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The Asymptotic Behaviour of a Critical Point Reactor

in the Absence of a Controller

Abstract

A method is presented to calculate the first and second

moments of neutron and precursor populations for a critical

reactor system described by point kinetic equations and

possessing inherent reactivity fluctuations. The equations

have been linearised on the assumption that the system has

a large average neutron population and that the amplitude

of reactivity fluctuations is sufficiently small. The

reactivity noise is assumed to be band limited white with

a corner frequency higher than all the time constants of

the system. Explicit expressions for the exact time develop­

ment of the moments have been obtained for the case of a

reactor without reactivity feedback and with one group of

delayed neutrons. It is found that the expected values of

the neutron and delayed neutron precursor numbers tend

asymptotically to stationary values, whereas the mean square

deviations increase linearly with time at an extremely low

rate.



Das asymptotische Verhalten eines kritischen, ungeregelten

Punktreaktors

Zusammenfassung

Für ein kritisches Reaktorsystem mit inhärenten Reaktivitäts­

schwankungen wird, im Rahmen des Punktreaktormodells, eine

Methode zur Berechnung der 1. und 2. Momente der Neutronen­

und Vorläuferanzahlen entwickelt. Unter der Annahme, daß die

mittlere Neutronenanzahl im System hoch und die Amplitude der

Reaktivitätsschwankungen hinreichend klein sind, werden die

Systemgleichungen linearisiert. Als Reaktivitätsschwankung

wird bandbegrenztes weißes Rauschen angesetzt, mit einer

Grenzfrequenz oberhalb aller Zeitkonstanten des Systems. Für

den Fall eines ungeregelten Reaktors mit einer Gruppe ver­

zögerter Neutronen lassen sich geschlossene Ausdrücke für

die Zeitabhängigkeit der Momente angeben. Es zeigt sich,

daß die Erwartungswerte für die Neutronen- und Vorläufer­

anzahlen asymptotisch stationäre Werte anstreben, während

die mittleren quadratischen Abweichungen extrem langsam,

linear mit der Zeit ansteigen.
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Due to the s tic nature of neutron chain processes, the

neutrons present in a reactor fluctuates. The main

objective of reactor noise theory is to definitely predict

the of a reactor during normal operation and

to the thresholds for the correlation functions

other quantities of relevant stochastic signals monitored in the

system surveillance purposes. The reactor noise has

been formulated from various approaches in the last few years.

Borgwaldt and Stegemann /1/ developed a common basic formula for

the description of the neutronic noise analysis experiments in

zero nuclear reactors using a very rigorous approach. The

theory was extended to study the neutron noise in a reactor with

an external control loop by Borgwaldt /2/. Langevin technique

has been i various authors to formulate the space and

time dependence of the reactor noise /3-9/. The reviews of

Sei itz and Stegemann /10/ and Uhrig /11/ indicate that the

theory zero noise is fully understood but for some

mathematical details which remain to be solved. On the contrary,

the theory of noise phenomena in power reactors is still in its

infancy. In a reactor, inherent fluctuations in reactivi are

present, mainly by fluctuations the coolant and fuel

temperatures the temperature coefficient of reactivity.

The fluctuations arise mainly due to the S~v~..a~

nature phenomena such as heat trans etc.

Power reactor noise is investigated intensively at several places.

The is work, particularly from the point of view of

theory, cou be in the review articles by Saito /12/

in the of Will /13/.

Zum Druck einqereicht am 29.10.1976
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2. Theory

2.' The Reactor ion

The reactor k

can be written in 1

a critical reactor system

matrix equation form

dX(t) = AX(t) + R(
dt (1)

where

{

N(
X(t) -+

C(
(2a)

and

A =

-6/1 ,A
1

,A 2 ,·o<,A
6

6,/l,-A, ,0, Jd,A 6

62/ 1 ,0, 2,H.,A 6

ß6/1 , 0 , 0; • '. , A6

(2b)

-+
, N and C are the neutron and delayed

respective1y, Ai the delayed neutron
thgroup and Bi is the i group fraction

fiss • Here, the system matrix does

terms.

source term. If the reactivity

to be equivalent to an externa1

In equations (2a)

neutron precursor

decay constant of

of de1ayed neutrons

not include reactivity

R (t) in Eq. ( , )

f1uctuations ök(t) are assumed

noise source, we

(ök(t)/1

R (t) =: (3)

.'
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Eq. (1) is a stochastic equation describing the process X(t)

in response to the 1nnut process R(t). We postulate the

following about the random input process R(t):

a) The process R(t) is stationary and Gaussian with zero mean.

b) It has an exponential correlation function i.e.

where w is the corner frequency.
c

In v1ew of the assumptions (a) and (b), 6k(t) has. the follow1ng

properties

<6k(t» = 0 ( 4a)

(4b)

where <p2> denotes the mean square amplitude of the reactivity

fluctuations.

2.2 Solution of the Equation and Expressions for Moments

The solution of Eq. (1) can be written in the following form

t
X(t) = G(t,o)X(o) + f G(t,t')R(t')dt '

o
(5)

where

x (0) = [ ~(o)]C(o)
=
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and G is the Green's function matrix i.e. a solution of the

kinetic equation

dG AG t ~ 0 (6 )
dt =

with the initial condition

[1

~]G(o,o) = (7)
0

The i,j component of the Green's function matrix represents the

expebted number of particles of kind i (neutrons or precursors)

at time t > o,starting with an initial situation of exactly one

particle of kind j at time t = o.

From Eq. (6)

G(t,o) At= e t ~ 0 (8)

Hence Eq. (5) is written as

t
X(t) = eAt X(O) + f eA(t-t') R(t')dt'

o

Taking the ensemble average and using Eq. (4a) we get

(9)

<X(t» = eAt X(o) (10)

The correlation matrix is obtained by taking the vector product

X(t) at two different times t 1 and t 2 and averaging. Thus from

Eq. ( 5) we have

<X(t 1) X' (t 2 »

=<[eAt,x (0)
t A(t -tl) J

+ f 1e 1 R(t')dt'
o •

[
A't t2 A' (t -tl 'l>

X' (o)e 2 + f
o

R' (t')e 2 dt' 'J ( 11 )
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where I on matrices and vectors denotes their transnose. On

multiplication four terms are obtained, but due to the property

(4a) the cross terms have zero contributions. Hence, we obtain

At A'
= e 'X(o)X' (o)e

t t A(t -tl) AI (t -t")
+f 'dt ' I 2dt"e ' <R(t')R' (tll»e 2 ('2)

o 0

The reduced (or centred) covariance matrix is given by

At, A't2= <X(t1 )X' (t2» - e X(o)X' (o)e

t t A(t -t') A' (t -t' I )
f 'dt'f 2dt " e ' <R(t')R(t"»e 2
o 0

( , 3 )

In order to make our treatment more transparent we assume at this

point that the reactivity noise is band limited white noise with

corner frequency Wc » B/l.ln this case the correlation function

given by (4b) could be assumed to be of the following form when

substituted inside the integrand

=
2 < 2>

w
c

( 14 )

From Eqs. (3) and (4b) it is clear that

where

:::: ( , 5)

Rmn
== 2~

w
c

N 2
o

7
m=n=l (16)

= o otherwise
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Substitution of Eqs. (15) and (16) in Eq. (13) gives

2 N 2 t t A (t -t') AI (t -t I I )
Pred{t 1 ,t2 ) =2<~c> ~2 ~ 1dt'~ 2dt " e 1 M6(tl-t")e 2 .

( 17 )

where

M = ( 18)

For this centred correlation matrix we have to distinguish two

cases

For this case we have

t A (t -t I) AI (t -t I)
f 1e 1 M e 2 dt I

o
(19 )

Using the semigroup property of the Greenls function matrix
At

e the above equation can be written as

2<p2> No
2

t A (t - t ' ) A I (t - t I ) A I (t - t )
= f 1e 1 M e 1 dt I e 2 1

Wc ~ 0 (20)

In this case

t A (t -t I ) AI (t -t I )
f 2 e 1 M e 2 dt '
o

(21 )

(22)

A{t
1
-t

2
) t 2 A(t -tl) AI (t -t )

e f e 2 Me 2 dt '
o

Again from the semigroup property we have

2<p2> No
2

Wc 1:2
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2.3 One Group of Delayed Neutrons: the exact expressions for

the expected value of neutron and delayed neutron

precursor nopulations and the centred moments.

In order to evaluate the exact expressions for <N(t)·> and <C(t»

we must evaluate the matrix e At . For a single group of delayed

neutrons A takes the simple form of a two by two matrix. In this

case, the characteristic equation of the matrix A is given by 1141

w2 + (A+ß/1)w = 0 (23)

6
where ß = I B. is the total fraction of delayed neutrons and A

i=1 1
is the mean delayed neutron decay constan~defined by

B
X = f

i=1

The roots of Eq. (23),i.e. the eigenvalues of A,are

We denote (A+B/1) by a. It is easily seen that

a % 8/1 (24)

This is obvious from the

where

B = 6.4 x 10-3

1 = 10- 5 sec

A 0.075 -1
= sec

~g,~~•• say for a light water reactor,
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Hence ~ = 640 sec- 1 and A in comparison 1s very small. From

Eq. (24) a is recognised as the prompt neutron decay constant

or Rossi alpha for a delayed critical system.

Us1ng Sylvester's theorem /14/ one can wr1te the Green's

function matrix as

At
e = (25)

where

=

=

=

=

1
[A + ~e-aj (26)

a

1
[ A - A e-a~ ( 27)-a

1 [~ - ~ e-a~ ( 28)
a 1

1 [~ + Ae-at] ( 29)-a

Hence from Eq. (10) we have

[

<N{t»] =

<C(t»

( 30)

Subst1tut1ng for G
11

, G12 , G21 and G22 we obta1n the follow1ng

expressions for the expected values of the neutron dens1ty and

the delayed neutron precursor densities

< N{tl>
{No+CO)A

+
No (ß /1) -A Co -at= e

Cl Cl

<C {t l> =
(ß /1) (No+Co )

+
ACo- (ß/l) No -ate

Cl Cl

( 31 )
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To eva1uate the centred corre1ation matrix we introduce the

matrix

t A(t-t ' ) AI (t-t l )
B(t) = I e M e dt '

o

Substituting for the Greenls function from Eq. (25) the

above matrix can be easily evaluated. We obtain

(33 )

b 11 (t) b 12 (t)

B(t) = (34 )

b 21 (t) b 22 (t)

where

b 11 (t) = :2 [A 2t + 2X6 (1_e-a.t) I 6
2

(1-e-2dt) ] (35)la. 212a.

b 12 (t) = b 21 (t) (B/l) [At A (1-e-a.t)= - -
a. 2 a.

+ _6_ (1 + -2a.t) - ~ e -a.t ] (36 )21a. e 1a.

b 22 (t)
(ß/l)2

[ t - 2~ (1-je-at) 1
e-

2at1 (37 )
= -2a.

a. 2

It shou1d be mentioned here that the above expressions (35) to

(37) are reduced to still simpler form if we substitute a. = ß/l.

We obtain

~~lA2t +
6 ß ~tJb 11 (t) :::: 2>" (1-e lt) + (1-e21 1 ) (38)

b 12 (t) b 21 (t) ~ [At -
Al (1-e - fit + l ~t - fit ]:::: ::::

ß 1 ) (1 +e lre 1
2

(39)

36 4 ß 1 - 3.1itb 22 (t) - It):::: t - TI (1--e
26 (1-e 1 ) ( 40)3
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From Eqs. (20) and (22) the following expressions for the

reduced correlation matrix are then obtained

2<p2>
N 2 Gll(t1 ) b 12 (t1J A' (t -t )

Pred(t1 ,t2 ) = 0 b 21 (t1 ) b 21 (t1 ) 2 1
w "7 e ( 41 )

c

for 0 < t 1 ~ t 2

2<p2>
N 2

e A(t1-t2 ) [b11 (t2) b 12 (t2JPred(t1,t2) = 0 (42)
Wc 7 b

21
(t 2 ) b 22 (t2 )

for o < t 2 ~ t 1

The components of the correlation matrix can be easily evaluated

from the above expressions,but the results obtained are lengthy.

For clear presentation we consider two cases:

case a) t = t = t1 2

For this case, the following express ions for the mean square

deviations are obtained from Eq. (40) or Eq. (41):

2 N 2
= 2<p > 0

<~(t,t»NN W
c

7
~tl

1 )J (43 )

(44 )

- ~t
(1-e 1)

N 2
o-2 b 12 (t)
1

N 2 [--2-.l1 At
Wc 1

_2ß
t

_
(1 +e l)_e

2
= 2<p >

Wc

= 2<p2>

ß2

+ .1.
2

<~ (t, t)} Ne
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2<p2>
N 2

<ll(t,t» = 0 b
22

(t)ce w 7c

2< p2>
N 2

ß2 [t ß
3ß 4 - -t

0 1 )= - 21 (1-- e
ß2 w 1 2 3c

2ß
1 (1-e -lt>] ( 45)
2ß

case b) » 1
a

In this case the elements of the reduced correlation matrix

reduce to the fo11owing form

2<p2>
N 2

0 A(At,+1)
ß2 Wc

2<p2>
N 2

ß0

ß2 W
I(At1+1)

c

2<p2>
N 2

~(t !)0

ß2 W 1 1 ßc

(47)

(48 )
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2.4 Asymptotic Values of the Moments

The asymptotic values of the moments are obtained by

taking the limit of the corresponding expressions for

infinite time

Por t -+ 00 we get

'\,
A(No+Co ) '\,

Al(N +C )
<N(t» o 0 (SO)

Cl ß

<C(t»
'\, (ß11) (No+C 0 ) '\,

(N +C ) (S1>-
Cl o 0

'\, 2<p2>
N 2

A2t<lJ(t,t»NN
0 (S2 )

2
--

ß wo

'\, 2<p2> N 2 Aß
<lJ(t,t»NC

0 (S3 )
ß2 1 t

Wo

2<p2> N 2 2
<lJ(t,t»

'\, 0 ( ß) t (S4 )--
CC ß2 Wc

I

2.S Special case of an Initial Equilibrium between Neutron

and Precursor Populations

One of the most important cases in reactor systems is that

which corresponds to aninitialequilibrium between precursors

and neutrons i.e. we initially have

AC = ß N
010

(SS )

This situation is also characteristic for most practical cases,

which are near equilibrium. At the start of normal reactor

operation this situation might not be strictly true but it is

reached very soon beeause the prompt neutron decay constant Cl

is of the order of 10-3 sees. Also it is true, in all reactors,

that the precursor population is very high compared to the

neutron population, i.e. No+Co~Co' Hence from Eqs. (SO) and

(51) the asymptotic values of the expected neutron and precursor
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numbers are for t ~ 00

(55 )

(56)

The normalized asymptotic values for the variances are then

given by

<~(t,t)~N
'" 2<p2> ).2

N 2 6
2 -t

Wc
0

<~(t,t)NC

'" 2<p2> A2

N C
8

2 -t
o 0

Wc

(57 )

(58 )

<~ (t, t) >ce

c 2
o

3. Discussion

(59 )

From Eqs. (50) and (51) it is seen that the asymptotic values

for the expected population of neutrons and delayed neutron

precursors are constant values. It is obvious from Eqs. (31)

and (32) that the asymptotic constant values are reached very

soon because the second term decays with a very short relaxation
1 1 -3

time i (for a light water reactor i ~ 10 sec). From Eqs. (52)

to (54) one observes that the values of all the second order

moments increase linearly with time. This result is expected

because the system equation (1) is equivalent to the stochastic

equation for the Brownian motion of a free particle /15/.
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It is weIl known that the mean square displacement of a

Brownian particle goes on increasing linearly with time,

because there is no restoring force which prevents it from

drifting. Hence it is also expected that the reactor system

without a controller, as described by Eq. (1), will develop

mean square deviations which increase linearly with time.

One will have to apply some control to keep the reactor

stationary.

From Eqs. (41) and (42) one can see that if measurements are

performed at two times t 1 and t 2 , the initial correlation

amplitude depends linearly upon t 1 (if t 2 > t 1 ) and in the time

interval (~1,t2) the correlation function relaxes according to

the term e A (t 2-t1 ). The decay of the correlation function in

the interval (t 1 ,t2 ) obeys the dynamics of the reactor system

mathematically described by the system's Green function e A ' (t 2-t,).

For the special case of an initial equilibrium between the

neutron and precursor populations we see that the averaged

asymptotic values of these number quantities remain equal to

their initial values, at time t = 0, and the initial correlation

amplitudes build up exactly with the same speed (Eqs. 57 to 59).

This suggests that our system consisting of neutrons and precursors

may be imagined as a composite Brownian particle which has a

diffusion coe icient equal to

D =
<p2> A2

w
c

-1 -1 ß 3 -1
For a light water reactor A ~ 10 sec and I ~ 10 sec

Hence, for the corner frequency of the reactivity noise one
4 -1 ß

could take a value of the order of 10 sec (wc » T)' If the

reactivi fluctuations are assumed to have a mean square

magnitude <p2> ~ 10-6 ß2, the value of D comes out to be of the
-12 -1order of 10 sec. Hence the mean square deviations will

-12
develop, approximately, at the rate of 10 per second. With

this rate the systemls root mean square drift would be less than

10- 3 in a day. This relative drift is much smaller than expected.
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It should be noted s will be true for any reactor

system, because even reasonab lower values of the corner

frequency wand a noise amplitude the driftc
may differ at the most one or two magnitude. This

low drift of the tem by (a) the high value

for the corner noise, (b) the

assumption that tem state is weIl defined,

(c) neglecting other be included

for a more realistic eva is lower values

of the corner frequency for the reactivity noise (w «ß/l),c
which would be a as all fast reactor

systems, could be more conveniently developed in the prompt

jump approximation. s , which necessitates some

reformulation, is now development and will be published

in a subsequent

4. Conclusions

We have developed a me for cal the moments of

state variables a reactor tem excited by stochastic

reactivity fluctuat • For a ition explicit

expressions for the t moments of the neutron

and precursor one group

of delayed neutrons assumption the

corner frequency i5 large compared

to all time constants . It

be emphasized that s, e.q.,

external feedback s could be included

into the system matrix sions addit moments

pe obtained. This extension.of our work is 01 for the

near future.
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