



# K E R N F O R S C H U N G S Z E N T R U M

KARLSRUHE

Juni 1976

KFK 2286

Abteilung Strahlenschutz und Sicherheit Projekt Nukleare Sicherheit

Experimental Determination of the Atmospheric Dispersion Parameters over Rough Terrain Part 2 Evaluation of Measurements

P. Thomas, K. Nester



GESELLSCHAFT FÜR KERNFORSCHUNG M.B.H.

KARLSRUHE

~

# KERNFORSCHUNGSZENTRUM KARLSRUHE

KFK 2286

Abteilung Strahlenschutz und Sicherheit Projekt Nukleare Sicherheit

Experimental Determination of the Atmospheric Dispersion Parameters over Rough Terrain

Part 2

Evaluation of Measurements

P. Thomas K. Nester

Case California -



Gesellschaft für Kernforschung m.b.H., Karlsruhe

|     | <br> |  |
|-----|------|--|
| · . |      |  |
|     |      |  |
|     |      |  |
|     |      |  |
|     |      |  |
|     |      |  |
|     |      |  |
|     |      |  |
|     |      |  |
|     |      |  |
|     |      |  |
|     |      |  |
|     |      |  |
| -   |      |  |
|     |      |  |
|     |      |  |
|     |      |  |
|     |      |  |
|     |      |  |
|     |      |  |
|     |      |  |
|     |      |  |
|     |      |  |
|     |      |  |
|     |      |  |
|     |      |  |
|     |      |  |
|     |      |  |
|     |      |  |

#### Abstract

Experiments are carried out at the Karlsruhe Nuclear Research Center in order to determine the atmospheric diffusion of pollutants. The influence on atmospheric diffusion by topographic conditions specific to the site is to be investigated.

For evaluation of the measurements the diffusion is assumed to be a steady state process. A two dimensional Gaussian distribution is used as the theoretical approximation of the concentrations. The dependence of the dispersion parameters  $\sigma_y$  and  $\sigma_z$  on the distance from the source is described by a power function. The least squares technique is applied to assess the horizontal and vertical dispersion parameters and the normalized diffusion factor with the respective errors.

The parameters determined in this way are compared with those according to Pasquill/Gifford. Relative to these families of curves a shift towards instability can be found. This shift is most pronounced under neutral diffusion conditions and is insignificant in unstable conditions. Moreover, the horizontal dispersion parameters have a flatter slope in a log-log diagram than those according to Pasquill/Gifford.

In Part 1 of this report (KFK 2285) the diffusion experiments are described and the measured data are presented in a detailed manner.

#### Zusammenfassung

Experimentelle Bestimmung der atmosphärischen Ausbreitungsparameter über rauhem Gelände

Teil 2

Auswertung der Meßergebnisse

Am Kernforschungszentrum Karlsruhe werden Experimente durchgeführt, um die Ausbreitung von Schadstoffen in der Atmosphäre zu erforschen. Standortspezifische Einflüsse sollen dabei untersucht werden.

Mittels der Methode der kleinsten Fehlerquadrate werden aus der gemessenen Konzentrationsverteilung die horizontalen und vertikalen Ausbreitungsparameter und der normierte Ausbreitungsfaktor sowie die zugehörigen Fehlerbreiten ermittelt. Für die Konzentration wird eine zweidimensionale Gaußverteilung zugrunde gelegt. Die Ausbreitung wird als stationär angenommen. Ein Potenzansatz beschreibt die Abhängigkeit der Ausbreitungsparameter von der Quelldistanz.

Die ermittelten Parameter werden mit denjenigen nach Pasquill/Gifford verglichen. Dabei ist gegenüber den Kurvenscharen nach Pasquill/Gifford eine Verschiebung nach labil festzustellen. Die Verschiebung ist am stärksten bei neutralen Ausbreitungsbedingungen und nur unbedeutend bei labilen Lagen. Außerdem haben die horizontalen Ausbreitungsparameter in der doppelt logarithmischen Darstellung eine geringere Neigung als diejenigen nach Pasquill/Gifford.

Im ersten Teil dieses Berichtes (KFK 2285) werden die Ausbreitungsexperimente beschrieben und die Meßergebnisse in Form von Tabellen ausführlich dargestellt.

# Table of Contents

| 1.  | Introduction                         | 1 |
|-----|--------------------------------------|---|
| 2.  | Evaluation Technique                 | 1 |
| 2.1 | Theoretical Distribution             | 1 |
| 2.2 | Dispersion Parameters                | 2 |
| 2.3 | Least Squares Method                 | 2 |
| 2.4 | Error Considerations                 | 5 |
| 2.5 | Weighting and Initial Approximations | 5 |
| 2.6 | Transport Direction                  | 6 |
| 2.7 | Absorption                           | 6 |
|     |                                      |   |

| 3.  | Evaluation                                                | 7  |
|-----|-----------------------------------------------------------|----|
| 3.1 | Experiments Suited for Evaluation                         | 7  |
| 3.2 | Wind Velocity and Source Height                           | 8  |
| 3.3 | Combination of Several Sampling Periods and Experiments   | 8  |
| 4.  | Presentation of the Dispersion Parameters Determined      | 8  |
| 5.  | Discussion of Results                                     | 9  |
| 5.1 | The Vertical Dispersion Parameter $\sigma_{\perp}$        | 10 |
| 5.2 | The Horizontal Dispersion Parameter $\sigma_{\sigma_{i}}$ | 13 |
| 5.3 | The Normalized Diffusion Factor Xn                        | 14 |
| 5.4 | Discussion of Absorption Effects                          | 14 |
| 6.  | Final Remarks                                             | 15 |

#### 1. Introduction

For reliable estimates of the environmental pollution caused by airborne pollutants the mechanism of atmospheric diffusion must be known. Topographic conditions specific to a site exert a considerable influence on atmospheric diffusion. For this reason, experimental verification of the relations between meteorological conditions and the parameters determining diffusion is necessary for various sites. A test program has been carried out at the Karlsruhe Nuclear Research Center for many years with the purpose of determining dispersion parameters under different meteorological conditions and demonstrating the influences specific to the site by comparing with the familiar parameter curves according to Pasquill/Gifford /1/, /2/.

The results of measurements compiled in the first part of this paper /3/ are evaluated by the least squares method.

Some results of the experiments performed so far have already been published in /4/, /5/, /6/, /7/, /8/, /9/, /10/. The dispersion parameters shown here are the results achieved so far in an experimental program not yet finished.

If extremely non-steady state conditions prevailed during the experiments, they were not treated by this method. The theoretical model chosen is not suitable to these cases.

#### 2. Evaluation Technique

The concentration distributions at ground level measured in the diffusion experiments were used to determine the dispersion parameters for this purpose. The least squares technique is applied to adapt the theoretical distribution to the concentrations measured.

#### 2.1 Theoretical Distribution

The theoretical expression for the concentration close to the ground level downwind of the source at the field point P(x,y) reads

$$C(x,y) = \frac{\chi_{n}(x,y) \dot{A}_{0}}{u} = \frac{A_{0}}{\pi u \sigma_{y}(x) \sigma_{z}(x)} \exp \left[-\frac{y^{2}}{2 \sigma_{y}^{2}(x)} - \frac{H^{2}}{2 \sigma_{z}^{2}(x)}\right].$$
(1)

This follows from the diffusion equation for steady state conditions, constant emission rate and reflection of the tracer at ground level, where

A<sub>o</sub> emission rate in Ci/s or g/s, u mean wind velocitiy in m/s, x<sub>n</sub>(x,y) normalized diffusion factor in m<sup>-2</sup>, x local coordinate in the transport direction in m, y horizontal local coordinate perpendicular to the transport direction in m,

H emission heightin m,

 $\sigma_y, \sigma_z$  horizontal and vertical dispersion parameters, respectively, in m.

The foot of the source lies in the point of origin of the Cartesian coordinate system.

#### 2.2 Dispersion Parameters

The dispersion parameters  $\sigma_y$  and  $\sigma_z$  describe the horizontal and vertical distributions of the concentration perpendicular to the transport direction, respectively. They are a function of the distance x from the source.

For this dependence on x, the power functions

 $\sigma_{y} = \sigma_{oy} x^{p} y, \quad \sigma_{z} = \sigma_{oz} x^{p} z$  (2)

are chosen.

#### 2.3 Least Squares Method

The measured values  $C_i$  determined at field points with coordinates  $x_i$  and  $y_i$  are available (i = 1, 2 ..., n; n  $\geq$  4). A weight  $g_i$  is assigned to each measured value.

Four parameters  $q_j(\sigma_{oy}, p_y, \sigma_{oz}, p_z)$  must be found to fit the function  $f(x,y,\overline{q})$  to the measured values in such a way that the sum of the square deviations,

$$Q = \sum_{i=1}^{n} g_{i}(f_{i} - C_{i})^{2}$$
(3)

becomes a minimum.

$$f_{i} = f(x_{i}, y_{i}, \overline{q})$$
(4)

The vector  $\overline{q}$  stands for the four parameters  $q_j$ , and  $f(x,y,\overline{q})$  for C(x,y) from equation (1).

In order to minimize the sum Q,

$$\frac{\partial Q}{\partial q_j} = 0$$
 for j = 1,2,3,4 (5)

must hold.

These are four equations determining the four parameters  $q_j$ . Since the function f is not a linear function of the parameters  $q_j$ , an approximation technique with iterative improvement must be applied to solve (5).

For the parameters it is postulated that

$$q_j = q_{oj} + \delta q_j.$$
 (6)

In a first approximation

$$f(x,y,\overline{q}) = f(x,y,\overline{q}_0) + \sum_{j=1}^{4} \frac{\partial f(x,y,\overline{q}_0)}{\partial q_{0j}} \delta q_j.$$
(7)

If (7) is substituted in (3), (5) supplies a system of linear equations:

$$\frac{\partial Q}{\partial \delta q_{m}} = 2 \sum_{i=1}^{n} g_{i} \left[ f_{i}(\overline{q_{0}}) + \sum_{j=1}^{4} \frac{\partial f_{i}(\overline{q_{0}})}{\partial q_{0j}} \delta q_{j} - C_{i} \right] \frac{\partial f_{i}(\overline{q_{0}})}{\partial q_{0m}} = 0$$
(8)

$$\sum_{j=1}^{4} N_{jm} \delta q_{j} = -\sum_{i=1}^{n} g_{i} \left[ f_{i}(\overline{q_{0}}) - C_{i} \right] \frac{\partial f_{i}(\overline{q_{0}})}{\partial q_{om}} , m = 1, 2, 3, 4$$
(9)

for determining  $\delta q_i$ .

For this purpose, the standard matrix

$$N_{jm} = \sum_{i=1}^{n} g_i \frac{\partial f_i(\overline{q_0})}{\partial q_{oj}} \frac{\partial f_i(\overline{q_0})}{\partial q_{om}}$$
(10)

must not be singular.

The improved parameters

$$q_{1j} = q_{0j} + \delta q_j \tag{11}$$

are substituted in the function f. They are improved by further iteration steps. This process is continued until the change  $\Delta Q$  of the sum of the square deviations between two iteration steps is less than an optional value.

For better convergence, a damping factor  $\beta < 1$  is introduced:

 $q_{rj} = q_{(r-1)j} + \beta^{S} \delta q_{rj}, \qquad (12)$ 

where r is the  $r^{th}$ -iteration step. After each iteration step the sum of the square deviations  $Q_r$  is calculated and compared with  $Q_{r-1}$ . For S it holds that

$$S = 0 \quad \text{for} \quad Q_r < Q_{r-1},$$
  

$$S = 1 \quad \text{for} \quad Q_r > Q_{r-1}.$$

Next, another comparison is made. If  $Q_r > Q_{r-1}$  still holds, S will be increased by 1. This is continued, until  $Q_r < Q_{r-1}$  or a given number of damping steps has been achieved.

#### 2.4 Error Considerations

The inverse standard matrix

$$I_{j,m} = (N_{j,m})^{-1}$$

can be used to determine the errors of the parameters  $q_j$  and the errors of any functions of the parameters. The error of the parameter is

(14)

 $\Delta q_{j} = R \sqrt{I_{jj}}$ (13)

The error  $\Delta h$  of any function h ( $\overline{q}$ ) is

$$\Delta h = R \sqrt{\frac{4}{\sum} \frac{4}{\sum} \frac{2h(\overline{q})}{\partial q_j}} I_{jm} \frac{2h(\overline{q})}{\partial q_m} ,$$

where

$$R = \sqrt{\frac{Q}{n-4}} , \qquad (15)$$

which is the square root of the reduced sum of the least squares. In calculating the error, the values  $q_j$  resulting from the fit are used for R and  $I_{jm}$ . The errors in the dispersion parameters  $\sigma_y$  and  $\sigma_z$  are calculated according to (14). They qualify the fit and, hence, the reliability of the calculated dispersion parameters. The errors are caused by the scattering of the measured values around the theoretical curve and are due to changes in wind direction and variations between open spaces, built up and wooded areas within the test field. The error in measurement is hardly significant.

#### 2.5 Weighting and Initial Approximations

First computer runs showed a disadvantage of the evaluation technique. If different first approximations  $q_{oj}$  are used, the same concentration distribution gave rise to different parameters  $q_j$ . But the dispersion parameters showed good agreement at distances of maximum concentrations. The respective sums of least squares differed only slightly in most cases. To avoid this

effect each measured value is weighted in such a way that the contribution to the sum of the square deviations is independent of distance. This weighting prefers low measured values at near and remote distances.

In computer evaluation initially all concentration values of the same zone (cf. /3/) are weighted equally. The weighting factor in a zone is the ratio between the maximum concentration of all sampling locations and the maximum concentration within the respective zone. In a following run each concentration is weighted individually with

$$g_{i} = C_{max}/C(x_{i},0)$$
 (16)

 $C_{max}$  is the maximum value of all values  $C(x_i, 0)$ . In Equation (16) the dispersion parameters  $\sigma_y$ ,  $\sigma_z$ , which have been determined in each previous run, are then taken into account. This iteration process is continued until the change in parameters between two succeeding steps is less than an optional value.

Despite the weighting, different ensembles  $q_{oj}$  are used for each evaluation which are taken from the families of curves according to Pasquill/Gifford /1/, /2/. If different results were still found, that ensemble  $q_j$  is deemed to be representative whose least squares sum Q is the smallest.

# 2.6 Transport Direction

The best fit to the measured concentrations can be reached, if transport directions are chosen which differ slightly from the directions traced by the wind vane. For this reason, several computer runs are always carried out varying the transport direction in steps of  $1^{\circ}$ . Again, that direction is deemed to be representative whose respective least squares sum is the smallest. The difference between the direction of transport obtained from the experiments and measured on the tower in some cases exceeds  $10^{\circ}$ .

#### 2.7 Absorption

The absorption can be taken into account in expression (1) by an emission rate A(x) decreasing with the distance x. Simple terms are found for

no absorption (reflection) at ground level:  $\dot{A}(x) = \dot{A}_0$ , and total absorption at ground level:  $\dot{A}(x) = \dot{A}_0 \text{ erf} \left(\frac{H}{\sqrt{2}\sigma_{\tau}(x)}\right)$ ,

where

$$\operatorname{erf}(w) = \sqrt{\frac{2}{\pi}} \int_{0}^{W} \exp(-v^{2}) dv. \qquad (17)$$

 $A_{o}$  is the true emission rate used already in expression (1) and kept constant throughout the experiment.

As outlined above, the least squares method is used to determine the coefficients  $\sigma_{vo}$ ,  $\sigma_{zo}$ ,  $p_v$ ,  $p_z$  for an assumed total absorption.

#### 3. Evaluation

#### 3.1 Experiments Suited for Evaluation

The concentrations measured in some of the sampling periods do not furnish physically meaningful solutions by the technique described in this paper. This happens if only the background concentration or the wings of the lateral distribution were measured, because of changes in the wind direction. It also applies to periods in which several zones show two peaks of concentration or where there is more than one peak in the direction of transport. During these periods extremely non-steady state conditions prevailed which are not taken into account in the diffusion model employed. For these cases a non-steady state model is being prepared /12/.

In some of the first experiments the number of sampling locations with sufficiently high concentrations was too low to be evaluated by the technique described above.

### 3.2 Wind Velocity and Source Height

In Equation (1) the wind velocity taken into account is measured at 60 m altitude at the tower, averaged over the sampling time. In the experiments the tracer was released from the 100 m high stack of the MZFR or FR2 reactor. The plume rise caused by the exit velocity compensates for the shift in the zero point due to the vegetation and justifies an effective emission height of 100 m.

#### 3.3 Combination of Several Sampling Periods and Experiments

In order to obtain more reliable results, several periods are combined. For this purpose, the results of the evaluation of individual periods are used as a basis.

For the combination each period is weighted in proportion with the reciprocal value of the root R of the reduced least squares sum that resulted from the individual evaluations (cf. Relation 15). This weighting prefers periods whose respective dispersion parameters show small error widths. The optimum transport directions as determined in the individual evaluations are also taken into account. The combination is performed by treating the different periods as one period. The number of concentration values is increased by a factor equal to the number of combined periods. Of course, such combination is possible only for periods of equal diffusion category.

#### 4. Presentation of the Dispersion Parameters Determined

Table 1 shows the coefficients  $\sigma_{0y}$ ,  $\sigma_{0z}$ ,  $p_y$ ,  $p_z$  as determined and the dispersion parameters  $\sigma_y$  and  $\sigma_z$  with the respective error widths at three distances from the source for all sampling periods suited for evaluation. The three distances roughly represent the shortest and the longest distances of the sampling locations from the source and that distance at which the maximum concentration is found. The parameters obtained in a combination of several periods of an experiment (cf. Section 3.3) are also indicated.

In addition Table 1 contains the diffusion category prevailing during the experiment and the difference between the measured and the evaluated transport direction (cf. Section 2.6).

Figs. 1 to 75 show the dispersion parameters  $\sigma_y$ ,  $\sigma_z$  and the normalized diffusion factor  $\chi_n$  as a function of the distance x from the source (cf. Relation 1). All periods suited for evaluation of one experiment are combined. The error widths are plotted, too. For comparison, the corresponding curves according to Pasquill/Gifford are drawn as dashed lines.

Where several experiments could be assigned to the same category, mean dispersior parameters were calculated (cf. Section 3.3) which are summarized in Table 2. The arrangement is similar to that shown in Table 1. The dispersion parameters  $\sigma_y$ ,  $\sigma_z$  and the normalized diffusion factors  $\chi_n$  are also plotted in Figs. 76 to 87.

For Experiment 15 the results obtained for the reflection and total absorption model (cf. Section 2.7) are contrasted in Table 3. The square roots R of the reduced least squares sum are also indicated. In order to facilitate the comparison Figs.88 and 89 show the parameters  $\sigma_y$  and  $\sigma_z$  as a function of the distance x from the source for all periods combined of Experiment 15 with the error widths.

#### 5. Discussion of Results

Local topography plays a major role in assessing the results of diffusion experiments. The site near the source is plane, but a highly structured surface is produced by the buildings and the trees. Evaluations of the wind profile at the meteorological tower of 200 m height supplied a roughness length of 1.10 m / 14/.

The curves of the two dispersion parameters  $\sigma_y$  and  $\sigma_z$  and of the diffusion factor  $\chi_n$  were based upon the families of Pasquill-Gifford curves /1/, /2/, because these curves have so far been used to calculate environmental burdens in nuclear technology /15/. In the experiments constituting the main basis of Pasquill-Gifford's curves the tracer was emitted at low altitude over a plane surface with low roughness length ( $z_0 \approx 0.01$  m). Because of the different topographical conditions no agreement was to be expected between our results and the curves by Pasquill and Gifford. However, on the basis of the found differences the surface effects can be interpreted more easily. For this reason, it was necessary to classify the meteorological conditions prevailing during the experiments in accordance with Pasquill's diffusion categories A - F. In this method of evaluation the roughness of the ground is not taken into account.

# 5.1 The Curves of the Vertical Dispersion Parameter $\sigma_{7-}$

With a few exceptions, the  $\sigma_z$  curves determined in various experiments fit into the family of Pasquill-Gifford curves. Only the extreme rise in Pasquill-Gifford's curves for longer distances in categories A and B does not correspond to our results. The steep rise in the curves by Pasquill and Gifford is probably due to the low source height used in the underlying experiments. If this factor is taken into account, an assignment of our curves to the curves by Pasquill and Gifford can be made in accordance with Table 4.

In making the assignment in Table 4 not only the slope of the calculated curve, but also its error width was taken into account.

It appears from Table 4 that the results of Experiments 1 to 7 do not agree well with those of other experiments. The first experiments 1 - 7 were carried out with a small number of measuring points irregularly distributed and for this reason cannot be evaluated with the same weight as later experiments. They show that at least 25 measuring points are required at a site as heterogeneous as that of the Karlsruhe Nuclear Research Center.

The results of the experiments can be summarized as in Table 5.

The  $\sigma_z$  curve in category E is supported by only one experiment. In category E the assignment for this reason has no sufficiently firm basis. All experiments under D were carried out in the daytime. For this reason, they cannot be representative of the entire category D. In D-conditions at night turbulence intensities are lower, which requires a lower diffusion parameter  $\sigma_z$ . Hence, the category D should be assigned to the Pasquill/Gifford curve for B/C.

In summary it can be said that the experimentally determined  $\sigma_z$  curves for the site of the Karlsruhe Nuclear Research Center are displaced towards the unstable side relative to the corresponding Pasquill/Gifford curves. This shift is most pronounced in category D and is a minimum for categories A and B. This can be explained by an intensified mechanical turbulence due to increased roughness of the terrain. The mechanical turbulence is most pronounced in category D. In categories A and B, however, which are mainly characterized by thermal turbulence, the increase in mechanical turbulence has but a minor effect.

Since several experiments were already available for categories B, C and  $D_T$ , the respective experiments were summarized. The result is shown in Figs. 76 to 79.

On the basis of the assignment of our results to the Pasquill-Gifford curves it was attempted in /16/ to generalize the influence of roughness upon the dispersion parameter  $\sigma_z$  as a function of the diffusion categories by a theoretical and empirical approach. Assignments corresponding to Table 4 are indicated for 3 roughness classes.

5.2 The Curves of the Horizontal Dispersion Parameter over

Local Conditions influence the dispersion very close to the ground and, hence, also the concentration distribution measured at 1 m above ground between buildings, on pathways in the forests and forest clearings. These topographical factors are reflected more clearly in  $\sigma_y$  than in  $\sigma_z$ , for the concentration distribution has a more direct bearing upon the calculation of  $\sigma_y$ . While in the  $\sigma_z$  curves a graduation corresponding to the diffusion categories could be observed, this is not seen in the  $\sigma_y$  curves (see Figs. 26 to 50). In most cases the slopes of the calculated  $\sigma_z$  values, also the  $\sigma_y$  values are higher than the corresponding curves according to Pasquill-Gifford. For the  $\sigma_y$  curves this applies above all in the short distance range. For the rest, the error widths are mostly larger than in the  $\sigma_z$  curves.

For better valuation of the results, the experiments carried out under categories B, C and  $D_T$ , respectively, were summarized and are represented in Figs. 80 to 83. Unlike the results of Pasquill and Gifford, the slopes of the  $\sigma_y$  curves determined from several experiments differ in the unstable and neutral categories.

Compared with the curves according to Pasquill and Gifford the  $\sigma_y$  values are increased not only by the higher mechanical turbulence, but also by the structure of the site. This is true in particular in the short distance area around the source.

# 5.3 The Normalized Diffusion Factor xn-

The diffusion factor  $\chi_n$  gives an overview of the maximum pollutant burden to be expected from short time emissions. Since  $\sigma_z$  has a stronger influence upon the  $\chi_n$  curve than  $\sigma_y$ , the same statements hold true for categories  $D_T$  and C as for  $\sigma_z$ . However, for the unstable categories A and B the increase in  $\sigma_y$ is markedly higher than for  $\sigma_z$  when compared with the curves of Pasquill-Gifford. For this reason, the respective  $\chi_n$  curves in general are below the  $\chi_n$  curves according to Pasquill-Gifford. A summary of the experiments in which categories B, C and  $D_T$  respectively, prevailed indicates this situation (see Figs. 84-87).

# 5.4 Absorption

In the theoretical setup for the evaluation, reflection at ground level was assumed. However, the topography on the site of the Karlsruhe Nuclear Research Center may act as a sink because in the forest the tracer participates in the diffusion with retardation because of the low transport velocity. However, the measurements are not directly influenced by sinks, because the points of measurement are not located in dense forest. In addition, when tritiated water vapor is used as the tracer, absorption by plants may occur /11/. These effects can be considered by absorption on the ground. For Experiment 15 the maximum influence on the dispersion parameters was investigated by assuming total absorption (see Section 2.8). In Fig. 88 the  $\sigma_z$  curves for reflection and total absorption on the ground are contrasted with each other. As was to be expected, the  $\sigma_z$  curve has a flatter slope in the case of absorption than in the case of reflection. However, the shift towards the unstable side relative to the corresponding curves according to Pasquill and Gifford remains. Accordingly, it is not due to absorption effects but, as has been mentioned above, to the differences in roughness.

The power functions (2) and the coupling of the dispersion parameters by relation (1) also influence the curve of  $\sigma_v$  as shown in Fig. 89.

When evaluating Experiment 15, the error widths of  $\sigma_y$  and  $\sigma_z$  in the absorption and the reflection model don't differ significantly. Accordingly, it cannot be decided which of the models is the better one. Therefore, the consideration of absorption effects requires additional studies.

#### 6. Final Remarks

The results of the experiments performed so far are in qualitative agreement with those carried out at St. Louis /17/ and Jülich /18/. They are not yet sufficient to set up a complete family of dispersion parameters for calculating the impact of pollutants over rough terrain. In particular, experiments carried out during categories D, E and F at night are still missing. They will be feasible only with an automated sampling system, which will be available in 1976. Since the influence of roughness is a function of the altitude, also experiments with different source heights (60 m, 160 m, 200 m) are to be carried out.

#### References

- /1/ Pasquill, F.: Atmospheric Diffusion. London 1968
- /2/ Hilsmeier, W.F., Gifford, L.A.: Graphs for Estimating Atmospheric Dispersion. ORO-545 (1962)
- /3/ Thomas, P., Hübschmann, W., König, L.A., Schüttelkopf, H., Vogt, S., Winter, M.:Experimental Determination of the Atmospheric Dispersion Parameters over Rough Terrain. Part 1: Measurements at the Karlsruhe Nuclear Research Center. KFK 2285 (1976)
- /4/ Comper, W., Hübschmann, W., Nester, K. in Jahresbericht 1970 der Abteilung Strahlenschutz und Sicherheit, KFK 1365 (1971), pp. 161
- /5/ Hübschmann, W., König, L.A., Kropp, L., Nester, K., Schüttelkopf, H., Winter, M. in Jahresbericht 1971 der Abteilung Strahlenschutz und Sicherheit, KFK 1565 (1972), pp. 133
- /6/ Hiller, J., König, L.A., Schüttelkopf, H., Winter, M. in Jahresbericht 1972 der Abteilung Strahlenschutz und Sicherheit, KFK 1818 (1973), pp. 141
- /7/ Nester, K., Thomas, P. in Jahresbericht 1973 der Abteilung Strahlenschutz und Sicherheit. KFK 1973 (1974), pp. 134
- /8/ König, L.A., Nester, K., Schüttelkopf, H., Winter, M.: Experiments Conducted at the Karlsruhe Nuclear Research Center to determine Diffusion in the Atmosphere by Means of Various Tracers. Proceedings of the IAEA-Symposium on "Physical Behaviour of Radioactive Contaminants in the Atmosphere". Vienna 1974, pp. 67
- /9/ Nester, K., Thomas, P.: Experimente zur Bestimmung der lokalen atmosphärischen Ausbreitung von Schadstoffen. KFK Nachrichten 6/2 (1974), pp. 28
- /10/ Schüttelkopf, H., Thomas, P. in Jahresbericht 1974 der Abteilung Strahlenschutz und Sicherheit. KFK 2155 (1975), pp. 122

- /11/ Kline, J.R., Stewart, M.L.: Tritium Uptake and Loss in Grass Vegetation which has been Exposed to an Atmospheric Source of Tritiated Water. Health Physics 26 (1974), pp. 567
- /12/ Nester, K. in Jahresbericht 1971 der Abteilung Strahlenschutz und Sicherheit. KFK 1565 (1972), pp. 162
- /13/ Nester, K.: Statistische Auswertungen der Windmessungen im Kernforschungszentrum Karlsruhe aus den Jahren 1968/69. KFK 1606 (1972)
- /14/ Dilger, H., Nester, K., Vogt, S.: Statistische Auswertungen des Wind-, Temperatur- und Feuchteprofils sowie der Strahlung und der Windrichtungsfluktuation am Kernforschungszentrums Karlsruhe. KFK 2266 (1975)
- /15/ Gifford, F.A.: An Outline of Theories of Diffusion in the Lower Layers of the Atmosphere. Meteorology and Atomic Energy, TID - 24190 (1968), pp. 65
- /16/ Nester, K.: Abschätzung des Einflusses der Rauhigkeit auf die Diffusionsparameter für verschiedene Stabilitätszustände der Atmosphäre (accepted by Staub - Reinhaltung der Luft)
- /17/ Vogt, K.J.: Kurzzeit- und Langzeitausbreitungsfaktoren zur Berechnung der Umweltbelastung durch Abluftfahnen. KFA-Jülich, ZST-Bericht Nr. 198, (1974)
- /18/ Mc. Elrog, J.: A Comparative Study of Urban and Rural Dispersion, J.of.Appl.Met. 8/1 (1969), pp. 19

| N          | po          | er   | A                | gory                                                       | У      |      | Z      |      | ×                    | σγ                           | $\frac{\Delta \sigma_y}{\sigma_y}$ | σz                | $\frac{\Delta \sigma_z}{\sigma_z}$ |
|------------|-------------|------|------------------|------------------------------------------------------------|--------|------|--------|------|----------------------|------------------------------|------------------------------------|-------------------|------------------------------------|
| INF.       | Peric       | Trac | Δφ               | Cate                                                       | ďo     | р    | σο     | р    | [m]                  | [m]                          | [%]                                | [m]               | [%]                                |
| <b>,</b> 1 | 1           | НТО  | 2 <sup>0</sup>   | D                                                          | 1,87   | 0,51 | 0,39   | 0,67 | 800<br>2400<br>4900  | 56<br>97<br>140              | 85<br>31<br>37                     | 35<br>73<br>119   | 15<br>24<br>46                     |
| 3          | 2           |      | 2 <sup>0</sup>   | C                                                          | 6,17   | 0,50 | 0,0017 | 1,54 | 1000<br>2000<br>3000 | 194<br>275.<br>337           | 139<br>33<br>56                    | 72<br>208<br>389  | 225<br>76<br>40                    |
|            | 3           | НТО  | 13 <sup>0</sup>  |                                                            | 0,55   | 0,92 | 0,011  | 1,25 | 1000<br>2000<br>3000 | 314<br>592<br>859            | 28<br>15<br>42                     | 62<br>146<br>242  | 14<br>19<br>37                     |
|            | -<br>-<br>- |      |                  |                                                            | 5,61   | 0,56 | 0,0018 | 1,51 | 1000<br>2000<br>3000 | 261<br>384<br>481            | 21<br>17<br>29                     | 62<br>176<br>325  | 11<br>19<br>27                     |
| 6          | 1           |      | 11 <sup>0</sup>  |                                                            | 0,0013 | 1,49 | 0,0015 | 1,49 | 1400                 | 64                           | 30                                 | 77                | 86                                 |
|            |             |      |                  | 1. 1. 1. 1. 1.<br>1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 |        |      |        |      | 2000<br>4400         | 108<br>349                   | 57<br>153                          | 131<br>424        | 40<br>157                          |
|            | 2           |      | 16 <sup>0</sup>  |                                                            | 0,12   | 0,89 | 0,62   | 0,60 | 1400<br>2000<br>4400 | 73<br>100<br>202             | 195<br>112<br>81                   | 48<br>59<br>95    | 62<br>23<br>95                     |
|            | 3           |      | 1 <sup>0</sup>   |                                                            | 0,25   | 0,79 | 0,45   | 0,65 | 1400<br>2000<br>4400 | 77<br>102<br>190             | 71<br>46<br>29                     | 50<br>63<br>105   | 33<br>30<br>156                    |
|            | 4           | НТО  | 4 <sup>0</sup>   |                                                            | 0,084  | 0,89 | 1,14   | 0,54 | 1400<br>2000<br>4400 | 53<br>73<br>146              | 124<br>81<br>32                    | 57<br>69<br>106   | 84<br>122<br>550                   |
|            | 5           |      | 6 <sup>0</sup> . |                                                            | 0,013  | 1,40 | 5,43   | 0,50 | 1400<br>2000<br>4400 | 33 <sup>°</sup><br>54<br>164 | 48<br>22<br>48                     | 204<br>244<br>362 | 29<br>15<br>29                     |
|            | 6           |      | 13 <sup>0</sup>  |                                                            | 1,15   | 0,65 | 1,23   | 0,56 | 1400<br>2000<br>4400 | 123<br>155<br>258            | 77<br>38<br>69                     | 71<br>87<br>135   | 85<br>37<br>144                    |
|            |             |      |                  |                                                            | 0,027  | 1,08 | 7,05   | 0,46 | 1400<br>2000<br>4400 | 67<br>98<br>229              | 35<br>21<br>31                     | 191<br>225<br>322 | 38<br>23<br>27                     |
| 7          | 2           |      | 14 <sup>0</sup>  | D                                                          | 0,15   | 0,90 | 0,043  | 1,00 | 900<br>1500<br>2900  | 69<br>110<br>199             | 44<br>17<br>26                     | 53<br>90<br>179   | 42<br>21<br>31                     |
|            | 3           | HTO  | 14 <sup>0</sup>  |                                                            | 0,013  | 1,25 | 0,0017 | 1,51 | 900<br>1500<br>2900  | 65<br>123<br>281             | 37<br>14<br>24                     | 49<br>106<br>287  | 34<br>15<br>22                     |
|            | 4           |      | 14 <sup>0</sup>  |                                                            | 0,068  | 1,01 | 2,40   | 0,44 | 900<br>1500<br>2900  | 65<br>108<br>210             | 27<br>14<br>18                     | 47<br>58<br>77    | 19<br>8<br>18                      |

Table 1 Continued

| N I II | pc    | er   |                 | gory | у              |      | z              |      | ×                   | ٥y                | Δσy<br>σy      | ٥z                   | $\frac{\Delta \sigma_z}{\sigma_z}$ |
|--------|-------|------|-----------------|------|----------------|------|----------------|------|---------------------|-------------------|----------------|----------------------|------------------------------------|
| Nr.    | Perio | Trac | Δφ              | Cate | σ <sub>o</sub> | р    | σ <sub>o</sub> | p    | [m]                 | [m]               | [%]            | [m]                  | [%]                                |
| 7      | 5     | 170  | 11 <sup>0</sup> | D    | 0,40           | 0,82 | 0,0011         | 1,52 | 900<br>1500<br>2900 | 105<br>160<br>274 | 64<br>25<br>42 | 34<br>74<br>200      | 10<br>22<br>49                     |
|        |       | -    |                 |      | 3,06           | 0,53 | 0,0015         | 1,50 | 900<br>1500<br>2900 | 112<br>147<br>208 | 20<br>8<br>14  | 40<br>86<br>231      | 5<br>6<br>15                       |
| 8      | 3     |      | 90              | C    | 3,98           | 0,48 | 5,79           | 0,85 | 700<br>1000<br>2000 | 94<br>112<br>156  | 19<br>17<br>36 | 1533<br>2077<br>3749 | 16<br>15<br>31                     |
|        | 4     |      | 90              |      | 4,10           | 0,59 | 2,01           | 0,47 | 700<br>1000<br>2000 | 200<br>248<br>374 | 41<br>28<br>31 | 44<br>52<br>72       | 8<br>9<br>19                       |
|        | 5     | НТО  | 24 <sup>0</sup> | -    | 6,53           | 0,53 | 0,50           | 1,02 | 700<br>1000<br>2000 | 210<br>253<br>365 | 27<br>24<br>49 | 391<br>562<br>1138   | 22<br>20<br>40                     |
|        | 6     |      | 3 <sup>0</sup>  |      | 9,63           | 0,49 | 0,49           | 0,96 | 700<br>1000<br>2000 | 240<br>286<br>402 | 16<br>22<br>50 | 269<br>379<br>738    | 17<br>20<br>42                     |
|        |       |      |                 |      | 8,15           | 0,49 | 6,67           | 0,68 | 700<br>1000<br>2000 | 196<br>233<br>326 | 16<br>14<br>28 | 573<br>730<br>1168   | 14<br>12<br>24                     |
| 9      | 1     |      | 13 <sup>0</sup> | A    | 0,82           | 0,77 | 0,0034         | 1,67 | 300<br>500<br>1000  | 66<br>98<br>166   | 31<br>16<br>32 | 46<br>107<br>341     | 8<br>18<br>37                      |
|        | 2     | 0    | 54 <sup>0</sup> |      | 0,0025         | 1,79 | 0,78           | 0,79 | 300<br>500<br>1000  | 70<br>176<br>610  | 17<br>16<br>39 | 72<br>108<br>188     | 16<br>28<br>55                     |
|        | 3     | Ξ.   | 19 <sup>0</sup> |      | 5,39           | 0,59 | 0,038          | 1,38 | 300<br>500<br>1000  | 158<br>213<br>321 | 25<br>34<br>75 | 99<br>200<br>520     | 48<br>39<br>69                     |
|        |       |      |                 |      | 2,32           | 0,65 | 0,0043         | 1,68 | 300<br>500<br>1000  | 96<br>134<br>211  | 18<br>14<br>32 | 63<br>148<br>476     | 8<br>15<br>30                      |
| 10     | 3     |      | 4 <sup>0</sup>  | В    | 0,0038         | 1,62 | 0,00051        | 1,90 | 500<br>1000<br>2000 | 90<br>276<br>850  | 7<br>8<br>19   | 69<br>259<br>969     | 23<br>9<br>18                      |
|        | 4     | НТО  | 3 <sup>0</sup>  | -    | 0,35           | 0,91 | 0,0027         | 1,64 | 500<br>1000<br>2000 | 99<br>186<br>348  | 14<br>12<br>28 | 69<br>216<br>617     | 42<br>19<br>28                     |
|        | -     |      |                 |      | 0,048          | 1,21 | 0,0011         | 1,79 | 500<br>1000<br>2000 | 91<br>212<br>490  | 10<br>9<br>20  | 53<br>276<br>946     | 36<br>13<br>20                     |

- 17 -

Table 1 Continued

Nr.

2<sup>0</sup>

HT0

3,90

3,89

0,46

0,48

0,041

0,0045

1,18

1,48

#### - 18 -

Δσ<sub>z</sub> σz

[%]

|   | þ     | ٩٢                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | gory | у              |      | z        |      | x      | σy     | $\frac{\Delta \sigma_y}{\sigma_y}$ | ٥z    |
|---|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------|----------------|------|----------|------|--------|--------|------------------------------------|-------|
|   | Perio | Trac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | φΔ             | Cate | σ <sub>o</sub> | р    | ٥        | р    | [m]    | [m]    | 。<br>[%]                           | [m]   |
|   | 1     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 <sup>0</sup> | c    | 4.30           | 0.43 | 0,0058   | 1.53 | 300    | 51     | 40                                 | 36    |
|   | •.    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ů              | Ŭ    | 1,000          | 0,10 |          | -,   | 700    | 73     | 14                                 | 130   |
|   |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |      |                |      |          |      | 2000   | 116    | 37                                 | 648   |
|   |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |      |                |      |          |      |        |        |                                    |       |
|   | 2     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 <sup>0</sup> |      | 7,97           | 0,47 | 0,21     | 0,88 | 300    | 113    | 63                                 | 33    |
|   |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |      |                |      |          |      | 700    | 168    | 24                                 | 70    |
|   |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |      |                |      |          |      | 2000   | 274    | 44                                 | 177   |
|   |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |      |                |      |          |      |        |        |                                    |       |
|   | 3     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8 <sup>0</sup> |      | 9,92           | 0,40 | 0,13     | 1,00 | 300    | 98     | 90                                 | 38    |
|   |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |      |                |      |          |      | 700    | 137    | 24                                 | 90    |
|   |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |      |                |      |          |      | 2000   | 209    | 96                                 | 257   |
|   |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |      |                |      |          |      |        |        |                                    |       |
|   | 4     | HT(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10             |      | 5,94           | 0,42 | 0,028    | 1,24 | 300    | 64     | 59                                 | 32    |
|   |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |      |                |      |          |      | 700    | 79     | 31                                 | 92    |
|   |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |      |                |      |          |      | 2000   | 140    | 57                                 | 336   |
|   |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 0            |      |                |      |          |      |        |        |                                    |       |
|   | - 5   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2              |      | 9,75           | 0,40 | 0,33     | 0,83 | 300    | 97     | 56                                 | 37    |
|   |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |      |                |      |          |      | /00    | 136    | 23                                 | 5/    |
|   |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |      |                |      | <i>.</i> |      | 2000   | 208    | 39                                 | 1/9   |
|   |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |      | 0.75           | 0.40 | 0.042    | 1 10 | 200    | 07     | 20                                 | 26    |
|   |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |      | 9,75           | 0,40 | 0,043    | 1,10 | 700    | 136    | 10                                 | 07    |
|   |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |      |                |      |          |      | 2000   | 209    | 28                                 | 333   |
|   |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |      |                |      |          |      | 2000   | 205    |                                    |       |
|   | 1     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 80             | D    | 3,48           | 0.47 | 1,30     | 0,81 | 700    | 88     | 9                                  | 268   |
|   |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |      | -              |      |          |      | 1500   | 107    | 11                                 | 499   |
|   |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |      |                |      |          |      | 3000   | 147    | 20                                 | 877   |
|   |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |      |                |      |          |      |        |        |                                    |       |
|   | 2     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 <sup>0</sup> |      | 4,63           | 0,48 | 2,75     | 0,68 | 700    | 107    | 13                                 | 239   |
|   |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |      |                | -    |          |      | 1500   | 155    | 10                                 | 401   |
|   |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |      |                |      |          |      | 3000   | 215    | 21                                 | 644   |
|   |       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |      |                |      |          |      |        |        |                                    |       |
|   | 3     | 보                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9 <sup>0</sup> |      | 7,13           | 0,45 | 4,86     | 0,58 | 700    | 135    | 15                                 | 223   |
|   |       | 1994 - S. 1997 - |                |      |                |      |          |      | 1500   | 191    | 13                                 | 349   |
|   |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |      |                |      |          |      | 3000   | 260    | 25                                 | 522   |
|   |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |      |                |      |          |      |        |        |                                    |       |
|   |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |      | 4,04           | 0,51 | 4,30     | 0,62 | 700    | 111    | 9                                  | 255   |
|   |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |      |                |      |          |      | 1500   | 163    | 7                                  | 410   |
|   |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |      |                |      |          |      | 3000   | 232    | 13                                 | 631   |
| - |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10             |      | 2.00           | 0.51 | 0.0001   | 1 50 | 500    | 01     | 10                                 | 40    |
|   | 1     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | C    | 3,93           | 0,51 | 0,0031   | 1,53 | 500    | 91     | 10                                 | 42    |
|   |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1              | 1    | 1 · ·          | 1    |          |      | 1 1000 | 1 17.2 | jö                                 | 1 120 |

ż

Table 1 Continued

#### - 19 -

|     | p     | er               |                | gory | У     |      | z      |      | X                   | σy                | $\frac{\Delta \sigma_y}{\sigma_y}$ | <sup>d</sup> z   | $\frac{\Delta \sigma_z}{\sigma_z}$ |
|-----|-------|------------------|----------------|------|-------|------|--------|------|---------------------|-------------------|------------------------------------|------------------|------------------------------------|
| Nr. | Peric | Trac             | Δφ             | Cate | ďo    | р    | ٥      | р    | [m]                 | [m]               | [%]                                | [m]              | [%]                                |
| 14  | 1     |                  | 00             | С    | 0,15  | 1,00 | 1,45   | 0,56 | 500<br>1000<br>2000 | 73<br>145<br>290  | 27<br>15<br>24                     | 48<br>70<br>104  | 9<br>16<br>33                      |
|     | 2     | cc1 <sub>4</sub> | 10             |      | 0,49  | 0,82 | 0,22   | 0,91 | 500<br>1000<br>2000 | 81<br>143<br>253  | 20<br>11<br>28                     | 60<br>113<br>213 | 14<br>21<br>43                     |
|     |       |                  |                |      | 0,035 | 1,22 | 1,24   | 0,61 | 500<br>1000<br>2000 | 70<br>163<br>280  | 19<br>10<br>19                     | 53<br>81<br>123  | 8<br>17<br>35                      |
| 15  | 1     |                  | 4 <sup>0</sup> | D    | 5,73  | 0,45 | 0,10   | 1,01 | 500<br>1000<br>2000 | 92<br>125<br>170  | 12<br>6<br>14                      | 52<br>105<br>212 | 4<br>10<br>19                      |
|     | 2     |                  | 10             |      | 4,27  | 0,49 | 0,011  | 1,35 | 500<br>1000<br>2000 | 90<br>127<br>178  | 11<br>6<br>13                      | 48<br>122<br>311 | 3<br>7<br>13                       |
|     | 3     | НТО              | 6 <sup>0</sup> |      | 7,36  | 0,43 | ·Ó,062 | 1,09 | 500<br>1000<br>2000 | 109<br>148<br>199 | 16<br>8<br>17                      | 53<br>112<br>238 | 5<br>11<br>19                      |
|     |       |                  |                |      | 7,00  | 0,43 | 0,036  | 1,17 | 500<br>1000<br>2000 | 98<br>132<br>177  | 8<br>4<br>9                        | 51<br>115<br>258 | 2<br>5<br>10                       |
| 15  | 1     |                  | 3 <sup>0</sup> | D    | 2,70  | 0,57 | 0,0070 | 1,44 | 500<br>1000<br>2000 | 93<br>138<br>205  | 16<br>11<br>23                     | 54<br>145<br>394 | 6<br>13<br>24                      |
|     | 2     |                  | 1 <sup>0</sup> |      | 0,76  | 0,76 | 0,0012 | 1,71 | 500<br>1000<br>2000 | 85<br>143<br>242  | 18<br>12<br>28                     | 50<br>163<br>531 | 6<br>14<br>25                      |
|     | 3     | CC1              | 7 <sup>0</sup> |      | 9,01  | 0,42 | 0,67   | 0,72 | 500<br>1000<br>2000 | 125<br>168<br>226 | 41<br>19<br>40                     | 58<br>95<br>157  | 17<br>35<br>62                     |
|     |       |                  |                |      | 1,67  | 0,66 | 0,028  | 1,22 | 500<br>1000<br>2000 | 103<br>163<br>258 | 14<br>8<br>19                      | 53<br>124<br>287 | 5<br>11<br>20                      |
| 17  | 1     |                  | 00             | D    | 4,68  | 0,47 | 0,076  | 1,09 | 200<br>500<br>1000  | 57<br>88<br>122   | 42<br>14<br>20                     | 24<br>66<br>141  | 9<br>10<br>21                      |
|     | 2     | НТО              | 3 <sup>0</sup> |      | 4,16  | 0,53 | 0,15   | 0,99 | 200<br>500<br>1000  | 67<br>108<br>156  | 42<br>13<br>25                     | 28<br>70<br>138  | 8<br>12<br>23                      |
|     |       |                  |                |      |       |      |        |      |                     |                   |                                    |                  |                                    |

- 20 -

#### Table 1 Continued

| NI-  | pc    | er                | A               | gory | у              | -    | z      | :    | ×                   | σy                 | Δσy<br>σy       | σ <sub>z</sub>     | $\frac{\Delta \sigma_z}{\sigma_z}$ |
|------|-------|-------------------|-----------------|------|----------------|------|--------|------|---------------------|--------------------|-----------------|--------------------|------------------------------------|
| INT. | Perio | Trac              | Δφ              | Cate | σ <sub>0</sub> | Р    | øo     | р    | [m]                 | [m]                | [%]             | [m]                | [%]                                |
| 17   | 3     | HT0               | 10              | D    | 2,95           | 0,56 | 0,22   | 0,90 | 200<br>500<br>1000  | 56<br>94<br>138    | 32<br>12<br>17  | 26<br>59<br>110    | 6<br>6<br>13                       |
|      |       |                   |                 |      | 7,20           | 0,41 | 0,113  | 1,02 | 200<br>500<br>900   | 63<br>92<br>118    | 20<br>7<br>9    | 25<br>63<br>115    | 4<br>4<br>8                        |
| 18   | 2     |                   | 43 <sup>0</sup> | В    | 0,0038         | 1,80 | 1,78   | 0,55 | 200<br>500<br>1000  | 54<br>284<br>993   | 58<br>30<br>23  | 33<br>54<br>79     | 21<br>11<br>28                     |
|      | 3     | НТО               | 53 <sup>0</sup> |      | 0,0009         | 1,97 | 0,059  | 1,11 | 200<br>500<br>1000  | 32<br>193<br>759   | 88<br>32<br>28  | 21<br>57<br>123    | 28<br>16<br>42                     |
|      |       |                   |                 |      | 0,0018         | 1,92 | 0,016  | 1,34 | 200<br>500<br>1000  | 33<br>202<br>797   | 54<br>25<br>15  | 25<br>52<br>91     | 16<br>8<br>21                      |
| 18   | 2     | -                 | 49 <sup>0</sup> | В    | 0,44           | 1,05 | 1,41   | 0,59 | 200<br>500<br>1000  | 114<br>298<br>617  | 45<br>22<br>14  | 32<br>55<br>83     | 14<br>9<br>20                      |
|      | 3     | cc1 <sub>4</sub>  | 49 <sup>0</sup> |      | 2,37           | 0,81 | 6,89   | 0,47 | 200<br>500<br>1000  | 173<br>364<br>638  | 47<br>24<br>42  | 81<br>124<br>172   | 114<br>62<br>53                    |
|      |       |                   |                 |      | 0,26           | 1,13 | 1,28   | 0,63 | 200<br>500<br>1000  | 106<br>300<br>657  | 40<br>18<br>14  | 35<br>62<br>96     | 16<br>11<br>26                     |
| 19   | 2     | НТО               | 50 <sup>0</sup> | А    | 0,36           | 1,09 | 0,88   | 1,04 | 100<br>500<br>1500  | 55<br>317<br>1049  | 34<br>55<br>104 | 104<br>555<br>1735 | 45<br>49<br>96                     |
| 19   | 2     | cc1 <sub>4</sub>  | 43 <sup>0</sup> | А    | 0,31           | 0,99 | 0,36   | 1,15 | 100<br>500<br>1500  | 30<br>147<br>438   | 35<br>42<br>83  | 70<br>445<br>1568  | 67<br>37<br>86                     |
| 20   | 1     | cc1 <sub>4</sub>  | 2 <sup>0</sup>  | В    | 2,49           | 0,73 | 0,0039 | 1,64 | 300<br>600<br>1600  | 160<br>265<br>543  | 27<br>14<br>46  | 44<br>138<br>688   | 6<br>19<br>40                      |
| 23   | 3     | НТО               | 4 <sup>0</sup>  | E    | 0,78           | 0,91 | 0,67   | 0,59 | 500<br>1400<br>3900 | 223<br>568<br>1441 | 154<br>78<br>40 | 26<br>47<br>85     | 16<br>19<br>34                     |
| 23   | 3     | CFC1 <sub>3</sub> | 6 <sup>0</sup>  | E    | 6,88           | 0,56 | 0,78   | 0,63 | 500<br>1400<br>3900 | 222<br>394<br>699  | 94<br>33<br>48  | 39<br>75<br>143    | 16<br>35<br>64                     |

| - 21 | - |
|------|---|
|------|---|

| Table | 1 | Conti | nued |
|-------|---|-------|------|
|       | _ |       |      |

|     | p     | L<br>L                          |                | gory | у              |      | Z              |      | X                                     | σy               | Δσγ                                   | <sup>ơ</sup> z  | $\frac{\Delta \sigma_z}{\sigma_z}$ |
|-----|-------|---------------------------------|----------------|------|----------------|------|----------------|------|---------------------------------------|------------------|---------------------------------------|-----------------|------------------------------------|
| Nr. | Perio | Traci                           | Δφ             | Cate | σ <sub>o</sub> | р    | σ <sub>o</sub> | р    | [m]                                   | [m]              | 》<br>[%]                              | [m]             | [%]                                |
| 24  | 1     |                                 | 3 <sup>0</sup> | D    | 0,33           | 0,82 | 0,11           | 0,98 | 400<br>700<br>1500                    | 44<br>69<br>128  | 91<br>48<br>43                        | 38<br>66<br>139 | 15<br>24<br>52                     |
|     | 2     | НТО                             | 2 <sup>0</sup> |      | 0,82           | 0,77 | 0,11           | 0,99 | 400<br>700<br>1500                    | 81<br>124<br>222 | 35<br>17<br>21                        | 42<br>73<br>154 | 7<br>12<br>21                      |
|     |       |                                 |                |      | 3,66           | 0,51 | 0,082          | 1,05 | 400<br>700<br>1500                    | 75<br>100<br>147 | 38<br>19<br>29                        | 43<br>76<br>168 | 7<br>13<br>23                      |
| 24  | 1     | · · ·                           | 50             | D    | 2,61           | 0,52 | 0,056          | 1,11 | 400<br>700<br>1500                    | 57<br>77<br>114  | 37<br>18<br>28                        | 44<br>83<br>193 | 9<br>16<br>30                      |
|     | 2     | CBr <sub>2</sub> F <sub>2</sub> | 6 <sup>0</sup> |      | 0,042          | 1,16 | 0,036          | 1,18 | 400<br>700<br>1500                    | 44<br>95<br>206  | 19<br>10<br>14                        | 42<br>80<br>197 | 5<br>7<br>13                       |
|     |       |                                 |                |      | 0,277          | 0,86 | 0,023          | 1,26 | 400<br>700<br>1500                    | 48<br>78<br>157  | 20<br>10<br>15                        | 42<br>85<br>220 | 5<br>8<br>14                       |
| 25  | 1     | HT0                             | 2 <sup>0</sup> | D    | 0,0605         | 1,11 | 0,19           | 0,88 | 400<br>800<br>2000                    | 47<br>102<br>281 | 34<br>15<br>24                        | 37<br>68<br>152 | 6<br>11<br>30                      |
| 25  | 1     | <sup>CBr</sup> 2 <sup>F</sup> 2 | 4 <sup>0</sup> | D    | 0,11           | 1,09 | 0,15           | 0,89 | 400<br>800<br>2000                    | 74<br>158<br>427 | 37<br>18<br>20                        | 31<br>57<br>129 | 7<br>9<br>24                       |
|     |       | J                               |                |      |                |      |                |      | · · · · · · · · · · · · · · · · · · · |                  | • • • • • • • • • • • • • • • • • • • |                 | <u> </u>                           |

Table 2 Mean Dispersion Parameters

- 22 -

|     |                       | Tracer                          | Jory  | у    |      | z      |      | ×                          | σy                      | Δσγ                 | σ <sub>z</sub>         | $\frac{\Delta \sigma_z}{\sigma}$ |
|-----|-----------------------|---------------------------------|-------|------|------|--------|------|----------------------------|-------------------------|---------------------|------------------------|----------------------------------|
| Nr. | Perio                 |                                 | Categ | đo   | Р    | σο     | Р    | [m]                        | [m]                     | [%]                 | [m]                    | [°/₀]                            |
| 10  | 3<br>4                | нто                             | В     | 0,16 | 1,08 | 0,0005 | 1,91 | 200<br>600                 | 50<br>164               | 32<br>9             | 14<br>108              | 12<br>8                          |
| 18  | 2<br>3                |                                 |       |      | -    |        |      | 1200<br>2000               | 348<br>605              | 19<br>32            | 418<br>1112            | 17<br>24                         |
| 11  | 1<br>2<br>3<br>4<br>5 | нто                             | С     | 9,03 | 0,42 | 0,044  | 1,17 | 200<br>600<br>1200<br>2000 | 83<br>132<br>176<br>218 | 31<br>9<br>11<br>21 | 22<br>78<br>177<br>320 | 7<br>8<br>13<br>18               |
| 14  | 1<br>2                |                                 |       |      |      |        |      |                            |                         |                     |                        |                                  |
| 15  | 1<br>2<br>3           | НТО                             | D     | 2,97 | 0,56 | 0,19   | 0,92 | 200<br>600<br>1200<br>2000 | 56<br>103<br>152<br>201 | 18<br>7<br>6<br>10  | 24<br>65<br>122<br>194 | 5<br>4<br>7<br>11                |
| 17  | 1<br>2<br>3           |                                 |       |      |      |        |      |                            | -                       |                     |                        |                                  |
| 24  | 1 2                   |                                 |       |      |      |        |      |                            | -                       |                     |                        |                                  |
| 25  |                       |                                 |       |      |      |        | 1    |                            |                         |                     |                        |                                  |
| 15  | 1<br>2<br>3           | CC14                            | ט     | 0,69 | 0,78 | 0,024  | 1,23 | 200<br>600<br>1200<br>2000 | 43<br>100<br>172<br>256 | 28<br>10<br>8<br>15 | 16<br>62<br>145<br>270 | 10<br>4<br>9<br>15               |
| 24  | 1<br>2                | CBr <sub>2</sub> F <sub>2</sub> |       |      |      |        |      |                            |                         |                     |                        |                                  |
| 25  | 1                     | CBr <sub>2</sub> F <sub>2</sub> |       |      |      |        |      |                            |                         |                     |                        |                                  |

Table 3 Results of Experiment 15 for the Reflection and Total Absorption Model

| Period   | Reflection Total Absorption          |                 |                |                 |                |                                      |      |                |                 |                |
|----------|--------------------------------------|-----------------|----------------|-----------------|----------------|--------------------------------------|------|----------------|-----------------|----------------|
|          | R•10 <sup>8</sup> (m <sup>−2</sup> ) | <sup>σ</sup> oy | р <sub>у</sub> | <sup>σ</sup> oz | ₽ <sub>z</sub> | R·10 <sup>8</sup> (m <sup>-2</sup> ) | σoy  | р <sub>у</sub> | <sup>σ</sup> oz | ₽ <sub>z</sub> |
| 1        | 182                                  | 5,73            | 0,45           | 0,10            | 1,01           | 166                                  | 5,81 | 0,42           | 1,47            | 0,57           |
| 2        | 150                                  | 4,27            | 0,49           | 0,011           | 1,35           | 161                                  | 1,54 | 0,61           | 0,24            | 0,84           |
| <b>3</b> | 204                                  | 7,36            | 0,43           | 0,062           | 1,09           | 230                                  | 5,46 | 0,45           | 0,84            | 0,66           |
| combined | 211                                  | 7,00            | 0,43           | 0,036           | 1,17           | 210                                  | 6,54 | 0,41           | 0,58            | 0,71           |

- 23 -

| Meteorologically<br>defined category<br>according to Pasquill | Sequential number<br>of experiment    | Assigned σ <sub>z</sub> curve according<br>to Pasquill/Gifford |  |  |  |
|---------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------|--|--|--|
| A                                                             | 9 (HTO)                               | A                                                              |  |  |  |
| A                                                             | 19 (HTO)                              | > A                                                            |  |  |  |
| A                                                             | $19 (CC1_4)$                          | > A                                                            |  |  |  |
| В                                                             | 10 (HTO)                              | A/B                                                            |  |  |  |
| B                                                             | 18 (HTO)                              | В                                                              |  |  |  |
| В                                                             | 18 (CC1 <sub>4</sub> )                | <sup>B</sup> f                                                 |  |  |  |
| В                                                             | 20 (CC1 <sub>4</sub> )                | A/B                                                            |  |  |  |
| C C                                                           | 3 (HTO)                               | C <sub>s</sub>                                                 |  |  |  |
| C                                                             | 6 (HTO)                               | C                                                              |  |  |  |
| C                                                             | 11 (HTO)                              | В                                                              |  |  |  |
| C                                                             | 14 (HTO)                              | • <b>B</b>                                                     |  |  |  |
| C                                                             | 14 (CC1 <sub>4</sub> )                | B/C <sub>f</sub>                                               |  |  |  |
| D                                                             | 1 (HTO)                               | ⊂ D                                                            |  |  |  |
| D                                                             | 7 (HTO)                               | C <sub>s</sub>                                                 |  |  |  |
| D                                                             | 13 (HTO)                              | A/B <sub>f</sub>                                               |  |  |  |
| D                                                             | 15 (HTO)                              | В                                                              |  |  |  |
| D                                                             | 15 (CCl <sub>4</sub> )                | В                                                              |  |  |  |
| D                                                             | 17 (HTO)                              | A/B                                                            |  |  |  |
| D                                                             | 24 (HTO)                              | В                                                              |  |  |  |
| D                                                             | 24 ( $CBr_2F_2$ )                     | B                                                              |  |  |  |
| D                                                             | 25 (HTO)                              | B/C <sub>f</sub>                                               |  |  |  |
| D                                                             | 25 (CBr <sub>2</sub> F <sub>2</sub> ) | С                                                              |  |  |  |
| E                                                             | 23 (HTO)                              | C/D                                                            |  |  |  |
| E                                                             | 23 (CFC1 <sub>3</sub> )               | C/D                                                            |  |  |  |

<u>Table 4</u> Assignment of our  $\sigma_z$  curves to those by Pasquill and Gifford

The abbreviations have the following meanings explained by the examples below:

A/B: between categories A and B

C<sub>s</sub>: curve has a steeper slope than the Pasquill/Gifford curve of category C

C: curve has a flatter slope than the Pasquill/Gifford curve of catef gory C  $\begin{array}{c} \underline{\text{Table 5}} \\ \text{to the } \sigma_{z} \\ \text{curves according to Pasquill/Gifford} \end{array} \end{array} \\ \end{array} \\$ 

| Meteorologically defined<br>category according to Pasquill | Corresponding $\sigma_z$ curve from the family of $\sigma_z$ curves according to Pasquill/Gifford |
|------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| A                                                          | >A                                                                                                |
| В                                                          | A/B                                                                                               |
| С                                                          | В                                                                                                 |
| D <sub>T</sub> (D during the daytime)                      | В                                                                                                 |
| E                                                          | C/D                                                                                               |
|                                                            |                                                                                                   |



Fig. 1 : Vertical Dispersion Parameter of Experiment 1 (HTO), Period 1 (--- Pasquill-Gifford)



Fig. 2 : Vertical Dispersion Parameter of Experiment 3 (HTO), Periods 2, 3 (--- Pasquill-Gifford)



Fig. 3: Vertical Dispersion Parameter of Experiment 6 (HTO), Periods 1, 2, 3, 4, 5, 6 (--- Pasquill-Gifford)

(III-GITTOrd)



Fig. 4 : Vertical Dispersion Parameter of Experiment 7 (HTO), Periods 2, 3, 4, 5 (--- Pasquill-Gifford)





X



Vertical Dispersion Parameter of Experiment 9 (HTO), Fig. 6: Periods 1, 2, 3 (--- Pasquill-Gifford)



Fig. 7 : Vertical Dispersion Parameter of Experiment 10 (HTO), Periods 3, 4 (--- Pasquill-Gifford)



Fig. 8 : Vertical Dispersion Parameter of Experiment 11 (HTO), Periods 1, 2, 3, 4, 5 (--- Pasquill-Gifford)



Fig. 9 : Vertical Dispersion Parameter of Experiment 13 (HTO), Periods 1, 2, 3 (--- Pasquill-Gifford)

-Gifford)



Vertical Dispersion Parameter of Experiment 14 (HTO), Fig. 10: Periods 1, 2 (--- Pasquill-Gifford)



Fig. 11: Vertical Dispersion Parameter of Experiment 14 (CCl<sub>4</sub>), Periods 1, 2 (--- Pasquill-Gifford)







Fig. 13: Vertical Dispersion Parameter of Experiment 15 (CCl<sub>4</sub>), Periods 1, 2, 3 (--- Pasquill-Gifford)

i sj



Fig. 14: Vertical Dispersion Parameter of Experiment 17 (HTO), Periods 1, 2, 3 (--- Pasquill-Gifford)



Fig. 15: Vertical Dispersion Parameter of Experiment 18 (HTO), Periods 2, 3 (--- Pasquill-Gifford)



Fig. 16: Vertical Dispersion Parameter of Experiment 18 (CCl<sub>4</sub>), Periods 2, 3 (--- Pasquill-Gifford)

-

![](_page_49_Figure_0.jpeg)

Fig. 17: Vertical Dispersion Parameter of Experiment 19 (HTO), Period 2 (--- Pasquill-Gifford)

![](_page_50_Figure_0.jpeg)

Fig. 18: Vertical Dispersion Parameter of Experiment 19 (CCl<sub>4</sub>), Period · 2 (--- Pasquill-Gifford)

![](_page_51_Figure_0.jpeg)

Fig. 19: Vertical Dispersion Parameter of Experiment 20 (CCl<sub>4</sub>), Period 1 (--- Pasquill-Gifford)

![](_page_52_Figure_0.jpeg)

Fig. 20: Vertical Dispersion Parameter of Experiment 23 (HTO), Period 3 (--- Pasquill-Gifford)

![](_page_53_Figure_0.jpeg)

![](_page_53_Figure_1.jpeg)

![](_page_54_Figure_0.jpeg)

![](_page_54_Figure_1.jpeg)

![](_page_55_Figure_0.jpeg)

Fig. 23: Vertical Dispersion Parameter of Experiment 24 (CBr<sub>2</sub>F<sub>2</sub>), Periods 1, 2 (--- Pasquill-Gifford)

![](_page_56_Figure_0.jpeg)

Fig. 24: Vertical Dispersion Parameter of Experiment 25 (HTO), Period 1 (--- Pasquill-Gifford)

rameter of Exper