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Abstract

A modified collocation method is used for scolving the one
group criticality problem for a uniform multiplving slab.
The critical parameters and the angular fluxes for a number
of slabs are displaved and compared with previously pub-

lished values.

Anwendung einer modifizierten Kollokationsmethode auf die

eindimensionale Eingruppen-Neutronentransportgleichung

Zusammenfassung

Eine modifizierte Kollokationsmethode wird zur L&sung der
moncenergetischen Neutronentransportgleichung fir die Platten-
geometrie herangezogen. Die Ergebnisse flir die kritischen
Parameter und fiir den Vektorflufl werden mit Resultaten anderer

Autoren verglichen.



1. INTRODUCTION

The neutron transport equation is an integrodifferential
equation in seven independent variables, which in pro-
blems of any generality can be solved only approximately.
Since these numerical solutions are extremely expensive a
variety of methods, e. g. the method of weighted residuals
(MWR)} /1-3/, has been developed with the goal to reduce

the costs of computation.

The MWR unifies a number of approximate methods, one of
which is the collocation technigue /4-6/. The collocation
method is applicable to differential- integral- and integro-
differential equations. It can be used for solving non-
linear problems too /7,8/. The collocation method usually
considered to be a relatively crude approximation, gives
very often surprisingly good results. Because of its sim-
plicity and significantly reduced computatiocnal costs the
collocation method is particularly suited for a first order
approximation of a more complicated problem. Thus the glo-
bal representation of the solution may be of great advantage.
In reactor physics the collocation method has been rarely
used. Applications can be found mainly in diffusion theory
/9,10/ or in solving the space independent reactor kinetics

equations /11-14/.
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In the present work the collocation method is applied
to the neutron transport equation. For that purpose a

modification of the collocation technique is introduced.

The Boltzmann equation is used in the form of the con~
stant cross-section approximation /15/ and the slab criti-
cality problem is solved. The reason for treating such an
idealized geometry was because of its simplicity, the
possibility of finding a variety of results for compari-
son purposes and that benchmark values /16/ obtained by

the method of singular eigenfunctions /17/ exist.



2. THE MODIFIED COLLOCATION TECHNIQUE

To derive the method of weighted residuals (MWR) one can

start with a linear boundary value problem:
A(x1,...xn) w(x1p,..xn) - f(xliaa@xn} =0 (1)

A(x po+.% ) denotes a differential {(-integral) operator,

1
the xis are the independent variables, w(xq,..exn) the
dependent variable and f(x1,...xn) is an inhomogeneous
source term. The solution of Eqg. (1) is approximated by

a combination of linearly independent known base trial
functions ¢i(x1,...xn) and unknown coefficients Civ which

do not depend on the xis. The functions @i(x1,...xn) should

satisfy given boundary conditions associated with Eg. (1).
The ansatz
N
g (X pee o) =£ ciby (Xgpeeex) (2)

is inserted into Eg. (1}, thus giving a residual R depen-
dent on the xis and the coefficients cy.

N

ZCiA(XT,aQ.xn) d(xqpeeox ) = (X .00x ) =

= R(X1'°"Xn' c1a.@cN)



To compute the cis one multiplies Eq. (3) by suited
weighting functions Gy and integrates the result over

the domain Q under consideration.

I§ci <Gk’ Aoy > - <Gk’ £> =<Gk’ R > (4)
i Q Q Q

where k= 1...N

<:%, s:> = [ r.sdQ
Q

Q

the weighted integral of the residual is set equal to

Zero:

<Gk, R >=0 (5

Q

These equations define the general MWR for the linear

boundary problem (1}.

Now the collocation method will be explained. For this case

one chooses the Dirac delta functions for weighting /9,19%,20/.
G, (x ) = 6(x, - x5 §(x_ - x5) (6)
k 1’o.tn 1 1 & @ ®

Inserting (6) into (5} makes the residual R vanish at the

k UK

collocation points Xy oo X0



Increasing the number N of linear independent functions

5 and of points x the residual is forced to vanish at

k!
more and more points and in the limit presumably it

approaches zero throughout Q.

After carrying out the integration in Eg. 5 the coef-
ficients are determined by a system of linear algebraic
equations:

k k
1

'oo-X

= 0 (7)
n

)
k= 1...N
Obviously, the number of collocation points is identical

with the number of trial functions.

Now, by a slight modification of the weighting function Gk

one can introduce additional points % without increasing

the number of test functions /18/. Restricting for simpli-

. i _ _ k _ i o
city on two variables (x,i =X, X, =Y and Xy = Xps X5 0 F yj)
the modified weighting function is defined as:

M
Gy = z § (x-xy ) 8(y-yy) (8)
j=1
ij is now a linear combination of delta functions.
With this weighting Eg. 5 and 7 become:
M
) 8 (x=x,) é(ymyj}, R(xﬁy,c,}“@cN;> = 0 (9)

g 371
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For a rectangular mesh (xk, yj) in the x-y plane, this means
that one simultaneously sets a sum of M residuals equal to
zero at points with the abszissa values Xy For the tested
cases, which will be discussed later the method worked satis-
factorily. Nevertheless one must watch for cancelation effects

within the linear combination of the residuals.

Naturally no restriction exists in applying this modified
collocation technique to eigenvalue- or initial value pro-
blems. For solving the one dimensional transport equation
the coordinate x is identified with the space variable and
the coordinate y with the angle coordinate y = cos 6. As

one is mainly interested in the angular distribution of the
neutron flux, the additional points are placed in the direc-

tion of u.

A critical question for the collocation method is how to
distribute the collocation points in the available space.
In the literature it is usually proposed to distribute them
on an equidistant mesh /5,6/. Basically the concept of the
collocation technique is nothing more than an interpolation

procedure. One knows from interpolation theory /21/ that



working with eguidistant nodes can lead to defects and

errors in the approximate solution.

Also the proofs of convergence and stability for specific
problems /22-31/ depend essentially on the choice of the
collocation points. Usually the use of either the Chebyshev-
/24,29/ the Gauss base points /24,27,29/ or the zero's of
other orthogonal polynomials is recommended. For details

we refer to the literature. The position of ceollocation
points can also be derived from the discrete method of least
squares. The collocation points then coincide with the mesh
for integration. Higher order integration formulas /32/ will
again lead to a nonequidistant distribution of points.
Utilizing trigonometric trial functions /24/ a good distri-

bution seems to be

jﬁ'-é“%“:m?f{ jg'!a@eN (11)

Ty

The position of the points will often be strongly influenced
by the physical structure of the problem. For example the
case of a control rod /9/ in a reactor. This requires a
placing of at least one point in the control rod channel,
otherwise no information about the rod position would be

available.



CATION OF THE MODIFIED COLLOCATION METHOD TO

3. APPLI
CRITICAL SLAB PROBLEM

P
THE

-
L

The modified collocation method is applied to the one-
dimensional homogeneous slab with finite thickness D.

The thickness D = 2a is given in units of £he mean free
path. Working with the constant cross-section approximation
/15/ and assuming isotropic scattering the angular neutron

density ¢ (x,u) satisfies the equation

oy £ N +1
" dlg)\(XrU) + W(XJU) ____(22 I ‘b(xpul) dU' (12)

-1

U = Ccos 0

with the boundary and symmetry conditions (the origin is

at the center of the slab):

Tp(arU) = O u < O
p(-a,n) =0 u >0 (13)
p{x,u) = y({-x,-u)

c denotes the mean number of secondaries per collision and
is regarded as the criticality factor of the multiplving

medium.

With the procedure outlined in Chap. 2 egquation 12 takes on

the form:



M N B 3¢(X RTINS
17k Y .
j; i;} c; Luj i t ooy () (14)
- +1
-3 s ¢i(xk p') du' = O ko= 1., N
...1 4

The linear combination of the testfunctions ¢i(x,u) is
synthesized multiplicatively of space-dependent- and of
specifically tailored angular-dependent functions., From
symmetry considerations it follows that wN(x,u) must be

an even function.

To obtain a relation between the critical guantities ¢ and
D, the slabthickness or a related parameter has to be in-
corporated in the testfunction. This can be achieved by
using a relationship between D and the diffusion lenght L

/33,34/.

For the space dependence a product of trigonometric trial
functions and exponential expressions has been chosen to
satisfy the boundary conditions. The adequate angular func-
tions are constructed by following the ideas of Kaplan and
Natelson /35-37/.

To define the angular dependent part of the ¢is,at first
functions ¥ = r{(8) are derived which have the form of
circles and ellipses when represented in polar coordinates
{(r,e = cos—1 1} . The radius vector r alsoc depends on some
other parameters a, b, ¢ by which the shape of the ellipses

can be influenced.



These parameters a and b are the axes and the factor e
takes into account the degree of "off-centeredness” when
the center of the ellipse 1s shifted on the axis a to the
right.

For the calculations a is set equal to one. Then the

dependence of the radius vector ¥ on u cos 6 is given

by an odd and an even function.

1
- web® | b(}-52+u2(b2-1+52i]2

14u2 (b2-1) 1412 (b2=1)

{15)

M
i

G(Ulb,E) €b2 + a(UIble)b

Using the functions @(u,b,s) and G(u,b,s) as the angular
functions for the approximation one must specify the para-
meters b and ¢ and thus one can control the shape of the

angular trial function.

A parameter study revealed that the approximation with
these functions was not satisfactory, because one is

forced to make an exact separate choice of axis b for

each specific slab thickness. It would be much more desi-
rable to cover a wider range of slab thicknesses with one
value for parameter b. Therefore the respective angular
trial functions have been modified by implicitely incor-
porating the slab thickness, to achieve a more "insensitive®

approximation.
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The denominator of vp,b,e} and

k4

a correction factor depending on the diffusion lenght L

g2 yen L (16)

e

k1
H

, . . , 1 s e b
yielding new functions Giu,b,e,f,nE and U{m;bgggggnza

For constructing the trial functions {¢j®,a¢w} which depend
on space and angle the following notation is used. The set
of trial functions {¢1“‘¢N} is denoted as a vector 3.

The diagonal elements of a matrix S5 (N#*N) contain the space-
dependent functions (All other elements are zero.).

This matrix S is multiplied by a vector § representing

the angular functions.

(17)

¥
i
6]

<4

Choosing e.g. N = 4 the matrix 8§ has the following elements:

Siy = 0 for i # &
- X Ya_ _"yX, e asm X1 ya_ -vX
S14 cos ¢ {e & ) S5o sin ¥ T {e e )
(18)
- Xova_ vx = oain X001, oya_ ¥
S33 = cos 7 (e e' ™) S4a sin 7 T {e e ™)



Vektor ; can be written as:
+ - 1 - 1
xT=(c" (u,be,m) U Gu,b,e,tn) G b,e,d,n) U (i by, gn))

with

1
' [1—52+u2(b2—1+52£] 2

u > o
1+u2(b2—1)+u2“(%)2“

+ 1
G (UIblelfln) = 9

O u < 0
) (19)
[ n
2.2 .. 2n,1.2n u>o
+ 1 T+u" (b"=1) +p ()
U (ulbleli‘—rn) = 9
O u < o

- - L
The functions G (u,b,e,%,n) and U (u,b,e,i,n) have the sane

form as G+ and U+ but wanish for u > o.

The parameters y in Eg. '8 and n in Eq. 19 have been set

equal to one. For the base calculations ¢ is equal zero.



4., NUMERICAL RESULTS AND COMPARISON WITH OTHER METHODS

In this section the numerical results for the critical slab
problem with isotropic scattering will be presented. They
have been obtained on the basis of equation (14). These
data are compared with the results of the benchmark pro-
blem (BENCHMARK) /16/ and those obtained by other approxi-
mate methods. Each method is denoted by an abbreviation
given in curved parentheses. The index N will denote the

order of the corresponding method.

The critical values ¢ as a function of the variocus slab-
thicknesses D for the collocation method are given in the
column COLL-1.

For comparison special attention has been given the values
obtained from standard methods such as PN-(PN), DPN—(DPN) /15,
34,38/ and SN_(SN) /38/ approximations. Carlvik /39/ starts
from the integral form of the transport equation expanding the
flux in a series of Legendre polynomials {CARL) , Kiesewetter
/40/ uses a Wiener Hopf-type technique denoting it as the FT-
method (FT). This Fourier transformation technique leads as
Case's (CASE) /41/ and Bowden's method (BOW-) /42/ to a sin-
gular integral equation. The angular flux can also be obtained
by solution of a regular homogeneous Fredholm integral equa-
tion of second kind by applving the finite Laplace transfor-
mation (FLT) to the Boltzmann equation /34/. Good

results can also be obtained from Asaocka's multiple



collision method /43/ using a statistical approach. This
analyvtical method ig denoted as jN—methOd (jN). A varia-
tional point of view (VARI) can be found in reference /33/.
Values from a variational principle are given alsoc in
/34/. An angular synthesis approximation used on thin
critical slabs is reported by Zwibel /44/. R.W. Albrecht
/45/ expands the angular variable in the transport equation
in the orthogonal, complete, binary valued set of Walsh
functions, wal (n,u), called Wy approximation (WN). The
slab problem is alsc attacked by more recent methods such
as invariant imbedding /46-48/, (IMBED), and the finite

element method /49,50/, (E,,). Further comparison may be

N
made with the CN—method (CN) /57/ and the degenerate kernel
technique (DKT) /52/. Finally the results of Mitis (MITIS)
/53/ and the analytical approaches by Kschwendt /54/ and

Certaine /55/ are mentioned. For more details refer to the

authors.

In Table I, II, III and IV a synopsis of the various results
is presented either by giving the critical value ¢ and
computing D or vice versa. Of course for the criticality
problem of a finite slab ¢ is always > 1.0, and for D + =,

c asymptotically approaches 1.0. In Fig. 1 the results of
Tab. I and III, IV are displayed. The value ¢ = 2,00 is
given and the corresponding critical slab thickness is
approximated by different methods. The deviation from the

benchmark value D = 0.62204 can readily be seen.



Comparing the results one recognizes that for the slab

criticality problem the P, approximation gives the

N

strongest deviation from the exact value. The SN—method
appears to be superior. For the PN approximation one can
also see the influence of the emploved boundary condi-
tion and that the Marshak condition is better for small

N. Under this conditions also the improvement of the
results with Yvon's method (DPN) can be seen. Excellent
results can also be obtained with Asaoka's multiple colli-
sion method, with invariant imbedding and finally with the
CN- and degenerate kernel technique. If one analyzes the
values obtained from collocation one can find good agree=
ment with the benchmark values. Additionally to the COLL-1
value a value COLL-2 is given where only circles are used
for the approximation. Of course the result of COLL-2 is

worse, as one expects the angular trial function to be

more pronounced in direction parallel to the slab surface.

Finally the angular neutron distribution y(x,u) is pre-
sented in Figs. 2 - 4, For a gualitative comparison of the
angular fluxes one can use the results given by Mitis /53/,

Kiesewetter /40/, Bowden /42/, Asacka /43/ and Kaper /16/.



16 =

c
D
BENCHMARK COLL-1 DKT Diffusion

6.600527 1.05 1.050003 1.050019 1.052663
4.226619 1.10 1.099999 1.100001 1.108725
2.578759 1.20 1.200027 1.200026 1.228184
1.473207 1.40 1.400058 1.400024 1.488541
1.023926 1.60 1.600071 1.599984 1.770796
0.777563 1.80 1.800104 1.800130 2.071105
0.622042 2.00 2.000346 2.000755 2.387177
Table I: The Critical Multiplication Factor ¢ as a

Function of the Critical Slab Thickness D

(D is the Corresponding Critical Slab Thickness

for the ¢ Values of the Benchmark Problem)




0 BENCHMARK | COLL-1 CARL 5, P n=5 IMBEDy_5 1 pp
2.0000 |1.27710182 |1.277126 |1.22710 |1.2771086 | 1.2771033 1.277
1.0000 | 1.61537852 |1.615391 [1.61538 |1.6152850 | 1.6153800]1.6155(1.6154 | 1.615
0.9000 1.688472 |1.68788 1.6880(1.6879
0.8000 1.776814 {1.77707 1.77721.7771
0.7000 1.885921 |1.88955 1.889711.8895
0. 6000 2.037943 |2.03598 2.0360/2.0360
0.5000 2.235212 [2.23501 |2.2350160 | 2.2350120|2.2344/2.2351
0. 4000 2.521888 |2.52253 2.5202(2.5228
0. 3000 2.978997 |2.97868 2.9716(2.9788
0.2000 3.832976 |3.83031
0.1000 6.103402 |6.11704

Table II: The Critical Multiplication Factor ¢ as a Function of the Critical
Slab Thickness D

= Lt



© BENCHMARK MARKP MARSHAK MARKP3 MARSHAK 7s 77 o1 >3 K K %8 *16
1.01} 16.659027123

1.02) 11.331010912 11.366Q 11.3446] 11.338 11.330 11.330 [11.4524 11.3494 11,3404 11.3388
1.05 6.600527544 [6.976 6.807| 6.63836.6131 | 6.6146] 6.608 6.594 6.600 6.7436 6.6156 §.6064 6.6046
.10 4.226619332 14.617 4.457] 4.27074.2427 | 4.2420| 4.234 4.212 4.226 4.3968 4.239¢6 4.2310 §.2292
1.20 2.578758857 [ 2.970 2.825) 2.63712.6040 | 2.5970| 2.5378 2.554 2.5786 | 2,7792 2.5898 2.5824 2.5804
1.30 1.875451120

1.40 1.473207100 1 1.838 1.716] 1.5546/1.5153 | 1.5002] 1.4854 1.4458 1.4734 | 1,6910 1.4870 1.4766 1.4744
1.60 1.023%25960 [ 1.359 1.254 1.1118/1.0767 | 1.0598] 1.0404 1.0054 1.0238 | 1,239%4 1.0446 1.0276 1.0250
1.80 - 1.086 0.993] 0.8775/0.8364 | 0.8202] 0,7984 0.7696 0.7768 | 0,9848 0.8048 0.7818 0.7786
2.00] 0.622041960 (0,907 0.824] 0.724000.6841 | 0.6696] 0.6468 0.6232 0.6204 | 0.8194 0.6524 0.6274 0.6232

Table III: The Critical Slab Thickness D as a Function of ¢, the Critical Multiplication Factor



¢ OmItera§?SE1.Iterat. VART <, Eg W, W, Wy Wie MITIS FLT N=10 BOW M40

1.01 |16.6590 | 16.6590 16.690 16.65908 |16.65904
1.02 11.3368 | 10.1138 [10.0310 11.2562 f11.3124

1.05 6.6069 6.0410 | 6.4526 | 6.5632 | 6.5912 6.6069 | 6.60058| 6.60054
1.10 | 4.2266 4.2265 | 4.2329 | 4.22483 3.9988 | 4.1528 | 4.2074 | 4.2213 | 4.240 | 4.2328| 4.22668| 4.22662
1.20 | 2.5796 2.5786 | 2.5850 | 2.57821 2.5780 | 2.5534 | 2.5712 | 2.5763 2.5850| 2.57888} 2.57876
1.30 | 1.8776 1.8749 1.87535 1.780 1.87564 | 1.87546
1.40 | 1.4568 1.4723 | 1.4870( 1.47321 1.4920 | 1.4838 | 1.4728 | 1.4730 1.4810 | 1.47344| 1.47322
1.60 | 1.0303 1.0228 | 1.0335|1.02383 1.0770 | 1.0508 | 1.0266 | 1.0244 | 1.022 | 1.0335| 1.02424| 1.02394
1.80 | 0.7963 0.7853 | 0.7885 | 0.77736 0.8404 | 0.8154 | 0.7826 | 0.7784 0.7885| 0.77788| 0.77756
2.00 | 0.7527 0.6397 | 0.6340 | 0.62188 0.7854 | 0.6668 | 0.6294 | 0.6232 | 0.621 | 0.6340| 0.62238| 0.62206

Table 1IV:

The Critical Slab Thickness D as a Function of ¢, the Critical Multiplication Factor

- 61
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