

K E R N F O R S C H U N G S Z E N T R U M

KARLSRUHE

Dezember 1976

KFK 2411

Abteilung Reaktorbetrieb und Technik Projekt Nukleare Sicherheit

Theoretische und experimentelle Untersuchungen zur Gasströmung in LWR-Brennstäben bei Kühlmittelverluststörfällen

E. Karb, G. Harbauer, W. Legner, L. Sepold, K. Wagner

GESELLSCHAFT FUR KERNFORSCHUNG M.B.H.

KARLSRUHE

Als Manuskript vervielfältigt

Für diesen Bericht behalten wir uns alle Rechte vor

GESELLSCHAFT FÜR KERNFORSCHUNG M.B.H. KARLSRUHE

KERNFORSCHUNGSZENTRUM KARLSRUHE

KFK 2411

Abteilung Reaktorbetrieb und Technik Ingenieurtechnik Projekt Nukleare Sicherheit

Theoretische und experimentelle Untersuchungen zur Gasströmung in LWR-Brennstäben bei Kühlmittelverluststörfällen

von

E.Karb, G.Harbauer, W.Legner, L.Sepold, K.Wagner

Gesellschaft für Kernforschung m.b.H., Karlsruhe

Zusammenfassung

Es ist denkbar, daß bei Kühlmittelverluststörfällen in Leichtwasserreaktoren ein Teil der Brennstäbe aufgrund des inneren Überdrucks und der vorübergehend erhöhten Wandtemperaturen Deformationen in Form lokal begrenzter Aufblähungen erleidet. Zur analytischen Behandlung dieser Art des Brennstabversagens muß der ortsabhängige Druckverlauf im Brennstab und damit der Gasstrom zwischen Spaltgasplena und aufblähender Stelle quantifiziert werden.

Im vorliegenden Bericht werden Rechenmodelle zur Bestimmung des Gasmassenstroms zusammengestellt und die Ergebnisse eigener Strömungsversuche angegeben, anhand derer die Rechenmodelle überprüft werden.

Es muß grundsätzlich unterschieden werden, ob der Brennstoff in Form zylindrischer Tabletten vorliegt oder ob die Tabletten durch Rißbildung in Bruchstücke zerfallen sind. Im ersten Fall können die üblichen Formeln für Spaltströmung benutzt werden, für den zweiten Fall wird gezeigt, daß sich der Massenstrom mit Modellen für Schüttungen von Partikeln recht gut abschätzen läßt. In beiden Fällen ist die Kenntnis oder Annahme von Geometrieparametern erforderlich, die den Gasstrom exponentiell beeinflussen. Theoretical and Experimental Investigations on Gas Flow in LWR Fuel Rods During Loss-of-Coolant Accidents

Abstract

In the course of a loss-of-coolant accident in a light-water reactor, a number of fuelrods may suffer cladding deformation in the form of local swelling caused by the internal overpressure and the temporarily elevated cladding temperatures. For the analytical treatment of this fuel failure mechanism, the space dependant history of the internal fuel rod pressure must be determined, which means that the gas flow between the fission gas plena and the swelling section must be quantified.

In this report models to calculate the gas flow in a fuel rod are compiled and the results of own gas flow experiments are given; these results were used for verification of the theoretical models. Two basic cases must be distinguished: (a) the fuel has the form of cylindrical pellets, and (b) the pellets have disintegrated into fragments by cracking. In the first case the common relations for fluid flow in gaps may be used. For the second case it is shown that a reasonably good assessment of the gas mass flow can be made with models developed for packed particle beds. In both cases knowledge or proper assumption of geometric parameters, which influence the gas flow exponentially, is required. Inhaltsverzeichnis

		<u>Seite</u>		
Zus	sammenfassung	I		
Abs	stract	II		
1.	Problemstellung	1		
2.	Grundlagen	3		
3.	Strömung im Spalt 3.1 Theoretische Überlegungen 3.1 1. Laminare Strömung	5 5 6		
	3.1.2 Turbulente Strömung3.1.3 Übergangsgebiet	8 10		
	3.2 Anwendung auf den Brennstab3.3 Experimentelle Untersuchungen3.3.1 Versuchsaufbau und -durchführung	12 15 15		
4.	3.3.2 Versuchsergebnisse Strömung durch Schüttungen	17 20		
	 4.0 Vorbemerkungen 4.1 Theoretische Überlegungen 4.1.1 Parameter 4.1.2 Bezeichnungen, Grundlagen 4.1.3 Berechnungsmodelle 4.1.4 Durchführung und Ergebnisse der Berechnungen 	20 20 21 24 30		
	 4.2 Experimentelle Untersuchungen 4.2.1 Durchführung 4.2.2 Versuchsergebnisse 4.3 Anwendung auf den Brennstab 	32 32 33 34		
5.	Schlußbemerkung	36		
,	Literatur Zusammenstellung häufig verwendeter Bezeichnungen Tabellen Abbildungen	37 39 41 59		
	Anhang			

1. Problemstellung

Im Genehmigungsverfahren von Leichtwasserreaktoren müssen u.a. auch angenommene Kühlmittelverluststörfälle, ausgelöst durch Bruch einer Hauptkühlmittelleitung, behandelt werden. Bei ungünstiger Kombination von Ort und Größe des Leitungsbruchs sinkt neben dem Druck auch der Mengenstrom des Kühlmittels durch den Reaktorkern und damit die Wärmeabfuhr aus den Brennstäben rasch ab. Dies kann aufgrund der gespeicherten, der Nachzerfalls- und der restlichen Spaltungs-Wärme zu einer starken Aufheizung der Brennstabhüllen führen, obwohl der Reaktor sofort selbsttätig abgeschaltet wird.

- 1 -

Durch die Aufheizung sinkt die Festigkeit der Stabhüllen, so daß es infolge des inneren Überdrucks durch Füll- und Spaltgase zum Aufblähen der Stäbe kommen kann, bevor die einsetzende Notkühlung den Temperaturanstieg beendet. Da die durch die Aufblähung verursachte Verengung der Kühlkanäle die Wirkung der Notkühlung behindern könnte, ist dieser Versagensmechanismus Gegenstand eingehender Untersuchungen.

Wie in Versuchen mit elektrisch beheizten Stabsimulatoren gezeigt wurde /1/, bleibt der Blähvorgang auf einen axial kleinen Stabbereich beschränkt, es bildet sich eine Beule. Beim Beginn des Beulvorgangs sinkt durch die Volumenzunahme der anfänglich axial ausgeglichene Gasdruck an der Beulstelle lokal ab, dadurch strömt Gas aus den übrigen Stabzonen nach, vor allem aus den Gasplena an den Stabenden. Die Größe dieser Gasströme bestimmt den zeitlichen Verlauf des Innendruckes an der Beulstelle und damit den Fortgang des Beulvorganges.

Zur rechnerischen Behandlung des Aufblähens muß daher der (zeitlich veränderliche) Gasstrom im Stab zwischen Plena und Beule in Abhängigkeit von den gegebenen Randbedingungen bestimmt werden. Der vorliegende Bericht beschreibt theoretische Überlegungen und Experimente zur Bestimmung der Gasströmung in einem Brennstab, die im Rahmen des Projekts Nukleare Sicherheit der GfK bei der Bearbeitung des Forschungsvorhabens 4237 durchgeführt wurden. Unmittelbarer Anlaß war hier die Dimensionierung des Plenums der Versuchsstäbe mit dem Ziel, trotz der gegenüber einem LWR-Brennstab auf etwa 1/7 verkürzten Länge der aktiven Zone einen möglichst realistischen Beulverlauf zu erzielen. 2. Grundlagen

Zu bestimmen ist der Gasmassenstrom mit durch ein mit Brennstoff gefülltes Hüllrohr bei gegebenen Randbedingungen. Zur Klärung des strömungstechnischen Problems genügt es, den Fall eines stationären Massenstroms bei konstanten Drücken P_0 vor und P_1 hinter dem Rohr zu behandeln (Abb. 2.1).

Aus der Grundgleichung

$$wdw + vdp + dR + gdz = 0$$
 (2.1)

läßt sich bei Vernachlässigung des Beschleunigungsgliedes und des Lagenenergie-Terms für den Massenstrom folgende Beziehung ableiten (siehe Anhang):

$$\dot{m}^{2} = \frac{P_{0}^{2} - P_{1}^{2}}{R_{0}^{1} \frac{\lambda(x) T(x)}{d_{h}(x) \cdot F^{2}(x)} dx}$$
(2.2)

dabei bezeichnen

W	Geschwindigkeit in x-Richtung (Rohrachse)
v	spez. Volumen
wdw	Beschleunigungsarbeit
vdp	Expansionsarbeit
dR	Reibungsarbeit - bezogen auf die Masse
gdz	Lagenenergie
m R	Massenstrom Gaskonstante
λ (x)	Widerstandsbeiwert
т(х)	Temperatur des Gases
d _h (x)	hydraulischer Durchmesser des Strömungsquerschnitts
F(x)	Größe des Strömungsquerschnitts
1	Länge des betrachteten Rohrstücks

Für die weiteren Betrachtungen in diesem Bericht werden die Größen F, d_h , T und λ als unabhängig von der axialen Ortskoordinate x angesehen. Dies kann ohne Einschränkung der Allgemeingültigkeit geschehen, wenn die jeweiligen Betrachtungen nur auf ein kurzes Rohrstück $\Delta x = 1$ angewendet werden.

Die praktische Berechnung für die gesamte Rohrlänge L bei axial veränderlichen Größen erfordert dann entsprechende Integrationsverfahren.

Gleichung 2.2 vereinfacht sich unter diesen Voraussetzungen zu

$$\dot{m}^{2} = \frac{d_{h} \cdot F^{2}}{1' \lambda \cdot R \cdot T} \quad (P_{0}^{2} - P_{1}^{2})$$
(2.3)

Diese Beziehung kann auf die üblichen Druckverlustformeln zurückgeführt werden, wie im Anhang gezeigt wird.

Mit den Beziehungen (2.2) bzw. (2.3) ist die Bestimmung des Massenstroms reduziert auf die Bestimmung des dimensionslosen Widerstandsbeiwertes λ aus den gegebenen Randbedingungen des Brennstabes.

Es sind grundsätzlich zwei Fälle zu unterscheiden:

- A) Der Brennstoff liegt im Hüllrohr in Form von zylindrischen Tabletten (Pellets) vor. Es ist dann die Strömung in einem SPALT zu behandeln: Abschnitt 3.
- B) Die Brennstoffpellets sind durch längeren Betrieb im Reaktor zu Bruchstücken zerfallen. Die Strömungsform ist dann weniger genau definiert; es wird hier der Versuch gemacht, sie mit den Beziehungen für SCHÜTTUNGEN von Partikeln zu behandeln: Abschnitt 4

3. Strömung im Spalt

3.1 Theoretische Überlegungen

Der Strömungsquerschnitt im Brennstab wird gebildet durch den Ringspalt zwischen dem Innendurchmesser D der Hülle und dem Außendurchmesser d der Pellets, wobei Pellet- und Hüllenmittelpunkt um die Exzentrizität E gegeneinander verschoben sein können (siehe Skizze).

Hüllen-Innendurchmesser D = 2 RPellet-Außendurchmesser d = 2 rExzentrizität E

Der Literatur (z.B. /2/, /3/, /4a/) ist zu entnehmen, daß λ je nach Strömungsform von unterschiedlichen Parametern abhängt. Diese Parameter sind:

Re	die	Reynolds-Zahl
k d _h	die	relative Rauhigkeit der benetzten Oberflächen
E	die	Exzentrizität des Ringspalts
D, d	die	Abmessungen des Spalts

Dabei gilt:

$$d_{h} = \frac{4 F}{U} = \frac{4 \frac{\pi}{4} (D^{2} - d^{2})}{\pi (D + d)} = D - d$$
 (3.1)

$$\operatorname{Re} = \frac{\mathbf{w} \cdot \mathbf{d}_{h}}{\nu} = \frac{\dot{\mathfrak{m}} \cdot \mathbf{d}_{h}}{\rho \cdot \mathbf{F} \cdot \nu} = \frac{4 \dot{\mathfrak{m}}}{\pi (D+d) \cdot \eta}$$
(3.2)

U -= benetzter Umfang

- v = kinematische Zähigkeit
- η = dynamische Zähigkeit

 $\eta = v \cdot \rho$

Es sind drei Gebiete zu unterscheiden:

- laminare Strömung¹⁾
- Übergangsgebiet
- turbulente Strömung

3.1.1 Laminare Strömung

Im Gebiet laminarer Strömung¹⁾ gilt

 $\lambda = \lambda$ (Re, $\frac{E}{R-r}$, $\frac{R}{r}$),

die Rauhigkeit hat keinen Einfluß auf den Strömungswiderstand.

Nach /3/, /4a/ u.a. kann für den Widerstandsbeiwert gesetzt werden:

$$\lambda = \mathcal{J} \cdot \frac{64}{\text{Re}}$$
(3.3)
mit $\mathcal{J} = \mathcal{J} \left(\frac{E}{R-r}, \frac{R}{r}\right)$ gemäß Abb. 3.1

1) zur Begrenzung des laminaren Gebiets siehe Abschnitt (3.1.3)

In unserem Fall ist R/r \approx 1, $\mathcal S$ liegt demnach zwischen

 $\mathcal{Y} = 1,5$ bei $\frac{E}{R-r} = 0$ (zentrischer Spalt) und $\mathcal{Y} = 0,6$ bei $\frac{E}{R-r} = 1$ (maximale Exzentrizität)

Im ersten Fall ergibt sich

$$\lambda = \frac{96}{\text{Re}} , \qquad (3.4)$$

eine Beziehung, die - wie Reimann /5/ zeigt - für den ebenen Spalt abgeleitet werden kann. Die Funktion (3.3) ist in Abb. 3.2 für die Werte $\mathcal{Y} = 1,5/1/0,6$ eingetragen (Geraden (1a), (1b), (1c)).

Setzt man (3.3) in (2.3) ein, so folgt:

$$\dot{m}^2 = \frac{d_h \cdot F^2 \cdot Re \cdot (P_0^2 - P_1^2)}{1 \cdot f \cdot 64 \cdot R \cdot T}$$

mit (3.1) und (3.2) ergibt sich

$$\dot{m}^{2} = \frac{(D-d) \pi^{2} (D^{2}-d^{2})^{2} \cdot 4 \dot{m} \cdot (P_{0}^{2}-P_{1}^{2})}{1 \cdot 16 \cdot \mathcal{G} \cdot 64 \pi (D+d) \eta R}$$

und mit $D^2 - d^2 = (D - d) (D + d)$ schließlich

$$\dot{m} = \frac{\pi (D-d)^{3} (D+d)}{256} \cdot \frac{1}{\mathcal{G}} \cdot \frac{1}{\eta R T} \cdot (P_{0}^{2} - P_{1}^{2})$$
(3.5)

Für den gesuchten Massenstrom können aus vorstehender Beziehung u.a. folgende Eigenschaften abgelesen werden:

 m ist von der 3. Potenz des hydraulischen Durchmessers
 (D - d) abhängig und reagiert damit gerade in dem hier betrachteten Fall mit D/d ≈ 1 sehr empfindlich auf Änderungen der Geometrie. So wird in /5/ gezeigt, daß die elastische Aufweitung der Hülle durch den Innendruck nicht immer vernachlässigt werden kann.

- Der Massenstrom ist bei zentrischer Lage der Pellets (\mathcal{G} = 1,5) kleiner als bei exzentrischer ($\mathcal{G} < 1,5/\mathcal{G}_{min} = 0,6$). Über die Größe der Exzentrizität der Pellets zum Hüllrohr gibt es im allgemeinen keine Information. Allerdings werden bei vertikal angeordneten Brennstäben die Pellets nicht alle gleich liegen, sondern eher statistisch verteilt sein, so daß ein mittlerer \mathcal{G} -Wert zu erwarten ist.
- Wegen der Abhängigkeit von (P₀² P₁²) nimmt der Massenstrom bei gleicher Druckdifferenz zwischen Rohrein- und -austritt mit wachsendem Druckniveau zu:

$$\dot{\mathbf{m}} \sim \mathbf{P}_{O}^{2} - \mathbf{P}_{1}^{2} = (\mathbf{P}_{O} - \mathbf{P}_{1}) (\mathbf{P}_{O} + \mathbf{P}_{1})$$
$$\Delta \mathbf{P} = \mathbf{P}_{O} - \mathbf{P}_{1} = \text{const.}$$
$$\dot{\mathbf{m}} \sim 2\Delta \mathbf{P} \mathbf{P}_{O} - (\Delta \mathbf{P})^{2}$$

3.1.2 Turbulente Strömung

Bei glatten Oberflächen ist im Gebiet turbulenter Strömung der Widerstandsbeiwert λ nur von Re abhängig:

 $\lambda = \lambda$ (Re) (glatte Oberfläche)

Geometrieeinflüsse sind, wie Abb. 3.3 zeigt, sehr gering Nach Prandtl (siehe /3/) gilt die Beziehung:

$$\frac{1}{\sqrt{\lambda}} = 2 \lg \frac{\text{Re } \sqrt{\lambda}}{2,51}$$
 1) (3.6)

1) lg = dekadischer Logarithmus

Näherungen für (3.6) sind die expliziten Beziehungen

$$\lambda = \frac{0.3164}{4} \qquad (3000 \le \text{Re} \le 10^5) \qquad (3.7)$$

$$\sqrt{\text{Re}} \qquad \text{nach Blasius}$$

oder

$$\lambda = \frac{0.309}{(\lg \text{ Re}/7)} 2 \qquad (5000 \leq \text{ Re} \leq 10^8) \qquad (3.8)$$
nach Colebrook

Beziehung (3.6) ist in Abb. 3.2 als Kurve Nr. (2) eingetragen.

Bei <u>rauhen Oberflächen</u> ist der Widerstandsbeiwert im Gebiet voll ausgebildeter Turbulenz von der Reynolds-Zahl unabhängig und nur durch die relative Rauhigkeit $\frac{k}{d_h}$ bestimmt:

$$\lambda = \lambda \left(\frac{k}{d_{h}}\right) \qquad (rauhe Oberfläche)$$

Nach /3/ gilt die Formel

$$\lambda = \frac{0,25}{(\lg 3,715 \quad \frac{d_{\rm h}}{k})^2}$$
(3.9)

wenn Re ≥ Re_r, wobei

$$\operatorname{Re}_{r} = 400 \frac{d_{h}}{k} \quad \lg (3,715 \frac{d_{h}}{k})$$
 (3.10)

was gleichbedeutend ist mit der Beziehung

$$\operatorname{Re}_{r} = \frac{200}{\sqrt{\lambda}} \cdot \frac{d_{h}}{k}$$
(3.10a)

In Abb. 3.2 sind die Grenzkurve Re = Re_r (4) und einige Geraden (3) nach Gleichung (3.9) für verschiedene Werte der relativen Rauhigkeit $\frac{k}{d_h}$ eingetragen. Da λ hier nicht mehr von Re abhängt, bezeichnet man das Gebiet rechts der Grenzkurve Re = Re als das Gebiet des quadratischen Widerstandsgesetzes:

Der Druckverlust bei Strömungen mit vernachlässigbaren Dichteänderungen ist hier dem Quadrat der Strömungsgeschwindigkeit proportional,wie aus Gleichung (A 9) im Anhang abgeleitet werden kann.

3.1.3 Übergangsgebiet

Im Übergangsgebiet zwischen der Grenzkurve Re = Re_r einerseits und den Beziehungen für glatte Oberflächen bzw. laminare Strömung andererseits hängt der Widerstandsbeiwert erwartungsgemäß sowohl von Re als auch von der Rauhigkeit der Oberflächen ab:

$$\lambda = \lambda$$
 (Re, $\frac{k}{d_h}$) (Übergangsgebiet)

Für <u>technische</u> (d.h. ungleichförmige) Rauhigkeit gilt nach Colebrook (siehe /3/) im Übergangsgebiet die Beziehung

$$\frac{1}{\sqrt{\lambda}} = -2 \, \lg \left(\frac{2,51}{\text{Re} \sqrt{\lambda}} + \frac{k}{d_{h} \cdot 3,715} \right)$$
(3.11)

In Abb. 3.2 sind einige Kurven vorstehender Funktion für verschiedene Rauhigkeitswerte d_h/k eingezeichnet: (5). Sie münden auf der Grenzkurve (4) gemäß (3.10) in die entsprechenden Geraden (3) für ausgebildete Turbulenz nach Gleichung (3.9).

Die obige Übergangsfunktion ist nach /3/ zu benutzen, wenn

mit

$$\operatorname{Re}_{g} \approx \frac{d_{h}}{k} \cdot \lg 0, 2 \frac{d_{h}}{k}$$

$$\operatorname{Re}_{r} \operatorname{gemäß} (3.10)$$

$$(3.12)$$

Für große relative Rauhigkeiten $(\frac{k}{d_h} > \frac{1}{200})$ gelten die Kurven der Übergangsfunktion demnach bis zum Schnittpunkt mit den Geraden (1) für laminare Strömung, wobei die übliche Grenze zwischen laminarem und turbulentem Gebiet, Re_{krit} = 2300, hier unterschritten werden kann. Es ist also bei entsprechend großer Rauhigkeit auch unterhalb von Re_{krit} mit λ -Werten gemäß der Übergangsfunktion (3.11) zu rechnen.

Je nach Exzentrizität (\mathscr{G} -Wert gemäß Abb. 3.1) findet der Übergang von der laminaren Beziehung (3.3)

$$\lambda = \mathcal{Y} \cdot \frac{64}{\text{Re}}$$

auf die Funktion (3.11) bei technisch rauhen Oberflächen formal bei verschiedenen Re-Zahlen statt.

Im Sonderfall <u>gleichförmiger Rauhigkeit</u> (sog. "Sandrauhigkeit" nach Nikuradse /3/) ergibt sich ein anderer Verlauf der Übergangsfunktion, Abb. 3.4:

Steigert man - aus dem laminaren Gebiet kommend - die Re-Zahl, dann folgt bei gleichförmiger Rauhigkeit der Widerstandsbeiwert λ länger der Geraden $\lambda = \mathcal{G} \cdot \frac{64}{\text{Re}}$, um dann nach einem ausgeprägten Minimum bei Re \approx Re_{krit} sehr schnell auf höhere Werte gemäß Gleichung (3.6) zu springen. Beginnend bei Re = Re_{max} erfolgt dann ein Übergang auf Funktion (3.9), der bei Re = Re_r (gemäß 3.10) abgeschlossen ist. Der Übergang kann allerdings nicht nach Gleichung (3.11) berechnet werden.

Nach /3/ gilt für Remax:

$$Re_{max} = 28, 2 \frac{d_{h}}{k} lg (5, 6 \frac{d_{h}}{k})$$
(3.13)

Bei quantitativer Auswertung von Abb. 3.4 beachte man die von der heute allgemein üblichen Darstellung abweichenden Rauhigkeitsparameter nach Nikuradse: R = Rohrradius, $K_s = Durchmesser$ von auf die Rohrinnenwand geklebten Sandkörnern.

3.2 Anwendung auf den Brennstab

Während die strömungstechnischen Zusammenhänge an den oben gezeigten Funktionen $\lambda = \lambda$ (Re) am besten zu überblicken sind, besonders bei log/log-Darstellung, kommt es bei der praktischen Anwendung auf die Bestimmung des Massenstroms man.

Hierzu gelten folgende Überlegungen allgemein:

Aus (2.3)
$$\dot{m}^2 = \frac{1}{\lambda} \frac{d_{\rm h} \cdot F^2}{1 R T} (P_0^2 - P_1^2) = \frac{1}{\lambda} \cdot A$$

 $\dot{m} = \sqrt{\frac{A}{\lambda}}$ (2.3a)

und (3.2) Re =
$$\mathring{m} \frac{a_h}{F \cdot \eta}$$
 = $\mathring{m} \cdot C$
Re² = $\mathring{m}^2 \cdot C^2$ (3.2a)

läßt sich die für alle Strömungsregime geltende Beziehung

$$\lambda = \frac{1}{\text{Re}^2} \cdot A \cdot C^2$$
 (3.14)

aufstellen. Sie lautet ausgeschrieben

$$\lambda = \frac{1}{\text{Re}^2} \cdot \frac{d_h^3}{\eta^2 \, 1 \, \text{R T}} \cdot (P_0^2 - P_1^2) \qquad (3.14a)$$

und stellt im $\log 1/\log$ Re-Diagramm eine Gerade mit der Steigung - $\frac{1}{2}$ dar.

Der Schnittpunkt dieser Geraden mit der für das jeweilige Strömungsregime geltenden Beziehung $\lambda_{i} = \lambda_{i}$ (Re_i) liefert ein festes Wertepaar λ_{s} , Re_s aus dem nach (2.3) oder (3.2) der Massenstrom m bestimmt werden kann.

So ergibt sich beispielsweise aus (3.6) für <u>glatte Oberflächen</u> und turbulente Strömung:

(3.6):
$$\frac{1}{\sqrt{\lambda}} = 2 \, \lg \, \frac{\text{Re } \sqrt{\lambda}}{2,51}$$

mit (3.14)

$$\lambda = \frac{1}{\text{Re}^2}$$
 . A . C² $\rightarrow \sqrt{\lambda}$. Re = C . \sqrt{A}

die Funktion

$$\frac{1}{\sqrt{\lambda}_{s}} = \frac{\text{Re}_{s}}{\text{C} \cdot \sqrt{A}} = 2 \, \lg \frac{\text{C} \cdot \sqrt{A}}{2,51}$$

und daraus der Massenstrom

$$\dot{m} = \frac{\sqrt{A}}{\sqrt{\lambda_s}} = \sqrt{A} \cdot \lg \left(\frac{C \cdot \sqrt{A}}{2,51}\right)^2$$
(3.15)

oder ausgeschrieben

$$\dot{m} = F \cdot \sqrt{\frac{d_{h}}{1 R T}} \left(P_{O}^{2} - P_{1}^{2} \right) \cdot 1g \frac{d_{h}^{3} \left(P_{O}^{2} - P_{1}^{2} \right)}{2,51^{2} \eta^{2} 1 R T} (3.15a)$$

Aus (3.9) für <u>rauhe Oberflächen bei voller Turbulenz</u> folgt mit (3.14)

$$\lambda = \frac{0.25}{(\lg 3.715 \frac{d_{h}}{k})^{2}} = \frac{1}{Re^{2}} \cdot A \cdot C^{2}$$
Re = 2 C . \sqrt{A} . lg (3.715 $\frac{d_{h}}{k}$)
 $\dot{m} = \frac{Re}{C} = 2 \sqrt{A}$. lg (3.715 $\frac{d_{h}}{k}$) (3.16)

oder [

$$\dot{m} = 2 F \sqrt{\frac{d_h}{1 R T} (P_0^2 - P_1^2)} \cdot lg (3,715 \frac{d_h}{k})$$
 (3.16a)

Auch die Kurven für die Übergangszone nach (3.11) lassen sich mit (3.14) schneiden:

(3.14) Re
$$.\sqrt{\lambda} = C .\sqrt{A}$$

in (3.11) $\frac{1}{\sqrt{\lambda}} = -2 \lg \left(\frac{2.51}{\text{Re }\sqrt{\lambda}} + \frac{k}{d_h \cdot 3.715}\right)$

liefert

$$\frac{1}{\sqrt{\lambda}} = \frac{\dot{m}}{\sqrt{A}} = -2 \, \lg \, \left(\frac{2,51}{C \cdot \sqrt{A}} + \frac{k}{d_{h} \cdot 3,715} \right)$$
$$\dot{m} = \sqrt{A} \left[-2 \, \lg \, \left(\frac{2,51}{C \cdot \sqrt{A}} + \frac{k}{d_{h} \cdot 3,715} \right) \right] \quad (3.17)$$

oder ausgeschrieben

$$\dot{m} = F \sqrt{\frac{d_{h} (P_{0}^{2} - P_{1}^{2})}{1 R T}} \left[-2 \lg \left(\frac{2,51 \eta}{d_{h} \sqrt{\frac{d_{h} (P_{0}^{2} - P_{1}^{2})}{1 R T}}} + \frac{k}{d_{h} \cdot 3,715} \right) \right]$$

(3.17a)

Der Vollständigkeit halber sei an dieser Stelle nochmals die bereits in Abschnitt 3.1.1 nach dem gleichen Verfahren abgeleitete Beziehung (3.5) für den <u>Spalt bei laminarer Strömung</u>, in etwas allgemeinerer Form, aufgeführt:

$$\dot{m} = \frac{d_{h}^{2} \cdot F}{64 \ 1} \cdot \frac{1}{\mathcal{Y}} \cdot \frac{P_{0}^{2} - P_{1}^{2}}{\eta \ R \ T}$$
(3.5a)

Sind F, d_h oder T axial nicht konstant, aber als Funktionen von X gegeben, dann muß, wie bereits früher erwähnt, abschnittsweise gerechnet und danach entsprechend integriert werden, wenn nicht unter Verwendung von (2.2) eine geschlossene Beziehung für die gesamte Rohrlänge L angebbar ist.

3.3 Experimentelle Untersuchungen

Zur Anwendung der im Vorangegangenen beschriebenen Formeln auf den Ringspalt zwischen Brennstoff-Pellet und Brennstabhülle muß für das laminare Gebiet \mathcal{G} , für das Übergangs- und das turbulente Gebiet $\frac{k}{d_h}$ zahlenmäßig bekannt sein.

 \mathcal{Y} wird gemäß Abb. 3.1 außer vom Pelletaußen- und Hülleninnendurchmesser auch von der Exzentrizität E bestimmt; diese ist bei senkrechter Lage des Brennstabs von Pellet zu Pellet verschieden. Daher muß, wie oben schon erwähnt, ein mittlerer \mathcal{Y} -Wert für den gesamten Brennstabschnitt 1 bestimmt werden.

Die Rauhigkeit k einer Oberfläche kann zwar gemessen werden, die Strömung im Brennstab wird jedoch durch drei verschiedene Rauhigkeiten beeinflußt, deren Zusammenwirken nicht bekannt ist:

- Die Rauhigkeit der Innenwand der Hülle,
- die Rauhigkeit der Pelletoberfläche,
- die durch den Versatz der Pellets zueinander entstehenden Stufen im Strömungsweg.

Es wurden daher Versuche durchgeführt mit dem Ziel, neben einer allgemeinen Überprüfung der Anwendbarkeit obiger Formeln auf die Verhältnisse im Brennstab Anhaltswerte für \mathcal{G} und k zu erhalten.

3.3.1 Versuchsaufbau und -durchführung

Der Versuchsaufbau ist schematisch in Abb. 3.5 dargestellt, die Teststrecke etwas detaillierter in Abb. 3.6.

Das Meßgas wurde aus Gasflaschen über die üblichen Reduzierventile zur Teststrecke geleitet, nach dieser über ein Regelventil und eine Beruhigungsstrecke zum Schwebekörperdurchflußmesser (F), aus dem es - mit einer Ausnahme - in die Atmosphäre abgegeben wurde. Diese Ausnahme bildeten die Messungen mit Uranoxid-Pellets, bei denen dem Durchflußmesser ein Filter nachgeschaltet wurde, um möglicherweise anfallenden Abrieb aufzufangen.

Der Differenzdruck über die Teststrecke wurde auf Manometern (PO/P1), bei kleinen Werten mit einer Bartonzelle (Δ p) gemessen. Die Pelletsäule war an beiden Seiten der Teststrecke über die Anschlüsse zur Druckmessung hinaus verlängert, um Einflüsse der Anlaufstrecken zu eliminieren und um Fehlmessungen durch größere Querschnittsänderungen zu vermeiden.Die Messung des Atmosphärendrucks (P_{atm}) war erforderlich zur genauen Berechnung des Massenstroms aus den gemessenen Volumenströmen.

Es wurden nur stationäre Messungen durchgeführt, und zwar in folgenden Gruppen:

Nr.		Brennstoff-Simulator	Meßgas
AP	1	Al ₂ 0 ₂ -Pellets	Не
AP	2	Al ₂ O ₃ -Pellets	Ar
AS	1	Al ₂ O ₃ -Stangen	He
AS	2	Al ₂ O ₃ -Stangen	Ar
UP	1	UO2-Pellets	He
UP	2	UO2-Pellets	Ar

<u>Tabelle 3 - 1</u>

Die Gruppen AP 1 bis AS 2 wurden in mehrere Versuchsreihen unterteilt. Zwischen den einzelnen Reihen wurde der Brennstoff-Simulator umgeladen oder wenigstens die Teststrecke bewegt, um die momentane Anordnung der Simulatoren zu ändern.

Die wesentlichen Daten der Anordnungen und die bei der Auswertung benutzten Gasdaten sind in Tab. 3 - 2 zusammengestellt. (Diese und andere Tabellen sind am Ende des Berichts angeordnet.)

3.3.2 Versuchsergebnisse

Die Ergebnisse aller Versuche nach Tab. 3 - 1 sind in Tab. 3 - 3 und in den Abb. 3.7 bis 3.9 dargestellt:

Abb. 3.7 zeigt in der üblichen $\log \lambda / \log \text{Re-Darstellung}$ die Ergebnisse der Versuchsgruppen UP 1 und UP 2 mit $\underline{\text{UO}}_2 \underline{-}\underline{\text{Pellets}}$: Im laminaren Gebiet folgen die Meßwerte deutlich der theoretischen Beziehung $\lambda = \frac{64}{\text{Re}} \cdot \mathcal{G}$ mit \mathcal{G} -Werten zwischen 1 und 1,5. Bei Re-Zahlen zwischen 600 und 1000 beginnt eine Übergangsfunktion entsprechend (3.11), die auf eine technisch rauhe Oberfläche mit relativer Rauhigkeit von $\frac{k}{d_h} = \frac{1}{200}$ bis $\frac{1}{100}$ schließen läßt. Mit $d_h = 0,164$ mm (drucklos) folgt daraus für die mittlere absolute Rauhigkeit des Systems Hüllrohrwand/Pelletoberfläche/Pelletversatz:

 $k \approx 0,8$ bis 1,6 μ m

Die Rauhigkeit der Hüllrohrwand beträgt nach Messungen des Herstellers $R_t \approx 1.2 - 1.7 \mu m$, die der UO₂-Pellets nach eigenen Messungen 5 - 7 μm (gemessen mit Lichtschnittmikroskop, siehe Abb. 3.10). Demnach scheint die mittlere Rauhigkeit des Strömungskanals durch die (glattere) Hüllrohrwand bestimmt zu sein.

Abb. 3.8 zeigt die Ergebnisse der Versuchsgruppen AP 1 und AP 2 mit $\underline{Al}_2\underline{O}_3\underline{-Pellets}$. Dabei sind die verschiedenen Meßreihen durch unterschiedliche Symbole dargestellt. Im laminaren Gebiet ergibt sich

$$\mathcal{S} = 1$$
 bis 1,5

(mit einigen wenigen Werten bis $\mathcal{Y}_{\min} = 0,8$).

Die turbulente Abweichung von diesem Verlauf beginnt bei etwa Re = 600 und hat die Form gemäß (3.11) für technisch rauhe Oberflächen. Bis zu Re $\approx 5 \cdot 10^3$ liegt die aus den Meßwerten gemäß (3.11) ablesbare relative Rauhigkeit zwischen

$$\frac{k}{d_{h}} = \frac{1}{10}$$
 und $\frac{1}{40}$.

Bei höheren Re-Zahlen liegen nur noch zwei Meßreihen vor:

und

Reihe 13.2 mit
$$\frac{k}{d_h}$$
 $\frac{1}{15}$
Reihe 9.1 mit $\frac{k}{d_h}$ $\frac{1}{40}$

Bei einem hydraulischen Durchmesser von $d_h = 0,198$ mm (drucklos) ergibt dies für die mittlere absolute Rauhigkeit:

> k \approx 13 µm (Reihe 13.2) k \approx 5 µm (Reihe 9.1)

Die Rauhigkeit des Hüllrohrs war, wie oben angegeben 1,2 - 1,7 μ m, die Rauhigkeit der Al₂O₃-Pellets wurde mit dem Lichtschnittmikroskop zu k \approx 10 - 25 μ m bestimmt (Abb. 3.10). Im Gegensatz zu den Versuchen mit UO₂-Pellets liegt die gemessene Rauhigkeit des Systems hier zwischen den Rauhigkeitswerten des Hüllrohrs und der Pellets, wie man es eigentlich erwartet. Dabei mag bei Reihe 13.2 ein etwas größerer Pelletversatz als bei 9.1 vorgelegen haben.

Die Ergebnisse der Messungen AS 1 und AS 2 mit $\underline{Al}_2\underline{O}_3$ -Stäben sind in Abb. 3.9 dargestellt:

Im laminaren Bereich ergeben sich hier \mathscr{G} -Werte von

$$\mathcal{Y} = 0,8$$
 bis 1

Dies läßt auf eine größere Exzentrizität als bei Pellets schließen. Bei Re \approx 600 - 1000 beginnt dann eine Übergangsfunktion für technisch rauhe Oberflächen nach (3.11) mit

$$\frac{k}{d_h} \approx \frac{1}{50}$$
 bis $\frac{1}{100}$, woraus mit $d_h = 0,184$ mm (drucklos)

die mittlere Rauhigkeit zu k≈2 - 4 µm folgt.

Die gemessenen Rauhigkeiten der Komponenten lagen hier etwa wie bei den Versuchen mit Al₂O₃-Pellets:

> Al₂0₃-Stäbe: $k \approx 10 - 25 \ \mu m$ Hüllrohr: $k \approx 1,2 - 1,7 \ \mu m$

Die Stabversuche zeigen also eine kleinere Rauhigkeit des Systems als die Versuche mit Al₂O₃-Pellets, was wegen des fehlenden Pelletversatzes erwartet wird.

Bei den Versuchen der Reihen 4.1 und 4.2 ist ein Übergang von laminarer zu turbulenter Strömung angedeutet, der auf gleichmäßige Sandrauhigkeit schließen läßt, was man sich bei Al₂O₃-Stangen durchaus vorstellen kann.

Die Ergebnisse dieser Messungen lassen sich wie folgt zusammenfassen:

- Sie passen ohne Widerspruch in die theoretischen Modelle
- Die mittlere Exzentrizität des Pelletstapels lag zwischen

$$E = 0$$
 und $E = 0,5 \frac{D - d}{2}$

entsprechend

 $\mathcal{Y}=1,5$ und $\mathcal{Y}=1$

- Der Übergang vom laminaren zum turbulenten Gebiet begann bei Re \thickapprox 600 bis 1000
- Die mittlere Rauhigkeit des Systems lag bei Verwendung von Al₂O₃-Pellets etwa in der Mitte zwischen der Rauhigkeit der Hüllrohr- und der Pelletoberfläche. Bei Versuchen mit Al₂O₃-Stangen, bei denen der Pelletversatz fehlte, ergaben sich erwartungsgemäß niedrigere Werte. Bei Versuchen mit UO₂-Pellets, deren Oberflächenrauhigkeit geringer als die der Al₂O₃-Pellets war, ging die Rauhigkeit des Systems überproportional zurück.
- Beim Einsatz von Pellets ist mit <u>technischer</u>, d.h. ungleichförmiger Rauhigkeit zu rechnen.

4. Strömung durch Schüttungen

4.0 Vorbemerkungen

Sinter- und Schwellvorgänge sowie Temperaturänderungen beim Lastwechsel führen bei Reaktorbetrieb zur Bildung von Rissen in den Brennstoff-Pellets /6/. Dadurch geht die Kreisringgeometrie des Strömungsquerschnitts im Brennstab verloren, die in den vorangegangenen Abschnitten dargestellten Methoden zur Berechnung des Strömungswiderstands können nicht mehr ohne weiteres angewendet werden.

Da die Anordnung von Pelletbruchstücken in der zylindrischen Stabhülle in gewisser Weise an Schüttungen von Teilchen erinnert, wie sie in der Verfahrenstechnik häufig verwendet werden (Filter, chem. Reaktoren), wird versucht, mit hierfür aufgestellten empirischen Beziehungen den Strömungswiderstand im Brennstab abzuschätzen.

4.1 Theoretische Überlegungen

4.1.1 Parameter

Der Strömungswiderstand von Schüttungen hängt außer von den Abmessungen des Strömungskanals (D, 1) und den Daten des Fluids (R, η , T, ρ) auch von den Eigenschaften des Schüttgutes, wie etwa der Porosität und der Struktur der Packung, der Form, Größe und Größenverteilung der Körner ab. In der Literatur findet man keine mathematische Beziehung, die alle diese Parameter verknüpft, sondern eine größere Zahl verschiedener Berechnungsmodelle, die dem Benutzer jeweils nur einige dieser Parameter zu variieren gestatten, während die anderen unberücksichtigt bleiben oder als konstant vorausgesetzt werden.

Es werden in den folgenden Abschnitten vier solcher Modelle gezeigt und untereinander sowie mit dem Ringspalt verglichen. Da die Modelle z.T. implizierte Beziehungen enthalten, wird der Vergleich numerisch, anhand von vier Standardfällen durchgeführt. Zwei dieser vier Fälle wurden experimentell überprüft.

4.1.2 Bezeichnungen, Grundlagen

Zusätzlich zu den bei der Beschreibung der Spaltströmung benutzten Größen werden hier folgende eingeführt (siehe Skizze):

A_k

A k Fluidbenetzte Oberfläche

$$O_{p} + \pi \cdot D \cdot 1 = S \cdot V_{p} + \pi \cdot D \cdot 1$$
 (4.3)

d_k

Äquivalenter Kugeldurchmesser der Teilchen

$$d_k = \sqrt[3]{\frac{6}{\pi}} \cdot \sqrt[3]{\frac{Mz}{z \cdot \rho}} = 1,24 \sqrt[3]{\frac{V_z}{z}}$$
 (4.4)

 M_z/V_z = Masse/Volumen von z Teilchen ρ = Dichte der Teilchen

p = Dichte dei ferfenen

$$W_{o} = \frac{\dot{m}}{\rho \cdot F_{o}}$$
 scheinbare, auf vollen Rohrquerschnitt bezogene
Geschwindigkeit

$$W_{f} = \frac{\dot{m}}{\rho \cdot F_{f}} = \frac{\dot{m}}{\rho \cdot \epsilon \cdot F_{o}} = \frac{W_{o}}{\epsilon}$$
 mittlere Geschwindigkeit im Raum zwischen den Teilchen

Die in der Literatur angegebenen Beziehungen für Schüttungen benutzen zum Teil Widerstandsbeiwerte und Re-Zahlen, deren Definition von den bisher benutzten abweicht.

Um die Beziehungen untereinander und mit den in Abschnitt 3 für die Spaltströmung aufgeführten vergleichen zu können, wird für jeden Fall zunächst der Massenstrom m bestimmt und daraus ein Vergleichswertepaar λ_v und Re_v gebildet, das auf die Strömung eines fiktiven, zentrischen Kreisringspalts mit gleichem Strömungsquerschnitt bezogen ist:

Durch Umformung ergibt sich

aus (2.3)
$$\lambda_{\rm V} = \frac{d_{\rm h} \cdot F_{\rm f}^2}{1} \frac{1}{{\rm R} \cdot {\rm T}} \cdot \frac{({\rm P_O}^2 - {\rm P_1}^2)}{{\rm m}^2}$$
 (4.5)

aus (3.2) $\operatorname{Re}_{v} = \frac{4 \, \dot{m}}{\pi \, (D + d) \cdot \eta}$ (4.6)

Faßt man die freie Strömungsfläche $F_f = \epsilon \cdot F_o$ als Ringspalt zwischen den Durchmessern D und d auf, so folgt für d

$$\frac{d^2\pi}{4} = F_0 - \varepsilon \cdot F_0 = \frac{\pi D^2}{4} (1 - \varepsilon)$$
$$d = D \sqrt{1 - \varepsilon}$$

Daraus folgt der hydraulische Durchmesser zu

$$d_{h} = D - d = \frac{4F_{f}}{U} = D \frac{\epsilon}{1 + \sqrt{1 - \epsilon}} = D(1 - \sqrt{1 - \epsilon})$$
 (4.7)

Die Vergleichswerte ergeben sich damit schließlich in der Form

$$\lambda_{v} = \frac{D^{5} \pi^{2} \epsilon^{2} (1 - \sqrt{1 - \epsilon})}{16 l} \cdot \frac{1}{R T} \frac{P_{O}^{2} - P_{1}^{2}}{m^{2}}$$
(4.8)

$$Re_{v} = \frac{4 \text{ m}}{\pi D (1 + \sqrt{1 - \epsilon}) \eta}$$
(4.9)

Die numerische Berechnung erfolgt für vier Standardfälle: Geometrie des Hüllrohres wie in Abschnitt 3:

$$D = 9,304 \cdot 10^{-3} \text{ m}$$
 $1 = 0,5 \text{ m}$ $F_0 = 6,793 \cdot 10^{-5} \text{ m}^2$

Fall 1:

Hier wurde ein übliches Filtermaterial (AC 6120) aus SiO₂ benutzt, dessen Partikel Kugelform haben:

$$\varepsilon = 0,4 \qquad F_{f} = \varepsilon \cdot F_{o} = 2,72 \cdot 10^{-5} \text{ m}^{2}$$

$$d_{k} = 1,25 \cdot 10^{-3} \text{ m} \quad (\text{Mittelwert})$$

$$s = \frac{6}{d_{k}} = 4,8 \cdot 10^{3} \text{ m}^{-1}$$

$$o_{p} = 9,67 \cdot 10^{-2} \text{ m}^{2}$$

$$A_{k} = o_{p} + \pi D 1 = 9,67 \cdot 10^{-2} + 1,46 \cdot 10^{-2}$$

$$= 0,111 \text{ m}^{2}$$

Fall 2 - 4:

Mit den Standardfällen 2 bis 4 sollen die durch den Reaktorbetrieb gebrochenen Brennstoffpellets nachgebildet werden. Für die Rechnungen wurden symmetrische Rißbilder angenommen. Sie entstanden durch gedachte Zerteilung zylinderförmiger Pellets gemäß Abb. 4.15, wobei das Ausgangsvolumen beibehalten wurde. Dadurch bleibt auch der Strömungsquerschnitt, F_{f} , erhalten, während die Partikeloberfläche, O_{p} , und die benetzte Oberfläche, A_{k} , mit dem Grad der Zerteilung zunehmen und der äquivalente Kugeldurchmesser, d_{k} , abnimmt. Die aus den theoretischen Rißbildern abgeleiteten geometrischen Kennwerte sind in Tabelle 4 - 1 zusammen mit den Daten für Fall 1 dargestellt.

Zur experimentellen Überprüfung wurde Fall 2 auch praktisch realisiert:

Al₂O₃-Pellets wurden in einem Rohrstück mit Hüllrohrinnendurchmesser durch Schlag mit einem Kreuzmeißel zerteilt, wobei im Mittel drei Bruchstücke entstanden. Diese wurden dann ohne wesentliche Änderung ihrer relativen Lage in das Rohrstück der Meßstrecke geschoben.

Der Ausgangsdurchmesser der Pellets betrug d = 8,993 mm; dieser Wert wurde der Berechnung der Kenndaten in Tabelle 4 - 1 zugrundegelegt.

4.1.3 Berechnungsmodelle

Modell A

Für die Berechnung des Strömungswiderstands von Kontaktkörpersäulen gibt Stelzer /7/ folgende Beziehungen an:

A 1:
$$\lambda_1 = \frac{2000}{\text{Re}_1}$$
; für $\text{Re}_1 \leq 10$ (4.10)
wobei $\text{Re}_1 = \frac{W_0 \cdot d_k}{v}$, $W_0 = \frac{\dot{m}}{\rho \cdot F_0}$
und $\Delta p = \lambda \frac{1}{d_k} \cdot \frac{\rho}{2} W_0^2$ (4.11a)

Vergrößert man den Druckverlust Δp um den Faktor $\frac{P_O}{P_m}$ zur Berück-sichtigung des Expansionsverlusts gemäß Gleichung A 11 , so folgt

$$(P_{O} - P_{1}) = \frac{2000}{\frac{m}{\rho_{O} \cdot F_{O}} v} \cdot \frac{1}{d_{k}} \frac{\rho_{O}}{2} \frac{m^{2}}{\rho_{O}^{2} \cdot F_{O}^{2}} \frac{P_{O}}{\frac{P_{O} + P_{1}}{2}}$$
(4.11b)

und nach Umformung läßt sich der Massenstrom explizit angegeben zu

$$\dot{m}_{A1} = \frac{\pi D^2}{4} \quad \frac{d_k^2 (P_0^2 - P_1^2)}{2000 \ 1 \ \eta \ R \ T}$$
(4.12)
für Re₁ = $\frac{\dot{m} \ d_k}{F_0 \cdot \eta} \leq 10$
d.h. $\dot{m} \leq 10 \ \frac{\pi D^2}{4} \cdot \frac{\eta}{d_k}$

A 2: Für $\text{Re}_1 > 10$ gilt auch nach /7/ und /9/

$$\lambda_2 = 7,63 \cdot \text{Re}_2^{-0,18}$$
 (4.13)

wobei

$$\Delta_{p} = \lambda_{2} \cdot \frac{1}{D_{f}} \cdot \frac{\rho}{2} W_{f}^{2} \cdot \frac{P_{o}}{P_{m}}$$
(4.14)
(Expansion berücksichtigt)

und

$$\operatorname{Re}_{2} = \frac{W_{f} \cdot D_{f}}{v} \quad \operatorname{mit} W_{f} = \frac{\mathring{m}}{\rho \cdot F_{f}}$$

und $D_{f} = \frac{4 V_{f}}{A_{k}} = \frac{4 F_{f} \cdot 1}{A_{k}}$

also

$$\operatorname{Re}_{2} = \frac{\overset{\text{m}}{\operatorname{f}} 4 \overset{\text{F}}{\operatorname{f}} \cdot 1}{\rho \cdot \overset{\text{F}}{\operatorname{f}} A_{k} \cdot \nu} = \frac{4 \overset{\text{m}}{\operatorname{h}} 1}{A_{k} \cdot \eta}$$
(4.15)

(4.15) in (4.13) liefert

$$\lambda_2 = 7,63 \cdot \left(\frac{4 \text{ m} \cdot 1}{A_k \cdot \eta}\right)^{-0,18}$$
 (4.16)

(4.16) in (4.14) ergibt

$$P_0^2 - P_1^2 = 7,63 \frac{A_k^{1,18} \cdot \eta^{0,18} \cdot R \cdot T}{4^{1,18} \cdot 1^{0,18} \cdot F_f^3} \cdot \dot{m}^{1,82}$$
(4.17a)

und nach Umformung explizitit für den Massenstrom

$$\dot{\mathbf{m}}_{A2} = \left[\frac{1}{A_{k}^{1,18}} \left(\frac{1}{\eta}\right)^{0,18} \cdot \frac{F_{f}^{3}}{R \cdot T} \cdot \frac{4^{1,18}}{7,63} \left(P_{0}^{2} - P_{1}^{2}\right)\right]^{\frac{1}{1,82}}$$
$$\dot{\mathbf{m}}_{A2} = \left[\left(\frac{1}{\eta}\right)^{0,18} \cdot \frac{F_{f}^{3}}{R \cdot T} \cdot 0,673\right]^{0,5495} \frac{\left(P_{0}^{2} - P_{1}^{2}\right)^{0,5495}}{A_{k}^{0,6484}}$$
(4.17b)

für
$$n > 10 \frac{\pi D^4}{4} \cdot \frac{\eta}{d_k}$$

Modell B

Für Schüttungen von Teilchen gibt Eck /3/ folgende Beziehung an

$$\Delta p = k \cdot \lambda_3 \cdot \frac{1}{\epsilon^4} \cdot \frac{1}{d_k} \cdot \frac{\rho}{2} = W_0^2 \qquad (4.18)$$

dabei ist

$$W_{O} = \frac{\dot{m}}{\rho \cdot F_{O}}$$

und k ist eine von der Form der Teilchen abhängige, dimensionslose Konstante

k = 1 für Kugelform
k > 1 für andere Formen

Erweitert man mit dem Expansionsglied $\frac{P_O}{P_m}$, so folgt aus (4.18)

$$P_{O} - P_{1} = k \cdot \lambda_{3} \frac{1}{\epsilon^{4}} \frac{1}{d_{k}} \cdot \frac{\rho_{O}}{2} \frac{m^{2}}{\rho_{O}^{2} \cdot F_{O}^{2}} \cdot \frac{P_{O}}{\frac{P_{O} + P_{1}}{2}}$$

$$P_{O}^{2} - P_{1}^{2} = k \cdot \lambda_{3} \frac{1}{\epsilon^{4}} \frac{m^{2}}{d_{k}} \frac{m^{2}}{F_{O}^{2}} \cdot R \cdot T$$

und nach Umstellung schließlich

$$\dot{m}_{B} = F_{O} \cdot \epsilon^{2} \frac{1}{\sqrt{k \cdot \lambda_{3}}} \sqrt{\frac{d_{k}}{1} \cdot \frac{(P_{O}^{2} - P_{1}^{2})}{R \cdot T}}$$
 (4.19)

Für den Widerstandsbeiwert folgt hieraus und mit

$$\operatorname{Re}_{3} = \frac{W_{0} \cdot d_{k}}{v} = \frac{\hbar \cdot d_{k}}{\eta \cdot F_{0}}$$

die Beziehung

$$\lambda_{3} = \frac{1}{\text{Re}_{3}^{2}} \cdot \frac{d_{k}^{3}}{1} \cdot \frac{\varepsilon^{4}}{k} \cdot \frac{P_{0}^{2} - P_{1}^{2}}{\eta^{2} R T}$$
(4.20)

 $\lambda_3 = f$ (Re₃) ist nach Eck /3/ in Abb. 4.1 für kugelförmige Teilchen (k = 1) als Kurvenzug angegeben.

Anhaltswerte für k sind in Tabelle 4 - 2 angegeben.

<u>Modell</u>C

In seiner Dissertation entwickelt Gupte /8/ für den Widerstandsbeiwert in Schüttungen eine Funktion der Form

$$\lambda_4 = 2 \cdot \frac{K}{Re_4} \cdot \epsilon^n \cdot \psi \tag{4.21}$$

für die Druckverlustrelation

$$\Delta p = \frac{1}{d_k} \cdot \lambda_4 \cdot \frac{\rho}{2} W_0^2 \qquad (4.22)$$

Dabei gilt:

$$W_{O} = \frac{\dot{m}}{\rho \cdot F_{O}}$$
(4.23)

$$\operatorname{Re}_{4} = \frac{d_{k} \cdot W_{o}}{v} = \frac{d_{k} \cdot \dot{m}}{\eta F_{o}}$$
(4.24)

 ψ ist eine Verteilungsfunktion für die Teilchen der Packung, die umso näher bei 1 liegt, je gleichförmiger die Teilchen sind.

Gupte hat für Kugelpackungen die Koeffizienten der Gleichung (4.21) experimentell bestimmt zu

$$n = -5, 5$$
 und $K = 5, 6$

im Bereich

$$\operatorname{Re}_4 \leq 1$$
,

wobei seine Meßergebnisse auch bei $\text{Re}_4 = 10$ noch gut mit obiger Beziehung übereinstimmen und erst bei $\text{Re}_4 = 10^2$ um den Faktor 3 höher liegen.

Mit der üblichen Vergrößerung des Druckverlustes um den Expansionsfaktor P_o/P_m folgt aus (4.21) bis (4.24):

$$P_{O}-P_{1} = \frac{1}{d_{k}} 2 \cdot \frac{5.6 \cdot n \cdot F_{O}}{d_{k} \cdot m} \psi \cdot \varepsilon^{5.5} \cdot \frac{\rho_{O}}{2} \cdot \frac{m^{2}}{\rho_{O}^{2} \cdot F_{O}^{2}} \cdot \frac{P_{O}}{\frac{P_{O}+P_{1}}{2}}$$

$$P_{O}^{2}-P_{1}^{2} = \frac{1}{d_{k}^{2}} \cdot 2 \cdot 5.6 \cdot \frac{n \cdot R \cdot T \cdot \psi}{F_{O}} \cdot \varepsilon^{5.5} \cdot m$$

und schließlich

$$\dot{m}_{c} = F_{0} \cdot \frac{d_{k}^{2}}{1} \cdot \frac{\varepsilon^{5,5} \cdot \psi}{2 \cdot 5,6 \cdot \eta RT} (P_{0}^{2} - P_{1}^{2})$$
 (4.25)

für
$$\operatorname{Re}_{4} = \frac{d_{k} \cdot \dot{m}}{\eta \cdot F_{o}} \leq 10$$

 $\dot{m} \leq 10 \cdot \frac{\eta \cdot F_{o}}{d_{k}}$

Modell_D

Ähnlich wie bei Modell B gibt Grassmann /10/ den Zusammenhang zwischen dem Widerstandsbeiwert und der Reynoldszahl als Diagramm an: Abb. 4.2.

Dabei ist der aus der Eulerzahl entwickelte Widerstandsbeiwert $\lambda_{\rm 5}$ definiert gemäß

$$\Delta p = \lambda_5 \cdot \frac{1 - \epsilon}{\epsilon^3} \cdot s \cdot 1 \cdot \rho W_0^2 \qquad (4.26)$$

und die Reynoldszahl Re_5 als

$$\operatorname{Re}_{5} = \frac{W_{O}}{v (1 - \varepsilon) \cdot S} = \frac{\dot{m}}{\eta \cdot F_{O} (1 - \varepsilon) \cdot S}$$
(4.27)

Vergrößerung des Druckverlusts um den Faktor P_O/P_m und einsetzen von $W_O = \frac{\dot{m}}{\rho \cdot F_O}$ in (4.26) ergibt

$$P_{O}-P_{1} = \lambda_{5} \frac{1-\epsilon}{\epsilon^{3}} \quad \text{s. 1. } \rho \cdot \frac{\dot{m}^{2}}{\rho^{2} \cdot F_{O}^{2}} \frac{P_{O}}{\frac{P_{O}+P_{1}}{2}}$$

daraus folgt nach Umstellung

$$\dot{m}_{\rm D} = F_{\rm O} \varepsilon \sqrt{\frac{\varepsilon}{1-\varepsilon}} \sqrt{\frac{1}{\lambda_5}} \sqrt{\frac{P_{\rm O}^2 - P_{\rm I}^2}{2 \ {\rm S} \ {\rm I} \ {\rm R} \ {\rm T}}}$$
(4.28)

mit (4.27) folgt hieraus für $\lambda = f(Re)$:

$$\lambda_{5} = \frac{1}{\text{Re}_{5}^{2}} \frac{\varepsilon^{3}}{(1-\varepsilon)^{3}} \cdot \frac{P_{0}^{2} - P_{1}^{2}}{s^{3} \ln^{2} \cdot 2 \text{ R T}}$$
(4.29)
4.1.4 Durchführung und Ergebnisse der Berechnungen

Für die in 4.1.2 angegebenen Standardfälle wurde mit den oben beschriebenen Modellen jeweils zunächst der Massenstrom m bestimmt. Bei den Modellen A1, A2 und C war dies explizit möglich. Bei den Modellen B und D, für die $\lambda_i = f(\text{Re}_i)$ nur als Kurve gegeben ist, wurde folgendes Verfahren angewendet:

Die zum Modell gegebene Funktion

$$\lambda_{i} = \frac{A}{Re_{i}^{2}}$$
 (Gleichung 4.20 bei Modell B und 4.29 bei D)

wurde durch Einsetzen der Randbedingungen für jeden Rechenpunkt bestimmt und (im log λ /log Re-Diagramm als Gerade) graphisch mit der Kurve $\lambda_i = f(Re_i)$ zum Schnitt gebracht. Aus dem Wertepaar λ_s/Re_s der Schnittpunktkoordinaten wurde rechnerisch mit bestimmt.

Mit den Gleichungen (4.5) und (4.6) bzw. (4.9) und (4.10) wurden daraus die auf den Ringspalt bezogenen Vergleichswerte λ_v und Re, gebildet.

Dabei lagen alle Standardfälle bei Modell A1 außerhalb des Geltungsbereichs, ebenso Fall 1 bei Modell C.

Die Ergebnisse sind in Tabelle 4 - 3 zusammengestellt. Der Vergleich der einzelnen Rechenmodelle kann anhand der Abb. 4.3 bis 4.6 gezogen werden, in denen der Massenstrom, m, über der Druckgröße ($P_0^2 - P_1^2$) aufgetragen ist:

Für Standardfall 1 (kugelförmige Teilchen) sind die Unterschiede der einzelnen Berechnungsmodelle vernachlässigbar. Die in Abb. 4.3 eingezeichnete Gerade ($\lambda = \frac{64}{Re}$) zeigt zum Vergleich den nach dieser Beziehung berechneten Massenstrom für einen Ringspalt mit dem gleichen freien Strömungsquerschnitt F_{f} . Für die Fälle 2 - 4 (Pelletbruchstücke) liefern die Modelle A, B und D Massenströme der gleichen Größenordnung (Abb. 4.4, 4.5, 4.6), während Modell C deutlich kleinere Werte ergibt. (Erklärung siehe 4.2)

Zum Vergleich der Standardfälle untereinander sind in Abb. 4.7 die nach Modell A berechneten Massenströme für die Fälle 1 - 4 zusammengestellt. Erwartungsgemäß liegt Fall 1 mit seiner wesentlich größeren Porosität deutlich über den Fällen 2 - 4.

In Abb. 4.8 sind die für alle Standardfälle und nach allen Modellen berechneten Vergleichsfunktionen $\lambda_{\rm V} = f({\rm Re}_{\rm V})$ eingetragen zusammen mit den in Abschnitt 3 erklärten Funktionen für den glatten Kreisringspalt: Die Erhöhung des Strömungswiderstands bei Schüttungen ist deutlich ersichtlich, ebenso die starke Überschätzung des Widerstands bei der Anwendung von Modell C auf die Geometrie der Pelletbruchstücke.

Zum weiteren Verständnis der Gesetzmäßigkeiten bei Schüttungen sind in Abb. 4.9 nochmals die mit Modell A für die Standardfälle 2 – 4 berechneten λ -Werte eingetragen. Dazu wurde die Kurve "P" eingezeichnet: Sie ergab sich aus der Berechnung für ein intaktes, also nicht zerbrochenes Pellet nach Modell A und erscheint als logische Fortsetzung der Kurven für die Fälle 2 bis 4.Im Vergleich zu den bei gleichen Randbedingungen für den Spalt gerechneten (A-Symbole) liegen die Widerstandswerte bei Kurve "P" nach Modell A jedoch viel zu hoch. Die gleiche Information ist in Abb. 4.10 in der Form $\dot{m} = f(P_0^2 - P_1^2)$ dargestellt. Man ersieht daraus, daß Modell A (wie auch die andern Modelle für Schüttungen) erst unterhalb einer bestimmten Teilchengröße verwendbar ist, die hier offensichtlich kleiner als ein ganzes Peller ist (siehe hierzu das in Abschnitt 4.2 über die sog. Randgängigkeit Gesagte). Man kann weiter ersehen, daß die Messung des Massenstroms und des Druckabfalls über eine Teststrecke nur dann einen guantitativen Rückschluß auf die Geometrie im Stabinnern erlauben, wenn die Art dieser Geometrie (grob: Spalt oder Schüttung) bekannt ist. Dieser Schluß wird noch deutlicher an Abb. 4.11; sie zeigt den einmal nach Modell A bzw. D und einmal für den Spalt berechneten Massenstrom als Funktion des freien Strömungsquerschnitts, F_f , bzw. des hydraulischen Durchmessers, D_h , bei ansonsten gleichen Randbedingungen: Man sieht deutlich, daß von einem gemessenen m-Wert auf verschiedene F_f - bzw. D_h -Werte geschlossen werden kann, je nach Annahme über die Art der Brennstoffgeometrie.

4.2 Experimentelle Untersuchungen

4.2.1 Durchführung

Zur praktischen Überprüfung der zusammengestellten Rechenmodelle wurden Versuche mit Schüttungen durchgeführt.

Der Aufbau der benutzten Versuchseinrichtung war identisch mit der in 3.3.1 beschriebenen, statt der UO_2 - bzw. Al_2O_3 -Tabletten wurde jedoch das jeweilige "Schüttgut" eingesetzt.

Untersucht wurden die Standardfälle 1 und 2 wie in Abschnitt 4.1.2 beschrieben:

Standardfall	1:	Filtermaterial AC 6120 aus SiO ₂ in Form von
		Kugeln.
Standardfall	2:	Bruchstücke von mechanisch zerteilten Al ₂ O ₃ -
		Tabletten.

Auch hier wurden Versuche sowohl mit Helium als auch mit Argon als Meßgas durchgeführt.

4.2.2 Versuchsergebnisse

Die Ergebnisse der Messungen mit Helium und Argon als Strömungsmedium sind in Tabelle 4 - 4 aufgeführt. In den Abb. 4.12 bis 4.14 sind den für Helium berechneten Werten die entsprechenden Messungen gegenübergestellt. In Abb. 4.14 sind ergänzend auch die Ergebnisse der Messungen mit Argon eingetragen.

Bei Standardfall 1 (kugelförmige Teilchen) stimmen Meß- und Rechenwerte vollkommen überein (Abb. 4.12).

Die Messungen mit Pelletbruchstücken gemäß Standardfall 2 ergaben um den Faktor 1,5 bis 3 höhere Massenströme als die Rechnungen nach den Modellen A, B, D (Abb. 4.13). Dieser für solche Abschätzungen verhältnismäßig kleine Unterschied läßt sich qualitativ mit der sog. Randgängigkeit bei Schüttungen erklären: Aufgrund anderer Geometrie- u. Reibungsverhältnisse in den Kanälen zwischen Rohrwand und Schüttung ist der Strömungswiderstand am Rand der Schüttung geringer als in den Innenzonen. Der am Rand höhere Massenstrom ist in den angegebenen Rechenmodellen nicht berücksichtigt. Er kann bei üblichen Anwendungsfällen vernachlässigt werden, wenn der Behälterdurchmesser groß im Vergleich zum Teilchendurchmesser ist. In der Literatur wird gefordert:

Dieser Wert ist bei Standardfall 2 mit $D/d_k = 1,22$ nicht erfüllt, während er bei Standardfall 1 mit 7,5 fast erreicht wird.

Wie bereits früher erwähnt, erfolgten die Berechnungen nach Modell B mit dem Wert 1 für die Formkonstante k. Gemäß Tabelle 4 - 2 wäre für die Standardfälle 2 - 4 etwa mit k = 3 zu rechnen. Die Massenströme würden damit um den Faktor $\sqrt{3} \approx 1,7$ kleiner, die Abweichungen zur Messung um den gleichen Faktor größer. Die Abweichungen zwischen den Meßwerten bei Standardfall 2 und den nach Modell C gerechneten Massenströmen (Faktor 10) lassen den Schluß zu, daß dieses Modell mit seinem Potenzansatz für die Porosität ($\varepsilon^{5,5}$) bei sehr kleinen ε -Werten zu einer Überschätzung des Strömungswiderstands führt. Gupte /8/ hat sein Modell auch nur im Bereich $\varepsilon > 0,36$ verifiziert, während in den Standardfällen 2 bis 4 die Porosität zu $\varepsilon = 0,065$ anzusetzen ist.

Meß- und Rechenergebnisse für den Standardfall 2 werden in Abb. 4.14 nochmals in anderer Darstellungsweise verglichen. Die Rechenwerte gelten auch hier nur für He. Man sieht die relativ gute Übereinstimmung der Modelle A und D mit den Meßwerten und die Abweichungen der Modelle B und C.

4.3 Anwendung auf den Brennstab

Nach dem obigen Vergleich zwischen Messung und Rechnung sind für die Abschätzung der Strömung im Brennstab nach Ausbildung der üblichen Risse durch die Tabletten die Modelle A und D am besten geeignet. Dabei kann nach A in der hier gegebenen Form der Massenstrom explizit berechnet werden, bei D sind wegen der nur graphischen Angabe von $\lambda = f(Re)$ einige Rechenschritte mehr erforderlich.

Für die praktische Anwendung liegt die Schwierigkeit in beiden Fällen bei der Bestimmung bzw. Annahme des freien Strömungsquerschnitts, F_f , sowie der Größe und Form der Pelletbruchstücke, von denen sich die in den Modellen benutzten Kenngrößen ε (Porosität), S (spez. Partikeloberfläche) bzw. A_k (benetzte Oberfläche) ableiten lassen.

Diese bei Schüttungen zusätzlich zu berücksichtigenden Oberflächenparameter S bzw. A_k und auch der Strömungsquerschnitt F_f beeinflussen den Massenstrom bei den hier empfohlenen Modellen A und D allerdings in geringerem Grad, als dies der hydraulische Durchmesser bei laminarer Spaltströmung tut. Während bei letzterer der Massenstrom von der dritten Potenz des hydraulischen Durchmessers, d_h , (bzw. F_f oder ε) abhängt, gehen alle Geometriekennwerte bei Schüttungen nach A bzw. D mit Potenzen kleiner 2 ein. Dies gilt bei A immer (siehe Gleichung 4.17b) bei D erst oberhalb bestimmter m-Werte (siehe Abb. 4.11). Der Strömungswiderstand von Schüttungen entspricht in seiner Abhängigkeit vom Massenstrom (von Re) also mehr dem von Ringspalten bei turbulenter Strömung und technisch rauher Oberfläche als dem bei laminarer Strömung.

5. Schlußbemerkung

Die im vorliegenden Bericht beschriebenen Untersuchungen zeigen, daß der Massenstrom in einem Brennstab rechnerisch recht gut erfaßt werden kann. Wichtigste Voraussetzung zur quantitativen Bestimmung des Massenstroms ist die Kenntnis über die geometrische Form, in der der Brennstoff vorliegt: Ganze Pellets sind rechnerisch grundsätzlich anders zu behandeln als Pelletbruchstücke, wie sie durch die Rißbildung beim Reaktorbetrieb entstehen.

In diesem Zusammenhang sei noch einmal daran erinnert, daß die meisten Ableitungen in diesem Bericht axiale Konstanz der Abmessungen, der Temperatur und des Widerstandsbeiwerts über den betrachteten Stababschnitt voraussetzen. Diese Bedingung ist bei einem Kühlmittelverlustunfall im allgemeinen nicht über größere Stablängen erfüllt. Gerade wegen der gezeigten exponentiellen Abhängigkeit des Massenstroms von einigen charakteristischen Abmessungen müssen daher entsprechende Integrationsverfahren angewendet werden.

Literatur

- /1/ Institut für Reaktorsicherheit der Technischen Überwachungs-Vereine e.V.: Bericht SB 5, Statusbericht Notkühlung, Kapitel 5, Dezember 1973
- /2/ Dubbel's Taschenbuch für den Maschinenbau, Bd. I, Seite 288, 11. Auflage 1956
- /3/ Eck B.: Technische Strömungslehre, 7. Auflage 1966, Springer-Verlag
- /4/ VDI-Wärmeatlas, 2. Auflage 1974a) Abschnitt Lbb) Abschnitt Le
- /5/ Reimann M.: Analytische Untersuchungen von Gasströmungen in Ringspalten beim Aufblähvorgang von Zirkaloy-Hüllrohren, KFK-Bericht 2280, Mai 1976
- /6/ Stehle et.al.: Dimensionsstabilität von LWR-Brennstäben. Vortrag, gehalten auf der Reaktortagung des DAtF, Berlin, April 1974
- /7/ Stelzer F.: Wärmeübertragung und Strömung, Thiemig-Taschenbuch, Band 18, 1971
- /8/ Gupte A.: Experimentelle Untersuchung der Einflüsse von Porosität und Korngrößenverteilung im Widerstandsgesetz der Porenströmung. Dissertation an der Universität Karlsruhe, 1970
- /9/ Seidel, H.-P.: Wärmetransport, Stofftransport und Druckverlust in Füllkörperrohren. Dissertation an der TU Dresden, 1965

/10/ Grassmann P.: Physikalische Grundlagen der Verfahrenstechnik, 2. Auflage 1970, Verlag Sauerländer

Zusammenstellung	häufig	benutzter	Bezeichnungen
		2011002002	

A _k	m^2	Fluidbenetzte Oberflächen bei Schüttungen
D	m	Innendurchmesser des Hüllrohrs
d	m	Außendurchmesser der Brennstofftabletten
d _h	m	hydraulischer Durchmesser
d _k	m	äquivalenter Kugeldurchmesser von Teilchen einer Schüttung
E	m	Exzentrizität
F	m^2	Strömungsquerschnitt
		$F_{O} = \frac{\pi D^2}{4}$ Packungsquerschnitt einer Schüttung
		$F_f = \frac{V_f}{1}$ freier, fluiddurchflossener Querschnitt
k	m	Rauhigkeit einer Oberfläche
1	m	Länge des betrachteten Strömungsabschnitts
ŵ	<u>kg</u> s	Massenstrom des Fluids
op	m ²	gesamte Oberfläche der Teilchen einer Schüttung
р {	kg/m•s ² bar	2 Druck des Fluids (Absolutwerte)
R	$\frac{m^2}{s^2 K}$	Spezielle Gaskonstante
Re	-	Reynolds'sche Kennzahl
		$Re = \frac{w \cdot d_h}{v} = \frac{\dot{m}}{F} \cdot \frac{d_h}{\eta}$
т	к	Temperatur des Fluids
v	m ³ kg	spez. Volumen des Fluids
V _f	m ³	vom Fluid erfülltes Volumen bei Schüttungen
Vp	m^3	gesamtes Volumen der Teilchen einer Schüttung
W	m s	Strömungsgeschwindigkeit

ε		Porosität einer Schüttung
		$\varepsilon = \frac{V_f}{V_f + V_p}$
η	kg m s	dynamische Zähigkeit des Fluids
λ	-	Widerstandskoeffizient
ν	$\frac{m^2}{s}$	kinematische Zähigkeit des Fliuds
ρ	<u>kg</u> m ³	Dichte des Fluids

PNS 4237 RBT/IT 1976Gasströmung im BrennstabPNS 4237 RBT/IT 1976Tabelle 3 - 2Abmessungen und BasisdatenTabelle 3 - 2Abmessungen und BasisdatenHüllrohrInnendurchmesser* $9,304_{-0}^{+0,002}$ mm Länge zwischen Druckmeß- AnschlüssenHüllrohrInnendurchmesser* $9,304_{-0,005}^{+0,002}$ mm Länge Zury-4Pellets Al ₂ O ₃ Außendurchmesser* $9,106_{-0,006}^{+0,007}$ mm LängeUO2Außendurchmesser $9,14$ mm LängeUO2Außendurchmesser $9,14$ mm LängeStangen Al ₂ O ₃ Außendurchmesser* $9,12_{-0,02}^{+0,01}$ mm LängeMeßgase:Dichte ρ_0 (kg/m ³) $0,1761$ $1,7604$ Gas-Konstante R (m ² /s ² K)Dyn. Zähigkeit η_0 (kg/m s) $1,864\cdot10^{-5}$ $2,103\cdot10^{-5}$ Sutherland Konst. C ₅ (K)NT = $\eta_0 \sqrt{\frac{T}{T_0}}$ $\frac{1 + \frac{T_0}{T_0}}{\frac{T}{T_0}}$ $\frac{1 + \frac{T_0}{T_0}}{\frac{T}{T_0}}$				
RBT/IT 1976RBT/IT 1976Tabelle 3 - 2Abmessungen und BasisdatenHüllrohrInnendurchmesser* $9,304^{+0},002$ mmLänge zwischen Druckmeß- Anschlüssen500 mmWerkstoff $Zry-4$ Pellets Al ₂ O ₃ Außendurchmesser* $9,106^{+0},007$ mmLänge11 mmUO2Außendurchmesser $9,14$ mmLänge10,9 mmStangen Al ₂ O ₃ Außendurchmesser* $9,12^{+0},01$ mmLänge124 bis 197 mmMeßgase:Dichte ρ_0 (kg/m ³) $0,1761$ $1,7604$ Gas-Konstante R (m²/s²K) $2,0772\cdot10^3$ $2,082\cdot10^2$ Dyn. Zähigkeit η_0 (kg/m s) $1,864\cdot10^{-5}$ $2,103\cdot10^{-5}$ Sutherland Konst. C_s (K) $78,2$ 142 $n_T = \eta_0 \sqrt{\frac{T}{T_0}}$ $\frac{1 + \frac{TO}{T_0}}{1 + \frac{CS}{T}}$ 142 Index O + bei 273 K, 1 barDar	Gasströmung i	m Brennstah	PNS	4237
Tabelle 3 - 2Abmessungen und BasisdatenHüllrohrInnendurchmesser* $9,304_{-0,005}^{+0,002}$ mmHüllrohrInnendurchmesser* $9,304_{-0,005}^{+0,002}$ mmLänge zwischen Druckmeß- Anschlüssen500 mmWerkstoffZry-4Pellets Al ₂ O3Außendurchmesser* $9,106_{-0,006}^{+0,007}$ mmLänge11 mmUO2Außendurchmesser $9,14$ mmLänge10,9 mmStangen Al ₂ O3Außendurchmesser* $9,12_{-0,02}^{+0,01}$ mmLänge124 bis 197 mmMeßgase:Dichte ρ_0 (kg/m ³)0,1761Dichte ρ_0 (kg/m ³)0,17611,7604Gas-Konstante R (m²/s²K)2,0772.1032,082.10²Dyn. Zähigkeit η_0 (kg/m s)1,864.10 ⁻⁵ 2,103.10 ⁻⁵ Sutherland Konst. Cs(K)78,2142 $\eta_T = \eta_0 \sqrt{\frac{T}{T_0}} \frac{1 + \frac{TO}{T_0}}{1 + \frac{Cs}{T}}$ Index O + bei 273 K, 1 bar	Gasseromung I		RBT/	IT 1976
Hüllrohr Innendurchmesser ^X 9,304 $^{+0,002}_{-0,005}$ mm Länge zwischen Druckmeß- Anschlüssen 500 mm Werkstoff 500 mm Länge 9,106 $^{+0,007}_{-0,006}$ mm Länge 11 mm UO ₂ Außendurchmesser ^X 9,106 $^{+0,007}_{-0,006}$ mm Länge 11 mm UO ₂ Außendurchmesser 9,14 mm Länge 10,9 mm Stangen Al ₂ O ₃ Außendurchmesser ^X 9,12 $^{+0,01}_{-0,02}$ mm Länge 124 bis 197 mm Meßgase: Dichte ρ_0 (kg/m ³) 0,1761 1,7604 Gas-Konstante R (m ² /s ² K) 2,0772 · 10 ³ 2,082 · 10 ² Dyn. Zähigkeit η_0 (kg/m s) 1,864 · 10 ⁻⁵ 2,103 · 10 ⁻⁵ Sutherland Konst. C _s (K) 78,2 142 $\eta_T = \eta_0 \sqrt{\frac{T}{T_0}} \frac{1 + \frac{T_0}{1 + C_s}}{\frac{T}{T_0}}$ Index 0 + bei 273 K, 1 bar	Tabelle 3 - 2	Abmessungen und Basisdate	<u>n</u>	
Länge zwischen Druckmeß- Anschlüssen 500 mm Werkstoff $Zry-4$ Pellets Al ₂ O ₃ Außendurchmesser 9,106 ^{+O,007} mm Länge 11 mm UO ₂ Außendurchmesser 9,14 mm Länge 10,9 mm Stangen Al ₂ O ₃ Außendurchmesser 9,12 ^{+O,01} mm Länge 124 bis 197 mm Meßgase: Dichte ρ_{o} (kg/m ³) 0,1761 1,7604 Gas-Konstante R (m ² /s ² K) 2,0772·10 ³ 2,082·10 ² Dyn. Zähigkeit η_{o} (kg/m s) 1,864·10 ⁻⁵ 2,103·10 ⁻ Sutherland Konst. C _s (K) 78,2 142 $\eta_{T} = \eta_{0}\sqrt{\frac{T}{T_{0}}} \frac{1 + \frac{T_{0}}{T_{0}}}{1 + \frac{Cs}{T}}$ Index 0 + bei 273 K, 1 bar	Hüllrohr	Innendurchmesser ^X	9,304	+0,002 -0,005 mm
Werkstoff $Zry-4$ Pellets Al_2O_3 Außendurchmesser* $9,106^{+0,007}_{-0,006}$ mmLänge11mm UO_2 Außendurchmesser $9,14$ Länge10,9mmStangen Al_2O_3 Außendurchmesser* $9,12^{+0,01}_{-0,02}$ Länge124 bis 197 mmMeßgase:Dichte ρ_0 (kg/m ³) $0,1761$ Dichte ρ_0 (kg/m ³) $0,1761$ $1,7604$ Gas-Konstante R (m²/s²K) $2,0772 \cdot 10^3$ $2,082 \cdot 10^2$ Dyn. Zähigkeit η_0 (kg/m s) $1,864 \cdot 10^{-5}$ $2,103 \cdot 10^{-5}$ Sutherland Konst. C (K) $78,2$ 142 $n_T = \eta_0 \sqrt{\frac{T}{T_0}}$ $\frac{1 + \frac{T_0}{T_0}}{1 + \frac{C_S}{T}}$ 142 Index O + bei 273 K, 1 bar 124		Länge zwischen Druckmeß- Anschlüssen	500	mm
Pellets Al_2O_3 Außendurchmesser * 9,106 $^{+0,007}_{-0,006}$ mm Länge 11 mm U O_2 Außendurchmesser 9,14 mm Länge 10,9 mm Stangen Al_2O_3 Außendurchmesser * 9,12 $^{+0,01}_{-0,02}$ mm Länge 124 bis 197 mm Meßgase: Dichte ρ_0 (kg/m ³) 0,1761 1,7604 Gas-Konstante R (m ² /s ² K) 2,0772 \cdot 10 ³ 2,082 \cdot 10 ² Dyn. Zähigkeit η_0 (kg/m s) 1,864 · 10 ⁻⁵ 2,103 · 10 ⁻⁵ Sutherland Konst. C _s (K) 78,2 142 $\eta_T = \eta_0 \sqrt{\frac{T}{T_0}} \frac{1 + \frac{TO}{T_5}}{1 + \frac{Cs}{T}}$ Index O + bei 273 K, 1 bar		Werkstoff	Zry-4	
Länge 11 mm UO ₂ Außendurchmesser 9,14 mm Länge 10,9 mm Stangen Al ₂ O ₃ Außendurchmesser [*] 9,12 ^{+O,O1} _{-O,O2} mm Länge 124 bis 197 mm Meßgase: Dichte ρ_{o} (kg/m ³) 0,1761 1,7604 Gas-Konstante R (m ² /s ² K) 2,0772 · 10 ³ 2,082 · 10 ² Dyn. Zähigkeit η_{o} (kg/m s) 1,864 · 10 ⁻⁵ 2,103 · 10 ⁻⁵ Sutherland Konst. C _s (K) 78,2 142 $\eta_{T} = \eta_{o} \sqrt{\frac{T}{T_{o}}} \frac{1 + \frac{TO}{1 + \frac{Cs}{T}}}{1 + \frac{Cs}{T}}$ Index O + bei 273 K, 1 bar	Pellets Al ₂ 03	Außendurchmesser ^x	9,106	+0,007 -0,006 ^{mm}
UO ₂ Außendurchmesser 9,14 mm Länge 10,9 mm Stangen Al ₂ O ₃ Außendurchmesser [*] 9,12 ^{+0,01} _{-0,02} mm Länge 124 bis 197 mm Meßgase: Dichte ρ_0 (kg/m ³) 0,1761 1,7604 Gas-Konstante R (m ² /s ² K) 2,0772 \cdot 10 ³ 2,082 \cdot 10 ² Dyn. Zähigkeit η_0 (kg/m s) 1,864 · 10 ⁻⁵ 2,103 · 10 ⁻⁵ Sutherland Konst. C _s (K) 78,2 142 $\eta_T = \eta_0 \sqrt{\frac{T}{T_0}} \frac{1 + \frac{T_0}{T_0}}{1 + \frac{C_s}{T}}$ Index 0 + bei 273 K, 1 bar		Länge	11	mm
Länge 10,9 mm Stangen Al ₂ O ₃ Außendurchmesser* 9,12 ^{+O,O1} mm Länge 124 bis 197 mm Meßgase: Dichte ρ_0 (kg/m ³) 0,1761 1,7604 Gas-Konstante R (m ² /s ² K) 2,0772 \cdot 10 ³ 2,082 \cdot 10 ² Dyn. Zähigkeit η_0 (kg/m s) 1,864 · 10 ⁻⁵ 2,103 · 10 ⁻⁵ Sutherland Konst. C _s (K) 78,2 142 $\eta_T = \eta_0 \sqrt{\frac{T}{T_0}} \frac{1 + \frac{T_0}{T_0}}{1 + \frac{C_s}{T}}$ Index O + bei 273 K, 1 bar	UO2	Außendurchmesser	9,14	mm
Stangen Al ₂ O ₃ Außendurchmesser* 9,12 ^{+O,O1} _{-O,O2} mm Länge 124 bis 197 mm Meßgase: Dichte ρ_{o} (kg/m ³) 0,1761 1,7604 Gas-Konstante R (m ² /s ² K) 2,0772 · 10 ³ 2,082 · 10 ² Dyn. Zähigkeit η_{o} (kg/m s) 1,864 · 10 ⁻⁵ 2,103 · 10 ⁻⁵ Sutherland Konst. C _s (K) 78,2 142 $\eta_{T} = \eta_{o} \sqrt{\frac{T}{T_{o}}} \frac{1 + \frac{T_{o}}{1 + \frac{C_{s}}{T_{o}}}}{1 + \frac{C_{s}}{T}}$ Index O \neq bei 273 K, 1 bar	2	Länge	10,9	mm
Länge 124 bis 197 mm Meßgase: Dichte ρ_{o} (kg/m ³) 0,1761 1,7604 Gas-Konstante R (m ² /s ² K) 2,0772 \cdot 10 ³ 2,082 \cdot 10 ² Dyn. Zähigkeit η_{o} (kg/m s) 1,864 $\cdot 10^{-5}$ 2,103 $\cdot 10^{-5}$ Sutherland Konst. C _s (K) 78,2 142 $\eta_{T} = \eta_{o} \sqrt{\frac{T}{T_{o}}} \frac{1 + \frac{T_{o}}{T + \frac{C_{s}}{T}}}{1 + \frac{C_{s}}{T}}$ Index 0 + bei 273 K, 1 bar	Stangen Al ₂ 0 ₃	Außendurchmesser [*]	9,12 ⁺⁰	0,01 mm 0,02 ^{mm}
Meßgase: Dichte ρ_{o} (kg/m ³) Gas-Konstante R (m ² /s ² K) 2,0772·10 ³ 2,082·10 ² Dyn. Zähigkeit η_{o} (kg/m s) 1,864·10 ⁻⁵ 2,103·10 ⁻⁵ Sutherland Konst. C _s (K) 78,2 142 $\eta_{T} = \eta_{0}\sqrt{\frac{T}{T_{o}}} \frac{1 + \frac{T_{o}}{T_{o}}}{1 + \frac{C_{s}}{T}}$ Index 0 + bei 273 K, 1 bar		Länge	124 b	is 197 mm
Gas-Konstante R (m^2/s^2K) 2,0772·10 ³ 2,082·10 ² Dyn. Zähigkeit n _o (kg/m s) 1,864·10 ⁻⁵ 2,103·10 ⁻⁵ Sutherland Konst. C _s (K) 78,2 142 $n_{\rm T} = n_{\rm O} \sqrt{\frac{T}{T_{\rm O}}} \frac{1 + \frac{T_{\rm O}}{1 + \frac{C_{\rm S}}{T}}}{\frac{1}{1 + \frac{C_{\rm S}}{T}}}$ Index O + bei 273 K, 1 bar	Meßgase:	Dichte ρ_0 (kg/m ³)	He 0,1761	Ar 1,7604
Dyn. Zähigkeit n _o (kg/m s) 1,864·10 ⁻⁵ 2,103·10 ⁻⁵ Sutherland Konst. C _s (K) 78,2 142 $n_T = n_0 \sqrt{\frac{T}{T_o}} \frac{1 + \frac{C_s}{T_o}}{1 + \frac{C_s}{T}}$ Index O + bei 273 K, 1 bar		Gas-Konstante R (m^2/s^2K)	2,0772·10 ³	2,082·10 ²
Sutherland Konst. C _s (K) 78,2 142 $n_{T} = n_{0}\sqrt{\frac{T}{T_{0}}} \frac{1 + \frac{C_{s}}{T_{0}}}{1 + \frac{C_{s}}{T}}$ Index 0 + bei 273 K, 1 bar		Dyn. Zähigkeit η _o (kg/m s)	1,864·10 ⁻⁵	2,103·10 ⁻⁵
$n_{T} = n_{O} \sqrt{\frac{T}{T_{O}}} \frac{1 + \frac{C_{S}}{T_{O}}}{1 + \frac{C_{S}}{T}}$ Index O + bei 273 K, 1 bar		Sutherland Konst. C (K)	78,2	142
Index O → bei 273 K, 1 bar		$\eta_{\rm T} = \eta_0 \sqrt{\frac{\rm T}{\rm T}_0} \frac{\frac{1 + \rm T_0}{1 + \rm Cs}}{\frac{1 + \rm Cs}{\rm T}}$		
		Index O → bei 273 K, 1 bar		

* Die angegebenen "Toleranzen" stellen die Abweichungen der gemessenen Maximal- bzw. Minimalwerte vom arithmetischen Mittel dar.

Gasströmung i	im 1	Bronnstah				PNS 4237	7
			and a subscription of the state			RBT/IT	1976
Tabelle 3 - 3	3:	Ergebnisse	der	Messungen	mit	zvlindrischen	απ∂*α-428a -42886*2=4++

<u>Tabelle 3 - 3:</u> Ergebnisse der Messungen mit zylindrischen Pellets und Stäben

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
Versuch	Po	Р ₁	$P_0^2 - P_1^2$	ů	Re	λ -
Nr.	(ba	r abs)	$(10^{10} \text{kg}^2/\text{m}^2\text{s}^4)$	(10 ⁻⁴ kg/s)		
11.1.1	35,32	29,42	382	4,971	1747	0,0843
2	30,42	25,52	274	4,531	1593	0,0724
3	20,61	15,71	178	3,709	1304	0,0695
4	10,81	5 <b>,</b> 91	82	2,271	798	0,0844
10.2.1	35,32	30,44	321	4,593	1620	0,0834
2	30,42	25,49	2 <b>7</b> 6	4,229	1491	0,0840
3	25,52	20,62	226	3,791	1338	0,0854
4	20,61	15,71	178	3,39	1195	0,0835
5	15 <b>,</b> 71	10 <b>,</b> 81	130	2,778	979	0,0903
6	10,81	5,91	82	1,91	673	0,120
9.2.1	58,96	57 <b>,</b> 88	126	4,413	1543	0,036
2	59,84	54,94	562	6,521	2272	0,0731
3	59,84	50,33	1048	8,868	3085	0,0732
4	59 <b>,</b> 84	45,52	1509	10,652	3707	0,073
5	59,84	40,23	1962	11,657	4095	0,0802
6	59,84	10,81	3464	16,164	5635	0,072
7	59,84	15,71	3334	15,982	5571	0,0710
8	59 <b>,</b> 84	20 <b>,</b> 61	3156	15,218	5311	0,0744
9	59,84	25,52	2930	14,958	5229	0,0717
10	59,84	30,42	2655	14,414	5050	0,0704
11	59,84	35,32	2333	13,428	4715	0,0716
12	59,84	40,22	1963	12,259	4311	0,0726
13	59,84	45 <b>,</b> 13	1544	10,888	3834	0,0727
14	59,74	50 <b>,</b> 03	1066	9 <b>,</b> 179	3237	0,071
15	59,84	54,94	562	6 <b>,</b> 725	2376	0,0713
16	59 <b>,</b> 84	57 <b>,</b> 38	288	4,912	1737	0,0676
			1	I		

I) <u>Al</u>₂O₃-Pellets, <u>Meßgas</u> <u>He</u> (AP1)

Tabelle 3 - 3 (Fortsetzung)							
Versuch Nr.	Po	^Р 1	P0 ^{2-P1²}	ů	Re	λ	
6.1.1	10,81	5,9	82	2,037	717	0,105	
2	10,81	7 <b>,</b> 84	55,3	1,5	528	0,131	
3	10,81	8' <b>,</b> 85	38,5	1,121	395	0,164	
4	6,88	4,95	22,9	0,667	235	0,273	
5	6,88	3,01	38,3	1,07	377	0 <b>,</b> 178	
6	4,92	3,94	8,7	0,263	92,6	0,667	
7	4,92	2,96	15,5	0,432	152	0,439	
8	4,92	2,47	18,1	0,513	181	0,365	
9	4,92	1,98	20,3	0,594	209	0,305	
12.1	22,57	20,61	84,6	2,62	920	0,066	
2	25,52	24,54	49,1	1,57	551	0,108	
3	25,71	24,53	59,3	1,639	576	0,119	
4	23,36	21,2	96,2	2,258	793	0,102	
5	23,16	21	95,4	2,403	844	0,0889	
6	39,64	37,48	166	3,105	1090	0,0946	
7	42,09	39,93	177	3,563	1250	0,0766	
8	39,64	37,68	151	3,269	1147	0 <b>,</b> 0776	
9	23,16	21,1	91,2	2,397	841	0,0853	
10	25,71	24,73	49,4	1,563	549	0,1092	
11	23,16	22,03	51,1	1,674	587	0,098	
12	25,52	24,54	49,1	1,31	458	0,1542	
	ı	I	,		-	I	

- 44 -

Versuch Nr.	РО	P 1	$P_0^2 - P_1^2$	m.	Re	λ
8.1.1	50,03	45,13	467	5,385	1887	0,0887
2	40,23	35,3	372	4,742	1656	0,0901
3	30,42	25,5	273	3,865	1353	0,0985
4	20,61	15,7	178	3,090	1083	0,0996
5	10,81	5,9	82	1,912	671	0,1188
7.1.1	50,03	49,05	97,1	2,063	724	0,126
2	40,23	39,25	77,9	1,838	646	0,127
3	30,52	29,56	57,4	1,278	449	0,191
4	20,52	19,52	40,2	1,009	355	0,213
5	10,81	9,76	21,7	0,636	224	0,286
6	50,03	48,07	192	3,492	1224	0,0872
7	40,13	38,17	154	3,1	1087	0,0874
8	30,42	28,48	114	2,4	843	0,108
9	20,61	18,65	76,9	1,793	630	0,129
10	10,9	8,94	38,9	1,115	392	0,166
13.1.01	9,83	7,77	36,3	0,821	290	0,2886
02	39,25	33,56	414	4,677	1650	0,1042
03	9,83	7,77	36,3	0,821	290	0,2883
04	39,25	33,56	414	4,807	1688	0,0980
13.1.1	4,93	3,94	8,8	0,182	64	1,402
2	4,93	2,96	15,5	0,321	113	0,7976
3	4,93	2,03	20,2	0,438	154	0,5561
4	9,83	7,87	34,7	0,730	257	0,3460
5	9,83	6,89	49,2	1,058	372	0,2333
6	9,83	5,91	61,7	1,314	462	0,1898
7	9,83	4,93	72,3	1,387	488	0,1996
8	19,64	16,69	107	2,115	743	0,1284
9	19,68	13,75	198	3,170	1112	0,1055
10	19,64	9,73	291	4,009	1406	0,0966
11	29,44	21,60	400	4,664	1637	0,0993
12	29,44	20,52	446	4,875	1713	0,1013

					and the local sectors in the l			
Tabelle 3	Tabelle 3 - 3 (Fortsetzung)							
Versuch Nr.	PO	P ₁	$P_0^2 - P_1^2$	ň	Re	λ		
13.1.21	29,44	14,73	650	5,854	2050	0,1017		
22	39,24	29,24	685	5,979	2088	0,1036		
23	39,24	24,44	943	7,151	2493	0,0992		
24	39,73	19,63	1193	7,952	2769	0,1012		
25	39,24	9,73	1445	8,712	3034	0,1018		
26	49,06	19,73	2018	9,966	3509	0,1115		
27	49,06	9,73	2312	11,602	4080	o,0939		
28	58,86	24,64	2857	12,95	4562	0,0944		
29	58,86	9,73	3370	14,43	5095	0,0896		
II) <u>Al</u> 2 ⁰ 3	 _ <u>Pellets</u> 	 <u>Meßgas</u> 	 _ <u>Ar</u> (AP 2) 	1	1			
7.2.1	50,03	49,07	95,1	8,467	2607	0,0737		
2	40,23	39,27	76,3	7,756	2080	0,092		
3	30,42	29,42	59,8	6,699	2062	0,0726		
4	20,61	19,63	39,4	5,677	1748	0,0659		
5	10,81	9,85	19,8	2,995	922	0,1178		
6	50,03	48,09	190	12,231	3768	0,0707		
7	40,23	38,29	152	10,95	3376	0,0699		
8	30,42	28,43	117	9,785	2019	0,0667		
9	20,71	18,75	77,3	7,559	2332	0,0731		
10	10,81	8,85	38,5	6,849	2113	0,0439		
8.2.1	50,03	45,13	466	15,806	4859	0,1033		
2	40,23	35,35.	369	14,565	4484	0,0954		
3	30,42	25,52	274	13,097	4029	0,0867		
4	20,61	15,71	178	10,634	3269	0,0844		
5	10,81	5,91	81,9	6,95	2137	0,0901		
9.1.1	59,84	9,34	3494	57,68	18240	0,0597		
2	59,84	10,81	3464	60,59	19480	0,0547		
3	59,84	15,71	3334	58,6	18970	0,0568		
4	59,84	20,61	3156	57,77	18770	0,0557		
5	59,84	25,52	2930	56,29	18360	0,0548		
6	59,84	30,52	2649	53,59	h7480	0,0547		

Tabelle 3 - 3 (Fortsetzung)

Versuch Nr.	Po	P1	$P_0^2 - P_1^2$	m	Re	λ.
9.1.7	59.74	30.42	2643	53,13	17,450	0,0560
8	59,84	35,32	2333	49,6	16250	0,0567
9	59,84	40,23	1962	44,93	14660	0,0580
10	59,84	45,13	1544	39,43	12820	0,0591
11	59,84	45,13	1544	40,40	13050	0,0559
12	59,84	50,03	1078	33,97	10970	0,0553
13	59,84	54,94	562	23,87	7679	0,0583
14	59,84	57,39	287	16,56	5292	0,0614
15	59,84	40,23	1962	45,24	14550	0,0562
16	59,84	35,32	2333	50,16	16270	0,0548
17	59,84	30,42	2655	53,23	17400	0,0558
18	59,84	25,52	2930	56,3	18520	0,0553
19	59,84	20,61	3156	57 <b>,</b> 57	18980	0,0570
20	59,84	15,71	3334	60,35	19950	0,0550
21	59,84	10,81	3464	60,6	20130	0,0569
10.1.1	35,32	30,42	322	14,39	4446	0,0853
2	30,42	25,52	274	13,95	4325	0,0771
3.	25,52	20,59	227	12,79	3971	0,0758
4	20,61	15 <b>,</b> 71	178	11,39	3539	0,0745
5	15,71	10,83	129	10,1	3138	0,0686
6	10,81	5,88	82,3	8,0	2484	0,0691
11.2.1	40,23	35,42	364	13,5	4206	0,1112
2	35,32	30,32	328	16,39	5121	0,0679
3	30,42	25,52	274	14,67	4587	0,0705
4	25,52	20,62	226	13,66	4277	0,0668
5	20,71	15,68	183	12,0	3755	0,0697
6	15,71	11.81	107	9,947	3112	0,0592
7	10.81	5,91	81,9	7,892	2464	0,0712
13.2.1	4,93	4,04	7,98	1,273	393	0,2615
2	5,02	2,96	16,4	2,547	786	0,1345
3	4,93	1,98	20,4	3,010	923	0,1194
4	9,83	7 <b>,</b> 81	34,7	4,121	1272	0,1091
6	9,83	5,91	61,7	5,209	1607	0,1212

Tabelle 3	- 3 (For	tsetzung	)			
Versuch Nr.	PO	^P 1	$P_0^2 - P_1^2$	ň	Re	λ
13.2.7	9,83	4,93	72,3	6 <b>,</b> 135	1893	0,1024
8	19,64	16,60	110	7,891	2.441	0,0956
9	19,64	12,75	197	10,89	3367	0,0895
10	19,64	9,83	289	13,32	4115	0,0877
13.2.21	9,83	7,87	34,7	4,29	1331	0,1012
22	9,83	6,89	49,2	5,01	1553	0,1050
23	9,83	5,91	61,7	5 <b>,</b> 56	1723	0,1069
24	9,83	4,93	72,3	5,79	1,794	0,1155
25	19,64	16,69	107	7,62	2369	0,1004
26	19,64	13,75	197	10,58	3292	0,0955
27	19,64	10,12	283	12,32	3830	0,1012
28	29,44	21,69	396	15 <b>,</b> 75	4993	0,0896
29	30,03	19,73	513	18,07	5707	0,0877
30	29,44	14,83	647	20,46	6425	0,0855
31	39,45	29,54	684	21,50	6958	0,0859
32	39,35	24,54	946	26,21	8489	0,0799
33	39,35	19,73	1159	29,08	9412	0,0793
34	39,25	9,73	1446	32,41	10440	0,0789 [.]
35	49,06	19,73	2018	37,53	12370	0,0852
36	48,96	9,93	2298	43,12	14190	0,0732
37	59 <b>,</b> 10	24,64	2886	47,59	15910	0,0776
38	58,56	9,83	3333	54,25	18190	0,0690
III) <u>UO</u> 2= <u>T</u> 3	abletten	, <u>Meßgas</u>	<u>He</u> (UP 1)			
16.1.1	4,92	3,94	8,7	0,095	33 <b>,</b> 6	2,94
2	4,92	2,86	16,0	0,20	70 <b>,</b> 6	1,221
3	4,92	1,98	20,3	0,26	91 <b>,</b> 8	0,9141
4	9,82	.7,57	39,1	0,59	208	0,3445
5	9,82	6,78	50 <b>,</b> 5	0,78	275	0,2541
6	9,82	5,8	62,8	0,98	346	0,2002
7	9,82	4,82	73,2	1,07	378	0,1957
8	19,68	16,69	109	1,68	593	0,1195
9	19,63	13,75	196	2,67	942	0,0853

Tabelle 3	- 3 (Foi	rtsetzung	r)		•	
Versuch Nr.	Po	P 1	$P_0^2 - P_1^2$	m	Re	λ
16.1.10	19,63	9,82	289	3,51	1237	0,0725
11	29,63	21,69	408	4,012	1413	0,0790
12	29,49	19,73	480	5,033	1772	0,0591
16.1.22	29,53	20,12	467	4,99	1758	0,0586
23	29,44	14,73	650	5,83	2053	0,0595
25	39,24	24,34	947	7,55	2655	0,0522
26	39,34	19,68	1160	.8,55	3006	0,0497
27	39,34	9,53	1457	9,64	3389	0,0489
28	49,05	19,73	2017	11,76	4116	0,0457
29	48,95	9,87	2299	12,50	4371	0,0459
30	58,95	25,02	2894	14,15	4964	0,0452
31 24	58,86 39,14	10,41 29,53	3356 660	15,41 6,00	5382 2111	0,0444 0,0578
(V) <u>UO</u> 2=	Tabletter	<u>, Meßgas</u>	<u>Ar</u> (UP 2)			
16.2.1	4,92	3,89	9,1	1,17	361	0,2015
2	4,92	2,91	15,7	1,84	568	0,1412
3	4,92	1,98	20,3	2,12	654	0,1370
4	9,82	7,81	35,4	3,53	1089	0,0869
5	9,82	6,88	49,1	4,68	1444	0,0685
6	9,92	5,95	63	5,65	1744	0,0602
7	9,82	4,87	72,7	6,27	1934	0,0564
8	19,68	16,59	112	8,43	2601	0,0488
9	19,73	13,45	208	12,04	3717	0,0444
10	19,63	9,77	290	14,34	4493	0,0442
11	29,44	20,61	442	17,44	5396	0,0455
16.2.21	19,83	16,88	108	8,00	2567	0,0548
22	19,63	14,04	188	11,38	3645	0,0469
23	19,73	10,12	287	14,21	4545	0,0457
24	29,44	21,69	396	17,51	5640	0,0425
25	29,49	19,29	498	19,93	6443	0,0413
26	29,33	14,73	643	23,18	7506	0,0395
27	39,34	29.34	687	22.89	7049	0.0413

.

Tabelle 3 - 3 (Fortsetzung)										
Versuch Nr.	Po	P 1	$P_0^2 - P_1^2$	ň	Re	λ				
16.2.28	39,24	24,53	938	27,33	8607	0,0405				
29	39,34	19,68	1160	30,21	9435	0,0405				
30	39,34	9,82	1451	35,37	11470	0,0385				
31	49,05	19,63	2021	42,92	13910	0,0368				
32 /	49,15	9,82	2319	45,02	14590	0,0383				
33	58,86	24,43	2868	49,57	15960	0,0385				
34	58,96	11,20	3351	57,15	18450	0,0344				
V) <u>Al</u> 2 ⁰ 3	<u>-\$täbe, N</u>	<u>leßgas He</u>	(AS 1)	· · · · · · · · · · · · · · · · · · ·						
3.2.1	59,55	57,61	227	4,048	1423	0,0628				
2	49,64	47,7	189	3,657	1284	0,0631				
3	40,42	38,65	140	2,756	968	0,0815				
4	30,42	28,55	110	2,47	868	0,0791				
5	20,71	18,85	73,6	1,709	601	0,1092				
6	10,81	8,93	37,1	0,895	315	0,1986				
7	5,90	4,12	17,8	0,469	165	0,3457				
8	59,45	58,37	127	3,0	1053	0,0640				
9	50,03	49,04	98	2,172	763	0,0930				
10	40,23	39,3	74	1,706	599	0,1125				
11	30,42	29,41	60,4	1,409	495	0,1334				
12	20,61	19,64	39	0,909	320	0,2050				
13	11,0	10,09	19,2	0,488	172	0,3458				
14	6,39	5,46	11	0,277	97,5	0,6135				
4.1.1	20,61	4,04	408	6,253	2285	0,0411				
2	30,42	5,71	893	9,26	3245	0,0450				
3	59,15	10,41	3390	15,98	5551	0 <b>,</b> 0579				
4	59,74	15,61	3325	16,63	5789	0,0527				
5	59,55	20,42	3129	15,84	5523	0,0549				
6	59,74	25,22	2933	15,84	5535	0,0517				
7	59,74	30,52	2637	15,188	5314	0,0508				
8	59,74	35,52	2307	13,61	4768	0,0556				
9	59,74	40,23	1950	12,69	4460	0,0544				

Tabelle 3	- 3 (For	tsetzung	)			
Versuch Nr.	Po	^P 1	$P_0^2 - P_1^2$	ů	Re	λ
4.1.10	59,64	44,83	1547	11,75	4135	0,0505
11	59,64	49,54	1103	10,53	3708	0,0450
12	59,64	55 <b>,</b> 13	518	7,79	2745	0,0388
13	59 <b>,</b> 84	57,34	293	5,91	2082	0,0381
15	59,84	57,98	219	5,34	1882	0,0349
5.2.1	10,81	5,9	81,9	.2,032	713	0,0848
2	10,81	7,84	55,3	1,447	508	0,1129
3	10,81	8,85	38,5	1,023	359	0,1573
4	6,88	4,92	23,1	0,658	231	0,2278
5	6,88	2,96	38,6	0,987	347	0,1688
6	4,92	3,95	8,6	0,199	70	0,9240
. 7	4,92	2,96	15 <b>,</b> 5	0,413	145	0,3847
8	4,92	2,47	18,1	0,469	165	0,3497
9	4,92	1,98	20,3	0,511	179	0,3300
VI) <u>Al</u> 203	<u>-Stäbe</u> ,	Meßgas_A	<u>ir</u> (AS 2)	ł		
3.1.1	49,54	47,58	190	12,06	3720	0,0588
2	40,23	38,32	150	10,42	3215	0,0615
3	30,42	28,60	107	8,64	2667	0,0634
4	20,52	18,56	76,6	7,22	2227	0,0639
.5	10,81	8,90	37,6	5,16	1591	0,0609
6	5,9	3,94	19,3	3,48	1071	0,0680
7	59,84	57,93	225	13,04	4014	0,0600
8	59,64	58,66	116	9,32	2872	0,0606
9	50,33	49,37	95,7	8,19	2527	0,0642
10	40,23	39,25	77,9	7,48	2310	0,0619
11	30,42	29,43	59,3	6,41	1978	0,0635
12	20,76	19,78	39.,7	5,35	1651	0,0604
13	10,90	9,92	20,4	3,60	1109	0,0678
1.4	6,20	5,22	11,2	2,39	735	0,0839
4.2.1	30,42	11,0	804	27,28	8610	0,0484
2	40,23	10,81	1502	38,85	12620	0,0465

ĩ

•

Versuch	Po	P ₁	$P_0^2 - P_1^2$	m	Re	λ
4.2.3	30,42	10,81	809	28,93	9157	0,0434
4	40,42	10,81	1517	39,93	12910	0,0442
5 C	59,25	10,81	3394	60,87	20160	0,0444
0 7	59,84	15,71	3334	60,22	19870	0,0444
1	59,04	20,01	3150	57,92	19030	0,0453
0	59,55	25,52	2655	52,51	17070	0,0452
9 10	59,04	30,42	2000	10 76	16120	
11	59 74	40.03	1966	49,70	1/810	0,0440
12	59.84	45.33	1526	40.02	12860	0,0444
13	59.84	50.03	1078	33.73	10790	0.0448
14	59.84	54,94	562	25.59	8130	0.0404
15	59.84	56.90	343	18,86	5970	0.0452
16	59,74	57,88	219	17,96	5660	0,0316
17	59,84	58,86	116	16,13	5069	0,0208
5.1.11	10,79	5,95	81	7,58	2328	0,0603
12	10,78	7,86	54,4	6,18	1898	0,0608
13	10,81	8,85	38,5	5,24	1610	0,0599
14	6,88	4,92	23,1	3,89	1195	0,0649
15	6,88	2,96	38,6	4,78	1466	0,0719
16	5,02	4,04	8,9	1,67	511	0,1359
17	4,92	2,96	15,4	3,03	930	0,0715
18	4,92	2,47	18,1	3,40	1044	0,0664
19	4,92	1,98	20,3	3,66	1123	0,0644
5.1.21	10,9	8,94	38,9	5,28	1618	0,0595
22	8,85	6,88	31	4,86	1490	0,0557
23	6,98	4,92	24,5	4,00	1225	0,0650
24	4,92	2,96	15,4	3,13	958	0,0670
25	4,92	1,98	20,3	3,70	1135	0,0627

.

ALL		ungegetigt (* 54 * dødtbegetigte	ennen en e	PNS 4237	
Gasst	römung im Brennstab			RBT/IT	1976
<u>Tabel</u>	<u>le 4 - 1:</u> Schüttung Standardf	en älle zu	r numerischen	n Berechnung	
Fall Nr.	Art der Teilchen in der Schüttung	ε	d _k (m)	s (m ⁻¹ )	A _k (m ² )
1	Kugeln (Filter- material AC 6120)	0,4	1,25 . 10 ⁻³	4,8 . 10 ³	0,111
2	Pelletbruchstücke	0,065	7,63 . 10 ⁻³	1,05 . 10 ³	0,048
3.	Pelletbruchstücke	0,065	2,47 . 10 ⁻³	3,05 . 10 ³	0,112
4	Pelletbruchstücke	0,065	1,72 . 10 ⁻³	4,37 . 10 ³	0,153

Alle Fälle werden jeweils für drei Wertepaare von Anfangsund Enddruck ( $P_0/P_1$ ) an der Teststrecke berechnet:

	P _O (bar)	P ₁ (bar)	$P_0^2 - P_1^2 (\frac{kg^2}{m^2 s^4})$
a b	5	4 17	9. $10^{10}$
c	50	20	2,1 . 10 ¹³

Gasströmung im Brennstab	PNS 4237 RBT/IT 1976
<u>Tabelle 4 - 2:</u> Schüttungen Formfaktor k für nicht kugel Teilchen (nach /3/)	förmige
Art des Gutes	k
Erbsen	1,05
Bohnen	1,4
Weizen, rein	1,8
Kohle	2,0
Weizen, ungereinigt (Mähdrescher Getreide)	3,0
Mais, mit viel Bruchkorn	3,2
Zuckerrüben	3,5
Hafer, rein	3,8

für  $25 < \text{Re}_3 < 250$ und 0,69 <  $d_k$  (mm) < 13,8

Sta	ndard- fall		1			2			3			4	
Modell		a	b	с	а	b	с	a	b	С	a	b	с
A2	m λ Re _v	1,86-4 12,97 734	7,39-4 10,12 2920	3,72-3 7,55 14700	1,6-5 6,72 57	6,37-5 5,22 227	3,21-4 3,93 1142	9,25-6 20,1 33	3,68-5 15,71 131	1,85-4 11,73 659	7,55-6 - -	3,0-5 23,52 107	1,55-4 17,6 538
в	m λ _v Re _v	1,96-4 11,62 773	7,96-4 8,72 3140	3,82-3 7,16 15100	1,03-5 16,38 36,6	4,35-5 11,22 155	1,95-4 10,58 694	2,29-6 327,6 8,16	1,72-5 71,4 61,3	1,07-4 34,7 383	1,16-6 1285 4,12	1,13-5 167 40,1	8,33-5 57,8 297
с	m λ _v Re _v	außerha Geltung	alb des gsbereid	chs	1,54-6 720 5,5	(8,6-6) (286) (30,6)	(4,96-5) (163) (176)	1,62-7 6,6+4 0,58	2,0-6 5,3+3 7,13	(2,2-5) (8,7+2) (76,6)	7,8-8 2,8+5 0,277	9,6-7 2,3+4 3,43	(1,04-5) (3,7+3) (36,6)
D	m λ _v Re _v	1,83-4 13,3 722	7,99-4 8,66 3150	4,01-3 6,49 15800	1,5-5 7,68 53,4	7,3-5 4 260	4,01-4 2,49 1430	3,25-6 163 11,6	2,65-5 30,3 94,3	1,82-4 12,2 647	1,68-6 609 5,99	1,57-5 85,9 55,9	1,36-4 21,8 483
() Kl 1,86-4	ammerwe verei	erte Ext	rapolat Expond	tion   entialda	ṁ́ (kg/s arstellu	) ng: ^ 1	,86 . 10	4		L	<u> </u>		
Gasstro	ömung i	m Brenn	nstab									PNS 4237 RBT/IT	1976
Tabell	e 4 - 3	B: Erge	ebnisse	der Bei	rechnung	en für S	chüttunge	n	2				

ן ת ן ן

Gasstro	mung im	Brennsi			RBT/IT	1976
Tabelle	<u>4 - 4</u> :	Ergebr von Te	nisse der Messur eilchen	ıgen an Schüt	tungen	
I) <u>SiO</u> 2	Kugeln	<u>_Meßgas</u>	<u>He</u> (Standardfa	all 1)		
Versuch	PO	^Р 1	$P_0^2 - P_1^2$	ů	Rev	λ _V
Nſ.	(bar	abs)	$(10^{10} \text{kg}^2/\text{m}^2\text{s}^4)$	(10 ⁻⁴ kg/s)		
15.1.1	4,93	3,95	8,7	1,765	695	14,16
2	4,93	2,97	15,5	2,390	939	13,72
3	4,93	2,09	19,9	2,829	1111	12,58
4	9,84	7,86	35 <b>,</b> 1	3,45	1355	14,89
5	9,84	6,90	49,2	4,255	1668	13,70
6	9,84	6,40	55 <b>,</b> 9	4,508	1766	13,84
15.1.21	4,93	3,95	8,7	1,68	672	16,02
22	4,93	2,97	15,5	2,28	911	15,46
23	4,93	1,99	20,3	2,63	1050	15,24
24	9,84	7,93	33,9	3,97	1587	11,18
25	9,84	6,99	48	4,72	1883	11,14
26	9,84	5,82	63	5,46	2177	10,92
`27	9,84	4,93	72,5	5,74	2289	11,39
28	19,74	16,70	111	7,70	3091	9,77
29	19,64	13,42	206	10,38	4156	9,94
30	19,64	9,35	298	13,15	5249	8,94
15.1.31	19,64	16,6	110	7,66	3044	9,67
32	19,64	13,76	196	11,63	4612	7,46
33	19,60	9,93	286	12,73	5049	9,05
34	29,45	21,6	401	15,44	6130	8,65
35	29,50	19,54	488	16,71	6719	9,18
36	29,64	14,64	664	20,36	8123	8,31
37	39,45	29,45	689	20,12	7863	8,56

# PNS 4237

# - 55 -

...

Versuch	PO	P ₁	$P_0^2 - P_1^2$	m	Re _v	λ _v
Nr.				Ten Takani Setangan dan sebagai kang sebagai kang sebagai kang sebagai kang sebagai kang sebagai kang sebagai k		وسيويند ويركان كالانتراق كا
15.1.38	39,45	24,94	934	27,37	10.690	6,27
39	39,35	19,54	1167	27,39	10750	7,87
40	39,35	11,89	1407	31,16	12290	7,39
41	49,26	28,76	1599	33,53	13340	7,36
42	58,87	44,25	1508	32,65	13030	7,36
II) <u>SiO</u> 2	Kugeln,	Meßgas A	<u>r</u>			
15.2.1	4,94	4,05	8	j 6 <b>,</b> 41	2219	9,92
2	5,03	2,97	16,5	8,68	3004	11,14
3	4,94	1,99	20,4	9,64	3343	11,12
4	9,94	7,88	36,7	13,52	4663	10,19
5	9,84	9,60	49,2	16,55	5707	9,11
6	9,84	6,01	60,7	18,43	6375	9,1
15.2.21	9,74	7,88	32,8	11,95	4123	11,65
22	9,84	6,90	49,2	15,42	5324	10,52
23	9,84	6,01	60,7	17,8	6153	9,75
24	9,74	5,03	69,6	19,26	6671	9,56
25	19,74	17,19	94,2	23,74	8244	8,56
26	19,69	13,67	198	34,64	12090	8,52
27	19,64	9,74	291	43,60	15400	7,99
28	29,45	21,12	421	57,63	20760	6,79
29	29,50	19,55	488	60,95	21930	7,03
30	29,50	14,74	653	69,07	24790	7,3
31	39,26	29,06	698	72,50	26220	7,16
32	39,26	24.,55	939	86,63	31460	6 <b>,</b> 77
34	39,16	11,80	1394	109,4	40220	6,4
III) Ala	0 ₂ -Pellet	bruchstü	cke, Meßgas	He (Sta	ndardfal	.1 2)
	4,92	3.94	8.7	0,276	97,6	2,30
2	4.92	2,69	15,4	0,276	97,6	4,1
-	4.92	3.04	15.0	0,341	121	2,6
A		0 06	225	0 450	159	3 25

Versuch	P	P ₁	$P_{2}^{2} - P_{1}^{2}$	m	Re_	λ_
Nr.	0	 			V.	v
14.2.5	9,83	6,88	49,3	0,588	208	2,89
6	9,83	5,90	61,8	0,756	267	2,19
7	9,83	4,82	73,4	0,814	288	2,24
8	19,63	16,59	110	1,148	406	1,7
9	19,63	13,75	196	1,636	574	1,5
10	19,63	9,68	292	2,021	715	1,45
11	29,44	20,56	444	2,397	848	1,59
12	29,44	19,73	477	2,651	938	1,39
13	29,34	14,63	647	3,155	1116	1,33
14	39,34	29,44	681	3,269	1157	1,32
15	39,24	24,53	938	3,926	1403	1,23
16	39,34	19,68	1160	4,439	1572	1,22
17	39,24	9,92	1441	4,957	1756	1,21
4.2.21	29,44	14,68	651	3,411	1210	1,15
22	39,25	29,15	691	3 <b>,</b> 551	1260	1,14
23	.39,25	24,64	933	4,192	1487	1,10
24	39,30	19,49	1165	4,834	1715	1,03
25	39,25	9,73	1446	5 <b>,</b> 386	1910	1,03
26	49,05	19,53	2024	6,391	2268	1,03
27	49,05	9,73	2311	6,767	2403	1,05
28	58,96	24,83	2860	8,089	2890	0,922
29	59,05	9,73	3392	8,618	3065	0,955
IV) <u>Al</u> _O	TPelletb	ruchstüc	ke, <u>Meßgas A</u>	r r		
2 14.1.1	5,07	, 3;94	10,2	0,633	196	5,13
- 2	5,02	2,91	16,7	1,093	338	2,82
3	4,92	1,98	20,3	1,243	384	2,65
4	9,93	7,96	35,2	1,911	590	1,95
5	10.02	6,89	52,9	2,441	754	1,8
6	9,93	5,86	64,3	2,763	853	1,7
7	9,83	4,92	72,4	2,993	924	1,63
8	19,63	16,8	103	3,921	1212	1,37
Q	10 73	13 85	109	5 651	17/8	1 26

Tabelle 4 - 4 (Fortsetzung)						
Versuch Nr.	PO	P 1	$P_0^2 - P_1^2$	m	Rę	λ _v
14.1.10	19,63	9,83	289	6,505	2010	1,39
11	29,44	21,59	401	8,455	2623	1,15
12	29,50	19,58	487	·9,490	2940	1,11
13	29,44	14,83	647	11,09	3434	1,08
14	39,35	29,34	688	11,28	3508	1,12
15	39,20	24,83	920	14,01	4369	0,976
16	39,35	19,63	1163	15,89	4974	0,961
17	39,35	9,63	1456	17,93	5641	0,949
14.1.21	29,44	14,93	644	11,81	3759	0,978
22	39,25	29,10	694	12,45	3965	0,956
23	39,25	24,44	943	14,93	4761	0,904
24	39,25	19,54	1159	17,10	5459	0,847
25	39,25	9,73	1446	19,48	6228	0,814
26	49,06	19,34	2033	23,08	7386	0,821
27	49,06	9,73	2312	24,73	7912	0,812
28	58,8	24,7	2846	27,89	8797	0,778
29	58,86	9,73	3370	30,53	9735	0,776
					·	
		•				
					9	
						l

•




















































ANHANG

## Ableitung der Massenstrom-Gleichung (2.2)

Die allgemeine Energiegleichung für <u>stationäre</u>, kompressible Strömung lautet nach /3/:

$$wdw + vdp + dR + qdz = 0$$
 (A 1)

dabei bezeichnen

w	Geschwindigkeit					
v	spez. Volumen	≻	des Flui	.ds		
р	Druck	J				x
wdw	Beschleunigungsarbeit					
vdp	Expansionsarbeit		bezogen	auf	die	Masse
dR	Reibungsarbeit	ſ				
gdz	Lagenenergie	ļ				

Es läßt sich numerisch leicht zeigen, daß bei erzwungener Strömung von Gasen der Term der Lagenenergie meist vernachlässigbar ist.

Ebenso läßt sich für die bei einem Brennstab denkbaren Randbedingungen zeigen, daß der Beschleunigungsterm wdw klein gegenüber der Expansions- und der Reibungsarbeit ist. Gleichung (A 1) wird damit vereinfacht zu

$$vdp + dR = 0 \tag{A 2}$$

Für die Reibungsarbeit gilt bei kompressiblen wie auch bei inkompressiblen Medien nach /3/:

2

$$dR = \lambda \cdot \frac{w^2}{2d_h} dx \qquad (A 3)$$

wobei

λ Widerstandsbeiwert
 d_h hydraulischer Durchmesser
 dx Längenelement in Strömungsrichtung

Mit dem allgemeinen Gasgesetz kann geschrieben werden

 $v = \frac{R \cdot T}{P}$   $R \quad Gaskonstante \\T \quad Temperatur$  des Gases

(A 2) wird damit zu:

$$\frac{R \cdot T}{P} dp + \lambda \frac{w^2}{2d_h} dx = 0$$
(A 4)
Mit  $w = \frac{\dot{m} \cdot v}{F}$ 

$$= \frac{\dot{m}}{F} \cdot \frac{R \cdot T}{P}$$

wobei

F Strömungsquerschnitt

m Massenstrom

folgt darausnach kürzen mit  $\frac{R}{P^2}$  schließlich

$$P dp + \lambda \frac{1}{2d_h} \cdot \frac{m}{F^2} \cdot R T dx = 0$$
 (A 5)

Im allgemeinsten Fall sind dabei alle Größen außer der Gaskonstanten R und dem Massenstrom mm (stationäre Strömung) als in x-Richtung veränderlich anzunehmen. Die Integration von x = 0  $(P = P_0)$  bis x = 1  $(P = P_1)$  liefert daher

$$\frac{P_{1}^{2} - P_{0}^{2}}{2} + \frac{\dot{m}^{2} R}{2} \int \frac{\lambda(x) T(x)}{d_{h}(x) \cdot F^{2}(x)} dx = 0$$

umgeformt

Formt  

$$P_0^2 - P_1^2 = \dot{m}^2 R \int \frac{\lambda(x) T(x)}{d_h(x) \cdot F^2(x)} dx$$
 (A 6.a)

oder

$$\dot{m}^{2} = \frac{(P_{0}^{2} - P_{1}^{2})}{R} \int_{0}^{1} \frac{\lambda(x) T(x)}{d_{h}(x) \cdot F^{2}(x)} dx$$
(A 6.b)

Dies ist die in Abschnitt 2 aufgeführte Beziehung für den Massenstrom. Sie kann, wie die folgende Umformung zeigt, auf die üblichen Druckverlustformeln (z.B. /2/, /3/, /4a/) zurückgeführt werden:

Widerstandsbeiwert, Temperatur und geometrische Abmessungen werden bei solchen Formeln als konstant über die Strömungslänge, 1, angenommen; damit kann (A 6) integriert werden von x = 0 bis x = 1:

$$P_0^2 - P_1^2 = \dot{m}^2 \cdot R \cdot \frac{\lambda \cdot T}{d_h \cdot F^2} \cdot 1$$
Mit  $w_i = \frac{\dot{m}}{\rho_i \cdot F}$  und  $R \cdot T = \frac{P_i}{\rho_i}$ 
(A 7)

wobei

folgt:

$$(P_{0} - P_{1}) (P_{0} + P_{1}) = \lambda \frac{1}{d_{h}} \cdot \rho_{1}^{2} \cdot w_{1}^{2} \cdot \frac{P_{1}}{\rho_{1}}$$
  
oder  $P_{0} - P_{1} = \Delta p = \lambda \frac{1}{d_{h}} \cdot \frac{\rho_{1}}{2} w_{1}^{2} \cdot \frac{P_{1}}{\frac{P_{0} + P_{1}}{2}}$  (A 8)

Diese Beziehung, die meist in der Form

$$\Delta p = \lambda \frac{1}{d_h} \cdot \frac{\rho_o w_o^2}{2} \cdot \frac{P_o}{P_m}$$
 (A 9)

aufgeführt wird, ergibt sich aus der üblichen Druckverlustformel für inkompressible Medien

$$\Delta p = \lambda \frac{1}{d_h} \frac{\rho}{2} w^2 \qquad (A \ 10)$$

durch Vergrößerung des Druckverlusts um den Expansionsfaktor  $\frac{\frac{P}{O}}{\frac{P}{m}}$ :

$$\Delta p_{\text{kompressibel}} = \Delta p_{\text{inkompr.}} \cdot \frac{P_{o}}{P_{m}}$$
 (A 11)