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Abstract

This paper describes a real-time method which allows the measurement
of auto and cross power spectral densities in a large frequency range
with almost constant relative frequency resolution. Based on a normal
digital frequency analysis the resolution at low frequencies can be
increased to any extend without additional electronic equipment. The
long time signals needed for the low frequencies are won from the high
frequency data by a digital low pass filter. Due to this decimation

of the time series only moderate storage region is needed allowing the
use of a small digital computer for on-line application. The method

is suitable to monitor the spectra in a wide frequency range without

time delsay.

Eine einfache Methode zur Echtzeitmessung von Frequenzspektren und

Kohdrenzfunktion in einem groBen Frequenzbereich

Zusammenfassung

In diesem Bericht wird ein einfaches Echtzeitverfahren vorgestellt,
das die Messung spektraler Leistungsdichten in einem groBlen Frequenz-—
bereich erlaubt, wobei eine fast konstante relative Frequenzaufldsung
erreicht wird. Ausgehend von einer normalen digitalen Frequenzanalyse
kann die Aufldsung flir kleine Frequenzen praktisch beliebig verbessert
werden. Die fiir die kleinen Frequenzen bendtigten langen Zeitsignale
werden durch digitales Filtern erzeugt, das eine Reduktion der Daten
und damit des Speicherplatzes erlaubt. Dadurch ist die Verwendung
eines Kleinrechners im on-line Einsatz mbglich. Die Methode ist ge-
eignet, Spektren in einem groBen Frequenzbereich ohne Verzdgerung zu

iberwachen.
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1. Introduction

In nuclear power plants it becomes recently more and more customary
to observe and monitore not only the mean values of diverse signals
(e.g. neutron flux, temperature, pressure, flow rate) but also the
fluctuations of these signals. The additional information got from
detailed analysis of these fluctuations yields & better picture of
the state of the system. This information camn help to recognize dis-
turbances at an early state and thus larger damage can be avoided

by proper acting.

The most used method for analysing signal fluctuations is the fre-
quency analysis. Due to the availability of small digital computers
the digital frequency analysis using Fourier transform of time series
has become very popular. The spectra obtained by this technique and
especially the changes of the spectra during the lifetime of the reac-
tor system describe the system and its changes more precisely than

the mere observation of the mean values. Looking for special effects
in a distinctive frequency range monitoring the spectra in a rather
narrow frequency band msy be sufficient. But for overall surveillance
one needs the spectra in a very large frequency range. Moreover in
order to get the spectra as soon as possible they should be calculated

in real-time by an on-line method.

This paper describes a simple real-time method for measurement of
power spectral densities in a large freguency range. Based on a normal
digital frequency analysis the frequency resolution at low frequencies
is increased without additional electronic equipment. By this method
spectra can be measured in a frequency range of several decades with

an almost constant frequency resolution in the entire range.
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2. Digital Frequency Analysis end its Disadvantages

The time series x{(n°At) needed for digital frequency analysis is won

by sampling and digitizing the analog time signal(s) in an ADC at a
constant rate. The sampling frequency fs = {/At must be at least twice
the highest frequency fh one is interested in. To avoid aliasing of

the spectra by higher frequency components & low pass filter suppres-
sing all frequencies higher than fs/2 has to be used. By Fourier trans-
formation of a time interval with N samples the complex valued Fourier

coefficients of this interval were calculated for frequencies keAf

N:T -i'?Nl e n ¢ k
c(k+af) = ) x(nat)ee (1)
n=o

with

k = 0,1,2 ... N/2

and the bandwidth

T 1s the length of the time interval. Conjugate complex multiplication
of the Fourier coefficients (by themselves or by the coefficients got
from a second signal), averaging these values for several time inter-
vals and dividing by the bandwidth yields the autoc and cross power

spectral density resp. of the signals /1,2,3/.

By this technique for the measurement of spectra only a few frequency
decades can be covered depending on the number of samples N in a time
interval. Since the bandwidth Al is constant one gets only poor re-
lative frequency resolution for low freguencies. Increasing of the

resolution at low frequencies can be achieved by two ways:

a) decreasing the sampling frequency

b) increasing the number of samples N.



Both methods have severe disadvantages. In the first case the high
frequency part of the spectra is lost. In the second case the highest
analysed frequency remains the old one but one has to calculate the
fourier coefficients for a time series with a large number of samples.
Due to the constant bandwidth Af this results in an unnecessarily high
resolution at high frequencies. Another disadvantage of a large N may
be the fact that one has to wait for the high frequency part of the
spectra the same long time which is needed for the low frequency spec—
trum namely the time of at least one time interval. In addition the
computation time increases proportional to N? and N-lgeﬂ for a discrete

Fourier transform and for the Fast Fourier Transform (FFT) respectively.

Assuming still reasonable numbers of N = 1000 delivers the spectrum
for about 2 1/2 frequency decades. Requiring a resolution Af/f < 10%
only 1 1/2 decades of the spectrum can be used. Certainly this fre-
quency range is too small for surveillance. There is one way to ex-—
tend the frequency range without these disadvantages: another ADC
sampling the data at another frequency and also another low pass
filter to avoid aliasing. Thus, for a large frequency range several
analysing channels are required. If one uses a multiplexing device
to connect the diverse filters to one common ADC at least several

low pass filters must be used.

A method /4,5/ avoiding these disadvantages computes the spectrum only
for distinct frequencies with a desired frequency resclution. Any
frequency and any resolution may be chosen. However, the computation
time of this method is proportional to the number of frequency points

one is 1interested in.



3. The Extended Frequency Analysis

By the technique to be described now the frequency range is extended
to lower frequencies without receiving the disadvantages mentioned

above.

3.1 The Principle

(see also fig.1)

First, the analog time signal is sampled with a frequency according

to the highest fregquency of interest. Only a moderate number of samp-
les (e.g. N = 256) is needed for the well known procedure, described
above. This delivers the PSD of the original time signal. So far normsal

digitel frequency analysis was performed.

Now the Fourier coefficients (Eq. 1) are used for further calculationms.
By an inverse Fourier transform of the coefficients c one gets a time

signal x1(t)

N
/2K +i %% nek
x, (nat) = } c(kAf) - e (2)
k=0

For K = 1 the original time signal x is obtained. If X > 1 1s chosen

the calculated time signal x, does not contain high fregquencies. This

1
signal x1(t) is a least squares fit to the original time signal x(t)
/6,9/. Since the maximum frequency is N/QK < N/2 it is sufficient to
take only N/K < N samples of the signal. Indeed by a discrete inverse

Fourier transform only N,, equidistant points are computed

/K



WBK + 12%5 mek
x, (mAt,) = ] clkeaf) e (3)
k=0
N
m= 0,1,2, ... E'—1

The sample frequency 1/At1 of the time signal x1(t) is reduced accor-

ding to the maximum frequencies:
1
At ()

That means: The original time interval with N samples has been low pass

filtered and is now represented by only N/K samples.

Putting together those N/x samples calculated from K original time
intervals following each other without gap & new time series x1(t)
with again N samples is composed. This time interval T1 is longer than
the original time interval T by the factor K. The time series x1(t) is
now used for a normal digital frequency analysis. In comparison with
the original spectrum the frequency range of this ist order spectrum
is shifted to lower frequencies by a factor of K (see egs. 1 and k).
As a consequence the freguency resolution for low frequencies has been

increased.

Obviously the ist order time signal x1(t) can be processed in the same
way as the original signal in order to produce a 2nd order signal xg(t)
and the related 2nd order spectrum the frequency range of which will
be shifted again to smaller values. This procedure can be repeated as
often as one likes. Teking a constant factor K for all shifts the
spectra of the diverse orders are placed equidistantly on a log. fre-
quency scale. Although the bandwidth remains constant within each spec-—
trum the composed spectrum spproximates & constant relative frequency
resolution. Thus & spectrum can be measured in & large frequency range

(several decades) without the disadvantages described earlier.



Fig.2 shows an example: a white noise signal passes simultaneously

two electronic filters set as a low pass (f = 2 Hz) and as a band pass
(10 Hz to 200 Hz) resp. The sum of the filter outputs was digitized at
a sample frequency of 512 Hz. N = 256 samples have been taken for onme
time interval. The original spectrum and the 1st, 2nd and 3rd order
spectra each shifted by a factor of K = 4 are shown in a linear plot
in fig. 2a. The entire real-time measured spectrum composed of the four

individual spectra is shown in fig. 2b now using logarithmic scales.

3.2 Refinements

Though this results are quite encouraging the method must be refined
to minimize the errors due to fact that signals of finite length are

transformed.

3:2.1 Window Function

Before transforming time series x(t) of finite length T it is recom—
mended /2,3,7,8,9/ to apply special spectral windows in order to reduce
the sde~Xbes as far as possible. This produces an increase of the ef-
fective bandwidth resulting in a smoother spectrum. The windows w(t)

are usually normalized to

?% [ dw W(w) =1 (5)

e

with W(w) being the Fourier transform of the window function w(t). The
normalization (eq. 5) fits well for spectra computed as a Fourier trans-
form of a correlation function. Since in the direct method used here

the spectra are calculated as square modules of the Fourier coeffi-

cients the power spectral density must be normalized to

_2—117'1‘. [ dw W2(w) <1 (6)
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A window function damps the signal amplitudes near the ends of the time
interval. Applying the procedure described above to a time series x{(t)
modified by a window w(t) one gets & low pass filtered time signal X1(t)
which must be divided by the window function w(t) to have the correct
signal. Obviously there appear large errors at both ends of the time
interval, because of the small values of the window function. As =
consequence of this fact only the middle part (e.g. the second and
third quarter) of the interval can be used to compose the new time sig-
nal x1(t). If a taper window with w(t) = 1 for the second and third
quarter is used computation time can be saved because in this case
there is no need for deviding the filtered signal by the window. But,
if only time intervals are used which follow each other without gaps,
the composed signal x1(t) will have large gaps. This can be avoided

by using not only the intervals alone but also overlapped intervals
which are shifted by half the interval length (see fig. 1). This re-
sults not only in a correctly composed signal x1(t) but it also im-
proves the accuracy of the spectrum of the original time signal x(t)

(see below).

3.2.2 Filter Function

For the same reason, spectral windows are applied to time series one
has to apply a filter function to the freguency data i.e. the Fourier
coefficients should be filtered properly before an inverse Fourier
transformation is made. The filtering as indicated in eg. (2,3) means
using & rectangular filter with the transfer function the real part

of which is given by

1 for k = 0,1,2 ... N/ox
F(keAT) =
0 otherwise

The imaginary part equals zero for all frequencies., It is well known
that a filter of this type causes considerably high side—lobes in the
transformed signal. To reduce this side~lcbés it is recommended to

use a filter function with a smooth cut off. For the measurements shown
in figs. 3,4, 5 a filter with a cosine taper was appiied the transfer

function of which was
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F(AT) = (1/2 - [:1—cos (ﬁgﬁ'-k)] for k L o N

~0 otherwise

Of course this filtering influences the spectrum of the next order which
is shifted to lower frequencies by a factor K. The power spectral density
will be modified by the square of this filter function, which results

from ecs.{1) and (L) in

1 for k

I 2
1/h - [ 1=cos ( . k)] for k =

il
o

FZ(}UM}} =

m
N

I
==

with AT, = Af, . For simplicity reasons only the first half of this

spectyrum is plotted, where the filter function equals 1.

With these two refinements the dynamic range of the extended digital
freaquency anelysis ig improved. It should be noted that the extended
frequency analysis works best for white spectra, a fact which is well
known from the nocrmal frequency analysis. If the dynamic range of the
spectrum to be measured is too large prewhitening of the signal is re—

commended.

4. The Messuring Equipment

The electronic equipment for the measurement of the spectrum of an ana-
log signal consists only of a low pass filter (for anti-aliasing) and
an ADC. The sampled dats are stored alternately in two buffers each
representing a time intervsl. During the time one buffer is filled up
the content of the other buffer must be worked up and the computation

¢f the higher ordered signals and spectra must be completed too. As



described above and to be seen in the scheme in fig. 1 all work is done
by the computer. Only the original time signal x(t) must be digitized

by the ADC. The filtered signals xT(t), x.(t) ... are produced and

o
stored in the computer.

4.1 Storage Region

Though there have to be stored high frequency dats as well as low
frequency data only moderate storage region is needed because only N
samples for each signal x(t), x1(t), xg(t) e xn(t) are kept. Assuming
N = 256 and n = 5 a storage region of (n+1)N = 1536 words is required.
With a shifting factor K = 4 the nth order interval is K" = 1024 times
longer than the original intervals. For comparison,in a normsl digital
frequency analysis one has to transform a record with K% « N X 250,000
samples in order to cover the same frequency range. When performing

a cross correlation measurement between two signals there is a need

for

{n+1)N2 samples of the two time signsals

; N - . ; L o
(n+1)§~2 values of the auto power spectral densities

(n+1)N values of the cross power spectral density

that is a total of U(n+1)N words. Since the higher ordered signals and
spectra have to be computed very seldom they may be stored outside the

core memory e.g. on a disc storage,

4.2 Speed

Although there is a lot of computation to be done the method works
still pretty fast. If one uses numbers N = 2P (p an integer) the FFT
(Fast Fourier Transform) algorithm can be used. The example shown in
fig. 3 was measured in real-time using a small digital computer

(hp 2100, 16 k core memory) with a microprogrammed FFT and a very
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flexible operating system made for performing digital frequency ana-
lysis. In this exsmple two APSD's and the CPSD of two signals have
been measured at once in a frequency range of about 5 decades with an
upper frequency limit of 12 Hz. In fact with the parameters chosen
for this messurements the program can be run two times faster. Since
a great deal of the measuring program was written in FORTRAN without
payilng attention to speed there can be won some speed up by using
assembler language and proper programming. It should be noted that
increasing of the number of shifts does not decrease the programs’
speed and hence the highest analysed frequency. This is due to the
act that the higher ordered signals and spectra must be computed
very seldom. This can be done when the computer is not busy for the

original and the 1st order signals and spectra respectively.

5. Accurazy, Dynamics

As menticned ebove the frequency analysis works best for a white spec—
trum. The accuracy test is shown in fig.lL. White noise was band pass
filtered with a lower sand upper cut off frequency of .01 Hz and 50 Hz
resp. (Near the cut off frequencies the electronic filter which was
vsed has a gain of 1 dB). It is clearly to be seen that white noise

1s messured with very high accuracy. Apsrt from the statistical error

ot

here iz no recognizable difference between the spectra of the diverse

[44]

orders,

The dynamics of the method has been tested using signals the spectra
of which are proportional to f2 and (1/f)2 resp. The result of this
test is shown in fig. 5 and shows that st least three decades in the
amplitude of the spectra are measured with an error less than 10 %.
Since the dynamic range of the spectra in fig. 3 is larger than 6 de-
cades the snalogue signals have been prewhitened by amplifying the
high frequency part by 100. By this prewhitening the spectra measured

actually have a dynamic range of about 2 decades.
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6. Statistical Error

Of course, the statistical errors of the higher ordered spectra must

be larger than those of the original and low ordered spectra because

of the very different numbers of intervals which can be used for
averaging the spectra. In the example in fig.3 measured by true aver-
aging the total signal length was only 8 hours. Therefore only 3 inter-
vals of the 5th order signal have been computed whereas the originsl
spectrum is averaged from about 3000 intervals. Assuming validity of

the error estimation in /10/ for small numbers too, this results in

a statistical error of the low frequency part of the spectrum (5th order)

to be 32 times larger than that one of the high frequency part (original).

Since the application of window functions to time signals results in
an increase of the effective bandwidth the spectrum becomes smoother
and the statistical error of the spectral values would decrease. But
by window functions part of the signal is omitted and therefore the
statistical error would increase. Indeed, as can be shown from results
in /9/ the relative error e of an auto power spectral density value

is not influenced by the window function and is given by

when averaging M independent (non-overlapping) intervals.

The spectrum is computed as square modulus of the Fourier coefficients.

Therefore, when applying a window function w(t), only & part

T
[ at w2(t) <1 (max(w(t)) = 1) (8)
(o]
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of the available information is used. With a taper window as indicated

in chapter 3.2.1

—

1/2(1-cos égt) for 0 < t 5'%
w(t)=§1 for%iti—?’g— (9)
1/2{(1-cos %gt) for %?f_t <T

L

only 11/16 of the signal is used effectively. Hence, the variance of
the power spectral density values is expected to be 16/11 times larger
than the variance which will be found by using all information. Indeed
By calculating the spectrum from overlapping intervals and using the
window function defined above no information is thrown awsay. The ratio
of the variances with and without overlapping intervals for a fixed
averaging time was measured and found to be 0.67 * 5%, which agrees

quite well with the theoretical value 11/16 - 0.69.

Averaging the power spectral density values from overlapping intervals
and using a window function w(t) the relative error € results from

eq. 7 and 8 in

82" !
Q

T
= o £ at w2(t). (10)

Since M is the number of non-overlapping intervals M=T is the total
measuring time. This formula is only valid for windows with

w{t) = 1 for T/h <t <37, and M >> 1.,
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T. Conclusions

It was the purpose of this paper to show that the digital frequency
analysis can be used for real-time measurements in & large frequency
range avoiding the well known disadvantages. The main advantages of

the method describes above are

1. Large frequency range with almost constant relative frequency reso-

lution in the entire range.

2. Real-time analysis without additional electronic equipment. Changes
in the high frequency part of the spectrum can be seen earlier than
those in the low frequency region because of the different time

constants which can be taken when the RC-averaging mode is used.

Therefore this method is suitable for surveillance of a system by

monitoring the frequency spectra of relevant signals.
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