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"Beitrdge zu mehrdimensionalen Quadraturformeln”

ZUSAMMENFASSUNRG

Die allgemeine Zielrichtung der vorliegenden Arbeit liegt
darin, mehrdimensionale Quadraturformeln, die den GauBschen
Quadraturformeln im Eindimensionalen entsprechen, zu kon-
struieren und fir diese Formeln Zysammenhdange mit ortho-
gonalen und nichtnegativen Polynomen herzustellen, wie das
im Eindimensionalen schon lange bekannt ist. Es handelt sich
dabei aum einen um die Konstruktion von mehrdimensionalen
Quadraturformeln allein mit Hilfsmitteln der Algebraischen
Geometrie, zum anderen wird versucht, unter EinschluB der
algebraischen Mittel Aussagen Uber Quadraturformeln zu er-
halten, die auf jeden Fall reelle Stiitzstellen besitzen und
unter bestimmten Umstdanden auch positive Gewichte haben.
Die Ergebnisse dieser Untersuchungen umfassen sowohl den
Nachweis der Existenz bestimmter Quadraturformeln, Aussagen
uber die vom Polynomgenauigkeitsgrad abhangige'Anzah1 bzw.
die maximal mogliche Anzahl von Stiitzstellen dieser Formeln
als auch deren Konstruktion.

SUMMARY

The general objective of this paper is to construct
multidimensional quadrature formulas similar to the

Gaussian Quadrature Formulas in one dimension. The correspon-
dence between these formulas and orthogonal and nonne-
gative polynomials is established. One part of the paper
considers the construction of multidimensional quadrature
formulas using only methods of algebraic geometry, on the
other part it is tried to obtain results on quadrature formulas
with real nodes and, if possible, with positive weights.

The results include the existence of quadrature formulas,
information on the number resp. on the maximum possible number
of points in the formulas for given polynomial degree N and
the construction of formulas.
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X
This report is a preliminary version of a paper which

was originated during the authors investigations of the
numerical integration over the angular domain in the
neutron transport equation while he was working at the
Institute of Neutron Physics and Reactor Technology
(INR). As at this time there seems to be no chance to
bring this manuscript into a final form, the author
tries to publish this paper in the present form. Parts
of section 5 of the paper have been presented at the

Intern. Congress of Math., Vancouver, Canada, 1974 (See
the Appendix).
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0. General introduction

0.1 Introduction

This paper is concerned with the construction of multi-
dimensional quadrature formulas ( = q.f.’s). All investiga-
tions are restricted to formulas which integrate exactly po-
lynomials up to a certain given degree N that means, for a
given integral I(f), written as

D
with a nonnegative set function G,
n
S(f) = § Aif(xi’yi’ ....)
1 =1

is called a quadrature formulas of degree N or of order N, if
I(f) = S(f) whenever f is a polynomial in x, y, ... of degree
not exceeding N. This latter conditions are usually named
“moment conditions".

Generally we restrict our attention to two dimensional
problems. The main interest is devoted to the question how
to get q.f.’s with real nodes (Xi’ yi) without claiming that
all weights (or coefficients) Ai must be positive. It is
tried in some sense to minimize the number n of points used
in S(f). The points of the involved q.f.”s are located on
p = 0 where p is an orthogonal polynomial of degree € if N
has been N = 24 - 1.

The results developed here must be considered to ly bet-
ween some purely algebraic theorems of MYSOVSKIKH and STROUD
and others at the one side and a well known theorem of TCHA-
KALOFF on the other side, where the Ai have to be positive
and the nodes must be situated in D.

0.2 General objectives

The well known results concerning the so-called "Gaus-
sian Quadrature Formulas" may be summarized as follows, see
e.g. KRYLOW /28/.



a) For given I(f) and given degree N = 24 - 1 there is a
q.f. with a minimal number n of points where n = ¢ and
there is exactly one g.f. with £ points.

b) The points of this formula are inside of the interval
under consideration, the weights respective are positive.

c) The points of this formula are the zeros of the corre-
sponding orthogonal po]ynomia] of degree £. This allows
to calculate fairly well these points.

d) These statements hold for all £> 0.

Besides the need of having available a similar procedure
for multidimensional problems, there have been also other
reasons for mathematicians to adress their attention to this
field:

a) One assumed to find similar connections between q.f."’s
and orthogonal polynomials as in one dimension.

b) There is and has been a provocation ( as usually for
problems with enumerating features), to find gq.f.”>s for
a given N with ever lower, perhaps least possible number
of points.

As is well known, the task to construct q.f.*s S(f) for
a given (two dimensional) I(f) and given degree N with a mi-
nimum possible number of points which is to integrate exactly
1, X, y, x2, ........ , xN, xN_ly, ....... . yN, cannot be
achieved as in one dimension by equating the number 3n of
parameters available in S(f) and the number of conditions
%~(N+ 1):(N + f). This even fails for N
mials have to integrated exactly, yet n 2 is impossible as
APPELL has already pointed out in 1890, /2/. -

The concept introduced in section 5 is the following:

H

2 where six polyno-

Let p be an orthogonal polynomial of degree £; we then con-
struct an S(f) with points only on p = 0 which integrates
exactly all polynomials up to degree N = 2¢-1 and which in
addition minimizes or maximizes some polynomial q of degree
26 = N + 1.



This procedure allows

1. to get g.f.’s with relatively low n,

2. to get g.f.’s with real nodes,

3. to balance in a certain sense the number of
conditions and the number of free parameters.

Until now the so-called identification problem has not
been solved: To give a set of polynomials Pys Pos cvnnn the
common zeros of which are the nodes of S(f) obtained in the
outlined way. As a consequence of this, the q.f.’s of the
presented type must be calculated numerically by solving
the formulated extremal problem.

It must be emphasized that this paper does not intend
to get special favorable q.f.’s. We rather develop a theory
which holds for arbitrary positive integrals given on some
two dimensional region.

The reasons which suggest the use of gq.f.*s with positi-
ve weights or with nodes situated in D, have been several
times sketched out e.g. in GONTHER /15/. Therefore we
do not explain further why such formulas are preferred.

0.3 State of the art

The development of multidimensional quadrature until
today is summarized in the following section with main em-
phasis on two dimensions.

Many g.f.®s have been found by proceeding "straight
forward". This method has proved successful for
symmetrical and other regular regions with symmetrical mass
distributions of the weight function. In these cases assump-
tions have been made on the number, on the size and the dis-
tribution of the nodes and the weights of the formulas; this
yields a nonlinear system of equations with a relatively low
number of unknowns. As representatives for a large number of
contributions stressing this approach, we mention papers of

P PN T BT



Recent papers of this kind are PIESSENS and HAEGEMANS /39/ and
for the triangle COWPER /4/ and LYNESS and JESPERSEN /30/.

Without disparing the success of this procedure, it may
not be overlooked that this is a "try and error" procedure,
where it remains open why the method fails or is successful.

Beyond this, there have been attempts to get general
results using algebraic geometry. The first step in this di-
rection made RADON /42/ who constructed seven point gq.f.*s of
degree five the points of which are the common zeros of three
orthogonal polynomials of degree three. Further results of more
general character have been derived by MYSOVSKIKH /34/, /35/,
/37/ and /38/, STROUD /47/, /48/ and /49/, FRANKE /9/, GONTHER
/14/ and /16/ and MOLLER /32/. The more constructive direction
of Radon’s ideas was followed by FRANKE /10/, GONTHER /18/
and MOLLER /31/.

Another direction is represented by contributions con-
sidering g.f.?s with points lying inside D ("self-contained
q.f.’s") and with positive weights.

A very general result of great importance has been ob-
tained by TCHAKALOFF /53/, this result has been proved other-
wise e.g. by DAVIS /5/. More recent results are given by
GUNTHER /15/ and /16/ connecting algebraic methods and func-
tional analysis.

There are also some investigations of FRITSCH /11/, the
methods of his paper do not seem to allow to attack more
general problems. -

Reviewing papers on multidimensional q.f.’s are due to
P. HAMMER /23/ comprising the time before 1959, the develop-
ment until 1965 is contained in STROUD /46/. A newer summary
is contained in a survey article of HABER /22/, some sections
are treated in detail in STROUD®s book /50/ which was published
in 1971,



0.4 General review of the methods

Some of the concepts of this paper are based on the
following idea:

For a given integral I(f) =jK f(x,y)dG, we are construct-
ing g.f.’s S(f) = Aif(xi’yi) which may be considered as
special Lebesgue-Stieltjes-integrales S(f) = fjf(x,y)dGS with
mass only in discrete points (xi,yj), the point (Xi’yi) con-
tains mass Ai'

As all investigations e.g. the consideration of the con-
jugate spaces, are restricted to finite-dimensional subspaces
L(T) of C(T) - the linear space of functions continuous on T -
- here we have L(T) = Pﬁ(T) ( = vector space of polynomials
in x and y of degree ¢ N with range T ), I(f) and S(f) are
only different representations of the same element of L'*(T).
With this convention a q.f. is only a special representation
of an element € [Pﬁ (T)J* with discrete mass distribution.

This point of view becomes important if we are consider-
ing supporting polynomials, that means nonnegative polynomials
P(x.y) € PE(T) with k = N or k = N + 1 such that the points
(Xi’yi) of S(f) may be only situated where @ vanishes.

This is accomplished by embedding all in the space
P§+1(T) and satisfying all moment conditions up to degree N,
whereas S(f) attains a certain extremal value if f is a spe-
cial polynomial of degree N+1. This method, based on a sup-
port-concept (support: mass where @ vanishes), introduced by
KREIN /27/ may be carried over to multidimensional problems,
as this method does not make use of the factorization of po-
lynomials in linear factors.

In this method, in one dimension, only the maximal
number of zeros of an element of the space in consideration
plays an essential role and thereby is applicable for Tche-
bycheff systems.

In two dimensions, a somewhat sophisticated procedure
must be used because either the zeros of a supporting poly-
nomial or the zeros of an orthogonal polynomial may be one



dimensional. Finally, the maximum possible number of common
zeros of two members of our polynomial space (Bezout’s theo-
rem ) plays the same role as n, the maximal number of zeros
in one dimension.

An approach using also a support-concept, has already
been proposed by AALTO /1/; it seems not to yield better
results as has been attained by algebraic means only. -

The investigations, based on algebraic geometry consi-
derations only, are stressing the idea to construct a canon-
ical basis (py, Poseen.. ) of an ideal of polynomials is which
has the points of a q.f. S(f) = E:Ajf(xj’ yj) as zeros. That
means that each polynomial p(x, y) of degree N1 from is

( @+ p(x:y y:) =0 for j =1,2,..... s n) may be written as

N
p{x,y) = Zak(x,y)pk(x,y)

with polynomials ak(x, y) of ;;gree < Max(N1 - degree Pis 0).
This statement is a degree-dependent version of the very
famous fundamental theorem of algebraic geometry of MAX
NOETHER see e.g. /55/. The most general variant of this
theorem has been recently given by MOLLER /32/.

Continuing the algebraic ideas in a more constructive
sense, it is frequently used that the P are not indepen-
dent as the basis elements of a vector space but are satis-
fying relations of the form

Z bk(x’Y)pk(X’Y) = 0

k

with polynomials bk(x,y) . These relations are called "syzy-
gies" e.g. GRUBNER /12/. The first systematic use of this
fact appears in a famous paper of RADON /42/.

0.5 Assessment of new results
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1974 /17/. They are incorporated in section 5 and are wor-
king with the idea to interprete q.f.’s as special set
functions with mass only on curves p = 0 where p is an ortho-
gonal polynomial. In the same way the content of section 7
is new in which algebraic conditions are given being fulfil-
led by the weights and the points of the g.f.’s containing
as subset the moment conditions.

The resuits cited in section 6 have been mostly given
in /15/. 1t shall be only mentioned here that they may by
proved using similar methods as in section 5.

Section 4 is an attempt to give a more unified look
to the results found using only algebraic geometry.

It must be added that some of the preliminary results
(section 1 - 3) contain new statements e.g. theorems 1.3.4,
1.3.5, 1.4.1 or 1.4.2.

1. Prerequisites

1.1 The representation of linear functionals on C(T) and
on subspaces of C(T)

Let C(T) be the linear vector space of real valued
continuous functions on T, T a normal compact topological
space, and L(T) subspaces of C(T) of finite dimension and
(3*(T) andl_*(T) the corresponding conjugate spaces.

Introducing the concept of partially ordered Banach
spaces we are showing that every nonnegative linear functional
on C(T) and on L(T) can be written as Lebesgue-Stieltjes-
integral with nonnegative regular, bounded and additive set
function.

Let E be a partially ordered Banach space, E¥ the conjugate
to E, E® is the cone of nonnegative linear functionals on E.
For the definitions given here and in the following see
DUNFORD-SCHWARTZ / 7/.



Let T be, as initially stated, a nonempty, normal
topological space. C(T) is the vector space of real continuous
functions defined on T. The norm in C(T) is given by

ﬂ f ﬂ = maXx lf(X)l
XeT

for f(X) €& C(T). ‘

f e C(T) is said to be nonnegative if f(X) 2 0 for all
X& T. By this, C(T) is a partially ordered Banach space.

L(T) ¢ C(T) is of finite dimension and contains at least
one positive element. Is T' a compact subset of T, L(T') is
the restriction of L(T) on T'.

rba(T) is the linear space of regular bounded additive
set functions defined on the Borel field &(T) of sets on T.
The norm of G(V) € rba(T) is given by

4] Z]

the total variation of G(V) where the supremum is to be taken

over all subdivisions of T in a finite number of disjoint
subsets Vj’ Vj € G(T). The definition of a reqgular set function
and of rba(T) is given in DUNFORD-SCHWARTZ /7/, p.137 and
p.261.

rba(T) is also partially ordered, G; » G, if Gl(V);tEZ(V)
for all Ve(T). In C¥T) we have 1, » 1, if for 1;, 1,e& C¥(T)
ll(f) > 12(f) for all nonnegative f& C(T). The norm of 1e& C*(T)
is induced by the norm of C(T)

u1ﬂ = sup ,1

feC( ﬂflsl

For every fe C(T) the integral

o I N
—1-,



with G(V)e rba (T) exists, DUNFORD-SCHWARTZ /7/, p.261,is
called Lebesgue-Stieltjes-integral of f with respect to G(V)
on T.

The elements of C *(T) are related by

THEOREM 1.1.1:
00000000000000

If T is normal, there is a isometric isomorphism between
C‘*(T) and rba(T) such that corresponding elements 1(f)
e(:*(T) and G(V) € rba(T) satisfy the identity

Wty = _(f(s)e(ds), for all f & C(T).
T
Furthermore, this isomorphism preserves order,DUNFORD-SCHWARTZ,
p.262. '

Theorem 1.1.1 ascertains that elements of(:e(T) can be written
as Lebesgue-Stieltjes-integrals with nonnegative Gerba(T).
An immediate consequence is the following

COROLLARY 1.1.1:
0000000000000000

For normal T, there is a homomorphism between L'*(T)
and rba(T) such that corresponding elements 1(f)e L * (T)
and G(V) e rba(T) are related by

1(f) =th)ﬂds)fm~aﬂ fel(T).
T
Following statements can be given as to the orderings in
L*(T) and rba(T). If 15(f)e L*(T) and 6;(V)erba (T), § = 1.2,

1j(f) = .g f(s)Gj(ds),
T
from Gy » G, follows 1,3 1,, the converse must not be true.
A well known theorem of TCHAKALOFF /53/ ascertains that for
1(f)eL®(T), 120, there is at least one G(V)g& rba(T),

4
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THEOREM 1.1.2:
00000000000000

Let T be compact and L(T) be the span of d continuous,
linearly independent, real valued functions defined on T,
containing an element g, g>»>0 on T. Each 1(f)e Le(T) can
be written as

d’
1(f) = E Ajf(Xj) for all felL(T),
J=1
where the Aj> 0, Xje T and d*g d.

The sum is equivalent to an element G € rba (T), G >0,
1

having mass in all Xj, X. containing the mass A. for j =1,

....... s, d’. The correspgndence of the elements of CQ(T)
resp. L.Q(T) with the nonnegative elements of rba(T) justifies
the terminology, the elements of CO(T) (LG(T) ) are induced
by a mass distribution on T.

A basis fl, f2, ........ . fd of L(T) induces a basis
of L¥(T) by setting c; = T(f)ad =1, oenn , d, for all
16[.*(11. The representation as point Z in some Rd with
components cj is equijvalent to the original 1(f).

For L®(T) we have

THEOREM 1.1.3:

00000000000000

1. LQ(T) contains all point functionals.

2. L®(T) is a cone in L*(T) with vertex in the origin.
3. L®(T) is a closed convex cone.

See e.g. WILSON /56/, p. 243.
If elements 1(f)e L*(T) which areruﬂ:eLe(T) are written
as
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not all coefficients Aj are positive that means Gerba(T)
is not definite. In these cases it is useful to search for
representations of 11(f),

d}
14 (f) =£f(s)le (ds)l =Z[Aj|f(xj).
i1

o4
The form of |G| finally permits to get knowledge of the
structure of G.

1.2 Supporting polynomials

A statement is given which states the following: To
each 1(f)e Le(T) which is not a positive linear functional
( 1e aLO(T)), there is a nonnegative function Pe L(T), § £ O,
with 1(#) = 0 and with (positive) mass only where § vanishes
in T.

We assume first that LG(T) has inner points. If Te BU?T),
1(f) corresponding to ?, a separation theorem, stamming from
the theory of convex bodies, is used to show the existence
of a supporting hyperplane to LQ(T) in C. This theorem states

THEOREM 1.2.1:
00000000000000

Let B1 and 82 be two convex sets of a vector space L with
B1 and 82 not empty, Blf\ int B2 = @. Then there is a hyper-
plane H in L separating B1 and BZ‘

H can be written as @g(c) = a with real a, 0 GL*, p £ 0,
for all ce H. If H separates B1 and BZ’ we can assume that w(cl)
& a for Ci € Bl’ g(cz);.a for Cre 82, VALENTINE /54/, pp. 31-34.
With L = L*(T), By=C, B,= L®(T), from Theorem 1.2.1
follows that the supporting hyperplane § fulfills §(c) = a

with real a and g e [L*(Tﬂ* = L(T), @ £ 0. It can easily
be shown, VALENTINE /54/, p. 37, that a = 0. By this, the
equation of H is @ = 0. As 1x(ﬂ) = @(X)» 0 for all point

functionals ( - they are all e L®(T) - ) 1,(f) = f(X)eL®(T),
P is nonnegative on T. We now have established that for every
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ge?LQ(T) there is an element PelL(T), § £ 0, 20 in T
and 1(g) = 0.

Recalling that L in many cases consists of a space of
polynomials, § is called "supporting polynomial" of € resp.
1(f) on T, KARLIN a. STUDDEN /26/, p. 43.

A nonnegative set function G(V)e rba(T) corresponding
to 1(f)edl®(T) has the following property. Let Tg be defined
as Ty: ={xeT1/ p(x) =0}. ThenG(V) =0 if Ve T - Ty
V € &¢(T). This is shown in detail in SMIRNOW /44/, p.119.

We summarize

THEOREM 1.2.2:
00000000000000

Let 1(f) be from 2L®(T). Then there is a not identically
vanishing function @(X)elL(T), B(X)2»0 for Xe T, with
1(#) with following characterictic; if G(V)e rba(T),
nonnegative, corresponds to 1(f), G(V) has mass only
where @ vanishes in T.

The statement of Theorem 1.2.2 is even correct if 1(f) is the
zero element 1 (f) of L¥(T), 1 (f) = 0 for all felL(T). In
this case, each nonnegative @ from L(T) is supporting poly-
nomial of 1O(f).

If L@(T) has no inner points, LQ(T) is contained in a
hyperplane in L*(T) and Theorem 1.2.2 in this case trivially
also holds.-

Following consequence of Theorem 1.2.2 can be derived
admitting a similar statement for elements 1(f)e Int Le(T),
if T satisfies some additional assumptions. The main idea is
the following one: If 1(f) & Int Le(T) and T is in some
"continuous" manner decreased (this must be precisely defined),
we find for some T°¢ T that 1(f) e SLe(f). The exact state-
ment is taken from GONTHER /15/, where this theorem has been
proved.

Let F(A) be a set of subsets of [R>, depending on the real
parameter A\, 0§ A & 1. The F(A) are supposed to be nonempty for
0gAgl.




DEFINITION:

The FM)are continuous functions of A for Ae[0, 1] if for
arbitrary &£>0 there is a d>0 such that for each point
X e Fry) and each aue[0, 1],I/44-AI<Jthere is at least
one point Y e F(ie) with

Ix - Y] <€ .

THEOREM 1.2.3:
00000000000000

&

Let T and T° be given, T and T> compact and 1(f)e L (T).

Assume there is a continuous set of sets F(A), O0¢hel
with F(0) = T, F(1) = T, F(A) ¢ F(N) for 0g<A<sAg 1,
F(x) compact for )el0, 1J. Let 1(F) ¢ Int L9(T°).

Then we have: There is a uniquely determined interval
A SAEX, With 0€Xx¢A, 41 such that

1(f)e aL®(F(N)) for all Aeln,X]

For each Aeld,h] there is a function § € L(T), P £ 0,

P20 on F(A) and 1(@) = 0. There is a G(V)e rba(T), G3» 0,
1(F) = g‘_f(s)G(ds) for all fe L(T), G(V) = 0 for Ve &(T),

Ve T- {(0p=0)nF (x)].
In addition, if 1(f) e Int L®(T), we have A, >0,

if 1(f) € aL®(T), X <A,

Algebraic geometry

in two variables primarily due to algebraic geometry.-

A polynomial p(x,y) with coefficients from the field of

real (complex) numbers R (¢') is written as

P(Xsy) = E aijJ k, J=0,1,..... , k =

For ajk = 0 if j + k > N and one ajk ¥ O, j+ k =N,

This section contains definitions and theorems about polynomials
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p(x,y) 1is said to be of degree N or of order N.

In K[x,y], the ring of polynomials in x and y with
coefficient field K where Kk either R or K = #, the theorem on
unique factorization holds.

X =(,%) is a point of multiplicity v of p, vy 0 if

P(X,sy) =ijk(x-§)j(y-’z)k, iz 0, k20,

with all bjk = 0 for j + k< v and at least one bjk with j + k = v
different from zero. X is a root of p if X is a point multi-
plicitye 1l of p. A point of multiplicity v>1 of p is called
a singular point of p. An algebraic curve of order N without
multiple components has only a finite number of singular points,
WALKER /55/, p.65. X is a common zero of p and q if X is a
zero of p and a zero of g. The definition of multiple zeros
shall not be given here, this may be seen from WALKER, p. 108.

A well known result on the number of common zeros of
polynomials is Bezouts theorem

THEOREM 1.3.1:
00000000000000

Two polynomials P1 and P2 of degrees N and n, without
common component have exactly n,+ n, common zeros.

We are first concerned in some detail with multiple common

zeros of two polynomials, thereafter with the common zeros of
polynomials at infinity. For this reason we define the tangents
of an algebraic curve p = 0 in a point X of this curve. Let

X be a v-fold point of p = 0, then if ﬂyoﬁ4),(A2b/Q)) "

________ (vauw) are the roots of

with coefficients bjk with j + k = v of p, the lines

Ar(x-g) ta(y-g) = 0, r = 1,...... vV
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are called the tangents of p = 0 in X, WALKER /55/, p.54. With
these definitions we formulate

THEOREM 1.3.2:
00000000000000

If X is a point of multiplicity r of p and of multipli-
city s of g, X is a common zero of p and g at least of
muitiplicity res. The multiplicity is exactly r.s, if
no tangent of p in X is tangent of q in X, WALKER /55/,
p. 114.

An immediate consequence is

COROLLARY 1.3.1:
0000000000000000

X is at least a double common zero of p and of q if any
(the) tangent of p in X is also tangent of q in X.

The following remarks are related with common zeros of two poly-
nomials at infinity. Let Pk defined as

i 'i .

'I+J‘nk

We introduce projective coordinates and define
o~ R _ ~nk. ~ e A R _
Pk(x,y,z) = z Pk(x/z, y/z),k = 1,2,

and as'companion polynomial of Pk

np— i
(1) = E aii° t k™', k= 1,2,

i+j=n
A point X "at infinity" has coord%nates (E;%ZO). It is a common
point of Py = 0 and P, = 0 if P, (§,50) = 0, k = 1,2. From
this immediately follows: If there are v different projective
common zeros (Eﬁé;,a Y, r= 1,2,..... sv of P1 = 0 and Py = 0,
P1 and P2 have at least v common zeros at inifinity and there
are polynomials Q1 of degree N, = v and 02 of degree ng - v



such that
P3(Xs}’) = Q]_(x’.Y)'Pl(X’.V) + Qz(an)‘Pz(X’Y)

is of degree <« ng + n, - v.

As long as the @;;;» must be different, V$1ngn ns it
should be noted that there are polynomials which have more than
min n, common zeros at infinity including some multiple common
zeros.

Many papers studying multivariate quadrature problems are
looking for polynomials vanishing in the points of a q.f. This
_ suggests to consider the ideal is of polynomials which are
vanishing in the points Xi of a q.f. S(f) =}EAif(X1)-

We assume for simplicity that all Xi are distinct, that
means that S(f) contains no terms with derivatives. It is known
from algebraic geometry that 1Shas a basis with a finite number
of elements, (pl, Pos weverennn ,pr). By this each polynomial
q ais ( q(Xi) = 0 for all i) can be written as

g = ql‘pl + «2-p2+ .......... +dr_.pr
which polynomials o1 Né, .......... s o .

The strongest and best possible form of this fact usually named
Max Noethers theorem has been given by MULLER /32/.

THEOREM 1.3.3:

00000000000000

For each is exists a "canonical basis” that means that
there is a basis {pl, Poseveeeenn. s pr} such that for
any gq eis of degree m we have
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Apparently the identification of a canonical basis rises no
difficulties. This basis contains a maximal set of linearly
independent polynomials ,89 K of Towest possible degree g
with ,Bg,k(xi) = 0; if there are po1ynomials/89,keis;of
degrees g* = g+l, g+2,..... » which are not of the form

(yll'/gg,l S P ‘Y;‘ﬁg,s
degree X} = g’ - degreejég,i, with previously found_ﬂ%’i,
this polynomials also belong to this canonical basis.

We include here two simple results on real polynomials p.

THEOREM 1.3.4:
00000000000000

Let p be p(x,y) =;Za1.jx1y1 with real aij’ The real part
of p = 0 is bounded if the corresponding companion
A 0
polynomial P(t) =§a1.jt“ b js definite.
i#J“n

0f similar type is

THEOREM 1.3.5:

00000000000000
p with real a.. has 2v real common zeros with an

' 2 2 2 A
arbitrary large circle x~ + y= - R™ = 0 if p(t) has

v real zeros.
The variant with multiple roots of p is more complicated.
These theorems have some importance concerning the reducibility

of polynomials over R.

1.4 Nonnegative polynomials in one dimension

Results on nonnegative polynomials on the interval /0,17
are found e.g. in POLYA a. SZEGU /40/ or in KARLIN a. STUDDEN
/26/. The latter book also contains results for [0,e) and for

(e mn o )
\Tee, 0 .
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The problem in question in this section is more general.
Let a real polynomial p in x and y of degree ¢ be given. We
investigate how many common zeros - without counting multi-
plicities - has p with another real polynomial q of degree
m, relatively prime to p, q nonnegative where p = 0. A
classification of points where p and g may simultaneously
vanish is as follows

LEMMA 1.4.1:
000000000000

Let X be a common zero of p and g in D; if Xe Int D, X
is at least a double common zero of p and of q.

Proof: X either is a regular (simple) or a singular point of
p (or q). In the first case q = 0 must be tangent to p = O,
otherwise gq changes sign by passing through X along p = 0.
In the second case, according to theorem 1.3.2, X is an at
least double common zero of p and gq.

We conclude using Bezouts theorem (theorem 1.3.1)

THEOREM 1.4.1:
00000000000000

Is p =0 an irreducible algebraic curve of degree m
having v common points with @D and is g a polynomial

of degree m, relatively prime to p which is nonnegative
where p = 0 in D. Then p and g have - without taking
into account multiplicities - at most m-£ + v points
where they vanish together in D.

If p and q have 4, 1 €4 common zeros at infinity, subsequent
modification of theorem 1.4.1 holds

THEOREM 1.4.2:
00000000000000

If in addition to the assumptions of theorem 1.4.1
finity, p and g vanish th

p and g have 4 common zeros at in Y
md +v -4 points simultaneously in D.
2
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1.5 Multivariate nonnegative polynomials

Theorems concerning the form of polynomials in two
variables nonnegative on some elliptical region DclR2 are given
in GONTHER /19/. There are two details essential for the
subsequent considerations.

First a polynomial p = p(x,y)e R [x,y], nonnegative
on D, may have factors or powers of factors which either
have one dimensional sets of real zeros or zeros of
dimension zero (isolated real zero). One of the results of
/19/ s

THEOREM 1.5.1:
00000000000000

If g is a factor of a polynomial p(x,y)e R[x,y7, non-
negative on D with the real part of g = 0 of dimension
one, q is a factor of even multiplicity of p.

Of special interest is a statement giving for a fixed
degree N the maximum possible number of isolated zeros
of a nonnegative polynomial of degree N.

THEOREM 1.5.2:
00000000000000

Let p(x,y)e R/Xx,y/ of degree Nﬁme nonnegative on D. Then

if p20 in RZ, p has at most %-(N - 1)<(N - 2) + 1 isolated
zeros. If p may be <0 outside of D, p has at most

%'(N - 1)+(N - 2) isolated zeros in Int D and at most N

zeros on @D. -

The representation of nonnegative polynomials plays an
important role not only in the problems of this paper. It is
equally connected with questions of statistics (approximation
of densities, Tchebychew inequalities), with problems of
approximation theory (e.g. if g is a minimax approximation to
f, If -~ gli«<E,, f and g poiynomials with degree f >degree g,
the polynomials f - g + E,and g - f + E, are nonnegative). A
similar argument holds for one side approximations.
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2. Orthogonal polynomials

2.1 Orthogonal polynomials, one dimensional

There is a well established theory connecting orthogonal
polynomials and quadrature formulas see e.g. SZEGU /52/,
DAVIS a. RABINOWITZ /6/ or STROUD a. SECREST /51/.

The most essential parts of this theory may be described

as follows: To calculate approximately
Vi

I(f) = g f(x)w(x)dx, w(x)>0 in [ 0,17,
0
a weighted sum of values of f 1is taken,

'nl
S(f) = E::Ajf(xj)
J=1

with S(f) of degree N = 2-£ - 1, that means S(p) = I(p)
whenever p is a polynomial of degree ¢ N. Following statements
hold for £ fixed:

EO: For all S(f) we have nt3 ¢£.

El: There is one uniquely determined ?(f) with n' = £.

E2: The weights Aj, J=1,2,...... s of this formula
are positive.

E3: The points or nodes of §(f) are lying in (0,1).

E4: The xj are the zeros of the polynomial pz(x) of
degree £ which is orthogonal with respect to w(x)
to all polynomials of degree ¢ - 1,

pe(x) = xZ 4 a- N U + ag and
4
j’pe(x)wi(x)dx =0 forv=20,1,...... -1
o

The quadrature formulas specified by E1 - E4 are called
"Gaussian Quadrature Formulas". As pointed out in El these
formulas are those with fewest number of points for given
degree N = 2-€ - 1. By E4 is given a method to calculate the Xj e
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Besides these’favourable® properties, q.f.°s like the
Gaussian Q.F.-s with weights Aj positive and points xj
from the interval /0,17 behave well with regard to con-
vergence and stability, HABER /22/, p. 495, KRYLOW /28/.

Orthogonal polynomials satisfy several extremal
principles one of which is briefly touched. Consider the
problem to calculate

A

Min X x24qe, (2.1.1)

Gso
the minimum to be taken over all nonnegative gerba(0,1),
where quJdG = I(xJ) for j = 0,1,........ , 2-& - 1.
The solut1on of th1s problem can be regarded as element
of BEPZe /o, 1]] this can easily be seen: Tet c. = I(x'),
i=0,1,..... ...,2£ be the coordinates of Gy in [b2£ /0, 1Z]

then Cop cannot be decreased without the corresponding
element being removed from [bZJ [0, LZ] The corresponding
supporting polynomial, the existence of which is shown by
theorem 1.2.2, is 0§ = (pe(x))2 and the mass of G; is
contained in the zeros of pe(x), furthermore, G1 is the
set function corresponding to the Gaussian Q.F. of degree
¢ with respect to I(f) =‘j4f(x)w(x)dx, KARLIN a. STUDDEN
/26/ . °

It should be noted that the analoguous maximum problem
in the same way 1is related to the g.f.’s of Radau.

A problem dual to the one treated here is the following:
Try to find a nonnegative polynomial cFy) with leading term
x2£ such that I(qze) is minimal; the solution of this problem

is q,, = (pz(x)) , LOCHER /29/.

2.2 Orthogonal polynomials, two dimensional

The knowledge of properties of orthogonal polynomials
in more than one dimension is not nearly as well developed as
in one dimension. The following comments deal with two
dimensional results, some crude results can be taken from
ERDELYI /8/ e.q.:
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2.2.1 Orthogonal polynomials exist with respect to positive
I(f) =_QLf(x,y)dG, that means I(f)> 0 for all f, f(x,y)» 0
in D, f # 0 where the scalar product is defined as (f,g) =
I(f-qg).
If this statement only holds for polynomials p up to a certain
degree 24, the existence of orthogonal polynomials of degree
< £ can be shown.
2.2.2 For a simply connected region D¢ RZ each factor q of
an orthogonal polynomial is not a multiple factor and g has zeros
in Int D, APPELL /2/, HS8.
2.2.3 The £ + 1 polynomials pij(x,y)for given 1 = 0,1,.....
poo(x,y) = x'yl + qi.(x.y)
1J LIV
with i + j =4, i=4¢, ¢ -1, ...... Owheredegreeqijée—l,
which are orthogonal to all polynomials of degreeg ¢ - 1, are
called basic orthogonal polynomials of degree Z.
2.2.4 Examples of orthogonal polynomials for several regions
D and weight functions are given in ERDELYI /8/, GRUBNER /13/
and STROUD /50/.
2.2.5 Beyond the results  mentioned in 2.2.2 some details
are known for low £:
a) For given I(f) all linear orthogonal polynomials vanish
in the center of mass X = (§9), £=1(x), % = 1(y), APPELL
/2/, H14.
b) Following sufficient criterion is known concerning the
existence of four real common zeros of two orthogonal
polynomials of degree two:

Pl
Let T(I(F)) be I(p, pyp= Piq)s

P a'Poy + bPyy € Py

Py = APy ¥ B-pyp +C Py

and & = (A-c- a-C)% + (aB - A-b)-(c:B - b-C).

A
P1 and P2 have four real common zeros if C (I(f)) # 0 and
S A
signd # sign C(I), GONTHER /16/. If C(I) = 0, p, , p;; and
Po2 have three real common zeros, MYSOVSKIKH /34/.

Some more advanced results are given in section 5.
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3. Preliminaries about the number of points in quadrature
formulas

The following theorem gives a relation between q.f.’s of
certain degree d and orthogonal polynomials for multidimensional
problems which is well known as it is a simple generalization
from one dimension.

THEOREM 3.1:
000000000000

If a formula S(f) is of degree d and its nodes belong
to the hypersurface p = 0 of order v (g d), p is
orthogonal to all polynomials of degreeg d-v.

There are more general results, see HIRSCH /25/ and STROUD /50/.
The efforts to find q.f.’s of given degree d of some

special kind with the fewest number of points has led to some

results: In 1960 STROUD /45/ showed that a formula of degree

d (intwo dimension) must contain at least n. [Z] + 1)

([2] + 2) points. A converse of this is due to MYSOVSKIKHlsélwmo

pointed out the equivalence of three facts:

1. The existence of a formula of degree 2-£ - 1 with

nmin<2e = 1) points.

2. A1l orthogonal polynomials of degree £ have N (2-£-1)
common zZeros.
3. Some characteristics H. i, J = 1,2,....... , -1 vanish,

ij’
- 1 -
Hig =2 T(Ppoion,i+1Pe-je1,5-1 = %Pe-i,iPe-3,;

Pe-i+1,i-1 Po-j-1,j+1)

These characteristics have already been defined by RADON /42/ for
¢ = 3., For € = 2 we have (see 2.2.5) that there is exactly one
three-point-formula of degree three iff H11 = I(pZOp02 - p%l) = 0.
The matrix of the characteristics Hij also plays an
important role for the calculation (coﬁ%r.) of g.f.”s with more
than Dmin (2£-1) points, RADON /42/, MOLLER /31/. Also other
matrices built up by the Hij may enter when g.f.®s are con-

structed, GUNTHER /18/.
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Upper bounds for the minimum number of points in q.f.’s
of given degree under different conditions on the size of the
points and the sign of the weights are given by several authors
which are cited in the subsequent sections.

A converse of the results of HIRSCH /25/ which ensures an. upper
Timit on the number of linearly independent polynomials of

degree ¢ vanishing in the nodes of a g.f. ofwdegree 2:-1 is

given below; we restrict ourselves to the case of £ = 4, the

q.f. S(f) having n = 14 nodes. It can be shown that there are

at most v = 2 linearly independent polynomials of degree

four vanishing in the Xi using a theorem of algebraic geometry
which is called "Cayley-Bacharach theorem" in SEMPLE a. ROTH /43/.

This result may be extended to lower n. It can be similarly
shown that v = 3 for n = 13 and n = 12. An analogue for general
n reads as follows: For given £2 4 and n;[z - % (£-1)(£-2)+1
we have vg¢ 2.

4. Methods using algebraic geometry

4.1 Using a polynomial basis of the nodes

It is generally assumed in this section that all con-
siderations are made in ¢/x,y/. This does not matter the
fact that one wants to have gq.f.?s with real points and real
(and rather positive) weights. Starting point of our in-
vestigations as in section 2. is a positive integral I(f)
on Pgéal(D) for which representations are determined in
the sense of 1.1 (that means q.f.’s of degree 22£ - 1); the
orthogonal polynomials are understood to be orthogonal with
respect to the scalar product (f,g) = I(f-g). If S(f) is such
a representation of I(f), S(f) = Z:Ajf(xj), let is be the
ideal of polynomials € €/x,y/ vanishing in all points Xj’
J=1,2,...... ,n. It is known that is has a finite basis,
using the theorems of 1.3 we conclude that is has a canonical
basis.

We now consider the problem how to calculate in some
cases a canonical basis of a gq.f. of degree 2°£-1 with a

relatively small number of points.
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An essential fact is the following: if (pl’ Posceeenes pr)
is a (non necessary canonical) basis of 15, the basis elements

PysPosceen-. P, are non independent in the sense that from

with aje £ [Xx,y], §j =1,2,..... ,r follows 3y = 0 for all j.
On the contrary there is a module of such relations as (4.1),
called "syzygy" in the classical textbooks on algebraic
geometry, see SEMPLE and ROTH /43/ or GRUBNER /12/, p.

In some cases it is possible to use syzygies or at least
one syzygy to calculate a canonical basis of is for some S(f).

The first to make use of this fact has been RADON /42/.
His conclusion was as follows: assume there is a q.f. of degree
five with seven points Xj' Then there are three linearly in-
dependent polynomials Pl’ P2 and P3 of degree three vanishing
in the Xj and being orthogonal, see theorem 3.1. These polyno-
mials satisfy

L,-P

with linear Lj, j =1,2,3. Another partitioning leads to
1t y-K2 = Ky (4.2)
where the Kj are linear combinations of the Pj -(4.2) allows

to calculate Kl’ K2 and K3. By equating the coefficients of
the power of order four we have

a-p21 + b-p12 + c.p03

- Ky = arpg  * bepyy + Copyg

K3 by definition is orthogonal to all polynomials of ordergl.

Assuming very general conditions on I(f) RADON showed that a,

b and ¢ may be determined such that K3 is also orthogonal to

x25 x-y and y2
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If K3 # 0, (4.1) permits to calculate the nodes Xj and
thereafter S(f). If K3 =0 or K3 = cl'K1 + cz-K2 with constants

Cq and Cos there is a common factor Q of degree two of K1 and

K2,

In this case any orthogonal polynomial Ké of degree three
linearly independent from K1 and K2 is vanishing in the
origin that means, using Noether’s Theorem in its simplest
form, Ké = Xx- A + y.B with quadratic A and B, this may be
interpreted as

Q-Ké = Q- (A-x + B-y) = A-K; + B-K
a second syzygy, independent from (4.2).

A similar procedure has used MULLER /33/ in a recent
paper to get gq.f.’s of degree 7 with 12 points and formulas
of degree 9 with 17 (real) points for some functionals. In
the second case there are used two syzygies to calculate
S(f) resp. the four basis elements of is’ one relation with
linear coefficients, the second with quadratic coefficient
polynomials. In addition MOLLER /33/ has given an extensive
part of a theory which considers formulas where all basis
elements are of same degree.

The examples quoted until here have basis polynomials
of same degree. An interpretation of formula (4.1.2) has
given rise to an investigation leading to formulas with basis
elements of distinct degrees. (4.2) means there are two
polynomials K1 and K2 of degrees three with 9 common zeros,
two of them being at infinity while K3 has only the finite
(seven) common zeros together with K1 and KZ' In /18/ the
author has used a similar idea to construct special 14-point
formulas of degree seven. The basis of is consists of two
orthogonal polynomials P1 and P2 of degree four and of a
third polynomial P3 of degree five orthogonal to all poly-
nomials of degree & 2. These basis elements are related by

Q1°P1 + Q2-P2 + L3~P3 = 0
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with quadratic Q1 and Q2 and constant L3- This means P1 and P2
have two common zeros at infinity, P3 = Ql-P1 + Q,°P, and S(f)
has as nodes the finite common zeros of P1 and P2. By definition
P3 is orthogonal to at maximum Tinear polynomials; by requiring
that P3 is orthogonal to x2, Xy and y2 also, P1 and P2 are
determined. A more detailed exposition of this idea is given
in GONTHER /18/.

No use of syzygies makes following theorem in 1969 in-
dependently given by MYSOVSKIKH /34/ and STROUD /48/.

THEOREM 4.1:
000000000000

Assume Pl(x,y) and P2(x,y) are two orthogonal polynomials
of degree £ with exactly £ common zeros (Xi’yi)’ i=1,
2, i, %, all of which are distinct and none of which
are at infinity.

Then there ecists a q.f. of degree 2.£-1 with the (X55¥5)
as points.

Several generalizations of this theorem are known admitting
multiple common zeros of P1 and PZ’ MYSOVSKIKH /35/ and /37/,
GONTHER /14/. Extensions to higher dimensions have been given
by FRANKE /9/ and MYSOVSKIKH /38/. The special case where P1
and P2 have common factors is treated in more detail later on.

4.2 Orthogonal polynomials with common factors

The preceding sections have been concerned with q.f.%s
with nodes being situated an irreducible algebraic curves.
One variant not yet treated has to look at reducible orthogonal
polynomials, the other deals with orthogonal polynomials with
common factors.

This latter aspect has been treated in GONTHER /18/, a
preliminary result is published in /16/.

Let P1 and P2 be defined as
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with degree P. = £, degree T, = s<¢, degree Q = £ - s.

We now describe how to get gq.f.’s of degree 2-& - 1,
using the finite common zeros of T1 and T2 and some points
on Q@ = 0.

Case a): The discrete common zeros of T1 and T, are all
of finite type. We then search for a third polynomial P3 of
degree m, m specified later on, vanishing in the common points
of T, =0 and T2 = 0 and having m-(£ - s) distinct common
zeros with Q. From theorem 1.3.4 follows that P, = U, T,+U, T

3 1 172 "2
degree Ui m- s for i = 1,2. If degree U1< degree Tl’ all

parameters of U1 and U2 are linearly independent, if this
inequality does not hold, it must be clarified how many para-
meters of the Ui are linearly independent. The available para-
meters are chosen so that P3 is orthogonal to all polynomials
of degree ¢ 2°€ - m - 1. By taking m sufficiently large, it can
be arranged to have free parameters enough to find solutions
different from the solutions U1 = Q, U2 = 0 or from U, = 0,
U2 = Q.

Case b): There must be made slight modifications if T

1

1

and T2 have common zeros at infinity. Here P, is of degree ¢ degree

Ui + degree Ti’ such that the common zeros o% P1 and P2 at
infinity must not be zeros of P3 (they may be).

An essential feature of the orthogonality relations is
that P3 by definition satisfies some conditions of orthogonality;
let degree g be one, degree P3 = £. Then we have that each
P3 = a-T1 + b-T2, degree a = degree b = 1, is orthogonal to
all polynomials P of the form P = Q-c with degree c£. €- 2 be-
cause

(P3.P) = (a:Ty 4 b-T,, Q c) =(T;°Q,a-c) +

3’

In case b) it must be guaranteed that P3 has no common
zeros with P1 and P2 at infinity.
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We remind ourselves that the syzygies are here

1-P2 = 0 and
a -P1 + b -P2 - Q-P3 = 0

Calculating q.f.”>s in the case of orthogonal polynomials
with common factors, a simplification is possible. One first

calculates the common zeros Xj’ J=1,..... of T1 and T2'
then by selecting appropriate Lagrangian polynomials the
weights A., j = 1,...... . Thereafter a representation of

2 : LI .
I(fy - Ajf(X,) as element [P2£-1(D) mod Q] is determined.

The following table contains a }Jist of all possibilities
entering in case a) for & = 6. The column "method A" contains
values attained using a method similar to that in section 5,
to get discrete mass distributions on Q = 0.

degree Q degree P3 maximal method A
number of points

1 7 32 32
2 7 30 29
3 6 27 28
4 6 28 29
5 6 31 30

A corresponding table for two orthogonal polynomials P1
and P2 of degree € = 6 with four common zeros at infinity,
v = degree Q of them being on Q = 0, looks as follows,

degree Q degree P3 maximal number of points
7 29
7 28

7 29
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5. Quadrature formulas with real nodes

5.1 A basic result

Starting point of the investigations of this section
is a theorem serving as a basis to concentrate the mass
distribution of special set functions G on the zero-curve
of orthogonal polynomials.

THEOREM 5.1.1:
00000000000000

2 P
If I(f)e E’ze_l(D)] and if q is orthogona] of degree
£, we also have I(f) e [P2e—l D) mod q] that means
I(f) can be written as

ﬁ f dG
D
with G e rba(D), 6(A) = 0 forAes(D), Ag{D - (g = 0)}

Proof: a) (Algebraic part) As for given orthogonal q and any
Py and Py from Pge_l(D) which obey pp = a'q *+ py with degree
ag€-1, we have I(p;) = I(p,), the definition of I(f) on
Pge_l(D) is equivalent to the prescription of an orthogonal

g and a definition of the functional for elements of P%e_l(D)

mod q.

b}y (Topological part) L1 = sz 1(D) mod q may be
regarded as L2 where L2 = Pge_l(Dﬁ {[)n = O)}. If Py

and P, € sz_l(D) have the same values for (x,y)e D!, we

conclude that Py = Pp = 2°Q, degree ag £ - 1 or Py = Py mod q
and by the orthogonality of g I(pl) = I(pz). //
We point out that this proof would be incorrect if a
statement as 2.2.2 did not hold. o
Remark: Theorem 5.1.1 states that I(f) e L2, not Tel,.
If in any case were IeLg, for each;aeLZ, p#0, there must
be a polynomial ple P2£ 1 (D s p° p + a-q, degree ag¢ £ - 1, p'3 0
in D. It can be seen by examples that this is impossible.
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. 2 ¢
5.2 Points from 3[P28_1(D)mod q]

In theorem 5.1.1 was shown that for every given g
orthogonal of degree £, representations of I(f) exist with
mass only on g = 0 in D. Another problem is now to find re-
presentations of I(f) with mass on g = 0 where the mass is
located in single points. Moreover the number of points shall
be small. This is established by repeating the preceding
analysis on sz_l(D)mod q.

Let q be irreducible in R and let the number of common
zeros of q = 0 with 2D be equal %' =2«'. We know from theorem
1.2.2 that there is a supporting polynomial P& L1 = sz_l(D)mod q
which is nonnegative on {q = 0 D}.
@ = 0 has at most (24 - 1).£ common points with q = 0,
only o' of them may be simple common points. From this we
conclude that we have not more than n = %((2! - 1) 4 -2« + 1)
+ 2" =.£2 -Eﬁ%l]+ " points which may contain mass. For ¢
even o' may be zero, for 2 odd &' 2, as has been pointed
out in theorem 1.3.4. We have shown the following
THEOREM 5.2.1:
000000000000000

If g is an orthogonal polynomial of degree £ with
respect to I(f), g irreducible in R and

1(f)e 8[P5,_(D)mod q]®, I(f) can be written as
weighted sum of point functionals involving at most
n = 8% - Eé—%—;] + &" points on q = 0 in D.

If g is reducible in R e.g. q = 91°9,, G and 9, in
R irreducible, ®§ may contain q% and/or q, as factor. In this
case a more detailed analysis has to be made considering
separately the contributions of [}gl_l(D)mod q1]° and of
Fgl_l(D)mod qz]o. It can be shown that the result on the
number n of points equally holds in this case.
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2 &
5.3 Elements from Int[PZl—l(D)mOd q]

If I(f)e Int [PSC—I(D)mOd q]o, theorem 1.2.3 is used instead
of theorem 1.2.2 to get a similar result as theorem 5.2.1. We
remind ourselves that theorem 1.2.3 states the following: there
are subsets D'e D such that I(f)ea[Pge_l(D')mod q]w.tming the
same arguments as in 5.2, a minor modification has to be made if
o' = 0 due the fact the curve q = 0 is 'cut off' and two simple
common zeros of P and g are introduced. For £ odd, the situation
2-x" is

]

remains unchanged. The general result with arbitrary o'

THEOREM 5.3.1:
00000000000000

For I(f)e Int [P%l_l(D)mod q]e, there is a representation of
I(f) with points on g = 0 in D with at most n = n(£, «")
points where

12 - f_%_l + " for £ odd,= (2-£L%-lform"=l.
n(d, ") = &% - % + " for ¢ even, «" >0,
12 - % + 1 for ¢ even, & = 0.

Inserting for «" the minimal possible values we find for
moderate £




5.4 A second approach

Upper bounds on the number of special gq.f.'s have been
given in 5.3. This results together with their proof are
noncofftructive. For this reason we give a second derivation
of the same statements, following the original ideas of KREIN
in /27/, which selects special q.f.'s, the parameters of which
satisfy special conditions including the moment conditions. This
is accomplished by the fact that each formula is the solution of
anextremum problem. By the (necessary) conditions for such an
extremum, a q.f. is uniquely determined. These conditions are
treated in more detail in section 7.

We begin again by assuming an orthogonal polynomial g of
degree £ is given. We then select a second arbitrary real poly-
nomial p of degree ¢, which is to have at least one zero at
infinity not together with g. Let b = b(p,q) be the number of
common zeros of p and g at infinity; b is not smaller than the
number ¢ of common zeros of the companion polynomials of p and q.
Assume b = ¢, then for £ odd, we have 0¢b g € - 1, the same holds
for £ even, excepted the case where a (gq) = 0, here 0¢bg£€ -2, as
in this case ¢ must be g £ - 2, otherwise p could not be real (!).

Let I(f) be from [Pgl_l(n)mod q]owith q irreducible in R.

Then let us calculate
Min SSQZdG

D
subject to the constraints on G
1. G (A) = 0 fordee(D), Ac{D - (q=0)}
2. G 0,
3. ﬁ x'ydde = 1(x'yJ) for i,i0, i + §§24 - 1 and
D

modulo q.

From theorem 1.1.2 follows that the set of possible G is not
empty, from theorems of Helly type is deduced that this problem
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has a solution. This solution Gerba (D) may be considered as
element € of the conjugate Lg to L3 defined as L3 = 1in
(P2 (D) p2) T with coordinates (c c c

2£-1 i i.' oo’ “lo’ “ol...... »
with o = I(x yJ) for 1,520, i + j¢2:& - 1, and ce = f§ p°dG, is
lying on aLg , as its coordinate cy cannot be decreased without
&
L3 .

As consequence of theorem 1.2.2 there is a supporting poly-

nomial Pely, P»0 in D' = {(x,y)e D / a(x,y) = 0}, ((Pda = 0 and ¢

has mass only where g and @ simultaneously vanish in D.

removing € from

The maximum possible number of points where G may have mass is

estimated using theorem 1.4.2.

THEOREM 5.4.1:

0000000000O0O00O

Assume 1. q is a real, orthogonal polynomial of degree £,

5 I(f){P%e—l(D)mOd q] irreducible in [R.

3. p is an arbitrary real polynomial of degree £
having at least one zero at infinity not together
with q.
4. g has a' = 2.a'' common points with gD.
5. 0¢b = b(p,q).
Then there is a gq.f. of degree 2+¢ - 1 with at most n(J¥)

nodes situated on g = 0 in D,
n(1) = 2% 4 an - % for b even,
2 " b+1
n(1) =¢° + a" - -»— for b odd.

Minimizing with respect to a" and b yields the following
theorem 5.4.2. We remind the fact that for £ even q may be chosen
as to have no real zeros with the line at infinity. If D is replaced

by a sufficiently large Dla D, we have a" = 0. In this case, b can
be chosen to be £ - 2.

For odd ¢, a" = 1 and b = £ - 1 is possible.
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THEOREM 5.4.2:

0000000000000CO

For I(f) e Int [Pgl-l(D) mod q]e, there is a representation
of I(f) with points on q = 0 in D with at most n points,

n = lz - % + 1 for £ even
2 -1

n =§£¢° - Ft 1 for £ odd.

Comparing theorem 5.4.2 with theorem 5.3.1 with minimal a",
there is found a slight difference for £ odd; we have n(theorem
5.4.2) = n(th. 5.3.1) + 1. This inconsistency can be removed by
showing that the mass points of the solutuons G_. and G for

. 2 2 ~oomin max
the problems min {fp dG and max !} p-dG strictly interlace.

By this can be demonstrated that the solution G contains no

min
boundary points (where q = 0 intersects aDl ). This point shall

not be outlined here.
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. 2 @
5.5 Points not & [Pze-l(D) mod q

If the assumption I(f) & [Pgt_l(D)mod é]eis not fulfilled,

the statements of 5.4 contain in several cases one additional
point. This has been briefly touched at the end of section 1.1
and is now discussed in more detail. In this case to have a well
posed problem, we search for

Min j.( p2 /dG/ ,
D

subject to the previously given constraints imposed on G excepted
the condition G>» 0. Here we find that the solution G of this
problem may be such that /G/ & 'QL;' or from Int L? If

/G/ & BL‘,;O , the theorems of 5.4 also hold. For /G/€ Int L:? ,
following well known ideas, see e.g. KARLIN a. STUDDEN /26/

4G/ may be written as positive weighted sum of two elements of

S'L;’ as
/6/ =X-F(X;) + (1 =-Xx)-1(f), 0<Aa<1,

where f(Xl) is an arbitrary chosen point functional with

X| € {q =0n aD}and 1(f) is the element of GL? being the
intersection point of 3L3‘ and the straight line joining f(Xl)
and /G/ in Lg . As G has the same mass points as /G/, we arrive

at the main result of this section

THEOREM 5.5.1:
00000000000000

L
To each integral I(f)e [Pg_e_l(D)] there is a q.f. of degree
24 - 1 with at maximum m = ¢ —-‘2’-+ 1 real points for L

even, with at most n = 22-%1- +1 for £ odd.

Such formulas exist for each orthogonal polynomial q of degree £
with minimal a'(q), the nodes of the formula being situated
on g = 0.
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6. Quadrature formulas with real nodes and positive weights

Results concerning the existence of q.f.'s with nodes and
positive weights are due to TCHAKALOFF /53/ and GONTHER /15/.
The first cited paper is considering a linear topological space
of continuous functions L(T) which are given on a compact topo-
logical space T. It is shown (theorem 1.1.2) that each element
€ 1® can be written as weighted sum of at most n point functionals
f(Xj), Jg=1,2,..... ,» N with positive weights and points Xje T
where n = dim L(T).

Assuming the elements of L(T) to be polynomials of degree
& 24-1 and T to be an ellipse D, in /15/ is demonstrated that there
are formulas containing at most 2 -12 - 3-4£ + 2 points from D and
positive weights (Tchakaloffs theorem:2 312 + £ points). The method
used in /15/ can be replaced by another one involving also an
extreme value formulation.

Let I(f) & [Pgl—l (Dﬂ ® and P a real polynomial of degree £.
Then we search for the minimum of

ff v

among all nonnegative Ge rba(D) with 5K;x1deG = I(x1yJ) for i,j20,
i+ j&2'4£ - 1. The solution of this problem is connected with the

existence of a supporting polynomial (see theorem 1.2.2) ¥ = min =
2

]

{ (x,y)e D/ ¥(x,y) = 0} may be of dimension zero or one. If this

+ 9,p_1 With g,, ; of degree ¢ 2-£ - 1. The set of points

set or a subset of this set is of dimension one the mass is once
more deduced to be in isolated points of D, see /15/.
REMARKS:
1) For spaces P%l(D) with even maximal degree 2-£, § must be
chosen to be of degree £ + 1 to get similar results.
2) A similar results also holds for the corresponding maximum
problem. In this case ¥ = ¥ = - @2

max

* 9op 1 this gene-
ralizes the theorem in one dimension, for the interva][b,lj,



- 38 -
which states

;V=Vmin=ﬂ(x-xj2=x o s
Jj=1
v

1]
3
o]
x
i
x
.
—
[y
}
x
~—

see KARLIN and STUDDEN/26/, p.1l11.

The following problem to date not has been investigated: Is
it possible to get better upper bounds for the maximum number of
points in gq.f.'s of a certain degree with real nodes by allowing
to have points with negative weights?
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7. The calculation of quadrature formulas

7.1 Interpolation on g = 0 and moment equations on q = 0
showing the purely algebraic point of view

Theorem 5.1.1 admits an interpretation of the following
type: Q.f.'s may be constructed as reduced interpolating q.f.'s,
if suitably chosen N points (N = dim L, L = P%e_l(D)mod q) on
q = 0 or generally spoken N linearly independent elements from
L are selected as nodes of an interpolating polynomial from L.
Integrating this interpolating polynomial yields a result, weaker

than theorem 5.2.4.

THEOREM 7.1.1:

00000000000000

To each orthogonal polynomial q of degree £ there is a reduced
interpolating q.f. of degree 2 - 1 with at most N = ¢ (iﬁafll)

(real) points on q = 0.

To reduce significantly the number n of nodes for gq.f.'s of
given degree 2-£ - 1, it could be tried to equate the number of
conditions to be fulfielled and the number of free parameters for L.
If this could be achieved, this seems not to be possible,

n = % (3:£ + 1 points points were necessary, & %.ez points.
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7.2 Algebraic conditions for the solution of the extremum
problem

We assume the following:

a) IG[P§1-1(D) mod q]$

b) q irreducible and a(g) = 0, this means q has
no real zeros at infinity, this includes £ is even.

A
Under these assumptions, the solution G of the minimum problem
min .yf p(x,y)dG
D

with p(x,y) of degree 2-£ and g not a factor of p (p = 0 real not

of dimension zero ! ), consists of discrete points X5 =(xi,y1)
containing mass Ai’ that means
A n
G = S(f) = E ALF(XS). (7.2.1)
i=1

The constraints imposed on all admissable G are

Aixsys = I(xkym)modu1o qg for kymp 0, k + mg2-£4 -1
=1 (7.2.2)
and
q(xi,yi) =0 for i=1,2,...., n (7.2.3)

modulo q in (7.2.2) means: there are no indices (k, m) and
(k', m') in this set, such that x5 y™ - xK' y™ -atq with poly-

nomic & .

As necessary conditions for the minimum problem with constraints
(7.2.2) and (7.2.3) we find

k.m _ N
P(x;sy;) + E temXiYy = 0 for i =1,2,..... N (7.2.4)

k,m



poo g

(7.2.5)
A :% (x5¥5) +g"'tk,mx$y'?'l: + s]._aq_(;_;_’y‘._) =0
(7.2.6)
i varies from 1 to n in (7.2.5) and (7.2.6).
- The sums in (7.2.4) - (7.2.6) over k and m contain all terms

entering in (7.2.2), AZ-(24 +1) - £-(£+1)/2 = 1-,Z-(3~,£+1) terms.
There are w = 4:n + %u£~(3.£+1) equations for the same number of

unknowns, the Ai’ Xis Yy t and S;-

k,m

Some remarks are necessary:

1. The variables tk mand s; are the Lagrangian multipliers of the

necessay conditions for the solution of the extremum problem.

2. Assume that n has any value. Generally, the number of original
moment equations ( = £-(2.£ + 1) ) is not consistent with the
number 3e.n of available parameters. The conditions (7.2.2)-
(7.2.6) represent a system of w(®& 5,5:n) equations for w un-

knowns. We add a table containing representative values

Yy 24 - 1 (LP-4+2)=n  An 3 (3£ +1)  w
2 3 4 16 7 23
4 7 14 56 26 82
6 11 32 128 57 185
8 15 58 232 100 332
20 39 382 1528 610 1757

3. It has been pointed out that the solution of the minimum problem
is of the form (7.2.1). A numerical solution of such a system
seems only to be possible if n is known; this is a partial

Justification of the results given in section 5.
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Equations (7.2.4) - (7.2.6) may be slightly modified, setting

pxay) = Play) ¢ 2 t X"

k,m ?
as
ﬂ(X1,y1) =0 (72.4')
A BL xy) s Q(xy.) = 0 (7.2.5")
Ai‘%% (Xiﬂi) + 51%34x1y1) =0 (7.2.6")

These equations are exhibiting the fact that the curves g = 0
and § = 0 have a common tangent ( for S; + 0) in (Xi’yi) or
another at least double common zero in this point (for S =0).
P is immediately 3jdentified to be the supporting polynomial
equally named P in sections 1.2 and 5.2 and points out the dual
way in which the relations (7.2.4) =— (7.2.6) might have been
developped. At this point the connection between optimization
problems, the necessary <conditions of which are (7.2.4) -
(7.2.6), and the separation theorem (theorem 1.2.2) can
immediately be seen. This connection plays on important role

in the proof of conditions for the existence of extremain general
optimization problems.

If in this section the assumption a(q) = 0 is dropped, we
must include intersection points Zj = Qj,§3) of @D and q = 0
with fixed coordinates. By each point ot this kind, the number
of conditions in (7.2.4) is augmented by one.
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7.3 Algebraic equations for the extremum problem with free nodes

This section is concerned with g.f.'s which are the solutions
of the e.g. minimization problem

Min gg‘ p(x,y)dG,
D

With p(x,y) of degree = 2-2,“x"y"de = I(x'y'y for i,jp 0,
D
i+ jg2£d -1, Gp0. Here the mass of the solution 6 must mot
be contained in discrete points. This may be achieved by a suitable
choice of p; if we have a positive definite companion polynomial
of p, § has mass only in discrete points. We first have as moment
conditions
n
Z Aixli(yr? = I(x%y™) for k + mg2-£ - 1, (7.3.1)
i=1 ksmga 0

and as Lagrangian conditions for the minimum problem with
constraints

_ E k,m _
Q(xi,yi) = p(xi,yi) + 4 tk,mxiyi =0 (7.3.2)
s
for i =1,2,....,n
2p _ 2 -1m _
5% (x5.y5) —;-E(x1,y1.) + Ek _ L A (7.3.3)
op 2 E
X.s¥:) = X.o¥. + t k. m-1
ay (x45¥5) ;5( i2Yi) o len™t XY =0 (7.3.4)
for i = 1,2,....,n

These are w = 3'n + (2.4 + 1) equations for the same number of
unknowns. As n&2-22 - 3-£ + 2, we have wg2-£22 + £ + 6.2 - 9.2 + 6
= 8.2 - 84 + 6.
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7.4 A numerical procedure

This section gives an idea how to calculate a solution of
the systems of equations given by (7.2.2) - (7.2.6) or by
(7.3.1) - (7.3.4), For simplicity we restrict ourselves to the
second set of equations. The fundamental idea of the proposed
procedure has been introduced for onedimensional problems by
GUSTAFSON /21/.

We assume that p is definite - then only discrete points
enter as solutions - and that n, the number of points,is known.
The equations to be solved are

n
§ K m _ k,m20
i=1
k m
p(x:s¥5) = P(Xis¥;4) +Z te,mivi = 0s (7.4.2)
k,m
i=1, s N
a0 d E k-1 m
(X.,¥:) = (X.sy.:) + t Kx: "y, = 0, (7.4.3)
DX i*Y ?£ i*Y Kom k,m "1 j
i=1, , N
a9 9 k m-1 _
a7y (x5.¥5) =-a—y9(x1.,y1.) + - te ™ iY; 0 = 0, (7.4.4)
i = 1,....,nN

We introduce a real parameterA‘() ¢ XA <& 1, and let Xi’yi’ Ai
and t, _ depend on A . For A =1, x,(1),..... are the solution
of (7.4.1) - (7.4.4). The values of X (0}, Y (0), Ai (0) and

ty 0 (0) are some reasomable estimations of the corresponding values

for A = 1. This may be achieved in the following manner:
A 2£ - th degree polynomial ¥(x,y), %#(x,y) » 0 in D, ¥V§ 0 is
introduced which has n zeros (xi(O), yi(O) y, i =1,2,....,n in D.

By the coefficients of W¥(x,y), the tem (0) are defined. The Ai(O)
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are either chosen arbitrary positive or are to satisfy n
K m(0) is defined.
3
The one-parameter family of (nonlinear) problems with

solution #(X) = {xi (A)s yi (A)s AN, tk’m()\)}
by (7.4.1) - (7.4.4) with

moment conditions. By this, I

Leom (A = Xl v (L= X)) Iy 0 (0)

instead of Ik m in (7.4.1).

3

Differentiating of (7.4.1) - (7.4.4) with respect to A

gives
n
dAy ¢ dx k=1 m K m-1 dvys
. Yig¢ _ _
= fa‘)“ G A gx v Ay o T T (9
and
af dx; + 9f dyj of dty.m _
3X, ax By dn TeE L TA = 0
(7.4.5)
for P
_ p 2 o
f = w,-;; and Iy and for i = 1,2,...,n.

Our solution 2£(1) is obtained by solving the initial value
problem given by (7.4.5) and #£(0) as initial value, (7.4.5) is
of implicit form

¥ - , #(0) given. (7.4.6)

2, (i) are vectors of dimension d = 3n + x , M is a dad-
matrix, x is the number of admissable tupels (k,m) in (7.4.1).

(7.4.6) may be solved using the Euler-Cauchy-method.

For each inte gration step, the matrix M, depending on all
dependent and independent variables, must be inverted. The
procedure has an additional characteristic feature. One may
subdivide the interval 0 ¢ A € 1, in equally or unequally

spaced subintervals Ij ; Aj—l &€ A < Aj, j=1,..... a1,
A, = O, A. =1, and after integrating (7.4.6) from Aj—l to )j’
the nonlinear system (7.4.1) - (7.4.4) may be solved iteratively

by NEWTON-RHAPSON- 1iteration for A = >\J., with the result #(\)
of the preceding inte.gration step as starking value.-
For some simple examples, this method has proved successful.
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(MANUSKRI PT)
Quadrature formutas with real points

by

Claus Gunther

The problem of constructing quadrature formulas ( = QFs) for
multidimensional problems which are exact for polynomials up
to a certain degree has initiated a number of

investigations,
1. People have generalized one~-dimensional algebraic
methods to get analoguous formulas of Gaussian type for
multidimensional problems; an example is the theorem of
MYSOVSKIKH 8] and STROUD |11}, published in 1969,

2. People have searched for the existence of certain
types of formulas, e. g. self-contained OFs or QOFs
whose _weights are positive (TCHAKALOFF [13]|, FRITSCH
111, GUNTHER |21).
There have been few contributions to the problem of finding
QOFs

RO

S(f) =E A FOXS)

L eq
with arbitrarv (real) weights, but which must have real
points Xg.
Let us recall what 1is known on this subject. We restrict

ourselves to two dimensions. There is a well known result of
STROUD |10], a little bit modified:

THEOREM 1:

L .

at least n(N) = +-4) + 2) weights Ay

If S(f) is of deyree N\?!fh real nodes X/, we have
positive.

For N = 3, MYSOVSKIKH |8] showed in 1969 that there is
always a OF of third degree with four real nodes.

Let us return to the above cited result of MYSOVSKIKH and
STROUD which can be stated as follows:
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THEOREM 2:

Assume two orthogonal polynomials Pl and P2 of
degree 1 have exactly 1 distinct common zeros Xg
none of which 1Is at infinity. Then we can
construct a 12-point-QF of degree 21 - 1 with the
Xi as points.

A result of myself 3] specifies all pairs of orthogonal
polynomials of second degree for a given integral which have
four real common zeros and the weights of the corresponding
IF suiting Theorem 2 are positive. | add for completeness,
that 1 =1, N = 1, is trivial.

This talk will contribute to the existence od QOFs with real
nodes. The method has partially been used by other authors (
KREIN|G], GONTHER 121).

We analyze in the following the <case 1 = 3. Let D be a
circle and

1(f) = jghf(x,y)dG, D: x* + y& = 1, x,y real,

with G an arbitrary nonnegative (, regular and bounded) set
function on D. We remember the following fact:

1. Each factor of an orthogonal polynomial vanishes also in
int D, STROUD |12}.

We make the following definition:

2. Let ﬂﬁ(D) be the linear topological space of polynomials
in v variables of degree { N with range D. Then we have, if
P1 is a real orthogonal polynomial of third degree and N1
and Q2 of degrees { 5 satisfy

Ql - 02 = a«Pl, degree a § 2,

and by this 1(Ql1) 1(02), that means e [P (D) mod Pl]*
not | €& [.......] Therefore | can be represented by
Stieltjes-integrals with a set function which has mass only
on (Pl = 0)aD.

3. We select a Pl of third degree, Pl orthogonal with
respect to |, which has at most 4 common zeros with 9@D. As
follows from Bézout's Theorem, WALKER ]1k|, Pl and 8D have
six common zeros , if x* + y& -1 IS not a factor of Pl, If
we set Pl = pgg *+ Pgg = x-( x& + y&) + terms of order 2,
using the basic orthogonal polynomials pgg.g oOf thlrd
degree, we have at most four real common zeros of Pl and ﬂD
at least two common zeros of Pl and @D are at "at infinity"
Examples:

&)

a)

f‘-\

\Q_’,I
-
i



PAGE 3

b, If we define for simplicity L to be PZ(D) mod P1l, we now
are concerned with the qéphlem to finJrrepresentations of
elements of L® resp. of L¥, the cone of nonnegative linear
functionals on L.

If Pl is reducible, Pl = Ql«Q2, theorems on the form of the
contributions from P2(D) mod (lg could be used. We know that
F%(D) mod Qg, if degree Qg is § 2, has a Tchebycheff system
of functions as basis. These theorems may be found in the
book of KARLIN and STUDDEN |5]. We remember that

Pe(D) mod 04 = RI(T), if Q; is linear,
with T the intervall of Qg = 0, lying in D and
ﬁ:(D) mod Qg = (1,sin x, cos x, sin 2X,........,cosNx},

if Qp is an ellipse.

lle do not make use of this fact and proceed in another wavy.
For that purpose we generalize a method described in detail
in KARLIN a, STUDDEN, which has originally been introduced
by M.G,KREIN |6]. A

Among all set functions resp. mass distributions G on Pl = 0
in D which satisfy

ggx"‘yida = 1 x* ), i,j 30, 1+ &5,
D

we search for a special mass distribution ( named G ), which
minimizes

ﬁ {c x2 + y2y V]2 dya)

D

Alsoc here we have selected the integrand ﬁ = ((x% + yz)y)l
in such a manner to have many common zeros with Pl at
infinity.

We deal first with the case | & Le.

If we introduce L1l to be 1in(L,0), the solution G Bf our
minimum problem can be regarded oas element of @L1®, the
boundary of the nonnegative cone L1V, that means that there

is ayellwith
fqrdc = 0, ¥30o0n ((PL=0)AD),

This fact holds independently from the other one that
representations of | may exist with v points, v > 6 with v -
6 points with negative weights. ‘

The consequence of this is that G has mass only in points
where ¥ = 0 in D, For this purpose we must investigate where
¥ can have value zero on Pl = 0 in D. From Bézout's theorem
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from Algebraic Geometry again we conclude that Pl and ¥ have
exactly degree Pl-degree ¥ = 18 common zeros provided these
polynomials have no common factor. Except the maximal four
points where both Pl and Q3 ( Qy = 0 equation of @D )
vanish, Pl and ¥ can have only (at least) double common
zeros. We conclude that among the 14 finite common zeros of
P1 and ¥, we have at most four simple common zeros. By this
there are at most nine points which may contain mass. These
points can be identified to be the points of a QF. of degree
5 for 1(f).

R UD that means_1 € L™, the minimum solution of our
problem Is not € ‘31_1‘a but |G] € int L1 o obtain an
analoguous representation of G, we draw in Ll a straight
line S through one of the point functionals f(Xg), where Xg
is a simple common zero of Pl and Qe ( in the terminology of
KARLIN and STUDDEN: points s OF index 1/2 )G@nd through
|Gl; the second intersection p0!nt of S with @L1¥ is a point
Y in L1%* of index § 7. Y may be written as

Y = E Agf(Yg),

< =g

with point functionals f(Yg4), where Yg € (P1 = 0). Either
this representation contains 9 points Y;, where one is Y or
in all other cases there are only 8 points in this formula.
By this also |G| and G can be assumed to be representable in
this form.

| F we take a sufficiently Jlarge circular region D',
containing D (, D arbitrarily compact), instead of D, Pl and

2D' have only two real common zeros. Now repeating the same
arguments, we see that at most two points with index 1/2 may
occur, in this case |G| and therefore G can be written

involving at most 8 points.

Because there are alwavs at least two 1.i. polynomials in x
and y of degree { 3 which are vanishing in the Yg and which
are orthogonal as is well known, we arrive at

THEOREM 3:

To each positive integral 1(f) on a compact region
D there 1is a QF. of degree 5 with at most 8§ real
points Xg. The Xg are among the common zeros of
two orthogonal polynomials Pl and P2 of degree 3.
One polynomial can be taken to be an orthogonal
polvynomial with the third order terms

PL = (a.x + bey){ x% + v& ) + . ..

where a and b are arbitrary real with fal + {bi >
0.

There remains to ask how are corresponding more geheral
results to be obtained with the same methods.
1. If I(f) is central-symmetric that means the mass of 1(f)
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is invariant with respect to translations around the center
of symmetry. UWe then find that for 1 even, the orthosgonal
polynomial
L
P1 = ( x% + y2)& + |
. . 3 &

consists of 1/2 circles and | €& [Py.4(D) mod P1]¥. For 1
arbitrary even, it can be shown that there is always a QF.

of degree 21 - 1 with at most 1& = 1 + 2 (real!) nodes on Pl
= 0. We have for low degrees

1 b 6 8 10
21 - 1 7 11 15 19
n 1n 32 58 92

An  analoguous result holds for 1 odd; we always have for
central symmetric region and weight function a OF. of degree
21 - 1 with at most 1% - 21 + L polints.

1 1 3 5 7 9 11
21 -1 1 5 9 13 17 21
n 1 7 19 39 67 103

The general case, arbitrary nonnegative weight function,
large circular region as before, permits similar results:

As not always holds | & [......]®, we generally need one
point more as in the preceding considerations.
For 1 even, we find n = 1L - 1 + 3, the same bound for the

maximum number of nodes is found for 1 odd.

As to the construction, for 1 odd, we can use RADONs |9]
procedure to find OQFs of degree 21 - 1, the points of which
are the common zeros of at least three orthogonal
polvnomials of degree 1. For 1 even, there are analoguous
methods, which are described in detall in GUNTHER |41 for 1
= L,
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