

KERNFORSCHUNGSZENTRUM KARLSRUHE

März 1976

KFK 2264

Institut für Neutronenphysik und Reaktortechnik Projekt Schneller Brüter

Rechnerische Analyse einer hypothetischen Abschaltstabejektion für einen heliumgekühlten schnellen Brutreaktor von 1000 MW elektrischer Leistung

G. Jacobs Gesellschaft für Kernforschung mbH, Karlsruhe M. Schatz Kraftwerk Union, Erlangen

GESELLSCHAFT FÜR KERNFORSCHUNG M.B.H.

KARLSRUHE

Als Manuskript vervielfältigt

Für diesen Bericht behalten wir uns alle Rechte vor

GESELLSCHAFT FÜR KERNFORSCHUNG M.B.H. KARLSRUHE KERNFORSCHUNGSZENTRUM KARLSRUHE

KFK 2264

Institut für Neutronenphysik und Reaktortechnik Projekt Schneller Brüter

Rechnerische Analyse einer hypothetischen Abschaltstabejektion für einen heliumgekühlten schnellen Brutreaktor von 1000 MW elektrischer Leistung⁺⁾

von

G. Jacobs

Institut für Neutronenphysik und Reaktortechnik

und

M. Schatz

Kraftwerk Union Erlangen

Gesellschaft für Kernforschung mbH, Karlsruhe

⁺⁾ Die Arbeit wurde durchgeführt im Rahmen des Zusammenarbeitsvertrages zwischen der GfK und der KWU auf dem Gebiete Gasgekühlter Schneller Brutreaktoren.

Kurzfassung

Im Rahmen der Analyse hypothetischer Störfälle in Gasbrütern wird die Ejektion eines Abschaltstabes in einem 1000 MW(e)-GSB untersucht. Der Abschaltstab erzeugt bei der Ejektion eine Reaktivitätsrampe von etwa 60 \$/s, die zu einer überpromptkritischen Leistungsexkursion führt. Die Einleitungsphase wird mit Hilfe eines Punktkinetikcodes berechnet, in dem der Kern durch einen Brennstab mittlerer Leistung mit Kühlkanal repräsentiert wird. Die Kernzerlegungsphase wird mit Hilfe des Hydrodynamikcodes KADIS, eines Abkömmlings des ANL-Codes VENUS, berechnet. Die Masse und die Energie des geschmolzenen Brennstoffs am Ende der Disassemblyphase ist 27600 kg bzw. 24000 MJ, entsprechend 0,87 MJ/kg. Durch Parametervariationen wird der Einfluß einiger Anfangsbedingungen der Disassemblyphase untersucht: Reaktivitätsrampe, Reaktivität, Leistungsniveau und mittlere Brennstofftemperatur. Der Bericht enthält neben der Darstellung und Diskussion der Rechenergebnisse eine Beschreibung der verwendeten Modelle und im Anhang eine vollständige Aüfstellung der verwendeten Daten.

Numerical Analysis of a Hypothetical Shutdown Rod Ejection in a Helium Cooled Fast Breeder Reactor of 1000 MW electric power

Abstract

In the scope of the analysis of hypothetical accidents in gasbreeders the ejection of a shutdown rod in a 1000 MW(e)-GCFR is investigated The shutdown rod generates a reactivity ramp of about 60 \$/s during the ejection leading to a superprompt critical power excursion. The initiation phase is calculated using a point kinetics code, that represents the core by a fuel rod of mean power with cooling channel. The disassembly phase is calculated using the hydrodynamics code KADIS, a descendent of the ANL-Code VENUS. Mass and energy of molten fuel at the end of disassembly phase is 27600 kg and 24000 MJ respectively, corresponding to 0,87 MJ/kg. In form of parameter variations the influence of some initial conditions of the disassembly phase is studied: reactivity ramp, reactivity, power level, and mean fuel temperature. The report contains a representation and discussion of the computational results as well as a description of the applicated models and in the appendix a complete listing of the used data.

Zus	sammenfassung	III
Ini	naltsverzeichnis	v
And	erkennungen	VII
1.	Einleitung	1
2.	Das Disassembly-Rechenmodell	7
	2.1 Modellkomponenten	7
	2.2 Punktkinetik	8
	2.3 Energiebilanz	9
	2.4 Bewegungsgleichungen	10
	2.5 Zustandsgleichung	11
	2.6 Schmelzwärme	15
	2.7 Vereinfachende Annahmen bei der Druckberechnung	17
	2.8 Reaktivitätsänderungen	18
3.	Neutronenphysikalische Rechnungen	21
	3.1 Allgemeines	21
	3.2 Materialwerte	22
	3.3 Doppler-Parameter	22
	3.4 Kinetische Parameter	23
4.	Rechnungen zur Predisassemblyphase	27
	4.1 Das Modell	27
	4.2 Rechenergebnisse	31
5.	Ergebnisse der Disassemblyrechnungen (Basisfall)	34
	5.1 Allgemeines	34
	5.2 Ergebnisse	34
6.	Parametervariationen	43
	6.1 Allgemeines und Verschiedenes	43
	6.2 Reaktivitätseinsatz und Leistungsniveau	45
	6.3 Anfangstemperatur	49
	6.4 Bewegungsunterdrückung in radialer Richtung	52
7.	Schluß	55

۷

Anhang A:	Tabellen zu den vorbereitenden, neutronenphysikalischen	
	Rechnungen	57
Anhang B:	Tabellen zu den Predisassemblyrechnungen	77
Anhang C:	KADIS-Ergebnisse für den Basisfall	83
Referenzen		93

Wir möchten einigen Kollegen von GfK/INR und KWU/RZR 2 unseren Dank aussprechen für ihre Mitarbeit an der hier berichteten Arbeit:

F. M. Fischer, D. Thiem, Ph. Schmuck (GfK),

D. Bittermann, K. Hassmann und K. Klein (KWU).

1. Einleitung

In diesem Bericht wird ein hypothetischer Störfall des im Entwurf befindlichen 1000 MW(e) - heliumgekühlten, schnellen Brutreaktors GSB-1 untersucht: die Ejektion eines Abschaltstabes, der beim Hochfahren des Reaktors auf volle Leistung irrtümlich im Kern verbleibt. Der Bericht enthält neben der Darstellung und Diskussion der Rechenergebnisse eine Beschreibung der verwendeten Modelle und im Anhang eine vollständige Aufstellung der benutzten Daten.

Hypothetische Störfälle werden für den Gasbrüter aus zwei Gründen betrachtet. Erstens, weil im Hinblick auf das Genehmigungsverfahren für den im Bau befindlichen natriumgekühlten schnellen Brutreaktor SNR 300 damit zu rechnen ist, daß auch für den Gasbrüter analoge Rechnungen durchzuführen sind, und zweitens deshalb, weil solche Rechnungen mithelfen, den Sicherheitsabstand aufzuzeigen, den das System im Normalbetrieb gegenüber den extremen Zuständen besitzt, welche die hypothetischen Störfälle charakterisieren.

Hinsichtlich des Begriffs "hypothetischer Störfall" schließen wir uns dem üblich gewordenen Sprachgebrauch an, demzufolge "hypothetisch" jene Reaktorstörfälle zu nennen sind, die zwar physikalisch möglich sind, denen aber eine äußerst geringe Eintrittswahrscheinlichkeit zugewiesen werden kann. Über die Kennzeichnung "äußerst gering" besteht noch keine einheitliche Auffassung, da dazu ein akzeptierbares Risiko definiert werden muß, was derzeit noch nicht möglich ist. In der Literatur /1971d/ werden Werte von 10⁻⁷ oder 10⁻⁸ per Reaktorjahr für die Eintrittswahrscheinlichkeit der Ereigniskombination "Bruch einer Kühlmittelleitung & Versagen der Notkühlung" bei

Zum Druck am: 12.3.1976

Leichtwasserreaktoren zitiert. Deshalb wird in der GSB-Referenz- und Sicherheitsstudie im Jahresbericht 1973 der KWU /1974b/ vorgeschlagen, Störfälle beim Gasbrüter dann als hypothetisch zu bezeichnen, wenn ihre Eintrittswahrscheinlichkeit kleiner als 10⁻⁸ pro Reaktorjahr eingeschätzt werden kann.

Hypothetische Störfälle, die zu überpromptkritischen Leistungsexkursionen führen, können bei schnellen Reaktoren im Prinzip durch Entfernung von Absorbermaterial oder Kühlmittel hervorgerufen werden. Ferner sind solche Exkursionen auch denkbar, wenn als Folge des vollständigen Ausfalls der Kernkühlung durch Schmelzen des Kerns Brennstoffkompaktionen im Kern auftreten. Im Fall des Gasbrüters GSB-1 kann der bloße Verlust des Kühlmittels nicht zu promptkritischen Bedingungen führen, da der langsame Reaktivitätsanstieg durch die Abschaltsysteme abgefangen werden kann. Da im Normalbetrieb des Reaktors nur Regelstäbe mit individuellen Reaktivitätswerten von weniger als 1 \$ im Kern eingetaucht sind, kann ein irrtümliches Ausfahren oder Ausgeschleudertwerden eines Regelstabes ebenfalls zu keiner überpromptkritischen Exkursion führen. Dagegen führt die in diesem Bericht behandelte Abschaltstabejektion zu einer überpromptkritischen Leistungsexkursion, da ein Abschaltstab der derzeitigen Auslegung einen Reaktivitätswert von 3,3 \$ hat. Wir beschränken unsere Rechnungen auf den Vollastfall, weil wir annehmen, daß bei niedrigeren Leistungsniveaus, speziell beim Anfahren des Reaktors, Leistungsexkursionen zwar denkbar, aber schwächer als bei Vollast sind. Was die Sekundärexkursionen durch Kernkompaktionen betrifft, so kommt die oben zitierte GSB-1-Studie /1974b/ zu dem Ergebnis, daß ihre Reaktivitätsrampen in allen Fällen geringer sind als bei der Primärexkursion durch Abschaltstabauswurf.

2

*) Trotz unrealistisch hoher Ausfallwahrscheinlichkeiten ergibt sich eine sehr kleine Wahrscheinlichkeit für das TOP-Ereignis.

**) Hier wird eine Abhängigkeit des Versagensmechanismus von Druckrohr und Haltegestänge postuliert.

***) Auch ohne Einbau einer zusätzlichen Austreibsicherung wäre das TOP-Ereignis als hypothetisch zu bezeichnen.

Der Auswurf eines "vergessenen" Abschaltstabes setzt folgende Ereigniskette voraus:

- der Reaktor wird auf Leistung gebracht, ohne daß zuvor alle Abschaltstäbe gezogen wurden, d. h. es wird angenommen, daß ein Abschaltstab irrtümlich im Kern verbleibt,
- das für diesen Fall vorgesehene Verriegelungssystem versagt
 bzw. wird vom Operateur irrtümlich überbrückt. Entsprechende
 Anzeigen werden nicht wahrgenommen,
- nach Erreichen der vollen Leistung versagt der Abschluß der Durchführung des "vergessenen" Abschaltstabes durch den Spannbetonbehälter schlagartig und vollständig,
- das im Behälterabschluß untergebrachte Antriebsgestänge versagt ebenfalls schlagartig und vollständig.

Erst nach Ablauf dieser Kette wird der Abschaltstab durch den im Inneren des Spannbetonbehälters anstehenden Druck aus dem Kern ausgetrieben. Aus dem einfachen Fehlerbaum /1974b/ in <u>Abb. 1.1.1</u> ergibt sich für die Eintrittswahrscheinlichkeit des Top-Ereignisses trotz hoher Ausfallwahrscheinlichkeiten des Abschaltsystems ein sehr kleiner Wert: 2.10⁻¹⁴/Reaktorjahr. *)

Seit der richtungsweisenden Arbeit von Bethe und Tait /1956/ analysiert man schwere Leistungsexkursionen im allgemeinen in zwei aufeinanderfolgenden Phasen. Phänomene, wie Brennstab-Deformation, Hüllrohr-Dehnung, Spaltgasfreisetzung, Brennstabversagen, Schmelzen und Bewegung von Hüllrohrmaterial und Brennstoff werden in der sog. Pre-Disassembly untersucht, in der vor allem Wärmeübertragungsprobleme eine Rolle spielen. Druckaufbau und Auseinandertreiben des Kerns bis zur Unterkritikalität werden in der Disassemblyphase verfolgt, wo die Hydrodynamik

^{*)} Nach der neuesten Konstruktion des Abschaltsystems ist dieser Wert sogar noch um 2 Zehnerpotenzen kleiner.

dominiert. Als wichtigstes Ergebnis der Berechnungen in der Disassemblyphase bekommen wir Schätzwerte für die während der Exkursion erzeugte Energie. Weitere Ergebnisse dieser Phase dienen einer anschließenden Analyse als Ausgangspunkt für die Bestimmung der Belastung des Reaktorbehälters und seiner Einbauten.

Das Disassembly-Modell von Bethe und Tait, das ohne numerische Näherungen auskommt, besteht aus eindimensionaler, sphärischer Hydrodynamik; es verwendet Punktkinetik und Beschreibung der Neutronik und Störungstheorie erster Ordnung zur Erfassung der Reaktivitätsänderung infolge Materialbewegung. Es vernachlässigt Dichteänderungen, Druckwellenausbreitung und die Reaktivitätsänderung infolge des Dopplereffektes.

Ein wesentlich verbessertes Bethe-Tait-Modell stellt das Modell des im Argonne National Laboratory entwickelten Rechenprogramms VENUS /1970a/ dar. KADIS, das Karlsruher Disassemblyprogramm, mit dem die Disassembly-Berechnungen dieses Berichts gemacht wurden, ist aus einer frühen Version von VENUS entwickelt worden /1973d/ und ist jetzt vergleichbar mit VENUS-II /1972b/, einer verbesserten Version von VENUS. Die Hauptmerkmale des verwendeten Disassembly-Rechenmodells sind

- Punktkinetik und Störungstheorie erster Ordnung
- vollnumerische Lösung der zweidimensionalen Hydrodynamikgleichungen für azimutalsymmetrische Lagrangesche Zylindergeometrie
- dichte- und energieabhängige Berechnung des inneren
 Druckes mittels einer Zustandsgleichung für Urandioxid
- Reaktivitätsrückwirkungen infolge Temperaturerhöhung (Doppler-Effekt) und Materialbewegung

5

Den Rechnungen zur Pre-Disassemblyphase liegt folgendes Modell zugrunde:

- Punktkinetik mit Dopplerrückwirkung
- in der Thermohydraulik Repräsentation des Kerns durch einen Brennstab mittlerer Leistung mit Kühlkanal
- Berechnung des Temperaturfeldes unter der Annahme einer sich nicht ändernden Leistungsverteilung beim Erreichen des promptkritischen Zustands.

Beide Modelle scheinen uns trotz einiger Unzulänglichkeiten, die bei der Modellbeschreibung noch präzisiert werden, für erste Untersuchungen des Abschaltstabauswurf-Störfalles ausreichend zu sein. Hauptsächlich deswegen, weil es sich wegen einer verhältnismäßig starken Reaktivitätszufuhr um eine sehr schnell ablaufende Exkursion handelt. Vom Beginn des Stabauswurfs bis zur nuklearen Abschaltung vergehen laut Rechnung nur etwa 100 ms.

2.1 Model1komponenten

Das Modell, das dem Disassembly-Rechenprogramm KADIS zugrundeliegt, unterscheidet zwei axialsymmetrische, zylindrische Koordinatensysteme, ein ortsfestes (r,z)-System, das Eulersche, und ein mitbewegtes (R,Z)-System, das Lagrangesche. Die Lagrangeschen Koordinaten sind definiert als die Eulerschen zu Beginn der Disassemblyphase, d. h. zur Zeit t = 0. Abb. 2.1.1 zeigt ein KADIS-Rechengitter in beiden Koordinatensystemen. Es wird angenommen, das Reaktormaterial gehorche den dynamischen Gleichungen einer kompressiblen, nichtviskosen Flüssigkeit, deren Dynamik durch Dichte $\rho(R,Z,t)$, Druck P(R,Z,t), innere Energie $\varepsilon(R,Z,t)$ und die Geschwindigkeiten u(R,Z,t) und v(R,Z,t) in radialer bzw. axialer Richtung charakterisiert ist. Zu den Erhaltungsgesetzen für Masse, Impuls und Energie der Hydrodynamik, die durch eine Zustandsgleichung für den Druck als Funktion der inneren Energie und Dichte ergänzt werden, treten die punktkinetischen Gleichungen der Neutronik,

Eulersches System

Abb. 2.1.1 Ein KADIS-Gitter während der Disassemblyphase einer Leistungsexkursion im GSB-1.

in die die Reaktivitätsrückwirkungen infolge Materialverschiebung und Temperaturerhöhung eingehen. <u>Abb. 2.1.2</u> zeigt, vereinfacht dargestellt, das Zusammenwirken der einzelnen Komponenten des Modells, die im folgenden erläutert werden.

Abb. 2.1.2 Blockdiagramm des KADIS-Programms

2.2 Punktkinetik

Zur Berechnung der Leistungsdichteverteilung L(R,Z,t) wird angenommen, sie setze sich zusammen aus einer zeitunabhängigen Formfunktion H(R,Z) und einer zeitabhängigen Amplitude n(t).

$$L(R,Z,t) = H(R,Z) \cdot n(t)$$

H(R,Z) ist als relative Leistungsdichteverteilung vorgegeben $(1/cm^3)$ und auf $\int V_{R_0}$ H dV = 1 (V_{R_0} = unverzerrtes Reaktorvolumen) normiert. Die Gesamtleistung n(t) gewinnen wir, ausgehend von einer Anfangsleistung n₀ zu Beginn der Disassemblyphase, d.h. zur Zeit t = 0, durch numerische Integration der punktkinetischen Gleichungen nach einer Methode von Kaganove /1960/:

$$\frac{dn}{dt} = \frac{R-\beta}{k} n + \sum_{i=1}^{6} \lambda_i C_i \qquad (2.2.1)$$

$$\frac{dC_i}{dt} = \frac{\beta_i n}{k} - \lambda_i C_i , \quad i = 1,6$$
Dauer der Disassemblyphase (s)
Gesamtleistung (W)
Reaktivität ()
Lebensdauer der prompten Neutronen (s)
Anteil der verzögerten Neutronen der i-ten Gruppe

$$= \sum_{i=1}^{6} \beta_i \text{ Anteil verzögerter Neutronen}$$
Zerfallskonstanten der Mutterkerne verzögerter
Neutronen der i-ten Gruppe (1/s)

Die Reaktivität R ist die Summe aus einer vorgegebenen Reaktivitätsrampe und negativen Reaktivitätsbeiträgen infolge Doppler-Verbreiterung und Materialverschiebung. Näheres im Abschnitt 2.8. Anzumerken ist hier, daß die Punktkinetik-Näherung problematisch wird, wenn Raum-Zeit-Effekte zum Tragen kommen, beispielsweise bei milden Exkursionen oder sehr großen Reaktoren.

2.3 Energiebilanz

t n R l

β_i

β

λ_i

Die Änderung der Dichte der inneren Energie $\varepsilon(R,Z,t)$ infolge Freisetzung von nuklearer Energie E = $Hf^{t}n(t)dt$ ergibt sich entsprechend dem Ersten Hauptsatz der Thermodynamik aus folgender Energiebilanzgleichung:

$$\frac{\partial \varepsilon}{\partial t} = H n(t) \frac{\rho}{\rho_0} - P \quad \frac{\partial \Psi}{\partial t} \rho \qquad (2.3.1)$$

$$\Psi = \frac{1}{\rho} \text{ spezifisches Volumen } (cm^3/g)$$

$$\rho_0 = \rho(R, Z, o) \text{ Anfangsdichte } (g/cm^3)$$

$$P \qquad \text{Druck } (\mu b)$$

2.4 Bewegungsgleichungen

Auf die Berechnung der Druckes P wird in 2.5 eingegangen. Zunächst zu den übrigen Gleichungen der Hydrodynamik, nämlich den Erhaltungsgleichungen für Masse und Impuls.

Die Massenerhaltungsgleichung reduziert sich in Lagrangeschen Koordinaten auf

$$\rho = \rho_0 \frac{dV_0}{dV}$$
(2.4.1)

worin dV $_{\rm O}$ und dV Volumenelemente im Anfangs- und deformierten Zustand sind.

Die benötigten Volumenänderungen liefert die Impulserhaltungsoder Bewegungsgleichung, die in Komponenten geschrieben

$$\frac{\partial u}{\partial t} = -\frac{1}{\rho} \frac{\partial P}{\partial r}, \quad \frac{\partial v}{\partial t} = -\frac{1}{\rho} \frac{\partial P}{\partial z}$$
 (2.4.2)

lautet, worin u und v die Materialgeschwindigkeiten in radialer bzw. axialer Richtung sind. Die Randbedingungen dieser Gleichungen sind:

- Auf der Achse sind nur axiale Materialbewegungen möglich,
 d.h. u = 0 für r = 0
- An den übrigen Rändern verschwindet der Druck.

Im Falle der Kompression, $\frac{\partial \Psi}{\partial t}$ < 0, wird der Druck P in den Gleichungen (2.4.2) ersetzt durch die Größe P + Q, worin Q ein künstlicher, sog. pseudo-viskoser Druck ist. Die verwendete Formel für den pseudo-viskosen Druck ist

$$Q = \frac{1,44 \text{ Ap}_{o}^{2}}{\Psi} \left(\frac{\partial \Psi}{\partial t}\right)^{2},$$

worin A den Flächeninhalt des (r,z)-Querschnitts einer Gitterzelle bezeichnet. Diese von Richtmyer und von Neumann /1950/ stammende Technik hält die numerische Stabilität des Differenzenverfahrens auch bei der Anwesenheit von Schockwellen aufrecht. Die numerische Lösung der Bewegungsgleichungen geschieht mittels eines gewöhnlichen expliziten Differenzenverfahrens. Sie enthält aus Gründen der Stabilität und Effektivität eine automatische Anpassung der Zeitschrittlänge an den jeweiligen Rechenverlauf.

Das Modell kennt zwei Möglichkeiten zur Bewegungshemmung in radialer Richtung. Hiermit können unrealistische Materialbewegungen verhindert werden, wenn beispielsweise angenommen werden kann, daß die Brennelemente noch soweit intakt sind, daß sie Druckgradienten bis zu einem vorzugebenden Grenzwert standhalten können. Näheres in Abschnitt (6.4).

2.5 Zustandsgleichung

Die noch fehlende Gleichung zur eindeutigen Bestimmung der fünf hydrodynamischen Größen, $r, z, \rho, P, \varepsilon$ ist eine Gleichung, die Druck zu Energie und Dichte in Beziehung setzt:

 $P = f(\varepsilon, \rho) \qquad (2.5.1)$

Verwendet wird in unserem Modell eine Zustandsgleichung für Urandioxid-Brennstoff, die im wesentlichen von Menzies /1966a/ stammt. Menzies geht von folgender Dampfdruckbeziehung für flüssiges UO₂ aus. P_v = exp (- 4,34 ln T - 76800/T + 69,979), (2.5.2) T Temperatur (K), P_v Dampfdruck (μb),

die eine Anpassung an alle bis 1960 bekannten Messungen darstellt.

Durch Vergleich mit den empirischen Beziehungen von Hougen u.a. /1959/, die Gebrauch machen vom Prinzip der korrespondierenden Zustände, gewinnt Menzies kritische Daten für UO₂. Mit Hilfe dieser Daten und weiterer thermodynamischer Daten konstruiert er in einem iterativen Prozeß Druckwerte, die er durch einen analytischen Ausdruck anpaßt. Die Menziesschen Zustandsgleichungen wurden von Nicholson und Jackson /1970a, 1972b/ verbessert. Trotzdem sind sie möglicherweise nur recht grobe Näherungen, weil bisher nur sehr wenige Messungen vorliegen, die die Güte dieser theoretischen Extrapolationen bestätigen könnten.

Abb. 2.5.3 Dampfdruck von Urandioxid nach Menzies

Die verwendete Sattdampfdruckkurve (2.5.2) von Menzies zeigt Abb. 2.5.3. Die Temperatur wird aus der inneren Energie in Abhängigkeit von der Dichte nach folgender Formel berechnet (siehe Abb. 2.5.8).

$$T = \begin{cases} Max (T_v, T_l (\Psi_r), wenn \Psi_r < 0,6) \\ \\ Max [T_v, Min (T_l (\Psi_r), T_l)], wenn \Psi_r \ge 0,6 \end{cases}$$
(2.5.4)

mit

$$T_v = 237 + \frac{E}{0,437} \cdot 10^3,$$
 (2.5.5)

 $T_{\ell} (\Psi_r) = (4272, 5 - 1003 \Psi_t + 1699 \Psi_r^2) (E - 0, 237 - 1, 882 \Psi_r) und$ $\hat{T}_{\ell} = T_{\ell} (0, 6),$

wo

E die spezifische innere Energie (kJ/g),

$$\Psi_r = \rho_f^c / \rho_f$$
 das reduzierte spezifische Volumen und
 ρ_f^c die kritische Dichte (g/cm³) bedeutet.

In die Brennstoffdichte ρ_{f} ist der Raum, der vom Brennstoffdampf eingenommen wird, mit eingeschlossen.

E ergibt sich aus der Bilanzgleichung (2.3.1) durch Integration über die Zeit und adiabatische Umrechnung der Energiedichte ε einer Zelle in die spezifische Energie E des Brennstoffs. Die Anfangsenergie E_o wird aus der Temperatur mittels (2.5.5) bestimmt. (2.5.4) enthält implizit eine temperaturabhängige spezifische Wärme.

Abb. 2.5.8 Brennstofftemperatur laut Zustandsgleichung (Menzies-ANL)

Die Formel für dichteabhängigen Flüssigkeitsdruck ist

$$P_{g} = \begin{cases} (E-3,59+0,119 \ \forall_{r} + \frac{0,0767}{\forall_{r}^{3}}) \ 1,554 \cdot 10^{12} \exp(-9,67 \ \forall_{r} + 4,45 \ \forall_{r}^{2}), \\ & & & & & & & & & \\ (E-3,2213-0,173 \ \forall_{r}) \ \cdot \ 10^{10}/(1,9 \ \forall_{r} - 0,704), & & & & & & & \\ & & & & & & & & \\ \end{array}$$

 P_{ρ} einphasiger Druck (µb)

E spezifische innere Energie (kJ/g)

 v_r reduziertes spezifisches Volumen

Abgesehen von der Berücksichtigung der Schmelzwärme, die im nächsten Absatz behandelt wird, lautet die verwendete Zustandsgleichung nun

$$P = Max (P_v, P_l)$$
 (2.5.7)

Diese Dichteabhängigkeit des Druckes macht es unmöglich, daß in der Hydrodynamik bei der Kompression einer Lagrangezelle unrealistisch hohe oder sogar negative Dichten auftreten, die zu numerischen Unstabilitäten führen würden.

Abb. 2.5.9 Brennstoffdruck laut Zustandsgleichung (Menzies-ANL)

In <u>Abb. 2.5.9</u> stellt die untere Kurve die Dampfdruckkurve (2.5.2) dar; die oberen Ansätze stellen die einphasigen Drücke (2.5.6) für einige Werte von \forall_r dar. Die Schmelzwärme ist dabei berücksichtigt.

Der Übergang in den einphasigen Bereich ist aus zwei Gründen möglich. Erstens durch Expansion, d.h.bei festgehaltenen ∀_r und steigender innerer Energie. Zweitens durch Kompression, d. h. bei festgehaltener innerer Energie E und abnehmendem spezifischen Volumen.

2.6 Schmelzwärme

Die Nichtberücksichtigung der Schmelzwärme würde zu höheren Temperaturen und damit zu höheren Drücken führen. Liegt die Anfangstemperatur unter dem Schmelzpunkt, so wird die Schmelzwärme beim Überschreiten des Schmelzpunktes von der inneren Energie E abgezogen. Im einzelnen wird wie folgt vorgegangen. In dem Temperaturintervall

$$\begin{bmatrix} T_m, T_m + 1 \end{bmatrix}$$
 (T_m : Schmelzpunkt)

erhält die Temperatur in Ergänzung zu (2.5.4) den Wert

$$T = T_{m} + \frac{E - E_{m}}{H_{m} + 0,437} \cdot 10^{3}$$
 (2.6.1)

Dabei ist E_m die mittels (2.5.5) berechnete innere Energie zu Beginn des Schmelzens:

$$E_{m} = 0,437 (T_{m} - 273) \cdot 10^{-3}$$

Während dieses 1-Grad-Temperaturintervalls ist die Temperaturerhöhung gleich dem Bruchteil der 'adjustierten' Schmelzwärme $H_m + 0,437 J/g$, die zum Aufschmelzen verbraucht ist. Wenn die innere Energie um $H_m + 0,437$ gewachsen ist, ist die Temperatur demzufolge um 1 auf $T_m + 1$ gestiegen. Danach, d. h. für $T > T_m + 1$, wird die innere Energie E in den Formeln (2.5.4) und (2.5.6) durch E - $10^{-3}H_m$ ersetzt.

Liegt die Anfangstemperatur T_o bereits im Schmelzbereich, d. h. ist $T_m < T_o < T_m + 1$, so wird bei der Initialisierung die innere Energie um den entsprechenden Betrag heraufgesetzt:

$$E_0 = \{0, 437 (T_0 - 273) + (T_0 - T_m) H_m\} \cdot 10^{-3}$$

Fortgefahren wird wie oben.

Bei den Kurven der <u>Abb. (2.5.8)</u> und <u>(2.5.9)</u> ist die beschriebene Modifizierung der inneren Energie zur Berücksichtigung der Schmelzwärme enthalten. Bei der Temperatur-Energie-Kurve in <u>Abb. (2.5.8)</u> ist der Schmelzübergang bei 1,22 bis 1,5 kJ/g deutlich zu sehen.

Die Temperaturberechnung (2.6.1) gestattet es, aus der Brennstofftemperatur unmittelbar den Anteil des aufgeschmolzenen Brennstoffs an der Brennstoffmasse einer Rechenzelle abzulesen. Unter der Energie des geschmolzenen Brennstoffs verstehen wir die Wärmeenergie, die beim momentanen Festwerden des geschmolzenen und des verdampften Brennstoffs frei werden würde. Wir berechnen sie aus der Brennstofftemperatur T(K) unter Berücksichtigung der Schmelzwärme H_m (J/g):

$$E^{*}(J/g) = \begin{cases} 0 & \text{wenn } T < T_{m} \\ H_{m} + 0,437) & (T - T_{m}) & \text{wenn } T_{m} \leq T \leq T_{m} + 1 \\ H_{m} + 0,437 & (T + 1 - T_{m}) & \text{wenn } T_{m} + 1 < T \end{cases}$$
(2.6.2)

Die Gesamtenergie E*(J) des geschmolzenen Brennstoffs ergibt sich durch Multiplikation mit der Brennstoffmasse der Rechenzelle und Summation über alle Zellen.

Über die in der verwendeten Zustandsgleichung benutzten Werte der thermodynamischen Konstanten von Urandioxid gibt die folgende Tabelle Auskunft:

Schmelzpunkt	т _т = 3070 к
Schmelzwärme	$H_{\rm m} = 280 \rm J/g$
Kritische Dichte	3.0 g/cm^3
Kritische Temperatur	8000 K
Kritischer Druck	2000 в

Tab. 2.6.1 Verwendete Thermodynamische Konstanten von Urandioxid

2.7 Vereinfachende Annahmen bei der Druckberechnung

Der beschriebenen Formel für die Druckberechnung liegen folgende vereinfachende Annahmen zugrunde:

- 2.7.1 Der Mischoxidbrennstoff (U, Pu) O_{2±y} wird als reines UO₂ betrachtet. Die Partialdrücke der einzelnen Komponenten des Gemisches in Abhängigkeit von der Pu-Anreicherung und des Sauerstoff/Metall-Verhältnisses werden nicht berücksichtigt /1974e/.
- 2.7.2 Die Aufheizung geschieht adiabatisch, d. h. Wärmeübergang von Brennstoff auf übriges Reaktormaterial findet nicht statt. Die Mitaufheizung von gelöstem und eingeschlossenem Helium im Brennstoff wird nicht berücksichtigt /1975a/.
- 2.7.3 Der berechnete Druck ist ein Gleichgewichtsdruck; bei einer hohen Verdampfungsrate haben wir es infolge erzwungener kongruenter Verdampfung jedoch mit einem Totaldampfdruck zu

tun, der stark von äußeren Bedingungen abhängt. Dieser Effekt wird nicht berücksichtigt /1975c/.

2.7.4 Der Brennstoff ist die einzige Druckquelle; stark volumenabhängige Drücke der Spaltedelgase Ar, Xe, Kr, die im nichtfrischen Brennstoff enthalten sind, werden nicht berücksichtigt /1974e/.

Untersuchungen, die einige der genannten Effekte berücksichtigen, sind im Gange. Erste Ergebnisse zeigen /1975a/, daß der Spaltgasdruckaufbau den Diassemblyvorgang stark beeinflußt und die Energiefreisetzung erheblich verringert.

2.8 Reaktivitätsänderungen

Temperaturerhöhung und Materialverschiebung verändern die Reaktivität. Die Nettoreaktivität R in den punktkinetischen Gleichungen (2.2.1) setzt sich zusammen aus

$$R = R_0 + A \cdot t + \delta R_D + \delta R_M,$$

R Anfangsreaktivität

- A•t Reaktivitätsrampe
- δR_{n} Reaktivitätsänderung aufgrund der Doppler-Rückwirkung
- δR_{M} Reaktivitätsänderung aufgrund von Materialverschiebung

Die Reaktivitätseingabe R_o + A·t wird aus der Pre-Disassembly-Rechnung gewonnen und stellt eine extrapolierte Schätzung dar, wie sich der Reaktivitätseinsatz in die Disassemblyphase fortsetzt. Die Reaktivitätsänderungen δR_D und δR_M werden während der Diassemblyrechnung vorausextrapoliert von den drei zuletzt berechneten Werten. Dadurch wird eine Iteration zwischen der Berechnung der Leistung und der Rückwirkungen vermieden.

Die folgenden Formeln (2.8.1) und (2.8.4) zur Berechnung der Reaktivitätsrückwirkungen δR_D und δR_M basieren auf der Annahme der Gültigkeit der Störungstheorie erster Ordnung. Die Doppler-Rückwirkung setzt sich zusammen aus regionalen, gewichteten Beiträgen:

$$\delta R_{\rm D} \approx \delta k_{\rm D}(t) = \sum \left[\bar{k}_{\rm D}(t) - k_{\rm D}(0) \right] w \qquad (2.8.1)$$

wobei \sum Summation über alle Regionen bedeutet und \sum w = 1 ist. Die Wichtung w gibt die relative Doppler-Reaktivitätsänderung an, die sich aus derselben mittleren Temperaturänderung in jeder Region ergeben würde. Für die Temperaturabhängigkeit des Dopplerkoeffizienten $\frac{dk_D}{dT}$ wird folgendes Gesetz verwendet.

$$\frac{dk_{D}}{dT} = a_{\ell} \bar{T}_{\ell}^{-3/2} + b_{\ell} \bar{T}_{\ell}^{-1} , \qquad (2.8.2)$$

worin \overline{T}_{ℓ} eine massengewichtete, mittlere Temperatur (K) der *l*-ten Region ist, und a_{ℓ} , b_{ℓ} wie w_{ℓ} Eingabegrößen sind. $k_{D}(t)$ in (2.8.1) erhält man durch Integration von (2.8.2);

$$k_{\rm D}(t) = -2a (\bar{T}_{\ell}(t)^{-1/2} + b \ln (\bar{T}_{\ell}(t))$$
 (2.8.3)

Die Materialverschiebungsrückwirkung δR_M setzt sich zusammen aus einem radialen und einem axialen Anteil:

$$\delta R_{\rm M} \approx \int_{\rm V_R} \frac{\rho}{\rho_{\rm o}} \left[\frac{\partial \psi_{\rm o}}{\partial R} \Delta r + \frac{\partial \psi_{\rm o}}{\partial Z} \Delta z \right] dV$$
 (2.8.4)

V_R Reaktorvolumen (cm³)

 $\Delta r = r - R$ Verschiebung in radialer Richtung (cm)

 $\Delta z = z-Z$ Verschiebung in axialer Richtung (cm)

$$\Psi_0 = \Psi$$
 (R,Z) Materialreaktivitätswert (1/cm³)

Die Materialwerte ψ , aus einer Störungsrechnung stammend, haben folgendes Aussehen:

$$\psi = - \left[\sum_{g} \delta D^{g} \nabla \phi_{g} \nabla \phi_{g}^{\dagger} + \sum_{g} \delta \Sigma_{rem}^{g} \phi_{g}^{\dagger} \phi_{g}^{\dagger} \right]$$

$$- \sum_{g < g'} \delta \Sigma_{t}^{g' + g} \phi_{g}^{\dagger} \phi_{g'}^{\dagger} - \frac{1}{k} \sum_{g,g'} \delta F^{g' + g} \phi_{g}^{\dagger} \phi_{g'}^{\dagger} \right]$$

$$/ \int_{V_{R}} \sum_{g,g'} F^{g' + g} \phi_{g}^{\dagger} \phi_{g'}^{\dagger} dV$$
(2.8.5)

Es bedeutet:

δx	x gestört – x ungestört
g,g'	Energiegruppe
D ^g	Diffusionskoeffizient
${}^{\Sigma}_{rem}^{g}$	Makroskopischer Removalquerschnitt
Σ ^{g'←g} t	Totaler, makroskopischer Streuquerschnitt von Gruppe g in Gruppe g'.
F ^{g'≁g}	= $\chi g' (\nu \Sigma)_{f}^{g}$ Transferkoeffizient
φ _g , φ _g	realer bzw. adjungierter Neutronenfluß der Gruppe g.
k	effektiver Multiplikationsfaktor.

Die Wertgradienten $\partial \psi / \partial R$ und $\partial \psi / \partial Z$ beziehen sich auf den Mittelpunkt einer Rechenzelle und werden mit dem Material bewegt. Die Näherung mittels Störungstheorie erster Ordnung kann nur für "kleine" Verschiebungen gelten. Die Störungstheorie überschätzt die Materialbewegungsrückwirkung bei größeren Verschiebungen, weil sie die durch die auswärts gerichtete Materialbewegung hervorgerufene Flußabflachung nicht berücksichtigen kann. Dagegen, so hat Boudreau /1972a/ nachgewiesen, fallen die Abweichungen in der Störungstheorie-Näherung bei der Doppler-Rückwirkung weniger ins Gewicht.

20

3. Neutronenphysikalische Rechnungen

3.1 Zur Gewinnung von Materialwertkurven, Doppler-Koeffizienten samt Wichtungsfaktoren, Punktkinetik-Parametern und einer Leistungsdichteverteilung für die KADIS-Eingabe wurden neutronenphysikalische Rechnungen mit dem NUSYS-System und dem DIXY-Diffusionsprogramm /1973b/ durchgeführt. Dabei wurde angestrebt, einen Satz von Eingabedaten für den GSB-1 zusammenzustellen, der im Hinblick auf Genauigkeitsanforderungen mit den entsprechenden KADIS-Eingabedaten für den SNR-300 vergleichbar ist.

Zugrundegelegt wird der GSB-1 Entwurf /1973c, 1974b/ im Betriebszustand. Dazu eine Datenliste im Anhang A, <u>Tab. Al. Abb. 3.1.1</u> zeigt die Reaktorgeometrie mit KADIS-Rechengitter. Es besteht aus 18 radialen und 29 axialen Gitterlinien. Die acht Reaktorzonen - 4 Anreicherungszonen im Kern, 2 Zonen im radialen Blanket, je ein Blanket oben und unten - sind in 20 Regionen aufgeteilt. Für die verschiedenen nuklearen Rechnungen werden feinere Gitter genommen mit etwa doppelter Anzahl von Gitterlinien.

Die Wirkungsquerschnitte stammen aus dem 26-Energiegruppensatz MOXTOT /1970c/. Die Materialverteilung und Teilchendichten findet man in <u>Tab. A2.</u>

3.2 Materialwerte

Die Materialreaktivitätswerte – siehe Abschnitt (2.8) – werden mittels einer Störungsrechnung bestimmt, basierend auf Störungstheorie erster Ordnung. Die Störungsrechnung liefert für jeden KADIS-Gitterpunkt und zusätzlichen Punkten in der Mitte zwischen zwei KADIS-Gitterpunkten einen lokalen Störungskoeffizienten $\delta(\frac{1}{k})/V$ (V: Volumen der Gitterzelle) und damit wegen $\delta(\frac{1}{k}) \approx -\delta R$ den geforderten Materialwert $\psi(R,Z)$. Im Anhang (Tab. A3) sind die Materialwerte für eine 10 %ige Dichtestörung tabelliert. <u>Abb. 3.2.1</u> zeigt die Wertkurven an der Achse und an der Mittelebene. KADIS gewinnt aus den Werten für jeden Gitterpunkt die Materialwertgradienten $\partial \psi/\partial R$ und $\partial \psi/\partial Z$ durch dreifache, alternierende, quadratische Interpolation.

3.3 Doppler-Parameter

Die Parameter a und b aus dem zugrunde gelegten Temperaturgesetz

$$\frac{dk_D}{dT} = a/T^{3/2} + b/T$$
(3.3.1)

oder in integrierter Form

$$k_{D}(T_{2})-k_{D}(T_{1}) = -2a \left[1/T_{2}^{1/2} - 1/T_{1}^{1/2}\right] + b \cdot ln \frac{T_{2}}{T_{1}}$$
 (3.3.2)

und die Doppler-Wichtungsfaktoren aus Formel (2.8.1) werden nach zwei Methoden berechnet.

<u>Methode 1:</u> Aus Kritikalitätsrechnungen für verschiedene Brennstofftemperaturen bekommt man folgende Werte für k_{eff}:

1-	Temperatur (K)		
^k eff	Kern	Blanket	
1.006519	1300	900	
1.003654	2100	900	
1.000377	3500	3500	

t

Durch Einsetzen dieser Werte in (3.3.2) und Lösen des entstandenen linearen Gleichungspaares erhält man für die Doppler-Parameter a und b die Werte

$$a = 0,082$$

 $b = -0,008$

Die aus einer Störungsrechnung für eine Brennstofftemperatur von (2100 + 100) stammenden Störungskoeffizienten (siehe <u>Tab. A4, Spalte 3</u>) werden auf Summe = 1 normiert und als Wichtungsfaktoren verwendet. Siehe <u>Tab. A4, Sp.7.</u>

<u>Methode 2:</u> Aus den Störungskoeffizienten $\delta(\frac{1}{k})$ zweier Störungsrechnungen bei 2100 + 100 und 3000 + 100 Brennstofftemperatur werden für jede der 20 Regionen die Parameter a und b durch Einsetzen in <u>(3.3.1)</u> und Lösen des entstehenden linearen Gleichungspaares bestimmt. Siehe Tab. A4, Sp. 5 & 6.

3.4 Kinetische Parameter

Die Effektivwerte der Lebensdauer l der prompten Neutronen und die Anteile β_i der verzögerten Neutronen der i-ten Gruppe, sowie die mittleren Zerfallskonstanten λ_i der Vorläufer der verzögerten Neutronen der i-ten Gruppe setzen die Berechnung des realen und adjungierten Neutronenflusses voraus.

Die effektive Lebensdauer ergibt sich aus:

$$\ell = k_{eff} \cdot \int_{V_{R_o}} \sum_{i} \frac{1}{v_i} \phi_i \phi_i^* dV_o / N \qquad (3.4.1)$$

^k eff	effektiver Multiplikationsfaktor	
v _i	mittlere Neutronengeschwindigkeit in der i-ten Energiegruppe	
v _R	Reaktorvolumen	
N =	$\int_{R_{o}} \sum_{i,j} (v \Sigma_{f})_{i} \chi_{j} \phi_{i} \phi_{j}^{*} dV_{o}$ $V_{R_{o}}^{i,j}$ Normierungsintegral	
φ _i , φ _i	realer bzw. adjungierter Fluß der Gruppe i	
(νΣ _f) _i	Makroskopischer Querschnitt	
	Spaltneutronen x Spaltung der Gruppe i	
X;	Spaltspektrum der prompten Neutronen	

Die effektiven Anteile verzögerter Neutronen der k-ten Gruppe und m-ten Kernart ergeben sich aus:

$$\beta_{\text{eff}}^{m,k} = \int_{V_{R}} \sum_{i,j} (\nu \Sigma_{f})_{i}^{m} \beta^{m,k} \chi_{j}^{k} \phi_{i} \phi_{j}^{\star} dV / N \qquad (3.4.2)$$

$$\beta_{\text{eff}}^{k} = \sum_{m} \beta_{\text{eff}}^{m,k}$$

$$\beta_{\text{eff}} = \sum_{m,k} \beta_{\text{eff}}^{m,k}$$

Die experimentell bestimmten Anteile $\beta^{m,k}$ sind dem Buch von Keepin /1965/ entnommen und in <u>Tab. A5</u> aufgeführt. Für Pu²⁴¹ werden die Werte von Pu²³⁹ und für Pu²⁴² die von Pu²⁴⁰ genommen. Die Spektren χ_j^k für die Gruppen verzögerter Neutronen basieren auf Messungen von Fieg /1971/. Die Zerfallskonstanten ergeben sich aus:

$$\lambda^{k} = \sum_{m} \beta_{\text{eff}}^{m,k} \lambda^{m,k} / \beta_{\text{eff}}, \ \overline{\lambda} = \sum_{k} \lambda^{k} \beta_{\text{eff}}^{k} / \beta_{\text{eff}}$$
(3.4.3)

Die Zerfallskonstanten $\lambda^{m,k}$ sind ebenfalls dem Buch von Keepin /1965/ entnommen und in <u>Tab. A5</u> enthalten. In der folgenden Tabelle

Index Gruppe verz.Neutr.	Zerfallskonstante λ ^k (1/sec)	Anteil verz. Neutronen β ^k eff
1	0,01298	0,74969-4
2	0,03147	0,66137-3
3	0,13589	0,58468-3
4	0,34573	0,11893-2
5	1,36937	0,54820-3
6	3,80153	0, 18244-3
	$\overline{\lambda}$ = 0,60368	^β eff ^{= 0,003240959}
		l = 0,48597-6

(3.4.6) sind die nach (3.4.1) bis (3.4.3) ermittelten Kinetik-Parameter aufgeführt.

Tab. 3.4.6 Kinetische Parameter

Die in <u>Tab. A7</u> tabellierte Leistungsdichteverteilung gilt für den Zyklusanfang des Gleichgewichtszyklus. Näheres in /1973c, 2.4/. Ihr axiales und radiales Profil entlang der Reaktorachse bzw. an der axialen Mittelebene zeigt Abb. 3.2.1.

Als Vorläuferkonzentrationen (vergleiche Formel 2.2.1) werden vereinfachend stationäre Werte verwendet:

$$C_{i} = \frac{\beta_{i}}{\ell \lambda_{i}} n_{o},$$

n_o : Gesamtleistung (th) zu Beginn der Disassemblyphase

4.1 Das Modell

Das verwendete Modell zur Berechnung des zeitlichen Verlaufs von Leistung, Reaktivität und Brennstofftemperatur während der Einleitungsphase der hier untersuchten Leistungsexkursion ist in der GSB-Referenz- und Sicherheitsstudie 1972 /1973c/ ausführlich beschrieben. Hier nur das Wesentliche:

Die Kernleistung wird mit Hilfe der punktkinetischen Gleichungen für 6 Gruppen verzögerter Neutronen mit den in <u>Tab. 3.4.6</u> angegebenen Kinetikparametern wie im Disassemblymodell (siehe Gleichungen <u>(2.2.1)</u>) berechnet. Die Gesamtreaktivität $\mathbb{R}(t)$ setzt sich zusammen aus der durch die Abschaltstabbewegung freiwerdende Reaktivität $\mathbb{R}_i(t)$ und den Reaktivitätsrückwirkungen infolge Temperaturerhöhung im Brennstoff (Doppler-Effekt), im Hüllrohr und im Kühlmittel:

$$R(t) = R_{i}(t) + \int_{0}^{t} \frac{1}{k} \left(\frac{\partial k}{\partial T_{B}} \frac{\partial T_{B}}{\partial t} + \frac{\partial k}{\partial T_{H}} \frac{\partial T_{H}}{\partial t} + \frac{\partial k}{\partial T_{k}} \frac{\partial T_{K}}{\partial t} \right) dt$$

 T_B : mittlere Brennstofftemperatur (K) T_H : mittlere Hüllrohrtemperatur (K) T_K : mittlere Kühlmitteltemperatur (K)

Die benutzten Beziehungen für die Reaktivitätskoeffizienten findet man in Tab. Al im Anhang.

Zur Bestimmung des zeitlichen Verlaufs mittlerer Temperaturen im Brennstab, Hüllrohr und Kühlkanal wird ein Brennstab mittlerer Leistung mit Kühlkanal betrachtet. Radial werden zwei volumengleiche Brennstoffzonen, eine Hüllrohrzone und eine Kühlkanalzone, - jeweils mit einer mittleren Temperatur - unterschieden. Ausgehend vom Betriebszustand (siehe <u>Tab. 4.1.1</u>) werden die Temperaturen mit Hilfe folgender Beziehungen berechnet.

```
- Wärmestrombilanz = Wärmekapazität x Temperaturänderung
in einer Zone
```

```
- Wärmestrom = Wärmeübergangszahl x Grenzfläche
x Temperaturgefälle
zwischen zwei Zonen und
```

```
- Wärmetransport = spezifische Wärme x Kühlmitteldurchsatz
x Aufheizspanne
```

im Kühlkanal.

Dabei wird angenommen, daß sich die Gesamtleistung des Stabes auf die beiden Brennstoffzonen je zur Hälfte verteilt und der Wärmestrom vom Hüllrohr im Kühlmittel vollständig vom Kühlmittelstrom abgeführt und nicht gespeichert wird.

Temp. der inneren Brennstoffzone	1 7 78 к
Temp. der äußeren Brennstoffzone	1219 K
Hüllrohrtemperatur	765 K
Kerneintrittstemperatur	546 K
Leistung pro Stab	46,2 kW
Kühlmitteldurchsatz pro Kanal	31,62 g/s

Tab. 4.1.1 Thermohydraulische Daten eines Brennstabes mittlerer Leistung mit Kühlkanal im Betriebszustand

Für die spezifischen Wärmen des Brennstoffs beider Zonen und des Hüllrohrmaterials werden folgende Beziehungen verwendet.

Brennstoff: $c_p = 0,05275 \cdot T_B + 263,6 J/kg \cdot K$ Hüllmaterial: $c_p = 0,3349 \cdot T_H + 327,3 J/kg \cdot K$

Die Berechnung des Wärmestroms zwischen Hüllrohr und Kühlmittel wird mit der Wärmeübergangszahl

$$\alpha(t) = \frac{2 \cdot 0,023 \cdot Pr^{0,4}}{F^{0,8} \cdot d_{h}^{0,2}} \cdot \lambda \cdot \left(\frac{\dot{m}(t)}{\mu}\right)^{0,8} \qquad (W/cm^{2} \cdot K)$$

28

durchgeführt. Dabei ist:

F:	Freier Strömungsquerschnitt um den Brennstab (cm ²)
d _h :	hydraulischer Durchmesser des Kanals (cm)
m(t):	Kühlmitteldurchsatz pro Kanal (kg/s)
λ:	Wärmeleitfähigkeit des Kühlmittels = 2,92 • 10 ⁻⁶ T _k + 6,9 • 10 ⁻⁴
μ:	dynamische Zähigkeit des Kühlmittels (kg/cm • s) = 0,0413 • 10 ⁻⁷ T _k ^{0,68} kg/cm • s
Pr:	Prandtlzahl des Kühlmittels = 0,667

Die Bestimmung der Temperaturverteilung zum Disassembly-Umschaltpunkt erfordert eine Korrelation zwischen der Temperatur des oben betrachteten Brennstabes mittlerer Leistung und der Temperatur im höchstbelasteten Brennstab, weil in ihm zuerst die Umschalttemperatur von 3500 K erreicht wird. Dort wird entsprechend der Temperatur T_o = 3500 K der Enthalpiezuwachs ΔW nach folgender Formel berechnet.

$$\Delta W = \int_{T}^{T} c_{p}(T) dT + H_{m} + \int_{T}^{T} c_{p}(T) dt \qquad (4.1.2)$$

T mittlere Brennstofftemperatur im Normalbetrieb T_m Schmelzpunkt H_m Schmelzwärme c_p spezifische Wärme

Wir nehmen dabei an, daß die Aufheizung adiabat geschieht, d. h. daß sich nur der Brennstoff aufheizt und Kühlmittel und Hülle ihre Temperatur nicht ändern. Dieser so ermittelte Wert liefert, gewichtet mit der Leistungsdichteverteilung für Normalbetrieb, eine Enthalpiedichteverteilung, die wie (4.1.2) zusammengesetzt ist. Ausgehend von einer Temperaturverteilung T für Normalbetrieb (siehe <u>Tab. Bl</u> im Anhang B) wird aus dieser Verteilung die gesuchte Brennstofftemperaturverteilung T_o numerisch mit Hilfe (4.1.2) bestimmt. Angenommen wird hier, daß sich die Leistungsdichteverteilung während der Transiente auch über den promptkritischen Zustand hinaus nicht ändert. Berücksichtigt wird der Verbrauch von Schmelzwärme und eine temperaturabhängige spezifische Wärme. Oberhalb des Schmelzpunktes wird der Wert

$$c_{p} = 520 \text{ J/kg} \cdot \text{K}$$

und unterhalb des Schmelzpunktes die in <u>Abb. (4.1.3)</u> dargestellte Beziehung verwendet. Für den Schmelzpunkt und die Schmelzwärme werden dieselben Werte wie in der Brennstoffzustandsgleichung (siehe <u>Tab. 2.6.1</u>) verwendet.

Abb. 4.1.3 Spezifische Wärme von $(U_{0,8} P_{0,2})O_2$

Der Einsatz dieses punktkinetischen Einkanalmodells ist nur für erste Orientierungsrechnungen gerechtfertigt. Die Bereitstellung eines Predisassembly-Rechenprogramms speziell für Gasbrüter durch Anpassung von geeigneten Programmen der Natriumlinie ist von uns für 1976/77 geplant.

4.2 Rechenergebnisse

Die Ergebnisse der punktkinetischen Rechnung sind in <u>Abb. 4.2.1</u> dargestellt. Die Abbildung zeigt als Funktionen der Zeit die durch die Abschaltstabbewegung hervorgerufene Reaktivitätszufuhr, die verzögert einsetzende Dopplerrückwirkung, die resultierende Nettoreaktivität sowie die sich einstellenden Leistungsschwingungen. Der promptkritische Zustand wird 78 ms nach Beginn der Stabbeschleunigung erreicht. Der maximale Wert der Leistung beträgt etwa das 750 fache der Nennleistung.

Abb. 4.2.1 Reaktivitäten und Leistung in der Predisassemblyphase eines Abschaltstabauswurfstörfalls

<u>Abb. 4.2.2</u> zeigt als Ergebnis der Einkanalrechnung, umgerechnet auf den höchstbelasteten Brennstab, die Änderungen der mittleren Temperaturen in Brennstab, Hülle und Kühlmittel. Man sieht: Die Temperatur in Hülle und Kühlgas ändert sich praktisch nicht, d. h. die Aufheizung erfolgt adiabatisch. Bei 98 ms wird im höchstbelasteten Stab eine Brennstofftemperatur von 3500 K erreicht, der ein Sättigungsdampfdruck von Brennstoff von nahezu 1 b entspricht. Da dieser Druck das Kriterium (siehe Abschnitt 5) für die Umschaltung auf die Disassemblyphase erfüllt, ist 98 ms nach Beginn des Auswurfs die Pre-Disassemblyphase beendet.

Abb. 4.2.2 Mittlere Temperaturen im höchstbelasteten Brennstab mit Kühlkanal in der Predisassemblyphase eines Abschaltstabauswurfstörfalls.

Zu diesem Zeitpunkt beträgt die zugeführte Reaktivität 2,3 \$, die Dopplerrückwirkung - 1,2 \$ - sie entspricht einer mittleren Kerntemperatur von ca. 2370 K - so daß sich eine Nettoreaktivität von 1,034 \$ ergibt. Die Exkursionsenergie bis dahin ist etwa 16 000 MJ.

Die übrigen Ergebnisse der Pre-Disassembly-Rechnungen findet man im Anhang B: Mittlere Brennstofftemperaturen des Kerns und der Brutmäntel zum Disassembly-Umschaltpunkt für die KADIS-Rechenzellen. Außerdem die Dichten und Volumenanteile des Brennstoffs, die diesen Temperaturen entsprechen. <u>Abb. 4.2.3</u> zeigt eine axiale und eine radiale Traverse im Kernzentrum bzw. in der Mittelebene durch die Brennstofftemperaturverteilung.

Abb. 4.2.3 Brennstofftemperaturprofil am Anfang der Disassemblyphase axial im Zentrum und radial in der Mittelebene

5. Ergebnisse der Disassembly-Rechnungen (Basisfall)

5.1 In diesem Abschnitt werden die KADIS-Ergebnisse zunächst für einen Basisfall, im nächsten Abschnitt dann für eine Reihe von Fällen, dargestellt, in denen Eingangsparameter im Sinne einer Sensitivitätsstudie variiert werden. Dabei beschränken sich die Parametervariationen auf die Disassemblyphase. Das Eingabepaket für die Disassemblyrechnungen, wie in den beiden vorangehenden Abschnitten zusammengestellt, entspricht dem Stabauswurf bei Vollast mit einer Leistungsverteilung am Zyklusanfang (Gleichgewichtszyklus). Im allgemeinen schaltet man um von der Predisassembly- auf die Diassemblyphase in dem Augenblick des Exkursionsgeschehens, wenn sich der Kern so aufgeheizt hat, daß ein merklicher Druckaufbau einsetzt. In unserem Fall wird als Umschalttemperatur 3500 K gewählt. Genauer: die Disassemblyrechnung beginnt, wenn die mittlere Brennstofftemperatur im heißesten Brennstab in der Kernmittelebene 3500 K beträgt. Wie aus der Abb. 2.5.3 (Druck versus Brennstofftemperatur) abgelesen werden kann, entspricht dieser Temperatur ein Brennstoffdampfdruck von etwa 1 b. Der Zeitpunkt für die Beendigung der Disassemblyrechnung ist dort zu suchen, wo die Energieerzeugung so langsam zunimmt, daß etwa 99 % der anhand des Leistungsverlaufs zu vermutenden Endenergie erreicht sind. In unseren Rechnungen ist diese Bedingung im allgemeinen erfüllt, wenn die Leistung unter 500 000 MW(th) absinkt.

5.2 Ergebnisse

Nach den Ausführungen im letzten Abschnitt liegt zum Umschaltzeitpunkt, 98 ms nach Beginn des Stabauswurfes, etwa folgende Anfangssituation für die Disassemblyphase vor:

Anfangsleistung n_o: 833400 MW (= 300 fache Nennleistung (th)) Anfangsreaktivität R_o: 1,034 \$ Reaktivitätsrampe A: 61,7 \$/s

Tab. 5.2.1 Disassembly-Anfangswerte (Basisfall)

Diese Anfangswerte ^{*)} zusammen mit den Daten aus den Abschnitten 3 und 4 - Dopplerkoeffizienten berechnet nach Methode 2 - definieren den Basisfall.

Die Ergebnisse der Disassemblyrechnungen für den Basisfall sind in den <u>Abbildungen 5.2.2 bis 5.2.9</u> und <u>Tab. 5.2.10</u> dargestellt. Die Gesamtleistung, in zeitlichem Verlauf zusammen mit der Energie in <u>Abb. 5.2.2</u> gezeigt, erhöht sich, steil ansteigend, auf das 9fache der Anfangsleistung n_o, bevor die Dopplerrückwirkung die Leistung in ein Maximum bei 1,7 ms zwingt und sie anschließend zunächst steil, dann flacher abfallen läßt. Bis zum Erreichen der Stopbedingung, n(t) < 500 000 MW, werden während der Disassemblyphase an nuklearer Energie etwa 21000 MJ erzeugt.

Abb. 5.2.2 Leistung und Energie (Basisfall)

Die Zeitgeschichte der verschiedenen Reaktivitätsbeiträge enthält <u>Abb. 5.2.3.</u> Der Dopplereffekt dominiert bis etwa 4 ms, wo bereits über 90 % der während der Kernzerlegungsphase erzeugten Energie freigesetzt sind. Die anschließend stark zurückwirkende Materialverschiebung schaltet den Reaktor bei 4,8 ms ab; sie verteilt sich im übrigen zu gleichen Teilen auf die radiale und axiale Richtung.

") In der Disassemblyphase beginnt die Zeitrechnung wieder bei t = 0. "Anfangs-" bedeutet den Anfang der Disassemblyphase.

35

bly-Rechnung (Basisfall)

30-0

20-0 40-0 50-0 80-0 100-0 120-0 140-0 150-0 190-0

r,cm

Die Nettoreaktivität nimmt nach einem kaum erkennbaren Maximum bei 0,1 ms monoton ab. Die Marken 'prompt kritisch' und 'kritisch' liegen bei 0,7 bzw. 4,7 ms.

Abb. 5.2.4 zeigt, daß zu Beginn der Disassemblyphase schon fast 14000 kg Brennstoff, das sind 50 % der Brennstoffmasse des Kerns geschmolzen und die Energie des geschmolzenen Brennstoffs ~ 5000 MJ beträgt. Im weiteren Verlauf der Exkursion wird der Kern fast vollständig aufgeschmolzen und auf eine mittlere Temperatur von über 4400 K gebracht. Die Energie des geschmolzenen Brennstoffs (siehe Formel 2.6.2) beträgt am Ende etwa 24000 MJ. Im Unterschied zur berechneten Energieausbeute von 21000 MJ ist in dem Wert der Energie des geschmolzenen Brennstoffs kraft Formel (2.6.2) die Pre-Disassemblyphase berücksichtigt.

In <u>Abb. 5.2.5</u> ist das Lagrange-Gitter, das den KADIS-Bedingungen zugrunde liegt, am Ende der Rechnung gezeichnet. Die größten Deformationen treten in der 4. Anreicherungszone auf.

Eine genauere Betrachtung der Ergebnisse im Anhang C <u>(C1-C4)</u> zeigt, daß die größten radialen Geschwindigkeiten und Verschiebungen in den äußeren Kernzonen vorkommen. An den Innengrenzen der 2., 3. und 4. Anreicherungszone treten sogar nach innen gerichtete Bewegungen auf. Die geringsten Geschwindigkeiten und Verschiebungen ergeben sich für die 1. Anreicherungszone.

Als Ursache hierfür ist die Form der Leistungsverteilung in radialer Richtung anzusehen. Im Inneren des Kerns, besonders in der 1. Anreicherungszone, ist die Leistungsdichteverteilung sehr flach, so daß sich da nur geringe Leistungs- und damit Druckgradienten ergeben. In den äußeren Anreicherungszonen sind wesentlich größere Leistungsgradienten vorhanden, so daß dort durch die entsprechenden Druckgradienten die Bewegung leichter eingeleitet werden kann. Die an inneren Grenzen auftretenden nach innen gerichteten Bewegungen sind mit den an den Grenzen der Anreicherungszonen auftretenden Leistungssprüngen erklärbar. Die axialen Bewegungen erreichen ihre größten Werte im oberen und unteren Viertel des Kerns. Auch hier ist die zunächst ziemlich flache Leistungsdichteverteilung in der Kernmitte und der sich anschließende Leistungsdichteabfall als Ursache anzusehen.

Die Kurven (5.2.6) bis (5.2.9) zeigen den zeitlichen Verlauf von Temperatur und Druck an einigen ausgewählten Stellen des Kerns. Die Positionen sind in folgender Tabelle spezifiziert:

Gitterzelle	R, cm	Z, cm	Lage
(2,17)	0.0	136	Kernzentrum
(15,17)	128	136	Zwischen 3. & 4. Anreicherungs-
			zone
(16,17)	137	136	4. Anreicherungszone
(16,25)	137	197	4. Anreicherungszone
			am oberen Brutmantel

Im Kernzentrum (Abb. 5.2.6) haben wir zwischen Druck und Temperatur genau die Dampfdruckbeziehung (2.5.2) (vergleiche Abb. (2.5.3)); am Ende herrscht dort entsprechend der Temperatur von nahezu 5600 K ein Brennstoffpartialdampfdruck von 143 b. Aus der nächsten Abb. (2.5.7) ersehen wir dagegen, daß zwischen den beiden äußeren Anreicherungszonen gegen Ende der Rechnung ein einphasiger Druck von etwa 4000 b infolge starker Kompression auftritt, der jedoch sehr schnell wieder verschwindet. Alle gezeichneten Druckkurven sind Totaldruckkurven, die den fiktiven pseudo-viskosen Druck enthalten. Normalerweise ist dieser um Größenordnungen kleiner als der eigentliche Druck, anders ist es bei extrem großer Kompressionsgeschwindigkeit. Dann nimmt er Werte an, die mit dem eigentlichen Druck vergleichbar sind. Das letztere trifft auf die Zelle (15, 17) zu; vor der Spitze des einphasigen Druckes liegt der Totaldruck deutlich höher als nach der Spitze. Die Druck- und Temperaturkurve im Zentrum der 4. Anreicherungszone (Abb. (2.5.8)) bietet einen ähn-

Abb. 2.5.6 Temperatur- und Druckverlauf im Kernzentrum

Abb. 2.5.7 Temperatur- und Druckverlauf zwischen 3. und 4. Anreicherungszone

Abb. 2.5.8 Temperatur- und Druckverlauf in 4. Anreicherungszone

Abb. 2.5.9 Temperatur- und Druckverlauf in 4. Anreicherungszone am oberen Brutmantel

,

lichen Verlauf wie im Kernzentrum. In der Zelle (16, 25) liegt die Anfangstemperatur unter dem Schmelzpunkt, weswegen wir in <u>Abb. 2.5.9</u> einen deutlichen Schmelzbereich sehen, wo Druck und Temperatur stagnieren bis aller Brennstoff der Zelle aufgeschmolzen ist. Die heißeste Stelle mit dem höchsten Druck ist (13, 17) und liegt genau da, wo die Leistungsverteilung ihr Maximum hat (vergleiche <u>Tab. C8 mit Tab. A7</u>). Die wesentlichen Ergebniszahlen der Rechnung des Basisfalles sind noch einmal in folgender Tabelle zusammengefaßt:

5,7 ms	Disassemblydauer (Leistung <u>></u> 500 000 MW)
329	Anzahl der Zeitschritte
20 869 MJ	Energiefreisetzung während der Kernzerlegung
24 153 MJ	Energieinhalt des geschmolzenen Brennstoffs
27 608 kg	Masse des geschmolzenen Brennstoffs
4430 K 🛪	Mittlere Temperatur des geschmolzenen Brenn- stoffs
5611 K	Maximale Temperatur
1910 в 🗶	Maximaler Druck
47 m/s *	Maximale radiale Geschwindigkeit
37 m/s *	Maximale axiale Geschwindigkeit
9 cm	Maximale radiale Verschiebung
4 cm	Maximale axiale Verschiebung
7 881 357 MW	Maximale Gesamtleistung
4457 Ъ	Maximaler Druck

* im letzten Rechenzyklus

Tab. 5.2.10 Ergebnisse-Basisfall

Während bei KADIS der zu berechnende Bereich nur Kern und Brutmantel umfaßt, berechnet das Tankbelastungsprogramm ARES /1974b/ die Druckwellenausbreitung im gesamten Spannbetonbehälter unter Beachtung der elastisch-plastischen Eigenschaften des 'Liners' und der Außenschale. Dazu geht ARES von denselben Anfangsbedingungen für die geometrischen und thermodynamischen Größen aus. Es rechnet die Diassemblyphase noch einmal und benützt den in KADIS berechneten Leistungsverlauf als Energiequelle für den Druckaufbau.

Verschiedene ARES-Rechnungen ergeben, daß für die Stahlstrukturen der elastische Bereich des Spannungs-Dehnungs-Diagramms nur unwesentlich verlassen wird und daß infolge der geringen Dehnungen (0,3 %) eines fiktiven Außentanks, der die Spannkabel simulieren soll, auch für den Beton Beschädigungen bei dieser Leistungsexkursion nicht zu erwarten sind. Die Schwere der Exkursion ist durch eine andere Zahl charakterisiert: 24153 MJ in 27608 kg geschmolzenem Brennstoff (= 0,87 MJ/kg),*) eine Kernschmelze mit einer mittleren Temperatur von 4430 K, die durch passive Sicherheitseinrichtungen beherrscht sein will.

Zur numerischen Stabilität der KADIS-Rechnung noch folgendes: Wie der Tabelle zu entnehmen ist, beträgt die mittlere Zeitschrittlänge 17 µs. Nach genauerer Einsicht des Rechenprotokolls stellt man fest, daß fast während der ganzen Rechnung (von 0,3 bis 4,9 ms) mit der als Maximum vorgegebenen Zeitschrittlänge von 20 µs gerechnet wird. Nur am Anfang, infolge des sehr steilen Leistungsgradienten und gegen Ende wegen merklicher Gitterverzerrung, sind kürzere Zeitschritte notwendig, jedoch nicht kleinere als 5 µs.

^{*)} Ähnliche Werte (zwischen 0,64 und 0,90 MJ/kg) wurden bei der Analyse von vergleichbaren Rampenunfällen beim Natriumbrüter SNR 300 für den Mark Ia-Kern gefunden /1974f/.

6. Parametervariationen

6.1 Gehen wir davon aus, daß Leistungs- und Reaktivitätsverlauf während der Einleitungsphase der Exkursion und der Umschaltpunkt zur Diassemblyphase nur grob bestimmt werden können, dann ergibt sich daraus eine gewisse Unsicherheit hinsichtlich der Anfangsbedingungen für die Kernzerlegungsphase. Deshalb ist es nützlich, mit Intervallen zu rechnen, d. h. die betreffenden Eingangsparameter zu variieren. Ohne Rücksicht auf die Tatsache, daß sich die Disassemblyanfangsbedingungen in komplexer Weise aus dem Geschehen in der Predisassemblyphase ergeben, werden die Parameter unabhängig von ihrer Vorgeschichte und deren Einfluß auf andere Größen der Exkursion nur für die KADIS-Rechnung variiert. Eine Sensitivitätsstudie, die die Variationen vom Unfallbeginn bis zu den Behälterbelastungsrechnungen konsistent durchzieht, wäre wünschenswert, kann aber zur Zeit noch nicht durchgeführt werden. Bei unseren wenigen Parametervariationen erkennt man aber doch schon, welche Eingangsgrößen besonders einflußreich sind und bei ihrer Wertzuweisung besondere Sorgfalt erfordern. Bevor wir zu den Variationen der Anfangsbedingungen kommen, sollen noch KADIS-Ergebnisse mitgeteilt werden, die die Dopplerkoeffizienten und die Zustandsgleichung betreffen.

Wie im Abschnitt 3.3 näher beschrieben, haben wir zwei Doppler-Parametersätze zur Verfügung, nach Methode I ein globales Temperaturgesetz mit regionalen Wichtungsfaktoren und nach Methode 2 regional verschiedene Temperaturgesetze mit einheitlicher Wichtung. Bei den Rechenfällen mit variiertem Reaktivitätseinsatz wurde der erste Satz verwendet, alle übrigen Rechnungen wurden mit dem 2. Satz ausgeführt. Der Basisfall wurde mit beiden Sätzen gerechnet, um bei den Variationen mit den entsprechenden Ergebniswerten vergleichen zu können. Die Hauptergebnisse dieser beiden Rechnungen erscheinen in der folgenden Tabelle als Relativwerte bezogen auf den Wert, der mit dem 2. Satz errechnet wurde. Die Bezeichnungen sind in <u>Abb. 6.2.2</u> erklärt.

t	0,939	T	1,027
n max	1,118	P	1,298
E	1,071	u max	1,156
E [★]	1,058	v max	1,205
M [*]	1,012	Δr_{max}	0,941
T *	1,021	Δz_{max}	0,931
T _{max}	1,027		

Tabelle 6.1.1: Vergleich der beiden Doppler-Parametersätze für den Basisfall

Die Ergebnistabelle weist deutliche Unterschiede aus, die auf die im ganzen schwächere Doppler-Rückwirkung im Falle der Verwendung des 1. Satzes zurückzuführen ist (siehe <u>Abb. 6.1.2</u>). In der Energiefreisetzung ergibt sich ein Unterschied von ~ 7 %.

Abb. 6.1.2 Vergleich zweier Doppler-Parametersätze (Basisfall)

Was schließlich die Zustandsgleichung angeht, so wurden alle Rechnungen mit der normalen, dichteabhängigen Zustandsgleichung, wie sie im Abschnitt 2.5 beschrieben ist, gerechnet. Für den Basisfall erbrachte eine Vergleichsrechnung, die die Dampfdruckbeziehung (2.5.2) anstelle von (2.5.6) verwendet, nahezu identische Ergebnisse. Daraus folgt, daß für die betrachtete Exkursion, die einphasigen Flüssigkeitsdrücke keine Rolle spielen, was auch aufgrund des relativ hohen Heliumvolumenanteils, der als Leervolumenanteil in der vorgenommenen Modellierung verwendet wird, des Kerns verständlich ist.

6.2 Reaktivitätseinsatz und Leistungsniveau

Wir beginnen mit den Variationen der Eingangsgrößen, Anfangsreaktivität R_o, Rampensteilheit A und Anfangsleistungsniveau n_o. Das zeitliche Verhalten von Leistung, Energie, Reaktivität, Druck und Temperatur stellt sich in diesen Fällen als qualitativ gleich wie im Basisfall heraus. Deshalb verzichten wir auf die zeitabhängigen Kurven und beschränken uns auf den Vergleich der Schlüsselergebnisse, die in Tab. 6.2.1 und den Abbn. 6.2.2 bis 6.2.4 grafisch dargestellt sind. Die angegebenen Zahlen sind Relativwerte bezogen auf die Werte des Basisfalles (siehe Tab. 5.2.10). Am durchschlagensten ist mit Abstand die Veränderung der Anfangsreaktivität.* Dann folgen die Variationen der Leistung und der Rampensteilheit. Man entnimmt den Grafiken, daß aus 3,5 % mehr Reaktivität, einer 20 %- höheren Leistung oder einer 30 %- steileren Rampe als beim Basisfall jeweils ein 5 %iger Zuwachs der Energiefreisetzung E resultiert. Die Zuwachsraten von E und E^{*}, der Energie im geschmolzenen Brennstoff, liegen dicht beieinander. E wächst stärker als E^{*}, weil die PdV-Arbeit stärker als E zunimmt, sichtbar an den gestrichelten Δr_{max} - und Δz_{max} Geradenstücken. Abgesehen von den Geschwindigkeitsmaxima u max, v max am Ende der Rechnung, die stark von den auftretenden, einphasigen Drücken abhängen, sprechen von den ausgewählten Größen die maximale Leistung n und der Druck P im Kernzentrum am stärksten, die Masse M^{*} des geschmolzenen Brennstoffs am schwächsten auf die Wertverände-

^{*)} Man beachte, daß hier <u>nicht</u> die prompte Reaktivität $R-\beta$ gemeint ist.

Variation	der Anf reaktiv	angs- vität R _o		der Ran steilhe	mpen- eit A		der Anfan	gsleistun	^{ig n} o		
R	0,934	0,967	1,033	1	1	1	1	1	1	1	1
A	1	1	1	0,5	2,0	1	1	1	1	1	1
n _o	1	1	1	1	1	0,667	1,333	1,667	2,00	2,333	2,667
Ī	1	1	1	1	1	1	1	1	1	1	1
t	1,141	1,069	0,933	1,071	0,861	1,017	0,966	0,948	0,948	0,931	0,914
n _{max}	0,760	0,870	1,149	0,856	1,414	0,843	1,148	1,288	1,420	1,548	1,670
Е	0,932	0,963	1,046	0,913	1,201	0,919	1,070	1,131	1,187	1,237	1,283
E [★]	0,945	0,971	1,036	0,913	1,167	0,934	1,057	1,107	1,152	1,193	1,233
м ^ж	0,988	0,994	1,007	0,985	1,023	0,987	1,011	1,020	1,026	1,031	1,035
ī *	0,979	0,989	1,023	0,973	1,063	0,971	1,021	1,039	1,056	1,071	1,086
T _{max}	0,974	0,986	1,016	0,966	1,076	0,970	1,016	1,048	1,068	1,086	1,104
Ť	0,976	0,986	1,016	0,965	1,076	0,970	1,027	1,050	1,070	1,088	1,105
P	0,765	0,882	1,118	0,706	1,882	0,733	1,267	1,533	1,800	2,067	2,333
u _{max}	0,870	0,928	1,081	0,810	1,447	0,809	0,860	0,823	0.872	0,940	1,111
v _{max}	0,838	0,903	1,077	0,772	1,695	0,546	1,114	1,374	1,382	1,965	2,052
∆r _{max}	-	-	-	0,688	1,063	0,723	1,202	1,351	1,457	1,585	1,691
∆z _{max}			-	0,704	1,111	0,823	1,294	1,494	1,667	1,922	2,176
Fallbez.	Rl	R2	R3	AI	A2	N2	N4	N5	N6	N7	N8

Tab. 6.2.1: Variation der Anfangsbedingungen - Ergebnisse

46

.

Abb. 6.2.2 Variation der Anfangsreaktivität

rung der drei Eingabegrößen an. P steigt stärker als n_{max} genau dann, wenn die dem Druck entsprechende Temperatur T stärker als die mittlere Temperatur des geschmolzenen Brennstoffs T * zunimmt.

Wir wollen weitere Deutungen der Grafiken dem Leser überlassen und stellen zusammenfassend zu diesen Variationen fest: Nehmen wir als Unsicherheit 3 & Reaktivität, 30 \$/s Rampensteilheit und den Faktor 2 bei der Leistung sowie eine vollständige Unabhängigkeit der Eingangsgrößen voneinander an, so bleibt der Zuwachs der in der Disassemblyphase freigesetzten Energie unter 5 %, 10 % respektive 20 %.

Abb. 6.2.3 Variation der Anfangsleistung

Abb. 6.2.4 Variation der Rampensteilheit

'6.3 Anfangstemperatur_

Ähnlich wie bei der Leistung variieren wir nur das Temperaturniveau, d.h. die mittlere Anfangstemperatur. Die Form der Temperaturverteilung wird dabei nicht verändert. Die Variation besteht darin, daß das Temperaturfeld mit einem Faktor multipliziert wird. Die Faktoren werden so justiert, daß die Anfangstemperatur im Kernzentrum die Werte 3300, 3400, 3450, 3550, 3600 und 3700 K annimmt. In den Variationen T1 bis T4 mit erniedrigter Anfangstemperatur lassen sich die Ergebnisse erklären (siehe <u>Tab. 6.3.1</u> und <u>Abb. 6.3.2</u>) mit der veränderten Doppler-Rückwirkung. Der Dopplerkoeffizient $\frac{dk}{dT}$ (vergleiche Formel(2.8.1))ist bei niedrigerer Temperatur größer.

Abb. 6.3.2 Variation der Anfangstemperatur

Das führt bei niedrigerer Anfangstemperatur zu einer stärkeren Doppler-Rückwirkung und damit zu einer niedrigeren Leistungsspitze (siehe <u>Abb. 6.3.3</u>) und geringeren Drücken. Dies verlängert die Disassemblyzeit und vergrößert die Energieausbeute. Die Energie des geschmolzenen Brennstoffs ist jedoch kleiner, weil bei niedrigerer Temperatur abgeschaltet wird.

Die Fälle T5 und T6 sind gesondert zu betrachten, weil beim Übergang von 3550 zu 3600 K Zentraltemperatur, d.h. von Fall T4 zu T5, ein etwa 50%-iger Sprung in der Masse des geschmolzenen Brennstoffs eintritt. Die Nichtbeachtung des Verbrauchs von Schmelzwärme bei der

Ī.	0,943	0,971	0,986	1,014	1,029	1,057
t	1,140	1,070	1,035	0,982	1,035	0,982
n _{max}	0,927	0,945	0,969	1,005	0,889	0,896
Е	1,055	1,020	1,008	0,983	0,915	0,888
E [★]	0,914	0,959	0,978	1,023	1,080	1,121
M [*]	0,981	0,989	0,994	1,004	1,000	1,010
E [*] ~E	0,993	0,991	0,994	0,996	0,930	0,912
M*-M*	1,199	1,050	1,023	0,922	0,354	0,277
Ī [*]	0,969	0,986	0,993	1,009	1,036	1,050
Tmax	0,986	0,990	0,994	1,002	0,986	0,993
Ť	0,985	0,990	0,994	1,003	0,986	0,994
Р	0,867	0,909	0,951	1,028	0,874	0,944
u _{max}	0,760	0,920	0,985	1,079	0,983	1,017
v _{max}	1,073	0,992	1,022	1,030	0,886	0,878
Δr_{max}	1,024	1,012	1,000	1,000	0,976	0,953
Δz_{max}	1,500	1,340	1,068	1,000	1,000	1,000
E [*]	0,643	0,848	0,924	1,115	1,589	1,827
М [*] о	0,761	0,929	0,966	1,086	1,648	1,744
Fallbez.	Tl	Τ2	T3	Τ4	T5	Т6

Tab. 6.3.1: Variation der Anfangstemperatur - Ergebnisse

Abb. 6.3.3 Reaktivitätsrückwirkungen und Leistungsverlauf bei niedrigerer Anfangstemperatur

Abb. 6.3.4 Reaktivitätsrückwirkungen und Leistungsverlauf bei höherer Anfangstemperatur

Heraufsetzung der Anfangstemperatur hat zur Folge, daß die Leistungs- und Temperaturverteilung nicht mehr zusammenpassen.

Die Ergebnisse für T5 und T6 zeigen, für sich betrachtet, etwa dieselbe Tendenz wie bei den bereits betrachteten Fällen T1 bis T4, aber aus anderen Gründen. Die Temperaturabhängigkeit des Dopplerkoeffizienten ist bei der höheren Temperatur schwächer und fällt weniger ins Gewicht. Dagegen sind die Druckgradientenunterschiede schon zu Anfang höher infolge der höheren Temperaturniveaus. Folglich läuft die Zerlegungsphase schneller ab (siehe <u>Abb. 6.3.4</u>) und es wird weniger Energie freigesetzt. Abschließend ist zu sagen: Die Energieerzeugung nimmt mit steigender Anfangstemperatur ab, und zwar nahezu im gleichen Verhältnis. Die mittlere Temperatur der Schmelze, in der die sich stark ändernde Anfangsnergie E_0^{\star} natürlich enthalten ist. Die Abhängigkeit der Ergebnisse von der Temperaturvariation nimmt mit steigender Anfangstemperatur ab.

6.4 Bewegungsunterdrückung in radialer Richtung

Wie schon erwähnt, gestattet KADIS, eine Hemmung radialer Bewegungen aufgrund teilweise intakter Subassembly-Strukturen zu simulieren. Dies erreicht das Programm dadurch, daß es die radiale Bewegung eines Gitterzellenrandes solange zurückhält, bis die Druckdifferenz quer zu diesem Rand einen global vorgebbaren Schwellenwert übersteigt. Nach dem dies geschehen ist, kann sich der Zellenrand für den Rest der Rechnung frei bewegen. Die folgende Tabelle enthält die Relativergebnisse für eine 20b-Schwelle und die totale Unterdrückung radialer Bewegung.

Man erkennt, daß diese Modellvariante keinen großen Einfluß auf die Ergebnisse hat. Selbst bei totaler Unterdrückung radialer Bewegungen bleibt der Zuwachs an freigesetzter Energie unter 8 %.

53

Druckschwelle	20ъ	©
t	1,004	1,136
n _{max}	1,005	1,002
E	1,024	1,076
E ^荣	1,019	1,062
M [*]	1,004	1,012
T *	1,007	1,022
T _{max}	1,009	1,029
u _{max}	1,065	0
v _{max}	1,045	1,455
Δr_{max}	1,000	0
Δz_{max}	1,000	1,263
Fallbez.	Pl	P2

Tab. 6.4.1: Hemmung radialer Bewegung - Vergleich mit dem Basisfall

Zur Erklärung dieses geringen Zuwachses erinnern wir an die im Abschnitt (5.2) nachgewiesene Tatsache, daß 90 % der Energie schon freigesetzt sind, bevor die Bewegungsrückwirkungen überhaupt eine Rolle spielen. Der Energiezuwachs entsteht also an der fallenden Flanke des Leistungsverlaufs. Hinzu kommt noch, daß der axiale Anteil der Disassembly-Rückwirkung verhältnismäßig groß ist, etwas größer als der radiale Anteil im Basisfall.

7. Schluß

Die in diesem Bericht untersuchte überpromptkritische Leistungsexkursion im GSB-1, hervorgerufen durch den extrem unwahrscheinlichen Auswurf eines vergessenen Abschaltstabes, wird laut Rechnung 102,7 ms nach Beginn des Stabauswurfs durch Erreichen der Unterkritikalität beendet. Die Umschaltung von der Pre-Disassemblyphase auf die Disassemblyphase erfolgt nach 98 ms, bei einer Temperatur von 3500 K im heißesten Brennstab. 1,7 ms nach der Umschaltung schnellt die Gesamtleitung auf das 2700-fache der Nennleistung, bevor die Reaktivitätsrückwirkungen die durch den ausschießenden Abschaltstab verursachte Rampe von etwa 60 \$/s kompensieren. Die gesamte Exkursionsenergie beträgt etwa 37 000 MJ, davon entfallen 21000 MJ auf die nur 5,7 ms dauernde Disassemblyphase. Am Ende der Rechnung sind 97 % des Kerninventars geschmolzen. Die Energie des geschmolzenen Brennstoffs beträgt 24 000 MJ, was einer mittleren, spezifischen Energie der Brennstoffschmelze von 0,87 MJ/kg entspricht. Rechnungen mit dem Tankbelastungsprogramm ARES ergeben, daß diese Energiefreisetzung nur zu einer 0,3 %igen Dehnung der Spannkabel führt. Es kann ausgeschlossen werden, daß der Spannbetonbehälter durch diese Exkursion schwer beschädigt wird.

Die Disassemblyrechnungen zeigen: Die Dopplerrückwirkung begrenzt die Energieausbeute, während die Materialbewegungsrückwirkung für die nukleare Abschaltung sorgt. Im übrigen beeinflußt die Dopplerrückwirkung die Energieausbeute relativ stark. Die Hemmung radialer Materialbewegungen zur Simulation intakter Subassemblystrukturen hat nur geringen Einfluß auf die Energieausbeute.

Die Parametervariationen beschränken sich auf einige Anfangsbedingungen der Disassemblyphase: Leistungsniveau, Nettoreaktivität, Reaktivitätsrampe und mittlere Temperatur zum Umschaltpunkt. Obwohl die Empfindlichkeit der Disassembly-Ergebnisse gegen die Anfangsreaktivität groß ist, ist hier eine große Fehlerquelle – eine Bestimmung der Anfangsreaktivität auf wenige ¢ genau einmal angenommen – nicht zu befürchten. Die Sensitivität gegen die Anfangsleistung und Rampensteilheit ist zwar viel geringer, dafür sind diese Größen in der Einleitungsphase

55

aber weniger genau bestimmbar, was dann insgesamt größere Unsicherheiten zur Folge hat. Nimmt die Energieausbeute mit größeren Anfangswerten für Reaktivität, Leistung und Rampensteilheit zu, so ist es bei der Temperatur umgekehrt. Ihr Einfluß ist im übrigen gering.

Die den verwendeten Rechenprogrammen zugrunde liegenden physikalischen Modelle sind relativ einfach, aber für den Abschaltstabauswurfstörfall noch ausreichend. Für weitergehende Untersuchungen und im Hinblick auf andere Anwendungen, z. B. Kühlungsstörungen, sind die Modelle verbesserungsbedürftig. Betroffen ist vor allem die Pre-Disassemblyphase. Dort ist eine Mehrkanaldarstellung mit ortsabhängiger Neutronik notwendig. In beiden Phasen ist der Abbrandzustand der Brennstäbe zu berücksichtigen, was sich in der Disassemblyphase besonders auf die Druckberechnung auswirkt. Im Falle des Abschaltstabauswurfs beispielsweise ergeben KADIS-Rechnungen unter Berücksichtigung von Spaltprodukt-, insbesondere Spaltedelgasdrücken, eine Reduzierung der Energieausbeute um 40 % bei einem mittleren Abbrand von 5 %. Bei künftigen Modellverbesserungen wird es allerdings nicht immer leicht sein, die richtigen Stellen herauszufinden, wo die Modelle zu detaillieren sind, um eine gleichmäßige Annäherung an die physikalische Wirklichkeit zu erreichen.

Anhang A

Tabellen zu den vorbereitenden neutronenphysikalischen Rechnungen

- Al Referenzreaktor GSB-1 im Gleichgewichtszyklus
- A2 Teilchendichten für Gleichgewichtszyklus am Zyklusanfang
- A3 Material-Reaktivitätswerte
- A4 Doppler-Parameter
- A5 Zerfallskonstanten und Anteile verzögerter Neutronen aus Schnellspaltung
- A6 Spektren verzögerter Neutronen
- A7 Normierte Leistungsdichteverteilung

Tab. Al Referenzreaktor	GSB-1 im	Gleichgewichtszyklus
-------------------------	----------	----------------------

Reaktorgeometrie:

Radi	len	der	Ar	reicherun	gszo	onen:	
Rl	3 2	14,0)4	cm			
R ₂	1 11	103,	7	cm			
R3	132 1	133,	3	cm			
R ₄	5	148,	1	cm			
$\frac{\text{Kernhöhe}}{\text{Kerndurchmersen}} = 0,5$							
Brut	man	teld	lic	ken:			
Radi	ale	r Br	ut	mantel	50	cm	
Axia	ler	Bru	ιtπ	antel	60	cm	

Anreicherung Pu spaltbar:

l.Zone		10,34	%	
2.Zone		11,02	%	
3.Zone		12,56	7	
4.Zone		18,20	%	
Mittlere	Anreicherung	12,71	%	

Leistung:

Thermische Gesamt-	
leistung	2778 MW
Kernleistung	2643,8 MW ^{*)}
Spaltstoffbelastung	0,733 MW/kg
Schwermetallbelastung	0,093 MW/kg
Leistungsdichte Kern	259,1 W/cm3
Stableistung maximal	430 W/cm

Volumenanteile:

Kern	und	axialer	Brutmante1:
Brenn	nstoi	Ef	0,34649
Strul	ctur	naterial	0,16909
Heliu	m		0,48442
Radia	aler	Brutman	tel:
Bruts	stof	E	0,576
Struk	cturr	naterial	0,183
Heliu	ım		0,241

Schwermetallinventar:

Spaltstoff (Pu 39 & Pu 41), Kern	3609 kg 🛪)
Spaltstoff, gesamt	3980 kg 🙁
Schwermetall, Kern	28398 kg
Schwermetall, radialer Brutmantel	73270 kg
Schwermetall, axialer Brutmantel	24998 kg
Schwermetall, gesamt	126666 kg

Isotopenvektor:

Pu 39, 40, 41, 42 frisch: 0,7787 / 0,1863 / 0,0278 / 0,0072

U 35, 38 frisch: 0,002 / 0,998

*) Zyklusanfang

Tab.Al

Brutraten:

Kern	0,885
axialer Brutmantel	0,195
radialer Brutmantel	0,310
Gesamt	1,39

Reaktivitäten:

Reaktivitätshub per Zyklus	- 0,4 \$
Heliumverlustreaktivitä	it 1,25 \$
Reaktivitätsbedarf für Regelstabsystem	9,0 \$
Regelstäbe 12 x	0,83 \$
Abschaltstäbe 2 x 3 x	3,3 \$
Dopplerkoeff 0,0064	$\left(\frac{T}{k} \frac{\partial k}{\partial T}\right)$
Heliumdichtekoeff.+2,80	$5 \left(\frac{T^2}{k}\frac{\partial k}{\partial T}\right)$
Kernausdehnungs- koeff4,6·10 ⁻⁶	$\frac{1}{k} \frac{\partial k}{\partial T}$)

Brennelement:

Anzahl der Brenn- elemente	2 05
Schlüsselweite	18,9 cm
Wandstärke	0,4 cm
Anzahl der Brennstäbe	271
Spalt zwischen den Kästen	0,8 cm

Kühlung:

Maximaler Kühl- mitteldruck	120 bar
Kühlmitteldurchsatz, Kern	1 73 0 kg/sec
Gesamtdruckverlust im Primärkreislauf	6 bar
Gebläseleistung	136 MW

Temperaturen:

Reaktoreintrittstemp.	546 K
Aufheizspanne Kern	281 K
Aufheizspanne, axialer Brutmantel	14 K
Maximale Temperatur in Hüllrohrmitte, nominell	903 K
Maximale Brennstoff- temperatur, nominell	2773 к

Brennstab:

Außendurchmesser	0,82 cm
Hüllrohrwandstärke	0,053 cm
Durchmesser der Brenn- stoff-Pellets	0,7 cm
Pelletdichte in % der theoret. Dichte	89
Schmierdichte in % der theoret.Dichte	83

Isotope	Zone l	Zone 2	Zone 3	Zone 4	Zone 5	Zone 6	Zone 7
в 10	`	. 128	9-5 ^{†)}	and the second	.1289-5	.13	95-5
B 11		.474	99-5		.47499-5	.51	41-5
C 12		.678	5-4		.6785-4	.73	44-4
Cr 52		.235	1-2		.2351-2	.25	45-2
Fe 56		.988	6-2		.9886-2	.10	69-1
He 4		.576	05-3		.57605-3	.28	66-3
Mo 96		.101	9-3		.1019-3	.11	03-3
Ni 59		. 208	2-2		.2082-2	.22	54-2
0 16		.141	5-1		.1415-1	.23	52-1
Si 28		.145	1-3		.1451-3	.15	70-3
Ti 48		.765	7-4		.7657-4	. 82	87-4
Pu 239	.7000-3	.74608-3	.85040-3	.12324-2	.44529-4	.68377-4	.13326-4
Pu 240	.16677-3	.17775-3	.20260-3	.29361-3	.16792-6	.3121-6	.1460-7
Pu 241	.2478-4	.2641-4	.3011-4	.4363-4	.4137-9	.8349-9	.3753-11
Pu 242	.6391-5	.6811-5	.7764-5	.1125-4	0	.7719-9	0
U 235	.12433-4	.1231-4	.1204-4	.1104-4	.1549-4	.2575-4	.2575-4
U 238	.6126-2	.6067-2	.5932-2	.5441-2	.7589-2	.1262-1	.1267-1
SSPg ≿)	.16304-3	.15970-3	.14717-3	.14217-3	.26053-5	.51327-5	.34322-6

Tab. A2 Teilchendichten für Gleichgewichtszyklus am Zyklusanfang (in 10²⁴ Atome pro cm³)

*) Spaltprodukte aus Spaltung von Pu 239

⁺⁾ Schreibweise: $.1289-5 = 0,1289 \cdot 10^{-5}$

Tab. A3 Lokale Störungskoeffizienten für eine 10 Zige Dichtestörung (Materialreaktivitätswerte) für GSB-1-Kern. Dimension: $1/cm^3$

INPUT MATERIAL WORTH FOR REGION 1

-0.115180-08	-0.115070-08	-0.11488D-08	-0.11444D-08	-0.11390D-08	-0.11309D-08
-0.112080-C8	-0.110720-08	-0.10906D-08	-0.10688D-08	-0.10409D-08	-0.10050D-08
-0.958070-09	-0.896340-09	-0.813190-09	-0.698580-09	-0.53465D-09	-0.34850D-09
-0.188690-09	-0.30024D-10	0.14850D-09	0.37085D-09	0.683110-09	
-0.487190-09	-0.486760-09	-0.485450-09	-0.483130-09	-0.47981D-09	-0.47519D-09
-0.469120-09	-0.46120D-09	-0.450950-09	-0.437680-09	-0.420490-09	-0.39813D-09
-0.36885D-C9	-0.330370-09	-0.279210-09	-0.211050-09	-0.120340-09	-0.17409D-10
0.77070-10	0.17318D-09	0.28131D-09	0.412900-09	0.58173D-09	
-0.239060-09	-0.23884D-C9	-0.237980-09	-0.236650-09	-0.23457D-09	-0.231800-09
-0.22800D-09	-0.22312D-09	-0.216670-09	-0.20838D-09	-0.19753D-09	-0.18349D-09
-0.165170-09	-0.141510-09	-0.111020-09	-0.727450-10	-0.266060-10	0.26974D-10
0.81665D-10	0.13931D-09	0.203530-09	0.277380-09	0.361320-09	
-0.798600-10	-0.79706D-10	-0.792510-10	-0.784560-10	-0.77318D-10	-0.756970-10
-0.73546D-10	-0.706790-10	-0.669340-10	-0.620320-10	-0.55698D-10	-0.47467D-10
-0.369220-10	-0.23528D-10	-0.686030-11	0.13349D-10	0.36810D-10	0.643770-10
0.93688D-10	0.12509D-09	0.159520-09	0.197500-09	0.23827D-09	
0.16869D-10	0.169570-10	0.171650-10	0.17554D-10	0.18108D-10	0.18943D-10
0.200240-10	0.21507D-10	0.234450-10	0.260310-10	0.293600-10	0.33680D-10
0.39141D-10	0.46006D-10	0.543270-10	0.64206D-10	0.754470-10	0.88689D-10
0.102910-09	0.118160-09	0.13450D-09	0.15193D-09	0.169880-09	
0.731750-10	0.73194D-10	0.732610-10	0.73382D-10	0.73578D-10	0.73863D-10
0.74263D-10	0.74836D-10	0.75612D-10	0.76680D-10	0.780780-10	0.799200-10
0.82269D-10	0.851620-10	0.88664D-10	0.927410-10	0.972980-10	0.102590-09
0.108200-09	0.11404D-09	0.120070-09	0.12612D-09	0.131960-09	
0.10485D-C9	0.10484D-09	0.104820-09	0.10477D-09	0.104720-09	0.10467D-09
0.10464D-C9	0.10463D-09	0.104580-09	0.10480D-09	0.105020-09	0.105360-09
0.10584D-09	0.10646D-09	0.107220-09	0.108070-09	0.10896D-09	0.10989D-09
0.11070D-C9	0.111310-09	0.11166D-09	0.111620-09	0.111070-09	
0.122270-09	0.12224D-09	0.122150-09	0.122010-09	0.121800-09	0.121550-09
0.121240-09	0.12088D-09	0.120480-09	0.12004D-09	0.119560-09	0.119020-09
0.11843D-C9	0.117760-09	0.116990-09	0.11608D-09	0.114980-09	0.113530-09
0.111730-09	0.109510-09	0.10680D-09	0.10354D-09	0.996520-10	
0.131590-09	0.13155D-C9	0.131430-09	0.131220-09	0.13093D-09	0.130550-09
0.13008D-09	0.12952D-09	0.128850-09	0.12808D-09	0.127190-09	0.12616D-09
0.12498D-C9	0.123600-09	0.12200D-09	0.12014D-09	0.117970-09	0.115260-09
0.112060-09	0.10834D-09	0.104030-09	0.991000-10	0.93508D-10	
0.13634D-(5	0.13629D-09	0.136150-09	0.13591D-09	0.135560-09	0.135120-09
0.13456D-C9	0.13389D-09	0.13308D-09	0.132130-09	0.131020-09	0.12973D-09
0.12823D-C9	0.12648D-09	0.124450-09	0.122100-09	0.11938D-09	0.116020-09
0.112120-09	0.10764D-09	0.102520-09	0.967560-10	0.90324D-10	
0.124050-09	0.124000-09	0.123860-09	0.123620-09	0.12329D-09	0.122850-09
0.122310-09	0.12164D-09	0.120840-09	0.11989D-09	0.11878D-09	0.11748D-09
0.11597D-C9	0.11420D-09	0.112160-09	0.10980D-09	0.10708D-09	0.10374D-09
0.998890-10	0.954990-10	0,905350-10	0.849830-10	0.788470-10	

R LATTICE (CM)

0.0 0.4630D+01 0.9250D+01 0.1388D+02 0.1851D+02 0.2314D+02 0.2776D+02 0.3239D+02 0.3702D+02 0.4165D+02 0.4627D+02 0.5090D+02 0.5553D+02 0.6016D+02 0.6478D+02 0.6941D+02 0.7404D+02 0.7898D+02 0.8393D+02 0.8887D+02 0.9381D+02 0.9876D+02 0.1037D+03

Z LATTICE (CH)

0.2081D+03 0.2141D+03 0.2201D+03 0.2261D+03 0.2321D+03 0.2381D+03 0.2441D+03 0.2501D+03 0.2561D+03 0.2621D+03 0.2681D+03

INPUT MATERIAL WORTH FOR REGION 2

0.68311D-C9	0.10104D-08	0.126770-08	0 .14 849D-08	0 .16915D-0 8	0.19163D-08
0.225400-08	0.25259D-08	0.266930-08	0.26566D-08	0.254230-08	
0.58173D-09	0.752300-09	0.892340-09	0.10148D-08	0.113310-08	0.12614D-08
0.141880-08	0.15121D-08	0.153350-08	0.14785D-08	0.13786D-08	
0.36132D-C9	0.445870-09	0.522900-09	0.593090-09	0.659380-09	0.723250-09
0.780800-09	0.805820-09	0.805420-09	0.77787D-09	0.740660-09	
0.238270-09	0.279000-09	0.317160-09	0.35197D-09	0.383210-09	0.409880-09
0.428730-09	0.43384D-C9	0.429230-09	0.415170-09	0.398840-09	
0.169880-09	0.187400-09	0.203480-09	0.217520-09	0.228940-09	0.236930-09
0.240190-09	0.23858D-09	0.233200-09	0.224470-09	0.21533D-09	
0.131960-09	0.13716D-09	0.141310-09	0.14408D-09	0.14516D-09	0.144220-09
0.140880-09	0.13667D-09	0.13106D-09	0.12434D-09	0.11776D-09	
0.111070-09	0.109820-09	0.107740-09	0.10469D-09	0.100590-09	0.95406D-10
0.89152D-10	0.838440-10	0.781220-10	0.72159D-10	0.665400-10	
0.996520-10	0.950930-10	0.898190-10	0.83838D-10	0.771970-10	0.700050-10
0.624290-10	0.56640D-10	0.50880D-10	0.452620-10	0.400630-10	
0.935080-10	0.872710-10	0.803990-10	0.72966D-10	0.650830-10	0.569300-10
0.487290-10	0.42724D-10	0.369760-10	0.315990-10	0.267290-10	
0.903240-10	0.832630-10	0.75617D-10	0.674830-10	0.59005D-10	0.503750-10
0.41836D-10	0.35676D-10	0.298980-10	0.247210-10	0.206010-10	
0.788470-10	0.72176D-10	0.650210-10	0.574830-10	0.49698D-10	0.418360-10
0.340970-10	0.285240-10	0.233420-10	0.190060-10	0.165990-10	

R LATTICE (CH)

0.1037D+03 0.1086D+03 0.1136D+03 0.1185D+03 0.1234D+03 0.1284D+03 0.1333D+03 0.1370D+03 0.1407D+03 0.1444D+03 0.1481D+03

Z LATTICE (CM)

0.2081D+03 0.2141D+03 0.2201D+03 0.2261D+03 0.2321D+03 0.2381D+03 0.2441D+03 0.2501D+03 0.2561D+03 0.2621D+03 0.2681D+03

Tab. A3 Material-Reaktivitätswerte (Fortsetzung)

INPUT MATERIAL WORTH FOR REGION 3

0.119580-08	0.661170-09	0.355040-09	0.194240-09	0.111720-09	0.699470-10
0.33438D-10 0.47036D-09	0.29408D-09	0.177400-09	0.10553D-09	0.646250-10	0.42328D-10
0.22076D-10 0.16337D-09	0.12373D-C9	0.81639D-10	0.52615D-10	0.345220-10	0.238910-10
0.13591D-10 0.59028D-10	0.52853D-10	0.372130-10	0.25626D-10	0.17879D-10	0.13029D-10
0.79834D-11 0.24609D-10	0.24728D-10	0.179900-10	0.12914D-10	0.93946D-11	0.709320-11
0.45935D-11 0.14094D-10	0.13826D-10	0.995680-11	0.71696D-11	0.525410-11	0.398950-11
0.26605D-11 0.11390D-10	0.96722D-11	0.666560-11	0.463110-11	0.32816D-11	0.24068D-11
0.15991D-11 0.11048D-10	0.815330-11	0.536140-11	0.353450-11	0.235820-11	0.161360-11
0.103170-11	0.772990-11	0.491380-11	0.308940-11	0.193780-11	0.122370-11
0.73667D-12	0.793880-11	0.487680-11	0.294210-11	0.175800-11	0-103990-11
0.590900-12	0.74306D-11	0.461030-11	0.259540-11	0.151330-11	0.044300-13
0.477380-12	0.142940-11	0.441070-11	0.239340-11	0.151330-11	0.800380-12

R-LATTICE (CM)

0.14810+03 0.15230+03 0.15640+03 0.16060+03 0.16480+03 0.16890+03 0.17310+03

Z LATTICE (CM)

0.2081D+03 0.2161D+03 0.2201D+03 0.2261D+03 0.2321D+03 0.2381D+03 0.2441D+03 0.2501D+03 0.2561D+03 0.2621D+03 0.2621D+03

INPUT MATERIAL WORTH FOR REGION 4

-0.81172D-11	0.133870-10	0.77622D-11	0.305590-11
-0.393060-11	0.£4798D-11	0.50918D-11	0.211150-11
-0.183110-11	0.50682D-11	0.317770-11	0.13956D-11
-0.79791D-12	0.290690-11	0.189880-11	0.88107D-12
-0.25571D-12	0.16308D-11	0.109390-11	0.53102D-12
0.58478D-13	0.91476D-12	0.611270-12	0.30502D-12
0.25344D-12	0.527640-12	0.33291D-12	0.165800-12
0.377150-12	0.324060-12	0.17740D-12	0.835620-13
0.45452D-12	0.21578D-12	0.93364D-13	0.37062D-13
0.49972D-12	0.168900-12	0.506370-13	0.12631D-13
0.46763D-12	0.13438D-12	0.30304D-13	0.238390-14

R LATTICE (CM)

0.17310+03 0.18140+03 0.19980+03 0.19810+03

Z LATTICE (CM)

0.2081D+03 0.2141D+03 0.2201D+03 0.2261D+03 0.2321D+03 0.2381D+03 0.2441D+03 0.2501D+03 0.2561D+03 0.2621D+03 0.2681D+03
	*				
0.207500-07	0.207450-07	0.207290-07	0.207030-07	0.20666D-07	0.20620D-07
0 205430-07	0 206960-07	0 204180-07	0.203310-07	0.202340-07	0.201260-07
0.209030-07	0.204980-01	0.204100-01	0.203310-01	0.202340-01	OFFCIEGO OF
0.200090-07	0.198830-07	0.19/4/0-0/	0.195030-07	0.194540-07	
0.207920-07	0.20787D-C7	0.207710-07	0.207450-07	0.207090-07	0.206620-07
0.206050-07	0.205370+07	0.204600-07	0.203720-07	0.202750-07	0 - 201670 - 07
0.200000 07	0.200010 01	0.107070 07	0.10(/20.07	0 106060-07	
0.200500-07	0.199230-07	0.19/8/0-0/	0.195430-07	0.194940-07	
0.207970-07	0.207910-07	0.207760-07	0.207500-07	0.207130-07	0.20666D-07
0.206090-07	0.205420-07	0.204640-07	0.203760-07	0.202790-07	0,201720-07
0.2000/0 07	0.200120 07	0.107030.07	0 10//70 07	0 106000 07	
0.200540-07	0.199280-07	0.197920-07	0.1904/0-01	0.194980-07	
0.207630-07	0.207580-07	0.207430-07	0.207170-07	0.206800-07	0.206340-07
0.205770-07	0.205090-07	0.204320-07	0.203450-07	0.202470-07	0.201400-07
0.200000 07			0 10(170 07	0 10//00 07	•••••••••
0.200230-07	0.198970-07	0.19/610-07	0.1961/0-0/	0.194680-07	
0.206940-07	0.206890-07	0.206730-07	0.206470-07	0.20611D-07	0,205650-07
0.205080-07	0.204410 = 07	0.203640-07	0.202770-07	0.201800-07	0.200730-07
0.2000000	0.204410 07	0.10(050 07	0 105500 07	0 10/0/0 07	00200135 01
0.199560-07	0.138310-01	0.196950-07	0.195520-07	0.194040-07	
0.205890-07	0.205840-07	0.205680-07	0.205420-07	0.205060-07	0.20460D-07
0.204040-07	0.203370 = 07	0.202600-07	0-201740-07	0.200780-07	0.199720-07
0.204040-01	0.203310 07	0.105070 07	0 10/5/0 07	0 102070 07	0.1///20 01
0.198200-07	0.19/310-07	0.195910-01	0.194540-07	0.193070-07	
0.204510-07	0.20445D-07	0.20430D-07	0.204040-07	0.203690-07	0.203220-07
0.202670 = 0.7	0.202010-07	0.201250-07	0.200390-07	0.199430-07	0.198380-07
0.107030 07	0.10/000 07	0 10// (0 07	0 103350 07	0 101700-07	
0.197230-07	0.198000-07	0.194060-01	0.193230-07	0.191190-01	
0.20281D-07	0.20275D-C7	0.20260D-07	0.20235D-07	0,20199D-07	0.201540-07
0.200990 - 07	0.200330-07	0.199580-07	0.198730-07	0.197790-07	0.196750-07
0.105(10.07	0.10(300.07		0 101660-07	0 100310-07	
0+195010-07	0.194380-07	0.1930/0-07	0.191000-07	0.190210-07	
0.200820-07	0.200770-07	0.200520-07	0.20037D-07	0.20002D-07	0.199570-07
0.199020 - 0.7	0.198380 - C7	0.197630-07	0.196800-07	0.195860-07	0.19483D-07
0 102710 - 67	0 103500 07	0 101200-07	0 100010-07	0 199370-07	•••••
0.193/10-07	0.192900-07	0.191200-01	0.169610-07	0.188510-07	
0.19859D-C7	0.19854D-C7	0.198390-07	0.198140-07	0.197790-07	0.197350-07
0.196810-07	0.196170 - 07	0.195440 - 07	0.19461D-07	0.193690-07	0.19268D-07
0 101570-07	0 100370-07	0 190000-07	0 107710-07	0 196200-07	
0.1915/0-07	0.190370-07	0.189090-07	0.18//10-07	0.188270-07	
0.19613D-C7	0.19608D-C7	0.195940-07	0.195690-07	0.195350-07	0.194910-07
0.194380-07	0.193750-07	0.193030-07	0.192210-07	0.19130D-07	0.190300-07
0 189210-07	0 199030-07	0 196760-07	0.185410-07	0.184010-07	
0.107210-01	0.100030 07	0.180100-07	0.109410-01	0.104010-07	
0.193500-07	0.193450-07	0.193300-07	0.193060-07	0.192/20-0/	0.192290-07
0.191770-07	0.191150-07	0.190430-07	0.189630-07	0.18874D-07	0.18775D-07
0 186680-07	0 195510-07	0.184270-07	0.182930-07	0.181540-07	
0.120030-07	0.10000	0.184270-07	0.102430-01	0.101940-01	
0.19072D-C7	0.19067D-C7	0.190530-07	0.190290-07	0.189960-07	0.189530-07
0.18901D-C7	0.188400-07	0.187709-07	0.186910-07	0.18603D-07	0.185060-07
0 194000-07	0 192940-07	0 181630-07	0.180310-07	0.178930-07	
0.184000-07	0.102300-07	0.101030-07	0.100510-07	0.110750-01	0 10//00 07
0.187850-07	0.18/800-07	0.18/660-97	0.187430-07	0.18/100-0/	0.186680-07
0.186160-C7	0.185560-07	0.184870-07	0.184090-07	0.183220-07	0.182270-07
0.181220 = 0.7	0.180100 - 07	0.178990-07	0.177580-07	0.176210-07	
0.101220 01	0.100100 07	0.10/330.07	0 10/500 07	0 106100 07	0 1037(0 07
0.184920-07	0.154850-07	0.184/30-07	0.184500-07	0.184180-07	0.185/00-07
0.183260-07	0.182660-07	0.181990-07	0.181210-07	0.180350-07	0.17941D-07
0.178380-07	0.177270 - C7	0.176070 - 07	0.174780-07	0.173420-07	
0 191000-07	0 101040-07	0 191900-07	0 101570-07	0 101250-07	0 100040-07
0.101990-07	0.101740-07	0.181500-07	0.1819/0-07	0.181290-01	0.100840-07
0.180340-07	0.1/9/50-07	0.1/90/0-0/	0.1/8310-0/	0.1//460-0/	0.1/6530-0/
0.175510-07	9.174410 - 07	0.173230-07	0.17195D-07	0.170590-07	
0 170100-07	0 170050- 07	0 179010-07	0 179400-07	0 179370-07	0 177960-07
0.179100-07	0.119030-07	0.178910-07	0.170090-01	0.170510-07	0.111/00-01
0.17746D-C7	0.176880-07	0.176200-07	0.175440-07	0.174600-07	0.1/36/0-07
0.172660 - 07	0.17157D-C7	0.170390-07	0.169120-07	0.16776D-07	
0 176200-07	0 174250-07	0 176110-07	0 175990-07	0 175570-07	0 175160-07
0.178290-07	0.118250-01	0.178110-07	0.173080-07	0.175570-07	0.175180-07
0.1/4660-0/	0.1/4080-0/	0.173400-07	0.172650-07	0.1/1800-0/	0.1/08/0-0/
0.169860 - 07	0.168770-07	0.167500-07	0.16633D-07	0.16496D-07	
0.173630-07	0.173580-07	0.173440-07	0.173210-07	0.172900-07	0.172490-07
0.115050-07	0.113300-01	0.113440-01	01115210-01	0.112,000-01	0.112490 01
0.1/1440-0/	0.1/1400-0/	0.170730-07	0.109900-07	0.100110-07	0.109190-01
0.167160-C7	0.166060-07	0.16488D-07	0.163610-07	0.16224D-07	
0.171150-07	0-171100-07	0.170970-07	0.170740-07	0-170420-07	0.170000-07
0 1/0510 07	0.1(0000.07	0 1/0220 07	0 147/50 07	0 1/4500 07	0 145/30 07
0.104210-01	0.109310-01	0.108230-07	0.10/450-07	A*1002AD-01	0.102030-01
0.16459D-C7	0.16346D-07	0.162260-07	0.16098D-07	0.15963D-07	
0.169920-07	0.16888D-07	0.168740-07	0.16851D-07	0.168190-07	0.167770-07
0 167260-07	0 166660-07	0 165960-07	0 165170-07	0.164280-07	0 163200-07
0+10/200+C/	0.100000-07	0.109700-07	0.1001/0-0/	0.104200-07	0.103290-01
0.162210-07	0.16104D-07	0.15978D-07	0.15847D-07	0.15718D-07	
0.168270-07	0.168220-07	0.168080-07	0.16784D-07	0.16751D-07	0.167090-07
0.166570-07	0.165950-07	0.165220-07	0.164400-07	0.163470-07	0-162430-07
0.141300 07	0 1/0020 07	0 150/00 07	0 157200 07	0 16(100 07	0.102100 01
	0.160050-07	0.108590-07	U.15/32U-0/	0-120130-07	

R LATTICE (CM)

0.0 0.4630D+01 0.9250D+01 0.1388D+02 0.1851D+02 0.2314D+02 0.2776D+02 0.3239D+02 0.3702D+02 0.4165D+02 0.4627D+02 0.5090D+02 0.5553D+02 0.6016D+02 0.6678D+02 0.6941D+02 0.7404D+02

Z LATTICE (CM)

0.1283D+03 0.1321D+03 0.1359D+03 0.1397D+03 0.1435D+03 0.1473D+03 0.1511D+03 0.1549D+03 0.1587D+03 0.1625D+03 0.1625D+03 0.1663D+03 0.1701D+03 0.1739D+03 0.1777D+03 0.1815D+03 0.1853D+03 0.1891D+03 0.1929D+03 0.1967D+03 0.2005D+03 0.2043D+03 0.2081D+03

INPUT MATERIA	AL WORTH FOR R	EGION 6			
0.263250-07	0,26082D-07	0.257320-07	0.252750-07	0.247200-07	0.24077D-07
0.26424D-C7	0.26180D-07	0.25829D-07	0.25372D-07	0.24816D-07	0.24170D-07
0.23463D-07 0.26435D-C7	0,261910-07	0.25840D-07	0.253830-07	0.24827D-07	0.241810-07
0.23473D-07 0.26358D-C7	0.26114D-07	0.25765D-07	0.25308D-07	0.24753D-07	0.241090-07
0.23403D-07 0.26195D-07	0.259520-07	0.25604D-07	0.251490-07	0.24597D-07	0.23955D-07
0.232520-07	0.257060-07	0.253500-07	0.249090-07	0.243600-07	0.237230-07
0.230240-07	0.253820-07	0.250390-07	0.245910-07	0-240470-07	0.234150-07
0.227210-07	0 349830-07	0.266630-07	0 343010-07	0 2344 20-07	0 220270-07
0.223500-07	0.249830-07	0.241010-07	0.2272010-07	0.238820-07	0.2250510-07
0.219140-07	0.245160-07	0.241810-07	0.237430-07	0.232120-07	0.225940-07
0.242180-07 0.21423D-07	0.23989D-07	0.236580-07	0.232270-07	0.227030-07	0.220940-07
0.23635D-C7 0.20882D-C7	0,23409D-07	0.23083D-07	0,226590-07	0.22143D-07	0.21543D-07
0.23008D-07 0.20299D-07	0.22786D-07	0.224650-07	0.220480-07	0.215410-07	0.209510-07
0.223470-07	0.221290-07	0.21813D-07	0.21404D-07	0.209060-07	0.203260-07
0.216630-07	0.21447D-07	0.21138D-07	0.20735D-07	0.20247D-07	0.196780-07
0.209650-07	0.207520-07	0.20448D-07	0.20053D-07	0.19574D-07	0.19016D-07
0.202640-07	0.20054D-07	0.19754D-07	0.19367D-07	0.18897D-07	0.18349D-07
0.177370-07 0.19571D-07	0.19363D-07	0.19068D-07	0.18687D-07	0.18225D-07	0.17687D-07
0.17085D-07 0.18897D-07	0.186900-07	0.18398D-07	0.180230-07	0.17568D-07	0.17040D-07
0.16448D-07 0.18252D-C7	0.18046D-07	0.17756D-07	0.173830-07	0.169340-07	0.164150-07
0.15833D-07 0.17648D-C7	0.17443D-07	0.171520-07	0.167780-07	0.163310-07	0.158190-07
0.15251D-C7 0.17094D-C7	0.168950-07	0.165970-07	0.162160-07	0.15764D-07	0.15255D-07
0.14712D-07 0.16723D-C7	0.165270-07	0.162150-07	0.158190-07	0.153540-07	0.148410-07
0.143290-07					

R LATTICE (CM)

0.7404D+02 0.7898D+02 0.8393D+02 0.8887D+02 0.9381D+02 0.9876D+02 0.1037D+03

Z LATTICE (CM)

0.1283D+03 0.1321D+03 0.1359D+03 0.1397D+03 0.1435D+03 0.1473D+03 0.1511D+03 0.1549D+03 0.1587D+03 0.1625D+03 0.1625D+03 0.1663D+03 0.1701D+03 0.1739D+03 0.1777D+03 0.1815D+03 0.1853D+03 0.1891D+03 0.1929D+03 0.1967D+03 0.2005D+03 0.2043D+03 0.2081D+03

INPUT MATERIA	L WORTH FOR R	EGION 7			
0.36184D-C7	0.351550-07	0.338660-07	0.32317D-07	0.305530-07	0.28626D-07
0.26663D-07 0.36388D-07	0.353550-07	0.340630-07	0.325090-07	0.307390-07	0.288050-07
0.268350-07					
0.36411D-C7	0.35378D-07	0.340850-07	0.32531D-07	0.307610-07	0.28826D-07
0.268560-07	0 353330 07	0 220240-07	0 333030-07	0 206190-07	0 294990-07
0.362530-07	0.352230-07	0.339340-01	0.523830-07	0,00000000000	0.200090-07
0.359170-07	0.348920-07	0.336100-07	0.320680-07	0.303130-07	0.283950-07
0.264410-07	01010740 01				
0.354060-07	0.343910-07	0.331190-07	0.315910-07	0.298510-07	0.279500-07
0.26014D-C7					
0.34732D-C7	0.33727D-07	0.324690-07	0.30958D-07	0.29239D-07	0.27361D-07
0.25448D-C7					
0.33901D-C7	0.329110-07	0.316700-07	0.30180D-07	0.28485D-07	0.266360-07
0.247510-07		1			
0.329300-07	0.319550-07	0.307340-07	0.292690-07	0.276040-07	0.257860-07
0.23934D-07		0 00/3/0 03	0 000000 07	0 044070 07	0 140370 07
0.318330-07	0.308760-07	0.296760-07	0.282390-07	0.2000/10-07	0.248210-01
0.230110-07	0 204 900- 07	0 205140-07	0 271070-07	0 255100-07	0.237710-07
0.216660-07	0.290090-01	0.200140-07	0.2110/0-01	0.255100-07	0.231110-01
0.293290-07	0,284130-07	0.272640-07	0.258900-07	0.243320-07	0.226370-07
0.209040-07	00201200				
0.27964D-C7	0.27069D-07	0.259470-07	0.246080-07	0.230910-07	0.214410-07
0.19753D-C7					
0.26550D-C7	0.25677D-07	0.245850-07	0.23281D-07	0.218060-07	0.202030-07
0.185620-07					
0.251110-07	0.24260D-07	0.23197D-07	0.21931D-07	0.20499D-07	0.18944D-07
0.17349D-C7		0 010070 07	0 205 700 07	0 101000 07	0 174930.07
0.236690-07	0.228410-07	0.2180/9-0/	0.205/80-07	0.141400-07	0.1/6830-07
0.101340-07	0 216620-07	0 204240-07	0 192440-07	0 179000-07	0 166620-07
0 140400-07	0.214420-07	0.204380-01	0.172440-07	0.11.0000-01	0.104420-07
0.149400 - 07	0.200840-07	0.191060-07	0.179500-07	0.166510-07	0.152420-07
0.137870-07	0.200040 01		001113300 01		0.192.120 0.
0.195570-07	0.187910-07	0.179380-07	0.167150-07	0.154590-07	0.141020-07
0.127010 - 07					
0.183310-07	0.175840-07	0.166520-07	0.155570-07	0.143410-07	0.130390-07
0.117C6D-07					
0.172140-C7	0.16491D-07	0.155680-07	0.144910-07	0.133070-07	0.120610-07
0.109290-07					
0.163330-07	0.15625D-07	0.14693D-07	0.13617D-07	0.124500-07	0.112580-07
0.10159D-C7					

R LATTICE (CM)

0.10370+03 0.10860+03 0.11360+03 0.11850+03 0.12340+03 0.12840+03 0.13330+03

Z LATTICE (CM)

0.1283D+03 0.1321D+03 0.1359D+03 0.1397D+03 0.1435D+03 0.1473D+03 0.1511D+03 0.1549D+03 0.1587D+03 0.1625D+03 0.1625D+03 0.1665D+03 0.1701D+03 0.1739D+03 0.1777D+03 0.1815D+03 0.1853D+03 0.1891D+03 0.1929D+03 0.1967D+03 0.2005D+03 0.2043D+03 0.2081D+03

INPUT MATERIAL WORTH FOR REGION 8

0.512970-07	0.490410-07	0.46636D-07	0.440250-07	0.41808D-07
0.516860-07	0.494200-07	0.470040-07	0.443800-07	0.421550-07
0.517320-C7	0.49466D-C7	0.470480-07	0.444240-07	0.421970-07
0.514330-07	0.49175D-C7	0.467680-07	0.441540-07	0.419350-07
0.507930-07	0.48554D-07	0.461660-07	0.435740-07	0.41372D-07
0.498200-07	0.47611D-C7	0.452530-07	0.426950-07	0.405180-07
0.485310-07	0.46360D-07	0.44042D-07	0.415280-07	0.39384D-07
0.469460-07	0.44822D-C7	0.425520-07	0.400930-07	0.379900-07
0.450900-07	0.43019D-C7	0.40907D-07	0.38411D-07	0.363560-07
0.429910-07	0.40982D-C7	0.388330-07	0.36510D-07	0.34509D-07
0.406930-C7	0.38742D-07	0.366640-07	0.344200-07	0.324790-07
0.382040-C7	0.363350-07	0.343320-07	0.32174D-07	0.302980-07
0.355940-07	0.33799D-C7	0.318770-07	0.298090-07	0.280010-07
0.328930-07	0.311770-07	0.293370-07	0.27363D-07	0.256280-07
0.301490-07	0.285110-07	0.267550-07	0.24877D-07	0.232160-07
0.274070-07	0.258470-07	0.241730-07	0.223920-07	0.208050-07
0.247130-07	0.23228D-07	0.216350-07	0.199480-07	0.18434D-07
0.221170-07	0.20703D-C7	0.19185D-07	0.175860-07	0.16141D-07
0.196670-07	0.18319D-07	0.168590-07	0.153460-07	0.139620-07
0.174140-07	0.161290-07	0.147330-07	0.132690-07	0.11922D-07
0.154120-07	0.14194D-C7	0.12832D-07	0.113970-07	0.100380-07
0.13789D-C7	0.126070-07	0.112350-07	0.977910-08	0.83248D-08

R LATTICE (CM)

0.1333D+03 0.1370D+03 0.14C7D+03 0.1444D+03 0.1481D+03

Z LATTICE (CM)

0.12830+03 0.13210+03 0.13590+03 0.13970+03 0.14350+03 0.14730+03 0.15110+03 0.15490+03 0.15870+03 0.16250+03 0.16630+03 0.17010+03 0.17390+03 0.17770+03 0.18150+03 0.18530+03 0.18910+03 0.19290+03 0.19670+03 0.20050+03 0.20430+03 0.20810+03

INPUT MATERIAL WORTH FOR REGION 9 0.30056D-C8 0.19305D-08 0.11306D-08 0.69735D-09 0.46749D-09 0.34638D-09 0.14430D-09 0.30187D-C8 0.470240-09 0.34876D-09 0.193790-08 0.113540-08 0.70076D-09 0.14526D-C9 0.70148D-09 0.470740-09 0.349130-09 0.19398D-08 0.11366D-08 0.302200-09 0.145390-09 0.19364D-08 0.11342D-08 0.699540-09 0.469000-09 0.347500-09 0.301800-08 0.14478D-09 C.30081D-C8 0.694920-09 0.465030-09 0.343880-09 0.192720-08 0.112810-08 0.14334D-C9 0.299C7D-C8 0.191270-08 0.111960-08 0.68774D-09 0.458960-09 0.338330-09 0.141170-09 0.296790-08 0.18934D-08 0.11054D-08 0.67809D-09 0.45078D-09 0.330930-09 0.138240-09 0.293820-08 0.186920-08 0.108950-08 0.666070-09 0.440680-09 0.321780-09 0.13463D-09 0.290370-09 0.134050-08 0.107070-08 0.651910-09 0.428760-09 0.310990-09 0.13032D-09 0.286330-08 0.180750-08 0.104920-08 0.635690-09 0.415130-09 0.298700-09 0.12547D-C9 0.28177D-C9 0.399930-09 0.285040-09 0.177090-08 0.102500-08 0.617580-09 0.12001D-05 0.173040-08 0.998450-09 0.597580-09 0.38324D-09 0.27013D-09 0.276660-08 0.11406D-C9 0.271020-C9 0.168640-08 0.969200-09 0.575680-09 0.365090-09 0.254100-09 0.107590-09 0.26471D-C8 0.345440-09 0.237000-09 0.16380D-08 0.93706D-09 0.55167D-09 0.10067D-09 0.25766D-C9 0.93266D-10 0.158450-08 0.901280-09 0.52514D-09 0.324150-09 0.218850-09 0.24957D-C8 0.15242D-08 0.86067D-09 0.49545D-09 0.300970-09 0.199650-09 0.8542CD-10 0.240190-09 0.145500-08 0.913330-09 0.461580-09 0.275510-09 0.179380-09 C.77113D-10 0.228960-09 0.137240-08 0.756600-09 0.422230-09 0.247370-09 0.158090-09 0.684320-10 0.215030-08 0.126990-08 0.686570-09 0.375930-09 0.216330-09 0.135930-09 0.59479D-10 C.197C6D-CP 0.11358D-08 0.59841D-09 0.32161D-09 0.182430-09 0.113270-09 0.504750-10 C.94844D-05 0.48729D-09 0.25966D-09 0.14679D-09 0.90897D-10 0.416890-10 0.119580-CP 0.661170-09 0.355040-09 0.194240-09 0.111720-09 0.699470-10 0.33439D-1C

R LATTICE (CM)

0.1491D+93 0.1523D+03 0.1564D+03 0.1606D+03 0.1648D+03 0.1689D+03 0.1731D+03

Z LATTICE (CM)

0.12830+03 C.1321D+03 0.1359D+03 0.1397D+03 0.1435D+03 0.1473D+03 0.1511D+03 0.1549D+C3 0.1587D+03 0.1625D+03 0.1663D+03 0.1701D+03 0.17390+03 0.1777D+03 0.1815D+03 0.1853D+03 0.1891D+03 0.1929D+03 0.1967D+03 0.2005D+03 0.2005D+03 0.2005D+03

INPUT MATEPIAL WORTH FOR REGION 10

-0.172390-09	0.92391D-10	0.51320D-10	0.18906D-10
-0.174280-09	C.83053D-1 C	0.517680-10	0.190750-10
-0.17448D-C°	0.831460-10	0.518250-10	C.19095D-10
-0.172970-09	0.826640-10	0.514890-10	0.18967D-10
-0.169760-09	0.816160-10	0.507650-10	0.186900-10
-0.16491D-C9	0.80014D-10	0.496630-10	0.18270D-10
-0.15849D-09	0.77881D-10	0.481990-10	0.177130-10
-0.15062D-C9	0.75246D-1C	0.463950-10	0.170280-10
-0.141420-09	0.721450-10	0.442770-10	0.162260-10
-0.131040-09	0.68619D-10	0.418790-10	0.153190-10
-0.119670-00	0.64714D-10	0.392360-10	0.143240-10
-0.107540-09	0.604750-10	0.363890-10	0.13257D-10
-0.949020-10	0.55959D-10	0.333830-10	0.12138D-10
-C.82046D-10	0.51210D-10	0.302650-10	0.109870-10
-0.692770-10	0.46237D-10	0.270960-10	0.982610-11
-0.569390-10	0.412500-10	0.239020-10	0.86766D-11
-0.453630-10	0.36166D-10	0.207580-10	0.75604D-11
-0.348860-10	0.311190-10	0.177410-10	0.64971D-11
-0.257910-10	0.261°9D-10	0.14878D-10	0.55040D-11
-0.182770-10	0.21523D-1C	0.122320-10	0.45943D-11
-0.12414D-1C	0.17214D-1C	0.984900-11	0.37768D-11
-0.811720-11	0.133870-10	0.776220-11	0.30559D-11

R LATTICE (CM)

0.17310+03 0.18140+03 0.18980+03 0.19810+03

Z LATTICE (CM)

0.1263D+03 0.1321D+03 0.1359D+03 0.1397D+03 0.1435D+03 0.1473D+03 0.1511D+03 0.1549D+03 0.1587D+03 0.1625D+03 0.1663D+03 0.1701D+03 0.1739D+03 0.1777D+03 0.1815D+03 0.1853D+03 0.1891D+03 0.1929D+03 0.1967D+03 0.2005D+03 0.2043D+03 0.2043D+03 0.1929D+03 0.1967D+03 0.2005D+03

0.164320-07	0.16428D-07	0.164130-07	0.16390D-07	0.163570-07	0.16315D-07
0.162630-07	0.16201D-07	0.161290-07	0.160470-07	0.15954D-07	0.15851D-07
0.157370-07	0.15613D-07	0.154790-07	0.153420-07	0.152220-07	
0-165250-07	0.165200-07	0.165060-07	0.16483D-07	0.164510-07	0.16410D-07
0.163590-07	0.162990-07	0.162290-07	0.161500-07	0.160620-07	0.159640-07
0 158560-07	0.157380-07	0.156130-07	0.154820-07	0-153530-07	
0.147710-07	0 167670-07	0 167530-07	0.167300-07	0.166980-07	0.166570-07
0.10//10-07	0.145400-07	0.144900-07	0.144.020-07	0 143140-07	0.162210-07
0.166070-07	0.109460-07	0.154500-07	0.1575(0.07	0.154200-07	0.102210-01
0.1011/0-07	0.100040-07	0.190040-07	0.131360-07	0.100200-07	0 1/0300 07
0.17044D-C7	0.170400-07	0.170260-07	0.170030-07	0.169/10-07	0.109300-07
0.16881D-C7	0.16822D-07	0.167550-07	0.16678D-07	0.165930-07	0.165000-07
0.16398D-C7	0.16288D-07	0.161700-07	0.160430-07	0.159050-07	
0.173370-07	0.173330-07	0.173190-07	0.172960-07	0.17264D-07	0.172240-07
0.17174D-C7	0.171160-07	0.170480-07	0.16973D-07	0.168880-07	0.167950-07
0.16695D-07	0.16585D-07	0.16468D-07	0.163410-07	0.16203D-07	
0.176450-07	0.17640D-C7	0.176270-07	0.176030-07	0.175720-07	0.175310-07
0.17481D-C7	0.17423D-07	0.173550-07	0.172790-07	0.17195D-07	0.171020-07
0.170010-07	0.168920-07	0.16774D-07	0.166470-07	0.165100-07	
0.179620-07	0.179570-07	0.179430 - 07	0.179200-07	0.17888D-07	0.178470-07
0.177970-07	0 177380-07	0.176700-07	0.175940-07	0-17509D-07	0.174160 - 07
0 173140-67	0 172040-07	0 170950-07	0.169570-07	0.168200-07	
0.102020-07	0 192770-07	0 192630-07	0 182400-07	0.182080-07	0.181660-07
0.102020-07	0.102//0-07	0.170900-07	0.130110-07	0.170260-07	0 177310-07
0.181160-07	0.180560-07	0.179560-07	0.179110-07	0.171200.07	0.17.310-07
0.176280-07	0.175170-07	0.1/3960-07	0.172670-07	0.171300-07	A 194940 07
0.186010-07	0.185960-07	0.185820-07	0.185590-07	0.185260-07	0.184640-07
0.184330-07	0.183720-07	0.183030-07	0.182250-07	0.181380-07	0.180430-07
0.17938D-07	0.178250-07	0.177040-07	0.175730-07	0.17436D-07	
0.18913D-C7	0.18908D-07	0.188940-07	0.188700-07	0.188370-07	0.187940-07
0.18743D-C7	0.18682D-07	0.186110-07	0.185320-07	0.18444D-07	0.183470-07
0.182410-07	0.181260-C7	0.180030-07	0.17871D-07	0.177320-07	
0.19214D-C7	0.19209D-07	0.191950-07	0 .19171D- 07	0.191370-07	0+100040-07
0.19042D-C7	0.18980D-07	0.18908D-07	0.18828D-07	0.187390-07	0.186400-07
0.185320-07	0.13416D-07	0.182910-07	0.181570-07	0.180170-07	
0.19500D-07	0.19495D-C7	0.19480D-07	0.194560-07	0.194220-07	0.193780-07
0.193240-07	0.192620-07	0.191890 - 07	0.191080-07	0.190170-07	0.189170-07
0.188C8D-C7	0.186900-07	0.18563D-07	0.184270-07	0.18286D-07	
0.197650-07	0.197600 - 07	0.197450-07	0.197210-07	0.196860-07	0.196410-07
0.195870-07	0.195240-07	0.194500-07	0.193680-07	0.192750-07	0.191740-07
0.190630 - 07	0.189430 - 07	0.188150-07	0.186770-07	0.185350-07	
0.200060-07	0.200010-07	0.199860-07	0.199610-07	0.199260-07	0.198810-07
0 109260-07	0.167620-07	0 196990-07	0 106060-07	0 195100-07	0.194070-07
0.102050-07	0.101740-07	0.100630-07	0 100040-07	0 197600-07	0.114010-01
0.192900-07	0.191740-07	0.190430-07	0.189040-07	0.10/000-07	0 200040 07
0.202200-07	0.202150-07	0.202000-07	0.201740-07	0.201390-07	0.200940-07
0.200380-07	0.199730-07	0.198980-07	0.198130-37	0.19/180-07	0.190140-07
0.195010-07	0.19378D-C7	0.192460-07	0.191050-07	0.189600-07	
0.20404D-C7	0.203990-07	0.203840-07	0.203580-07	0.203220-07	0.202770-07
0.202210-07	0.20155D-C7	0.200790-07	0.199930-07	0.198970-07	0.19/920-07
0.196770-07	0.19553D-C7	0.194200-07	0.192780-07	0.191310-07	
0.20555D-C7	0.20550D-C7	0.20534D-07	0.205080-07	0.204720-07	0.204260-07
0.203700-07	0.20303D-C7	0.202260-07	0.201400-07	0.200440-07	0.19938D-07
0.19822D-C7	0.196970-07	0.195620-07	0.19420D-07	0.102720-07	
0.206710-07	0.20665D-C7	0.206500-07	0.206240-07	0.205870-07	0,205410-07
0.204 E4D-C7	0.20417D-C7	0.203400-07	0.202530-07	0.201560-07	0.200490-07
0.199330-07	0.19807D-C7	0.196720-07	0.19528D-07	0.193800-07	
0.207500-07	0.207450-07	0.207290-07	0.207030-07	0.206660-07	0.206200-07
0.205630-07	0.204960-07	0.204180-07	0.203310-07	0.20334D-07	0.201260-07
0.200C9D-07	0.198830-07	0.197470-07	0.196030-07	0.19454D-07	
	·				

R LATTICE (CM)

0.0 0.4630D+01 0.9250D+01 0.1388D+02 0.1851D+02 0.2314D+02 0.2776D+02 0.3239D+02 0.3702D+02 0.4165D+02 0.4627D+02 0.5090D+02 0.5553D+02 0.6016D+02 0.6478D+02 0.6941D+02 0.7404D+02

Z LATTICE (CM)

0.6000D+02 0.6380D+02 0.6759D+02 0.7139D+02 0.7519D+02 0.7899D+02 0.8276D+02 0.8658D+02 0.9038D+02 0.9417D+02 0.9797D+02 0.1018D+03 0.1056D+03 0.1094D+03 0.1132D+03 0.1170D+03 0.1208D+00 0.1245D+03 0.1283D+03

0.16304D-07	0.16109D-07	0.158010-07	0.15411D-07	0.149540-07	0.14450D-07	
0.13947D-07						
0.16694D-07	0.16495D-07	0.162010-07	0.15825D-07	0.153800-07	0.14879D-07	
0.14345D-07						
0.172630-07	0.170590-07	0.167700-07	0.16401D-07	0.15960D-07	0.154550-07	
0.148970-07						
0.17884D-C7	0.17679D-07	0.173910-07	0.170220-07	0.16579D-07	0.16066D-07	
0.15492D-07	*					
0.18548D-C7	0.18341D-07	0.18052D-07	0.176790-07	0.17229D-07	0.16708D-07	
0.16122D-07					_	
0.19242D-07	0.19034D-07	0.18741D-07	0.18363D-07	0.17905D-07	0.17373D-07	
0.167770-07			•			
0.199570-C7	0.197470-07	0.19448D-07	0.19064D-07	0.185970-07	0.18054D-07	
0.17448D-07						
0.20680D-C7	0.204670-07	0.201640-07	0.19771D-07	0.192950-07	0.18741D-07	
0.18125D-C7						
0.214010-07	0.21185D-07	0.208760-07	0,20476D-07	0.199900-07	0.194250-07	
0.187970-07						
0.221090-07	0.21889D-07	0.21575D-07	0.21167D-07	0.206710-07	0.200950-07	
0.19456D-C7		1				
0.227930-07	0.225700-07	0.222500-07	0.21834D-07	0.213290-07	0.20742D-07	
0.200930-67						
0.23444D-07	0.23218D-07	0.228920-07	0.22469D-07	0.219540-07	0.213560-07	
0.20697D-07						
0.240510-07	0.23821D-07	0.234900-07	0.230600-07	0.225360-07	0.219290-07	
0.21260D-07					_	
0.24605D-07	0.243710-07	0.240360-07	0.235990-07	0.23068D-07	0.224520-07	
0.21774D-07						
0.250970-07	0.24861D-07	0.245210-07	0.240790-07	0.235410-07	0.229170-07	
0.222300-07						
0.255210-07	0.25282D-07	0.249390-07	0.24492D-07	0.23948D-07	0,233170-07	
0.226250-07						
0.25871D-C7	0.256300-07	0.252840-07	0.248320-07	0.242840-07	0.236470-07	
0.22948D-07						
0.26140D-07	0.258970-07	0.255490-07	0.250950-07	0.24542D-07	0.239010-07	
0.23198D-07						
0.263250-07	0.26082D~07	0.257320-07	0.25275D-07	0.24720D-07	0.240770-07	
0.233700-07						

R LATTICE (CM)

0.7404D+02 0.7998D+02 0.8393D+02 0.9887D+02 0.9381D+02 0.9876D+02 0.1037D+03

Z LATTICE (CM)

0.6000D+02 0.6380D+02 0.67590+02 0.7139D+02 0.7519D+02 0.7899D+02 0.8278D+02 0.8658D+02 0.9038D+02 0.9417D+02 0.9797D+02 0.1018D+03 0.1056D+03 0.1094D+03 0.1132D+03 0.1170D+03 0.1208D+03 0.1245D+03 0.1283D+03

.

INPUT MATERIAL WORTH FOR REGION 13

0.158950-07	0.15201D-07	0.142900-07	0.132390-07	0.121000-07	0.10938D-07
0.986570-08	0 160690-07	0 151650-07	0 141110-07	0 129540-07	0 117370-07
0.105340-07	0.100090-01	0.101000-01	0.141110-07	0.127340-07	0.111310-01
0.178950-07	0.171610-07	0.16246D-07	0.151730-07	0.13982D-07	0.12708D-07
0.11404D-07					
0.191210-C7	0.18366D-07	0.17429D-07	0.163270-07	0.150950-07	0.13765D-07
0.123920-07					
0.204350-07	0.19660D-07	0.186970-07	0.17560D-07	0.16283D-07	0.149010-07
0.134730-07					
0.218180-07	0.210210-07	0.200290-07	0.18854D-07	0.17532D-07	0.16098D-07
0.146210-07					
0.232460-07	0.224260-07	0.214040-07	0.201920-07	0.188240-07	0.173390-07
0.15814D-07	a 330550 a7	a aaaaaa a a		0 001000 07	A 14/030 A7
0.246980-07	0.238550-07	0.228030-07	0.215510-07	0.201380-07	0.186030-07
0.1/0290-07	0 35305D 07	0 0/0000 07	0 000100 07	0 01/600 07	A 100/00 07
0.107670 07	0.252850-07	0.242020-07	0.229120-07	0.214530-07	0+190090-07
0.275920-07	0 744020-07	0 255800-07	0 242520-07	0 227500-07	0 211140-07
0.194440-07	0.200920-01	0.255800-01	0.242920-01	0.227900-07	0.211100-07
0.289690-07	0.280570-07	0.269160-07	0.255520-07	0.240070-07	0.223260-07
0.206090-07					
0.30291D-07	0.293570-07	0.281880-07	0.267910-07	0.252050-07	0.23479D-07
0.21718D-07					
0.315260-07	0.305730-07	0.29378D-07	0.279490-07	0.26326D-07	0.245580-07
0.22754D-C7				_	_
0.32656D-C7	0.316840-07	0.304670-07	0.29008D-07	0.273510-07	0.255440-07
0.23702D-07					
0.336640-07	0.326750-07	0.314370-07	0.299520-07	0.282650-07	0.264230-07
0.245460-07					
0.345320-07	0.335290-07	0.322740-07	0.30/6/0-0/	0.290530-07	0.2/1820-0/
0.252/60-07	0 343350 03	0 220/ 50 07	0 31/300 07	0 207040 07	A 370000 07
	0.542550-07	0.329030-01	0.314390-07	0.291040-01	0.210000-01
0.250770-07	0 347700 07	0 22/200 07	0 310590 07	0 30 30 4 0 07	0 202020 07
0 2636020=07	0.541190=01	0.234700-07	0.01300-01	0.302060-01	0.202920-01
0.361840-07	0.351550-07	0.338660-07	0-323170-07	0.305530-07	0.286260-07
0.266630-07	0.0010-01	0.00000-01	00020210-01	0.00000000	-

R LATTICE (CM)

0.10370+03 0.10860+03 0.11360+03 0.11850+03 0.12340+03 0.12840+03 0.13330+03

Z LATTICE (CM)

0.6000D+02 0.6380D+02 0.6759D+02 0.7139D+02 0.7519D+02 0.7899D+02 0.8278D+02 0.8658D+02 0.9038D+02 0.9417D+02 0.9797D+02 0.1018D+03 0.1056D+03 0.1094D+03 0.1132D+03 0.1170D+03 0.1208D+03 0.1245D+03 0.1283D+03

.

0.133900-07	0.122370-07	0.109030-07	0.94882D-08	0.80761D-08
0.149950-07	0.137950-07	0.124570-07	0.110700-07	0.97465D-08
0.169520-07	0.15694D-C7	0.143300-07	0.12901D-07	0.11586D-07
0.191680-07	0.178460-07	0.164260-07	0.149360-07	0.135820-07
0.215830-07	0.201930-07	0.187040-07	0.17136D-07	0.15720D-07
0.241470-07	0.226850-07	0.211180-07	0.19461D-07	0.17974D-07
0.268140-07	0.25275D-07	0.236270-07	0.218740-07	0.203120-07
0.295370-07	0.279200-07	0.261860-07	0.243360-07	0.22698D-07
0.322720-07	0.305740-07	0.287550-07	0.26807D-07	0.250930-07
0.349710-07	0.331950-07	0.312920-07	0.29247D-07	0.274600-07
0.375940-07	0.35740D-07	0.33755D-07	0.316190-07	0.2975°D-07
0.4CC96D-C7	0.38168D-07	0.361060-07	0.338820-07	0.319560-07
0.424380-07	0.404410-07	0.383060-07	0.36001D-07	0.340140-07
0.44582D-C7	0.42523D-C7	0.40322D-07	0.379420-07	0.358990-07
0.46497D-C7	0.44380D-C7	0.421210-07	0.396750-07	0.375810-07
0.481480-07	0.45984D-07	0.436740-07	0.411710-07	0.390350-07
0.49513D-07	0.473090-C7	0.449580-07	0.42408D-07	0.40237D-07
0.50567D-C7	0.48333D-07	0.459500-07	0.43364D-07	0.41166D-07
0.512970-C7	0.49041D-07	0.466360-07	0.440250-07	0.41808D-07

R LATTICE (CM)

0.1333D+03 0.1370D+03 0.14C7D+03 0.1444D+03 0.1481D+03

Z LATTICE (CM)

0.6000D+02 0.6380D+02 0.6759D+02 0.7139D+02 0.7519D+02 0.7899D+02 0.8278D+02 0.8658D+02 0.9038D+02 0.9417D+02 0.9797D+02 0.1019D+03 0.1056D+03 0.1094D+03 0.1132D+03 0.1170D+03 0.1208D+03 0.1245D+03 0.1283D+03

INPUT MATERIAL WORTH FOR REGION 15

0.11598D-C8	0.64164D-09	0.34460D-09	0.188550-09	0.10843D-09	0.67858D-10
0.324300-10	0.920250-09	0.472960-09	0.25206D-09	0.142500-09	0.882160-10
0.40459D-10					
0.19129D-08	0.11027D-C8	0.581060-09	0.312350-09	0.177190-09	0.10999D-09
0.490110-10	0 100 00	0 ((73)0 00	0 3/5370 00	0 310 34 0 00	0 133000 00
0.209910-08	0.123400-08	0.667210-09	0.365370-09	0.210260-09	0.132090-09
0.222730-08	0.133510-08	0.735960-09	0.410750-09	0.240660-09	0.153780-09
0.665730-10					
0.233950-08	0.141710-08	0.792090-09	0.449520-09	0.268310-09	0.17466D-09
0.75114D-10					
0.24347D-C9	0.14867D-08	0.839280-09	0.483160-09	0.293460-09	0.19464D-09
0.83288D-10					
0.25171D-C8	0.15476D-08	0.880210-09	0.51283D-09	0.316530-09	0.213660-09
0.91094D-10					0 001700 00
0.259060-08	0.160270-08	0.916570-09	0.539550-09	0.337820-09	0.231730-09
0.984440-10	0 145300-00	0.040410-00	0 543030-00	0 357610-00	0 249940-00
	0.105500-08	0.749010-09	0.000900-09	0.337010-09	0.240040-09
0.27173D-C°	0.169900-08	0.979930-09	0.58641D-09	0.376020-09	0.265010-09
0.111900-09					
0.277190-08	0.174180-08	0.100790-08	0.607120-09	0.393120-09	0.280110-09
0.11798D-C9					
0.282200-02	0.17814D-09	0.103350-08	0.626110-09	0.408810-09	0.294100-09
0.123540-09					
0.286/10-09	0.181690-08	0.105680-08	0.643310-09	0.423060-09	0.306/80-09
0.120000-09	0 104020-00	0 107740-09	0 659610-00	0 435400-00	0 319070-00
0 133070-09	0.104720-05	5.10/740-08	0.000010-09	0.4330.70-07	0.510070-09
0.294160-09	0.187670-08	0.109540-08	0.671810-09	0-446570-09	0.327770-09
0.136950-09					
0.29704D-C8	0.189940-09	0.111060-08	0.682770-09	0.455580-09	0.335800-09
0.140120-09					
0.299290-08	0.191750-08	0.112230-08	0.691310-09	0.46261D-09	0.342040-09
0.142600-09					
0.30096D-C8	0.193050-08	0.113060-08	0.69735D-09	0.467490-09	0.346380-09
0.14430D-C9					

R LATTICE (CM)

0.14810+03 0.15230+03 0.15640+03 0.16660+03 0.16480+03 0.16890+03 0.17310+03

Z LATTICE (CM)

0.6000D+02 0.6380D+02 0.6759D+02 0.7139D+02 0.7519D+02 0.7899D+02 0.8278D+02 0.8658D+02 0.9038D+02 0.9417D+02 0.9797D+02 0.1018D+03 0.1056D+03 0.1094D+03 0.1132D+03 0.1170D+03 0.1208D+03 0.1245D+03 0.1283D+03

.

INPUT MATERIAL WORTH FOR REGION 16

-0.781380-11	0.129680-10	0.751440-11	0.295730-11
-0.119770-10	0.166860-10	0.954280-11	0.36586D-11
-0.176660-10	0.20879D-10	0.118630-10	0.44554D-11
-0.249760-10	0.25438D-10	0.14444D-10	0.534370-11
-0.33838D-10	0.30245D-10	0.172420-10	0.631580-11
-0.44072D-10	0.351920-10	0.202100-10	0.735900-11
-0.55405D-10	0.401900-10	0.232910-10	0.84574D-11
-0.675280-10	0.451610-10	0.264330-10	0.959200-11
-0.80108D-10	0.50040D-10	0.295800-10	0.107420-10
-0.928290-10	0.54770D-10	0.32681D-10	0.11887D-10
-0.10539D-C9	0.592950-10	0.356960-10	0.13006D-10
-0.11749D-09	0.635650-10	0.385480-10	0.140770-10
-0.12891D-09	0.675310-10	0.412230-10	0.150840-10
-0.139410-09	0.711420-10	0.43670D-10	0.16007D-10
-0.148810-09	0.743520-10	0.458500-10	0.16832D-10
-0.156910-09	0.771180-10	0.47732D-10	0.17545D-10
-0.16362D-09	0.794010-10	0.492860-10	0.18134D-10
-0.16881D-C9	0.81166D-10	0.50488D-10	0.18590D-10
-0.172380-09	0.823910-10	0.51320D-10	0.18906D-10

R LATTICE (CM)

0.1731D+03 0.1814D+03 0.1898D+03 0.1981D+03

Z LATTICE (CM)

0.6000D+02 0.6380D+02 0.6759D+02 0.7139D+02 0.7519D+02 0.7899D+02 0.8278D+02 0.8658D+02 0.9036D+02 0.9417D+02 0.9797D+02 0.1018D+03 0.10560+03 0.1094D+03 0.1132D+03 0.1170D+03 0.1208D+03 0.1245D+03 0.1283D+03

INPUT MATERIAL WORTH FOR REGION 17

0.12022D-09	0.120180-09	0.12004D-09	0.119810-09	0.11948D-09	0.11905D-09
0.11851D-09	0.117850-09	0.117060-09	0.116140-09	0.11504D-09	0.113770-09
0.112290-09	0.110560-09	0.108570-09	0.10626D-09	0.103610-09	0.100360-09
0.96616D-10	0.92352D-10	0.875330-10	0.82147D-10	0.76200D-10	
0.132230-09	0.13218D-09	0.132040-09	0.13180D-09	0.13146D-09	0.131020-09
0.130470-09	0.12980D-09	0.129010-09	0.128080-09	0.126980-09	0.125710-09
0.124240-09	0.122530-09	0.120550-09	0.118250-09	0.11559D-09	0.112310-09
0.109520-09	0.104150-09	0.991860-10	0.935860-10	0.873450-10	
0.127740-09	0.12770D-09	0.127570-09	0.127370-09	0.127080-09	0.12670D-09
0.12624D-09	0.125680-09	0.125030-09	0.124270-09	0.12339D-09	0.12237D-09
0.121200-09	0.11985D-C9	0.118280-09	0.11646D-09	0.114330-09	0.111670-09
0.108560-09	0.10493D-09	0.100730-09	0.959310-10	0.904990-10	
0.118920-09	0.118890-09	0.11891D-09	0.118660-09	0.11846D-09	0.11820D-09
0.11739D-C9	0.11753D-C9	0.117130-09	0.116680-09	0.11620D-09	0.115660-09
0.115070-09	0.11440D-09	0.11363D-09	0.112720-09	0.111620-09	0.110190-09
0.10841D-C9	0.10623D-09	0.103570-09	0.10038D-09	0.96583D-10	
0.102390-09	0.10238D-09	0.102350-09	0.10231D-09	0.102250-09	0.102190-09
0.102140-09	0.102130-09	0.10216D-09	0.102270-09	0.10246D-09	0.10277D-09
0.103220-09	0.10379D-09	0.10450D-09	0.10529D-09	0.106120-09	0.10698D-09
0.10772D-CS	0.108270-09	0.108560-09	0.108470-09	0.10788D-09	
0.72251D-10	0.72265D-10	0.723360-10	0.724400-10	0.72629D-10	0.729000-10
0.73282D-10	0.73811D-10	0.745630-10	0.755720-10	0.76933D-10	0.78681D-10
0.809400-10	0.837210-10	0.870820-10	0.90987D-10	0.953670-10	0.10044D-09
0.10582D-C9	0.111420-09	0.11716D-09	0.122970-09	0.12854D-09	
0.18614D-10	0.18697D-10	0.188940-10	0.192790-10	0.198070-10	0.20600D-10
0.21665D-10	0.23088D-10	0.24964D-10	0.274580-10	0.30675D-10	0.34840D-10
0.40113D-10	0.46724D-10	0.547720-10	0.642990-10	0.75149D-10	0.879220-10
0.101630-09	0.11629D-09	0.132020-09	0.14877D-09	0.16603D-09	
-0.734820-10	-0.733450-10	-0.728970-10	-0.72158D-10	-0.710210-10	-0.69471D-10
-0.673570-10	-0.64595D-10	-0.609450-10	-0.562220-10	-0.500670-10	-0.42126D-10
-0.31894D-10	-0.18944D-10	-0.280200-11	0.16734D-10	0.394210-10	0.66046D-10
0.943480-10	0.124660-09	0.157860-09	0.194450-09	0.23373D-09	
-0.225250-09	-0.22499D-09	-0.224200-09	-0.22284D-09	-0.22086D-09	-0.218110-09
-0.214470-09	-0.20967D-09	-0.203430-09	-0.19534D-09	-0.18484D-09	-0.171210-09
-0.15347D-09	-0.13049D-C9	-0.10098D-09	-0.638980-10	-0.192550-10	0.326490-10
0.85495D-10	0.14120D-09	0.203190-09	0.27452D-09	0.355460-09	
-0.461540-09	-0.461140-09	-0.459810-09	-0.45759D-09	-0.454300-09	-0.44984D-09
-0.44383D-C9	-0.436130-09	-0.426110-09	-0.413260-09	-0.396530-09	-0.37481D-09
-0.346430-09	-0.309020-09	-0.259390-09	-0.193270-09	-0.10534D-09	-0.55966D-11
0.858990-10	0.17884D-09	0.283350-09	0.410500-09	0.573580-09	
-0.11041D-C8	-0.110360-08	-0.110100-08	-0.10976D-08	-0.109150-08	-0.10840D-08
-0.107360-08	-0.106090-08	-0.10441D-08	-0.102300-08	-0.995610-09	-0.96083D-09
-0.515290-09	-0.855150-09	-0.774110-09	-0.66297D-09	-0.50351D-09	-0.323300-09
-0.167950-09	-0.14182D-10	0.158960-09	0.373760-09	U.67590D-09	

R LATTICE (CM)

0.0 0.4630D+01 0.92500+01 0.1388D+02 0.1851D+02 0.2314D+02 0.2776D+02 0.3239D+02 0.3702D+02 0.4165D+02 0.4627D+02 0.5090D+02 0.5553D+02 0.6016D+02 0.6478D+02 0.6941D+02 0.7404D+02 0.7898D+02 0.8393D+02 0.8887D+02 0.9381D+02 0.9876D+02 0.1037D+03

Z LATTICE (CM)

0.0 0.6000D+01 0.1200D+02 0.1800D+02 0.2400D+02 0.3000D+02 0.3600D+02 0.4200D+02 0.4800D+02 0.5400D+02 0.6000D+02

0.762000-10	0.697370-10	0.62810D-10	0.555170-10	0.47987D-10	0.40386D-10
0.329070-10	0.27523D-10	0.225180-10	0.183300-10	0.16003D-10	
0.873450-10	0.80499D-10	0.730910-10	0.65214D-10	0.57009D-10	0.486600-10
0.404020-10	0.344470-10	0.288629-10	0.238590-10	0.198780-10	
0.904990-10	0.84441D-10	0.77774D-10	0.70567D-10	0.629290-10	0.550330-10
0.470940-10	0.412840-10	0.357240-10	0.305230-10	0.25814D-10	
0.965830-10	0.921360-10	0.870020-10	0.811840-10	0.747340-10	0.67751D-10
0.604020-10	0.54790D-10	0.492080-10	0.437680-10	0.38733D-10	
0.107880-09	0.106620-09	0.10454D-09	0.10154D-09	0.97520D-10	0.92455D-10
0.863590-10	0.811950-10	0.756340-10	-0.69845D-10	0.643910-10	
0.12854D-09	0.133470-09	0.137400-09	0.13998D-09	0.14093D-09	0.13992D-09
0.13661D-09	0.132470-09	0.127000-09	0.12044D-09	0.11404D-09	
0.166030-09	0.18283D-09	0.198250-09	0.21167D-09	0.22255D-09	0.230100-09
0.233100-09	0.231410-09	0.226110-09	0.21758D-09	0.208650-09	
0.233730-09	0.272930-09	0.309620-09	0.343000-09	0.37294D-09	0.39842D-09
0.416340-09	0.42106D-09	0.416400-09	0.402620-09	0.38666D-09	
0.355460-09	0.436980-09	0.51114D-09	0.57865D-09	0.642250-09	0.70353D-09
C.75861D-09	0.78239D-09	0.7,8162D-09	0.754650-09	0.71837D-09	
0.57358D-09	0.738240-09	0.873220-09	0.991090-09	0.11047D-08	0.12280D-08
0.137920-08	0.14687D-08	0.148850-08	0.14348D-08	0.13376D-08	
0.675900-09	0,992470-09	0.124110-08	0.14506D-08	0.164980-08	0.186610-08
0.219160-08	0.245340-08	0.259110-08	0.25777D-08	0.24662D-08	

R LATTICE (CM)

0.1037D+03 0.1086D+03 0.1136D+03 0.1185D+03 0.1234D+03 0.1284D+03 0.1333D+03 0.1370D+03 0.1407D+03 0.1444D+03 0.1481D+03

Z LATTICE (CM)

0.0 C.60000+01 0.12000+02 0.1800D+02 0.2400D+02 0.3000D+02 0.3600D+02 0.4200D+02 0.48000+02 0.5400D+02 0.6000D+02

INPUT MATERIAL WORTH FOR REGION 19

0.10684D-10	0.715930-11	0.42477D-11	0.24982D-11	0.14559D-11	0.833100-12
0.45994D-12					
0.115060-10	0.76584D-11	0.47019D-11	0.28350D-11	0.16932D-11	0.100110-11
0.56855D-12					
0.109830-10	0.747130-11	0.474660-11	0.29826D-11	0.18697D-11	0.11799D-11
J.70974D-12					
0.107230-10	0.79069D-11	0.51954D-11	0.342220-11	0.228110-11	0.155910-11
0.99555D-12					
0.11121D-10	0.94204D-11	0.648350-11	0.449820-11	0.31823D-11	0.232990-11
0.15451D-11					
0.138460-10	0.13513D-10	0.97113D-11	0.69787D-11	0.51035D-11	0.38666D-11
0.25733D-11					
0.241°9D-10	0.24180D-10	0.175530-10	0.12576D-10	0.912900-11	0.687860-11
0.44457D-11					
0.577770-10	0.51589D-10	0.362650-10	0.24937D-10	0.173710-10	0.12636D-10
0.77307D-11					
0.159200-09	0.12048D-09	0.794190-10	0.51146D-10	0.33525D-10	0.23171D-10
0.13165D-10					
0.456910-09	0.285770-09	0.172330-09	0.10248D-09	0.62733D-10	0.41054D-10
0.21398D-10					
0.11598D-CA	0.64164D-09	0.34460D-09	0.198550-09	0.108430-09	0.678580-10
0.32430D-10					

P LATTICE (CM)

0.1481D+03 0.1523D+03 0.1564D+03 0.1606D+03 0.1648D+03 0.1689D+03 0.1731D+03

Z LATTICE (CM)

0.0 0.6000D+01 0.1200D+02 0.1800D+02 0.2400D+02 0.3000D+02 0.3600D+02 0.4200D+02 0.4800D+02 0.5400D+02 0.6000D+02

INPUT MATERIAL WORTH FOR REGION 20

0.44946D-12	0.12908D-12	0.290950-13	0.22867D-14
0.437720-12	0.211530-12	0.897690-13	0.35589D-13
0.36423D-12	0.312260-12	0.170690-12	0.802850-13
0.61434D-13	0.883170-12	0.588960-12	0.29348D-12
-0.237510-12	0.157560-11	0.105480-11	0.51139D-12
-0.17455D-11	0.49023D-11	0.306950-11	0.13469D-11
-0.376790-11	0.82074D-11	0.492340-11	0.20404D-11
-0.01300-11	0.123080-10	0.771440-11	0.277730-11

R LATTICE (CM)

0.1731D+03 0.1814D+03 0.1898D+03 0.1981D+03

Z LATTICE (CM)

0.0 0.6000D+01 0.1200D+02 0.1800D+02 0.2400D+02 0.3000D+02 0.3600D+02 0.4200D+02 0.4800D+02 0.5400D+02 0.6000D+02

Tab. A4 Doppler - Parameter

		Störungskoeffizi	enten 10 ⁷ .8(1/k)	Koeffizienten	a, b aus:	Wichtungen für	
Zonen-	Region-	Temper	atur	$\frac{1}{k} \frac{d\kappa}{dT} = aT^{-3/2}$	+ b T ⁻¹ (Methode 2)	$\frac{1}{k}\frac{dk}{dT} = 0,082 \text{ T}^{-3/2} - 0,008 \text{ T}^{-1}$	
index	index	Kern 2100+100 K Blanket 900+100k	Kern }3000+100K Blanket	10 ⁴ • a	10 ⁴ • ъ	(Methode 1)	
1	5	5,6340	3,8007	120,4	9,204	0,1552	
	11	4,3991	2,9688	93,09	7,207	0,1212	
2	6	4,4335	2,9815	102,7	7,069	0,1222	
	12	3,4571	2,3258	79,28	5,529	0,0953	
	7	3,6743	2,4569	96,89	5,602	0,1012	
3	13	2,8604	1,9135	74,74	4,376	0,0788	
	8	0,9202	0,6135	25,74	1,371	0,0254	
4	14	0,7141	0,4763	19,82	1,067	0,197	
	1	1,1417	0,4397	464,8	-7,167	0,0390	
5	2	0,6848	0,2113	225,6	-3,485	0,0189	
_	17	1,3767	0,4273	451,5	-6,961	0,0379	
	18	0,6636	0,2049	218,6	-3,376	0,0183	
	3	0,1013	0,0326	32,22	-0,4904	0,0028	
	9	3,1851	0,9644	1065,0	-16,55	0,0254	
6	15	2,4674	0,7477	824,4	-12,81	0,0680	
	19	0,0980	0,0315	31,17	-0,4744	0,0027	
	4	0,0041	0,0014	1,259	-0,01876	0,0001	
_	10	0,1105	0,0362	34,61	-0,5232	0,0030	
/	16	0,0855	0,0281	26,79	-0,4048	0,0024	
	20	0,0040	0,0014	1,216	-0.01813	0,0001	
1	2	3	4	5	6	7	

.

Tab. A5	Zerfallskonstanten	λ und Anteile β	verzögerter Neutrone	n aus Schnell-
	spaltung aus Keepin	1 /1965/		

Gruppen-	U ²³⁵		u ²³⁸		Pu ²²	Pu ²³⁹		240
index i	λ	β _i	λ _i	β _i	λ _i	β _i	λ _i	β _i
1	0,0127	2,43-4 ^{†)}	0,0132	1,92-4	0,0129	7,6-5	0,0129	7,28-5
2	0,0317	1,36-3	0,0321	2,03-3	0,0311	5,6-4	0,0313	7,1-4
3	0,115	1,2-3	0,139	2,4-3	0,134	4,32-4	0,135	4,99-4
4	0,311	2,6-3	0,358	5,74-3	0,331	6,56-4	0,333	9,1-4
5	1,40	8,2-4	1,41	3,33-3	1,26	2,06-4	1,36	3,33-4
6	3,87	1,66-4	4,02	1,11-3	3,21	7,0-5	4,04	9,1-5
†) Schi	reibweise:	2,43-4 = 2,	$43 \cdot 10^{-4}$					

⁺⁾ Schreibweise: $2,43-4 = 2,43 \cdot 10^{-4}$

Index Energi Gruppe inde verz.Neutr.	e- en- ex 1-3	4	5	6	7	8	9	10	11	12	13-26
1	0,0	0,0	0,06	0,17	0,23	0,27	0,16	0,08	0,02	0,01	0,0
2	0,0	0,0	0,14	0,38	0,28	0,11	0,06	0,03	0,01	0,0	0,0
3	0,0	0,0	0,09	0,35	0,25	0,16	0,09	0,04	0,01	0,0	0,0
4	0,0	0,07	0,16	0,31	0,22	0,15	0,06	0,03	0,01	0,0	0,0
. 5	0,0	0,04	0,14	0,36	0 , 26	0,14	0,05	0,01	0,0	0,0	0,0
6	0,0	0,04	0,14	0,36	0,26	0,14	0,05	0,01	0,0	0,0	0,0

Tab. A6 Spektren verzögerter Neutronen basierend auf Messungen von Fieg /1971/

		. ,	з	4	5	6	. 7	•	9	10	
	2	0-2800-09	0.2800-09	0.2800-09	0.278 0-09	0.2770-09	0.2740-09	0.2720-09	0 2670-09	0.2600-09	
	3	0-9340-09	0.9360-09	0.9330-09	0-9300-09	0.9250-09	0.9190-09	0.9090-09	0.8940-09	0-8730-09	
	4	0.1930-08	0-1930-08	0-1920-08	0.1920-08	0.1910-08	0-1890-08	0-1880-08	0-1860-08	0-1810-08	
	5	0.3680-08	0.3680-08	0.368D-08	0.366D-08	0-3650-08	0.3630-08	0-3600-08	0-3580-08	0-3520-08	
	6	0.7050-08	0.7050-08	0.704D-08	0.703D-08	0.700D-08	0.698D-08	0-6940-08	0.691 D-08	0-6840-08	
	7	0.5400-07	0.540D-07	0.5390-07	0.538 D-07	0.5360-07	0.534D-07	0-5300-07	0-5270-07	0.547D-07	
	8	0.666D-07	0.6660-07	0.6650-07	0.664D-07	0.6610-07	0.6590-07	0.6550-07	0.650 D-07	0.676D-07	
	ģ	0.7860-07	0.7860-07	0.7850-07	0.784D-07	0.7820-07	0.7780-07	0.774D-07	0.7690-07	0.8000-07	
	10	0.8970-07	0.8960-07	0.896D-07	0.8930-07	0.891D-07	0.888D-07	0.8830-07	0.8770-07	0.9140-07	
	11	0.994D-07	0.994D-07	0.9930-07	0.9900-07	0.988D-07	0.9850-07	0.9810-07	0.9740-07	0.1010-06	
	12	0.108D-06	0.108D-06	0.108D-06	0.107D-06	0.1070-06	0.1070-06	0.1060-06	0.1060-06	0.1100-06	
ズ N fn H	13	0.114D-06	0.114D-06	0.114D-06	0 .114D-06	0.1140-06	0.113D-06	0.1130-06	0.1120-06	0.117D-06	
A Y L' A	14	0.1190-06	0.119D-06	0.119D-06	0.119D-06	0.1190-06	0.1180-06	0.118D-06	0.117D-06	0.1230-06	
סאאס	15	0.1230-06	0.1230-06	0.123D-06	0.123D-06	0.1230-06	0.121D-06	0.1210-06	0.1200-06	0.1250-06	
<u><u> </u></u>	16	0.124D-06	0.124D-06	0.124D-06	0.124D-06	0.124D-06	0.1230-06	0.1230-06	0.1210-06	0.1260-06	
	17	0.124D-06	0.1240-06	0-124D-06	0.1240-06	0.1240-06	0-1230-06	0.1230-06	0.1210-06	0.1260-06	
	18	0.1230-06	0.1230-06	0.1230-06	0.1230-06	0.1230-06	0.1210-06	0.1210-06	0.1210-06	0.1250-06	
ê Bî,	19	0.1200-06	0.1190-06	0.1190-06	0.1190-06	0.1190-06	0.1180-06	0.118D-06	0.1170-06	0.1210-06	
0 H - Z	20	0.1000-06	0.1000-06	0.1140-06	0.1070-06	0.1140-06	0.1130-06	0.1130-06	0.1120-06	0.1170-06	
na o	21	0.000-00	0.1000-00	0.1080-08	0.10/0-00	0.0000.07	0.1070-05	0.100-06	0.100-06	0.1100-06	
0 5 5.11	22	0.8970-07	0 9970-07	0.9950-07	0.9910-07	0.9591-07	0 9997-07	0.9810-07	0.9740-07	0.0140-00	
	23	0.7890-07	0.7860=07	0.7850-07	0.7840-07	0.7820-07	0.7790-07	0.7750-07	0.7690-07	0.9140-07	
	25	0.6670-07	0.6660-07	0.6660=07	0.6640-07	0.6630-07	0.6600-07	0.4570-07	0.4520-07	0.6770-07	
	26	0.541 D = 07	0-5400-07	0.5400-07	0.5390-07	0.5360-07	0.5340-07	0.5320-07	0.5270-07	0.5470-07	
1 1 0 H	27	0.7050-08	0.7050-08	0.7040-08	0-7030-08	0.7000-08	0.6980-08	0-6940-08	0.6910-08	0-6840-08	
e d r le	28	0.3680-08	0.3680-08	0.3680-08	0.3660-08	0.3650-08	0-3630-08	0.3600-08	0-3580-08	0.3520-08	
H H C	29	0.1930-08	0.1930-08	0.192D-08	0-192D-08	0.1910-08	0.1890-08	0-188D-08	0-1860-08	0-1810-08	
	30	0.934D-09	0.9360-09	0.9330-09	0.9300-09	0.9250-09	0.9190-09	0.9090-09	0-894D-09	0.8730-09	
	31	0.2800-09	0.280D-09	0.280D-09	0.278 D-09	0.2770-09	0.274D-09	0.2720-09	0.2670-09	0.2600-09	
1. E S						•					
n o P H		11	12	13	14	15	16	17	18	19	20
5 0 0 C	2	0.251D-09	0.2380-09	0.2200-09	0.1980-09	0.171D-09	0.143D-09	0.115D-09	0.1190-09	0.6670-10	0.235D-10
с и о	3	0.8450-09	0.8050-09	0.7480-09	0.674D-09	0.582C-09	0.488D-09	0.3910-09	0.3990-09	0.215D-09	0.7230-10
	4	0.1770-08	0.1690-08	0.158D-08	0-143D-08	0.1250-08	0.1C4D-08	0.8370-09	0.8340-09	0.4130-09	0.1300-09
	2	0-3430-08	0.3310-08	0.3130-08	0.2850-08	0.2510-08	0.2120-08	0.1690-08	0.1030-08	0.7240-09	0.2120-09
Liv a vir		0.6720-08	0.6530-08	0.6250-08	0.5790-08	0.5160-08	0.4430-08	0.3480-08	0.3090-08	0.1230-08	0.3310-09
		0.5540-07	0.5160-07	0.5450-07	0.5000-07	0.5530-07	0.5280-07	0.4360-07	0.5080-08	0.1810-08	0.4840-09
	°	0.7930-07	0.7590-07	0.8020-07	0.7400-07	0.4500-07	0.7960-07	0.5450-07	0.0110-08	0.2290-08	0.5750-09
ω s L IT	10	0.8940-07	0.8660-07	0.9190-07	0.8480-07	0.7545-07	0.800-07	0.7440-07	0.0420-08	0.2140-08	0.0020-09
· 1. 0 0	11	0-9940-07	0-9640-07	0.1020+06	0-9430-07	0.8410-07	0.1000-06	0 8290-07	0.1050-07	0.3520-08	0.8660-09
	12	0.1080-06	0-1040-06	0.1110-06	0-1020-06	0-9140-07	0-1080-06	0.900-07	0 1140-07	0.3830-08	0.9420-09
	13	0.1150-06	0.1110-06	0-1180-06	0.1090-06	0.9720-07	0-1160-06	0-9590-07	0-1230-07	0-4090-08	0-1000-08
	14	0.1200-06	0.116D-06	0.124D-06	0.114D-0.6	0.102D-06	0,1200-06	0.1000-06	0.1270-07	0-4270-08	0.105D-08
• 🖬 🔤	15	0.123D-06	0.119D-06	0.126D-06	0.117D-06	0.1040-06	0.123D-06	0-103D-06	0.1310-07	0.4390-08	0.108D-08
	16	0.125D-06	0.1210-06	0.1270-06	0.118D-06	0.106D-06	0.1260-06	0.104D-06	0.1320-07	0.444D-08	0.1090-08
	17	0.1250-06	0.1210-06	0.127D-06	0.118D-06	0.106D-06	0.126D-06	0.1040-06	0.1320-07	0.4440-08	0.109D-08
	18	0.123D-06	0.1190-06	0.126D-06	0.117D-06	0.1040-06	0.1240-06	0.1030-06	0.1310-07	0.4390-08	0.108D-08
5	19	0.1200-06	0.1160-06	0.1230-06	0.114D-06	0.102D-06	0.1210-06	0.1000-06	0.1270-07	0.4270-08	0.1050-08
P.4	20	0.1150-06	0-1110-06	0.118D-06	0.109D-06	0.972 C-07	0.1160-06	0.9590-07	0.1230-07	0.408D-08	0.100D-08
	21	0.108D-06	0.1050-06	0.1110-06	0.102D-06	0.914D-07	0.1C8D-06	0.900-07	0.1150-07	0.3830-08	0.942 D-09
	22	0.994D-07	0.964D-07	0.102D-06	0.944D-07	0.8410-07	0.100D-06	0.8290-07	0.1050-07	0.3520-08	0.866D-09
	23	0.8960-07	0.868D-07	0.919D-07	0.848D-07	0.756D-07	0.8990-07	0.7450-07	0.9430-08	0.3160-08	0.780D-09
	24	0.7840-07	0.758D-07	0.803D-07	0.7410-07	0.6590-07	0.784D-07	0.6490-07	0.8150-08	0.2750-08	0.683D-09
	25	0.663D-07	0.6400-07	0.677D-07	0.624D-07	0.555 D-07	0.659D-07	0.5450-07	0.672D-08	0.2290-08	0.576D-09
	26	0.5340-07	0.5160-07	0.5450-07	0.501D-07	0.4430-07	0.528D-07	0.436D-07	0.508D-08	0.1810-08	0.4640-09
	27	0.6720-08	0.6530-08	0.625D-08	0.5790-08	0.516C-08	U-443D-08	0.3480-08	0.3090-08	0.1230-08	0.3310-09
	28	0.343D-08	0.3310-08	0.3130-08	0.286D=08	0.2510-08	0.212D-08	0.1690-08	0.1630-08	0.724D-09	0.2120-09
	29	0.1/10-08	0.1090-08	0.1580-08	0.6760-00	0.1250-08	0.1040-08	0.8370-09	0.8340-09	0.4130-09	0.1300-09
	30	0.0510-09	0.0000-09	0.7480-09	0.000-00	0.0820-09	0.14880-09	0.3910-09	0.3990-09	0.2150-09	0.7230-10
	اد	0.2010-09	0.2380-09	0.2200-09	0.1380-03	0*1110-03	U+143U-09	0.1150-09	0.1190-09	0+6670-10	0.2370-10

-

,

Anhang B

Tabellen zu den Predisassembly-Rechnungen

Bl Temperaturen im Betriebszustand

B2 Temperaturen +

B3 Brennstoffdichten +

B4 Brennstoff-Volumenanteile +

⁺zum Umschaltpunkt

Tab. Bl Temperaturverteilung im GSB-1-Kern bei Vollast in Kelvin. Indizes beziehen sich auf KADIS-Rechengitter.

	2	з	4	5	6	7	я	a	10	
2	934 260	934 240	934 220	936 190	041 468	220 458	936 020	833 950	834 080	
3	840.310	840.270	840.220	840.150	840.060	839 970	836,830	124.250	635.950	
4	852.380	852.310	852.200	852.060	851.890	851.710	851.430	851-140	851-660	
5	876.500	876 360	876 130	875.860	875 500	875 150	874 600	874 010	875.050	
Á	924.660	974 380	923 930	923.380	922.670	071 060	920 970	919 700	\$21.760	
7	1499.500	1497 600	1494.600	1490.900	1486.100	1481 300	1473 900	1466 000	1480.000	
8	1626-300	1624-100	1620.500	1616-200	1610-500	1604-900	1596-200	1586.900	1603-300	
q	1738.300	1735-900	1731.900	1726-900	1720.400	1713.800	1703-800	1693.000	1712-000	
10	1832-100	1829-400	1825.000	1819-600	1812.600	1805-600	1794-900	1783.400	1803-700	
11	1911.700	1908-900	1904-300	1898.400	1850-800	1863.100	1871-300	1858-700	1881.000	
12	1572.200	1969-100	1964.300	1958.300	1950.600	1942.900	1931-100	1518.500	1546.800	
13	2017-900	2014.700	2009-600	2003-300	1995-200	1987.000	1974.500	1961-100	1984.800	
14	2048.300	2044.900	2039-600	2033-100	2024 .600	2016-100	2003-000	1989-100	2013-700	
15	2062-700	2059-200	2053.700	2047-000	2038-300	2029-600	2016-200	2001-900	2027-200	
16	2062-500	2059.300	2053.700	2046-900	2038-100	2029-300	2015.700	2001-200	2026-900	
17	2053.500	2050.000	2044 400	2037.600	2028.800	2019.900	20C6.3CC	1991.800	2017.500	
18	2026.700	2023.200	2017.600	2010-900	2002.100	1993.300	1979.800	1965.300	1990.900	
19	1997.400	1994.000	1988.500	1981.900	1973.300	1564.700	1951.500	1937.300	1962.300	
20	1938.500	1935.200	1929.900	1923.600	1915-200	1906-900	1894.200	1860.500	1904-600	
21	1864.300	1861.200	1856.200	1350.200	1842.300	1834-300	1821.400	1807.500	1832.100	
22	1772.400	1769.300	1764.300	1758.200	1750.300	1742.400	1730.300	1717-300	1740-300	
23	1664.100	1661.200	1656.600	1650.900	1643.500	1636-100	1624-800	1612.600	1634-100	
24	1540.500	1537.800	1533.700	1528.600	1521.800	1515.000	1504.500	1493.300	1513.100	
25	1401.700	1399.400	1395.700	1391.100	1385.200	1379.300	1370.300	1366.600	1377.700	
26	1252.500	1250-600	1247.400	1243.600	1238.700	1233-800	1226-200	1218-000	1232.400	
27	649.57C	649.280	648.810	648.240	647.500	646.750	645.620	644.4CC	646.550	
28	596.510	596.360	596.130	595.840	595.470	595.100	594.530	593.910	554.990	
29	569.900	569.830	569.710	569.570	569.380	569.200	568.910	568.600	569.150	
30	556.57C	556.540	556.480	556.410	556.310	556-220	556.080	555.920	556.200	
31	549.900	549.880	549.850	549.810	549.770	549.720	549.650	549.570	549.710	
	11	12	13	14	15	16	17	16	19	20
2	834 020	833 600	933 930	833 460	832 860	922 420	822 720	820 510	528 56C	577.460
2	839.830	839.160	839.650	839.700	837.510	040.068	637.230	833.300	829-340	827.110
í.	851-430	850,100	851.070	849-170	846.800	849-850	846.240	838.950	830-920	826.400
5	874.600	871.930	873-870	870-080	645.35C	871.440	864.220	850 390	834-120	824-560
6	920- F70	915.540	919.410	911.850	902.390	914 550	900.140	673.610	840-630	822-050
ž	1473.900	1438.000	1464.100	1412.700	1347.600	1431.300	1332.100	893 570	844-990	817.620
8	1556.200	1554.000	1584.700	1523.600	1445 .800	1545-800	1427.300	526-010	853.560	812 750
ğ	1703.800	1654.800	1690-400	1620-900	1533.500	1645.700	1512-000	953,880	858-950	805.480
10	1794.900	1742.700	1780.700	1705.400	1607.700	1732-900	1584-400	976.640	861-070	755.560
11	1871-300	1814.000	1855.700	1774-100	1669-800	1803-200	1644-300	993.690	859-870	784.380
12	1931.100	1871.800	1915.400	1828,900	1719.200	1860-200	1692.200	1004.900	855-440	770.570
13	1974.500	1913.600	1957.900	1869.900	1753.800	1902-200	1726.100	1010-100	£47-830	755.990
14	2003.000	1939.500	1985.700	1895.400	1775.400	1927.700	1746.600	1009.100	837.180	739.740
15	2016.200	1950,900	1993.400	1905.600	1783.700	1938.700	1754.000	1001-900	823-690	722.530
16	2015.700	1949.700	1997.700	1903.900	1780.900	1937.400	1750.900	992.57C	811.850	709.190
17	2006.300	1940.100	1988.200	1394.100	1770.400	1527.700	1740.400	979.910	798.680	655.650
18	1979.800	1914.CCC	1961.800	1868.300	1744.400	1901-700	1714.500	558.18C	775-290	677.540
19	1951.500	1887.100	1933.900	1841.700	1719.100	1875.000	1689.900	931.44C	758.230	659.700
20	1854.200	1831.300	1877.200	1785.000	1666.700	1818.800	1638.200	900.010	735.800	642.460
21	1821.400	1758.200	1804.200	1714.200	1600.300	1746.300	1572.200	864.490	712.520	626.170
22	1730.300	1671.200	1714.200	1630.200	1520.500	1660.200	1494.300	825.400	688.650	£11.130
23	1624.800	1569.500	1609.700	1530.900	1429.400	1559.200	1405.100	783.75C	664.750	597.660
24	1504.500	1453.500	1490.600	1418.100	1327.300	1444.000	1305.500	739.380	641.290	586.000
25	1370.300	1326.100	1358.200	1295.100	1215.900	1317.70C	1157.000	693.910	618.760	576.400
26	1226.200	1189.100	1216.100	1163.400	1097.700	1182.200	1082.000	648.22C	597.58C	569.(40
27	645.620	640.060	644.100	636.210	626.350	639.030	624.000	615.68C	581.450	562.160
29	554.530	591.74C	593.770	589.810	584.870	591.220	583.690	563.980	567.060	557.530
29	568.910	567.520	568.530	566.550	564.070	567.260	563.480	568.310	559.950	555.240
30	556.080	555.380	555.890	554.890	553.660	555.250	553.360	560.56C	556.440	554.110
31	549.650	549.300	545.550	549.06C	548.440	549.230	548,290	556.740	554.700	553.560

KAI	5	86	Iał
SIC	Ke	su	÷
R	14	Þ	В2
ect	in,	acl	H
len	Ţ	E	Į.
ធូ	nd	eg	er
tte	ize	ini	ati
r.	ŝ	b r	ITV
	be	es	er
	Z1 e	A	tei.
	he	SC	
	1	ha	20
	S1 0	lts	11. 1
	h	ta	G
	au	ba	SB.
	μ.	4Sh	÷
		n'ur	·Ке
		fs	rn

$ \begin{array}{c} 2 & 875.480 \\ 75.420 & 975.420 \\ 75.420 & 975.400 \\ 75.420 & 9$		۷	3	- 4	5	6	7	8	9	10	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	875.480	875.480	875.470	875.470	875.460	875.450	875.440	875.420	875.450	
4 932.200 265.400 265.400 265.400 265.400 265.400 265.400 265.400 265.200 362.	3	894 • 460	894.450	894.440	894.430	894-410	894.400	894.370	894.340	894.390	
5 1007.400 10	4	932.320	932.310	932.290	932.260	932.230	932.200	932.150	932.100	932.190	
6 1157.300 11	5	1007.900	1007.800	1007.800	1007.700	1007.700	1007.600	1006.500	1006.400	1007.600	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	1159.300	1159.300	1159.200	1159.100	1158.000	1157.900	1157.700	1156.500	1157.900	
6 2947.400 2944.500 294.500 293.400 20	7	2691.300	2690.700	2688.900	2687.600	2685.200	2683.300	2679.600	2676.400	2682.700	
9 3023.000 30	8	2947.900	2946.900	2945.300	2943.300	2941.200	2938.600	2934.900	2930.700	2938.100	
10 3023.000 3023.000 3023.000 3023.000 3023.000 3023.000 3023.000 3023.000 3023.000 3023.000 3023.000 3023.000 3023.000 3023.000 3023.000 3023.000 3023.000 3023.000 3035.000 3035.000 3335.000 3335.000 3335.000 3335.000 3335.000 3335.000 3335.000 3335.000 3335.000 3335.000 3335.000 3335.000 3345.100 3447.000 3447.000 3446.100 3445.100 3470.600 3446.100 3445.100 3470.600 3446.100 3445.000 3447.600 3446.100 3445.000 3446.100 3445.000 3446.100 3445.600 3446.100 3445.600 3446.100 3445.600 3446.100 3446.600 3446.100 3446.600 3446.100 3446.100 3446.100 3446.100 3446.100 3446.100 3446.100 3446.100 3446.100 3446.100 3446.100 3446.100 3446.100 3446.100 3446.100 3446.100 3446.100 3446.100 3446.100 3	9	3023.000	3023.000	3023.000	3023.000	3023.000	3023.000	3023.000	3023.000	3023.000	
11 3066.600 3067.400 3065.500 3064.400 3012.200 3022.100 3027.100 3212.200 3022.100 3212.200 3244.000 3442.700 3	10	3023.000	3023.000	3023.000	3023.000	3023.000	3023.000	3023.000	3023.000	3023.000	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11	3068.600	3067.400	3065.500	3063.500	3060.400	3057.200	3052.800	3047.800	3056.600	
13 3349,100 3347,200 3347,200 3347,200 3347,200 3347,200 3342,400 3342,400 3342,400 3342,400 3444,400 3442,400 3444,	12	3225.100	3223.800	3221.900	3219.400	3216.200	3213.200	3208.200	3203.100	3212.500	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13	3349.100	3347.200	3345.300	3342.700	3339.400	3335.700	3330.500	3324.800	3335.000	
	14	3437.600	3436.300	3433.700	3431.100	3427.300	3424.000	3418.3C0	3412.500	3422.800	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15	3490.000	3488.700	3486.100	3483.500	3479.600	3475.800	3470.600	3464.300	3475.100	
117 3499.400 3499.400 3492.900 3492.900 3492.400 3474.600 3474.600 3474.600 19 3455.400 3455.400 3455.400 3455.400 3445.400 3445.400 3445.400 3445.400 3444.600 19 3330.200 3372.400 3321.400 3321.400 3311.400 3311.400 3316.500 3316.500 21 3181.900 3180.600 3023.000	16	3500.000	3500.000	3500.000	3498.200	3494.900	3491.100	3485.400	3479.600	3489.900	
18 3457.400 3457.400 3452.400 3445.500 3440.100 3433.600 3444.500 19 3444.500 3440.700 3378.400 358.450 348.440 548.420 548.410 548.430 548.430 548.430 548.430 548.430 548.300 54	17	3499.400	3498.000	3495.500	3492.900	3489.100	3485.300	3479.600	3474.000	3484.600	
19 3444.000 3447.700 3437.500 3437.500 342.400	18	3459.400	3457.600	3455.700	3452.800	3449.500	3445.800	3440.100	3433.800	3444.500	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	19	3444.000	3442.700	3440.700	3437.500	3434.200	3430.300	3424.400	3418.600	3429.600	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20	3330.200	3328.900	3326.900	3323.800	3320.800	3317.000	3311.900	3306.100	3316.300	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	21	3181.900	3180.600	3178.700	3176.100	3172.900	3169.200	3164.200	3159.100	3168.600	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	22	3023.000	3023.000	3023.000	3023.000	3023.000	3023.000	3023.000	3023.000	3023.000	
24 3023.000 3023.000 3023.000 3023.000 3023.000 3023.000 2786.100 2897.500 2897.500 2897.500 2897.500 2897.500 2897.500 2897.500 2897.500 584.470 584.470 584.470 584.470 584.490 733.200 31 565.040 565.030 565.030 565.010 565.000 886.970 744.875.00 733.240 3 894.770 894.230 875.200 875.200 886.970 744.870 743.700 744.850 743.700 744.850 743.700 744.850 743.700 744.850 743.700 744.850 743.700 744.	23	3023.000	3023.000	3023.000	3023.000	3023.000	3023.000	3023.000	3023.000	3023.000	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	24	3023.000	3023.000	3023.000	3023.000	3023.000	3023.000	3023.000	3023.000	3023.000	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	25	2799.700	2798.900	2797.100	2795.200	2792.600	2790.000	2786.100	2781.900	2789.500	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	26	2500.700	2499.800	2498.400	2496.900	2494.600	2492.600	2489.300	2485.600	2491.800	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	27	851.640	850-980	850.900	850.800	850 -680	850.550	849.750	849.540	850.520	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	28	699.860	699.840	699.800	699.750	659.650	659.620	699.530	698.810	699.610	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	29	623.110	623.090	623.070	623.050	623.020	622.990	622.940	622.880	622.980	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	30	584.450	584.450	584.440	584.420	584.410	584.390	584.370	584.340	584.390	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	31	565.040	565.040	565.030	565.030	565.020	565.010	565.000	564.990	565-010	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		11	12	13	- 14	15	16	17	18	19	20
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	875.440	875.380	875.420	875.330	875.220	875.360	875.200	844.480	733.500	733.240
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	894.370	894.250	894.340	894.160	892.950	894.230	892.900	856.970	744.850	743.770
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	932.150	930.920	932.080	930.750	929.330	930.880	929.220	882.220	767.830	765.100
6 1157.700 1154.800 1153.200 1147.600 1153.700 1164.200 1036.300 907.310 895.510 8 2934.900 2916.400 292.700 296.100 2873.100 2913.200 2865.700 1278.7C0 1124.200 1099.100 9 3023.000 3023.000 3023.000 3023.000 3023.000 3023.000 3023.000 1278.7C0 125.500 1214.200 1099.100 10 3023.000 3023.000 3023.000 3023.000 3023.000 3023.000 155.500 155.500 1315.700 11 3052.800 3024.200 3046.500 3023.000 3023.000 3023.000 3023.000 1637.300 1450.200 1478.400 13 330.500 3305.400 3221.600 328.200 328.300 3300.400 325.400 1837.400 1534.400 14 3418.300 3491.800 3462.400 3477.800 3468.800 3362.400 1837.900 1657.500 1594.800 15 3470.600 3442.600 3477.800 3438.900 3452.700 3368.700	5	1006.500	1006.100	1006.400	1004.700	1001.900	1005.000	1001.700	932.750	813.780	808.320
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	1157.700	1154.800	1156.500	1153.200	1147.600	1153.700	1146.200	1036.300	907.310	895.910
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	7	2679.600	2663.800	2675.200	2653.000	2625.100	2660.700	2618.000	1131.400	992.910	976.250
9 3023.000 3023.000 3023.000 3023.000 3023.000 1023.000 1244.700 1245.800 1213.400 11 3052.800 3023.000 3023.000 3023.000 3023.000 1355.500 1355.500 1355.500 1355.500 1355.500 1355.500 1355.500 1355.500 1355.500 1450.200 1464.800 12 3208.200 3164.200 3214.600 3111.700 3179.800 3023.000 1637.300 1450.200 1464.800 13 3330.500 3305.400 3227.000 3233.300 300.400 3129.300 170.400 1588.500 1574.400 14 3418.300 3391.800 3424.600 3370.400 3456.800 3365.400 189.800 1657.000 1573.400 16 3495.400 3458.300 3477.800 3438.800 3383.900 3452.700 3368.700 1837.900 1657.000 1598.900 17 3479.600 3452.600 3472.800 3383.900 3452.700 3364.700 1837.900 1657.900 1579.700 1598.900 17 3479.600	8	2934.900	2916-400	2929.700	2904.100	2873 .100	2913.200	2865.700	1278.700	1124.200	1099.100
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	9	3023.000	3023.000	3023.000	3023.000	3023.000	3023.000	3023.000	1414.700	1245.800	1213.400
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	10	3023.000	3023.000	3023.000	3023.000	3023.000	3023.000	3023.000	1535.500	1355.500	1315.700
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	11	3052.800	3028.200	3046.500	3023.000	3023.000 /	3023.000	3023.000	1637.300	1450.200	1404.800
13 3330.500 3305.400 3227.200 323.300 3300.400 3219.300 1780.400 1588.500 1534.400 14 3418.300 3391.800 3411.200 3373.500 3319.70C 3366.800 3305.200 1819.800 1629.700 1573.400 15 3470.600 3443.500 3463.000 3424.600 3370.400 3458.400 3355.400 1837.900 1652.500 1594.800 16 3455.400 3452.600 3477.800 3438.800 3383.900 3452.700 3368.700 1837.900 1650.500 1598.900 17 3479.600 3452.600 3472.200 3433.200 3376.000 3447.000 3361.000 1879.900 1592.700 18 3440.100 342.600 347.300 3378.400 3323.700 3352.500 3309.100 1732.600 1579.900 1527.100 20 3311.900 3285.800 304.800 3223.000 3023.000 3023.000 3023.000 3023.000 3023.000 1656.200 1546.600 1496.600 21 3164.200 3136.800 323.000	12	3208.200	3184.200	3201.800	3166.900	3111.700	3179.800	3058.400	1720.100	1528.400	1478.400
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	13	3330.500	3305+400	3323.600	3287.200	3233.300	3300.400	3219.300	1780.400	1588.500	1534.400
15 3470.600 3443.500 3463.000 3424.600 3370.400 3438.400 3355.400 1838.200 1652.500 1594.800 16 3455.400 3458.300 3477.800 3438.200 3383.900 3452.700 3361.000 1837.900 1657.000 1592.700 17 3479.600 3452.500 3472.200 3433.200 3376.000 3447.000 3361.000 1825.300 1657.000 1592.700 18 3440.100 3412.500 3422.60C 3338.400 3323.700 3376.200 3318.900 1789.500 1624.600 1568.400 20 3311.900 3285.800 3304.800 3267.500 3207.400 3280.700 3193.500 1656.200 1516.600 1466.600 21 3164.200 3161.00 3177.900 3123.000 3023.000 3023.000 3023.000 3023.000 3023.000 3023.000 3023.000 3023.000 3023.000 3023.000 3023.000 3023.000 1340.500 1299.500 23 3023.000 3023.000 3023.000 3023.000 3023.000 3023.000	- 14	3418.300	3391.800	3411.200	3373.500	3319.700	3386.800	3305.200	1819.800	1629.700	1573.400
163455.4003457.8003477.8003438.8003383.9003452.7003368.7001837.9001657.0001598.900173479.6003452.6003472.2003433.2003376.0003447.0003361.0001887.9001650.5001592.700183440.1003412.5003432.6003393.8003336.003407.500318.9001785.5001624.6001568.400193424.4003397.6003417.3003378.4003323.7003322.5003309.1001732.6001579.9001527.100203311.9003285.8003304.8003267.5003207.4003280.7003193.5001656.2001516.6001496.600213164.2003136.003179.9003113.2003055.200310.0003023.0001656.2001546.6001390.500223023.0003023.0003023.0003023.0003023.0003023.0003023.0003023.0001445.7001340.5001299.500233023.0003023.0003023.0003023.0003023.0003023.0003023.0003023.000116.0001229.4001194.400252786.1002767.4002781.1002754.3002723.1002763.8002715.5001025.200976.210955.360262499.3002473.200248.7002462.5002434.7002476.3002743.650734.630734.63027849.750849.490846.310842.780847.410841.760743.650	15	3470.600	3443.500	3463.000	3424.600	3370.400	3438.400	3355.400	1838.200	1652.500	1594.800
17 3479.600 3472.200 3432.200 3376.000 3447.000 3361.000 1825.300 1650.500 1992.700 18 3440.100 3412.500 3432.60C 3393.800 3333.600 3407.500 3318.900 1789.500 1624.600 1568.400 19 3424.400 3397.600 3174.700 3378.400 3323.700 3322.5C0 330.100 1789.500 1624.600 1568.400 20 3311.900 2285.800 3304.800 3267.500 3207.400 3280.700 3193.500 1656.200 1516.600 1466.600 21 3164.200 3136.100 3157.900 3113.200 3055.200 310.000 3023.000 3023.000 3023.000 3023.000 3023.000 3023.000 3023.000 3023.000 3023.000 3023.000 3023.000 3023.000 130.200 130.200 3023.000 3023.000 1023.000 3023.000 3023.000 3023.000 3023.000 3023.000 1023.000 1294.500 1194.400 23 3023.000 3023.000 2960.500 2763.800 2715.500 107.200	16	3485.400	3458.300	3477.800	3438.800	3383.900	3452.700	3368.700	1837.900	1657.000	1598.900
18 3440.100 3412.500 3432.600 3333.600 3407.500 3318.900 1789.500 1624.600 1568.400 19 3424.400 3397.600 3417.300 3374.400 3323.700 3322.500 3309.100 1789.500 1579.900 1527.100 20 3311.900 3285.800 304.800 3267.500 3207.400 3280.700 3193.500 1652.00 1516.600 1466.600 21 3164.200 3136.100 3157.900 3113.200 3023.000 3023.000 3023.000 3023.000 3023.000 1269.500 1299.500 23 3023.000 3023.000 3023.000 3023.000 3023.000 3023.000 1340.500 1299.500 24 3023.000 3023.000 3023.000 3023.000 3023.000 3023.000 1340.500 1299.500 25 2786.100 2767.400 7311.100 2763.400 2723.100 2763.800 2175.300 2763.800 2175.300 2428.000 869.890 837.270 823.430 26 2489.300 2473.200 2482.500 2442.780	17	3479.600	3452.600	3472.200	3433.200	3376.000	3447.000	3361.000	1825.300	1650.500	1592.700
193424.4003397.6003417.3003378.4003323.7003325.5003309.1001732.6001579.9001527.100203311.9003285.8003304.8003267.5003207.4003280.7003193.5001656.2001516.6001466.600213164.2003136.1003157.9003113.2003055.200310.0003044.7001560.1001436.9001390.500223023.0003023.0003023.0003023.0003023.0003023.0003023.000129.500233023.0003023.0003023.0003023.0003023.0003023.0003023.00011445.7001144.500243023.0003023.0002960.5003006.700295.2001174.7001107.2001079.200252786.1002767.4002781.1002754.3002723.1002763.8002715.5001025.200976.210955.360262489.3002473.2002484.7002462.5002434.7002470.3002428.000869.890837.270823.43027849.750849.490846.310842.780847.410841.760763.660743.650734.63028699.530698.440698.780697.490695.400697.730695.200653.740643.600638.97029622.940622.060622.870621.890620.820620.110598.740594.310591.97030584.370584.320584.160583.290584.220583	18	3440.100	3412.500	3432.600	3 39 3. 800	3333.600	3407.500	3318,900	1789.500	1624.600	1568.400
203311.9003285.8003304.8003267.5003207.4003280.7003193.5001656.2001516.6001446.900213164.2003136.1003157.9003113.2003055.2003130.0003040.7001560.1001436.9001390.500223023.0003023.0003023.0003023.0003023.0003023.0003023.0003023.0001246.5001299.500233023.0003023.0003023.0003023.0003023.0003023.0003023.0001316.0001229.4001194.400243023.0003010.6003023.0002960.500306.7002952.0001174.7001107.2001079.200252786.1002767.4002781.1002754.3002723.1002763.8002715.5001025.200976.210955.360262489.3002473.2002484.7002462.5002434.7002470.3002428.000869.890837.270823.43027849.750847.590849.490846.310842.780847.410841.760763.640734.650734.63028699.530698.440698.780697.490695.400697.730695.200633.740643.600638.97029622.940622.060622.870621.890620.820622.010620.710598.740544.300564.78030564.780564.780564.750558.730557.500557.500557.500557.500557.50031565.000<	19	3424.400	3397.600	3417.300	3378.400	3323.700	3392.500	3309.100	1732.600	1579.900	1527.100
213164.2003157.9003113.2003055.2003130.0003040.7001560.1001436.9001390.500223023.0003023.0003023.0003023.0003023.0003023.0003023.0001245.7001340.5001299.500233023.0003023.0003023.0003023.0003023.0003023.0003023.0001322.0001229.4001194.400243023.0003010.6003023.0002960.5003006.7002952.0001174.7001107.2001079.200252786.1002767.4002781.1002754.3002723.1002763.8002715.5001025.200976.210955.360262489.3002473.2002484.7002462.5002434.7002470.300847.410841.760743.650743.63027849.750847.590849.490846.810842.780847.410841.760763.640743.650734.30028699.530698.440698.780697.490655.400697.730695.200653.740643.660638.97029622.940622.060622.870621.890620.820622.010620.710598.740594.310591.97030584.370584.320584.160583.220584.220584.730557.560557.30031565.000564.940564.980564.890564.780564.930564.750558.730557.560557.300	20	3311.900	3285.800	3304.800	3267.500	3207.400	3280.700	3193.500	1656.200	1516.600	1466.600
223023.0003023.0003023.0003023.0003023.0003023.0003023.0001245.70C1340.5001299.500233023.0003023.0003023.0003023.0003023.0003023.0003023.0001302.0001145.70C1144.570C1129.400243023.0003010.6003023.0002960.5003006.700295.2001114.7001107.2001079.200252786.1002767.4002781.1002754.3002723.1002763.8002715.5001025.200976.210955.360262499.3002473.2002484.7002462.5002434.7002470.3022428.000869.890837.270823.43027849.750847.590849.490846.310842.780847.410841.760763.660743.650734.03028699.530698.440698.780697.490695.400697.730695.200653.740643.600638.97029622.940622.060622.870621.890620.820622.010620.710598.740594.310591.97030584.370584.330584.160583.290584.220584.220584.230564.750558.730557.560557.30031565.000564.940564.980564.890564.780564.930564.750558.730557.560557.300	21	3164.200	3136.100	3157.900	3113.200	3055.200	3130.000	3040.700	1560.100	1436.900	1390.500
23 3023.000 3023.000 3023.000 3023.000 3023.000 3023.000 1316.000 1229.400 1194.400 24 3023.000 3010.600 3023.000 2960.500 3006.700 2952.000 1174.700 1107.200 1079.200 25 2786.100 2767.400 2781.100 2754.300 2723.100 2763.800 2715.500 1025.200 976.210 955.360 26 2489.300 2473.200 2484.700 2462.500 2434.700 2470.300 2428.000 869.890 837.270 823.430 28 699.530 698.780 697.490 846.310 842.780 847.410 841.760 763.640 743.650 734.630 29 622.940 622.060 622.870 621.890 692.820 620.110 598.740 544.300 591.970 30 584.370 584.330 584.160 583.290 584.220 583.240 571.760 564.930 564.750 557.500 557.500 557.500 557.500 <td>22</td> <td>3023.000</td> <td>3023.000</td> <td>3023.000</td> <td>3023.000</td> <td>3023.000</td> <td>3023.000</td> <td>3023.000</td> <td>1445.700</td> <td>1340.500</td> <td>1299.500</td>	22	3023.000	3023.000	3023.000	3023.000	3023.000	3023.000	3023.000	1445.700	1340.500	1299.500
243023.0003010.6003023.0002996.2002960.5003006.7002952.0001174.7001107.2001079.200252786.1002767.4002781.1002754.3002723.1002763.8002715.5001025.200976.210955.360262489.3002473.200248.7002462.5002434.7002470.3002428.000869.890837.270823.43027849.750847.590849.490846.310842.780847.410841.760763.640743.650734.63028699.530698.440698.780697.490695.400697.730695.200653.740643.660638.97929622.940622.060622.870621.890620.820622.010620.710598.740594.310591.97030584.370584.240584.330584.160583.290584.220583.240518.730565.730557.56031565.000564.940564.980564.890564.780564.750558.730557.560557.300	23	3023.000	3023.000	3023.000	3023.000	3023.000	3023.000	3023.000	1316.000	1229.400	1194.400
252786.1002767.4002781.1002754.3002723.1002763.8002715.5001025.200976.210955.360262489.3002473.2002484.7002462.5002434.7002470.3002428.000869.890837.270823.43027849.750847.590849.490846.310842.780847.410841.760763.660743.650734.03028699.530698.440698.780697.490695.400697.730695.200653.740643.600638.97029622.940622.060622.870621.890620.820622.010620.710598.740594.310591.97030584.370584.240584.330584.160583.290584.220583.240571.760565.930568.73031565.009564.940564.980564.890564.780564.930564.750558.730557.560557.300	24	3023.000	3010.600	3023.000	2996.200	2960.500	3006.700	2952.000	1174.700	1107.200	1079.200
262489.3002473.2002484.7002462.5002434.7002476.3002428.000869.890837.270823.43027849.750847.590849.490846.310842.780847.410841.760763.640734.650734.03028699.530698.780697.749695.400697.730695.200653.740643.600638.97029622.940622.060622.870621.890620.820622.010620.710598.740594.310591.97030584.370584.240584.330584.160583.290584.220583.240571.760565.930568.76031565.009564.940564.980564.890564.780564.750558.730557.500557.300	25	2786.100	2767.400	2781.100	2754.300	2723.100	2763.800	2715.500	1025.200	976.210	955.360
27849.750847.590849.490846.310842.780847.410841.760763.640743.650734.03028699.530698.440698.780697.490695.400697.730695.200653.740643.600638.97029622.940622.060622.870621.890620.820622.010620.710598.740594.310591.97030584.370584.240584.330584.160583.290584.220583.240571.760565.930568.78031565.000564.940564.980564.890564.780564.930564.750558.730557.560557.300	26	2489.300	2473.200	2484.700	2462.500	2434.700	2476.300	2428.000	869.890	837.270	823.430
28 699.530 698.440 698.780 697.490 695.400 697.730 695.200 653.740 643.600 638.970 29 622.940 622.060 622.870 621.890 620.820 622.010 620.110 598.740 594.310 591.970 30 584.370 584.230 584.160 583.290 584.220 583.240 571.760 565.930 568.730 31 565.009 564.980 564.890 564.780 564.930 564.750 558.730 557.560 557.300	27	849.750	847.590	849.490	846.310	842.780	847.410	841.760	763.640	743.650	734.030
29 622.940 622.060 622.870 621.890 620.820 622.010 620.710 598.740 594.310 591.970 30 584.370 584.240 584.330 584.160 583.290 584.220 583.240 571.760 565.930 568.760 31 565.000 564.940 564.890 564.780 564.930 564.750 558.730 557.560 557.300	28	600 530	698.440	698,780	697+490	695.400	697.730	695.200	653.740	643.600	638.970
30 584.370 584.240 584.330 584.160 583.290 584.220 583.240 571.760 565.930 568.760 31 565.009 564.940 564.980 564.890 564.780 564.930 564.750 558.730 557.560 557.300		077.050									
31 565.009 564.940 564.980 564.890 564.780 564.930 564.750 558.730 557.560 557.300	29	622.940	622.060	622.870	621.890	620.820	622.010	620.710	598.740	594.310	591.970
	29 30	622.940 584.370	622.060 584.240	622.870 584.330	621.890 584.160	620.820 583.290	622.010 584.220	620.710 583.240	598.740 571.760	594.310 565.930	591.970 568.760

Tab. B3 <u>Brennstoffdichteverteilung</u> im GSB-l-Kern beim Abschaltstabauswurfstörfall <u>zum Umschaltpunkt</u> (g/cm³). Indizes beziehen sich auf KADIS-Rechengitter.

	2	2	6	r	4	7	P	c	. 10	
2	0 725	0 775	0 7 25	0 715	0 716	0 725	0 725	0 7 7 5	0 7 7 6	
2	9.125	9.125	9.125	9.725	9.125	9.725	9.125	9.125	7.127	
3	9.719	9.719	9.719	9.719	9.719	9.719	9.719	9.719	9.719	
4	9.708	9.708	9.708	9.708	9.708	9.708	9.708	9.708	9.708	
5	9.686	9.686	9.686	9.686	- 9 -686	9.686	9.686	9.687	9.686	
6	9.642	9.642	9.642	9.642	9.642	9.642	9.642	9.643	9.642	
7	9.217	9.217	9.218	9.218	9.219	9.219	9.220	9.221	9.219	
8	9.149	9.150	9.150	9.151	9.151	9.152	9.153	9.154	9.152	
9	10-144	10.144	10.144	10.144	10.144	10.144	10.144	10.144	10.144	
10	10.144	10.144	10.144	10.144	10.144	10.144	10.144	10.144	10.144	
11	10.131	10.131	10.132	10.133	10.133	10.134	10.136	10.137	10.135	
12	10.086	10.087	10.087	10.088	10.089	10.090	10.091	10.092	10.090	
13	10.051	10.051	10.052	10.053	10.054	10.055	10.056	10.058	10.055	
14	10.026	10.026	10.027	10.028	10.029	10.030	10.031	10.033	10.030	
15	10,011	10,011	10-012	10.013	10 -014	10-015	10-017	10-018	10-015	
16	10.008	10-008	10.008	10-009	10-010	10,011	10-012	10.014	10-011	
17	10.008	10.009	10.009	10.010	10.011	10.012	10.014	10-016	10.013	
18	10 020	10 020	10 -21	10 022	10 022	10 0 26	10 025	10 027	10.024	
10	10.020	10.026	10 25	10.026	10 027	10.024	10.020	10 021	10 029	
20	10.054	10.057	10.057	10.020	10.027	10.028	10.050	10.031	104020	
20	10.000	10.057	10.057	10.100	10.059	10.000	10.001	10.005	10.100	
21	10.099	10.099	10.099	10.100	10.101	10.102	10-104	10.105	10-102	
22	10.144	10.144	10.144	10.144	10.144	10.144	10.144	10.144	10-144	
23	10.144	10.144	10.144	10-144	10.144	10.144	10.144	10.144	10.144	
24	10.144	10.144	10.144	10.144	10.144	10.144	10.144	10.144	10.144	
25	9.188	9.188	9.189	9.190	9.190	9.191	9.192	9.193	9.191	
26	9.268	9.268	9.268	9.269	9.269	9.270	9.271	9.272	9.270	
27	9.732	9.732	9.732	9.732	9.732	9.732	9.733	9.733	9.732	
28	9.777	9.777	9.777	. 9.777	9.777	9.777	9.777	9.777	9.777	
29	9.800	9.800	9.800	9.800	9.800	9.800	9.800	9.800	9.800	
30	9.812	9.812	9.812	9.812	9.812	9.812	9.812	9.812	9.812	
31	9.817	9.817	9.817	9.817	9.817	9.817	9.817	9.817	9.817	
	11	12	13	14	15	16	17	18	19	20
2	9.725	9.725	9.725	9.725	9.725	9.725	9.725	10.275	10.310	10,310
3	9, 71 9	9-719	9.719	9.720	9-720	9.719	9.720	10.271	10-306	10.306
4	9.708	9.709	9.708	9.709	9.709	9.709	9.709	10-263	10,299	10.300
Ś	9.686	9.687	9.687	9.687	9-688	9.687	9.688	10.247	10.285	10 286
	9 642	9+007	9.007	9 666	9 645	9.607	7.000	10 215	10 255	10.250
~	0 220	5. 0 . 1 . 0	7.0 1 5	0 227	0 224	7.049	7.040	10-215	10.220	10.234
1	9.220	7.224	7.221	7.221	7+237	7.225	9.230	10.100	10.229	10.254
	9+195	9.138	9.104	9.101	9.109	9.139	9.171	10.141	10.158	10.196
	10.144	10.144	10.144	10.144	10.144	10.144	10.144	10.100	10-151	10.161
10	10.144	10.144	10.144	10.144	10.144	10.144	10.144	10.064	10.118	10.130
11	10.136	10.143	10.137	10-144	10.144	10.144	10.144	10.033	10.089	10.103
12	10.091	10.098	10.093	10.103	10.119	10.099	10.123	10.009	10.066	10.081
13	10.056	10 063	10.058	10.068	10_084	10 065		0 001	10-048	10 -064
14		101000	10.000	10.000	10 1001	10.002	10-058	7. 771	1000.0	
17	10.031	10.039	10.033	10.044	10.059	10.040	10.088	9.979	10.035	10.052
15	10.031 10.017	10.039	10.033	10.044	10.059	10.009 10.040 10.026	10.088 10.063 10.049	9.979 9.974	10.035 10.029	10.052
15 16	10.031 10.017 10.012	10.039 10.024 10.020	10.033 10.019 10.014	10.044 10.029 10.025	10.059 10.045 10.041	10.040 10.026 10.022	10.088 10.063 10.049 10.045	9.979 9.979 9.974 9.974	10.035 10.029 10.027	10.052 10.046 10.045
15 16 17	10.031 10.017 10.012 10.014	10.039 10.024 10.020 10.022	10.033 10.019 10.014 10.016	10.044 10.029 10.025 10.027	10.059 10.045 10.041 10.043	10.026 10.026 10.022 10.023	10.088 10.063 10.049 10.045 10.048	9.979 9.979 9.974 9.974 9.978	10.035 10.029 10.027 10.027 10.029	10.052 10.046 10.045 10.047
15 16 17 18	10.031 10.017 10.012 10.014 10.025	10.039 10.024 10.020 10.022 10.033	10.033 10.019 10.014 10.016 10.027	10.044 10.029 10.025 10.027 10.038	10.059 10.045 10.041 10.043 10.055	10.020 10.026 10.022 10.023 10.034	10.028 10.063 10.049 10.045 10.045 10.048	9.979 9.979 9.974 9.974 9.978 9.978 9.988	10-035 10-029 10-027 10-029 10-037	10.052 10.046 10.045 10.047 10.054
15 16 17 18 19	10.031 10.017 10.012 10.014 10.025 10.030	10.039 10.024 10.020 10.022 10.033 10.037	10.033 10.019 10.014 10.016 10.027 10.032	10.044 10.029 10.025 10.027 10.038 10.043	10.059 10.045 10.041 10.043 10.055 10.058	10.020 10.026 10.022 10.023 10.034 10.039	10.088 10.063 10.049 10.045 10.048 10.059 10.062	9.979 9.974 9.974 9.974 9.978 9.988 10.005	10-035 10-029 10-027 10-029 10-037 10-050	10.052 10.046 10.045 10.047 10.054 10.054
15 16 17 18 19 20	10.031 10.017 10.012 10.014 10.025 10.030 10.061	10.039 10.024 10.020 10.022 10.033 10.037 10.069	10.033 10.019 10.014 10.016 10.027 10.032 10.063	10.044 10.029 10.025 10.027 10.038 10.043 10.074	10.059 10.045 10.041 10.043 10.055 10.058 10.091	10.026 10.026 10.022 10.023 10.034 10.039 10.070	10.088 10.063 10.049 10.045 10.048 10.059 10.062 10.055	9.979 9.974 9.974 9.974 9.978 9.988 10.005	10-035 10-029 10-027 10-029 10-037 10-050 10-069	10.052 10.046 10.045 10.047 10.054 10.054 10.066
15 16 17 18 19 20	10.031 10.017 10.012 10.014 10.025 10.030 10.061 10.104	10.039 10.024 10.020 10.022 10.033 10.037 10.069	10.033 10.019 10.014 10.016 10.027 10.032 10.063 10.105	10.044 10.029 10.025 10.027 10.038 10.043 10.043 10.074	10.059 10.045 10.041 10.043 10.055 10.058 10.058 10.091 10.135	10.026 10.022 10.023 10.034 10.039 10.070 10.113	10.088 10.063 10.049 10.045 10.045 10.059 10.059 10.062 10.055 10.139	9.979 9.974 9.974 9.978 9.988 10.005 10.028	10.035 10.029 10.027 10.027 10.037 10.037 10.050 10.069 10.093	10.052 10.046 10.045 10.047 10.054 10.066 10.084
15 16 17 18 19 20 21 22	10.031 10.017 10.012 10.014 10.025 10.030 10.061 10.104 10.144	10.039 10.024 10.020 10.022 10.033 10.037 10.069 10.112 10.144	10.033 10.019 10.014 10.016 10.027 10.032 10.033 10.105 10.144	10.044 10.029 10.025 10.027 10.038 10.043 10.043 10.118 10.144	10.059 10.045 10.041 10.043 10.055 10.058 10.091 10.135 10.144	10.0340 10.026 10.022 10.023 10.034 10.039 10.070 10.113 10.144	10.088 10.063 10.049 10.045 10.048 10.059 10.062 10.055 10.139 10.144	9.979 9.979 9.974 9.978 9.988 10.005 10.028 10.028 10.091	10.035 10.029 10.029 10.029 10.029 10.037 10.050 10.050 10.069 10.093 10.122	10.052 10.046 10.045 10.047 10.054 10.066 10.084 10.107
15 16 17 18 19 20 21 22 23	10.031 10.017 10.012 10.014 10.025 10.030 10.061 10.104 10.144	10.039 10.024 10.022 10.033 10.033 10.037 10.069 10.112 10.144	10.033 10.019 10.014 10.016 10.027 10.032 10.063 10.105 10.144	10.044 10.029 10.025 10.027 10.038 10.043 10.074 10.118 10.144	10.059 10.045 10.041 10.043 10.055 10.058 10.091 10.135 10.144	10.0340 10.026 10.022 10.023 10.034 10.039 10.070 10.113 10.144 10.144	10.083 10.063 10.049 10.045 10.048 10.059 10.062 10.055 10.139 10.144	9.979 9.979 9.974 9.978 9.988 10.005 10.028 10.056 10.091 10.130	10.035 10.029 10.029 10.037 10.037 10.050 10.069 10.093 10.122 10.156	10.052 10.046 10.045 10.047 10.054 10.066 10.084 10.107 10.135
15 16 17 18 19 20 21 22 23 23	10.031 10.017 10.012 10.014 10.025 10.030 10.061 10.104 10.144 10.144	10.039 10.024 10.020 10.022 10.033 10.037 10.069 10.112 10.144 10.144	10.033 10.019 10.014 10.016 10.027 10.032 10.032 10.105 10.144 10.144	10.044 10.029 10.025 10.025 10.038 10.043 10.043 10.074 10.118 10.144 10.144	10.059 10.045 10.041 10.043 10.055 10.058 10.058 10.058 10.135 10.144 10.144	10.0340 10.026 10.022 10.023 10.034 10.039 10.070 10.113 10.144 10.144	10.088 10.063 10.049 10.045 10.048 10.059 10.062 10.055 10.139 10.144 10.144	9.979 9.974 9.974 9.978 9.988 10.005 10.028 10.056 10.091 10.130	10.035 10.029 10.027 10.037 10.050 10.050 10.069 10.093 10.122 10.156	10.052 10.046 10.045 10.054 10.064 10.066 10.084 10.107 10.135 10.167
15 16 17 18 19 20 21 22 23 24 25	10.031 10.017 10.012 10.014 10.025 10.030 10.061 10.104 10.144 10.144 10.144	10.039 10.024 10.022 10.033 10.037 10.069 10.112 10.144 10.144 9.133	10.033 10.019 10.014 10.016 10.027 10.032 10.063 10.105 10.144 10.144 10.144	10.044 10.029 10.025 10.027 10.038 10.043 10.074 10.118 10.144 10.144 9.137 9.200	10.059 10.045 10.041 10.043 10.055 10.058 10.091 10.135 10.144 10.144 9.146 9.209	10.0340 10.026 10.022 10.023 10.034 10.039 10.070 10.113 10.144 9.134 9.188	10.028 10.063 10.049 10.045 10.048 10.059 10.062 10.055 10.139 10.144 10.144 9.148	9.979 9.979 9.974 9.978 9.988 10.005 10.028 10.056 10.091 10.130 10.173	10.035 10.029 10.027 10.029 10.037 10.050 10.069 10.093 10.122 10.156 10.156 10.194	10.052 10.045 10.045 10.054 10.054 10.054 10.054 10.054 10.066 10.107 10.135 10.167 10.202
14 16 17 18 19 20 21 22 23 24 24 25	10.031 10.017 10.012 10.014 10.025 10.030 10.061 10.104 10.144 10.144 10.144 9.192 9.271	10.039 10.024 10.022 10.033 10.037 10.069 10.112 10.144 10.144 9.133 9.197	10.033 10.019 10.014 10.016 10.027 10.032 10.063 10.105 10.144 10.144 10.144 9.193	10.044 10.029 10.025 10.027 10.038 10.043 10.074 10.118 10.144 9.137 9.200 9.272	10.059 10.045 10.041 10.043 10.055 10.058 10.091 10.135 10.144 9.146 9.206	10.024 10.026 10.022 10.023 10.034 10.034 10.070 10.113 10.144 10.144 9.134 9.138 9.275	10.088 10.063 10.049 10.049 10.048 10.059 10.062 10.055 10.139 10.144 10.144 9.210 0.202	9.979 9.979 9.974 9.978 9.988 10.005 10.028 10.056 10.091 10.130 10.173 10.219	10.035 10.029 10.029 10.037 10.050 10.069 10.069 10.093 10.122 10.156 10.194 10.234	10.052 10.045 10.045 10.054 10.054 10.054 10.084 10.107 10.135 10.167 10.202 10.240
15 16 17 18 19 20 21 22 23 24 25 26	10.031 10.017 10.012 10.014 10.025 10.030 10.061 10.104 10.144 10.144 9.192 9.271 0.73	10.039 10.024 10.022 10.033 10.037 10.069 10.112 10.144 10.144 9.133 9.197 9.275	10.033 10.019 10.014 10.016 10.027 10.032 10.063 10.105 10.144 10.144 10.144 9.193 9.272	10.044 10.029 10.025 10.027 10.038 10.043 10.074 10.118 10.144 10.144 9.137 9.200 9.278	10.059 10.045 10.041 10.043 10.055 10.058 10.091 10.135 10.144 10.144 9.146 9.208 9.286	10.0340 10.026 10.022 10.023 10.034 10.039 10.070 10.113 10.144 10.144 9.134 9.198 9.276	10.028 10.063 10.049 10.045 10.048 10.059 10.062 10.055 10.139 10.144 10.144 9.148 9.210 9.287	9.979 9.974 9.974 9.978 9.988 10.005 10.028 10.028 10.056 10.091 10.130 10.173 10.219 10.267	10.035 10.029 10.027 10.037 10.050 10.050 10.093 10.122 10.156 10.194 10.234 10.277	10.052 10.045 10.045 10.047 10.054 10.054 10.056 10.084 10.107 10.135 10.167 10.202 10.240 10.281
15 16 17 18 19 20 21 22 23 24 25 26 27	10.031 10.017 10.012 10.014 10.025 10.030 10.061 10.104 10.144 10.144 10.144 9.192 9.271 9.733	10.039 10.024 10.022 10.033 10.037 10.069 10.112 10.144 9.133 9.197 9.275 9.733	10.033 10.019 10.014 10.016 10.027 10.032 10.063 10.105 10.144 10.144 10.144 10.144 9.193 9.272 9.733	10.044 10.029 10.025 10.027 10.038 10.043 10.074 10.118 10.144 10.144 10.144 9.137 9.200 9.278 9.734	10.059 10.045 10.041 10.043 10.055 10.058 10.091 10.135 10.144 9.146 9.208 9.286 9.735	10.0340 10.026 10.022 10.023 10.034 10.039 10.070 10.113 1C.144 9.134 9.198 9.276 9.733 9.733	10.088 10.063 10.049 10.045 10.048 10.059 10.062 10.055 10.139 10.144 9.148 9.210 9.287 9.735	9.979 9.979 9.974 9.978 9.988 10.005 10.028 10.056 10.091 10.130 10.173 10.219 10.267 10.300	10.035 10.029 10.027 10.029 10.037 10.050 10.069 10.093 10.122 10.156 10.194 10.234 10.277 10.306	10.052 10.045 10.045 10.055 10.054 10.054 10.054 10.054 10.084 10.107 10.135 10.135 10.167 10.202 10.240 10.281 10.310
15 16 17 18 19 20 21 22 23 24 25 26 27 28	10.031 10.017 10.012 10.014 10.025 10.030 10.061 10.104 10.144 10.144 10.144 10.144 9.192 9.271 9.773 9.777	10.039 10.024 10.020 10.022 10.033 10.037 10.069 10.112 10.144 10.144 9.133 9.197 9.275 9.733 9.778	10.033 10.019 10.014 10.014 10.027 10.032 10.063 10.105 10.144 10.144 10.144 9.193 9.272 9.733 9.777	10.044 10.029 10.025 10.027 10.038 10.043 10.043 10.118 10.144 9.137 9.200 9.278 9.734 9.778	10.059 10.041 10.043 10.055 10.058 10.058 10.058 10.091 10.135 10.144 10.144 9.146 9.208 9.286 9.286 9.735 9.778	10.0340 10.026 10.022 10.023 10.034 10.039 10.070 10.113 10.144 10.144 9.134 9.198 9.276 9.733 9.778	10.028 10.063 10.049 10.045 10.048 10.059 10.062 10.055 10.139 10.144 10.144 9.148 9.210 9.287 9.735 9.778	9.979 9.974 9.974 9.978 9.988 10.005 10.028 10.056 10.091 10.130 10.173 10.219 10.267 10.300 10.335	10.035 10.029 10.027 10.037 10.050 10.069 10.093 10.122 10.156 10.194 10.234 10.234 10.234 10.306 10.338	$\begin{array}{c} 10.052\\ 10.046\\ 10.045\\ 10.045\\ 10.054\\ 10.054\\ 10.054\\ 10.054\\ 10.105\\ 10.135\\ 10.167\\ 10.202\\ 10.240\\ 10.281\\ 10.310\\ 10.330\\ 10.339\\ 10.339\end{array}$
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	10.031 10.017 10.012 10.014 10.025 10.030 10.061 10.104 10.144 10.144 10.144 9.192 9.271 9.733 9.777 9.800	10.039 10.024 10.022 10.033 10.037 10.069 10.112 10.144 10.144 9.133 9.197 9.275 9.733 9.778 9.800	10.033 10.019 10.014 10.016 10.027 10.032 10.063 10.105 10.144 10.144 10.144 10.144 9.193 9.272 9.733 9.777 9.800	10.044 10.029 10.025 10.027 10.038 10.043 10.074 10.118 10.144 10.144 10.144 9.137 9.200 9.278 9.734 9.778 9.800	10.059 10.041 10.041 10.043 10.055 10.058 10.091 10.135 10.144 10.144 9.146 9.208 9.208 9.286 9.735 9.778 9.801	10.0340 10.026 10.022 10.023 10.034 10.039 10.070 10.113 10.144 9.134 9.198 9.276 9.733 9.778 9.800	10.028 10.063 10.049 10.045 10.048 10.059 10.055 10.139 10.144 9.148 9.210 9.287 9.735 9.778 9.801	9.979 9.974 9.974 9.978 9.988 10.005 10.028 10.056 10.091 10.130 10.173 10.219 10.267 10.305 10.335 10.352	$10.035 \\ 10.029 \\ 10.027 \\ 10.029 \\ 10.037 \\ 10.050 \\ 10.069 \\ 10.093 \\ 10.122 \\ 10.156 \\ 10.156 \\ 10.234 \\ 10.277 \\ 10.306 \\ 10.338 \\ 10.354 \\ 10.354 \\ 10.354 \\ 10.354 \\ 10.355 \\ 10.355 \\ 10.355 \\ 10.025 \\ 1$	$\begin{array}{c} 10.052\\ 10.046\\ 10.045\\ 10.047\\ 10.054\\ 10.054\\ 10.056\\ 10.084\\ 10.107\\ 10.135\\ 10.167\\ 10.202\\ 10.220\\ 10.2291\\ 10.319\\ 10.339\\ 10.339\\ 10.354 \end{array}$
15 16 17 18 19 20 21 22 23 24 25 23 24 25 26 27 28 30	10.031 10.017 10.012 10.014 10.025 10.030 10.061 10.104 10.144 10.144 10.144 9.192 9.271 9.773 9.777 9.800 9.812	10.039 10.024 10.022 10.033 10.037 10.069 10.112 10.144 9.133 9.197 9.275 9.733 9.778 9.800 9.812	10.033 10.019 10.014 10.016 10.027 10.032 10.063 10.105 10.144 10.144 10.144 10.144 9.193 9.272 9.733 9.777 9.800 9.812	10.044 10.029 10.025 10.027 10.038 10.043 10.074 10.118 10.144 9.137 9.200 9.278 9.734 9.734 9.778 9.800 9.812	10.059 10.045 10.041 10.043 10.055 10.058 10.091 10.135 10.144 9.146 9.208 9.286 9.735 9.775 9.775 9.801 9.812	10.0340 10.026 10.022 10.023 10.034 10.039 10.070 10.113 10.144 9.134 9.198 9.276 9.733 9.778 9.800 9.812	10.028 10.063 10.049 10.045 10.048 10.059 10.062 10.139 10.144 9.148 9.210 9.287 9.735 9.778 9.801 9.812	9.979 9.979 9.974 9.978 9.988 10.005 10.028 10.056 10.091 10.130 10.173 10.219 10.267 10.300 10.335 10.352 10.361	10.035 10.029 10.027 10.037 10.050 10.069 10.093 10.122 10.156 10.194 10.234 10.277 10.306 10.354 10.354 10.361	$\begin{array}{c} 10.052\\ 10.045\\ 10.045\\ 10.054\\ 10.054\\ 10.054\\ 10.054\\ 10.054\\ 10.107\\ 10.202\\ 10.202\\ 10.202\\ 10.240\\ 10.310\\ 10.339\\ 10.354\\ 10.362\end{array}$
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 20 30 31	10.031 10.017 10.012 10.014 10.025 10.030 10.061 10.104 10.144 10.144 10.144 9.192 9.271 9.271 9.733 9.777 9.800 9.812 9.817	10.039 10.024 10.022 10.033 10.037 10.069 10.112 10.144 10.144 9.133 9.197 9.275 9.733 9.778 9.800 9.812 9.817	10.033 10.019 10.014 10.014 10.027 10.032 10.063 10.105 10.144 10.144 10.144 9.193 9.272 9.733 9.777 9.800 9.812 9.817	10.044 10.029 10.025 10.027 10.038 10.043 10.074 10.118 10.144 10.144 10.144 9.137 9.200 9.278 9.734 9.778 9.800 9.812 9.817	10.059 10.041 10.043 10.058 10.058 10.058 10.091 10.135 10.144 10.144 9.146 9.208 9.208 9.208 9.208 9.735 9.778 9.801 9.812 9.818	10.0340 10.026 10.022 10.023 10.034 10.039 10.070 10.113 10.144 10.144 9.134 9.198 9.276 9.733 9.778 9.800 9.812 9.817	10.028 10.063 10.049 10.045 10.048 10.059 10.062 10.055 10.139 10.144 9.148 9.210 9.287 9.735 9.778 9.801 5.812 9.818	9.979 9.974 9.974 9.978 9.988 10.005 10.028 10.056 10.091 10.130 10.173 10.219 10.267 10.335 10.355 10.361 10.365	10.035 10.029 10.027 10.037 10.050 10.069 10.093 10.122 10.156 10.194 10.234 10.234 10.234 10.338 10.354 10.361 10.365	$\begin{array}{c} 10.052\\ 10.046\\ 10.045\\ 10.045\\ 10.054\\ 10.054\\ 10.056\\ 10.086\\ 10.086\\ 10.135\\ 10.135\\ 10.167\\ 10.202\\ 10.240\\ 10.281\\ 10.310\\ 10.339\\ 10.356\\ 10.362\\ 10.365\end{array}$

Tab. B4 Brennstoffvolumenanteile im GSB-I-Kern beim Abschaltstabauswurfstörfall zum Umschaltpunkt. Indizes beziehen sich auf KADIS-Rechengitter.

5-

		2	3	4	5	6	7	8	9	10	
	2	0.299	0.299	0.299	0.299	0.299	0.299	0.299	0.299	0.299	
	3	0.299	0.299	0.299	0.299	0.299	0.299	0.299	0.299	0.299	
	4	0.299	0.299	0.299	0.299	0.299	0.299	0.299	0.299	0.299	
	5	0.299	0.299	0.299	0.299	0.299	0.299	0.299	0.299	0.299	
	6	0.300	0.300	0.300	0.300	0.300	0.300	0.300	0.300	0.300	
	7	0.310	0.310	0.310	0.310	0.310	0.310	0.309	0.309	C.310	
	8	0.311	0.311	0.311	0.311	0.311	0.311	0.311	0.311	0.311	
	9	0.280	0.280	0.280	0.280	0.280	0.280	0.280	0.280	0.280	
1	10	0.280	0.280	0.280	0.280	0.280	0.280	0.280	0.280	0.280	
.3	L1 ·	0.281	0.281	0.281	0.281	0.281	0.281	0.281	0.281	0.281	
]	12	0.282	0.282	0.282	0.282	0.281	0.281	0.281	0.281	0.281	
3	13	0.282	0.282	0.282	0.282	0.282	0-282	0.282	0.282	0.282	
1	14	0.283	0.283	0.283	0.283	0.283	0.283	0.283	0.283	0.283	
1	15	0.283	0.283	0.283	0.283	0.283	0.283	0.283	0.283	0.283	
1	16	0.283	0.283	0.283	0.283	0.283	0.283	0.283	0.283	0.283	
3	17	0.283	0.283	0.283	0.283	0.283	0.283	0.283	0.283	0.283	
1	18	0.283	0.283	0.283	0.283	0.283	0.283	0.283	0.283	0.283	
1	19	0.283	0.283	0.283	0.283	0.283	0.283	0.283	0.283	0.283	
2	20	0.282	0.282	0.282	0.282	0.282	0.282	0.282	0.282	0.282	
	21	0.281	0.281	0.281	0.281	0.281	0.281	0.281	0,281	0.281	
2	22	0.280	0.280	0.280	0.280	0.280	0.280	0.280	0.280	0.280	
	23	0.280	0.280	0.280	0.280	0.280	0.280	0.280	0.280	0.280	
2	24	0.280	0.280	0.280	0.280	0.280	0.280	0.280	0.280	0.280	
2	25	0.310	0.310	0.310	0.310	0.310	0.310	0.310	0.310	0.310	
	26	0.308	0.308	0.308	0.308	0.308	0.308	0.308	0.308	0.308	
2	27	0.298	0.298	0.298	0.298	0.298	0.298	0.298	0.298	0.298	
	28	0.297	0.297	0.297	0.297	0.297	0.297	0.297	0.297	0.297	
2	29	0.297	0.297	0.297	0.297	0.297	0.297	0.297	0.297	0.297	
	30	0.297	0.297	0.297	0.297	0.297	0.297	0.297	0.297	0.297	
3	31	0.297	0,297	0.297	0.297	0.297	0.297	0.297	0.297	0.297	
			12	12	14	15	14	17	19	10	20
	5	0 200	0.300	0.200	0 200	0 200	0 200	0.200	10	0 551	0 551
	2	0.299	0.299	0.299	0.299	0.299	0.299	0.299	0.552	0.551	0.551
	2	0.299	0.299	0.299	0.299	0.297	0.299	0.299	0.552	0.551	0.551
	- -	0 200	0 200	0 2 9 9	0.299	0 200	0.299	0.299	0.553	0.552	0.552
	5	0 200	0 200	0.277	0.200	0 300	0.299	0,200	0.555	0.552	0.552
	7	0.300	0.300	0.309	0.309	0.309	0.300	0.300	0.555	0.554	0.554
		0 211	0.311	0.307	0 311	0 311	0.211	0.311	0.557	0.555	0 555
	0	0.280	0.290	0.280	0.280	0 280	0.200	0.311	0.559	0.557	0.556
,	ú	0 280	0 280	0 280	0 280	0 280	0.280	0 280	0.560	0.558	0 557
1	11	0.281	0.280	0.281	0.280	0.280	0.280	0.280	0.561	0.559	0.558
1	12	0.281	0.281	0.281	0.281	0.281	0.281	0.281	0.562	0.560	0.559
1	13	0.282	0-282	0.282	0.282	0.282	0.282	0.282	0.563	0.561	0.560
	14	0.283	0.282	0.283	0.282	0.282	0 282	0 282	0.563	0.561	0.560
1	15	0.283	0.283	0.283	0.283	0-282	0.283	0.282	0.563	0.561	0.561
1	16	0.283	0-283	0.283	0.283	0,282	0.283	0.282	0-563	0.561	0.561
	17	0.283	0.283	0.283	0.283	0.282	0.283	0.282	0.563	0.561	0.561
i	1.8	0.283	0.283	0-283	0-282	0.282	0.283	0.282	0.563	0.561	0.560
1	19	0.283	0, 282	0.283	0.282	0.282	0.282	0.282	0.562	0.560	0.560
	20	0.282	0-282	0.282	0.282	0.281	0.282	0.281	0.561	0.560	0.559
	21	0-281	0.281	0.281	0,281	0.281	0.281	0.281	0.560	0.559	0.558
	22	0.280	0.280	0.280	0-280	0.280	0.280	0.280	0.559	0.558	0.557
	23	0.280	0.280	0.280	0.280	0.280	0.280	0.280	0.558	0.557	0.556
	24	0.280	0.312	0.280	0.311	0.311	0.311	0.311	0.556	0.555	0.555
	25	0.310	0.310	0.310	0.310	0.310	0.310	0.310	0.554	0.554	0,553
3	26	0.308	0.308	0.308	0.308	0.308	0.308	0.308	0.552	0.552	0.552
	27	0.298	0.298	0.298	0.298	0.298	0.298	0.298	0.551	0.551	0.551
	28	0.297	0.297	0.297	0297	0.297	0.297	0.297	0.550	0.550	0.550
	29	0.297	0.297	0.297	0,297	0.297	0.297	0.297	0.549	0.549	0.549
-	30	0.297	0.297	0.297	0.297	0.297	0.297	0.297	0.549	0.549	0.549
	1	0.297	0-297	0.297	0.297	0 .297	0.297	0.297	0.549	0.549	0.549
-				··-·				~~ _ / .			

.

Anhang C

KADIS-Ergebnisse für den Basisfall

C1 Radiale Verschiebung der Gitterpunkte
C2 Axiale Verschiebung der Gitterpunkte
C3 Radiale Geschwindigkeit der Gitterpunkte
C4 Axiale Geschwindigkeit der Gitterpunkte
C5 Gesamtdruck in den Zellen
C6 Viskoser Druck in den Zellen
C7 Gesamtdichte in den Zellen
C8 Temperatur in den Zellen

am Ende der Disassembly-Rechnung

	2 **	3 **	4 **	5 **	6 **	7 **	8 **	9 **	10 **	11 **	12 **	13 **]4 **	15 **	16 **	17 **	18 **	19 **	20 **	21 **
32*	Ņ	0	0	0	0	0	Ō	n	n	C	0	C	c	0	Q	0	0	O	c	0
31*	٥	0	Ò	0	0	n	0	Ò	0	0	0	0	Ø	0	0	0	υ	Û	O	0
30*	C	ŋ	Ó	0	0	Q	0	n	ი	0	0	0	0	0	0	0	υ	0	Ú	0
29*	c	0	0	0	0	n	o	0	n	Ú.	Ç	0	0	0	0	0	Ú	0	L	0
28*	0	c	Ó	0	ŋ	ŋ	n	Ō	Ç	0	0	C	0	Ó	0	0	Û	0	C	Q
27*	0	0	0	n	0	0	Ò	0	0	, u	Ģ	0	0	0	0	0	Û	Ũ	Û	0
26*	e	Ċ	n	0	0	0	Q	0	.0	0	Ô.	0	0	0	0	0	0	0	o	0
25*	Û	ò	0	0	0	Ô	ò	0	-1	0	1	-1	1	1	-2	2	1	0	0	0
24*	n	0	0	n	0	0	0	r	-2	1	1	-2	3	3	-5	7	2	0	G	ò
23*	C	0	1	1	1	1	2	-2	-4	3	1	1	13	3	6	5	10	0	Ĺ	0
22*	Ó	1	2	4	5	6	8	2	-36	19	28	-41	82	86-	-128	183	29	2	c	0
21*	0	3	5	9	9	12	16	11	-86	46	70-	-115	180	149-	-289	402	127	5	Ü	Ö
20*	0	6	8	13	14	18	25	23-	128	59	116-	-177	271	164.	-373	557	261	10	0	0
19*	n	6	7	11	12	36	26	26-	153	75	130-	-211	323	101-	-353	674	334	17	Ú	0
18*	c	4	6	8	10	53	19	36-	176	73	146-	-224	350	42.	-338	7 56	384	22	C	0
17*	Û	2	4	7	11	58	16	57-	2 05	59	195-	-259	375	75-	-417	854	401	24	l	0
16*	Ċ	2	4	6	11	57	20	48-	197	78	171-	-254	375	77-	-375	793	387	23	Ü	0
15*	0	5	7	10	14	37	25	32-	179	. 95	132-	-233	349	99-	-324	654	345	18	ί	0
14*	0	6	6	11	14	17	24	22-	146	77	108-	-188	284	143-	-332	538	26Ŭ	12	Ū	0
13*	ť	5	5	6	10	12	17	15	-94	49	75-	-123	190	1 27 -	-271	384	167	6	0	Ö
12*	C	2	3	3	5	6	9	5	-40	21	32	-46	83	56	-99	156	70	2	0	0
11*	ŕ	0	1	1	1	1	2	-2	-5	3	2	1	11	4	6	10	11	1	Û	0
10*	Ó	ņ	0	0	Ô	0	0	Q	-2	1	1	-2	3	3	-5	7	2	0	C	0
9*	0	0	Ċ	ſ	0	0	0	Q	-1	0	1	-1	1	1	-2	2	1	0	Ç	0
8*	0	0	0	Ô	0	0	0	n	0	0	0	0	0	0	0	0	0	0	0	0
7*	C	n	ò	0	0	0	0	0	Ó	0	0	0	0	0	0	0	0	0	U	0
6*	ø	C	n	0	0	0	0	0	0	0	Q	0	0	0	0	0	0	0	0	0
5*	0	Ô	0	0	0	[°] 0	0	0	0	0	0	0	٥	Õ	0	0	0	Ø	G	0
4*	C	0	0	0	0	0	0	Ó	C	0	0	0	0	Q	0	0	0	0	Û	0
3*	Û	n	0	Ù	0	0	0	0	0	0	ŋ	0	0	0	. 0	0	Ö	0	O	0
2*	0	0	Q	0	0	0	0	n	0	0	0	0	0	0	0	0	0	0	0	0

Tab. Cl <u>Radiale Verschiebung</u> der Lagrange-Gitterpunkte am Ende der Disassembly-Rechnung für einen Abschaltstabauswurfstörfall (Basisfall) des GSB-1.

Tabellenwert = Δr (cm) • 10^2 , Maximalwert: $\Delta r_{max} = 8,54$ cm bei (17,17). Indizes beziehen sich auf KADIS-Rechengitter.

	2 ★★	3 **	4 **	5 **	6 **	7 **	8 **	9 **	10 **	11 **	12 **	13 **	14 **	15 **	16 **	1/ **	18 **	19 **	∠∪ **	21 **	
32*	e	ņ	0	0	0	0	c	0	n	0	0	0	0	0	0	Q	0	G	C.	0	
31*	Ċ	Ô	n	٥	0	0	. Q	0	Õ	0	C	0	0	n	0	Q	Ŭ	0	G	0	
30*	c	n	Û	Ņ	Q	0	0	0	0	0	o	0	0	0	0	0	Û	O	U	0	
29*	0	^	o	0	0	0	e	c	0	n	ò	0	0	ò	0	0	0	0	C	0	
28*	0	n	n	0	Ű	0	0	n	C	0	0	Q	C	0	0	0	0	O	0	Ò	
27*	0	Ċ	Ċ	Ū	0	0	0	· O	0	. 0	0	ß	0	0	Q	0	0	Û	Ü	Û	
26*	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	υ	Ů	,0	
25*	6	6	6	6	6	5	5	5	6	6	5	5	5	3	3	3	0	0	C	0	
24#	10	10	10	10	10	10	9	9	10	11	10	10	9	6	6	6	1	Ű	Ĺ.	Ô	
23*	80	80	79	78	76	74	71	71	77	78	75	73	57	44	32	22	9	0	G	0	
22*	389	389	387	382	377	370	361	346	376	396	336	366	361	169	242	243	23	3	U	Ò	
21*	398	356	392	388	383	377	370	360	388	404	361	385	370	308	375	364	113	1	Ú	0	
20*	44C	438	436	431	427	420	411	388	406	437	38 0	396	407	278	341	324	81	6	G	0	
19*	168	170	173	180	189	175	160	167	1 87	180	170	198	184	215	256	159	50	6	Û	0	
18*	184	184	183	182	181	177	177	159	166	215	183	168	186	115	158	175	36	1	G	Q	
17*	2	6	14	21	24	24	24	20	20	25	9	9	14	-22	-16	-7	-10	3	L	Q	
16*-	-117-	120-	-129-	-136-	-138-	-137-	-140-	-124-	-125-	-181-	-148-	-120	-138	-78-	-156-	-171	-18	-6	C	Û	
15*-	-289-	291-	-292-	-295-	-303-	-285-	-267-	-261-	-265-	-275-	-255-	-264	-264.	-238	-279-	-230	-62	-3	Ĺ	0	
14*-	-383-	383-	-382-	-379-	- 3 73-	-367-	-360-	-342-	-379-	-405-	-339-	-377	-380-	-274-	-319-	-276	-75	-5	L	0	
13*-	- 376-	-374-	-371-	- 368-	-364-	-358-	-350-	-341-	-371-	-387-	-345-	-370	-354-	-248	-308-	-295	-74	-4	Ċ	O	
12*-	-429-	427-	-424-	-420-	-416-	-409-	-401-	-382-	-413-	-437-	-371-	-404	-398-	-241-	-321-	-327	-68	-1	ί	Û	
11*	-96	-95	- 94	- 93	- 91	-88	-85	- 84	-91	-92	-88	-85	-72	-60	-47	-34	-13	-1	C	0	
10*	-12	-12	-12	-11	-11	-11	-10	-10	-11	-12	-11	-11	-10	-6	-6	-5	-1	Û	C	Q -	
Q *	-5	- 5	-5	-5	-5	-5	-4	-4	-5	-5	-4	-5	5	-3	-3	-3	-1	U	Û	0	
8*	-2	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	0	o	U	O	
7*	-1	- 1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	0	О	Ú	0	
6*	Ċ	n	ò	n	0	0	c	ņ	Ċ	0	Ů	0	0	0	0	0	υ	Ŭ	C	0	
5*	0	Ċ	0	ò	0	Ċ	0	0	Ù	0	0	0	0	Û	0	0	O	Ö	ù	Ō	
4*	C	ý	0	ŷ	ò	0	0	n	Ö	0	Õ	Ō	0	0	0	0	Û	υ	¢	O	
3*	0	n	0	0	0	0	0	O	0	0	0	0	0	0	0	0	0	Ø	Ģ	0	
2*	a	Ô	0	Û	0	0	Ó	0	Ć	0	0	0	0	0	0	0	0	0	0	Ó	

Tab. C2 <u>Axiale Verschiebung</u> der Lagrange-Gitterpunkte am Ende der Disassembly-Rechnung für einen Abschaltstabauswurfstörfall (Basisfall) des GSB-1.

Tabellenwert = Δz (cm) $\cdot 10^2$, Maximalwert: Δz_{max} = 4,395 cm bei (2,20). Indizes beziehen sich auf KADIS-Rechengitter. 85 ·

	2 **	5 **	4 **	5 **	6 **	7 **	8 **	9 **	10 **	11 **	12 **	13 **	14 **	15 **	16 **	17 **	18 **	19 **	20 **	21 **
32*	0	0	n	0	o	0	Q	0	0	0	0	0	0	0	0	Ũ	0	Ü	Û	0
31*	0	0	n	n	0	0	0	e	0	0	0	0	0	0	0	0	0	0	O	0
30*	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Û	0
29*	0	٥	ņ	n	n	Ð	0	n	o	0	0	0	Q	0	0	0	Û	0	6	0
28*	0	C	0	0	0	0	0	0	n	0	0	0	0	0	0	0	0	0	ũ	0
27*	C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ø	Û	0
26*	0	n	0	^	0	0	Ō	0	n	Q	0	0	0	0	0	0	ο	U	0	0
25*	Ō	0	0	0	Ó	0	ø	0	Ņ.	.0	n	-1	1	1	-1	2	0	0	U	Ó
24*	n	0	P	٥	- Q	Ģ	0	G	-1	1	1	-1	3	3	-4	6	1	0	G	0
23*	0	ņ	1	1	1	1	2	-2	-4	2	1	1	12	4	8	3	11	0	Û	0
22*	0	1	2	3	3	4	6	n	-25	14	17	- 25	59	49	-69	1 10	32	3	G	0
21*	n	2	4	6	6	8	11	4	-57	32	39	-71	120	76	-160	240	103	8	C	0
20*	n	4	5	ġ	9	13	18	13	- 87	42	69	-111	180	-57	-86	336	187	15	C	0
19#	Û	4	4	7	8	25	17	13-	-101	52	72	-127	196-	-173	7	312	322	24	0	0
18*	0	3	4	5	6	36	13	17-	-113	49	76-	-128	193-	-1 10	-41	237	453	29	C	Ö
17*	0	1	2	4	7	41	11	35-	-138	41	112	-155	208	-69	- 100	389	319	6 8	U	o
16*	0	1	2	4	7	40	14	29-	133	54	97	-152	215	91	-60	466	206	67	Û	0
15*	0	3	4	7	9	26	18	17-	-119	66	70-	-138	2 <u>0</u> 9-	-1 50	13	387	235	24	Û	0
14*	C	4	4	7	10	12	17	10	-97	54	60-	-115	181	- 30	-79	3 27	181	17	0	0
13*	n	3	4	4	7	9	12	7	-64	34	44	-77	127	71	-157	241	123	8	ŀ	0
12*	C	2	2	3	4	5	7	2	-28	16	20	-29	60	32	-57	104	56	3	Ú	0
11*	0	0	1	1	1	1	2	-2	-5	3	1	1	10	4	6	8	12	1	C	0
16*	C	r	0	ſ	0	n	0	0	-1	1	1	-1	3	3	-3	6	2	Û	ί	0
9*	ſ	r	n	n	Û	0	0	0	-1	0	0	-1	1	1	-2	2	1	0	G	0
8*	0	ſ	Ò	0	0	0	0	0	ſ	0	0	C	o	0	υ	0	O	O	C	0
7*	C	C	0	0	0	0	o	n	Q	0	0	0	0	O	0	0	0	0	L	0
6*	¢	0	0	n	ņ	Û	0	n	0	n	0	0	0	0	Q	0	0	0	Ű	0
5*	0	0	n	ŋ	0	0	0	n	'n	0	Ç	G	0	0	0	0	0	Ó	Û	0
4*	0	Ċ.	ſ	n	Ŀ	0	0	Ç	n	ņ	0	Q	0	0	o	0	0	0	Ċ	0
3*	٥	n	0	0	Ò	0	0	n	0	n	0	0	0	0	0	Û	0	U	Ŭ	0
2*	0	0	0	0	n	Q	0	0	0	c	0	0	0	0	0	0	υ	O	0	0

Tab. C3 <u>Radiale Geschwindigkeit</u> der Lagrange-Gitterpunkte am Ende der Disassembly-Rechnung für einen Abschaltstabauswurfstörfall (Basisfall) des GSB-1.

Tabellenwert = u (m/s) • 10, Maximalwert: u = 46,6 m/s bei (17,16). Indizes beziehen sich auf KADIS-Rechengitter.

	ے **	د **	4 **	د **	o **	۱ **	۲ 8×¢	9 **	1U **	11 **	1 / 岑岑	15 本本	14 零零	15 卒本	**	1 (**	本本 【2	**	2U **
32*	0	0	n	0	0	0	Ũ	0	0	0	0	0	0	0	0	0	Ŭ	U	Ũ
31*	0	0	n	0	0	0	()	0	0	0	0	0	0	0	0	0	0	ð	Ŭ
30×	c	0	0	n	C	0	0	0	0	0	0	0	0	0	0	0	Û	0	U
29*	ſ	0	n	¢	n	0	0	0	0	0	0	0	0	0	0	0	0	0	0
28*	0	0	Q	n	0	0	Q	e	0	0	Q	0	0	Û	0	0	0	υ	0
27*	с	0	0	n	0	0	0	Ö	Ç	. 0	0	0	0	0	0	0	Ü	0	U
26*	0	0	0	2	n	0	0	0	0	Q	0	0	0	0	0	0	0	Û	Ŭ
25*	4	4	4	4	4	4	4	4	4	5	4	. 4	4	2	3	3	0	υ	0
24*	12	12	12	12	12	11	11	11	12	12	12	11	9	6	6	5	1	0	0
23*	80	80	79	78	77	7 5	72	72	78	80	76	75	63	49	37	28	12	Û	Ŭ
22*	238	238	237	235	231	228	2 23	213	233	246	207	231	233	116	175	182	27	5	0
21*	266	264	262	2 59	2 56	252	247	239	261	274	241	262	256	201	255	251	79	2	Û
20*	285	284	282	280	277	273	267	246	261	290	240	256	279	303	370	214	59	8	U
19*	114	114	117	121	128	118	108	115	130	125	118	140	144	103	92	233	122	7	G
18*	117	117	116	116	116	113	113	98	103	142	114	106	132	68	89	124	50	3	1
17*	1	3	8	12	14	14	14	8	8	15	-2	-2	-5	-40	-33	-186	-58	69	-1
16*	-77	-79	-84	- 88	- 90	-89	- 91	-7 6	-78-	-121	-88	-71	-92	-10	-48	-111	-73	-74	1
15*-	-188-	-189-	-190-	-193-	-199-	-187-	-174-	-167-	-173-	-183	-165	-174	-190	-135	-140	-162	-48	-5	-1
14*-	-252-	251-	-251-	-249-	-245-	-242-	-237-	-220-	-249-	-273	-219	-250	-263-	-282-	-338-	-191	-56	-7	0
13*-	-251-	-249-	-247-	-245-	-243-	-239-	-234-	-227-	- 251 -	-263	-232-	-254	-251-	-173	-217-	-211	-57	-6	Ũ
1 2* -	-259-	258-	-256-	-254-	-251-	- 248 -	-243-	-230-	-251-	-267	-224-	-249	-249	-149-	-213	-224	-49	-2	6
11*	-92	-92	-91	- 90	- 98	-86	- 83	- 82	-89	-91	-86	-85	-75	-62	-53	-42	-17	-1	Ú
10*	-15	-15	-14	-14	- 14	-13	-13	-13	- 14	-15	-14	-13	-11	-8	-6	-5	-1	Ö	Ú
9*	-4	-4	4	-4	-4	-4	-4	-3	-4	-4	-4	-4	-4	-2	-3	-3	-1	U	O
8*	-1	- 1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	0	0	0	0	0	U
7*	Ũ	0	¢	٥ ر	0	0	n	0	0	0	0	0	0	• 0	0	0	Û	Ù	Ú
6*	r	0	າ	n	0	0	0	0	ſ	0	Q	0	0	0	n	0	0	U	Ú
5*	0	¢	0	0	0	0	C	Ņ	0	0	0	C	0	0	0	0	0	0	Ü
4*	C	0	0	Ņ	0	0	0	n	C	0	0	0	0	0	O	0	0	0	O
3*	0	n	0	n	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ú
2*	0	e C	<u>0</u>	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Û

Tab. C4 <u>Axiale Geschwindigkeit</u> der Lagrange-Gitterpunkte am Ende der Disassembly-Rechnung für einen Abschaltstabauswurfstörfall (Basisfall) des GSB-1.

Tabellenwert = $v (m/s) \cdot 10$, Maximalwert: v_{max} = 36,99 m/s bei (16,20). Indizes beziehen sich auf KADIS-Gitter. 87 ·

;	2 **	3 **	4 **	. 5 : **	; 6 ; **	7 **	8 **	9 **	10 **) 11 ***	12 * **	13 **	14	15 **	16 **	17 **	18 **	19 **	20 **
		0	0	0	0	0	Q	0	0	0	0	0	Ö	0	C	0	Ö	0	Ü
		0	0	0	ò	0	Ņ	C	0	0	0	0	0	0	0	0	0	0	0
		C	0	0	Û.	0	0	0	0	0	0	0	0	0	C	0	0	0	Ũ
		Ċ	0	n	0	0	٥	Ŋ	0	0	0	0	0	0	0	0	0	0	Û
		0	0	0	Ō	0	0	0	o	C	0	0	0	c	0	0	0	0	Ũ
		Ģ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ü	Ö
		Q	0	n	Ŋ	0	n	ſ	0	0	0	0	0	0	٥	0	0	0	Ŭ
		1	1	n	0	0	Ó	0	0	1	1	0	С	Ô	0	0	0	0	0
		2	2	2	2	2	2	2	2	2	2	2	2	2	1	1	1	0	Ō
		5	5	5	4	4	4	4	4	5	4	4	5	4	3	4	3	1	υ
		8	8	8	8	8	7	7	7	8	8	7	8	8	5	7	5	1	Ũ
	1	1	11	11	11	11	11	11	10	12	11	10	12	10	5	11	6	5	U
	1	.3	13	13	13	13	12	12	12	13	12	12	14	15	6	12 1	26	6	Ū
	1	4	14	14	14	14	14	13	13	15	14	14	15	14	6	14 1	91	6	1
	1	.4	14	14	14	14	14	13	13	15	14	14	15	13	7	14	9	0	0
	1	4	14	14	13	13	13	13	13	14	13	13	14	14	6 [.]	12	9	3	1
	1	. 1	11	11	11	11	11	10	10	12	11	11	12	10	5	10	6	2	O
:		8	8	8	8	8	8	8	8	9	8	8	9	8	6	8	5	1	C
		5	5	5	5	5	5	5	5	5	5	5	5	4	3	5	3	1	Ũ
		2	2	2	2	2	2	2	2	3	2	2	2	2	2	2	1	0	0
		1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	Ú

Û C C Ó Q C Ċ C C C ð C. Ũ ¢

Tab. C5 <u>Gesamtdruck</u> in den Lagrange-Zellen am Ende der Disassembly-Rechnung für einen Abschaltstabauswurfstörfall (Basisfall) des GSB-1.

Tabellenwert = $P(b) \cdot 10^{-1}$, Maximalwert: P_{max} = 1910 b bei (17,17). Indizes beziehen sich auf KADIS-Rechengitter.

e

n

Q

Ģ

Ø

9*

8*

7*

6*

5*

4*

3*

2*

Q

ŋ

n

Q

Ŋ

C

Q

ŋ

e

O

Q

C

Ņ

Ò

ŋ

n

ŋ

Q

n

Ç

C

Ö

C

C

Q

Ö

Ø

Ø

σ

Ö

G

Ċ

C

С

C

¢

Ū

C

	2 ** *	3 ** :	4 *∗∗ :	5 ¢∗≰ >	6 **	7 **	8 **	9 \$	10 **	11 **	12 \$*	13 \$*	14 寧寧	15 ※水 、	16 k*	1/ ** *	18 1 18 1	ly ∠ × ×	U ×	
32*	0	0	٥	0	0	0	0	0	0	0	0	Ō	0	0	0	0	0	0	0	
31*	, n	0	0	0	· ·	ň	۰ ۵	0	~ م	0	0	n n	0	0	0	0	Ó	0	6	
30*	0	۰ م	0	0	., 0	, o	0	۰ ۱	0	ň	ň	0	0	۰ ۵	0	0	0	ú	ů.	
29*	0	~	0	0	0	0	0	0	۰ ۰	<u>ب</u>	ů o	0	0	0	0	0	0	6	õ	
28*	0	с, С		0	0	۰ م	۰ د	0	0	0	0	0	0	0	0	0	0	0	č c	
27*	0	Ç,	(i	· •	ر. م	0	.,,	··· ^	0	0	0	0	0	0	0	0	0	0	0	
26*	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
25*	0	0	0	0	0	0	0	0		· •		0	0	0	0	0	0	0	0	•
24*	34	1.j	رب بر	 20	ບ າດ	20	20	21	20	94	1	- U - D	20	11	0	U 1	1	0	0	
23*	24	33	22	32	00	29	29) J J J	32	34	22	100	20	11	4	1	1	0	0	
22*	183	183	181	177	113	169	101	171	190	1//	175	180	130	120	()	261	()	0	0	
21*	- 4	4	4	4	4	د	0	28	0	0	27	0	200	200	0	241	02	,	0	
20*	2	2	2	<u>د</u>	2	2	2	31	0	e	92	0	200	210	0	222	107	1	0	
19*	U O	0	0	0	C	e	0	1	0	0	87	U	140	0	0	96	484	2	0	
18*	U	()	0	י ר	u o	1	0	58	0	e e	165	0	523	0	0	U Q	611	د	C C	
17*	¢	e -	0	0	0	0	C C	50	0	0	190	e	267	0	0	0	592	60	0	
16*	0	0	Q	n -	0	0	e e	19	0	0	138	0	234	1	0	171	0	0	c	
15*	(;	6	0	0	0	0	Ģ	45	0	0	180	0	394	0	0	308	323	58	0	
14*	0	0	ù	()	0	0	c	31	0	С	122	0	171	0	0	176	203	2	0	
13*	n	0	0	0	0	ŋ	0	39	0	0	94	0	174	231	0	169	120	1	C	
12*	0	6	n	0	0	0	0	15	0	0	44	0	24	151	0	133	56	0	6	
11*	202	200	199	196	193	189	179	188	211	196	193	198	161	152	129	122	20	0	U	
10*	44	43	42	41	40	37	37	40	42	43	42	33	29	21	8	4	2	0	U.	
9*	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	
8*	Q	0	ŋ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(;	
7*	0	0	0	0	0	0	Q	n	0	Q	0	0	٥	0	0	0	0	0	O	
6*	n	0	n	0	0	0	n	ŋ	0	0	0	C	0	0	0	0	0	0	0	
5*	0	ņ	n	0	0	n	0	0	0	0	0	0	0	0	0	0	0	υ	O	
4*	0	0	0	<u>0</u>	0	0	0	0	C	0	0	0	0	0	0	0	0	Û	0	
3*	0	0	0	0	0	C	n	0	0	0	0	0	Ö	0	0	0	0	0	0	
24	0	n	Q	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

Tab. C6 <u>Pseudoviskoser Druck</u> in den Lagrange-Zellen am Ende der Disassembly-Rechnung für einen Abschaltstabauswurfstörfall (Basisfall) des GSB-1.

Tabellenwert = Q(b) • 10, Maximalwert: Q_{max} = 61,1 b bei (18,18). Indizes beziehen sich auf KADIS-Rechengitter.

> Tab. C7 <u>Gesamtdichte</u> in den Lagrange-Zellen am Ende der Disassembly-Rechnung für einen Abschaltstabauswurfstörfall (Basisfall) des GSB-1.

Tabellenwert = ρ (g/cm³) • 10², Maximalwert: ρ_{max} = 9,58 g/cm³ bei (18,16). Indizes beziehen sich auf KADIS-Rechengitter.

2 **	3 ** :	4 ∗∗ ⇒	り ** ゝ	6 ** ;	7 ∳∗≰ :	8 **	9 ^{家水}	** [D]	11 **	12 **	13 **	14 **	15 **	16 ≉∗ ∺	17] ** *	kak ⇒	19 ** >	20 **
57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	56	56	56
60	60	60	60	60	60	60	60	61	60	60	60	60	59	59	59	58	57	57
65	65	65	65	65	65	65	65	65	65	65	65	65	64	64	63	61	60	59
76	76	76	76	76	76	76	76	76	76	75	75	74	74	73	72	67	65	64
97	97	97	97	97	57	96	96	96	96	95	95	94	93	92	90	79	75	74
307	307	307	307	307	307	307	307	307	307	307	307	307	307	307	307	91	85	83
328	327	327	327	326	325	324	323	328	325	320	327	316	307	323	307	108	100	96
370	370	370	370	369	369	368	367	373	370	364	373	360	343	368	340	124	113	108
389	389	389	388	388	387	387	386	392	389	384	392	381	365	389	363	140	126	120
405	405	415	405	404	404	403	402	408	405	400	410	397	379	406	377	153	1 37	131
499	499	499	498	497	456	495	493	502	498	489	502	483	395	495	391	166	147	140
526	525	525	524	524	523	521	520	528	524	516	529	510	484	522	481	176	155	148
545	545	545	544	543	5 4 2	541	539	547	544	535	547	530	5 0 3	541	499	184	162	154
552	552	5 52	552	551	549	548	546	555	550	542	555	537	509	548	505	190	166	158
558	558	558	558	557	555	554	552	561	558	549	561	543	515	555	511	194	169	160
558	558	558	558	558	555	555	552	561	558	549	561	543	516	555	513	195	169	161
555	555	555	555	554	552	551	549	558	553	545	558	540	513	549	5 0 9	195	169	160
545	544	544	543	543	542	540	539	548	543	535	549	529	503	539	499	193	167	158
527	527	527	526	525	524	523	521	530	526	518	531	512	487	524	483	188	162	154
504	503	503	502	502	501	499	498	506	502	494	506	489	465	500	461	182	156	149
410	410	409	419	408	407	496	404	412	408	400	412	396	379	406	377	173	148	141
389	389	389	388	388	387	386	385	392	388	384	392	381	365	389	363	162	138	132
370	370	370	370	369	369	368	367	372	370	366	373	362	349	370	347	148	127	122
342	342	342	342	341	340	339	338	343	340	335	342	331	316	338	314	134	114	110
307	307	307	317	307	307	307	307	307	307	307	307	307	307	307	307	117	101	98
128	128	128	127	127	127	127	127	127	1 27	126	126	125	123	123	120	106	92	90
107	107	107	197	107	107	107	107	107	106	106	106	105	104	104	103	95	82	81
96	96	96	96	96	96	96	96	96	96	96	96	95	55	95	94	89	77	77
91	91	91	91	91	\$1	91	91	91	91	91	91	91	9 0	9 0	90	86	75	74
88	88	88	88	88	88	88	88	88	88	88	88	88	88	88	88	85	73	73

Tab. C8 Brennstofftemperatur in den Lagrange-Zellen am Ende der Disassembly-Rechnung für einen Abschaltstabauswurfstörfall (Basisfall) des GSB-1.

Tabellenwert = $T(k) \cdot 10^{-1}$, Maximalwert: $T_{max} = 5611$ K bei (10,17). Indizes beziehen sich auf KADIS-Rechengitter.

Referenzen:

1950	J. von Neumann und R.D. Richtmyer A Method for the Numerical Calculation of Hydrodynamic
	Shocks, J.Appl.Phys. 21(3), 232 (1950)
1956	H.A. Bethe and J.H. Tait
	An Estimate of the Order of Magnitude of the Explosion
	When the Core of a Fast Reactor Collapses, UKAEA - RHM (56)/113 (1956)
1959	O.A. Hougen, K.M. Watson and R.A. Ragatz
	Chemical Process Principles, Part II Thermodynamics,
	2nd Edition, New York (1959)
1960	J.J. Kaganove
	Numerical Solution of the One-group Space-independent
	Reactor Kinetics Equations for Neutron Density Given
	the Excess Reactivity, ANL-6132 (1960)
1965	G.R. Keepin
	Physics of Nuclear Kinetics, Reading (Massachusetts) 1965
1966 a	D.C. Menzies
	The Equation of State of Uranium Dioxide at High Tempera-
	tures and Pressures, TRG Report-1119, UKAEA (1966)
1966Ъ	T.G. Godfrey, J.A. Woodley and J.M. Leitnaker
	Thermodynamic Functions of Nuclear Material:
	UC, UC ₂ , UO ₂ , ThO ₂ , and UN, ORNL-TM-1596 (Rev) Dec. 1966
1967	F.L. Oetting
	The Chemical Thermodynamic Properties of Pu
	Compounds, Chem. Rev., 67, 261-97 (1967)

- 1968a R.L. Gibby The Thermal Diffusivity and Thermal Conductivity of Stoichiometric (U_{0,8} P_{0.2}) ⁰2.00' BNWL-704, May 1968
- 1968b R.A. Hein, P.N. Flagella and J.B. Conway High-Temperature Enthalpy and Heat of Fusion of UO₂, J. Am. Ceramics Soc., 51, 291 (1968)
- 1970a W.T. Sha and T.H. Hughes VENUS: A Two-dimensional Coupled Neutronics-Hydrodynamics Computer Program for Fast-reactor Power Excursions, ANL-7701
- 1970b J.F. Jackson and W.E. Kastenberg Space-Time Effects in Fast Reactor Dynamics, Nucl.Sci.Eng. 42, 278 (1970)
- 1970c Evaluation of Fast Critical Experiments Using Recent Methods and Data, compiled by E. Kiefhaber and J.J. Schmidt, KFK-969, 1970
- 1971a G. Fieg
 Messung der Spektren verzögerter Spaltneutronen
 von U-235, U-238 and Pu-239 mit Protonenrückstoß Proportionalitätszählrohren, KFK-Ext. 4/71-31
- 1971b H.P. Tschirky A Gas-Cooled Fast Reactor Core Model for the Analysis of Severe Accidents with Applicability to LMFBRs, Nucl. Eng. Design 16, 358 (1971)
- 1971c F.E. Dunn et al. The SAS2A LMFBR Accident Analysis Code, Proceedings Conf. Reactor Math. and Appl. Idaho Falls, March 1971

1971d	A. Birkhofer et al. Reactor Safety in the Federal Republic of Germany, A/CONF 49/P/364, April 1971
1972a	J.E. Boudreau Autocatalysis During Fast Reactor Disassembly, Ph.D.thesis, UCLA, Los Angeles, Cal. (1972)
1972Ъ	J.F. Jackson and R.B. Nicholson VENUS-II: An LMFBR Disassembly Program, ANL-7951 (1972)
1973a	J.E. Boudreau and R.C. Erdmann An Autocatalysis During Fast Reactor Disassembly Nucl.Sci.Eng., 51, 206 (1973)
1973ъ	K. Wirtz Lectures on Fast Reactors, S.64-82, Gesellschaft für Kernforschung, Karlsruhe 1973
1973c	1000 MWe – Gasgekühlter Schneller Brüter – Referenz– und Sicherheitsstudie, Jahresbericht 1972, Siemens TB-1/73-RT92, Erlangen 1973
1973d	P. Schmuck, G. Arnecke, R. Fröhlich, G. Jacobs Untersuchungen und Programmentwicklungen zu Disassembly- Vorgängen in natriumgekühlten Schnellen Reaktoren in 4.PSB-Vierteljahresbericht 1972,KFK-1272/4 (1973)
1973e	Progress in Fast Reactor Physics in the Federal Republic of Germany, compiled by H.Küsters, KFK-1632, EACRP-U-46 (1973)
1974a	G. Jacobs, M. Schatz Some Preliminary Analyses of a Hypothetical Rod Ejection Accident for a 1000 MWe GCFR, NEA-GCFR Safety Specialist Meeting, Karlsruhe Febr. 1974
1974b	1000 MWe – Gasgekühlter Schneller Brüter Referenz- und Sicherheitsstudie, Jahresbericht 1973, herausgegeben von Kraftwerk Union, Erlangen 1974

1974c D. Struwe CAPRI - A Computer Code for the Analysis of Hypothetical Core Disruptive Accidents in the Predisassembly-Phase ANS Topical Conf. on Fast Reactor Safety, April 1974

1974d E. Eisemann

Neutron Streaming in GCFR - Lattices: Theory and Results, Conf. on Advanced Reactors; Physics, Design and Economics, Sept. 1974, Atlanta, Georgia

- H.G. Bogensberger, E.A. Fischer and P. Schmuck
 On the Equation of State of Mixed Oxide Fuel for the
 Analysis of Fast Reactor Disassembly Accidents,
 ANS Topical Meeting on Fast Reactor Safety, Los Angeles 1974
- 1974f R. Düsing u.a. Untersuchungen schwerer hypothetischer Störfälle für den Kern Mark Ia des SNR 300 PSB-Vierteljahresbericht 2/74, KFK 1274/2

1975a G. Jacobs

Disassembly-Rechnungen zur Analyse hypothetischer Unfälle des 1000 MW(e) Helium gekühlten Schnellen Brutreaktors GSB, in 4. PSB-Vierteljahresbericht 1974, KFK 1274/4

- 1975b P.B. Bleiweis, W.E. Kastenberg and D. Okrent Computational Models for the Study of Azimuthally Dependent Disassembly of Liquid-Metal Fast Breeder Reactors, Nucl.Sci.Eng. 56(2), 152 (1975)
- 1975c M. Bober, W. Breitung, H.U. Karow, K. Schretzmann
 Dampfdruck über Oxidbrennstoff unter Störfallbedingungen
 (3000 5000 K), Atomwirtschaft Bd. 20 (1975) S. 175