen und im Grundgerüst z.T. schon 1973 von G.W. Schweimer codiert wurden. Während der Zusammenstellung der Resultate ist durch eine Veröffentlichung ⁷ bekannt geworden, daß R.S. Mackintosh die inelastische Streuung von α -Teilchen an ¹⁵⁴Sm unter ähnlichen Gesichtspunkten untersucht hat.

2. Das Coulomb-Potential zwischen zwei ausgedehnten Ladungsverteilungen

Für die Berechnung des Coulomb-Potentials $V_{c}(\vec{r})$ zweier Ladungsverteilungen $\rho_{1}(\vec{r}_{1})$ und $\rho_{2}(\vec{r}_{2})$

$$V_{c}(\vec{r}) = \text{const.} \iint \frac{\rho_{1}(\vec{r}_{1}) \cdot \rho_{2}(\vec{r}_{2})}{|\vec{r} + \vec{r}_{2} - \vec{r}_{1}|} d\vec{r}_{1} d\vec{r}_{2}$$

*) Solche Untersuchungen wurden gemeinsam mit H.V. von Geramb (KFA Jülich) durchgeführt. nehmen wir an, daß die Verteilung p₁ ("Target") im körperfesten System axialsymmetrisch deformiert ist, was durch die Parametrisierung der Winkelabhängigkeit etwa des Radiusparameters

$$c_1(\hat{r}_1) = c_{10} \left[1 + \sum_{\lambda=2,4} B_{\lambda} Y_{\lambda 0} (\hat{r}_1)\right]$$

der Verteilung ausgedrückt wird. * Als Normierung ist

$$\int \rho_{i} (\vec{r}_{i}) d\vec{r}_{i} = 1$$

angenommen. Die Verteilung ρ_2 ("Projektil") wird als sphärisch vorausgesetzt.

Abb. 1: Definition der Vektoren \vec{r} , \vec{r}_1 , \vec{r}_2

Für eine sphärische Fermi-Verteilung

$$\rho(\vec{r}) = \frac{\rho_{o}}{1 + \exp\left[\frac{r-c}{a}\right]}$$

läßt sich die Normierung explizit durch den Ausdruck

(2.1)
$$4\pi \rho_0 \int_0^\infty \frac{r^2 d^r}{1 + \exp\left|\frac{r-c}{a}\right|} = \rho_0 \left[\frac{4\pi}{3} c^3\right] \left[1 + \left(\frac{\pi}{c}a\right)^2 - 6\left(\frac{a}{c}\right)^3 \sum_{n=1}^\infty \frac{(-e^{-4}a)^n}{n^3}\right]$$

angeben.

Mit der Legendre-Entwicklung

$$\frac{1}{|(\vec{r}_{1} - \vec{r}) - \vec{r}_{2}|} = \sum_{1=0}^{\infty} \frac{1}{r_{>}} (\frac{r_{<}}{r_{>}})^{\lambda} P_{\lambda}(\cos\theta)$$

$$r_{<} = \min(|\vec{r}_{1} - \vec{r}| r_{2})$$

$$r_{>} = \max(|r_{1} - \vec{r}|, r_{2})$$

$$\theta = ((r_{1} - r), r_{2})$$

*) const = $Z_1 \cdot Z_2 e^2$ = 1.43986 [MeV fm] $Z_1 \cdot Z_2$

wird die Funktion f(x) definiert

$$f(x) = \int d\vec{r}_2 \frac{\rho_2(\vec{r}_2)}{|(\vec{r}_1 - \vec{r}) - \vec{r}_2|} = 4\pi \int_0^{\infty} dr_2 r_2^2 \rho_2(r_2) \frac{1}{r_2} (\frac{r_2}{r_2})^{\circ},$$

da $\rho_2(\vec{r}_2)$ nicht von \hat{r}_2 abhängt.

$$x = |\vec{r} - r_1| = \sqrt{r^2 + r_1^2 - 2rr_1} \cos(\hat{rr_1})^{\dagger}$$

Diese Funktion gibt (bis auf den Faktor $Z_1 Z_2 e^2$) das Coulomb-Potential an, das die Verteilung ρ_2 im Abstand x erzeugt. Dieses Potential läßt sich in zwei Teile aufspalten

(2.2)
$$f(x) = 4\pi \left\{ \frac{1}{x} \int_{0}^{x} \rho_{2}(r_{2})r_{2}^{2} dr_{2} + \int_{0}^{\infty} \rho_{2}(r_{2})r_{2} dr_{2} \right\}$$

oder

(2.3)
$$f(x) = \frac{1}{x} - 4\pi \left\{ \int_{x}^{\infty} \rho_2(r_2) (r_2 - r_2^2/x) dr_2 \right\}$$

Im Falle einer Fermi-Verteilung läßt sich das Integral

$$C_{2} = \int_{0}^{\infty} dr_{2} \frac{r_{2}}{1 + \exp(\frac{r_{2} - c_{2}}{a_{2}})} = \frac{c_{2}^{2}}{2} \left[1 + \frac{1}{3} \left(\frac{\pi a_{2}}{c_{2}}\right)^{2} - 2 \left(\frac{a_{2}}{c_{2}}\right) \sum_{n=1}^{\infty} \frac{\left[-\frac{c_{2}}{2} \right]^{n}}{n^{2}} \right]^{n}$$

explizit angeben und f(x) schreiben

(2.4)
$$f(x) = 4\pi \rho_{20} \{ C_2 + \int_0^x dr_2 \frac{(r_2^2/x - r_2)}{1 + exp(\frac{r_2^2-c_2}{a_2})}$$

Das Normierungsintegral (2.1) legt ferner ρ_{20} fest, so daß

$$4\pi \rho_{20} C_{2} = \frac{3}{2} \frac{1}{c_{2}} \cdot \frac{1 + \frac{1}{3} (\frac{\pi a_{2}}{c_{2}})^{2} - \dots}{1 + (\frac{\pi a_{2}}{c_{2}})^{2} - \dots}$$

Wir vergleichen die Funktion f(x) mit dem Ergebnis für eine homogen geladene Kugel (Referenzkugel) vom Radius R $_2$

t : 1-1-

(2.5)
$$h(x) = \begin{cases} 1/x & x \ge R_2 \\ \frac{3}{2} \frac{1}{R_2} - \frac{x^2}{2R_2^3} \end{cases}$$
 für $x \le R_2$

Abb. 2 demonstriert die Unterschiede des Potentials einer Fermi-Verteilung (c₂ = 3.0 fm und a₂ = 0.5 fm) und den homogenen Verteilungen mit R₂ = c₂ und R₂ = $\sqrt{c_2^2 + 7/3 \pi^2 a_2^{2'}}$. Abb. 3 zeigt das Potential für eine realistische Ladungsverteilung des α -Teilchens⁸ und für die homogenen Kugeln mit R₂ = c₂(α) = 0.964 fm und R₂=1.5 fm.

Es ist zweckmäßig die Abweichungen $\Delta(x)$ und $\delta(x)$ von einer homogenen Verteilung h(x) explizit einzuführen.

(2.6)
$$f(x) = \begin{cases} h(x) + \Delta(x) & \text{für } x > R_2 \\ h(x) + \frac{3}{2} \frac{1}{R_2} \delta(x) & \text{für } x < R_2 \end{cases}$$

Die Funktionen $\Delta(x)$ und $\delta(x)$ sind monotone und langsam veränderliche Größen, die sich gut interpolieren lassen. Dabei ist es für eine Interpolation aus programmtechnischen Gründen günstig, die Tabelle an äquidistanten der Größe

u² für u² ≤ 1 bzw. (3-2/u) für (3-2/u)>1 mit u = x/R₂

anzulegen.

Wie Abb. 2 und Abb. 3 andeuten, ist es ferner vorteilhaft als Radius der Referenzkugel $R_2 > c_2$ (z.B. den Äquivalentradius) zu wählen,^{**)} um die Korrekturen zu minimalisieren. Die im Anhang angegebenen Tabellen für die Projektile ¹⁶0 und α -Teilchen sind berechnet mit modifizierten Fermi-Verteilungen der Parameter-Werte

^{*)} In einer kürzlich erschienenen Arbeit¹³ wird gezeigt, daß auch für allgemeinere sphärische Verteilungen das Potential f(x) durch geeignete Wahl von R₂ durch eine homogene Kugel außerordentlich gut approximiert werden kann.

Abb. 2: Coulomb-Potential verschiedener Ladungsverteilungen des Projektils

Abb. 3: Coulomb-Potential für eine realistische Ladungsverteilung des α-Teilchens und für zwei verschiedene homogene sphärische Verteilungen

und in den Korrekturen bezogen auf homogene Kugeln mit

$$R_2 = 3,0 \text{ fm}$$
 bzw. $R_2 = 1,7 \text{ fm}$

00

Für den Spezialfall der einfachen Zwei-Parameter-Fermiverteilung ρ_2 (c₂, a₂) und R₂ = c₂ lassen sich die Abweichungen in ihrer Abhängigkeit von

$$u = |\vec{r} - \vec{r}_1|/c_2$$
 und $z = a_2/c_2$

mit den Bezeichnungen

$$y = r_{2}/c_{2}$$

$$B = \left(\frac{\pi a_{2}}{c_{2}}\right)^{2} - 6 \left(\frac{a_{2}}{c_{2}}\right)^{2} \sum_{n=1}^{\infty} \frac{\left(-e^{-c_{2}/a_{2}}\right)^{n}}{n^{3}}$$

$$C = -\frac{2}{3} \left(\frac{\pi a_{2}}{c_{2}}\right)^{2} - 2\left(\frac{a_{2}}{c_{2}}\right) \sum_{n=1}^{\infty} \frac{\left(-e^{-c_{2}/a_{2}}\right)^{n}}{n^{2}} + 6\left(\frac{a_{2}}{c_{2}}\right) \sum_{n=1}^{\infty} \frac{\left(-e^{-c_{2}/a_{2}}\right)^{n}}{n^{3}}$$

durch folgende Formeln angeben

$$\Delta(u,z) = \frac{1}{u} \left[\frac{3}{2 + B(z)} \int_{u}^{d} dy \frac{y^2 - y \cdot u}{1 + \exp(\frac{y - 1}{z})} \right]$$

$$\delta(u,z) = \frac{C(z)}{1 + B(z)} + \frac{u^2}{3} + \frac{2}{1 + B} \int_{0}^{u} dy \frac{y^2 / u - y}{1 + \exp(\frac{y - 1}{z})}$$

$$\delta(u,z) = \frac{C(z)}{1 + B(z)} + \frac{2}{3(1 + B)} \left\{ \frac{(1 + B)}{2} u^2 + 3 \int_{0}^{u} dy \frac{y^2 / u - y}{1 + \exp(\frac{y - 1}{z})} \right\}$$

$$\delta(u,z) = \frac{C(z)}{1 + B(z)} + \frac{2}{3(1 + B(z))} \cdot \int_{0}^{u} y \left[1 + B + 3 \frac{y / u - 1}{1 + \exp(\frac{y - 1}{z})} \right] dy$$

Das im Anhang wiedergegebene Hilfsprogramm zur Berechnung der Korrekturtabelle (die in der Subroutine COULHI angegeben werden muß) läßt allgemeinere Verteilungen (Function DENS) zu.

- 7 -

Nach diesen Vorbereitungen werden die Multipolterme des Coulomb-Potentials (in der Subroutine COULHI) nach Standard-Methoden berechnet.

Die Multipolentwicklung des Coulomb-Potentials ist gegeben durch

$$V_{c}(\vec{r}) = e^{2}Z_{1}Z_{2} \int d\vec{r}_{1} \rho_{1}(\vec{r}_{1}) \cdot f(|r-r_{1}|) = \sum_{\lambda,\mu} v_{\lambda}^{c}(r) \cdot Y_{\lambda\mu}(\hat{r})$$

Da $f(|\vec{r} - \vec{r}_1|)$ nur vom $\cos(r_1 r)$ abhängt ist

$$f(|\vec{r}-\vec{r}_{1}|) = 4\pi \sum_{\mu=-\lambda} \frac{r_{\lambda}(r,r_{1})}{2\lambda+1} \sum_{\mu=-\lambda} Y^{*}_{\lambda\mu}(\hat{r}_{1}) \cdot Y_{\lambda\mu}(\hat{r})$$

Im körperfesten System ist

$$\rho_{1}(\vec{r}_{1}) = \sum_{\lambda=0}^{5} \rho_{\lambda} \sqrt{\frac{4\pi}{2\lambda+1}} Y_{\lambda,0}(\hat{r}_{1})$$

mit $\rho_0 = 1$

so daß sich nach der Winkelintegration

$$V_{c}(\mathbf{r}) = e^{2}Z_{1}Z_{2} \sum_{\lambda=0}^{\infty} \left(\frac{4\pi}{2\lambda+1}\right)^{3/2} Y_{\lambda\mu}(\hat{\mathbf{r}}) \cdot \int_{0}^{\infty} r_{1}^{2} dr_{1}^{2} \rho_{\lambda}(\mathbf{r}_{1}) f_{\lambda}(\mathbf{r},\mathbf{r}_{1})$$

$$(2.7a) v_{\lambda}^{c}(\mathbf{r}) = e^{2}Z_{1}Z_{2} \left(\frac{4\pi}{2\lambda+1}\right)^{3/2} \int_{0}^{\infty} dr_{1} r_{1}^{2} \rho_{\lambda}(\mathbf{r}_{1}) f_{\lambda}(\mathbf{r}_{1},\mathbf{r})$$

$$(2.7b) \rho_{\lambda}(\mathbf{r}_{1}) = (2\lambda+1) \int_{0}^{1} \rho_{1}(\hat{\mathbf{r}}_{1}) \cdot P_{\lambda}(\cos\theta) d\cos\theta$$

$$(2.7c) f_{\lambda}(\mathbf{r},\mathbf{r}_{1}) = \frac{2\lambda+1}{2} \int_{0}^{1} [f(\mathbf{r}^{2}+\mathbf{r}_{1}^{2}+2\mathbf{r}\mathbf{r}_{1}\cos\theta) + f(\mathbf{r}^{2}+\mathbf{r}_{1}^{2}-2\mathbf{r}\mathbf{r}_{1}\cos\theta)] \times P_{\lambda}(\cos\theta) d\cos\theta$$

Für
$$r \gg R_1 + R_2$$
 geht
 $f_{\lambda}(r,r_1) \rightarrow r_1^{\lambda}/r^{\lambda+1}$

so daß

$$\mathbf{v}_{\lambda}^{c} \neq \begin{bmatrix} e^{2} \mathbf{Z}_{1} \mathbf{Z}_{2} & \left(\frac{4\pi}{2\lambda+1}\right)^{3/2} \int_{0}^{\infty} d\mathbf{r}_{1} \mathbf{r}_{1}^{\lambda+2} \rho_{\lambda}(\mathbf{r}_{1}) \end{bmatrix} \frac{1}{\mathbf{r}^{\lambda+1}} \equiv \frac{\mathbf{Q}_{\lambda}}{\mathbf{r}^{\lambda+1}}$$

wobei Q $_{\lambda}$ das Multipolmoment der Verteilung ho_1 ist.

In Abb. 4a - d sind die Coulomb-Formfaktoren $v_{\lambda}^{c}(r)$ (λ =0,2,4,6) Streuung von α -Teilchen an ²³⁸U für realistische Verteilungen $\rho_1(^{238}U)$ und $\rho_2(\alpha)$ mit den Formfaktoren der Approximation (1.1 und 1.2) verglichen. Als Parameterwerte für die Verteilung ρ_1 wurden gewählt:

> c₁₀ = 6,805 fm (Fermi-Verteilung) $a_1 = 0,605 \text{ fm}$

oder

 $R_{co} = 1, 2 \cdot A^{1/3}$ fm (Äquivalentradius für die Fermi-Vert.) $R_{co} = 1, 2 \cdot A^{1/3} + 1, 7$ fm

mit den Deformationsparametern

Die Unterschiede sind beträchtlich und weisen darauf hin, daß dort wo die Coulomb-Anregung wesentlich beiträgt, die Werte der Deformationsparameter davon beeinflußt werden sollten.

3. Streuung von α -Teilchen und ¹⁶0 an deformierten Kernen

Den folgenden Fallstudien des Einflusses eines realistischen Coulombpotentials ist das optische Modell für die nukleare Wechselwirkung zugrundegelegt. Die optischen Potentiale, die mehr oder weniger willkürlich gewählt sind, können bereits als eine Faltung über die Nukleonen-Verteilungen von Projektil und Target angesehen werden. Daher werden in der Regel für die Deformationsparameter ß, des Wechselwirkungspotentials, grob der Blair'schen Regel folgend

$$\beta_{\lambda}^{\text{Pot}} \cdot R_{o} = \beta_{\lambda} c_{o}$$

kleinere Werte für
$$\beta_{\lambda}^{Pot}$$
 bei größeren Werten für R_{Pot} angenommen *)

*) Da Eingabe des Rechenprogramms den Radiusparameter r = R·Atarg verlangt, ist ein entsprechend modifizierter Radiusparameter ro anzugeben, wenn z.B. im Falle der ¹⁶0-Streuung $R = r_{o} (A_{target}^{1/3} + A_{projekt}^{1/3})$

sein soll.

Abb. 4a-d. Coulomb-Formfaktoren für die Streuung von α -Teilchen an 238U.

- 10 -

Abb. 5 Berechnete differentielle Wirkungsquerschnitte für die Streuung von 50 MeV $_{\alpha}$ -Teilchen an ²³⁸U: Vergleich zwischen realistischen und homogenen Ladungsverteilungen

Abb. 6 Berechnete differentielle Wirkungsquerschnitte für die Streuung von 50 MeV α-Teilchen an ²³⁸U: Einfluß der Deformation des Coulombpotentials.

Es wäre naheliegend, anstelle des üblichen makroskopisch deformierten optischen Potentials auch für das nukleare Wechselwirkungspotentials ein durch Faltung erzeugtes Potential zu verwenden⁹,¹⁰. Wir verzichten hier darauf, da nicht geklärt ist, ob ein einfaches Modell dieser Art bei Energien, die nur wenig über der Coulombbarriere liegen, ohne erhebliche Austauschkorrekturen nicht lediglich nur eine andere Parametrisierung darstellt, sondern auch in diesem Energiebereich wirklich einen Zugang zu den nuklearen Massenverteilungen ermöglicht.

Abb. 5 zeigt zunächst den Effekt verschiedener Formen des deformierten Coulomb-Potentials (Fermiverteilung – homogene Verteilung mit scharfem Rand verschiedener Radien). Abb. 6 demonstriert den Einfluß der Deformation des Coulomb-Potentials auf die berechneten differentiellen Wirkungsquerschnitte (Vergleich $\beta_{\lambda}^{Nucl} \neq \beta_{\lambda}^{c}$ mit $\beta_{\lambda}^{Nucl} = \beta_{\lambda}^{c}$). Die Rechnungen wurden mit dem Coupled-Channel-Code ECIS⁵ vorgenommen, wobei die Subroutine POTENT (Symmetric Rotational Model) für den Fall eines realistischen Coulomb-Potentials (Subroutine COULHI) leicht modifiziert wurden (der Wert des Diffuseness-Parameters a_c wird als Statement vor dem Aufruf in der Subroutine COULHI eingespeist).

Abb. 7 zeigt die theoretischen Wirkungsquerschnitte, die mit den Parameterwerten des optischen Potentials berechnet wurden, das bei der Analyse der 238 U(α, α')-Daten von Hendrie et al. ¹¹ benutzt wurde.

Es wurden auch Studien für 100 MeV-α-Teilchen durchgeführt. Hier ist der Einfluß der unterschiedlichen Beschreibung des Coulombpotentials kaum noch merkbar. Das Ergebnis ähnlicher Rechnungen für die Streuung von 50 MeV-¹⁶0-Ionen an ²⁸Si ist in Abb. 8 gezeigt. Die Parameter der Ladungsverteilung von ²⁸Si entstammen Resultaten der Elektronenstreuung. Eine L-Abhängigkeit des Imaginärteils des optischen Potentials

 $W(r) \rightarrow W(r) / [1 + exp\{(L-L_0) / \Delta L\}]$

- eine derartige Dämpfung scheint bei der Streuung schwerer Ionen wichtig zu sein – wurde hierbei nicht berücksichtigt.

Abb. 7 Berechnete differentielle Wirkungsquerschnitte für die Streuung von 50 MeV α -Teilchen: Optisches Potential nach Hendrie et al.¹¹.

Abb. 8 ²⁸Si(¹⁶0, ¹⁶0')²⁸ Si mit 55 MeV ¹⁶0-Ionen.

4. Schlußbemerkungen

Die vorliegenden Ergebnisse führen zu folgenden Aussagen:

- a) Es bestehen deutlich Unterschiede zwischen den Multipol-Potentialen realistischer Ladungsverteilungen und der homogenen (deformierten) Ladungsverteilung. Die Unterschiede nehmen mit wachsender Multipolarität zu.
- b) Im Bereich von Projektil-Energien, die nur verhältnismäßig wenig über dem Coulomb-Wall liegen, treten Interferenz-Effekte zwischen nuklearer und elektromagnetischer Anregung auf, die empfindlich von der Form des Coulomb-Potentials abhängen. Diese Interferenzeffekte (insbesondere auch in ihrer Abhängigkeit von der Geschoß-Energie) können die Quelle interessanter Information sein, falls die Analyse korrekt durchgeführt wird.
- c) Sowohl für die Streuung an deformierten Kernen der Seltenen Erden ¹⁴ wie auch der Aktiniden ^{11,15}, liegen experimentelle Daten vor, deren Analyse mit Hilfe realistischer Coulomb-Potentiale wiederholt werden sollte, um physikalische signifikante Werte für die Deformationsparameter β_λ zu gewinnen.

Für wichtige Hinweise und aufschlußreiche Diskussionen danke ich Herrn Dr. von Geramb. Wesentliche Vorarbeiten in der Erstellung der Rechenprogramme sind von Herrn Dr. G.W. Schweimer und Herrn Dipl. Phys. H.J. Gils geleistet worden, denen ich dafür sehr dankbar bin. Referenzen

- 1. N.K. Glendenning, Proc. Int. School of Physics "Enrico Fermi", Course XL, 1967, ed. M. Jean (Academic Press, New York, 1969)
- 2. T. Tamura, Rev. Mod. Phys. 37 (1965) 679
- 3. H. Rebel, unveröffentliche Ergebnisse
- 4. A.B. Kurepin, H. Schultz and H.J. Wiebecke, Nucl. Phys. <u>A189</u> (1972) 257
- 5. G.W. Schweimer u. J. Raynal, unveröffentlichter Bericht (1973)
- 6. G.W. Schweimer, unveröffentlichtes Computer-Programm (1973)
- 7. R.S. Mackintosh, Nucl. Phys. A245 (1975) 255
- 8. C.W. Jäger, H. de Vries and C. de Vries, in Atomic Data and Nuclear Data Tables, Academic Press (1974)
- 9. H. Rebel, Lectures given at the Int. Summer School of Nucl. Physics Predeal, Romania, Sept. 1974, KFK-Report 2065 (1974)
- 10. C.B. Dover and J.P. Vary, Proceedings of the Symposium on Classical and Quantum Mechanical Aspects of Heavy Ion Collisions, Heidelberg, Germany, Okt. 1974
- 11. D.L. Hendrie et al. Phys. Rev. L. 30 (1973) 571
- R.A. Chatwin, J.S. Heck, A. Richter, D. Robson, in Nuclear Reactions Induced by Heavy Ions, ed. by R. Bock and W.R. Hering, North Holland Publ. Comp., Amsterdam (1970)S.76
- A.K. Jain, M.C. Gupta and C.S. Shastry, Phys. Rev. <u>C12</u> (1975) 801
- A.A. Aponick, Jr., C.M. Chesterfield, D.A. Bromley and N.K. Glendenning, Nucl. Phys. A159 (1970) 36
- 15. P. David, W. Soyez, H. Essen, H. v. Geramb, Annual Report 1974, Institut für Kernphysik, KFA Jülich, S. 303
- 16. H.V. von Geramb, Private Mitteilungen

ANHANG

Anhang A

- 1. Hilfsprogramm zur Berechnung der Korrektur-Tabelle: $\Delta(x)$ und $\delta(x)$.
- 2. Tabellen: f(x) (D(1)) und f(x) h(x) (Korrektur) für 16 O-Ionen und α -Teilchen als Projektile

Anhang B

Die SUBROUTINEN POTENT (Symmetric Rotational Model) COULHI SUM

Bemerkung:

Die numerische Zuverlässigkeit der Programme wurde getestet, in dem der Übergang von einer diffusen Ladungsverteilung $(c_o = 1, 2 \cdot A^{1/3} \text{ fm}, a \neq o)$ zu einer homogenen Ladungsverteilung $(R_c = 1, 2 \cdot A^{1/3} \text{ fm})$ überprüft wurde. Für die Verteilung des Projektils wurde dabei eine Gaußverteilung $\rho_o \exp(-r_1^2/\alpha^2)$ gewählt, deren Breite sukzessive verkleinert wurde. Ergebnisse mit gaußförmigen Ladungsverteilungen konnten mit unabhängigen Rechnungen verglichen werden, die von H.V.v. Geramb¹⁶ (KFA Jülich) durchgeführt wurden.

- Al -Ç HILFSPFOGRAMM ZUR BERECHNUNG EINER TABELLE С ABWEICHUNGEN DES COULCMBPCTENTIALS EINER

С SPHAERISCHEN VERTEILUNG MIT DIFFUSEN FAND С VON DEM DER KUGEL MIT FESTEM RAND (R2) С С DIE ROLTINE RUFT DIE SUBRCLTINE FX AUF С FX BERECHNET DAS COULCMBPCTENTIAL С DER VERTEILUNG DENS (SUBFOLTINE) AM С ORT X (= ABSTAND VCM ZENTRUM CER VERTEILUNG) C С DIE TABELLE WIRD BERECHNET BEI С С X = SQRT(1/50.)*R2(I= 1 BIS 5C) С X = 2.*R2/(3.-I/50.)(I = 51 BIS 100)С С DIE LADUNGSVERTEILUNG IST AUF 1 NORMIERT С С PP(1) = ABSCHNEIDERACIUSС PP(2) = 1C PP(3) = C (RADIUSPARAMETER)C PP(4) = A2С PP(5) = WС R2 = RADIUS DER REFERENZ-KLGEL С IMPLICIT REAL*8 (A-H,C-Z) 0001 DIMENSION PP(5), D(100), C(10C) 0002 REAL*4 PP4(5),R24,W(100) 0003 CALL FREEFC(5,4,6,0,k,W) 0004 READ(4) (PP4(I), I=1,5), R24 0005 R2 = R240006 DO 1CO I=1,5 CCC7 100 PP(I) = PP4(I)8000 0009 WRITE(6,6000) 60UC FORMAT('1',39X,'I',13X,'X',18X,'C(1)'//) CO10 0011 DO 2CO I = 1,51II = I - 10012 $X = R2 \neq DSQRT(II/50.D0)$ 0013 IF(II.EQ.0) X=R2/500.D0 0014 CALL FX(X,1,PP,D) 0015 WRITE(6,6100) II,X,D(1) 0016 6100 FORMAT(' ',30X,110,5X,1PD15.7,5X,1PD15.7) 0017 C(I)=D(1)-3.D0/(2.D0*R2)+(X*X)/(2.CC*R2*R2*R2) 0018 200 C(I) = C(I) * R20019 C DG 3C0 I=51,100 0020 X=2.DO*R2/(3.DO-I/50.DO)0021 CALL FX(X,1,PP,D) 0022 WRITE(6,6100) I,X,D(1) 0023 0024 $C(I) = D(I) - I \cdot DO/X$ 300 C(I) = C(I) * R2CC25 WRITE(6,6200) 0026 6200 FORMAT(///49X, 'STUETZPUNKT', 8X, 'KOFREKTUR'//) 0027 WRITE(6,6300) (I,C(I),I=1,1CC) 0028 6300 FORMAT(', 50X, 110, 5X, 1PD15.7) 0029 0030 WRITE(7,7000) (C(I),I=1,1CC) 7000 FORMAT((5X,'*',6(1PD10.3,','))) 0031 STOP 0032 END 0033

C. C. C. T	· · · · ·	SUPPOLITINE EXAL ICATO DD D	
Were T		SUDRUUTINE FAIT #1 3FL2 #PP #U/	COLEN
		-CUULUMBPUIENIIAL EINEK KUGELSYMMEIKI	SCHEN
	C	LADUNGSVERIEILUNG IM ABSIANU X=1#H,	1=1,15M12
0(02		IMPLICIT REAL#8 (A-H,G-Z)	
P.Q.M.3	• · · ·	DIMENSION PP(1), S(25), D(500)	
6 (11) 4		REAL*8 PI/36141592653589793D0/	
	C == == == =	-NORMIER UNG	
0005		S(1)=0; D()	
0006		S(2) = PP(1)	
0007		S(5)=_00001	
600 B			
0.000			
00107			
111111		$\begin{array}{c} CALL FUKHAD (R_{1} C) \\ CALL FUKHAD (R_{2} C) \\ CALL FUKHAD CALL CALL$	
0.011			
0012	2	S(4) = S(2) = S(3) = DENSP(PP,S)	
0013		NF=NF+1	
1014		GO TO 1	
<i>C</i> @15	3	IF(NF _c LE _c 5) GO TO 2	
131316		RHO=PP(2)/(4 D0*PI*S(4))	
		-RADIAL-INTEGRATION	
0017		$R = 0 \circ D \circ C$	
0018		DO 10 I=1.ISM12	
6019		$F_{2}=0$	
0020		R=R+H	
n 0 2 1		TELR CT. DD/111 CC TC 10	
14V 6 8 64V 3 3		C(1)_6 DØ	
131222			
0023			
01124		S(5)=。(時間)()()1	
0/925		K = {}	
6026		NF=0	. e 1
0027	4	CALL FORHAD(K,S)	
<u> (28</u>		GO TO (5,5,6,6),K	
0029	5	/ S(4)=S(3)	
0030		NF=NF+1	
0031		GO TO 4	1
111.32	6	TE (NE-LE-5) GO TO 5	
0033	-	$F_{1}=S(4)$	
0034		S(1)=R	:
1345 3 6		S(2) = DD(1)	
じょうつ		5/2/~///1/ 5/5/- 000001	
1218.20		2121-0000001	
0931			
<u>ୁ</u> ଜ୍ମ 38	_		
0039	(CALL FURHAD (R, S)	
0040		GO TO (8,8,9,9,9) yK	
<u>0</u> 041	8	S(4)=S(3)	
0042		NF=NF+1	
0043		GO TO 7	
0044	9	IF(NFoLEo5) GC TC 8	
0045		F 2=S(4)	
0046	10	$D(I)=4_{o}D@*PI*(F1/R+F2)$	
0047		RETURN	
MOLA		FND	
v, ∀ ∪			
			· ·

0001	FUNCTION DENSP(PP,S)
	C3-PARAMETER FERMIVERTEILUNG DES ALFHATEILCHENS
0002	IMPLICIT REAL*8 (A-H,C-Z)
6 0 0 0	DIMENSION PP(1), S(1)
0004	DENSP=C.DO
0005	C = PP(3)
0006	A=PP(4)
0007	W=PP(5)
6000	R=S(3)
0009	IF (R.GT.PP(1)) RETURN
010	DENSF=(1.DC+R*R*W/(C*C))/(1.CC+CEXF((R+C)/A))
0011	RETURN
0012	END

•
=1
FN
F

.

-

STLETZFUNKT	KCRREKTUR

.

α		
	2	-1.17258440-61
	2	-1.16784260-01
	5	-1.21771840-01
	t 1	-1.23226390-01
	ε	-1.26619400-61
	ç 1C	-1.27241220-01 -1.28602220-01
	11	-1.29794730-01
	12	-1.30510640-01
	14	-1.32684810-01
	15	-1.33729960-01 -1.34472560-01
	17	-1.35107280-C1
	16	-1.35629330-01 -1.36034410-01
	20	-1.36216730-01
	21	-1.36232390-01
	23	-1.36416460-01
	24	-1.35829490-01
	26	-1.35335700-01
	28	-1.33943440-01
	25	-1.33044280-01
	31	-1.3C84031D-01
	32	-1.29536370-01
	34	-1.26528370-01
	35	-1.24826340-01
	37	-1.2299990D-01 -1.2103241D-01
	38	-1.18943350-01 -1.16728390-01
	4C	-1.14288880-01
	41	-1.11926840-01 -1.09343950-01
	43	-1.06642020-01
	44	-1.0382293D-01 -1.0088857D-01
	46	-5.18408320-02
	47 48	-5.4681662D-02 -5.1412952D-02
	45	-E.8C367610-02
	5C 51	-E.45549C7U-02 -7.7377244D-C2
	52	-1.38746210-02
	53	-7.C4618C9D-02 -6.7139C70D-02
	55	-6.39066090-02
	56	-6.07645720-02
	58	-5.4752039D-02
	60	-5.18799650-02
	61	-4.64087130-02
	62	-4.12973810-62
	64	-3.6875647D-C2
	66	-2.42975650-02
	67	-3.21400250-02
	65	-2.80245930-02
	70	-2.6184453D-02 -2.43683530-02
	12	-2.26250860-02
	73 74	-2.69835140-02 -1.9412372D-62
	25	-1.79203050-02
	76	-1.67058680-02 -1.51675310-02
	78	-1.39036750-62
	eC	-1.15925120-02
	81	-1.05415510-02
	83	-6.63914690-03
	84	-1.78359290-03
	Êć	-6.25299750-03
	87 88	-5.5734606D-03 -4.54801250-03
	85	-4.37428250-03
	9C 91	-3.84986300-03
	92	-2.93918560-03
	53	-2.59199190-03
	\$5	-1.8815547D-03
	57	-1.35330760-03
	58	-1.13495830-03
	100	-1.78067230-04

	R. Cut	°2	a2	v	R ₂	
	8,	1. 2.608	0.513	-0.051	3.0	
			160			
1		x	-		D(1)	
)	5,99999670	-03	4.7	7083870-01	
i		4.2426383D 5.9979967D	-01 -01	4.7 4.69	323006D-01 39166D-01	
3		7,34946520	-01 01	4.6	556904D-01 176266D-01	
-	5	9,48582770	-01 +0)	4.5	797308D-01 \$20091D-01	
į	7 3	1.1224965D 1.1999993D	+03	4.50	0446830-01 5711520-01	
1))	1.27279150	+03	4.4	299572D-01 30023D-01	
11		1.40712390	+03	4.3	562585D-01 97345D-01	
13	•	1,52970530	+03	4.20	34388 D-01 473805 D-01	
15	i 5	1,64316680	+0) +0)	4.21	115667D-01 760092D-01	
11	1 3	1,7492846D 1,7999990D	+00	4.14 4.10	4071950-01)579030-01	
19	9)	1.8493232D 1.8973655D	+07	4.01 . 4.03	709629D-01 365163D-01	
21 22	2	1.94422110	+03	4.00	236760-01	
23	5	2,03669790 2.07845980	+07	3.93	49819D-01	
25	5	2,12131920 2,16332960	+03 +03	3.80 3.83	5889140-01 363451D-01	
21	7 3	2.2045395D 2.2449932D	+03	3.80 3.77	0413970-01 7228100-01	
2 (3 (7)	2.2847307D 2.3237887D	+03	3.74 3.75	407744D-01 96248D-01	
31 32		2.36220110 2.3999987D	+03	3.61 3.64	788365D-01 884137D-01	
33 34	1 •	2.4372102D 2.4738623D	+0)	3.61 3.58	183597D-01 389615D-01	
35 36	5	2,5099787D 2,5455833D	+03	3.55	593704D-01 304396D-01	
37	r 3	2,5876961D 2,6153379D	+00	3.50 3.47	18871D-01 371410-01	
39	9)	2.6495268D 2.6832801D	+00	3.44 3.41	59213D-01 1853890-01	
41 42		2.7156143D 2.7495439D	+07	3.39 3.36	147680-01 482450-01	
43 44	l •	2,7820843D 2,8142479D	+00 +00	3,33 3,31	185509D-01	
45 46	i I	2,8450483D 2,8774973D	+0)	3.28	71343D-01 198740-01	
4	7 3	2.9036063D 2.9393861D	+03	3.23 3.21	72119D-01 28047D-01	
49))	2,9698468D 2,9999983D	+07	3.18	387630D-01 5537790-01	
51 52	2	3,03)30130 3,06122290	+03	3°14 3°11	414039D-D1 173843D-01	
53 54) ;	3,0927818D 3,1249983D	+03	3.09	332010-01 831290-01	
5: 50	5	3,1578933D 3,1914876D	+33	3.04	432646D-01 178777D-01	
51 51	7 3	3,22580470 3,25386790	+33	2+99 2+96	9215510-01 5610010-01	
59))	3,2967015D 3,33333150	+00 +00	2.93	3971660-01 1300880-01	
61 62	2	3,37378450 3,40908930	+03	2.88	598160-01 5864020-01	
63 64	•	3.4482739D 3.4893702D	+03	2.83 2.80	809903D-01 303790-01	
65 66	5	3,5294098D 3,5714265D	+00	2.71 2.74	478970-01 625260-01	
67 68	7 3	3,6144558D 3,6585346D	+03	2.71 2.68	174339D-01 383414D-01	
69))	3,7037015D 3,7499979D	+93	2.65	589832D-01 2937730-01	
71 72		3.79746620 3.84615170	+0)	2.59	95056D-01 93931D-01	
73 74	3	3,8951017D 3,9473662D	+93	2.53 2.50	9996440-01 850840-01	
75	5	3,9999979D 4,0540518D	+00	2.4	777406D-01 67697D-01	
71 78	7	4,10958680 4,1656644D	+33	2•41 2•38	156074D-01 342623D-01	
79	2 2	4,2253498D 4,2857119D	+03	2•35 2•32	527442D-01 213627D-01	
81 82	2	4.3478237D 4.4117623D	+03	2.28	392275D-01 572481D-01	
83 84	3	4,47760950	+00	2.22	251338D-D1 289400-01	
85 84	5	4,6153821D 4,6874974D	+03	2.10	6053750-01 2807310-01	
81	7 3	4,76190210 4,83873730	+03	2.39	55394D-01 28545D-01	
89	- 	4,91803010 4,99999720	+33	2.03	011640-01 730260-01	
91 91		5,0847429D 5,17241090	+03	1.96	544203D-01 314763D-01	
93 93	i	5,2631550D	+0)	1.89	847700-01 542860-01	
95 95	5	5,45454240	+00	1.83	3233670-01 920640-01	
97	ŕ	5,66337420	+00	1.70	60427D-01	
99 101	,)	5,8823497D 5,9999967D	+00	1.69	963220-01	

-

	STUETZPUNKT	KORREKTUR
16 ₀	STUETZPUNKT 1 2 3 4 5 6 7 8 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1	KORREKTUR -6.8747198D-02 -7.0310609D-02 -7.1825806D-02 -7.3293655D-02 -7.3293655D-02 -7.3980170-02 -7.3980170-02 -7.8660269D-02 -7.8660269D-02 -7.8660269D-02 -8.1013573D-02 -8.210345D-02 -8.4969059D-02 -8.4969059D-02 -8.4969059D-02 -8.4969059D-02 -8.4969059D-02 -8.4969059D-02 -8.4969059D-02 -8.495369D-02 -8.495369D-02 -8.495369D-02 -8.495369D-02 -8.492907109D-02 -8.92907109D-02 -8.9332209D-02 -8.931622D-02 -8.931622D-02 -8.9312109D-02 -8.494207109D-02 -8.9312109D-02 -8.9312109D-02 -8.9312109D-02 -8.9312109D-02 -8.9312109D-02 -8.9312109D-02 -8.9312109D-02 -7.9434442D-02 -7.9553210D-02 -7.9553210D-02 -6.8435276D-02 -5.93371020-02 -5.9337109D-02 -5.9337109D-02 -5.9337109D-02 -5.9337109D-02 -5.9337109D-02 -5.9337109D-02 -5.9337109D-02 -5.937109D-02 -2.27703384D-02 -2.2770324D-02 -2.27703384D-02 -2.27703384D-02 -2.2770324D-02 -2.2770324D-02 -2.27703384D-02 -2.2770324D-02 -2.2770324D-02 -2.2770324D-02 -2.2770324D-02 -2.2770324D-02 -2.2770324D-02 -2.2770324D-02 -2.2770324D-02 -2.2770324D-02 -2.2770324D-02 -2.2770324D-02 -2.2770324D-02 -2.2770320-02 -2.2770320-
	85 86 87 88 89 93 91	-1.633712020-03 -1.57842060-03 -1.634752890-03 -1.614398260-03 -9.65413940-04 -8.39555980-34 -6.74248530-34 -6.74248530-34
	92 93 95 96 97 98 99 103	$\begin{array}{r} -5 \cdot 5744312 D - 04 \\ -4 \cdot 5720701 D - 04 \\ -3 \cdot 7172615 D - 34 \\ -2 \cdot 9930710 D - 04 \\ -2 \cdot 8930710 D - 04 \\ -2 \cdot 8748722 D - 04 \\ -1 \cdot 8748722 D - 04 \\ -1 \cdot 45304545 D - 04 \\ -1 \cdot 1061764 D - 04 \\ -8 \cdot 2331849 D - 05 \end{array}$

С. С	SYNHEIRIC ROIATIONAL NUCLEUS	רי רי
с с	FURNFACTORS WITH THE COULONG POTENTIAL OF THO HEAVY IONS INPUT VARIABLES:VOP(I): DEPTH OF THE PUTENTIALS V.W.WD.VSD AND WSD	7
ŭ C	AUP(1): DIFFUSENESS OF THE PUTENTIALS RUP(1): RADIUS OF THE POTENTIALS, RUP(A) FOR CONTINUA	7
ç	HI STEP SIZE ON THE RADIAL AXIS IN FM	1
Ċ	LIT: PRODUCT OF STEPS LIT: PRODUCT OF CHARGE NUMBERS OF THE TARGET AND PROD	. 7
C C	BUTA(1,L): NUCLEAR SHAPE PARAMETERS OF THE TARGET FOR LE2+10H UNDERFO AS L = 2 4 6 and	1
ć	14M: NUMBER OF SHAPE PARAMETERS PLUS 11 14M < 20	Ż
č	MV: NUMBER OF MEAL NON DIAGUNAL FURNEACTORS	- 4
C C	IN: NUMBER OF DIFFERENT L VALUES 101: UIMENSION OF THE WORKING FIELD P(ID1.1)	7777
С С	IU3: DIMENSION OF VRE(103,1) AND VIM(103,1); 103=ISM	7
č	OUTPUT VARIABLES: VCRE(I): REAL DIAGUNAL FORMFACTOR FUR R=I+H	ż
ç	VUINIII: IMAGINARY DIAGONAL FURMFACTUR VSUI(I): REAL SPIN-ORBIT FURMFACTUR	-7
C C	VSU2(I): IMAGINARY SPIN-ORBIT FORMFACTOR VRE(I.J): REAL NUN DIAGONAL FURMFACTURS ORDERED AS	7
ć	$J=1_{\phi}IH^{2}L=2.4.6$	Ż
ç	J=2+1H+1,3+IN SECOND NUN DIAGUNAL SPIN-ORB.	. <u>i</u>
Ĺ	TABLES: XGN(1): INTEGRATION POINTS COS(THETA(1)) FOR THE	7
С С	GAUSS-LEGENDRE METHOD PGN(I): INTEGRATION WEIGHT AT THE POINT Y	7
Č.	NUTE: FUR THE EXACT DEFINITIONS SEE THE PROGRAM DESCRIPTION	i
U+	SUBROUTING POTENT(BETA,RHDZ,VCRE,VCIH,VSDL,VSD2,VRE,VIH,IVQ,ZIT,P,	7
	1101,103,L03 COMMUN VUP(5),AUP(5),RUP(6),01(4),IQN.02(4),H.ISM.03(6),HV.NV.IN	777
	DINENSION VCRE(1),VCIN(1),VSO1(1),VSO2(1),VRE(103,1),VIM(103,1),	Ż
	LUGICAL*1 LU(1)	ż
	REAL+8 PPI201+221+2.40+VRRR #VRR #VRR #VRR #VRR # REAL+8 PPI201+21+A(5)+EPI51+E(5)+ 191/3+14159265356979500/	4
	R5AL*v X(N(x0)/Z401>973D598886AF,Z403A502C6U25177F, 1Z405FA833C5594B0F,Z408ZC82E09F8FF84,Z40A20469FD3886DT,	777
	22400F0F789A352A6F,240D6D05EAF7EB739,240E98832089FEC8C,	į
	REAL+8 PGW(1.0)/24027LAD892146bDF, 2402630336A58B322,	4
	124024606912694A69,240218658886408F8,2401241F431573848, 22401A1017A317A820,24015519FE196E249,240100846TDF7E474,	77
	323FA64UAF529DB3FA+23F4625A00903A2BA7	7
	1=2*IU1*MAXO(10, ION, IM+1)	i
	17(237) while (3,1008) 1 00 2 1=1,5	4
	A(I)=FOP(I)/AUP(I) E(I)=DEXP(-A(I))	77
	2 EP(1)=DEXP(DBLE(H/AdP(1)))	7
	DO 3 I=2, IQN	1
	3 P(6+J,[]=BETA(J,[]+OSGRT(DFLUAT(2*I+1)/(4.00*PI)) 4 CONTINUE	-7
	D=0.00 DU 10 I=1.10	7
	PP(1)=1.60 pp(1)=YCN(1)	1
	00 5 J=2, IQ	i
	5 PF(J+1)=(2.00-C)*PP(Z)*PP(J)+(C-1.00)*PP(J-1)	- 4
	C=PGN(I) DQ 8 J=1,5	777
	R = - DG	į
	6 R=R+P(6+J+K)*PP(K+1)	7
	P{J,I}=OEXP(-R*A(J)) 8 CONTINUE	7
	P()3,1)≈C D0 9 IT=1.IN	7
	K=IVQ(IT)+1 0. RIITAD - 1 BERKINGARSORT(DELOAT(2**-1**** 00*****)	į
	10 CUNFINUE	1
	TCT=TH+T TCT=T++7A80+TT1	77
	11 R=0.D0 00 35 [5=1.15M	7
		į
	$DO \ 12 \ J=7, 12$	4
	12 P(J,L)=0.00 13 Continue	777
	DO 28 1=1,10 P(1,1)=P(1,1)+€P(1)	7
	VRRR=-VOP(1)/(1.DO+P(1,I))	ź
	14 P(7,J)=P(7,J)+VRRR*P(J+12,I)	- 4
	IF (LU(4)) GU TO 16 P(2,I)=P(2,1)*EP(2)	7
	P(3,1)=P(3,1)+EP(3) V000==V(0(2)/(1,10(2,11)=4,4V(0(2)+0/2,11/(1,40(2,11)+4))	ļ
	100 15 J=1, IQ1	4
	±5 P(8;j]=P(8;j]+VRRR*P(j+12;1) 16 IF (LU(3)) GO TO 19	77
	P(4,1)=P(4,1)#EP(4) VRR=1_D0/(1_D0+P(4_1))	7
	VRR=2.00+VUP(4)+VRR/(R+R)	į
	AKKTa−C°00AAD×J+1+AKK+{T°D0−AKK1\/YAD5/4}±K1 D0 11 1=J*1A1	7
	oto si-bio si decentrativen Th	7
	P(9,J)=P(9,J)=P(10,J)+VRR1+P(J+12,1) 17 P(10,J)=P(10,J)+VRR1+P(J+12,1)	7
	$\begin{array}{c} P(y_{3},J)=P(y_{3},J)+V(R(R^{2}(J)+L^{2},I) \\ 17 P(1)_{3},J)=P(1)_{3},J)+V(R(R^{2}P(J+L^{2},I) \\ 1F (LU(5)) & GU TU \\ 29 & 0 & 5 & 1 \\ 10 & 10 & 10 & 1 \\ 10 & 10 & 10 &$	777
	P(9,J)=P(9,J)=P(4,G)+VRR(*9(J)=2,1) IF (LU(5)) GO TU 29 P(5,1)=P(5,1)+EP(5) VRR=1.02/(J.00+P(5,1))	7 7 7 7

0076	DU 18 J=1+101	7	119
0077	P(11,J)=P(11,J)+VRRK+P(J+12,I)	7	120
0078	18 P(12-J)=P(12-J)+V8KT#P(J+12-T)	7	421
0070		•	
0000		-	
0080			133
0081	VCRE(15)=P(7,1)	1	134
0082	VCIM(IS)=P(8,1)	7	135
0083	IF (LU(9)) GO TO 29	7	136
0085	VSO1(IS)=P(10.1)	7	137
0086	TE (10(10)) 60 TO 29	7	138
0098		÷	130
0000		•	
0009		-	
0040	31 DU 33 J=1,1R		145
0091	VRE(15,J)=P(7,J+1)	7	146
0092	IF (LO(4)) 60 TO 32	7	147
0094	VIN(IS,J)=P(6,J+1)	7	148
0095	32 IF (L0(3)) GU TO 33	7	149
0097	$V_{R} = \{1, 5,, 1+1, M\} = P\{1, 0,, 1+1\}$	7	150
0008		÷	161
0070	TE (LATEL CA TA 53	÷.	150
0044			122
0101	VIM(15, J+1M) = P(12, J+1)	<u> </u>	123
0102	VIN(IS,J+2+IN)=P(1,,J+1)	- T	154
0103	33 CONTINUE	7	155
0104	IF (.NOT.LO(4)) GO TO 34	7	156
0106	F(2)=E(2)+EP(2)	7	157
0107	E(3)=E(3)4EP(3)	ż	156
0100		÷	160
0108	VIN(13)V07(2)/(1+TE(2))-4+V07(3)+E(3)/((1+TE(3))++2)		194
0109	34 IF (LU(4).UKNUI.LU(3)) 60 10 35		100
0111	£[4]=L[4]#LP[4]		101
0112	VSQ1(IS)=-2;*VOP(4)*E{4)/(AOP(4)*R*(1,+E(4))**2)	7	162
0113	IF (.NOT.LO(5)) GO TO 35	7	163
0115	E(5)=E(5)+EP(5)	7	164
0116	V5(12(T5)=-2-#V(P(5)#F(5)/(A(P(5)#R#()-+F(5))##?)	7	165
0117	25 CONTINUE	ż	166
0111			100
	C COVEDAB FOIENTIAL		
	C AUPS = A(CHARGE)		
0118	A0P5=0.605		
0119	CALL COULHI(ROP(6),AOP5,BETA,IQN/2,ZZ1,H,ISM,IM,P,PP)		
0120	CALL SUM(ISH,IM,VCRE,VRE,P)		
0121	IF(.NOT.LO(6)) GU TO 39	7	167
0123	WRITE (6.1000) (I.VERE(I).VEIH(I).I=1.ISH)	7	168
0124		7	169
0174		÷	170
0120			
0127	1F (LU(10)) GD 10 36		111
0129	WRITE (6,1002) (1,VSU2(1),I=1,ISM)		172
0130	36 WRITE (6,1003)	7	173
0131	DO 37 I=1,ISN	7	174
0132	WRITE (6,1004) I.(J.VRE(1,J),J=1,NV)	7	175
0133	37 CONTINUE	7	176
0134	TE (10(4)) 60 TO 39	ż	177
0134		ż	178
0130		÷	170
0137	00 38 1=1,154	-	117
0138	MKIIE (0+1004) 1+(1+11+11+1+1+MA)		180
0139	3B CONTINUE	7	181
0140	39 RETURN	7	182
0141	1000 FURMAT(//* CENTRAL POTENTIAL*/(2(115,1P2E23.6,* I*)))	7	183
0142	1001 FORMAT(*OREAL SPIN-ORBIT POTENTIAL*/(5X.6(15.1PE15.6)))	7	184
0143	1002 FORMATI TO THAG INARY SPIN-ORBIT POTENTIAL //(5x.6415.10F15.61))	ź	185
0.44	1003 COMATIONEAN MINITEDICEL	<u>_</u>	10/
0146	AVVA FURNATI UNCAL MULIFULCOTA		100
0143	1007 FUNRAL123011388FE23608/138801298FE4360877	<u>'</u>	161
0146	1005 FURMATI "UIMAGINART MULTIPULES"	7	188
0147	1006 FDRMAT(1H++50X+4HPLUS+110)	7	189
	······································		

• •

۱,

•

•

	_*************************************
	C CUULING PUTENTIAL BETHEEN TWO HEAVY JUNS, ONE OF THEM IS GEFORMED
	C INPUT VARIABLES: R1: RADIUS OF THE TARGET IN FM
	C BETA(6,L): BETA VALUE FOR LAMBDA = L, L = 2 TO 2*NB C (2^{+})
	C R2: RADIAL STEP SIZE IN FN
	C ISM: NUMBER OF MULTIPOLES
	C
	C LAMBUA = $2*(L-1)$, L = 1 TO LN+1, LN < 5 C HURKING FIELD: P(I): EXP(-R(THETA)/A) FOR THE TARGET
	C TABLES: XGN(I): GAUSS-LEGENDRE PUINTS C DIAL (I): THE SPATION WEIGHTS (2014HDA + 1) APCA(I) APD
0000	
0002	LOGICAL*A LO(1)+LO1/+FALSE-/
0004 0005	REAL#4 DETA(6,1) REAL#6 D(100)/
	*-1.157L-01,-1.173D-01,-1.1560-01,-1.203U-01,-1.218D-01,-1.232U-01, *-1.246U-01,-1.260D-01,-1.273D-01,-1.286D-01,-1.298D-01,-1.309D-01,
	*-1.3190-01,-1.3290-01,-1.337D-01,-1.345D-01,-1.351D-01,-1.356D-01, *-1.3600-01,-1.363D-01,-1.363D-01,-1.3650-01,-1.3650-01,-1.364D-01,-1.362D-01,
	*-1.3560-01,-1.3530-01,-1.3470-01,-1.3390-01,-1.3300-01,-1.3200-01, *-1.3060-01,-1.2950-01,-1.2810-01,-1.2550-01,-1.2650-01,-1.2300-01,
	*-1.2100-01,-1.1890-01,-1.1670-01,-1.1440-01,-1.1190-01,-1.0930-01, *-1.2100-01,-1.0930-01,-1.070-01,-1.1440-01,-1.0190-01,-1.0930-01,
	*-1.0000-01,-1.000-01,-1.000-01,-7.000-02,-7.000-02,-7.000-02,-5.140-02, *-8.8040-02,-8.4550-02,-7.7380-02,-7.3870-02,-7.0460-02,-6.7140-02,
	*-6.391D-02;-6.076D-02;-5.771D-02;-5.475D-02;-5.488D-02;-4.910D-02; *-4.641D-02;-4.381D-02;-4.130D-02;-3.836D-02;-3.654D-02;-3.430D-02;
	*-3.214D-02,-3.007D-02,-2.808D-02,-2.618D-02,-2.437D-02,-2.264D-02, *-2.098D-02,-1.941D-02,-1.792D-02,-1.651D-02,-1.517D-02,-1.390D-02,
	+-1.271D-02,-1.159D-02,-1.054D-02,-9.558D-03,-8.639D-03,-7.784D-03, *-6.989D-03,-6.253D-03,-5.573D-03,-4.948D-03,-4.374D-03,-3.850D-03,
	*-3.3720-03,-2.9390-03,-2.5460-03,-2.1960-03,-1.8820-03,-1.6010-03, *-1.3530-03,-1.1350-03,-9.5550-04,-7.7810-04/
0006	REAL*8 A, B, G, F, P(1), PH, PP, EH, EX, R, HK2, FL, RHG, S, VC(ISH, 1)
0007	12405FAB336559480F,24082682E09F8FF84,240820469FD3886D7,
	2240840F0F989A352A6F,24006805EAF7E8739,240E98832089FEC8C, 3240F6660D30E884F5,240FE3DAD0638E701/
0008	REAL*8 PI/3.141592653589793D0/,PGL(10,5}/ *Z40271AD8921466DF,Z402630336A588322,Z402460691±694A69,
	*Z402186588864D8F8,Z401E41FF31573848,Z401A1817A317A820, *Z4015519FE196E249,Z40100B667DF7E474,Z3FA66DAF529D83FA,
	*Z3F4825A009D3A28A,ZC060086A59E629EF,ZC0509C1D10F4E456, */C034D7012DL42FF2,ZC0124AE089E8F088,Z40102A291284F860,
	*Z40286668F8414EA8,Z403848FF486388D8,Z403C067F50016451, *Z40286668F8414EA8,Z403848FF486388D8,Z403C067F50016451,
	*240220F422180660C,2C014C01C3753FE10,2C05CC093000E90F7,
	*2C07405A1F2081050,2C03582F041048650,2C0127863548060C, *2402905608968AC20,2403E7FC930077336,2402506420F304078,
	#ZCu80AAF990k6655A,Z8F86889732E33401,Z407AA3B2C57F4D7D, #Z408A707E747D6014,Z401DF3FA05C4237F,ZC05B82229139400C,
	#ZC0724FDBA8739007,ZC0226AE81A7D7548,Z403205ED86FEDACF, #Z40327283617F31CA.Z4090ACCD3238FF19.ZC043873FD0F9C80F,
	*ZC0AE4ADCBZC4221E,ZC0189905A9BE9A9A,Z4092AA4A0BC14F9C, *ZA05CE44CCAAE0WE3,ZC0AE264EEA2DBB8D,ZC06C301093986669.
	*Z3FA07ECD89FCB796,Z403ACE31063A7079/
0009	$\frac{\mathbf{R}(2 + 1.7)}{\mathbf{R}(2 + 1.7)}$
0011	1 1541 = (K1 + 10 + 2 K1 + 10 + 10 + 10 + 10 + 10 + 10 + 10 +
0012	ISML2=ISM1+ISM2 C RADIUS OF THE TARGET IN DIRECTION I
0013 0015	IF(ISM12.GT.ISM) ISM12=ISM LM1=LM+1
0016	1F(LM1.GT.5) LH1=5 HR2=R24R2/(H4H)
0019	$\begin{array}{c} 00 3 I=1,10 \\ x=x \in N(1) \end{array}$
0021	PM=1.00
0023	R=PM
0024 0025	DU 2 L=1,48 PM=((4+L-1)+X+PP-(L+L-1)+PH)/(L+L)
0026 0027	PP={(4*L+1)*X*PM-{L+L)*PP}/{L+L+1} 2
0028 0029	3 P(I)=DEXP(-R*R1/A1) EH=EXP(H/A1)
0030	EX=1.DO DO 4 L=1.LN1
0032	00 4 IS12=1,ISH12 4 VC(IS12-1,ISH12
0034	DO 10 IS1=1,ISM1
0036	EX=EX+EH
0037 0038	RHO=0.DO
0039	C RHO(LAMBDA,R) DO 5 I=1,10
0040	5 RHO=RHO+PGL(I,L)/(1.00+P(I)*EX) RHO=S*RHO
0042	C F(LANBDA,R,R') DD 0 IS12=1,ISM12
0043	A=(ISI*ISI+IS12*IS12)/HR2 B=(2*ISI/H82)*IS12
0045	FL=0.00
0046	UU (L=1,10 C=4-8+XGN(I) Tric I Dol C=2 Dol C DolCommics
0048 0050	IF(C+GT+I+OU) C=3+00-Z+D0/DSQKT(C) F=6+D0-C
0051	IF(C.GT.2.DO) 60 TO 6 X=50.DO+C
0054	X=r Z−x−i
0056	$F = F + 2 \cdot 00 + (D(J) + X + (D(J+1) - D(J)))$
0058	IF(C.GT.1.DO) C=3.DO-2.DO/DSQRT(C)

0060		F≈F -C
0061		IF(C.G1.2.D0) GO TU 7
0063		X=50.00+C
0064		J=X
0065		X=X−J
0066		F=F+2.00+(D(J)+X*(D(J+1)-0(J)))
0067	7	FL=FL+F*PGL(1,L)
0068	8	VC(1512,L)=VC(1512,L)+RHO+FL
0069	9	CONTINUE
0070	10	CONTINUE
0071		C=DSQRT(4.DO*PI)
0072		B=ZIT+C/(H+1SH12+VC(ISH12,1))
0073		DO 11 L=1,LM1
0074		A=DSQRT(DFLOAT(4+L-3))
0075		A=B/{A*A*A}
0076		IF(L.EQ.1) A=A/C
0078		DO 11 IS12=1, ISM12
0079	. 11	VC(IS12,L)=A+VC(IS12,L)
0080		IF(ISM12.GE.ISM) GO TO 13
0082		DO 12 IS=ISM12,ISM
0083		A=DFLOAT(ISM12)/DFLUAT(IS)
0084		B=A
0085		00 12 L=1,LM1
0086		VC(IS,L)=b+VC(ISM12,L)
0087	12	6=6*A*A
0088	13	RETURN
0089		END

SUBROUTINE SUM(ISM,1M,VCRE,VRE,P) REAL*& VCRE(1),VRE(ISM,1) REAL*& F(1) DO 21 IS=1,ISM VCRE(1S)=VCRE(1S)+P(1S) DO 20 J=1,TM 20 VRE(IS,J)=VRE(IS,J)+P(IS+J*ISM) 21 CONTINUE RETURM END

.

•

.

,