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The Asymptotic Behaviour of a Critical Point Reactor

in the Absence of a Controller

Abstract

A method is presented to calculate the first and second
moments of neutron and precursor populations for a critical
reactor system described by point kinetic equations and
possessing inherent reactivity fluctuations. The equations
have been linearised on the assumption that the system has

a large average neutron population and that the amplitude

of reactivity fluctuations is sufficiently small. The
reactivity noise is assumed to be band limited white with

a corner frequency higher than all the time constants of

the system. Explicit expressions for the exact time develop-
ment of the moments have been obtained for the case of a
reactor without reactivity feedback and with one group of
delayed neutrons. It is found that the expected values of
the neutron and delayed neutron precursor numbers tend
asymptotically to stationary values, whereas the mean square
deviations increase linearly with time at an extremely low

rate.



Das asymptotische Verhalten eines kritischen, ungeregelten

Punktreaktors

Zusammenfassung

Flir ein kritisches Reaktorsystem mit inhdrenten Reaktivitdts-
schwankungen wird, im Rahmen des Punktreaktormodells, eine
Methode zur Berechnung der 1. und 2. Momente der Neutronen-
und Vorlduferanzahlen entwickelt. Unter der Annahme, dag die
mittlere Neutronenanzahl im System hoch und die Amplitude der
Reaktivitdtsschwankungen hinreichend klein sind, werden die
Systemgleichungen linearisiert. Als Reaktivit&tsschwankung
wird bandbegrenztes weiBes Rauschen angesetzt, mit einer
Grenzfrequenz oberhalb aller Zeitkonstanten des Systems. Flr
den Fall eines ungeregelten Reaktors mit einer Gruppe ver-
z8gerter Neutronen lassen sich geschlossene Ausdricke fir

die Zeitabhdngigkeit der Momente angeben. Es zeigt sich,

daB die Erwartungswerte fir die Neutronen- und Vorliufer-
anzahlen asymptotisch stationdre Werte anstreben, wdhrend

die mittleren quadratischen Abweichungen extrem langsam,

linear mit der Zeit ansteigen.
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1. Introduction

Due to the stochastic nature of neutron chain processes, the
number of neutrons present in a reactor fluctuates. The main
objective of the reactor noise theory is to definitely predict
the dynamic behaviour of a reactor during normal operation and

to predetermine the thresholds for the correlation functions and
other gquantities of relevant stochastic signals monitored in the
system for surveillance purposes. The reactor noise theory has
been formulated from various approaches in the last few years.
Borgwaldt and Stegemann /1/ developed a common basic formula for
the description of the neutronic noise analysis experiments in
zero power nuclear reactors using a very rigorous approach. The
theory was extended to study the neutron noise in a reactor with
an external control loop by Borgwaldt /2/. Langevin technigue

has been applied by various authors to formulate the space and
time dependence of the reactor noise /3-9/. The reviews of
Seifritz and Stegemann /10/ and Uhrig /11/ indicate that the
theory of zero power noise is fully understood but for some
mathematical details which remain to be solved. On the contrary,
the theory of noise phenomena in power reactors is still in its
infancy. In a power reactor, inherent fluctuations in reactivity are
present, induced mainly by fluctuations of the coolant and fuel
temperatures through the temperature coefficient of reactivity.
The temperature fluctuations arise mainly due to the stochastic
nature of the transport phenomena such as heat transfer etc.
Power reactor noise is investigated intensively at several places.
The summary of this work, particularly from the point of view of
theory, could be found in the review articles by Saito /12/ and
in the book of Williams /13/.
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The aim of the present paper is to show, explicitly, that a
reactor system operating at high power level at criticality
will develop mean square deviations increasing linearly with
time if it is uncontrolled,i.e. without a restoring force.
Reactivity fluctuations present in such a system may be of
either sign,but the amplitude of the induced neutron density
fluctuations 1is very small as compared to the mean neutron
density. In such a case the reactivity fluctuations &8k(t) may
be assumed equivalent to an external fluctuating neutron source,

the time average of which vanishes over a macroscopic interval.

The spatial effects inside the reactor could also cause changes

in reactivity and power but the one point black box type treat-
ment has the advantage of simplicity and in most cases yields
kinetic answers that are correct within experimental accuracy.

For simplicity we, therefore, take this approach and represent

the system by point model kinetic equations. The system can then
be assumed to be perturbed by a noise source NO(Gk(t)/l}where Sk (t)
represents reactivity fluctuations, 1 the average neutron life

time and NO is the average neutron density.

The phenomenon observed in - the above system is then very similar
to the Brownian motion of a free particle. Hence looking at the
expression for the mean square displacement of the Brownian
particle one could predict a linear increase of mean square
deviations with time also in the present case. But the value of
the scaling factor can not be guessed. As far as we know, the
explicit expressions for the moments have not been obtained in
the literature on reactor noise for the case considered here. As
an illustration of the method described in this paper we obtain
the exact expressions for the first and second moments of the
neutron and precursor populations for the case of one group of
delayed neutrons only. The reactivity noise is assumed to be
band limited white with a corner frequency higher than all

the time constants of the system. However, with some more effort

the moments for all the six groups could be obtained.



2. Theory

2.1 The Reactor Kinetic Egquation

The reactor kinetic equations for a critical reactor system
can be written in the following matrix equation form

dxX (t)

3T = AX(t) + R(t) (1)
where
N(t)
X(t) > (2a)
c(t)
and _B/ll)\1l)\zﬁ'°‘lk6
B /l,")\ ’O,Jcl,)\
A = 1 1 6 (2b)

Bz/lror")\zr‘°‘7)\6

86/1IOIO:"-' :)\6

.
In equations (2a) and (2b), N and C are the neutron and delaved
neutron precursor densities respectively, li the delayed neutron

h group fraction

decay constant of the ith group and Bi is the it
of delaved neutrons from fission. Here, the system matrix does
not include reactivity feedback terms.

R(t) in Eg. (1) contains the source term. If the reactivity
fluctuations 6k(t) are assumed to be equivalent to an external
noise source, we have

sz —"

N, (8k(t) /1)

R(t) = (3)




Egq. (1) is a stochastic equation describing the process X(t)
in response to the input process R(t). We postulate the

following about the random input process R(t):
a) The process R(t) is stationary and Gaussian with zero mean.
b) It has an exponential correlation function i.e.

<R(t,) R(t,)> ~ e weltytyl

where W, is the corner frequency.

In view of the assumptions (a) and (b)), dk(t) has the following

properties

<8k(t)> =0 (4a)

-0 |t -t |
<6k (t,)8k(t,)> = <p?> e ¢ 271 (4b)

where <p2> denotes the mean square amplitude of the reactivity

fluctuations.

2.2 Solution of the Equation and Expressions for Moments

The solution of Eq. (1) can be written in the following form

t
G(t,0)X(0) + [ G(t,t")R(t')dt"’ (5)
O

X(t)

where

X (o)

N (o) Ny
¢ (o) EO



and G 1s the Green's function matrix i.e. a solution of the

kinetic equation

%%=AG ‘ t >o0 (6)
with the initial condition
1 0

G(o,0) = (7)
0 1

The iy, j component of the Green's function matrix represents the
expeEted number of particles of kind i (neutrons or precursors)
at time t > o,starting with an initial situation of exactly one
particle of kind j at time t = o.

From Eq. (6)

G(t,0) = et t o (8)
Hence Eg. (5) is written as
At t A(t-t"')
X(t) = e~ X(o) + [ e R(t')dt’ (9)
o
Taking the ensemble average and using Eg. (4a) we get
x(t)> = eF x(o) (10)

The correlation matrix is obtained by taking the vector product
X(t) at two different times t1 and t2 and averaging. Thus from
Eg. (5) we have

<X(t1) X'(t2)>

< At, ty Alt,-t') ]
= e X(0) + [ e R(t')dat!

L o

[ A't t At (t,-t'")
X' (o)e 24 [ “R'(t")e 2dt']> (11)

L o




where ' on matrices and vectors denotes their transnose. On

multiplication four terms are obtained, but due to the property
(4a) the cross terms have zero contributions. Hence, we obtain

<X(t1)X'(t2)>

At1 A't

= e X(o)X' (o)e 2

t, A(t,-t') Al (t,-t'")
| “at''e <R(t')R'(t'"')>e (12)

t
+f ‘at?
o (o]

The reduced (or centred) covariance matrix is given by

At1 A't

K(E)X'(£,)> = e 'X(0)X'(o)e 2

Preg(tq,ty)
t1 t2 A(t,-t") A'(tz"t")

=  'at'f “dt''e <R(t')R(t'')>e
o] G

(13)

In order to make our treatment more transparent we assume at this
point that the reactivity noise is band limited white noise with
corner frequency w, >> B/1.In this case the correlation function
given by (4b) could be assumed to be of the following form when

substituted inside the integrand

<6k (ty) 8k (t,)> = -Z—i%—i § (t,=t,) (14)

From Egs. (3) and (4b) it is clear that

<Rm(t1)Rn(t2)> = Rmn 6(t2-t1) (15)
where
2
2 N
R = 2%p7> o m=n=1 (16)
mn wc l2

= o otherwise




Substitution of Egs. (15) and (16) in Eg. (13) gives

: 2 N t t At.~-t") A'(t-t'")

_2<p™> "o 1 2 2

ty) == —5 [ 'dt'[ “at'’e ME(t'-t'")e -
c 1© o o

red(t
(17)

1 0
M = o o] (18)

For this centred correlation matrix we have to distinguish two

where

cases

a) o< t

2_ N t1 A(t -t') A'(tz-t')
o §
red(t t2) = m — Me dt (19)

8]

A

©

A\

o]
QO

Using the semigroup property of the Green's function matrix

eAt the above equation can be written as
262> No~ £ Alegmth) - A'(etY) A (t,-ty)
red(t tz) = 2 f M e dat' e
Yo o (20)
b) o < t2 < t1
In this case
2
2_ N t, A(t.-t") A'(t,-t")
2<p~> "o 2 1 2 .
c 1 o

Again from the semigroup property we have
2 t ¢
2_ N A(t,-t.) 2 A(t,-t') A'(t,~t )
(bt = 282 .9 o VT2 Te T e %2 aee
red 2 w 2
c (22)

1 o



2.3 One Group of Delayed Neutrons: the exact expressions for

the expected value of neutron and delayed neutron

precursor nopulations and the centred moments.

In order to evaluate the exact expressions for <N(t}> and <C(t)>
we must evaluate the matrix eAt' For a single group of delayed
neutrons A takes the simple form of a two by two matrix. In this
case, the characteristic equation of the matrix A is given by /14/

2

w” + (A+8/)w = o (23)
6
where B = ) Bi is the total fraction of delayed neutrons and A
i=1
is the mean delayed neutron decay constant’defined by
LR Bt
A . A

The roots of Eq. (23),i.e. the eigenvalues of A, are

U).] = 0 7 mz = "()&‘!“B/l)

We denote (A+B/1l) by a. It is easily seen that
a % B/1 (24)

This is obvious from the data,say for a light water reactor,

where

- 6.4 x 10°°

1Of5 sec

A = 0.075 sec

- ™
i

1




Hence % = 640 sec"1 and A in comparison is very small. From
Egq. (24) o is recognised as the prompt neutron decay constant

or Rossi alpha for a delayed critical system.

Using Sylvester's theorem /14/ one can write the Green's

function matrix as

At G, (t) G;,(t)
e = " 12 (25)
G,q (8) Gy, (B)
where
.1 B ot
G11(t) = 3 [_A + 1€ ‘] (26)
- 1 _ -ot
= 1 |8 _B gt
G21(t) = 3 [1 T © ] (28)
_ 1 B -at
G22(t) = 5 [l + Ae :' (29)
Hence from Eg. (10) we have
<N(t)> Gqyq (8D Gy, (t) No
= (30)
<C(t)> Gyp(t) Gy, (t) Co
Substituting for G11, G12, G and G we obtain the following

21 22
expressions for the expected values of the neutron density and

the delayed neutron precursor densities

(N_+C_)A N _(B/1l)-AC :
o] a
B /1) (N_+C ) rC_- 1N
K€ty = C/D Mo*Co + —2 {8/ e ot (32)

a o)



To evaluate the centred correlation matrix we introduce the

matrix

t A(t-t') A'(t-t')
B(t) = [ e Me ac! (33)
o]

Substituting for the Green's function from Eg. (25) the

above matrix can be easily evaluated. We obtain

by (t) by, (t)
B(t) = (34)
by, (t) by, (t)
where
- 2
by, () = l‘z‘{*zt + 28 (=™ (1-e 2‘“)} (35)
o 217
= = (B/1) _ X, __-at
b1p(8) = By (0) = {85 [lt L (1-e70E)
B -2at B -at |
S s T J 36)
2
_ (8/1) 3 . 4 -at, 1 _-2at 37)
P22(®) = —73 [t 7a (173 ) "3z e 1

It should be mentioned here that the above expressions (35) to
(37) are reduced to still simpler form if we substitute a = 8/1.

We obtain

2 B R _ 28
b, (t) = ?szt + 20 (1=e” I%) + — (1-e ‘i’t)] (38)

1 -8 - 28 - ~8-t
by, (t) = b (t) = —é[xt -8 0T TH L e TTHeT I —l



...11_

From Egs. (20) and (22) the following expressions for the

reduced correlation matrix are then obtained

2 b11(t1) b,y ()

2_ N A'(t,-t,)
= 2<p”> o 2
Prea (1)) oo 12 P21 (B Bag (e e (41)
for o < t1 < t2
, .
2. N A(t,-t,) | b..(t,) b,,(t,)
P (b, t.) = 2<p%> To_ 1752 11'°2 12'%2 (42)
red 1 2 wc 15 b (t.) b (t.)
2172 22'°2

for o < t2 < t1

The components of the correlation matrix can be easily evaluated
from the above expressions,but the results obtained are lengthy.

For clear presentation we consider two cases:

case a) t1 t2 t

For this case, the following expressions for the mean square

deviations are obtained from Eq. (40) or Eg. (41):

2
2. N
ult,£) >, = 2502 3 by ()
c
2 8 28
2. N -1t - 1t
= 2<g > 2 1A%+ 2a(1-e t ) + B (1-e ! {] “3)
© 21
B8 c
2
<u(t,td = Eiﬁii L p.._(t)
2. N_ 2 - B¢
- 2<p™> 0" B At - Al (1-e 1 )
2w 1 B
B € 2p

B
-2y - Bg
+ (1+e 1 ) -e I;] (44)



N 2
< >
ult,t)>q. = ? — 3 by, (t)
c 1l
2 - B
= 2<02> NO _3_2 £ - _3_8_ (1...1 lt)
2w .2 21 3 €
B o] i
1 - 2%t
- 55 (1-e >:’ (49
1
case b) t2-t1 > P

In this case the elements of the reduced correlation matrix

reduce to the following form

2. N 2
- 2€p™> "o
<u(t1,t2)>NN = 82 E;_ A(At1+1) (46)
ult, t,)> . = 2¢0%> Egi Bie +1) (47)
WS4 57258 7 g2 wg 1001
2
2. N
_ 2<p°> "o B 21
<u(t1,t2)>CN = ——EE— G;— il (t1 B) 48)
2
2. N 2
_ 2%p°> "o B _ 1
<u (t1't2)>CC s e -—-2-(t1 'g) (49)



2.4 Asymptotic Values of the Moments

The asymptotic values of the moments are obtained by
taking the limit of the corresponding expressions for

infinite time

For t + = we get

aN(E)> N “NZ+C°) ~ Al(zgco) (50)

iy (B/l;(No+co) n o +c,) (51)
2

ult, ey = 2;"? ;%— A2t (52)

ult,t)> = 2;32> gg- 2t (53)

<ule, e, = 2;32> -:-Z-Z- ) it ‘ (54)

2.5 Special case of an Initial Equilibrium between Neutron

and Precursor Populations

One of the most important cases in reactor systems is that
which corresponds to aninitialegquilibrium between precursors

and neutrons i.e. we initially have
=8
xco—lm (55)

This situation is also characteristic for most practical cases,
which are near equilibrium. At the start of normal reactor
operation this situation might not be strictly true but it is
reached very socon because the prompt neutron decay constant o
is of the order of 10—3 secs. Also it is true, in all reactors,
that the precursor population is very high compared to the
neutron population, i.e. No+Co&Co. Hence from Egs. (50) and

(51) the asymptotic values of the expected neutron and precursor



numbers are for t + o«

" KlCO
N(E)>= ——= = N (55)
d:(t)>3 cO (56)

The normalized asymptotic values for the variances are then

given by
>
<u(t’t)NN ~ 2<p2> Ait (57)
N02 B2 W,
<u(t,t)i]C " 2<p2> Az
N _C - 5 &t (58)
o o B c
SU(E,E) %00 2cp2s 22
5 = 5 o ¢ (59)
Co B c

3. Discussion

From Egs. (30) and (51) it is seen that the asymptotic wvalues
for the expected population of neutrons and delayed neutron
precursors are constant values. It is obvious from Egs. (31)

and (32) that the asymptotic constant values are reached very
soon because the second term decays with a very short relaxation

3 sec). From Egs. (52)

time % (for a light water reactor % v 10”0
to (54) one observes that the values of all the second order
moments increase linearly with time. This result is expected
because the system equation (1) is equivalent to the stochastic

equation for the Brownian motion of a free particle /15/.



It is well known that the mean square displacement of a
Brownian particle goes on increasing linearly with time,
because there is no restoring force which prevents it from
drifting. Hence it is also expected that the reactor system
without a controller, as described by Eg. (1), will develop
mean square deviations which increase linearly with time.
One will have to apply some control to keep the reactor

stationary.

From Egs. (41) and (42) one can see that if measurements are
performed at two times t1 and t2, the initial correlation
amplitude depends linearly upon t, (if t, > t1) and in the time
interval (é1zzzitt?e correlation function relaxes according to
2 717,

the term e The decay of the correlation function in

the interval (t1,t2) obeys the dynamics of the reactor system

§ -
mathematically described by the system's Green function eA (t2 t1).

For the special case of an initial equilibrium between the

neutron and precursor populations we see that the averaged
asymptotic values of these number guantities remain equal to

their initial values, at time t = o, and the initial correlation
amplitudes build up exactly with the same speed (Egs. 57 to 59).
This suggests that our system consisting of neutrons and precursors

may be imagined as a composite Brownian particle which has a

diffusion coefficient equal to

<p2> |2

For a light water reactor A % 10_1 sec_1 and % 4 1O3 sec—1.

Hence, for the corner frequency of the reactivity noise one
could take a value of the order of 104 sec_1 (wc >> %). If the

reactivity fluctuations are assumed to have a mean sqguare

magnitude <pz> N 10—6 82, the value of D comes out to be of the
order of 10—12 sec—1. Hence the mean square deviations will

12 per second. With

develop, approximately, at the rate of 10
this rate the system's root mean square drift would be less than

10—3 in a day. This relative drift is much smaller than expected.



It should be noted that this will be true for any reactor
system, because even for reasonable lower values of the corner
frequency W, and a higher reactivity noise amplitude the drift
may differ at the most by one or two orders of magnitude. This
low drift of the system could be caused by (a) the high value
for the corner frequency of the reactivity noise, (b) the
assumption that the initial system state 1s well defined,

(c) neglecting other system parameters which should be included
for a more realistic evaluation. The analysis with lower values
of the corner frequency for the reactivity noise (mc << B/1),
which would be a realistic assumption for all fast reactor
systems, could be more conveniently developed in the prompt
jump approximation. This extension, which necessitates some
reformulation, is now under development and will be published
in a subsequent paper.

4. Conclusions

We have developed a method for calculating the moments of
state variables for a reactor system excited by stochastic
reactivity fluctuations. For a clear exposition explicit
expressions for the first and second moments of the neutron
and precursor populations have been obtained for one group
of delayed neutrons only and under the assumption that the
corner frequency of the reactivity noise is large compared
to all time constants of the system. It should, however,

be emphasized that other wvariables which, e.g., describe
external feedback and temperature effects could be included
into the system matrix and expressions for additional moments
be obtained. This extension.of our work is planned for the

near future.
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