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Abstract

The report describes a method and a computer program for flexi­

bility and stress analyses of plain piping systems located

between two fixed anchor points. The program can be used in

time sharing operation through T80 (time sharing option of

08/360) as WeIl as in batch operation. Only few data are ne­

cessary for the input, e.g. only the length and inclination

for a straight piping element and the radius of curvature and

the two angles including the bend for a bent piping element.

The temperature dependent material data for the types of steel

are taken from a program internal library. Besides the usual

list output, it is possible to plot the shape of the piping

system in a simple true-to-scale drawing. In time sharing ope­

ration the representation is achieved via the display, in batch

operation via the plotter. Besides the fixed anchor point forces

the program also calculates the equivalent stresses at the point

of the maximum bending moment as weIl as the safety with respect

to the creep limit (01/100 000)'
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Kurzbeschreibung

FLEXA - Ein handliches FORTRAN-Programm zur

Flexibilitäts- und Spannungsberechnung von ebenen Rohrsystemen.

Es wird eine Methode und ein Rechenprogramm zur Flexibilitäts­

und Spannungsberechnung von ebenen ~ohrsystemen zwischen zwei

Einspannfestpunkten beschrieben. Das Programm kann sowohl im

Time-Sharing-Betrieb über TSO (Time sharing option des OS/360)
als auch im Batch-Betrieb verwendet werden. Für die Eingabe
sind nur sehr wenig Daten erforderlich, so z.B. für die Defini~

tion eines geraden Rohrelements ,Länge und Steigungswinkel und

für einen Rohrbogen Krümmungsradius und der einschließende
Winkel. Die temperaturabhängigen Stoffdaten entstammen der

programmeigenen Bibliothek. Neben der üblichen Ausgabe in Li­

stenform kann der Verlauf des betreffenden Rohrsystems gra~

phisch dargestellt werden; im Time-Sharing-Betrieb auf Bild­

schirm und im Batch-Betrieb als Zeichnung auf Papier.
Das Programm errechnet neben den Festpunktskräften die Span­

nungen an der am stärksten belasteten Stelle und ermittelt an

Hand der vorhandenen Werkstoffdaten die Sicherheiten gegenüber

der Zeitdehngrenze (01/100 000)'
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1. Capabilities of the Program

The program is qualified for flexibility and stress analyses

of plain piping systems which are located between two fixed

anchor points. The calculation takes into consideration the

change of temperature and the internal pressure. Cold springs

and fixed point movements are input data. The program can be

used for time sharing operation by TSO as weIl as for normal

batch operation. A high value was set for a simple and clear

input, e.g. knowledge of the coordinates for the individual

piping elements is not necessary for the program input. The

data needed are calculated by the program. Some restrictions

result from the simplifications.

The piping system consists only of straight parts and bends.

- Nozzles or branches are not allowed.

- The piping system begins and ends with a straight part.

- A straight part must be followed by abend and vice versa.

- Pipe bends and straight parts must meet each other tangen-

tially, which means that knees must not be provided in the

piping system.

The pipe cross section and the temperature are constant

for the piping system.

- A piping system can be made up of a maximum of 21 part com­

ponents. (This limi tation is imposed by the computer program

used and can be easily extended, if so desired.)

The input data for a straight part are the pipe length and

the inclination only. For abend the bending radius related to

the neutral axis and the two angles comprising the bend must

be indicated.

The calculation of the forces acting at the fixed anchor points

is based on a procedure recommended by Hampel L-1_7. The stress

analysis is based on recommendations of Jürgensonn L-2_7.
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The material data needed for calculation, e.g. stress intensity

factors, Young's modulus, and the coefficient of thermal expan­

sion are temperature dependent and are taken from a program
internal library. (Types of steals see chapt.4)

Besides the moments and forces of the fixed anchor points the

output of the program also contains the strains caused by change

of temperature and internal pressure and the maximum equivalent

stresses at the point of the maximum bending moment. The coor­

dinates of the beginning and endof each individual part

(straight pipe element or bend) , the coordinates of the cen­

troid, and the coordinates of the center of curvature for the

bends are also output data. The shape of the piping system can
be plotted in a simple true-to-scale drawing. The recognition

of errors in the input data, is e.g., facilitated by this means.

2. Mathematical Basis of Flexibility Analysis of Piping Systems

2.1 Generalities

Since in statically determinate systems compulsive forces are

neither exerted by expansions nor by movements of anchor points,

piping systems are always statically indeterminate systems.

Therefore, the first task consists in making a system statical­

ly determinate. For piping systems this is e.g. achieved by

assuming one fixed extremity while the other can move freely.

The load at the end points is obtained if forces are allowed

to act on the freely moving extremities, which are sufficiently

great to neutraiize the displacement. With respect to the end

points, a distinction must be made between fixed anchor and

hinged anchor points. Fixed anchor points can accomodate tor­

sion moments in addition to forcesand bending moments, while

hinged anchor points only accomodate forces.
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Investigations have revealed that fixed anchor points are very

close to practice. The most frequent case is a piping system

contained between 2 fixed anchor points. Therefore, it is rea­

sonable to restrict oneself to this case. Since, in practice,

fixed anchor points are always a bit flexible, the computation

yields higher stresses, which means that the assumption of fixed

anchor points is on the safe side.

The single-plane system is a special case of a three dimensional

system. Transverse forces and torsion moments do not occur. The

supporting loads are restricted to one normal force and one

bending moment each.

It should be noted that the relations applicable to the single­

plane system are also valid for a three dimensional system. The

principal difference consists in the occurrence of transverse

forces and torsion moments.

2.1.1 Coordinate System

Since the case of the single-plane system treated here is a

special case of the multi-plane system, the axes are designated

a,b instead of x,y. This facilitates the transition to the

three-dimensional system.

A distinction must be made between the outer and the inner co­

ordinate systems. The outer system applies to the entire piping

system while each part component has its own inner coordinate

system. The corresponding axes are parallel,only the origins

differ from each other.

2.1.2 Determination for each Individual Part ComEonent of the

Initial and End Coordinates, the Centroid Coordinates

and th~ Centersof the Bendin& Radii

For straight part components the inner coordinate system refers

to the initial point marked by the index 1 in Fig.1. For bends
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the inner coordinate system is placed into the center of curva­

ture. The angles ~1 and ~2 describe the included angle a. ~1

is always the smaller and ~2 is always the greater of the two

angles. It is of no significance in this respect whichangle

is related to the initial point of the bend and which is re­

lated to the end point of the bend, as represented in Fig.2.

All angle data are related to the positive a-axis and are given

in the positive sense mathematically. For pipe bends extending

from the negative to the positive quadrant, a value > 360 de­

grees must be given for the angle ~2 in the positive quadrant.

For example, instead of the angle ~2 = 50 degrees the value

~2 = 410 degrees must be given, if ~1 is smaller than 360 de~

grees.

The connection ofa pipe bend with a straight part component

or vice versa is determined via the tangent at the point of con­

nection, which is possible by assuming a continuous transition.

The pipe system should be so arranged in the outer coordinate

system that it develops from the right to the left side, which

is shown in the example, Fig.3. The initial point of the sy­

stem is A, the end point B. The first part component of the

length 1 1 starts at point A coinciding with point, 1 and ends

at point 2. In this case, the angle of the first straight part

component is 180 degrees. According to the definition the se­

cond part component must be a pipe bend extending from point 2

to point 3. The radius is r Z' the angle ~1 = 180 degrees, the

angle ~2 = 270 degrees.

2.Z Flexibility Analysis

The flexibility of a piping system can be illustrated by the

following relation L-2_7:

flexibility = c iill
EJ (1)

where C is a constant given by the shape of the piping system.

f(L) is an initially unknown function of the length L, E is
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the Young's modulus, and J the second moment of inertia.

According to the assumption mentioned before the fixed point A

of the system is rigid, while B can move dependent on the defor~

mations of the system. A force is supposed acting upon B, which

cancels the displacement. It is reasonable for this study to

place the coordinate system in point B, as shown in Fig.4.

Now the elastic values of the pipe length and of the first mo­

ments of the line related to the a- and b-coordinate axes must

be calculated for the system, which yields the coordinates of

the elastic centroid. Likewise, the elastic values of the se­

cond moments of the line and the product of inertia of the line

related to the a- and b-axes are calculated which form the ba­

sis of calculation of the end reactions.

The elastic values differ from the purely geometrical values

by the fact that, in accordance with reality, a higher flexi­

bility is obtained than would be admitted by the purely geome­

trical values. A discussion lateron will extensively deal with

the reasons underlying this effect.

2.2.1 Determination of the Statical Moments, the Moments of

Inertia and the Product of the Inertia of Lines

Fig.S lists the designations of a straight part component in

the a,b-coordinate system.

The statical moment related to the a-axis, i.e. the b-plane,

is derived from the relation

Sa = Jbdl = Lb (2)g

and, accordingly, the statical moment related to the b-axis,

i. e. the a-plane, is

Sb = Jadl (3)

The moment of inertia related to the a'-axis, i.e. to the cen­

troid G, is calculated after the relation:
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Ta' = Jb' 2dl " L3/1 2 s in 2l/J (4)

The conversion to the a-axis is carried out using the Steiner's

theorem

Tnew = (5)

which appears in the following relation.

Ta = Jb 2dl = Ta' + Lb 2g
(6)

The moment of inertia related to the b'-axis reads accordingly

and related to the b-axis

( 7)

= Tb' + La 2g
(8)

The product of inertia related to the axes of gravity a' and

b' reads

Dab' Ja'b'dl = L3 /12 sinl/J cosl/J (9)

and related to the a,b-axes

Dab = J a b dl =

The length L is obtained to be

J dl = L

Dab' + La bg g (10)

and the distances a' and b' of the line element dl from the

axes through the centroid

a' = (R, - - L/2) co s l/J

b' = (R, L/2) sin l/J

(11 )

(1 2)
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2.2.2 Determination of the StaticalMoment, the Moments of

Inertia and the Product of the Inertia of Circular Bends

Fig.6 contains the designations of a circular bend in the a,b­

coordinate system.

The moments are first related to the center of curvature of

the bend, which lies in the origin of the coordinate axes a"

and b". Then, applying the Steiner's theorem as in the preced­

ing section the conversion is carried out to the a l b' coordi­

nate system originating in the centroid of G of the bend.

Introducing now the constants G,A,B and C (the constant G is

different from the centroid of the bend G) which depend only

on the aperture angle of the bend, very simple relations are

obtained for the moments related to the axes throughthe cen­

troid of the are. These relations incorporate only the incli­

nation ~ of the bend related to the positive a-axis. Fig.7

exhibits the development of the constants G,A,B and C for

aperture angles a in the range between 0 and 180 degrees.

The dependence is described by the following relations:

G = ~. sin ~

A a + sina 4 sin 2 a= . 2"2 a

B a - sina= 2

C sin 4 sin 2 a= a-- .
2"a

(13)

(14 )

(1 5)

(16)

The distances of the centroid a " and b " related to the a",b"-
g g

coordinate system are obtained according to

a" = R' G cos ~g

b" = R. G sin ~g

(1 7)

(1 8)
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Related to the centroid, Le. the al,b'-coordinate system, the

moment of inertia of the bend line is for the a'-axis, i.e.the

b' -plane

(19)

and related to the bl-axis, i.e. the al-plane

(20)

The product of inertia of the bend line related to the centroid

is obtained to be

'Dab = R3 C sin~ cos~ (21)

The statical moments Sa' and Sb' related to the centroid are

zero, since the distance from the centroid is zero.

The next step now consists in converting the moments to the

a,b-coordinate system.

For the statical moments the following value is obtained relat­

ed to the a-axis

Sa b L
g

(22)

and for the b-axis, respectively,

Sb = a Lg (23)

where L is the length of the bend in accordance with the rela­

tion

L = f dl = R a (24)

The moment of inertia related to the a-axis is obtainedto be

Ta = Tal + L b 2
g

and for the b-axis

(25)

Tb Tb I + L a 2
g (26)
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The product of inertia of the bend line related to the a,b­
coordinate system is

Dab =

2.2.3 Cross Section Flatteriing ofa Bend

If abend is exposed to a bending moment, the pipe cross sec­

tion becomes flattened as exhibited in Fig.8. Flattening pro­

duces the effect that the moments required to deform the bend

are lower than expected from the theory of bending. This means
that abend is less resistant to bending and behaves like a
bend with a greater bending radius, i.e. abend of greater

length than obtained in accordance with the relation

L = R Ci. (24)

Von Karman was the first to indicate this phenomenon and he

proposed a suitable method of correction. The method relies on

the introduction of a correcting factor yielding a lower bend­

ing moment as compared to the theory of bending. The correcting

factor is generally termed theKarmarifle'xibilityfäctor K.

In practice, the reciprocal value kk' also termed bend flexi­
bility factor, has proved to be useful in the calculation.

= 1
K (27)

There are different approximations for the flexibility factor.

For smooth bends the factor proposed by Clark and Reissner is

recommended, which is the flexibility factor used in the Ameri­

can Piping Code L 3_1

kk
1. 65

= ---n-
where

h 4 Rs (28)= --
dm 2

The value h = A is also termed flexibility characteristic. R is
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the radius to the centerline of the bend related to the neu­

tral axis, s is the wall thickness, and dm is the average pipe
diameter, as represented in Fig.9.

If abend is exposed to internal pressure, its flexibility de­

creases again, since the cross section flattening is partly

reversed. In this case kk can be corrected by the relation L 7

r 2 iF
1 + 6 • ~ • (s)· s

> (29)

implying that kk substitutes kk'
p .

2.2.4 Further Corrections Influencing the Flexibility of a

Piping System

Further corrections are necessary both on abend or a straight

pipe section in case that different pipe dimensions are encoun­

tered in a pipe system and/or the sections of a piping system

are at different temperature levels. (These cases are presently

not implemented in the program.)

The flexibility factor k I resulting from different pipe dimen­

sions would then b~ obtained from the relation

=
I r lt - r. lto = ~a-.;o 1 __0_

I r lt - r. lt
a 1

(30)

and the flexibility factor kE resulting from different tempe­

rature levels is given by

Eo

E
(31)

I and E are the most frequently encountered or - with a near-o 0

ly identical frequency - the smaller values of the moment of
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inertia of the cross section and the Young's modulus, respec­

tively. r a and r i are the outer and inner radii, respectively,

of the pipe cross section. In the subsequent computation the

flexibility factors should reasonably be combined according­
to

(32)

with the value kk = 1 inserted for straight pipe sections.

2.2.5 Calculation of the Elastic Centroid and the Elastic

Moments 6f the Line6fthe PipitigSystem

As already mentioned, the flexibility analysis does not rely

on the geometrical but rather on the elastic values of the

system centroid and related to it on the elastic values of

the moments of the line.

The relationship between the geometrical and elastic values

is described by the relation

C = k C = C + (k - 1) Cel geo geo geo

C being put for the length, the statical moment, the

of inertia, and the product of inertia of the line.

(33)

moment

The second form of the equation is meaningful if different

operating condi tions ,or pipe dimens ions are to be calcula ted.

In this case, the geometrical value must be assessed but once

which enables to determine the elastic value dependent on the

different flexibility factors k.

It is essential that the equation cannot be applied to the

pipe system as a whole but separately to each component part,

which means separately for each bend and each straight pipe

section because of the variation from element to element of

the value k.
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system result from the relations

from the fact that a plplng system is made up of n

- the first element being i = 1 and the last accor­

= n - the pipe length Li' the statical moments Sa i
the moments of inertia of the line Ta. and Tb., the

1 1

of the line Dab., and likewise the flexibi­
1

determined for each element. The elastic va-

Starting

elements
dingly i

and Sb.,
1

product of inertia

lity factor k. are
1

lues for the whole

n
= L:

i=1
L. +

1

n
L:

i=1
L. (k. - 1)

1 1
(34)

n
L:

i=1
Sa. +

1

n
L:

i=1
Sa.

1
(35)

n
L:

i=1
Sb. +

1

n
L:

i=1
Sb. (k. - 1)

1 1
(36)

n
L:

i=1
Ta. +

1

n
L:

i=1
Ta.

1
(k. - 1)

1
(37)

n
L:

i=1
Tb. +

1

n
L:

i=1
Tb. (k. - 1)

1 1
(38)

Dab =el

n
L:

i=1
Dab. +

1

n
L: Dab i (k i - 1)

i=1
(39)

(40)=

related to the a,b-coordinate system of the whole system. The

next step consistsin the conversion to the coordinates of the

elastic centroid. The coordinates of the elastic centroid na
and nb are found to be

Sael
LeI

and

= (41)

respectively.
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The elastic moments of inertia Tag and Tbg as weIl as the ela­

stic product of inertia of the line are obtained from the rela­

tions

Tag Ta - Sae12/Lel = Ta - L . nb
2

el el el

Tbg = Tb Sbe12/Lel = Tb - LeI
. na

2
el el

Dagbg = Dab - (Sael·Sbel)/Lel = Dab - L . nanbel el el

(42)

(43)

(44)

The computation scheme is so conceived that in a calculation by

hand tables can be used.

2.2.6 Srstems between two Fixed Anchor Points in the Absence

of Torsion

In systems placed between two fixed anchor points the resulting

force passes through thecentroid with the thrust line of the

system normally not passing through the fixed anchor points. To

determine the two components Pa and Pb of the resulting force P,

the expansions of the free end in a and b direction due tb tem­

perature changes and internal pressure must first be determined.

The thermal expansion due to temperature change is obtained from

the relation

(45)

where a~ is the coefficient of thermal expansion and 6~

is the temperature difference.
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The expansion due to internal pressure is calculated by the

following relation:

=

yielding v = 0.3

=

E

p 0.4

E

+ a' )
r =

P

E

1 -; 2v
(46)

(47)

where p is the internal pressure, E is the Young's modulus, and

u is the ratio of external pipe diameter to internal pipe diame­

ter.

This gives a total strain

= (48)

yielding the total expansions in the a and b directions

(49 )

(50)

If an extraneous movement also called PVC (pull-up-cold) of the

end point A and B, respectively is possible, the following total

expansion of the system in the a-direction is found

and in the b-direction

(51 )

/:" , =
b

(52)

where 8A is the movement of the initial point A and 8B is the

movement of the end point B.

If, furthermore, the system is prestressed, the total expansion

/:"a and /:"b' respectively,
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v
Ö

a
a 100 Ö

,
a

öb =
vb

100 öb
,

(53)

(54)

is obtained, where va and vb indicate the percentage of pre­

stressing.

The force components Pa and Pb are now derived in accordance

with the following relations:

in the a-direction

Pa = - E Io 0

Öa Tag + öb Dagbg
2"

Tag Tbg - Dagbg
(55)

and in the b-direction

Pb =
Öb Tbg + öa Dagbg

2
Tag Tbg - Dagbg

(56)

with the resulting force P

With

and

(57)

(58)

(59)

the distance can be determined of the thrust line of the system

of the force P from the origin of the coordinates of the a,b-

system

h = na sin y + nb cos y (60)
g

Consequently, the slope of the thrust line is

tg y
sin y . Pa

(61 )= = Pbcos y
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Substituting in equation (60) the coordinates na and nb by the

coordinates of the single part components, their distance h '
g

from the origin of coordinates parallel to the perpendicular

distance hg of the thrust line of the system is obtained.

h .gl = a. sin y + b. cos Y
1 1

(62)

The distance of the points

resulting force P becomes

a. ,
1

b. from the line of action of the
1

h .gl = h. - hgl g (63)

and thus, the bending moment can be calculated for point i, which

is the basis of the stress analysis

M. = p. h .1 gl (64 )

At the point of maximum distance hg max' the maximum bending

moment occurs in accordance with this equation, which must be

used to dimension the piping system.

2.3 Stress Analysis

The stress will be determined according to a proposal by Jürgen­

sonn L-z_7. The underlying stress hypothesis is the Mises crite­

rion (distortion energy theory).

The maximum bending stress occurring in the external fibre of a

pipe cross section is

=
M
W = M . D

ZOO.J (65)

and, accordingly, for the inner fibre

=
M . d
200·J

(66)

M is the bending moment L-kp/cm:7 derived from the previous com­

putation; D is the external pipe diameter L-cm_7;
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d is the internal pipe diameter L-cm~7; J is the second moment

of inertia of the cross section L-cm 4 _7.

The shear stress is calculated to be

=
Mt
2 W = (67)

Mt is the torsion moment which is zero in our case and, hence,

also the shear stress becomes zero.

The stresses generated by the internal pressure are axial stres­

ses

aaa = a . =
al 400 (d+s)s

(68)

and tangential stresses

200 (d+s) s

ata + p/100

(69)

(70)

and radial stresses

a = 0ra

ari = -p/100

(71)

(72)

The subscripts a ind i refer to the external and to the internal

axes, respectively; p is the internal pressure L-kp/cm 2 _7, and

s is the wall thickness of thepipe L-cm_7. Bending stresses and

internal pressure stresses are added and combined to become the

equivalent stress.

Using

axa = aba + aaa (73)

aya = ata (74)

aza 0 (75)
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the following equivalent stress is obtained for the external

axis

o 2
ya (76)

In our case the term 3~2 is eliminated, since no torsion moments

occur in accordance with the assumption.

Using

o .
Xl

o .
Yl

= Ob' + 01 aa = + 0 aa = 0 .
al (77)

(78)

O. = O.
Zl rl

(79)

the following equivalent stress is obtained for the internal axis

O. = 10.5 L(o .-0 .)2+ (0.-0.)2+ (0.-0 .)27+ 3~2 (80)
VI Xl Yl . Yl Zl . Zl Xl-

where the last term of the equation is also zero in accordance

with the statement above.
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3. Working Cycle of the Program

Starting with the input data, e.g. the length of the piping

elements and the radii of curvature, respectively, and the

angle, the program calculates the coordinates of the starting

and end points of each individual piping element. Because of

the assumption of tangential connections between the individu­

al piping elements, the inclination of the tangent is a crite­

rion of the connection. Parallel to these calculations the

centroids for all piping elements and the center points of

curvature for the bends are calculated. All coordinates will

be related to the coordinate system which is shifted to the

end point of the piping system. Now the statical moments, the

moments of inertia and the product of inertia are calculated,

first for each individual part, then for the whole piping sy­

stem.

The elastic pipe length and moments and, based on them, the

coordinates of the elastic centroid of the piping system can

be found together with the flexibility constants.

The next step is the determination of the strains caused by

change of temperature and internal pressure. Using the elastic

moments it is possible to find the vertical and horizontal com­

ponents of the acting fixed point force allowing also to de­

termine the inclination of the trust line of the system. The

flexibility analysis is completed and subsequently the stress

analysis can be made. Based on the resulting force and the

distances to the piping elements, the bending moments can be

calculated. At the point of maximum bending moment, the equi­

valent stresses according to the Mises criterion will be found.

Concerning the input and output, the program is relatively va­

riable. The possibilities are shown schematically in Fig.10.

Besides the usual card input, an input via TSO-terminal is pos­

sible. For time sharing operation it is helpful to set the con­

trol constant "TSO" (in the program) equal to 1 (one). Then

the input becomes format free and the output list will be re­

duced.
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The output for time sharing operation is made via terminal

and display, and for batch operation via printer and plotter.

4. Program Input for Batch Operation

All input data have to be written in F~RMAT 6 G 12.6 and

4 G 12.6, respectively, An example for input data is given in

the appendix.

Internal design pressure

Design temperature of the plplng system

Outer diameter of the pipe

Wall thickness

Horizontal cold spring.

100 % cold spring means that under hot con­

ditions 100 % of the cold spring is acting.

(no prestressing under cold conditions)

The value of VSH must be used as absolute

value, e.g. 100 % ~ 1.0

50 % ~ 0.5

I Vertical cold spring, as described beforeVSV L

P L-bar_1
T L-oC_1
DA L-m_1
S L-m_1
VSH L I

l.Card:

2.Card: CVKH L-m_1
CVKV L rn_I
MAT L I

Horizontal fixpoint movement

Vertical fixpoint movement

Material constant

MAT=1 ~ Material No.7380=10CrMo 9 10

=2 ~ " " 4961=X8CrNiNb 16 13

=3 ~ " " 4981=X8CrNiMoNb 16 16

=4 ~ " " 4988=X8CrNiMoVNb 16 13

=5 ~ " " 4922=X20CrMoV 12 1

=6 ~ " " 4301=X5CrNi 18 9 ~Typ 304

=7 ~ Typ 316

=8 ~ " " 4948=X6CrNi 18 1

NFALL L I Identification number for the run (number

of case)
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3.Card to n.Card: This type of card specifies the shape of the

piping system. One card is necessary for each

piping element, at the maximum 20 plus one

to point out that the data are complete.

IG L _7 Identification constant

IG=1 for a straight piping element

IG=2 for abend

According to the assumptions for cal­

culating the piping system the first

and the last piping element have to

be straight elements.

RL L m 7 Length of a straight plplng element

or radius of the curvature of abend,

respectively.

PHI1 L~r~7 Inclination of a straight piping element
or first angle for a bend,respetively.

PHI2 L~r~7 For a straight piping element isthis
constant equal O.(zero).

For abend is it the second angle.

If the piping system is complete, the first value IG must be

equal to zero and the data for the next example must follow,

starting with card No.1.

If the values of the first and second cards of the following

example are equal to the example calculated before, the value

IG must be equal to -1 (minus one). Then the following example

starts with the third card.

If the calculation is finished, the input card for the pro,Vram
stop must follow. (see Chapt. 6)
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S. Program Input for Time Sharing 0Eeration

The input for time sharing operation is format free. The se­

quence of the data is equal to the batch operation described

before. The program prints out via terminal which are the in­

put data needed. A complete example of a time sharing job is

given in the appendix.

6. StoE of the Program

The program stop is possible in two ways. In the first case,
when the stop is to follow a card of the type 3 where the first

value IG was zero, the third value on the next card (type 1)

had to be DA, also equal to zero. In the second case, when the

first value on the last card (type 3) was equal to -1, a card

of the same type had to follow with the first value IG equal

to or greater than 999.

7. Program OutEut for Batch Op'erätion

A complete output list is given in Appendix 1.

MAX.STRESS L
-Nimm 2_I Maximum equivalent in theOUTS. stress

outer fiber of the piping system

MAX.STRESS INS. L-N/mm 2_1 Maximum equivalent stress in the

inner fiber of the piping system

HORIZONTAL FORCE L N 1 Horizontal force component of the

fixed anchor puint reaction

VERTICAL FORCE

RESULTING FORCE

MOMENT TXS

MOMENT TYS

L N 1

L N 1

- 4 ­L m _I

- 4 ­L m _I

Vertical force component of the

fixed anchor point reaction

Resulting force of the fixed anchor

point reaction

Elastic value of the moment of iner­

t ia re la ted to "the a (x) coordina te

axis

Elastic value of the moment of iner­

tia related to the bey) coordinate

axis



MOMENT ZS

MOMENT SLIXI

YOUNG'S MODULUS

SIGMA X OUTSIDE

SIGMA Y OUTSIDE

MAX.BEND.MOMENT

SAFETY OUTS.

SAFETY INS.
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Elastic value of the product of

inertia

Elastic value of the statical moment

related to the a(x) axis

- 2 -L kN/mm _I Young's Modulus at design tempera-

ture
- 2-L Nimm _I Axial stress component for the

outside of the pipe at the point

of the maximum bending moment

- 2-L Nimm _I Tangential stress component for

the outside of the pipe at the

point of the maximum bending moment

L Nm 7 Maximum bending moment

Safety factor for the creep limit

(° 1/100 000) for the maximum stress
in the outer fiber

Safety factor for the creep limit

(°1/100 000) for the maximum stress
in the inner fiber

HORIZ. ELONG. L m 7

VERTICAL ELONG. L m 7

Horizontal elongation caused by in­

ternal pressure and design tempera­

ture taking into consideration pos­

sible fixed anchor point movements

Elongation in the vertical direction

according to HORIZ.ELONG.

Perpendicular distance of the thrust

line of the system from the origin

of the coordinate system used.

(The thrust line of the system is

the action line of the resulting force)

Elastic value of the length of the

piping sys tem



YETA L m 7
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b-(y) coordinate of the elastic cen­

troid of the system

XKSI L m 7 a-(x) coordinate of theelastic cen­
troid of the system

MOMENT SLIYI L-m 2 _7 Elastic value of the statical moment

related to the bey) axis

STRESS INT.VALUE L-N/mm 2 _7 Stress intensity value 01/100 000
(creep limit) at design temperature

as a basis to calculate the safety

factor

SIGMA X INSIDE

SIGMA Y INSIDE

SIGMA Z INSIDE

L-N/mm2_7 Axial stress component for the in­

side of the pipe at the point of

the maximum bending moment

- 2-L N/mm _/ Tangential stress component

L-N/mm2_i Radial stress component

The following table contains the geometrical data for each pip­

ing element starting with a straight tube.

A1 , B1 L m 7 a-and b-coordinates (x, y) of the

beginning of an individual piping

element under consideration

A2, B2 L m 7 a- and b-coordinates (x, y) of the

end of an individual piping element

under consideration

SA, SB L m 7 a- and b-coordinates of the centroid

of the individual piping element

L
-kp 7 Bending moment the starting pointBEND MOMENT m at

of the piping element under consi-

deration

LENGTH L m 7 Distance between the first point of

the piping element arid the thrust

line of the system



RA, RB
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a- and b-coordinates of the center

point of curvature for bend pipe

element

8. Program Output for Time Sharing Operation

The output list is very short during time sharing operation.

It contains only the maximum stresses (at the point of the

maximum bending moment) on the inner and outer sides of the

pipe and the safeguards with respect to the creep limit

(cr 100 000)' An example is given in Appendix 2.
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PIPIN:; SYSTEM NO. :)

I NT ERNAL PPES5JRE = 50.000 BAR HOR IZ.F IXP .MOV. =
PI PE TE "'1PF F,A TURE = 220.JOO DEG.C VER T • F I XP • MOV • =
DUTFR DIAMETER = J.324 1'1 MAT ER IAL =
WALL THle KNE 55 = 0.007 M
HOHIZ.CdLO SPRING = 1.000 0/0
VE RT. COLD SPRING = 1.000 0/0

NO.UF ELE"1 F'JT TYP E L E~G T HI RA DIU S ANGLE 1 ANGLE 2
1 1 4.HOO 180.00 0.0
2 2 1.200 180.00 270.00
3 1 4.236 90.00 0.0
4 2 1.000 0.0 60.JO
5 1 5.196 150. 00 0.0

0.0
).0

RESULTS O~ e AlC UlA TI ON
----------------------

MA X. STRESS OUTS. = 147.55 N/MM** 2 SAFETY OUTS IDE = 1.037
r..,AX. ST RES S INS. = 149.37 NIMM **2 SAFETY IN SI OE = 1.025
cfD k I Z0 NTAL FORCE = -10868.6 N HOR I Z. ElON G. = 0.041 M
VfRTICAL FJRCE = 16818.0 N VERTICAL ELONG. = -0.033 ~

RE SUL TI NG PJRCE = 20024.3 N DISTANCE TJ 0.0 :: 1.261 M
MOMENT TXS = 275.7 M**4 LENGTH OF SYST EM= 29 ..497 M
MOMENT T YS = 121.6 M**4 COORD. VElA = - 5.12 5 M
MOMENT lS = -138.4 M**4 COORD. XKSI = 5.201 M
MOMENT SLIXI = -168.9 M**2 MOMENT SLlYI :: 153.4 M**2
YÜUNG S MODULlJ S = 184. KN/MM**2 STRESS INT .VAlUE= 153.04 N/MM**2
S JGMA X OUTSIDE = 168.39 N/MM**2 SIG MA X I NS I OE = 163.35 NI MM**2
SIG/I1A y OUTSIDE :: 1) 6 .64 NI MM**2 S IGt.., A y I~S IDE = 111.64 N/MM**2
MAX.BEND.MOMENT 63021. NM SIGMA Z I NS I DE = -5.00 N/MM**2

Al BI A2 82 SA SB BEND MOMENT lENGTH RA RB

11.:>0 -8.9:) 6.20 -8.90 8.60 -8.90 O. 63021E+ 05 3.15
6.20 - 8.90 5.00 -7.70 5.44 -8.46 J.17706E+05 -0.88 6 .. 20 -7.10
5.00 -7.70 5.00 - 3.46 5.00 -5.58 o. 24845E+ 05 -1.24
5.00 -3.46 4.50 -2.60 4.83 -2.99 o .21194E+05 1.06 4.00 -3.46
4.50 -2.60 0.0 O. 0 2.25 -1.30 0.22197Et05 1.11
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9·SSE 00

7-95E 00

5-37E 00

4·7BE 00

3-iBE 00

i·S9E 00

-i·S9E 00

-i-S9E 00

-3- iBE 00

-4-78E 00

-5-37E 00

-7·95E 00

i-S9E 00 3·i8E 00 4·7BE 00 5·37E 00 7·96E 00 9·SSE 00

+

+

o

EXAMPLE FOR A PLOT OUT PUT
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Appendix 2

4.0 IbO. O.

1.2 18U. 270.

4.2;:)l.J ~ U. O.

l. U. b U.

~.19LJ 1;;' Ü. u.

1
?

1
?

2
?

dttrib a lreel(öU) blksize(lbbO) reefm(f b)
READY
alloe da(plot) f(ftü7fUül) spaee(4bL) bloek(lbdU) using(a)
READY
edit piptso fortgi
ED IT
run
Gi COMPILER ENTERED
.:>OlJRCE ANALYZED
PRO GRAM NAME = MAIN
* NO DIAGNOSTICS GENERATEO
;:)OURCE ANALYZED
PROGRAM NAME = SIGMAI
* NO DIAGNOSTICS GENERATED
SOlJRCE ANALYZED
PROGRAM NAME = EMODUL
* NO DIAGNOSTIC.:) GENERATED
.:)OURCE ANALYZED
PROGRAM NAt-1E = ALFA
* NO DIAGNOSTICS GENERATED

*STATISTICS* NO DIAGNOSTICS THIS STEP
TYPE IN P,T,DA,S,V.:)H,V::>V

?
~o. 220. 0.323g 0.0071 1. 1.

TYPE IN CVKH,CVKV,MAT,NFALL
?
U. O. 2 0

TYPE IN IG(N),RL(N),PHI2(N),PHI1(N)
?
1
?

Li O. ü. O.
PIPING SYS1EM NO. 0

RESULTS OF CALCULATION

MAX. STRESS OUTS. = 147.55 N/MM**2
MAX. STRESS INS. = 149.37 N/MM**2
TYPE IN P,T,DA,S,VSH,VSV

?
u. O. o. o. o. O.
EDIT
end
READY

SAFETY OUTSIDE =
SAFETY INSIDE =

1. 037
1.025




