

März 1977

KFK 2386/II

Institut für Neutronenphysik und Reaktortechnik Projekt Schneller Brüter

Evaluations for the German Nuclear Data Library KEDAK-3

Part 1: Non-fissile Materials

compiled by B. Goel with contributions from C. Broeders, B. Goel, R. Meyer, F. Weller

Als Manuskript vervielfältigt

Für diesen Bericht behalten wir uns alle Rechte vor

GESELLSCHAFT FÜR KERNFORSCHUNG M.B.H. KARLSRUHE

KERNFORSCHUNGSZENTRUM KARLSRUHE

KFK 2386/II

Institut für Neutronenphysik und Reaktortechnik Projekt Schneller Brüter

Evaluations for the German Nuclear Data Library KEDAK-3 Part 1: Non-fissile Materials

compiled by

B. Goel

with contributions from C. Broeders, B. Goel, R. Meyer⁺ and F. Weller⁺⁺

⁺Present address: Software AG, Darmstadt ⁺⁺Present address: Fachhochschule, Köln

Gesellschaft für Kernforschung m.b.H., Karlsruhe

Abstract

This report deals with evaluations for the KEDAK-3 library performed between 1970 and 1976. In particular the data changes for the materials H, d, 12 C, ${}^{16}_{0}$, ${}^{27}_{A1}$, 23 Na, Mo, Cr, Fe and Ni are described.

Auswertungen für die deutsche Kerndaten-Bibliothek KEDAK-3 Teil 1: Nichtspaltbare Materialien

Zusammenfassung

In diesem Bericht sind die Auswertungen für die KEDAK-3 Bibliothek im Zeitraum von 1970 bis 1976 beschrieben. Im einzelnen sind die Datenänderungen für die Materialien H, d, ¹²C, ¹⁶O, ²⁷A1, ²³Na, Mo, Cr, Fe und Ni beschrieben.

CONTENTS

-

Α.	Introduction	1
в.	Evaluations for the data for hydrogen, deuterium, carbon, oxygen and aluminum	3
с.	Evaluation of the cross sections for sodium and molybdenum in MeV region	15
D.	Evaluation of the cross sections for chromium, iron and nickel in MeV region	79

page

A. Introduction

From 1970 to 1976 a number of new evaluations for the German Nuclear Data library KEDAK have been performed. The status of the recent version of the library (KEDAK-3) is summarised in reference /1/. The present report forms a part of an effort towards a concise documentation of KEDAK-3. This report is not intended to supersede completely previous comprehensive descriptions of the older versions of KEDAK (references /2/ and /3/), but it does supersede different publications describing the evaluations of the data for nonfissile materials for KEDAK-3 published after 1971, for example contributions to the PSB-quaterly reports etc.

A major change between KEDAK-2 and KEDAK-3 data is the shift of the upper energy limit of the data from 10 MeV to 15 MeV and the introduction of some new data types /4/. The main emphasis of the KEDAK-3 evaluation was the updating of the data for fissile materials which will be described in the second part of this report. For the nonfissile materials discussed in this report the modifications mainly concern the updating of the data to 15 MeV. For some isotopes the data below 10 MeV have also been revised.

A graphical comparison of the KEDAK-2 and KEDAK-3 data for nonfissile materials has been presented in reference /5/. In the following the evaluations underlying modifications of the data with respect to KEDAK-2 are compiled. The individual contributions of this compilation were written by different authors in the course of the last six years. The contributions are different in style and presentation. One contribution dating back to 1970 is in german language. No attempt has been made to generate uniformity in the different contributions. Some introductory remarks, however, precede the older contributions. The figures and the references are numbered separately in each of the chapters of this report.

The content of this report is divided into three chapters. The first chapter deals with the recent modification of the data for hydrogen, deuterium, carbon, oxygen and aluminium. The second chapter describes the evaluation of the cross sections for sodium and molybdenum in the MeV

Zum Druck am: 10.2.1977

energy range. It was written by Dr. R. Meyer in 1973. In the last chapter the evaluation of the data for chromium, iron and nickel in the MeV energy range is presented in german language. It is also written by Dr. R. Meyer and dates back to 1970.

The data for chromium, iron and nickel are being reevaluated presently by F. Fröhner; the corresponding report will be issued early in 1977.

REFERENCES

- /1/ B. Goel and B. Krieg KFK 2234 - NEANDC(E) 171 "U" (1975)
- /2/ J.J. Schmidt KFK 120 - EANDC-E-35U (1966)
- /3/ B. Hinkelmann, B. Krieg, I. Langner, J.J. Schmidt and D. Woll KFK 1340 - EANDC(E)136 "U" (1971)
- /4/ B. Krieg KFK 1725 (1973)
- /5/ B. Goel KFK 2233 - NEANDC(E) 170 "U" (1975)

B. Data for Hydrogen, Deuterium, Carbon, Oxygen and Aluminium

In the following chapter the data changes with respect to KEDAK-2 (reference /1/ and /2/) for the isotopes mentioned above are described. Most of these modifications were done during 1975 the dead line being October 1975. Due to the shortage of time at our disposal an extensive evaluation of all the data could not be performed, rather a recourse was taken to the existing evaluations where ever it suited our purpose. The best available data supplemented with our own evaluation are stored on the KEDAK-3 library as given below.

Capture Cross sections for Hydrogen

The previous versions of KEDAK the $H(n,\gamma)d$ cross section was arbitrarily set equal to zero above 10 keV. The KEDAK processing codes /3/, however, require nonzero values for such cross sections throughout the energy range of KEDAK, i.e. from 0.001 eV to 15 MeV. In KEDAK the data stored for this reaction are taken from the evaluation of Horsley /4/. The direct measurement of this reaction is available only at thermal energies and at 14 MeV. At the energies in between the data for the inverse reaction $d(\gamma,n)n$ has been analysed to obtain the capture cross sections for hydrogen.

Total and Elastic Scattering cross sections for Hydrogen

At energies below 700 keV the total neutron cross section for hydrogen also originates from the evaluation of Horsley /4/. Above 700 keV the most accurate experimental data at the time of this evaluations (1972) are those of Cierjacks et al. /5/. The recommended data on KEDAK-3 are, therefore, obtained by fitting a smooth curve through the data of Cierjacks et al. Since in the case of hydrogen the only possible reaction channel is the capture channel, the scattering cross section was derived from the total and the capture cross sections. The agreement between the recommended data derived from the experiment and the data of Hopkins and Breit /6/ obtained from the phase shift analysis is very good (Fig.1). The elastic angular distributions are stored for 19 energies between 0.05 MeV and 16 MeV. These angular distributions are taken from the phase shift analysis of Hopkins and Breit /6/.

Data for Deuterium

In the context of extending the data up to 15 MeV all the data for deuterium (H 2) above 1 keV are revised. The new data for the total; capture and (n,2n) cross sections follow the recommendation of Storey /7/ for the UKNDL. The marked difference between the presently and the previously recommended data is that the new total cross section between 2 keV and 2 MeV is lower than the previously recommended data on KEDAK. The largest difference is around 500 keV. Here the new data are about 6 % lower than the older data. The new cross section for the (n,2n) reaction is also lower than the previously recommended data on KEDAK.

Data for Carbon

The data for ¹²C were extended to 15 MeV by Meyer /8/ in 1970. At that time evaluations were also performed for the threshold reactions (n,n'), (n,n'E), (n,α) and $(n,n'3\alpha)$. The recommended data for the inelastic scattering to the 4.43 MeV level are primarily based on the 0 degree data of Hall and Bonner /9/. The data for ¹²C (n,α) are derived from the inverse reaction ⁹Be (α,n_o) of Van der Zwan and Geiger /10/. The data of ref. /10/ are further supported by the work of Obst, Grandy and Weil /11/. The peak at 8.1 MeV in Fig. 2 has also been observed in the direct measurement of the reaction ¹²C (n,α) by Davis et al. /12/.

The more recently evaluated data for carbon on KEDAK-3 are for the total and capture cross sections. The capture cross section shows an approximately 1/v dependance. Its 1/v dependance is given by

$$\sigma_{z} = 0.0059 \cdot e^{-0.503}$$
 E in eV

For the total cross section there is a recent publication from NBS /12/. Heaton et al. report a time of flight measurement of this cross section from 1 keV to 15 MeV. Below 1.4 MeV the total cross section of carbon is well reproduced with the following polynomial expression

$$\sigma_{\perp} = 4.757 + 3.419 E + 1.548 E^2 - 0.328 E^3$$

where σ_t is in barn and E in MeV.

The recommended data on KEDAK-3 below 1.4 MeV are calculated with the help of the above expression. The data above 1.4 MeV are not revised but they are compared with the NBS data in Fig. 3. Except for the resonances at 3.67 and 4.28 MeV the agreement between the two data sets is reasonably good.

Data for Oxygen

(C.H.M. Broeders, B. Goel, F. Weller)

With respect to KEDAK-2 the data modified for the isotope 16 0 are the capture cross section, the scattering cross section, the cross section for the excitation of individual inelastic scattering levels and the cross section for the reaction (n,p), (n,d) and (n, α). The energy range for all the data has been raised to 15 MeV.

The capture cross section follows the 1/v law. Its energy dependance can be written as

$$\sigma_{c}(E) = 2.83 \cdot 10^{-5} \sqrt{E(eV)}$$

 $\sigma_{\rm c}$ value at 0.025 eV is 0.178 mb. The first threshold reaction is the (n, α) reaction with the threshold at 2.35 MeV. Since the capture cross section is very small and the (n, α)-cross section becomes appreciable only above 3.6 MeV, there is practically no difference between the elastic scattering cross section and the total cross section below 3.6 MeV. Between 3.6 MeV and the threshold for inelastic scattering of 6.4 MeV $\sigma_{\rm el}$ is calculated as difference of $\sigma_{\rm t}$ and $\sigma({\rm n}, \alpha)$.

The modification of σ_t and accordingly σ_{el} below 1 MeV are due to the representation of the 442 keV resonance. The cross sections below 0.7 MeV are mainly based on the data of Okazaki /13/ and Adair et al. /14/, between 0.7 MeV and 1 MeV the new measurements of Cierjacks et al. /15/ and Schwartz /16/. In the energy range between 9 and 15 MeV the recommended curve for σ_{el} is based on the measurements of Nellis and Bucjanan /17/, Bauer et al. /18/, McDonald et al. /19/ and Beach et al. /20/.

For the inelastic scattering cross section 24 levels of inelastic scattering up to 14.0 MeV are taken into account. The partiel cross sections for each level and its energies are taken from the work of Foster and Young /21,22/. The excitation function of the first 20 levels are primarily based on the

- 5 -

 (n,n',γ) measurements. The remaining four levels are calculated using the evaporation model. The total inelastic scattering cross section is the sum of all these differential cross sections.

The data for ${}^{16}O(n,p)$ -reaction are taken from the evaluation of Sloggie and Reynolds /24/, those for (n,d) are taken from Foster and Young /22/. Because of the high threshold (above 10 MeV) the data for these reactions were not included in the KEDAK-2 library.

After the release of KEDAK-2 new measurements have been reported for the ${}^{16}O(n,\alpha){}^{19}C$ reaction and the γ -production cross section for the first 3 levels of excitation of ${}^{13}C$ (3.086, 3.684 and 3.854 MeV) /25/. The higher levels of ${}^{13}C$ decay through neutron emission and are, as such, included in the inelastic scattering cross section. The (n,α) transition to the ground state of ${}^{13}C$ and first 3 excited states of ${}^{13}C$ are included in the (n,α) cross section for ${}^{16}O$ in KEDAK-3.

Data for Aluminium

The data for ²⁷Al have not been reevaluated recently but an improvement of representation of point cross sections for the 5.9 keV resonance has been effected. The representation of capture cross section has also been improved between 0.1 eV and 7 keV. This is demonstrated in figure 7. Some improvement in the representation of $\sigma(n,n')$, $\sigma(n,p)$ and $\sigma(n,\alpha)$ has also been done above 10 MeV.

REFERENCES

- /1/ J.J. Schmidt KFK 120 - EANDC-E-35 U (1966)
- /2/ B. Hinkelmann, B. Krieg, I. Langner, J.J. Schmidt and D. Woll KFK 1340 - EANDC(E)136 "U" (1971)
- /4/ A. Horsley
 Nucl. Data Tables A2 (1962) 243
- /5/ S. Cierjacks, P. Forti, G.J.Kirouac, D. Kopsch, L. Kropp and I. Nebe KFK 1027 (1969)

/6/ J.C. Hopkins and G. Breit Nucl. Data Tables A9 (1971) 137 /7/ J.S. Storey in Nucl. Data for Reactors IAEA Vienna (1970), Vol. 1, p. 721 /8/ R. Meyer KFK 1272/2, (1972) p.122-12 /9/ H.E. Hall, T.W. Bonner Nucl. Phys. 14 (1959) 295 /10/ L. Van der Zwan, K.W. Geiger Nucl. Phys. A 152 (1970) 481 /11/ A.W. Obst, T.B. Grandy, J.L. Weil Phys. Rev. C5 (1972) 738 /12/ E.A. Davis, T.W. Bonner, O.W. Worsley jr., R. Bass Nucl. Phys. 48 (1963) 169 /13/ H.T. Heaton II, J.L. Menke, R.A. Schrack and R.B. Schwartz Nucl. Sci. Eng. 56 (1975) 27 /14/ A. Okazaki Phys. Rev. 99 (1955) 55 /15/ R.K. Adair, H.H. Barschall, C.K. Bockelman and O. Sala Phys. Rev. 75 (1949) 1124 /16/ S. Cierjacks, P. Forti, D. Kopsch, L. Kropp, I. Nebe und H. Unseld Report KFK-1000 (1968) /17/ R.B. Schwartz, Data refered in D.G. Foster, Jr. and P.G. Young LA-4780 (1972) /18/ D.O. Nellis and P.S. Buchanan DNA-2716 (1972) /19/ R.W. Bauer, J.D. Anderson and L.J. Christensen Nucl. Phys. 47 (1963) 241 /20/ W.J. McDonald, J.M. Robson and R. Malcolm Nucl. Phys. 75 (1966) 353 /21/ P.L. Beach, R.W. Finlay, R.L. Cassola and R.D. Koshel Phys. Rev. 156 (1967) 1201 /22/ P.G. Young, D.G. Foster, Jr. and G. Hale DNA 4134 Nod2 (1973) /23/ D.G. Foster, Jr. and P.G. Young LA-4780 (1972) /24/ E.L. Slaggie and J.T. Reynolds KAPL-6452 (1965) /25/ J.K. Dickens and F.G. Perey Nucl. Sci. Eng. 40 (1970) 283

1

00 I

Fig. 1: Neutron elastic scattering cross section for hydrogen between 0.1 MeV and 15 MeV

Fig. 4: Total neutron cross section for 16 O between 10 keV and 3 MeV

Fig. 5: Neutron Elastic Scattering cross section for 16^{16} 0 between 10 keV and 15 MeV

- 12 -

<u>Fig. 6:</u> Neutron inelastic Scattering Cross section for 16 O from threshold to 15 MeV

ا ت

Fig. 7: Neutron Capture cross section for 27 Al between 1 meV and 1 keV

- 14 -

C. Evaluation of the cross section for Sodium and Molybdenum in MeV region
(R. Meyer)

In the following chapter the evaluation of sodium and molybdenum data are described. This evaluation dates back to 1972. The main emphasis is the updating of data up to 15 MeV. In particular the following cross sections were evaluated

 σ_t , σ_{el} , σ_{inel} from 10 MeV to 15 MeV $\sigma(n,\gamma)$ from 1 MeV to 15 MeV and cross sections for threshold reaction like $\sigma(n,\alpha)$, $\sigma(n,p)$ and $\sigma(n,2n)$ from threshold onwords to 15 MeV

after 1972 no new evaluation for these materials were performed. However some efforts were spent on adjusting these data to the data in the lower energy region.

The discontinuities in the data arising out of different evaluations have been removed. Thus for ²³Na σ_c is smoothed in the energy region of above 60 keV and $\sigma(n,n')$ is smoothed above 4 MeV. All other cross sections which depend upon σ_c or $\sigma(n,n')$ were also revised accordingly.

1.1 $\sigma_{\rm m}$ for ²³Na between 10 MeV and 15 MeV

In this energy range the data of Cierjacks et al. (Na-B7) have the best energy resolution and statistics. Fluctuations beyond experimental statistics are visible. Fig. Na-2 shows the curve fitted to these data. A mean statistical error between 1.0 and 1.5 % was accepted for fitting purposes. The points tabulated on Kedak were taken from this fit. Fig. Na-1 shows the recommended total cross section as stored on Kedak together with all available experimental information. Clearly the data of Cierjacks et al. (Na-B7) lie several percents below the data points of the other authors. The fluctuations in the results of Langsford et al. (Na-B5) can be attributed to the poor statistics of

this measurement in the energy range under discussion.

1.2 $\frac{23}{Na(n,p)}$ cross section from threshold up to 15 MeV

Below 11 MeV the previously recommended curve (A - 1)follows the measurement of Williamson (Na-B27). In the meantime new results became available. These new data are due to Bass et al. (Na-B32). The structure found by Williamson is confirmed. Due to better resolution and a larger number of data points a more detailed structure was found. Yet a comparison of the absolute $\sigma(n,p)$ of both measurements yields discrepancies sometimes as larger as 100 %.

The values of Bass et al. were used, since method and equipment of this experiment is judged superior to that used by Williamson. However, we feel that in view of the structure found scattering corrections perhaps should have been applied.

Below 5.8 MeV and above 9 MeV the data of Williamson

(Na-B21, Na-B27) were used as the basis for the evaluated curve. In contrary to our previous evaluation (A - 1) we now chose a smooth curve through these data points. The recommended curve is shown in Figs. Na-3 and Na-4.

1.3 $\frac{23}{Na(n,\alpha)}$ cross section from threshold to 15 MeV

In the energy range covered by the measurement of Bass et al. (Na-B32) the recommended curve is based on the results of this experiment. No changes were applied to the cross section curve previously recommended outside this energy range.

1.4 $^{23}Na(n,2n)$ cross section from threshold to 15 MeV

The recommended curve starts at 13 MeV and follows closely the results of Liskien, Paulsen (Na-B46). The results of the different measurements are rather discrepant, the discrepancies being well above the accuracies claimed by the different experimantators.

1.5 ²³Na(n,np+pn) cross section from threshold to 15 MeV

We tried to estimate the cross sections for $\sigma(n,p)$, $\sigma(n,pn)$, $\sigma(n,np)$ which are displayed on Figs. Na-7, Na-8 and Na-10. $\sigma(n,pn)$ was estimated from assuming a smooth curve for the primary proton emission cross section. $\sigma(n,np)$ is the result of subtracting the cross section for the other reaction types proceding via primary neutron emission from an assumed smooth curve for the cross section for primary neutron emission. Any deuteron contributions are neglected because of the lack of information on this type of processes.

1.6 $\frac{23}{Na(n,n\alpha)}$ and $\frac{23}{Na(n,\alpha n)}$ cross sections from threshold to 15 MeV

The measurement of Woelfer, Bormann (Na-B54) was used

for the evaluation of the $(n,n\alpha+\alpha n)$ processes. Since the activation and prompt α counting measurements are independent, instead of the former our recommended curve was used as a source for $\sigma(n,\alpha)$. To correct for this we had to change $\sigma(n,\alpha-$ emission) coming from the prompt α -counting. Then $\sigma(n,n\alpha)$ and $\sigma(n,\alpha n)$ were known in the usual way. The recommended curves together with Woelfer and Bormann's results for the α -emission cross section are shown on Fig Na-8.

1.7 $\frac{23}{\text{Na}}$ (n, γ) cross section from 1 MeV to 15 MeV

After our last evaluation (A-1) of the Na 23 (n, γ) cross section new measurements done by Menlove et al. (Na-B55) and Csikai et al.(Na-B56)became available, which agree rather well except at 15 MeV.Therefore our evaluated curve runs smoothly through the data given by both authors. We tried to reproduce this curve by a giant resonance capture model. Since the calculated curve deviated by a factor of two from the recommended one in the cross section minimum, the result of the calculation is not shown on Fig.Na-9, where the available information on σ_{γ} of Na 23 is plotted.

1.8 $\sigma_n, \sigma_x, \sigma_n$ for ²³Na from 10 MeV to 15 MeV

Experimental information is available above 14 MeV only. We note a σ_n -measurement by Kuijper (Na-B67), a $\alpha_{n,emiss}$ measurement by Sukhanov (Na-B62) and measurements of the production of the 0,44 MeV- γ (Martin, Na-B59) and of the nuclear temperature (Sal'nikov Na-B63). Further theoretical estimate of σ_n , by Williamson (Na-B68) and an optical model calculation of σ_n and σ_x done with a local optical model code were available. All information is displayed on Fig Na-10. With the help of the constant temperature formalism we derived a σ_n , and a $\sigma_{n,emiss}$ from Sukhanovs measurement, using the nuclear temperature as measured in this experiment. From Martin's results we conclude, that $\sigma_n^{},$ should be larger than 0.46 \pm 0.06 b.

Our evaluated curves were chosen so as to:

- 1) fit the available experimental information within the assigned error bars,
- 2) produce a smoothly decreasing σ_n , approximating Williamson's estimates.
- 3) yield a smoothly increasing $\sigma_{n,np}$ as the main competing reaction to $\sigma_{n'}$,
- 4) get a curve for σ_x as closely as possible fitting the results of the optical model calculation

It was not tried to fit also the optical model calculations for $\sigma_{\rm p}$, favouring the result of Kuijper in this respect.

2.1 or Molybdenum between 10 MeV and 15 MeV

The data of Foster, Glasgow (Mo-B2), Bratenahl (Mo-B6) and Coon (Mo-B4) are the basis of our evaluated data for $\sigma_{\rm TOT}$ of molybdenum.We attributed the fluctuations seen in Foster and Glasgow's experiment to the same source as discussed in 2.1. Only the mean energy behaviour of these experimental points is taken into account by fitting through those data a piecewise linear function.

Fig.Mo-1 shows the evaluated curve together with experimental information.

2.2 $\sigma(n,p)$ for Molybdenum from threshold to 15 MeV

The experimental information together with the recommended curves is displayed on Figs. Mo-2 to Mo-8 Measurements are available only around 14 MeV. Results of integral measurements have been used together with systematic estimates to define the (n,p) cross section curves. Systematic estimates:

The Levkovskij estimate (Mo-B36) has been used which reads $\sigma_{n,p} = C_1 (A^{1/3} + 1)^2 \cdot \exp\left[-C_2 \cdot (N-Z)/A\right]$ at 14 MeV. C_1 and C_2 were won by fitting this formula to the isotopic cross sections for which measurements do exist. The starting point for fitting the cross section curves to the fission spectrum averages accepted was a form

$$\sigma_{p}(E) \sim F(\frac{E+Q_{p}}{T^{p}}) - F(\frac{B_{p}}{T})$$
 corresponding to a

coolant temperature compound nucleus model with a cutoff energy at the proton Coulomb barrier calculated according to Gardner (Mo-B16).

Mo 92

The values of Bramlitt and Fink (Mo-B21) and Fink et.al. (Na-B13) were used together with a fission average of $\sigma(n,p)$ of 6,3 mb which seems to be a good average of the recent experiments to define the recommended (n,p) cross section curve.

Mo <u>94</u>

Only the 6.3 min. activity of Nb 94 m has been measured. Therefore our recommended curve was based on systematic estimates described above. The recommended curve gives a fission spectrum average $\overline{\sigma}$ (n,p) = 47 µb

Mo 95

Since no measurement of $\sigma(n,p)$ is available again systematic estimates were used to calculate a 14 MeV-value. The recommended curve was then fitted to a fission average of 0,14 mb taken from Rau's measurement (Mo-B18).

<u>Mo 96</u>

Cuzzocrea's and Fink's measurements of $\sigma(n,p)$ at approximately 14 MeV (Mo-B28, Mo-B13) were accepted as microscopic cross section values.

 σ (n,p) as measured by Gopinathan was used to put the cross section curve in the lower energy region. No renormalization of this value was undertaken as could be indicated by the 3.64 mb value for Mo 92. Rather we believe that the possible error sources arise from the low energy tail of the Mo 92 (n,p) cross section and should not be present at the Mo 96 (n,p) cross section, which starts at approximately 5 MeV higher energy. This is also indicated by the Mo 95 (n,p) value of this experiment, which is in good agreement with other results. The Mo 95 (n,p) cross section starts at higher energy too.

<u>Mo 97</u>

We used the results of Cuzzocrea (Mo-B28) and Fink et. al. (Mo-B13) to evaluate our recommended curve. We calculate a $\overline{\sigma}$ (n,p) = 12 µb from the recommended (n,p) cross section.

Mo 98

Since Gujrathi's result (Mo-B32) fitted rather well to the cross section value derived from systematics this measurements was favoured. Our recommended curve gives a $\overline{\sigma}$ (n,p) = 2 \cdot 9 µb , but one should be aware that still some contributions from above 16 MeV arise.

Mo 100

The recommended curve, based on systematic considerations is shown on Fig Mo-8. No $\overline{\sigma}$ (n,p) was calculated, since the contributions from above 16 MeV are not negligible.

2.3 $\sigma(n,\alpha)$, for Molybdenum from threshold to 15 MeV

Experimental information is available in the form of 14 MeVcross sections for Mo 92, 98, 100 and fission spectrum averages have been measured for Mo, Mo 92, Mo 98. Neither with the Gardner formula (Mo-B79) nor with the Levkovskij estimate (Mo-B36) it was possible to fit the experimental information on $\sigma(14 \text{ MeV})$ and $\overline{\sigma}(\chi^{235})$ simultaneously. Therefore the cross sections we recommend should be taken, though not arbitrary but rather as personal estimates. The accuracies tentatively assigned should be regarded the same way. The recommended curves were based on the following information: A combination of Levkovskij and Gardner estimates. Thresholds were taken from König et. al. (a-16). Cross sections start at approximately 10 MeV above the threshold according the depressed Coulomb barrier. However in order to fit the fission spectrum averages, some of the starting points of $\sigma(n, \alpha)$ were moved to higher energies. The 14 MeV cross sections as measured by Fink (Mo-B13) for Mo 92, Mo 98 and Strohal (Mo-B23) for Mo 100 were used together with σ (n, α) as measured by Freeman et.al. (Mo-B80) for Mo, Mellish (Mo-B26) for Mo 92 and Rau (Mo-B18) for Mo 98. The result reported by Mellish was renormalized to 80 µb, according the Mo 92 (n,p) result of the same experiment. However, since Mo 92 (n,p) cross sections start at much lower energies, this renormalization can be easily in error. The experimental information is displayed on Figs. Mo-10, 11,12, the result of our evaluation is plotted on Fig. Mo-9.

2.4 $\sigma(n, 2n)$ for Molybdenum from threshold to 15 MeV

Mo 92

A large amount of information is available on the (n,2n) cross section of Mo 92. However since the cross section is rather small it does not contribute significantly to the Mo (n,2n) process. The low cross section may be attributed to the (n,np) process which is favoured to its low threshold when compared with the (n,2n) threshold. This is also indicated by measurement of Colli (Mo-B81). This situation differs from that encountered with the higher Mo-isotopes, where the (n,2n) threshold is either comparable to or even lower than the (n,np) threshold. This may also explain, why an unexpected high nuclear temperature T of 1.25 MeV would be necessary to fit the Mo 92 (n,2n) cross section satisfactorily up to several MeV above the threshold. The available experimental information is displayed on Fig Mo-14 together with the recommended curve, which follows the mean trend of the experimental points.

Large discrepancies occur even between recent measurements, i.e. Minetti (Mo-B52), Fink (Mo-B13), Decowski (Mo-B71), Csikai (Mo-B55), Crumpton (Mo-B75), Cuzzocrea (Mo-B28) and Prasad (Mo-B57), however the overwhelming part of the data points lies within an error bar of ± 15 % assigned to the evaluated curve.

Mo 100

The available experimental information is shown on Fig Mo-15. The results of Cuzzocrea (Mo-28) and Fink (Mo-13) have been used to determine a 14 MeV value of the Mo 100 (n,2n) cross section. The rise of the recommended curve has been estimated with the constant temperature formalism using the tabulation shown on Table Mo-9, with a nuclear temperature as recommended by Gilbert and Cameron (A-14).

other isotopes:

The empirical formula given by Adam, Jéki (Mo-B76):

$$\sigma_{n,2n} = C_3 (1-C_1 (A^{1/3}+1)^2 e^{-\frac{(N-Z)}{A}} C_2)$$

where C_1 , C_2 , C_3 are depending on the excitation energy only. A Comparison with Pearlstein's systematic (Mo-B58) shows, that C_3 should be in the order of 2,5 b at an excitation energy of 5 MeV, since the rest of the formula roughly corrects for the charged particle emission. Assuming an energy dependence of C_3 according to the constant temperature formula using the nuclear temperatures given by Gilbert and Cameron (A-14) allows the calculation of C_2 and C_1 from the recommended curves for Mo 92, and Mo 100. Energy dependence of both parameters may be expected, since strong competition of charged particle emission occurs in Mo 92 (see above), however it turns out, that both parameters can well be represented by their mean values. $C_1 = 0.076$, $C_2 = 11.5$. This is also justified in view of the fact, that competition from charged particle emission is small with the higher Mo isotopes. The set of constants C_1 , C_2 and C_3 where only the latter one is energy dependent was used to calculate the rest of the isotopic Mo (n,2n) cross sections, as they are presented on Fig Mo-13.

2.5 $\sigma(n,np)$ and $\sigma(n,n\alpha)$ for Molybdenum

No recommendations are given for these reaction types for the following reasons:

- I) the experimental information is insufficient.
- II) Except for $\sigma(n,np)$ of Mo 92 the (n,np) cross sections can be assumed to be small, as is discussed in chapter 3.4
- III) The (n,pn) and (n, α n) cross sections should be negligible due to the low $\sigma(n,p)$, $\sigma(n,\alpha)$.
- IV) Since threshold + coulomb barrier for the $(n,n\alpha)$ reaction of all Mo isotopes except Mo 92 is comparable to that for the (n,np) reaction one may assume the $(n,n\alpha)$ cross section to be very small, also.
- V) The (n,np) and (n,n α) reactions need not be distinguished from the (n,n') process for reactor calculation purposes, since this leaves the n-emission cross section and -spectrum unchanged. This is exactly the consequence of neglecting (n,n α) and (n,np), since we calculate σ_n , as $\sigma_x - \Sigma_i \sigma_i$, where σ_i denote all considered non elastic reactions except (n,n').

².6 $\sigma(n,\gamma)$ for Molybdenum from 1 MeV to 15 MeV

Above 7 MeV experimental information is lacking. No measurements are available below this energy except for Mo 98 and Mo 100 (n, γ). Therefore the direct capture model has been used to calculate the shapes of the (n, γ) cross section curves. The curves were normalized to Benzi's evaluation (Mo-B47) at the intersection point of formula 1 and formula 2 in this reference and to a σ_{γ} = 2,3 mb taken from an extrapolation of a compilation done by Csikai et. al. (Mo-B37). Below this intersection point Benzi's curve has been used, above the result of one calculation, except for the (n, γ) cross sections of Mo 98 and Mo 100. All experiments have been renormalized either to the recommended standard cross sections (Mo-B48) or revised σ_{f} of U-235 (A-17).

Mo 98

Dovbenko et. al. (Mo-B38) do not give enough information about their measurement. Therefore we preferred Stupegia's values (Mo-B40). For energies above this measurement the recommended curve follows the calculated values.

Mo 100

The evaluated curve follows the results of Johnsrud et.al. (Mo-B43), who also carefully studied the possible error sources, whereas the respective description is lacking for the other measurements.

Above 4 MeV, however, a serious discrepancy occurs between this measurement and the shape of the curve as calculated from statistical theory estimates: The calculated cross section decreases rapidly, while the measured points indicate only a slow variation of the (n,γ) cross section.

2.7 $\sigma_{1}, \sigma_{2}, \sigma_{1}, for Molybdenum between 10 MeV and 15 MeV$

Two measurements for the distribution of elastically scattered neutrons at 14 MeV are available (Mo-B83,Mo-B84). Both distributions have been integrated to yield a value for σ_n which can be then compared with the theoretical results of Bjorklund, Fernbach (Mo-B85) and Cassola,Koshel (Mo-B82).

A measurement for σ_x is available from Lebedev (Mo-B86), together with theoretical values from the above mentioned authors.

The results of Morgan (Mo-B88) and Prud'homme (Mo-B87) were treated as follows:

The differential distributions were integrated and the result extrapolated by the constant temperature model to a compound nucleus neutron emission cross section of approximately 1450 mb, which contains σ_{2n} , $\sigma_{n,n}$, $\sigma_{n,np}$. With a $\sigma_{n,np}$ of 110 mb (Colli, Mo-B81) and a $\sigma_{n,2n}$ of 1000 mb (recommended one arrives at a $\sigma_{n,n}$ of 340 mb. From Machwe's results (Mo-B93) we estimated the direct contributions to be in the order of 150 mb, giving a total $\sigma_{n,n}$, of 990 mb. If we sumup the above mentioned cross sections and add a $\sigma_{n,\alpha}$ of 10 mb and a $\sigma_{n,p}$ + pn + d of 30 mb (colli, Mo-B81) a value for σ_x = 1640 mb is the result, which agrees well with the prediction of Cassola, Koshel (Mo-B82). Our evaluated curve runs through the optical model results of Cassola and Koshel, which also represent a good fit to most of the experimental values. The curves were chosen so that $\sigma^{}_{\rm El}$ and $\sigma^{}_{\rm n, \ emiss}$ are smoothly decreasing functions and the variation of $\sigma_{\rm v}$ is small. The results are shown on Fig Mo-23,24.

- 26 -

<u>Table Na - 1</u>

Measurements of $\boldsymbol{\sigma}_{\mathrm{T}}$ for Na in the energy range 10-15 MeV

(more references in (A1), Table Na-C 1)

Reference	Year	Energy (MeV)	Energy resolution (KeV)	$\frac{\Delta \sigma_{\rm T}}{\sigma_{\rm T}}$ (%)
Coon, Graves, Barschall (Na-Bl)	1952	14.12	±50	¤ _T =1.71±0.03b
Johnson(Na-B45)	1962	8.6-11.6	E>10MeV:±540-700	±10 - 4%
Leroy, Berthelot,Pomelas (Na-B3)	1963	1.9-14.5	0.4ns [^] ±350(E=10MeV)	3%
Foster, Glasgow (Na-B4)	1963	2.3-14.9	E>10MeV:±330-570	1 - 2 %
Langsford u.a (Na-B5)	1965	0.18-120	0.18ns/m [^] ±150(E=10M	eV) 9 - 15 %
Guarrini u.a (Na-B6)	1968	14.68	±230	$\sigma_{\rm T}^{= 1.74 \pm 0.03}$
Cierjacks u.a (Na-B7)	1968	0.5-30	0.o3ns/m=±25(E=10Me	V) <3 %

<u>Table Na - 2</u>

Measurements of $\sigma_{\rm p}$ for Na (more references in (A 1), Table Na- C 2)

Reference	Year	Energy (MeV)	Energy(KeV) resolution	$\frac{\Delta \sigma_{\mathbf{p}}}{\sigma} (\mathbf{z})$
Nann, et al. (Na-B8)	1969	8 - 9	80- 200	p 15-25 %
Pasquarelli (Na-B12)	1967	14,7	100	41±1.2 mb
Csikai,Nagy (Na-B13)	1967	14,7	-	39± 4 mb
Flesch, Hille (Na-B14)	1967	14,7	100	44± 9 mb
Prasad et al.(Na-B15)	1966	14,8		45± 5 mb
Mitra, Ghose (Na-B16)	1966	14,8	100	41.8 ±3.8 mb
Bass et al. (Na-B32)	1966	5.3 -9	25	15 %
Strain, Ross (Na-B23)	1965	14	-	-
Csikai (Na-B25)	1963	14,6	-	$\sigma_{\alpha}/\sigma_{p} = 3.9\pm0.3$
Varga (Na-B31)	1959	14,3		$\sigma_{\alpha}/\sigma_{p} = 2.4 \pm 10\%$

Table Na-3

Measurements of σ for Na (also (A1) ,Ta	ble)
--	------

Reference	Year	Energy	Resolution	$\frac{\Delta \sigma_{\alpha}}{\sigma_{\alpha}}(\%)$	
Khurana, Govil(Na-B2O)	1965	14,8 MeV		-	
Strain, Ross (Na-B23)	1965	14 MeV		-	
Flesch, Hille (Na-B14)	1967	14,7 MeV	100 KeV	15-20 %	
Bass et al (Na-B32)	1966	6,8 - 9MeV	25 KeV	15 %	

 $\frac{\text{Table Na-4}}{\text{Measurements of }\sigma_{2n} \text{ for Na}}$

Reference	Year	Energy	Resolution	$\frac{\Delta \sigma_{2n}}{\sigma_{2n}}$
Prestwood (Na-B47)	1955	14,1MeV	200 KeV	12 %
Liskien, Paulsen (Na-B46)	1965	12.7-16.5MeV	170-460 KeV	6-7 % (except near threshold)
Paulsen (Na-B49)	1965	17-19.6MeV	460-190KeV	9 %
Picard,Williamson (Na-B21)	1965	14,9-21 MeV	-	8-23%
Menlove et. al. (Na-B52)	1967	12.7-19.4MeV	320-870 KeV	10%(Exce _p t near —threshold)——

.

Table Na - 5

Measurements of $\sigma_{\alpha n+n\alpha}$ for Na

Reference	Year	Energy	Resolution	<u>Δσ</u> σ
Woelfer, Bormann (Na-B54)	1966	12.6- 18.7MeV	300-400 KeV	135

<u>Table Na - 6</u>

Measurements of σ_{γ} for Na above 1 MeV

Reference	Year	Energy	Resolution	$\frac{\Delta\sigma}{\sigma}$
Menlove et al.(Na-B55)	1967	1 - 19.5 MeV	o.1-o.87MeV	8-20 %
Csikai et al. (Na-B56)	1967	13.4-15.0 MeV	-	60 µЪ
Perkin et al. (Na-B57)	1958	14.5 MeV	_	10 %
Leipunsky et al. (Na-B58)	1958	2•7,4MeV		-

Table Na -7

Available measurements for $\sigma_n,\ \sigma_n,\ for Na 10$ - 15 MeV

Reference	Year	Energy	Resolution	<u>Δσ</u> σ		
Martin, Stewart (Na-B59)	1965	14.1MeV	-	-		
Sukhanov (Na-B62)	1962	14 MeV	primary: - secondary:5ns,	'm -		
Kuijper (Na-B67)	1965	14.8 MeV	60 KeV	15 %		
		Ta	<u>able</u>	Na	<u>a- 8</u>	
----	------	-----	-------------	-----	-------------	----------
	valu	ıes	for	σ	(χ(E))	
(U	235	fi	ssion	n s	spectrum	average)

Reaction	Reference	year	đ	Remarks
(n,p)	Rochlin (Na-B69)	1959	o,7 mb	rel P ³¹ ($\bar{\sigma}(n,p)$)=19mb
18	11	1959	l,0 mb	
(n,α)	11	1959	0,4 mb	rel P ³¹ ($\overline{\sigma}(n,p)$)=19mb
89	13	1959	0,47 mb	
(n,2n)	**	1959	6 µЪ	_

Table Na-10

proposed accuracies of recommended cross sections

Quantity	Energy range	$\frac{\Delta\sigma}{\sigma}$ (%)	Remarks
σ _T	10 - 15 MeV	<± 3 %	equals experimental error
σ p	up to 15 MeV	± 15 %	large experimental discrepancies
σ _α	up to 15 MeV	± 15 %	from experimental errors
σ _{2n}	up to 15 MeV	± 15 %	discrepancies beyond experimental errors
σ _Y	1 - 15 MeV	± 20 %	
σ _n ,	10 - 15 MeV	± 15 %	comprises all nonelastic σ except ${}^{\sigma}p^{,\sigma}\alpha^{,\sigma}\gamma^{,\sigma}2n$.
σx	10 -15 MeV	± 20 %	
σn	10 -15 MeV	± 20 %	no reliable information

References

i.

	σ _T	
Na –	- B1	J.H. Coon, E.R. Graves, H.H.Barschall, Phys.Rev.88,562,1952
ş	' B3	J.L. Leroy, F.C. Berthelot, E. Pomelas, J. Phys. Rad.24,826,1963
î	B4	D.G. Foster, D.W. Glasgow, HW-SA 2875,1963;Nucl.Instr.Meth.
		36,1,1965
8	B5	A. Langsford, PH.Bowen, G.C. Cox, F.W.K. Firk, D.B. McConnell,
		B. Rose Conf. Nucl. Study with Neutrons, Antwerp 1965, P 81
T	' B6	F. Guarrini, A. Cuche's, G. Pauli, G. Poiani, Nucl.Sc.Eng.31,341,1968
1	B7	S. Cierjacks, P.Forti, D.Kopsch, L.Kropp,H.Nebe, H.Unseld,
		KFK 1000, 1968
§ 1	B45	Johnson, Data from CCDN/Saclay, 1962
	σ	
Na -	• B8	H. Nann, R. Bass, K.O. Groeneveld, F. Saleh-Bass, Z. Physik
		218,190,1969
ti	в9	J. Csikai, Mag.Fiz.Fol. 16, 123, 1968
91	B10	Cuzzocrea, Inst.Fisica Nucleare, Florence, Report /Be-67 10, 1967
*1	B11	D.G. Gardner, Nucl. Phys. A 96, 121, 1967
* 1	B12	A. Pasquarelli, Nucl. Phys. A 93, 218, 1967
**	B13	J.Scikai, S. Nagy, Nucl. Phys. A 91, 222, 1967
9 0	B14	F.Flesch, P.Hille, Sitzber. österr. Akad.Wiss. 176,45, 1967
**	B15	R. Prasad, D.C. Sarkar, C.S. Khurana, Nucl. Phys.85,476,1966
**	B16	B. Mitra, A.M., Ghose, Nucl. Phys. 83,157, 1966, Atomic Energy Estab-
* 8	B17	J.Csikai, Atomki Kozl. 8, 79, 1966
	B18	H. Liskien, A. Paulsen, Eur 119e Vol 1, 1966
**	B19	R.Bass u.a., Conf.Study Nucl.Structure with Neutrons,Antwerp1965,P6
11	B20	C.S. Khurana, I.M. Govil, Nucl.Phys. 69, 153, 1965
**	B21	J.Picard, C. Williamson, J. Phys.Rad 24, 813, 1963, Nucl.Phys.
		63, 673, 1965
11	B22	B.Mitra, Proc.Nucl.& Solid State Phys.Sympos., Madras 1962,
		Bombay 1963, Chandigarh 1964, Calcutta 1965
**	B23	J.E.Strain, W.J. Ross, ORNL-3672, 1965
89	B24	P.Hille, Österr. Akad.Wiss. Sitzber. 174, 11,1965
**	B25	J.Csikai, B. Gyarmati, I. Hunyadi, Nucl.Phys.46,141,1963
**	B26	J.Csikai, Atomki Kozl. 4,137,1962
**	B27	C.F. Williamson, Phys. Rev. 122, 1877, 1961

- Na B28 D.L. Allan, Nucl. Phys. 24, 274,1961
 - " B29 S.K. Mukherjee, A.K. Ganguly, N.K. Majumder, Proc. Phys. Soc. 77,508,1961
 - " B30 R.E. Bullock, R.G. Moore, Phys. Rev. 119,721,1960
 - " B31 L. Varga, Nucl. Phys. 20, 487, 1959
 - " B32 R.Bass, F. Saleh, B. Staginnus, EANDC (E) 66 U, p64,1966
 - " B33 H. Bormann, H. Jeremie, G. Andersson-Lindström, H.Neuert, H. Pollehn, Z. Naturforsch. 15a,200,1960
 - " B34 S.K. Mukherjee, Nucl. Phys. Symposium, Waltair 1960,p289
 - " B35 C.S. Khurana, Nucl. Phys. Symposium Waltair 1960, p297
 - " B36 E.B. Paul, R.L. Clarke, Can.J.Phys. 31, 267, 1953
 - " B37 G.E. Brown et.al., Phil.Mag. 2, 473, 1957
 - " B69 R.S. Rochlin, Nucleonics 17, 1,54,1959

		<u>σ</u>	
Na	-	B10	Cuzzocrea INFN/Be-67/10,1967
	11	B14	F.Flesch, P.Hille, Sitzbez.österr. Akad.Wiss 176,45,1967
	==	B20	C.S. Khurana, I.M. Govil, Nucl. Phys. 69,153,1965
	#1	B21	J.Picard, C.Williamson, J.Phys.Rad 24, 813,1963, Nucl.Phys.
			63, 673,1965
	11	B23	J.E. Strain, W.J. Ross, ORNL-3672, 1965
	**	B24	P. Hille, österr. Akad.Wiss.Sitzbez. 174, 11,1965
	**	B25	J.Csikai, B. Gyarmati, I. Hunyadi, Nucl. Phys. 46,141,1963
	**	B27	C.F. Williamson, Phys. Rev. 122,1877,1961
	n	B29	S.K. Mukherjee, A.K. Ganguly, N.K. Majumder, Proc.Phys.
			Soc. 77, 508,1961
	**	B30	R.E. Bullock, R.G. Moore, Phys. Rev 119,721,1960
	81	B31	L. Varga, Nucl. Phys. 20, 487, 1959
	Ħ	B32	R. Bass, F. Saleh, B. Staginnus, EANDC (E) 66U,64,1966
			B.Staginnus, Diplomarbeit, Inst. Kernphysik, Univ.Frankfurt
	11	B33	H. Bormann, H.Jeremie, G.Andersson-Lindström, H.Neuert, H.Pollehn,
			Z.Naturforsch. 15 A, 200, 1960
	11	B38	G.Woelfer, H. Bormann, Z. Physik 194,75,1966
	11	B39	D.G. Gardner, Nucl. Phys. 60,49,1964
	11	B40	J.N. Massot, E.El-Baz, J.Lafoururière, Nucl.Phys.58,273,1964
	"	B41	U. Facchini, E. Saetta-Menichella, F.Tonolini, L. Tonolini-
			Severgnini, Nucl. Phys. 51,460,1964

- Na B42 O.N. Kaul, Nucl. Phys. 33,177,1962
 - " B43 P.G. Bizetti, A.M. Bizetti-Sona, M. Bocciolini, Nucl. Phys. 36.38,1962
 - " B44 J.V. Jelley, E.B. Paul, Proc. phys. Soc. A 63, 112, 1950
 - " B69 R.S. Rochlin, Nucleonics 17, 1,54,1969

$\frac{\sigma_{2n}}{2}$

Na	- B18	H. Liskien, A. Paulsen, Eur. 119e, Vol.1,1966
	" B21	J.Picard, C. Williamson, J. Phys. Rad. 24,813,1963
		Nucl. Phys. 63, 673,1965
	"B24	P. Hille, B. Karlik, S. Tagesen, Österr. Akad. Wiss. Sitzbez.174,
		11,1965
	" B46	H. Liskien, A. Paulsen, Nucl. Phys. 63,393,1965
	"B47	R.J. Prestwood, Phys. Rev. 98,47,1955
	" B48	M. Bormann, Nucl. Phys. 65,257,1965
	" B49	A. Paulsen, Data from CCDN/Saclay,1965
	" B50	F. Nasyrov, Sov. At. En. 25,1251,1968
	" B51	S. Pearlstein, Nucl. Sc. Eng. 23, 238,1965
	" B52	H.O. Menlove, K.L. Coop, H.A. Grench, R. Sher, Phys. Rev.
		163, 1308,1967
	" B69	R.S. Rochlin, Nucleonics 17,1,54,1959
	σ	
Na	$\frac{\sigma_{np}}{-B^{24}}$	P. Hille, B. Karlik, S. Tagesen, Sitzbez, d.österr, Akad Wiss, 174
Na	<u>σnp</u> - B24	P. Hille, B. Karlik, S. Tagesen, Sitzbez. d.österr. Akad.Wiss.174,
Na	<u>σnp</u> - B24	P. Hille, B. Karlik, S. Tagesen, Sitzbez. d.österr. Akad.Wiss.174, 11,1965 G. Brown, Phil.Mag. 2, 473,1957
Na	σ <u>np</u> - B24 " B53	P. Hille, B. Karlik, S. Tagesen, Sitzbez. d.österr. Akad.Wiss.174, 11,1965 G. Brown, Phil.Mag. 2, 473,1957
Na	σ <u>np</u> - B24 " B53 σ	P. Hille, B. Kærlik, S. Tagesen, Sitzbez. d.österr. Akad.Wiss.174, 11,1965 G. Brown, Phil.Mag. 2, 473,1957
Na	σ <u>np</u> - B24 '' B53 σ <u>nα</u>	P. Hille, B. Karlik, S. Tagesen, Sitzbez. d.österr. Akad.Wiss.174, 11,1965 G. Brown, Phil.Mag. 2, 473,1957
Na Na	σ <u>np</u> - B24 " B53 σ <u>nα</u> - B54	 P. Hille, B. Karlik, S. Tagesen, Sitzbez. d.österr. Akad.Wiss.174, 11,1965 G. Brown, Phil.Mag. 2, 473,1957 G. Woelfer, H. Bormann. Z. Physik 194,75,1966
Na Na	$\frac{\sigma_{np}}{- B24}$ $= B53$ $\frac{\sigma_{n\alpha}}{- B54}$	 P. Hille, B. Karlik, S. Tagesen, Sitzbez. d.österr. Akad.Wiss.174, 11,1965 G. Brown, Phil.Mag. 2, 473,1957 G. Woelfer, H. Bormann. Z. Physik 194,75,1966
Na Na	$\frac{\sigma_{np}}{-B24}$ $= B53$ $\frac{\sigma_{n\alpha}}{-B54}$ $\frac{\sigma(n,\gamma)}{-B54}$	 P. Hille, B. Karlik, S. Tagesen, Sitzbez. d.österr. Akad.Wiss.174, 11,1965 G. Brown, Phil.Mag. 2, 473,1957 G. Woelfer, H. Bormann. Z. Physik 194,75,1966
Na Na	$\frac{\sigma_{np}}{-B24}$ $= B53$ $\frac{\sigma_{n\alpha}}{-B54}$ $\frac{\sigma(n,\gamma)}{-B9}$	 P. Hille, B. Karlik, S. Tagesen, Sitzbez. d.österr. Akad.Wiss.174, 11,1965 G. Brown, Phil.Mag. 2, 473,1957 G. Woelfer, H. Bormann. Z. Physik 194,75,1966 J.Csikai, Mag. Fisz.Fol. 16, 123,1968
Na Na Na	$\frac{\sigma_{np}}{- B24}$ $= B53$ $\frac{\sigma_{n\alpha}}{- B54}$ $= \sigma(n,\gamma)$ $= B9$ $= B17$	 P. Hille, B. Karlik, S. Tagesen, Sitzbez. d.österr. Akad.Wiss.174, 11,1965 G. Brown, Phil.Mag. 2, 473,1957 G. Woelfer, H. Bormann. Z. Physik 194,75,1966 J.Csikai, Mag. Fisz.Fol. 16, 123,1968 J. Csikai, Atomki. Kozl. 8, 79,1966
Na Na Na	$\frac{\sigma_{np}}{-} B24$ $\frac{\sigma_{n\alpha}}{-} B53$ $\frac{\sigma(n,\gamma)}{-} B9$ $- B17$ $\frac{\sigma(n,\gamma)}{-} B55$	 P. Hille, B. Karlik, S. Tagesen, Sitzbez. d.österr. Akad.Wiss.174, 11,1965 G. Brown, Phil.Mag. 2, 473,1957 G. Woelfer, H. Bormann. Z. Physik 194,75,1966 J.Csikai, Mag. Fisz.Fol. 16, 123,1968 J. Csikai, Atomki. Kozl. 8, 79,1966 H.O. Menlove, K.L. Coop, H.A. Grench, Phys.Rev.163,1299,1967

Nucl. Phys. A 95, 229, 1967

" B57 J.L. Perkin, L.P. O'Connor, R.F. Coleman, Proc. Phys. Soc 72, 505, 1958 Na - B58 A.I. Leipunsky, O.D. Kazachkovsky, G.Y. Artyokov, A.I. Baryshnikov, T.S. Belanova, V.N. Galkov, Y.Y.Staviskij, E.A.Stumber, L.E. Sherman, IAEA Geneva Conference 1958, Vol. 15,50

		<u>σ(n,n</u>	<u>)</u>
Na	-	B59	P.W.Martin, D.T.Stewart, J. Nucl. En.A/B 19,447,1965
			(E _Y =0,44 MeV)
	88	B60	I.L. Morgan et. al. , Tex. Nucl.Corp,Ann.Progr.Rep.1963
	11	B61	W.G. Cross, R.L. Clarke et al., PR-P-41,20,1959
	**	B62	V.I. Sukhanov, V.G. Rukavisknikov, Sov.J.At.En. 11,1044,1962
	**	B63	0.A. Sal'nikov, FEI-39,1966
	89	B64	O.A. Sal'nikov, G.N. Lovchikova, Sov.J.At.En, 11,1087,1961
	**	B65	A.O. Sal'nikov et al. ,Sov.J.Nucl.Phys. 4,831,1967

- <u>σ(n,n)</u>
- Na B66 F.P. Agee, L.Rosen, LA-3538-MS vol 1,1966
 - " B67 Kuijper,Data from CCDN/Sacclay
 - " B68 C.F. Williamson, Phys. Rev. 122,1877,1961

Table Mo-1

Measurements of $\sigma_{\rm TOT}^{}$ for Mo in the range 10 - 15 MeV

References	Year	Energy	Resolution	Δσ/ _σ
Foster, Glasgow (Mo-B2)	1963	2.25-14.9MeV	0,32ns/m+1.6%E	1 %
Nereson, Darden (Mo-B3)	1954	2.8-13 MeV	6 - 15 %	>10 %
Langsford et.al. (Mo-B4)	1965	0.18-12 MeV	0,18 ns/m	10 - 15 %
Mc.Callum et.al.(Mo-B5)	1960	12.3-20,2MeV	-	2 %
Bratenahl et. al. (Mo-B6)	1958	7-14,5 MeV	170-70 KeV	0,5 %
Vervier et. al. (Mo-B7)	1958	13.8-14.6MeV		
Coon et. al. (Mo-B9)	1952	14.12 MeV	40 KeV	< 4 %
Goodman (Mo-B1O)	1952	14 MeV		

.

Table Mo-2

Measurements of $\sigma(n,p)$ for Mo and Mo-isotopes

Target	Reference	Year	Energy	Resolution	$\frac{\Delta\sigma}{\sigma}$
Мо	Allan (Mo-Bll)	1961	14 MeV	-	çes.
	Colli (Mo-B12)	1959	14 MeV	6000	
Mo 92	Strohal et.al.(Mo-B23)	1962	14,6MeV	+0,2 - 0,3 M	ev –
	Bramlitt, Fink (Mo-B21)	1963	14,7 MeV	± 0,2 MeV	σ=60±15 mb
	Fink et.al. (Mo-B13)	1970	14,4 MeV	± 0,3 MeV	σ=62,5±4 mb
Mo 94	Bramlitt, Fink (Mo-B21)	1963	14,7 MeV	± 0,2 MeV	20 %
Mo 96	Strohal (Mo-B23)	1962	14,6 MeV	±200 -300 Ke	σ=21±7 mb
	Bramlitt (Mo-B21)	1963	14,7 MeV	±200 KeV	σ=37±7 mb
	Cuzzocrea (Mo-B35)	1965	14,1 MeV	±400 KeV	σ=20±3 mb
	Cuzzocrea (Mo-B28)	1967	14,1 MeV	±200 KeV	σ=16±3 mb
	Fink (Mo-B13)	1970	14,4 MeV	±300 KeV	σ=21,3±1,5 mb
Mo 97	Strohal (Mo-B23)	1962	14,6 MeV	{±388 KeV	σ=68±14mb
	Cuzzocrea (Mo-B35)	1965	14,1 MeV	±400 KeV	σ=18±3 mb
	Cuzzocrea (Mo-B28)	1967	14,1 MeV	±200 KeV	σ=17,7±1,5 mb
	Fink (Mo-B13)	1970	14,4 MeV	±300 KeV	σ=15,9±1,5 mb
Mo 98	Bramlitt, Fink (Mo-B21)	1963	14,7 MeV	±200 KeV	$\sigma=9\pm2$ mb
Support	Cuzzocrea (Mo-B35	1965	14,1 MeV	±400 KeV	σ=6,2±1,4 mb
	Gujrathi (Mo-B32)	1966	14,8 MeV	-	σ=14±3 mb
	Cuzzocrea (Mo-B28)	1967	14,1 MeV	±200 KeV	σ=6,7±0,6 mb
Mo 100	Fink (Mo-B13)	1970	14,4 MeV	±300 KeV	σ=4,1±0,5 mb

<u>Table Mo-3</u>

Target	Reference	Year	Energy	Resolution	۵σ/ _σ
92	Fink (Mo-B13)	1970	14,4 MeV	300 KeV	6%
	Cuzzocrea (Mo-B28)	1967	14,1 MeV	200 KeV	-
	Bramlitt, Fink (Mo-B21)	1962	14,7 MeV	200 KeV	40%
98	Fink (Mo-B13)	1970	14,4 MeV	300 KeV	12%
100	Cuzzocrea (Mo-B28)	1967	14,1 MeV	200 KeV	-
	Strohal (Mo-B23)	1962	14,6 MeV	+200,-300KeV	40%

.

Measurements of $\sigma(n,\alpha)$ for Mo-isotopes

Table Mo-4

Measurements of $\sigma(n, 2n)$ for Mo and its isotopes

Target	Reference	Year	Energy	Resoution	<u>Δσ</u> σ
Mo 92	Fink (Mo-B13)	1970	14,4 MeV	300 KeV	8 %
	Karolyi (Mo-B51)	1968	14,8 MeV	200 KeV	
	Minetti (Mo-B52)	1968	14,7 MeV	300 KeV	8 %
	Cuzzocrea (Mo-B28)	1967	14,1 MeV	200 KeV	-
	Csikai, Petö (Mo-B55)	1967	14,7 MeV	300 KeV	-
	Prasad (Mo-B57)	1967	14,8 MeV	<500 KeV	14 %
	Csikai (Mo-B59)	1965	13,5 -14,7MeV	few KeV-100	<u>σ(E)</u>
			(steps of 50 KeV)	KeV	σ(14,6MeV) measured
	Csikai (Mo-B6O)	1965	14,8 MeV	-	-
	Bramlitt, Fink (Mo-B62)	1963	14,7 MeV	200 KeV	20 %
	Cevolani (Mo-B64)	1962	14,13 MeV	100 KeV	10 %
	Strohal (Mo-B65)	1962	14,6 MeV	+200 -300KeV	12 %
	Rayburn (Mo-B66)	1961	14,4 MeV	300 KeV	60M
	Paul,Clarke (Mo-B68)	1953	14,5 MeV		6829
	Brolley (Mo-B70)	1952	12-14 MeV	-	-
Mo 100	Fink (Mo-B13)	1970	14,4 MeV	300 KeV	6 %
	Csikai (Mo-B55)	1967	14,7 MeV	300 KeV	12 %
	Cuzzocrea (Mo-B28)	1967	14,1 MeV	200 KeV	12 %
	Strohal (Mo-B65)	1962	14,6 MeV	+200 -300KeV	10 %
	Khurana (Mo-B73)	1961	14,8 MeV	<500 KeV	10 %
	Paul, Clarke (Mo-B68)	1953	14,5 MeV	-	50 %
			-		

- 40 -

<u>Table-Mo-5</u>

Available measurements on $\sigma(n,y)$ for Mo-isotopes above 1 MeV

Target	Reference	Year	Energy	Resolution	$\frac{\Delta\sigma}{\sigma}$
Mo 98	Dorbenko (Mo-B38)	1969	0,2 - 3 MeV		20%
	Stupegia (Mo-B40)	1968	5KeV- 3 MeV	12 - 80 KeV (E > 150 KeV)	5-10%
Mo 100	Tolstikov (Mo-B42)	1962	30KeV-2,1MeV	±50 KeV (400-2100 KeV)	-
	Johnsrud (Mo-B43)	1957	o,15-6,2 MeV	170/80 KeV E < (600 - 2500 KeV) 380KeV(E>2,5Mev)	10%
	Leipunsky (Mo-B44)	1958	0,2;2,7;4MeV	30 KeV at 0,2MeV	-
	Pasechnik (Mo-B45)	1958	2,5;3,1;4MeV	-	18%

<u>Table Mo-6</u>

Available measurements for σ_x , σ_{EL} , $\sigma(n,n')$ from 10 - 15 MeV

Quantity	Reference	Year	Energy	Resolution	$\frac{\Delta\sigma}{\sigma}$
dơ _{n,n'} (E, E',⊖)	Morgan et. al. (Mo-B88)	1967	14,8 MeV	o,l MeV	17-25%
dσ _n (E, E'Θ)	Prudhomme et.al. (Mo-B87)	1960	15 MeV	-	15%
dσ _{n,n} (Θ) dσ _{n,n} ,(Θ)	Machwe (Mo-B83)	1962	14 MeV	< 300 KeV	10-30%
dσ _{n,n} (Θ)	Strizhak et. al. (Mo-B84)	1962	14 MeV	-	10 %
σ _x	Lebedev et.al. (Mo-B86)	1958	14 MeV	_	10 %

				Tat	ole Mo	<u>b-7</u>		
Values	for	σ	(χ(E)),	the	ບ ²³⁵	fission	spectrum	average

Reaction	Kelerence	Year	σ	Remarks,Standards
n,p				
92	Nasyrov (Mo-B14)	1968	6,7±0,63mb	$\sigma_{f}(Pu \ 239) = 1,85 b$
	Bresesti (Mo-B15)	1967	5,75±0,25mb	$\sigma'_{a}(A1\ 27\) = 0,61\ mb$
	Rau (Mo-B18)	1967	6,74±0,27mb	$\sigma_{\rm p}^{\rm a}$ (Ti 46) = 12,6 mb
	Fabry (Mo-B19)	1966	6,10±0,30mb	$\int_{p}^{p} (S \ 32) = 63 \ \text{mb}, \overline{\sigma}_{\alpha} (A1 \ 27) = 0, 63 \text{ ml}$
	Boldeman (Mo-B23)	1964	6,2 ±0,4 mb	$\overline{\sigma}_{\rm p}(\rm S32) = 60 \ \rm mb$
	Hogg, Weber (Mo-B22)	1962	6,0 mb	σ_{α}^{-P} (A1 27) = 0,57 mb
	Gopinathan(Mo-B25),	1962	3,64 mb	σ^{α} (Ni 58 (n,p)) = 105 mb
	Mellish (Mo-B26)	1958	1,3 mb	$\bar{\sigma}_{(S 32)} = 30 \text{ mb}$
	recommended curve	-	6,2 mb	Ų
95	Rau (Mo-B18)	1967	0,138±0,006 mb	
	Boldeman (Mo-B2O)	1964	0,13 ±0,02 mb	
	Gopinathan (Mo-B26)	1962	0,12 mb	see 92
	Mellish (Mo-B26)	1958	< 0,1 mb	
	Hogg, Weber (Mo-B22)	1962	< 0,1 mb	
	recommended curve	-	0,147 mb	
96	Gopinathan (Mo-B25)	1962	0,03 mb	
	Mellish (Mo-B26)	1958	0,017 mb	see 92
	recommended curve	-	0,03 mb	
94	recommended curve	-	0,047 mb	
97	n	-	0,012 mb	
98	**	-	-	<pre>contributions from above</pre>
100	**	_	-) 15 MeV
Мо	11	-	1,01 mb	

-

Reaction	Reference	Year	σ	Remarks, Standards
<u>n,α</u>				
92	Mellish (Mo-B26)	1958	17 µЪ	$\overline{\sigma}_{\rm p}(532) = 30 \text{ mb}$
	recommended curve		79 µЪ	F
94			378 µЪ	
95	¹¹		265 µЪ	
96	¹¹		80 μЪ	
97	_**_		16 μЪ	
98	Rau (Mo-B18)	1967	14±1,3µb	$\bar{\sigma}_{\rm p}$ (Ti 46) = 12,6 mb
	recommended curve		11 µЪ	P
100	_"_		2,8 µb	
Мо	Freeman et al.	1969	130±30µb	$\overline{\sigma}_{n}$ (Fe 54) = 7 lmb, $\overline{\sigma}_{n}$ (Ni 58) =
	•			۲ ۲ 109 mb

Table Mo-8

Proposed accuracies for recommended Mo-cross sections

Quantity	Energy range	۵σ/ _σ	Remarks
σ _{tot}	10 - 15 MeV	<4 %	
σp	threshold -10 MeV 10 - 15 MeV	25 % 15 %	only integral data available
σα	threshold - 15 MeV	30 - 50%	scarce experimental information accuracy of integral data worse than 20 %
σ _{2n}	threshold - 15 MeV	20 %	experimental information avail- able for Mo 92, Mo 100 only
σ _γ	1 - 5 MeV 5 - 15 MeV	20 % 40 %	experimental information for Mo 98, Mo 100 only
°n'	10-15 MeV	20 %	no experimental information
σ _x	10-15 MeV	15 %	
σn	10-15 MeV	15 %	

 σ_{TOT}

Мо	- B1	Cassola, Koshel, Nuovo Cimento 53, 2B, 363, 1968
	" B2	D.G. Foster, D.W. Glasgow HW-SA 28-5, 1963
		Nucl. Instr. Methods 36,1,1965
	" B3	N. Nereson, S. Darden, Phys. Rev. 94, 1678, 1954
	" B4	A. Langsford, P.H. Bowen, G.C. Cox, F.W.K. Fink, D.B. Mc
		Conwell, B. Rose, Conf. Nucl. Structure Study with Neutrons,
		Antwerp 1965, P.81
	" B5	G.J. McCallum, G.S. Mani, A.T.G.Ferguson, Nucl. Phys. 16,
		313,1960
1	" B6	A. Bratenahl, J.M.Peterson, J.P. Stoering, Phys. Rev.
		110, 927, 1958
1	" B7	J. Vervier, G. Deconninck, A. Martegani, Geneva Conf.
		1758, Vol. 15,30
4	" B9	J.H. Coon, E.R. Graves, H.H. Barschal, Phys.Rev. 88,
		562, 1952
(" B1	0 L.S. Goodman, Phys. Rev. 88, 686, 1952
,	、	

<u>σ(n,p)</u>

Мо	-	B11	D.L. Allan, Nucl. Phys. 24,274, 1961
	11	B12	L. Colli, U. Facchini, I.Iori, M.G. Marcazzan, A.M. Soma,
			Nuovo Cimento 12, 730, 1959
	11	B13	Wen-den Lu, N. Rana Kumar, R.W. Fink, Phys.Rev.C 1,358,1970
	11	B14	F. Nasyrov, Sov. At.En. 25, 1251, 1968
	11	B15	A.M. Bresesti, M. Bresesti, R.A. Rydin, Nucl. Sc.Eng.
			29, 7 1967
	11	B16	D.G. Gardner, Nucl.Phys. A 96, 121, 1967
	11	B17	P. Cuzzocrea, INFN/Be-67/10, 1967
	11	B18	G. Rau, Nucleonic 9, 228, 1966
	\$1	B19	A. Fabry, J.P. Deworm, EANDC (E) 66 U, 125, 1966
		B20	J.W. Boldeman, J. Nucl. En. A/B 18, 417, 1969
	**	B21	E.T. Bramlitt, R.W. Fink, Phys. Rev. 131, 2649, 1963
	11	B22	C.H. Hogg, L. O. Weber, Proceedings of the Symposium on
			Radiation Effects on Metals and Neutron Dosimetry,
			Los Angeles 1962, P.133

- 44 -

Mo - B23	P.Strohal, N.Cindro, B. Eman, Nucl.Phys. 30,49,1962
" B24	R.S. Rochlin, Nucleonics 17,1,54,1959
" B25	K.P. Gopinathan, Nucl.Phys.Symp.Madras 1962
" B26	C.E. Mellish, R.A. Payne, R.L. Otlet, AEREI/R 2630
" B27	J.C. Roy, AECL 877, 1959
" B28	P.Cuzzocrea, E. Perillo, S. Notarrigo, Nucl. Phys.
	A 103, 616, 1967
" B29	G.E. Brown, Phil. Mag. 2, 473, 1957
" B30	E.B.Paul, R.L. Clarke, Can.J.Phys. 31,267, 1953
" B31	R.E.Cohen, Phys. Rev. 81,184, 1951
" B32	S.C. Gujrathi, S.K. Mukherjee, Nucl. Phys. 85,288,1966
" B33	A. Chatterjee, Nucl. Phys. 60,273,1964
" B34	E.T. Bramlitt, J. Inorg.nucl.chemistry 24,1317, 1967
" B35	P.Cuzzocrea, Datapoints received from CCDN/Saclay
" B36	V.N. Levkovskij, JETP 45, 305, 1963
" B37	J.Csikai, M. Buczko, Z. Bödy, A. Bemeny, At.En.Rev. 7,4,
	93, 1969

<u>σ(n,α)</u>

Мо	-	B13	Wen den Lu, N. RanaKumar, R.W. Fink, Phys. Rev. C1,358,1970
	**	B17	P. Cuzzocrea, Inst.Fisica Nucleare, Florence, Rep. /Be-67 10,
	11	B18	G. Rau, Nucleonic 9, 228,1966
	11	B2 1	E.T. Bramlitt, R.W. Fink, Phys.Rev. 131, 2649, 1963
	11	B23	P.Strohal, N.Cindro, B. Eman, Nucl.Phys. 30,49,1962
	**	B24	R.S. Rochlin, Nucleonics 17, 1,54,1959
	**	B26	C.E. Mellish, R.A. Payne, R.L.Otlet, AERE I/R 2630
	11	B27	J.C. Roy, AECL 877, 1959
	11	B28	P.Cuzzocrea, E. Perillo, S. Notarrigo, Nucl. Phys. A 103,
			616, 1967
	**	B34	E.T. Bramlitt, J. inorg. nucl.chem. 24,1317,1962
	11	B35	P. Cuzzocrea, Datapoints received from CCDN/Saclay
	11	B36	V.N. Levkovskij, JETP 45, 305, 1963
	**	B77	P. Cuzzocrea, Nucl. Phys. 55, 364, 1964
	11	B78	U. Facchini, Nucl. Phys. 51, 460, 1964
	**	B79	D.G. Gardner, Ju-Wen Ju, Nucl. Phys. 60 (1964),49
	#1	B80	N.J. Freeman, J.F. Barry, N.L. Campbell, Journal of
			Nuclear Energy 23, 713,1969

<u>σ(n,2n)</u>

Mo -	B13	Wen-den Lu, N.Rana Kumar, R.W. Fink, Phys.Rev.Cl,
		358,1970
17	B28	P.Cuzzocrea, E. Perillo, S. Notarrigo, Nucl.Phys. A 103,
		616, 1967
4 9	B35	P. Cuzzocrea, Datapoints received from CCDN/Sacclay
11	B49	P.P.Lebedev, In.A.Zyrin, In.S.Klintsov,D.B.Stribowski,
		Sov.J.At.En. 5, 1431, 1958
88	B50	Benneviste, IAEA Geneva, Conf. 1958, Vol. 15,3
**	B51	J. Karolyi, J. Csikai, G.Petö, Nucl. Phys. A 122, 234,1968
11	B52	B. Minetti, A. Pasquarelli, Nucl. Phys. A 118,449,1968
11	B53	Curcio, Nuovo Cimento 54 B, 319, 1968
**	B54	J.Csikai, Mag.Fiz.Fol 16, 123, 1968
**	B55	J.Csikai, G. Petö, Acta Phys. Hung. 23, 87, 1967
11	B56	P. Decowski, INP-543 , 28, 1967
11	B57	R. Prasad, D.C. Sarkar, Nucl.Phys. A 94,476, 1967
11	B58	S. Pearlstein, Nucl.Sc.Eng. 23, 238, 1965
11	B59	J.Csikai, Antwerp Conf. 1965, P.102
11	B60	J.Basö, J.Csikai, A. Pazsit, Acta. Phys. Hung. 18,295,1965
Ħ	B6 1	H. Bormann, Nucl. Phys. 65, 257, 1965
**	B62	E.T. Bramlitt, R.W. Fink, Phys.Rev. 131, 2649, 1963
11	B63	Singh, Sympos. Nucl. Phys, Bombay Feb.1963, P.232
78	B64	M. Cevolani, S. Petralia, Nuovo.Cimento 26, 1328,1962
11	B65	P. Strohal, N. Cindro, B. Eman, Nucl.Phys. 30,49,1962
11	B66	L.A. Rayburn , Phys.Rev. 122,168,1961
**	B67	Yasumi, J.Phys.Soc. Japan 12,443,1957
11	B68	E.B.Paul, R.L. Clarke, Can.J.Phys. 31,267,1953
**	B69	Brolley et.al. Phys.Rev.89, 877, 1953
11	B70	J.E. Brolley, J.L. Fowler, L.K. Schlacks, Phys. Rev. 88,
		618,1952
11	B71	P. Decowski, Tokyo Conf. 1967, 366
11	B72	N. Ranakumar, Data received from CCDN/Sacclay
11	B73	C.S. Khurana, H.S. Hans, Nucl. Phys. 28,560,1961
**	B74	P. Decowski, Inst.Nucl.Res, Warschau, Rep. 1105, 1969
11	B75	D. Crumpton, A.J. Cox, P.N. Cooper, P.E. Francois,
		S.E. Hunt, J. inorg. nucl. chem. 31,1,1969
11	B76	A.Adam, L. Jéki, Acta. Phys. Hung. 26,3,35,1969

Мо	-	B21	E.T. Bramlitt, R.W. Fink, Phys. Rev. 131,2649, 1963
	**	B81	L. Colli, U. Facchini, I.Iori, M.G. Marcazzan,
			A.M. Soma, Nuovo Cimento 13,730,1959

<u>σ(n,γ)</u>

Mo -	B37	J. Csikai et.al., At.En.Rev. 7,4,93,1968
11	B38	A.G. Dovbenko, V.A. Tolstikov, V.E. Kolesov, V.P.Koroleva,
		Sov.J.At.En. 26,67,1969
11	B39	G. Petö, Z. Miligy, I. Hunyadi, J.Nucl. En, 21,797,1967
**	B40	D.C. Stupegia, M. Schmidt, C.R. Keedy, A.A.Madson,
		J.Nucl. Energy 22,267,1968
11	B4 1	D.C. Stupegia et.al., ANL 7105,1965
		ANL 6543,1962
		ANL 6477,1961
		ANL 6413,1961
**	B42	V.A. Tolstikov, Yu, Jo. Staviskii, AEC-TR-4680,1962
**	B43	A.E. Johnsrud, M.G. Silbert, H.H. Barschall, Phys.Rev.
		116, 927, 1959
11	B44	A.I. Leipunsky et.al., Geneva Conf. 1958,Vol.15,50
11	B45	M.V. Pasechnik, et.al. Geneva Conf. 1958,Vol.15,18
11	B46	V.A. Tolstikov, Sov.J.At.En. 17,505, 1964
11	B47	V. Benzi, G. Reffo, 1969, unpublished
**	B48	V. Benzi, G. Reffo, G.C. Panini, M.Vaccari, C.N.E.N. Centro de Calcolo, Report CEC-2, 1970

 $\sigma(n,n),\sigma(n,n'),\sigma_x$

Мо	-	B82	R.L. Cassola, R.D. Koshel, Nuovo Cimento 53,2B,363
	11	B83	M.K. Machwe, Physica 28, 1011,1962
	11	B84	V.I. Strizhak, JET 41, 313, 1961 = JETP 14,225,1962
	**	B85	F. Bjorklund, S. Fernbach, UCRL-4926 T-Rev. 1957
	11	B86	P.P. Lebedev, In.A.Zysin, In.S.Klintsov, B.D. Stsiborskii,
			Sov.J.At. Energy 5,1431,1958
	11	B87	J.T. Prud'homme, I.L. Morgan, J.H. McCrary, Y.B.Ashe,
			0.M. Hudson, AFSWC-TR-60-30, 1960
	**	B88	S.C. Mathur, P.S. Buchanan, I.L. Morgan, NDL-TR-86,1967

- 48 -

.

- 58

58 -

Fig. Mo-6

1-00E 07 1-20E 07 1-40E 07 1-60E 07

O(n,p) for Mo 97

Fig. Mo-7

- O(n,p) for Mo 98
- Cuzzocrea, 1967 (Mo-B28)
- O Bramlitt, Fink, 1963 (Mo-B21)
- + Gujrathi,1966 (Mo-B32)
- × Fink, 1970 (Mo-B13)
- ----- recommended

ABB-00001

- 66 -

4.00E-01 -

- 72 -

- 73 -

- 75 -

- 76 -

- 77 -

D. Evaluation of the cross sections for Chromium, Iron and Nickel in MeV energy region (R. Meyer)

The evaluations dealt within this chapter date back to 1970. This work was done in the context of the extension of KEDAK to 15 MeV. Following cross sections were evaluated for the above mentioned materials

$$\sigma_{t}, \sigma(n,n), \sigma(n,n')$$
 from 10 MeV to 15 MeV

$$\sigma(n,p), \sigma(n,\alpha), \sigma(n,2n)$$
 from the threshold

$$\sigma(n,pn)$$
 from 1 MeV to 15 MeV

$$\sigma(n,\gamma)$$
 from 1 MeV to 15 MeV

The evaluation of $\sigma(n,pn)$ is not stored on KEDAK separately but is included in $\sigma(n,n')$.

Among the different changes in the data discussed in this chapter. Some of the significant changes are listed below:

- Cr(n,p) cross section in the energy range 6 - 10 MeV has been raised.

- Ni(n,a) is considerably raised throughout.

- Some discrepancies between the formerly theoretically expected behavior of the inelastic scattering cross section in the higher MeV range is attributed to the (n,pn) process which was formerly not considered.

The changes performed after 1970 are of the order of adjusting the different evaluations to a smooth curve, i.e. removal of certain discontinuities in the recommended curve. Such changes are demonstrated on the example of 23 Na(n,n') in the following figure.

The data for the structural materials are at present under revision and a new report (KFK 2386/IV) on these data will be issued shortly.

Cross section for the Ni(n,n')-process. Note the jumps at 4 MeV and 10 MeV in the OLD KEDAK data.

II. Totaler Querschnitt, 10 - 15 MeV

Seit Erscheinen des KFK 120 / A1 7 wurde eine große Zahl von Messungen publiziert / B1 bis B6 7. Von allen derzeit zur Verfügung stehenden Daten sind die von Cierjacks u.a. / B2 7, Albergotti und Ferguson / B3 7, Manero u.a. / B77 und Vervier und Martegani / B8 7 mit der besten Auflösung und etwa gleich guter Statistik gemessen. Die Messungen stehen in guter bis sehr guter Übereinstimmung.

Vervier und Martegani / B8 7 dürften bei der Bestimmung der Energieauflösung die aus der Geometrie der Anordnung folgende Winkelauflösung nicht berücksichtigt haben. Jedenfalls berechnet sich bei jenen Energien, bei denen die Autoren die höchste Energieauflösung angeben, ein erheblicher über deren Angaben hinausgehender Beitrag. Die Messung wurde deshalb ausgeschlossen, da dann die erzielte Auflösung nicht an die der übrigen Experimente heranreicht.

Albergotti und Fergusons Daten / B3 7 zeigen im oberen Energiebereich eine deutliche Abweichung zu höheren Werten von σ_{TOT} , für die keine Erklärung vorliegt. Wir haben die Ergebnisse dieser Messung nicht berücksichtigt.

Die vorliegenden Arbeiten lassen im totalen Querschnitt keine jenseits des statistischen Fehlers liegende Strukturen erkennen. Deshalb wurde zur Darstellung von σ_{TOT} eine monotone Kurve gewählt, der Gestalt $\sigma_{\text{TOT}}(E) = A \cdot E^a + B \cdot E^b$. A,B,a und b wurden durch ein Least Square Fit Programm für jedes Element bestimmt. Im Fall von Cr und Ni wurden nur die Ergebnisse von Cierjacks u.a. <u>/ B2</u>7 benutzt, für Fe sind auch Maneros Daten <u>/ B7</u>7 herangezogen worden, wegen der größeren Zahl von Datenpunkten sind aber auch hier die Ergebnisse von Cierjacks u.a. <u>/ B2</u>7 statistisch am bedeutendsten.

Foster und Glasgow / B1 7 beobachteten gewisse Strukturen und deuteten diese als Auswirkungen des steilen Quellspektrums (Li⁷(d,n)) und Zeitinstabilitäten in der Elektronik. Dies führt zu einer Verschlechterung der effektiven Auflösung und zu zufälligen Schwankungen in den Meßwerten. Die Meßwerte blieben deshalb unberücksichtigt. III. on,p

 cr^{50}

Seit Abschluß des KFK 120 (1966) / A1 7 wurden keine neuen Messungen berichtet. Eine weitere auf dem statistischen Modell basierende Rechnung von J. Eriksson / B11 7 liegt als vorläufiger Bericht vor. Die Berechnung der Miveaudichten wurde weiter verbessert durch Einführung eines zusätzlichen Korrekturterms, der Schaleneffekte berücksichtigen soll. Er wurde aus den experimentellen Schalenenergien von Myers und Swiatecki / A3 7 gewonnen. Eriksson / B11 7 und Büttner / B50 7 sagen übereinstimmend für niedere Energien einen höheren Querschnittsverlauf voraus als Ringle / B49 7, der ältere Werte für Niveaudichteparameter und inversen Compoundbildungsquerschnitt benutzt. Die neueren Werte enthalten verschiedene Korrekturen bzw. wurden mit verbesserten optischen Potentialen gerechnet. Aus diesem Grund ist den Ergebnissen von Eriksson und Büttner der Vorzug gegeben worden. Unter 10 MeV ergibt sich deshalb eine merkliche Änderung der Querschnitte.

 cr^{52}

Auch mit Hilfe der neu hinzugekommenen Meßpunkte kann die Querschnittskurve nicht genauer festgelegt werden, da deren Streuung sehr groß ist. Zwischen Schwelle und 12 MeV gibt es nur die Messung von Wilhelmi <u>/ B44</u>7. Von Rau <u>/ B14</u>7 wurde $\sigma(\chi(E))$ gemessen. Diese beiden Werte wurden zur Festlegung von $\sigma(n,p)$ in diesem Bereich verwendet.

Cr^{53}

Die Berechnungen von Eriksson / B11_7 und die Messung von Husain und Kuroda / B13_7 unterstützen die bisher empfohlene Kurve.

Cr^{54}

Murde nur der Vollständigkeit halber betrachtet. Der Beitrag zu Cr(n,p) wurde vernachlässigt (stets <0.4 mb).

$Fe^{54}(n,p)$

Nach wie vor sind zwischen 6 und 13 MeV keine Meßpunkte veröffentlicht worden. Die Lage des Maximums von $\sigma(n,p)$ wird vor allem durch die Konkurrenzreaktionen bestimmt. Von denen, die mit merklicher Wahrscheinlichkeit auftreten, haben nur die (n,pn) und die (n,d) Reaktion Schwellen in dem Bereich, in dem das Maximum von $\sigma(n,p)$ liegen muß. Es ist zu erwarten, daß bei hohen Restkernenergien die sekundäre Neutronenemission die sekundäre γ -Emission überwiegt und deshalb der (n,pn)-Prozeß $\sigma(n,p)$ merklich absenkt. Daß das Hinzukommen der Konkurrenz primärer d-Emission den (n,p) Querschnitt zum Absinken bringt, ist unwahrscheinlich. Dennoch wurde sowohl der Einluß der (n,pn) wie auch der (n,d) Schwelle auf $\sigma(n,p)$ bei den benachbarten - -Kernen untersucht.

Bei drei Kernen, nämlich Cr^{52} , Fe^{56} , Ni^{60} , beginnt der Abfall des (n,p)-Querschnitts ungefähr 2-2.5 MeV oberhalb der (n,pn) Schwelle. Ein ähnlicher Zusammenhang mit der (n,d) Schwelle konnte nicht festgestellt werden. Bei den anderen Kernen war $\sigma(n,p)$ nicht genügend bekannt.

Entsprechend diesem Ergebnis wurde der Juerschnitt durch Verschieben des Maximums etwas geändert.

Fe⁵⁶

Grundls / B15 7 Meßwerte unterstützen die bisherigen Resultate bis 10 MeV.

Levkovskijs / B20 7 und Grundls Ergebnisse bei 14MeV liegen über der bisher empfohlenen Kurve.

Vonachs Messung / B18 7 ist eine Relativmessung. Sie wurde auf den derzeit empfohlenen Wert normiert. Strohals Ergebnis / B19 7 stimmt mit keiner der anderen Messungen überein. Die Datenpunkte wurden erhalten, in dem wir die gemessenen Relativwerte auf den empfohlenen Wert bei 14.13 MeV normierten. Cuzzocrea / B19 7 kann die Diskrepanz zwischen seiner und den meisten anderen Messungen nicht erklären. Aus den spärlichen Angaben in / B19 7 können kaum Schlüsse auf die Zuverläasigkeit der Ergebnisse gezogen werden. Es sei jedoch bemerkt, daß auch für Al²⁷(n, α), Ag¹⁰⁹(n,2n) und Al²⁷(n,p) etwa um den gleichen Faktor zu hohe Ergebnisse berichtet werden. Ein systematischer Fehler kann daher vermutet werden.

Die bisher empfohlene Kurve wurde beibehalten.

<u>Fe⁵⁷, Fe⁵⁸</u>

Keine neuere Messungen liegen vor. Die in $/A1_7$ angewendete Methode zur Festlegung der Ouerschnitte kann angezweifelt werden; wegen der geringen Beiträge zu $\sigma_{n,p}$ (Fe) wurden aber keine Anstrengungen unternommen, eine bessere Methode zu entwickeln.

Die bisher empfohlenen Querschnitte wurden ungeändert übernommen.

Ni⁵⁸

Auch neuere Messungen um 14 MeV weisen starke Diskrepanzen auf. So liegen zum Beispiel die Messungen von Decowski u.a. / B24 7 weit oberhalb aller anderen Ergebnisse und sogar noch höher als frühere Ergebnisse der gleichen Gruppe - Chojnacki u.a. / B79 7 - die auch schon sehr hoch lagen. Die Meßpunkte von Okumura / B23 7 und Temperley / B27 7gruppieren sich um die bisher empfohlene Kurve.

Wegen der Steilheit des Querschnittsverlaufes zwischen 13 und 15 MeV (Abfall = 100 mb/MeV) können schlechte Energieauflösung oder fehlerhafte Bestimmung der Neutronenenergie große Unsicherheiten bzw. Fehler in den gemessenen Querschnitten hervorrufen.

Zwischen 8.5 und 13 MeV gibt es keine Meßpunkte. Aus den Gründen, die im Abschnitt über $Fe^{54}(n,p)$ dargelegt wurden, sind wir der Meinung, daß der Abfall des (n,p)-Querschnittes erst um 10.5 MeV beginnen sollte. Der bisher empfohlene Querschnitt wurde entsprechend geändert.

Zwischen 2.0 und 4.8 MeV sind die Meßreihen von Decowski u.a. $/B24_7$ und Temperley $/B27_7$ hinzugekommen. Letztere unterstützt die bisher empfohlene Kurve, Decowskis Werte weichen sehr stark von den anderen Messung ab. Die bisher empfohlene Kurve wird in diesem Bereich beibehalten. Sie wird durch die gemessene $\overline{\sigma}_{n,p}(\chi(E))$ gestützt: Der für die empfohlene Kurve berechnete Wert von 105 mb stimmt mit den Messungen gut überein. $\underline{Ni}^{60}(n,p)$

Nun liegen auch zwischen 8 und 13 MeV Meßwerte von Paulsen / B28 7 vor. Allerdings nimmt Paulsen an, daß die Kontaminierung durch niederenergetische Neutronengruppen der C¹⁴(d,n) und N¹⁵(d,n) Quellen ungenügend korrigiert wurden. Die bisher empfohlene Kurve liegt der von Paulsen gezogenen sehr nahe. Negen der oben angeführten Unsicherheiten kann der Querschnitt nicht genauer festgelegt werden.

Der aus der empfohlenen Kurve berechnete Wert für $\overline{\sigma}_{n,p}(\chi(E)) = 2.1$ mb liegt über dem neuesten von Nasyrov mit 1.69±0.18 mb gemessenen. Die empfohlene Kurve wurde aus folgenen Gründen nicht auf diesen Wert normiert:

- Durch Absenken des Ouerschnitts käme die empfohlene Kurve unter die Meßpunkte von Liskien und Paulsen / B83 7 von 1966 zu liegen.
- 2) Eine Extrapolation des Ouerschnitts auf Null bei etwa 6 MeV würde ebenfalls ein σ_{n,p} um 1.7 mb ergeben, doch steht ein so steiler Anstieg des (n,p)-Querschnittes im Widerspruch zur Erfahrung bei Nachbarkernen und theoretischen Ergebnissen.
- 3) Die gemessenen $\overline{\sigma}_{n,p}(\chi(E))$ für Ni⁶⁰ weichen von einander stark ab. Kein anderer Meßwert kann den von Nasyrov gemessenen unterstützen. Für diesen spricht vor allem die gute Übereinstimmung mit den Ergebnissen anderer Autoren bei anderen Kernen.

 $Mi^{61}(n,p)$, $Mi^{62}(n,p)$, $Mi^{64}(n,p)$

Es liegen nur Meßwerte zwischen 14 und 15 MeV vor.

Bei Ni⁶¹ wurde den Meßwerten von Clarke und Cross / B25 7 und Levkovskij / B30 7 der Vorzug gegeben, allerdings nur, weil dann beide Werte auf einer Kurve lagen. Eine Normierung auf das Resultat von Val'ter würde die Kurve um 12% absenken.

Im Fall von Ni⁶² liegen Meßpunkte vor, die von 25 bis 106 mb reichen. Bormanns Ergebnis / B22 7 ist nur für Ni⁶²(n,p) Co^{62g} angegeben. Den Werten von Val'ter / B29 7 und Levkovskij / B30 7 wurde der Vorzug gegeben, weil

- 1) Strain und Ross / B26 7 auch für viele andere Kerne Ergebnisse erhielten, die von den meisten übrigen Werten stark abweichen. Ihre Querschnitte wurden deshalb als weniger zuverlässig betrachtet.
- Clarke und Cross in der mir verfügbaren Quelle / B25_7 nur eine sehr grobe Beschreibung ihrer Messung geben.
- 3) Gardner / B16 7 für seine relativen Isotopenquerschnitte gerade für die Cr, Fe- und die anderen Ni-Kerne gute Resultate erhält und wir deshalb nicht annehmen, daß sein Ergebnis bei Ni⁶² um einen Faktor zwei oder mehr falsch ist.

Für Ni⁶⁴ liegen zwei Meßpunkte vor / B29 7. Der Meßpunkt von Val'ter wurde vorgezogen, da Preiss und Fink / B36 7 auch bei den anderen Ni-Isotopen anscheinend zu niedrige Werte erhalten haben.

Die Kurvenform wurde folgendermaßen gewählt:

1-

$$\sigma_{n,p}^{62} = \sigma_{n,p}^{60} (E-2.5 \text{ MeV}) \frac{\sigma_{n,p}^{62} (15 \text{ MeV})}{\sigma_{n,p}^{60} (12.5 \text{ MeV})} = 0.34 \sigma_{n,p}^{60} (E-2.5 \text{ MeV})$$

$$\sigma_{n,p}^{64} = \sigma_{n,p}^{60} (E-8 \text{ MeV}) \frac{\sigma_{n,p}^{64} (14 \text{ MeV})}{\sigma_{n,p}^{60} (6 \text{ MeV})} = 0.3 \sigma_{n,p}^{60} (E-8 \text{ MeV})$$

Dies entspricht der Annahme einer Standardform des (n,p)-Querschnittes. Die additiven Glieder in den Argumenten berücksichtigen die Unterschiede in den Q-Werten. Insbesondere bleibt der Einfluß der Konkurrenzreaktion unberücksichtigt, der eine solche Standardform ausschließt.

Während bei Ni^{60,62,64}(n,p) die Restkerne vom u-u-Typ sind, ist dies bei Ni⁶¹ (n,p) nicht der Fall, und es muß auch noch die Paarungsenergie berücksichtigt werden. Die Formel von Gardner wurde angewendet:

$$\frac{\sigma_{\mathbf{a},\mathbf{p}}^{\mathbf{A},\mathbf{z}}(\mathbf{E})}{\sigma_{\mathbf{a},\mathbf{p}}^{\mathbf{A}',\mathbf{z}'}(\mathbf{E})} = e^{2\left(\left\{\sqrt{\mathbf{a}(\mathbf{E}_{m}-\boldsymbol{\beta}_{p}^{\mathbf{H}'})'\right\}_{\mathbf{A},\mathbf{z}} - \left\{\sqrt{\mathbf{a}(\mathbf{E}_{m}-\boldsymbol{\beta}_{p}^{\mathbf{H}'})'\right\}_{\mathbf{A}',\mathbf{z}}\right)}$$

Die Symbole entsprechen den von Gardner verwendeten.

Folgende Werte für die Parameter wurden gewählt:

 $a = 7.5 \text{ MeV}^{-1} \text{ für beide Isotope}$ $\beta_p^{\text{H}} = 4.01 \text{ MeV}, \quad 0_{n,p} = 2.07 \text{ MeV für Mi}^{61}$ $\beta_p^{\text{H}} = 2.02 \text{ MeV}, \quad 0_{n,p} = 0.52 \text{ MeV für Mi}^{60}$ Mit diesen Werten wurde δ_n , die Paarungsenergie, so festgelegt, daß bei 14.5 MeV das berechnete Verhältnis von $\frac{\sigma_{n,p}^{\text{Ni}60}}{\frac{\sigma_{n,p}}{\text{Mi}61}} \text{ dem gemessenen entsprach}.$ Mit $\sigma_{n,p}^{60}$ $\frac{\sigma_{n,p}^{60}}{\sigma_{n,p}} (14.5 \text{ MeV}) = 1.199 \text{ ergab sich } \delta_n \text{ zu } 1.75 \text{ MeV}.$ Folgendes ist zu bemerken

- 1) Vor dem Exponentialglied in Formel (1) sind Faktoren vernachlässigt, die z.B. im Fall Ni⁵⁸, Ni⁶⁰ bei 14.5 MeV 1.20 betrugen. Es wurde nicht untersucht, wie sich diese Faktoren mit der Energie ändern und dann das von uns berechnete Ergebnis beeinflussen würden.
- 2) Die Formel versagt bei niedrigen Energien.
- 3) Über die Zahlenwerte der in Formel (1) eingehenden Parameter herrscht Uneinigkeit.

Die Zuverlässigkeit der so berechneten Querschnittskerne ist deshalb nicht sehr gut.

$Cr(n,\alpha)$

Der einzige experimentelle Wert für Cr-Isotope wurde an Cr⁵⁴ gemessen, das nur mit 2.4% im natürlichen Isotopengemisch vertreten ist. Dieser Meßwert von Husain und Kuroda / B13 7 steht in guter Übereinstimmung mit dem Ergebnis der von J. Eriksson durchgeführten Rechnung / B11 7. Deshalb und aus Mangel an weiteren Quellen wurden die von Eriksson berechneten Werte den empfohlenen Kurven bei allen Isotopen zu Grunde gelegt.

Die empfohlenen Querschnitte sind mit großen Unsicherheiten behaftet.

$Fe(n,\alpha)$

Die bisher empfohlenen Kurven wurden beibehalten. Die Beiträge von Fe $^{54}(n_{,\alpha})$, $Fe^{57}(n,\alpha)$, $Fe^{58}(n,\alpha)$ zu $\sigma_{n,\alpha}(Fe)$ sind gering.

$Ni(n,\alpha)$

Die bisher empfohlene Kurve basierte auf den von Schuman und Mewherter / B94 7 gemessene Wert für $\overline{\sigma}(\chi(E))$. Aus Vergleichen der gemessenen $\overline{\sigma}(\chi(E))$ für andere Reaktionen ersieht man, daß die Werte dieser Autoren allgemein zu niedrig liegen. Die jetzt empfohlene Kurve benutzt das von Weitman und Daverhög / B104 7 gemessene $\overline{\sigma}_{m,\alpha}^{Ni}(\chi(E))$, das wesentlich höher liegt. Außerdem wurden die Ergebnisse von J. Eriksson / B11 7 und der Meßwert von Seebeck und Bormann / B102 7 benützt, um den Querschnittsverlauf für Ni⁵⁸(n,α) festzulegen. Für Ni⁶⁰ empfehlen wir Büttners Kurve / B50 7, für Ni⁶¹ die normierte

Ni⁶⁰-Kurve von Büttner:

$$\sigma_{n,\alpha}^{61}(E) = \sigma_{n,\alpha}^{60}(E+2.2MeV) \xrightarrow{\sigma_{n,\alpha}^{61}(Gardner(14.5MeV))}_{\sigma_{n,\alpha}^{60}(16.7MeV)} \cdot \xrightarrow{\sigma_{n,\alpha}^{60}(14.5MeV)}_{\sigma_{n,\alpha}^{60}(14.5MeV)} =$$

= 0.82
$$\sigma_{n_{s}\alpha}^{60}$$
 (E+2.2MeV)

Zur Umnormierung dienten die Ergebnisse von Gardner / B85 7.

Für Ni⁶² empfehlen wir die in / B106 7 wiedergegebene Kurve, da sie die experimentellen Werte gut approximiert, für Ni⁶⁴ wurde die Kurve aus / B106 7 den gemessenen Querschnitten angepaßt.

V. ons2n ab Schwelle

Cr
equipada de la companya de la compan

Wo experimentelle Information fehlt; wurde Pearlsteins Rechnung angewendet / B112 7. Pearlstein berechnet $\frac{\sigma(n,2n)}{\sigma(n,M)}^{M}$ mit Hilfe des statistischen Modells unter vereinfachenden Annahmen für Niveaudichte und Ablauf der (n,2n)-Reaktion. Direkte Wechselwirkungen und (n,np)-Prozeß werden vernachlässigt. Dies sollte zu systematischen Fehlern führen (vgl. $/ A^{4} 7)$. Da die von Pearlstein errechneten Kurven im allgemeinen die experimentellen Werte gut wiedergeben, dürften Abweichungen von den verwendeten empirischen Formeln für σ_{x} und $\frac{\sigma(n,M)}{\sigma(x)}$ diese Fehler näherungsweise kompensieren. Die Rechnungen von Büttner u.a. / B50 7, die keine solchen vereinfachenden Annahmen trafen, ergeben wesentlich schlechtere Übereinstimmung mit den Experimenten.

Die Ergebnisse von Strain und Ross / B26 7 liegen nicht nur bei Cr^{50} sondern auch bei Fe⁵⁴ und Ni⁵⁸ deutlich zu hoch. Die übrigen Meßwerte stimmen mit der empfohlenen Kurve für $Cr^{50}(n,2n)$ gut überein. Für $Cr^{52}(n,2n)$ wurden Bormanns Ergebnisse / B113 7 zur Festlegung des Querschnitts herangezogen.

Bis 13 MeV liefert Cr^{53} den Hauptbeitrag zu $\sigma_{n,2n}(Cr)$, und die Zuverlässigkeit des empfohlenen Querschnitts ist bis dahin nicht sehr groß. Oberhalb 13 MeV kommt der Hauptanteil von $Cr^{52}(n,2n)$ und der Querschnitt wird im wesentlichen durch die Messungen von Bormann u.a. / B113 7 bestimmt.

Fe

Nur für Fe⁵⁴ liegen Messungen vor, die stark diskrepant sind. Es ist nicht anzunehmen, daß nahe der Schwelle der Querschnitt so hoch ist, wie die Mehrzahl der Autoren gemessen hat. Die derzeit empfohlene Kurve wurde durch Umnormierung von Pearlsteins Kurve gewonnen. Wegen der Nähe der Schwell und der Steilheit des Querschnittsverlaufes kann schlechte Energieauflösung die Resultate leicht verfälschen. Deshalb wurden Messungen für die die Energieauflösung nicht angegeben wurde ebensowenig berücksichtigt wie solche mit schlechter Energieauflösung. Ebenso wurde der von Andrew und Serov / B114 7 bei 13.8 MeV gemessene Wert weggelassen. Er ist deutlich zu hoch. Von den verbleibenden Meß-

$$\sigma_{n_{9}M} = \sigma_{n_{9}n^{9}} + \sigma_{n_{9}2n} + \sigma_{n_{9}3n} + \text{etc.}$$

punkten stimmen die von Andrew und Serov / B114 7, Salisbury, Chalmers / B59 7 und Rayburn / B111 7 gut mit der von uns empfohlenen Kurve überein, der Meßwert von Depraz / B115 7 liegt deutlich darunter. Da Fe⁵⁴ im natürlichen Isotopengemisch nur gering vertreten ist, basiert der Querschnitt für Fe(n,2n) auf Pearlsteins Rechnungen.

Ni

Entsprechend den vorliegenden Messungen liegt der empfohlene Querschnitt für Ni⁵⁸ über Pearlsteins Kurve. Unsere Kurve approximiert den mittleren Trend der Querschnitte durch eine monotone Kurve. Die von Csikai / B119 7 berichteten Fluktuationen wurden bisher nicht bestätigt. Diese Frage ist hier von geringer Bedeutung, da Ni⁵⁸ am Ni(n,2n) Querschnitt durchwegs mit weniger als 15% beteiligt ist. Ab 13 MeV kommt der Hauptbeitrag von Ni⁶⁰. Der Querschnittsverlauf von Ni(n,2n) wird im wesentlichen durch die Ergebnisse von Pearlstein / B112 7 bestimmt. Es ist schwierig, für diesen Prozeß Querschnittskurven zu empfehlen:

- 1. Die Zahl der Messungen ist gering.
- 2. Die Meßwerte widersprechen einander z.T. erheblich.
- 3. Theoretische Rechnungen mit Hilfe des statistischen Modells liefern sehr verschieden gute Ergebnisse.
- 4. Die zwei verschiedenen Möglichkeiten des Reaktionsablaufes (n,np) und (n,pn) - erschweren die Aufstellung empirischer Regeln.
- 5. Aktivierungsmessungen enthalten auch einen (n,d)-Beitrag. Verschiedene Messungen (/A5 7 bis /A8 7 und dorf angef. Referenzen) zeigen, daß dieser Querschnitt nur einen geringen Prozentsatz des (n,np+pn)-Querschnitts beträgt. Zu einer entsprechenden Korrektur reichen die Informationen jedoch nicht aus.
- 6. Nachweis der emittierten Protonen z.B. mit Photoplatten enthält stets auch (n,py) Protonen und einen unbekannten, nicht diskriminierten (n,d) - Anteil. Gemessen werden kann $\sigma(n,p_{emiss.}) = \sigma(n,np+pn+py+...)$ und durch Anwendung der statistischen Theorie auf das gemessene p-Emissionsspektrum auch $\sigma(n,np)$. Dieses Verfahren liefert keine genauen Resultate. Aus den empfohlenen Kurven kann $\sigma(n,p\gamma)$ entnommen werden und $\sigma(n,np+pn) = \sigma(n,p_{emiss.}) - \sigma(n,p\gamma)$ genommen werden. Die Inkonsistenz dieser Vorgangsweise ist offensichtlich. Fehler in der Messung von $\sigma(p_{emiss.})$ werden nicht proportional auf $\sigma_{n,np+pn}$ übertragen. Dieses ist deshalb mit großen Fehlern behaftet.

Dennoch sind diese Verfahren ein unersetzliches Hilfsmittel in der Bestimmung der Querschnitte und wurden durchwegs angewendet. In den Abbildungen 38 - 45 sind die auf diese Weise gewonnenen Querschnittspunkte zusammen mit den originalen Meßwerten eingetragen.

Aufgrund der Organisation des Karlsruher Kerndatenbandes KEDAK werden die (n,np+pn)-Querschnitte derzeit zu den (n,n')-Querschnitten geschlagen. Im Fall des (n,np) Prozesses bedeutet dies die Vernachlässigung des sekundären Protons, das für Reaktorrechnungen ohnehin nicht interessiert. Im Fall des (n,pn) Prozesses wird vernachlässigt, daß diese Neutronen ein vom (n,n')-Spektrum wesentlich verschiedene Energieverteilung haben. Sie sind vorzugsweise niederenergetischer. Jedoch ist der Anteil der (n,pn)-Reaktion am (n,pn+np)-Querschnitt gering. Die Auswertung der Querschnitte erfolgte ausschließlich zu Kontrollzwecken. Alle Kurven setzen ungefähr 2 MeV oberhalb der Schwelle ein. Dies trägt der Vorstellung Rechnung, daß der merkliche Austritt der Protonen unterhalb dieser Energie durch den Potentialberg verhindert wird. Die Anregungskurve für Cr^{52} bedarf eines weiteren Kommentars: Büttners Werte <u>/</u>B50_7 erschienen uns zu niedrich (vgl. Abb. 41, 44). Um zu erfahren, ob es sinnvoll ist, einen Querschnitt für Cr^{52} in der Größenordnung von $\sigma(n,np+pn)$ für Fe⁵⁶ und Ni⁶⁰ zu wählen, wurden versuchsweise die Querschnitte 4 MeV oberhalb der (n,np+pn)-Schwelle gegen $\frac{N-Z}{A}$ und gegen $Q_{N,2N} = Q_{N,NP}$ in doppelt linearen Maßstab aufgetragen (Abb. 52,53)Eine systematische Abhängigkeit ist in beiden Fällen unverkennbar.Wegen der geringen Anzahl der zur Verfügung stehenden Daten und deren großer Unsicherheiten kann das Ergebnis nicht sehr hoch gewertet werden. Immerhin nehmen wir es als Stütze für die von uns für Cr^{52} vorgeschlagene Querschnittskurve.

Fe

Für Fe⁵⁴ stimmen die späteren Ergebnisse von Allan <u>/</u>B61, B45<u>7</u> recht gut miteinander und mit dem Resultat von March und Morton <u>/</u>B129<u>7</u> überein. Den zu hohen Wert des letzteren für Fe⁵⁴(n,np) schreiben wir deshalb den Schwierigkeiten bei der Trennung der einzelnen Bestandteile von o_{n,Pemiss}. unter An-

Bei Fe⁵⁶ scheinen uns nur die Werte von Allan <u>/</u>B80, B45<u>7</u> zuverlässig. March, Morton u.a. <u>/</u>B129, B135<u>7</u> haben bei Energien gemessen, wo der (n,np+pn)-Querschnitt schon zu klein für eine sichere Bestimmung mit Hilfe der Differenzmethode sind. Das spätere Ergebnis von Allan <u>/</u>B45<u>7</u> wurde vorgezogen.

Ni 58

Zwischen den Aktivierungsmessungen und den p-Nachweismessungen herrscht offensichtliche Diskrepanz. Der (n,d) Querschnitt ist zu klein, um dies zu klären. Den Aktivierungsmessungen wurde der Vorzug gegeben gegenüber den p-Nachweismethoden:

Cr

- Bei letzteren müssen statistische Theorie und empfohlene Querschnitte zur Berechnung von (n,np+pn) herangezogen werden. Die Fehler des Verfahrens wurden bereits in der Einleitung diskutiert.
- Sind unterwünschte Prozesse schlecht zu diskriminieren. Deshalb wird meist ein Teil der Spuren nicht ausgezählt und dafür eine Korrektur angebracht.

Aktivierungsmessungen müssen Störaktivitäten berücksichtigen. Wegen des recht gut bekannten Ni $^{38}(n,2n)$ Querschnittes sollten die Korrekturen gut getroffen sein.

Jeronymos Ergebnisse / B78 7 liegen ganz allgemein viel zu tief. Ein systematischer Fehler kann vermutet werden. Die Resultate dieser Arbeit wurden deshalb nicht berücksichtigt.

Die Methode von Purser und Titterton $/[B81_7]$ ist wegen des kleinen Ni⁵⁸ (n,2n) Querschnitts sehr empfinglich gegenüber Störaktivitäten und Kontamination. Der von ihnen erhaltene (n,2n)-Querschnitt ist jedenfalls viel zu hoch und das Verhältnis $\frac{\sigma(n,np+pn+d)}{\sigma(n,2n)}$ zu niedrig. Die anderen Aktivierungsmessung wurden zur Festlegung der Querschnittskurve herangezogen.

<u>Ni⁶⁰</u>: Allans Messung <u>/</u>B45_7 wurde vorgezogen. Sie ist jedenfalls der früheren Messung des gleichen Autors <u>/</u>B80_7 vorzuziehen. March und Mortons <u>/</u>B137_7 liefern ein Überwiegen des (n,np)- über den (n,pn)-Querschnitt. Dies ist aus systematischen Überlegungen unwahrscheinlich. <u>Ni^{61,62,64}</u>: Die Diskrepanzen in den Meßwerten beginnen hier bereits bei der Bestimmung von $T_{1/2}$ von Co⁶³. Eine Lösung der Diskrepanzen erscheint gegenwärtig nicht möglich. Verschiedene Zustände von Co⁶³ könnten gemessen worden sein. Die Querschnitte sind diskrepant und ordnen sich den systematischen Überlegungen nicht ein (z.B. $\sigma^{64} > \sigma^{62}$). Deshalb und wegen der Kleinheit der Querschnitte haben wir auf eine Empfehlung verzichtet. Zur Verfügung standen eine Messung von Cvelbar u.a. / B156 7 für Cr und Fe sowie eine Messung von Bergquist u.a. / B157 7 von Übergangsquerschnitten zu den niedrigsten Niveaus für Ni.

Für den zwischen den Meßpunkten liegenden Bereich von 1 - 14 MeV die Querschnittskurve anzugeben, ist schwierig, wenn man keine umfangreichen Rechnungen durchführen will.

Es wurde der Versuch unternommen, eine parametrisierte Formel für den (n,γ) Querschnitt herzuleiten, deren Parameter durch die Meßpunkte festgelegt werden können. Aus der Forderung nach Einfachheit der Rechnung ergibt sich notwendigerweise, daß an die berechnete Formel keine hohen Ansprüche gestellt werden dürfen. Sie soll jedenfalls bessere Querschnitte liefern als es die bisherigen, nach dem statistischen Modell berechneten, waren. Die Herleitung von $\sigma_{n,\gamma} = \sigma_{n,\gamma}^{DC} \neq \sigma_{n,\gamma}^{ST}$ (*) wird in Anhang I beschrieben. Zur Normierung der Kurven werden die empfohlenen Werte bei 1 MeV / A1 7 und die erwähnten Messungen / B156, B157 7 herangezogen.

Aus Bergquists Messung / B157 7 kann man entnehmen, daß $\sigma_{n,\gamma}^{DC}$ (8MeV) ungefähr 0.2 mb betragen dürfte, wenn man annimmt, daß die Beiträge der Übergänge zu häher angeregten Zuständen (E_f > 1 MeV) vernachlässigbar sind und daß umgekehrt $\sigma_{n,\gamma}^{ST}$ (8MeV) zu den Übergangsquerschnitten zu den niedrigsten Niveaus (E_f < 1 MeV) vernachlässigbar wenig beiträgt.

Ein wichtiger Mangel des Verfahrens ist es, daß zur Normierung der Kurve bis 1 MeV herab gerechnet werden mußte.Bei diesen Energien verliert das kontinuierliche statistische Modell seine Gültigkeit. Es kann vermutet werden, daß $\sigma_{n,v}^{ST}$ empfindlich von der Lage der Anschlußstelle abhängt.

^(*) $\sigma_{n,\gamma}^{DC}$ Anregungsquerschnitt nach direktem und kollektiven Modell $\sigma_{n,\gamma}^{ST}$ Anregungsquerschnitt nach statistischem Modell

VIII. σ_n , σ_n und σ_n , von 10 - 15 MeV

Wegen $\sigma_n + \sigma_x = \sigma_{TOT}$ und $\sigma_n + \sum_i \sigma_i^{(x)} = \sigma_x$ sind die Querschnitte von einander abhängig.

Bei allen Kernen liegen Meßwerte für σ_n und σ_x vor. Einige Autoren haben aus den gemessenen $\frac{d\sigma_n(\Omega)}{d\Omega}$ kein σ_n errechnet. In solchen Fällen legten wir durch die differentiellen Meßpunkte eine glatte Kurve. Durch Extrapolation auf 0° und 180° und Integration wurde σ_n gewonnen. Selbstverständlich kann für kein Standardfehler angegeben werden, da die Autoren nur Fehler abschätzten, die den relativen Verlauf des differentiellen Querschnitts betreffen. Oft mußten die Querschnitte ziemlich kleiner Zeichnungen in semilogarithmischem Maßstab entnommen werden. Daraus können Ablesefehler erwachsen. Trotzdem sehen wir das Verfahren als sinnvoll an, da dadurch in jedem Fall weitere Information gewonnen wird. Die von Elliot / B138 7 und Yuasa / B144 7 für verschiedene Winkelbereiche gemessenen Kurven wurden zu einem differentiellen Querschnitt von 0 - 180° kombiniert. Die Extrapolationen auf 0° spielen eine große Rolle, da die Quersbhnittswerte bei kleinen Winkeln am größten sind.

Aus der großen Anzahl von optischen Modellrechnungen wurden Agee und Rosens Ergebnisse / B142 7 verwendet, da sie dem Benutzer die größte Bequemlichkeit bieten.

Die Berechnungen wurden mit den in lokalen optischen Modellrechnung üblichen Parameterwerten angestellt.

 σ_n , wurde gewonnen aus σ_n , = $\sigma_x - \sum \sigma_i$. Hier bezeichnen die σ_i nur jene nichtelastischen Querschnitte, die in der vorliegenden Arbeit ausgewertet wurden. Daraus folgt, daß σ_n , auch Beiträge von anderen als (n,n')-Prozessen enthält, z.B. (n,d), (n,na), usw.

(*) $\sum_{i}^{\sigma} \sigma_{i}$ Summe über alle nichtelastischen Prozesse, ausgenommen σ_{n} ,

- 95 -

Berechnung von $\sigma_{n\gamma}$ oberhalb 1 MeV

Nach dem direkten und kollektiven Modell des (n,γ)-Prozesses erhält man / B:0,B11_7:

$$\sigma_{n\gamma}^{DC} \propto \sum_{f} \frac{\kappa^{3}}{\kappa} |\langle f| H^{N}| i \rangle + \frac{\langle f| H^{T}| d \rangle \langle d| \Delta V| i \rangle}{E_{i} - E_{f} - E_{D} + \frac{1}{2} r_{D}} |^{2}$$

mit

$$K_{\gamma}$$
*KWellenzehl von Photon und Neutron $|f>,|i>,|d>$ End-, Anfangs-, Zwischenzustand
(Wesentlich geht ein, daß $|f>$, $|i>$ 1-Teilchenzustände sind) E_{D} ; Γ_{D} Energie und Breide des Zwischenzustandes H^{N} , H^{T} Dipoloperatoren für Neutron und Targetkern $\Delta V = \overline{V}(r) - V(r, \vec{x})$ Wechselwirkungspotential zwischen Targetnukleonen $(\vec{x}_{1}, \dots, \vec{x}_{A})$
und Neutron (\vec{r}) $\overline{v}(r)$ mittleres Potential für das Neutron

Der Beitrag der Compoundprozesse beträgt / A12 7

$$\sigma_{n\gamma}^{ST}(E) = \sigma_{c,n}(E) \frac{\Gamma_{n}(E)}{\Gamma_{\gamma}(E)}$$

mit

$$\Gamma_{n}(E) \propto \frac{1}{\rho_{i}(E+B)} \int_{0}^{E} \epsilon \rho_{f}(E_{f})\sigma_{c}(\epsilon)d\epsilon \qquad E_{f} = E-\epsilon$$

$$\Gamma_{\gamma} = \frac{1}{\rho_{i}(E+B)} \frac{\int_{E}^{E+B} \epsilon^{2}\rho_{i}(E_{f})\sigma_{c\gamma}(\epsilon)d\epsilon}{\int_{0}^{E} \epsilon^{2}\rho_{i}(E_{f})\sigma_{c\gamma}(\epsilon)d\epsilon} \qquad E_{f} = E+B-\epsilon$$

Durch Zusammenfassen beider Prozesse erhält man:

$$\sigma_{n\gamma}(E_{i}) = \frac{1}{\sqrt{E_{i}}} \int_{0}^{B} \{c(E_{f},E_{i}) + \frac{d(E_{f},E_{i})}{(E_{i}+B-E_{f}-E_{D})+r_{D}^{2}/4}\} E_{\gamma}^{3} \overline{\rho}(E_{f}) dE_{f}$$
$$+ \sigma_{c,n}(E_{i}) \frac{r_{\gamma}(E_{i})}{r_{n}(E_{i})}$$

ρؖ(E_f)

Einteilchenniveaudichte

c und d enthalten die Übergangsmatrixelemente und können stark von E_f abhängen / A13_7.

Folgende Vereinfachungen wurden vorgenommen:

1.
$$c_{,d_{,p}}(E_{f}) = const$$

2. $\rho(E) = \frac{1}{T} e^{\frac{E-E_{0}}{T}} gemäß / A14 / C$

Diese Niveaudichteformel wurde der Bequemlichkeit halber auch außerhalb des in $/ A14_7$ vorgeschlagenen Bereiches verwendet (bei der Berechnung von Γ_n). Da von Γ_n nur die Abhängigkeit von E_i benötigt wird, sollte der dadurch verursachte Fehler im Rahmen der gewählten Näherung bleiben.

3.
$$\sigma_{c\gamma}(\epsilon) \propto \frac{E_{\gamma}}{(E_{\gamma}-E_{D})^{2}+\frac{1}{n}\Gamma^{2}}$$
 [A13]7
 $\sigma_{c}(\epsilon) = \text{const.}$

Anwendung dieser Vereinfachungen liefert

$$\sigma_{n\gamma}^{DC}(E) = K \cdot \frac{1}{\sqrt{E}} \int_{E}^{E+B} (1 + \frac{\alpha^{2} + 2d(E_{\gamma} - E_{D})}{(E_{\gamma} - E_{D})^{2} + \Gamma^{2}/4} E_{\gamma}^{3} dE_{\gamma}$$
(1)
$$\frac{\Gamma}{\Gamma_{n}}(E) = L \cdot \frac{\int_{E}^{E+B} \frac{\epsilon^{3} e^{-\epsilon/T}}{(\epsilon - E_{D})^{2} + \Gamma^{2}/4} d\epsilon}{1 - (1 + E/T^{*})e^{-E/T^{*}}}$$
(2)

$$\sigma_{n\gamma}^{ST}(E) = \sigma_{cn}(E) \cdot \frac{\Gamma_{\gamma}}{\Gamma_{n}}(E)$$
$$\sigma_{n\gamma}(E) = \sigma_{n\gamma}^{DC}(E) + \sigma_{n\gamma}^{ST}(E)$$

K,L energieunabhängige Konstanten, die dazu dienen, die Kurve an Meßwerte anzupassen.

α von den Kerneigenschaften abhängiger Parameter, der berechnet werden kann / A13, B157_7

 $T_{3}T^{*}$ Kerntemperaturen des $(n_{3}\gamma)$ und $(n_{3}n^{*})$ Restkernes.

Die Rechnungen wurden auf einer IBM 360/65 durchgeführt und erfordern Rechenzeiten von ca. 6 sec.

Literaturverzeichnis

$\sigma_{\rm TOT}$

B1	D.G. Foster, D.W. Glasgow HW-SA 2875 (1963), Nucl.Instr.Meth. 36 (1965) 1
B2	S. Cierjacks u.a. KFK-953 (1968), KFK 1000 (1968 ff)
B3	Albergotti, Ferguson, Nucl. Phys. 82 (1966) 652
В4	Galloway, Shrader, COO-1573-6 (1966)
В5	Western u.a., Transact.Amer.Nucl.Soc. 8 (1966) 458
в6	Durakevitch, Nucl. Phys. 92 (1967) 433
B7	F. Manero u.a., Nucl. Phys. 59 (1964) 583
в8	J.F. Vervier, A. Martegani, Nucl. Phys. 6 (1958) 260
В9	G.J. McCallum u.a., Nucl. Phys. 16 (1960) 313
B10	A. Bratenahl u.a., Phys.Rev. 110 (1958) 927
	$\sigma(n,p)$
B11	J. Eriksson, EANDC(OR)73L (1968), private Mitteilung (1970)
B12	B. Mitra, A.M. Ghose, Nucl.Phys. 83 (1966) 157, Atomic Energy Estab- lishment Trombay, Report 267, 62, 1966
B13	L. Husain, P.K. Kuroda, J.inorg.nucl.Chem. 29 (1967) 2665
B14	G. Rau, Mukleonik 9 (1966) 228
B15	Grundl, Nucl.Sc.Eng. 30 (1967) 34
в16	D.G. Gardner, Nucl. Phys. A96 (1967) 121

- B17 F.L. Hassler, R.A. Peck, Phys.Rev. 125 (1962) 1011
- B18 H.K. Vonach, W.G. Vonach u.a., Conf. Neutron Cross Sections and Technology, Washington, 4.-7.3.1968, p. 885
- B19 P. Cuzzocrea u.a., Nuovo Cimento 54B (1968) 53
- B20 V.N. Levkowski, Jad.Fiz. 8 (1968) 7
- B21 F.V. Rao, R.W. Fink, Phys.Rev. 154 (1967) 1023
- B22 H. Bormann u.a., Z. Naturforschung 21A (1966) 988
- B23 S. Okumura, Nucl. Phys. A93 (1967) 74
- B24 P. Decowski, Nucl. Phys. A112 (1968) 513
- B25 R.L. Clarke, W.G. Cross u.a., Bull.Amer.Phys.Soc. 7 (1962) 335 TA14
- B26 J.E. Strain, W.J. Ross, ORNL 3672 (1965)
- B27 J.K. Temperley, Nucl.Sc. Eng. 32 (1968) 195
- B28 A. Paulsen, Nukleonik 10 (1967) 91 Z.Physik 205 (1967) 226
- B29 A.K. Val'ter u.a., Bull.Acad.Sc. UDSSR 26 (1962) 1086
- B30 V.N.Levkowskij, Jad.Fiz. 10 (1969) 46
- B31 P. Strohal u.a., Phys.Lett. 10 (1964) 104
- B32 J.W. Boldeman, J.Nucl.En. A/B18 (1964) 417
- B33 P. Carter, Conf. Rad. meas. in nucl. power, Sept. 1966, Berkley, P.6.1, p. 331
- B34 A.M. Bresesti, M. Bresesti, R.A. Rydin, Nucl.Sc.Eng. 29 (1967) 7
- B35 F. Nasyrov, Sov.At.En. 25 (1968) 1251
- B36 I.L. Preiss, R.W. Fink, Nucl. Phys. 15 (1953) 267
- E.B. Paul, R.L. Clarke, Can.J.Phys. 31 (1953) 267
- B38 Nellis, Am. Progr. Rev. Univ. Arkansas 3 (1963)
- B39 Chojnacki, INR-680-I/PH (1965)

Cuzzocrea, Inst. Fisica Nucleare, Florence, Report /Be-67/ 10, 1967 B40 B41 Hille, Sitzber.österr. Akad. Wiss. 174 (1965) 11 B42 Joensson, Lund University, Report LU-NP-6804 (1968) Slunecko, Inst. Nuclear Physics, Prague, Report UJV-1368 (1966) B43 Z. Wilhelmi, First International Conference on the Peaceful Uses of Atomic Energy, Geneva (1955) Vol. 2, p. 102 B44 B45 D.L. Allan, Nucl. Phys. 24 (1961) 274 B46 V.N. Levkowskij, JETP 18 (1964) 213 B47 D.M. Chittenden nach Eur. 122e (1963) B48 C.S. Khurana, L.M. Govil, Nucl. Phys. 69 (1965) 153 B49 J. Ringle, UCRL-10732, 1963 B50 M. Buttner, A. Lindner, H. Meldner, Nucl. Phys. 63 (1965) 615 B51 S.K. Mukhergee u.a., Proc. Phys. Soc. 77 (1961) 508 B52 J.M. Ferguson u.a., USNRDL-TR-269 (1958) J.M. Ferguson, u.a. Nucl. Phys. 10 (1959) 226 B53 B54 P.V. March, W.T. Morton, Phil.Mag. 3 (1958) 143 B55 A. Lauber, S. Malmskog, AE 160 (1964) B56 R.G. Johnson u.a., LMSC-4-50-62-1 (1962) B57 E.E. Carroll, G.G. Smith, Nucl.Sc.Eng. 22 (1965) 411 J.J. Van Loef, Nucl. Phys. 24 (1961) 340 B58 B59 S.R. Salisbury, R.A. Chalmers, Phys.Rev. 140B (1965) 305 B60 W.G. Cross, R.L. Clarke, AECL-1542 (1962) B61 D.L. Allan, Nucl. Phys. 10 (1959) 348 B62 H. Pollehn, H. Neuert, Z.Naturf. 16a (1961) 227, 230 B63 D.M. Chittenden, D.G. Gardner, R.W. Fink Phys.Rev. 122 (1961) 860 B64 J. Terrell, D.M. Holm, Phys.Rev. 109 (1958) 2031

в65	D.C. Santry, J.P. Butler, Can.J.Phys. 42 (1964) 1030
в66	H. Liskien, A. Paulsen, Eur119e (1961) u. Suppl.
в67	R.E. Bullock, R.G. Moore, Phys.Rev. 119 (1960) 721
в68	J.D. Hemingway u.a., Proc.Roy.Soc. 292 (1966) 180
в69	D.G. Gardner, A.D. Poularikas, Nucl.Phys. 35 (1962) 303
B70	L. Gonzales, J. Rapaport, J.J. van Loef, Phys.Rev. 120 (1960) 1319
B71	J.F. Barry, J. Nucl.En. A/B 16 (1962) 467
B72	K. Nakai u.a., J.Phys.Soc.Jap. 17 (1962) 1215
B73	J. Konijn, A. Leuber, Nucl. Phys. 48 (1963) 191
B74	J.W. Meadows, J.F. Whalen, Phys.Rev. 130 (1963) 2022
B75	R.E. Bullock, R.G. Moore, Jr. Phys. Rev. 119 (1960) 721
в7б	K. Debertin, E. Rössle, Nucl. Phys. 70 (1965) 89
B77	R.N. Glover, E. Weigold, Nucl. Phys. 29 (1962) 309
B78	J.M.F. Jeron/mo u.a., Nucl.Phys. 47 (1963) 157
B79	S. Chojnacki, P. Decowski u.a., Conf.Study Nucl.Structure with Neutrons, 1965 Antwerpen, p. 114
в80	D.L. Allan, Proc. Phys. Soc. A70 (1960) 295
B81	K.H. Purser, E.W. Titterton, Austr.J.Phys. 12 (1959) 103
в82	H. Liskien, L.A. Paulsen, Nucl.Phys. 63 (1965) 393
в83	H. Liskien, A. Paulsen, Nukleonik 8 (1966) 315
в84	T.E. Ward, P.H. Pile, P.K. Kuroda, J. inorg.nucl.Chem. 31 (1969) 2679
в86	C.E. Mellish, J.A. Payne, R.L. Otlet, AERE I/R 2630 (1958)
в87	R.S. Rochlin, Nucleonics 17, 1 (1959) 54
в88	T.O. Possell, R.L. Heath, Nucl.Sci.Eng. 10 (1961) 308
в89	C.H. Hogg, L.D. Weber, Sympos.on Rad.Eff.on Metals and Neutron Dosimetry, Los Angeles, October 1962, Proceed. p. 133
- B90 R.L. Ritzman, R. Lieberman, J.F. Kircher, D.N. Sunderman, Symposium on Rad. Eff. on Metels and Neutron Dosimetry, Los Angeles, October 1962, Proc. p. 141
- B91 W.H. Martin, D.M. Clare, Nucl. Sci.Eng. 19 (1964) 465
- B92 A. Fabry, J.P. Deworm, EANDC(E) 57U, 1965, p. 69f
- B93 J.B. Trice, CF-55-10-140 (1955)
- B94 R.P. Schuman, A.C. Mewherter, KAPL-1779 (1957)
- B95 C.E. Mellish, Nucleonics 19, 3 (1961) 114
- B95 J.C. Roy, AERE 852 (1961)
- B97 J.W. Boldeman, K.P. Nicholson, AAEC/E-59 (Suppl.1) (1961)
- B98 C.E. Mellish, J.A. Payne, Nature 178 (1956) 275
- B99 C.E. Mellish, J.A. Payne, R.L.Otlet, Proc.Int.Conf.on Radioisotopes in Scientific Research, Paris 1957
- B100 B.L. Robinson, R.W. Fink, berichtet in B87
- B101 C.H. Hogg, L.D. Weber, Proc. Sympos. on Rad.Eff. and Neutron Dosimetry, 1963, p. 133
- B115 M.Depraz, G. Legros, M.R. Salin, J.Phys.Rad. 21 (1960) 377
- B129 P.V. March, W.T. Morton, Phil. Mag. 3 (1958) 143 (=B54)
- B130 S.G.Forbes, Phys. Rev. 88 (1952) 1309
- B131 S. Yasumi, J. Phys. Soc. Japan 12 (1957) 443
- B132 McLure, Kent J. Franklin Inst. 260 (1958) 238
- B133 F. Gabbard, B.D. Kern, Phys. Rev. 128 (1962) 1276
- B134 M. Bormann, S. Cierjacks, R. Langkan, H. Neuert Z.Phys. 166 (1962) 447

σ(n _s a	x)
--------------------	-----

- B11 J. Eriksson, EANDC(OR) 73L (1968)
- B13 L. Husain, P. Kuroda, J.inorg.nucl.Chem. 29 (1967) 2665
- B20 V.N. Levkovskij, Yad.Fiz. 8 (1968) 7
- B21 P.V. Rao, R.W. Fink, Phys.Rev. 154 (1967) 1023
- B25 R.L. Clarke, W.G. Cross, u.a., Bull.Am.Phys.Soc. 7 (1962) 335TA
- B35 F. Nasyrov, Sov.At.En. 25 (1968) 1251
- B40 Cuzzocrea, INFN/BE-67/10 (1967)
- B41 Hille, Sitzber.österr.Akad.Wiss. 174 (1965) 11
- B50 H. Büttner, A. Lindner, H. Meldner, Nucl. Phys. 63 (1965) 615
- B59 S.R. Salisbury, R.A. Chalmers, Phys. Rev. 140B (1965) 305
- B60 W.G. Cross, R.L. Clarke, AECL-1542 (1962)
- B62 H. Pollehn, H. Neuert, Z.Naturf. 16a (1961) 227, 230
- B63 D.M. Chittenden, D.G. Gardner, R.W. Fink, Phys.Rev. 122 (1961) 860
- B67 R.E. Bullock, R.G. Moore, Phys. Rev. 119 (1960) 721
- B84 T.E. Ward, P.H. Pile, P.K. Kuroda, J.inorg.nucl.Chem. 31 (1969) 2679
- B85 D.G. Gardner, Yu-Wen Yu, Nucl. Phys. 60 (1964) 49
- B86 C.E. Mellish, J.A. Payne, R.L. Otlet, AERE I/R 2630 (1958)
- B87 R.S. Rochlin, Nucleonics 17, 1 (1959) 54
- B94 R.P. Schuman, A.C. Mewherter, KAPL-1779 (1957)
- B102 U. Seebeck, M. Borman, Nucl. Phys. 68 (1965) 387
- B103 Yu-Wen Yu, D.G. Gardner, Nucl. Phys. A98 (1967) 451
- B104 J. Weitman, N. Daverhög, Conf.Neutron Cross Sections and Technology Washington, 4.-7.3.1968, p. 125
- B105 J.E. Strain, ORNL-P-1869 (1965)
- B106 P. Broncacio, priv. comm., 1966; referiert in UCRL-50484 (1968)
- B107 U. Facchini, E. Saetta-Menichella, F.Tonolini-Servegnini, Nucl.Phys. 51 (1964) 460
- B108 M. Irfan, W. Jack, Proc. Phys. Soc. 81 (1963) 808
- B109 R.L. Clarke, W.G. Cross, EANDC(Can) 16

	$\sigma(n,2n)$
B25	R.L. Cross, W.G. Clarke, Bull.Am.Phys.Soc. 7 (1962) 335 TA14
B26	J.E. Strain, W.J. Ross, ORNL-3672 (1965)
B27	J.K. Temperley, Nucl.Sc.Eng. 32 (1968) 195
в36	I.L. Preiss, R.W. Fink, Nucl. Phys. 15 (1960) 326
B37	E.B. Paul, R.L. Clarke, Can.J.Phys. 31 (1953) 267
в38	Nellis, Ann.Progr.Rept. Univ. Arkansas 3 (1963)
B39	Chojnacki u.a., INR-680-I/PH (1965)
B4 1	Hille, Sitzungsber. d.psterr. Akad.Wiss. 174 (1965) 11
B42	Joensson, LU-NP 6804 (1968)
B50	H.Büttner, A. Lindner, H. Meldner, Nucl.Phys. 63 (1965) 615
B51	S. Mukhergee, A.K. Ganguly, N.K. Majumder, Proc.Phys.Soc. 77 (1961) 508
B59	S.R. Salisbury, R.A. Chalmers, Phys.Rev. 140B (1965) 305
в62	H. Pollehn, H. Neuert, Z.Naturforsch. 16a (1961) 227
в63	D.M. Chittenden, D.G. Gardner, R.W. Fink, Phys.Rev. 122 (1961) 860
B77	R.N. Glover, E. Weigold, Nucl. Phys. 29 (1962) 309
в78	J.M.F. Heromymo u.a., Nucl. Phys. 47 (1963) 157
B80	D.L. Allan, Proc. Phys.Soc. A70 (1957) 195
B81	K.H. Purser, E.W. Titterton, Austr.J.Phys. 12 (1959) 103
B94	R.P. Schuman, A.C. Mewherter, KAPL-1799 (1957)
B109	R.L. Cross, W.G. Clarke, EANDC(Can)16 (1962)
B110	C.S. Khurana, H.S. Hans, Nucl. Phys. 28 (1961) 560
B111	L.A. Rayburn, Phys.Rev. 122 (1961) 168
B112	S. Pearlstein, Nucl.Sci.Eng. 23 (1965) 238
B113	M. Bormann, u.a., Nucl.Phys. A115 (1968) 309

B114	M.F. Andreev, V.I. Serov, Sov.J.Nucl.Phys. 7 (1968) 454
B115	M. Depraz, G. Legros, M.R.Salin, J.Phys.Rad. 21 (1960) 377
B116	C. Carles, Comptes Rendus 257 (1963) 659
B117	H.C. Martin, B.C. Diven, Phys.Rev. 86 (1952) 565
B118	R.J. Prestwood, B.P. Bayhurst, Phys.Rev. 121 (1961) 1438
B119	J. Csikai, Conf.Nucl.Struct. 1965, Antwerpen, p. 102
B120	A. Paulsen, H. Liskien, Nukleonik 7 (1965) 117
B121	M. Bormann, F. Dreyer, H. Zielinsky, EANDC(E) 66U, p. 42 (1966)
B122	J. Csikai, G. Petö, Acta Physica Acad. Sc. Hung. 23 (1967) 87
B123	E.T. Bramlitt, R.W. Fink, Phys. Rev. 131 (1963)2649
B124	Wenusch u.a., österr.Akad.Wiss., Math.Naturw. Anz. 99 (1962) 1
B125	Tagesen, österr. Akad.Wiss., Sitzungsber. 174 (1965) 85
B126	J. Csikai, Atomki Kozlemenyek 8 (1966) 79
B127	J. Csikai, Magyar Fizikai Folyoirat 16 (1968) 123
B128	Bame, AECU-2650 (1953)

$\sigma(n,np+pn)$

- B13 L. Husain, P.K. Kuroda, J.inorg.nucl.Chem., 29 (1967) 2665
- B25 W.G. Cross, R.L. Clarke u.a., Bull.Am.Phys.Soc. 7 (1962) 335 TA 14
- B27 J.K. Temperley, Nucl. Sci. Eng. 32 (1968) 195
- B36 I.L. Preiss, R.W. Fink, Nucl. Phys. 15 (1960) 326
- B45 D.L. Allan, Nucl. Phys. 24 (1961) 274
- B50 H. Hüttner, A. Lindner, H. Meldner, Nucl. Phys. 63 (1965) 615
- B61 D.L. Allan, Nucl. Phys. 10 (1959) 348
- B63 D.M. Chittenden, D.G. Gardner, R.W. Fink, Phys.Rev. 122 (1961) 860

- B77 R.N. Glover, E. Weigold, Nucl. Phys. 29 (1962) 309
- B78 J.M.F. Jeronymo, Nucl. Phys. 47 (1963) 157
- B80 D.L. Allan, Proc. Phys. Soc. A70 (1957) 195
- B81 K.H. Purser, E.W. Titterton, Austral.J.Phys. 12 (1959) 103
- B84 T.E. Ward, P.H. Pile, P.K. Kuroda, J.inorg.nucl. Chem. 31 (1969) 2679
- B109 W.G. Cross, R.L. Clarke, EANDC (Can) 16 (1963)
- B123 E.T. Bramlitt, R.W. Fink, Phys.Rev. 131 (1963) 2649
- B129 P.V. March, W.T. Morton, Phil.Mag.3 (1958) 143
- B135 G. Brown, G.C. Morrison, H. Muirhead, W.T. Morton, Phil. Mag. 2 (1957) 785
- B136 I.Kumabe, R.W. Fink, Nucl. Phys. 15 (1960) 316
- B137 P.V. March, W.T. Morton, Phil.Mag. 3 (1958) 577

^on^{, o}n^{, , o}x B42 Joensson u.a., Lund University, Report LU-NP-6804 (1968) B50 H. Büttner, A. Lindner, H. Meldner, Nucl. Phys. 63 (1965) 615 B138 J.D. Elliot, Phys.Rev. 101 (1956) 684 B139 J.H. Coon, R.W. Davis, H.E. Felthausen, D.B. Nicodemus Phys.Rev. 111 (1958) 250 B140 R.W. Bauer, J.D. Anderson, L.J. Christensen, Nucl. Phys. 48 (1963) 152 P.H. Stelson u.a., Nucl. Phys. 68 (1965) 97 B141 B142 F.P. Agee, L. Rosen, LA-3538-NS, Vol. 1, 2 (1966) R.L. Clarke, R.W. Cross, Nucl. Phys. A95 (1967) 320 B143 B144 K. Yuasa, J. Phys.Soc.Jap. 13 (1958) 1248 B145 Taresen, Sitzber. österr. Akad.Wiss. 174 (1965) 85

B146 Sal'nikov, Obninsk, Report Ser. 39 (1966)

- B147 Morgan u.a., NDL-TR 86 (1967)
- B148 Kovalev, UKr.Fiz.Jour. 13 (1968) 965
- B149 H.L. Taylor, O. Lönsjö, T.W. Bonner, Phys.Rev. 100 (1955) 174
- B150 N.N. Flerov, V.M. Talyzin, SoviJ.At.En. 1 (1956) 617
- B151 Y.G. Degtyarev, V.G. Nadtochii, Sov.J.At.En. 11 (1962) 1043
- B152 D.D. Phillips, R.W. Davis, E.R. Graves, Phys.Rev. 88 (1952) 600
- B153 E.R. Graves, R.W. Davis, Phys.Rev. 97 (1955) 1205
- B154 V.I. Sukhanov, V.G. Rukavishnikov, Sov.J.At.En. 11 (1962) 1044
- B155 M.H. MacGregor, W.P. Ball, R. Booth, Phys.Rev. 108 (1957) 726 UCRL=5230 (1958)

σ_{nsγ}

B156 F. Cvelbar, A. Hudoklin, M.V. Mihailovic, M. Najzev, V. Ramsak, Nucl. Phys. A 130 (1969) 401

B157 I. Bergqvist u.a., Nucl. Phys. A120 (1968) 178

Anhang

A1	J.J. Schmidt, KFK 120 (1966)
A2	R.J. Howerton u.a., UCRL-14000 (1964)
A3	W.D. Myers, W.J. Swiatlecki, Nucl.Phys. 81 (1966) 1
A4	Csikai, Petö, u.a. Acta Physica Hung. 23, 24, 25 und dort angeführte Referenzen
A5	Wang, Winhold, Phys. Rev. 140B (1965) 882
A6	Glover, Purser, Nucl. Phys. 24 (1961) 431
A7	Debertin u.a., Nucl.Phys. 70 (1965) 89
A8	Colli u.a., Nucl. Phys. 46 (1963) 73
A9	I. Langner, J.J. Schmidt, D. Woll, KFK 750 (1968)
A10	G.E. Brown, Nucl. Phys. 57 (1964) 339
A11	G. Longo, F. Saporetti, CEC (67) 33, Centro di Calcolo, Bologna
A12	V. Benzi, M.V. Bortolani, Nuovo Cimento 38 (1965) 216
A13	F. Cvelbar u.a., Mucl. Phys. A130 (1969) 421
A14	A. Gilbert, A.G.W. Cameron, Can.J.Phys. 43 (1965) 1446
A15	D.G. Foster, D.W. Glasgow, Nucl.Instr.Meth. 36 (1965) 1

σ_T Messungen für Cr, Fe, Ni im Energiebereich 10 - 15 MeV (Weitere Referenzen in / A1_7, Tab. Cr-C1, Fe-C1, Ni-C1)

Element	Referenz	Jahr	Energie	Auflösung	$\frac{\Delta \sigma_{\rm T}}{\sigma_{\rm T}} (\%)$
Cr,Fe,Ni	Foster,Glasgow / B1_7	1963	2.3-14.9MeV	0.4 ns/m 10-15MeV: ≙370-630keV	1-2%
Cr.Fe.Ni	Cierjacks u.a. / B2_7	1968£	0 .5=32 Me V	0.03 ns/m 10-15MeV: ≙30-50keV	3%
Fe	Albergotti,Ferguson / ⁻ B3_7	1966	12.5-14.3 MeV	36=161keV	1%
Fe	Galloway,Shrader / ^{B4} 7	1966	2 -17Me V	260 - 570 keV	1%
Fe	Western u.a. / B5 7	1966	14.6MeV		2%
Ni58,60,64	Durekevitch / B6 7	1967	14.2MeV	-	0.3%

$\sigma_{\rm p}$ Messungen für Cr, Fe, Ni-Isotope

(weitere Referenzen in / A1_7, Tab. Cr-C2; Fe-C2,C3,C4; Ni-C2,C3,C5)

Isotop/ Element	Referenz	Jahr	Energie	Energieauflösung	$\begin{bmatrix} \frac{\Delta\sigma}{p} \\ \frac{p}{p} \\ \end{array} (\%)$
Cr52	Mitra,Ghose / B12_7	1966	14.8MeV	100keV	7%
Cr52,53,54	Husain,Kuroda / ^{B13} 7	1967	14.8MeV	200keV	15%
Fe,Ni	Hassler,Peck / B17_7	1962	14.4MeV	200keV	10%
Fe54	Rao,Fink / B21_7	1967	14.4MeV	200keV	10%
Fe56	Grundl / B15 7	1967	4-8MeV 10,14.1MeV	100-260keV	6%
Fe56	Vonach, Vonach u.a. / B18_7	1968	13.6-14.7MeV	150keV	5%
Fe56	Cuzzocrea / B19 7	1968	13.7-14.7MeV	40-90keV	8%
Fe56	Levkowskij / B20 7	1968	14.8MeV		10%
F e 56	Strohal u.a. / B31	71 <u>9</u> 64	14.1-14.7MeV	50keV	3%
Fe56,Fe57 Ni58,Ni60	Clarke,Cross / B25_7	1962	14.5MeV	w.	10%
Ni58	Bormann u.a./ B22_7	1966	13.0-15.6MeV	200 3 50keV	9%
Ni58	Okumura / B23 7	1967	13.4-15.OMeV	60 - 100 ke V	6-10%
Ni58	Decowski / B24_7	1968	2-18 MeV	110-130keV	5%
Ni58,Ni62	Strain,Ross / B26_7	1962	14.MeV	-	-

Isotop/ Element	Referenz	Jahr	Energie	Energieauflösung	$\frac{\Delta \sigma_{\rm p}}{\sigma_{\rm p}} (\%)$
Ni 58	Temperley / B27 7	1968	2.2-3.8MeV 13.7-14.8MeV	200-330keV	10%
Ni58,60,61,62 Levkowskij u.a./B30_7		1969	14.8MeV	-	10-25%
Ni60 Paulsen / B28 7		1967	5.67-15MeV	80_400keV	10%
Ni61,62,64	Val'ter u.a. / B29_7	1962	1 ⁴ .1MeV	-	5%
Ni61,62	i61,62 Clarke,Cross u.a. / B60 7		14.5MeV	-	10-25%
Ni61	Paul,Clarke / B37_7	1953	14.5MeV	-	14%
Ni61,62,64	Preiss,Fink / B36_7	1960	14.8MeV	900keV	10%
Ni62,64	Ward,Pile,Kuroda / B84_7	1969	14.8MeV	-	10,20%

Tabelle 2 (Fortsetzung)

σ_α Messungen für Cr, Fe, Ni-Isotope (weitere Referenzen in <u>/</u>A1_7, Tab. Fe-C5, C6, C7, Ni-C4,C5)

Isotop/ Element	Referenz	Jahr	Energie	Energieauflösung	$\frac{\Delta \sigma_{a}}{\sigma_{a}} (\%)$
Cr54	Husain,Kuroda / B13 7	1967	14.8MeV	0.2MeV	10%
Fe54	Rao,Fink / B217	1967	14.4MeV	0.2MeV	11%
Fe54	Cross,Clarke / B60 7	1962	14.5MeV	-	11%
Ni62,64	Lewkowskij u.a. / B20 7	1 96 8	14.8MeV	-	25%
Ni64	Ward, Pile, Kuroda / B84	71969	14.8MeV	-	5%

σ Messungen für Cr, Fe, Ni-Isotope

Element/ Isotop	Referenz	Jahr	er Energie Energieauflösung		$\frac{\Delta \sigma_{2n}}{\sigma_{2n}}(\%)$
Cr50,Fe54, Ni58	Strain,Ross / B26 7	1965	14MeV	-	
C r 50	Mukherjee u.a./B51_7	1961	14.8MeV	un	10%
Cr50	Khurana, Hans / B110 7	1961	14.8MeV	<0.5MeV	25%
Cr50,Fe54, Ni58	Rayburn / B111 7	1961	14.4MeV	0.3MeV	9%
Cr52	Bormann u.a. / B113_7	13_7 1968 13-19.6MeV 0.2-0.3MeV		7%	
Fe54	Allan / B80 7 1957 14 MeV -		-	40%	
Fe 54	Depraz, Legros, Salin / B115_7	"Salin 1960 15MeV 0.4MeV		O.4MeV	-
Fe54	Chittenden, Gardner, Fink / B63_7	1961	14.8MeV	0.9MeV	9%
Fe54	Carles / B116 7	1963	14.1MeV	-	50%
Fe54	Salisbury,Chalmers 1		14,16.8MeV	0.1,0.05MeV	15%,10%
Fe54	Pollehn, Neuert / B62_7	.ehn,Neuert / B62 7 1961 14.1MeV -			8%
Fe54	Andreev, Serov / B114_7	1968	1968 13.8-15.5MeV 0.02MeV		Cin
Fe54,Ni58	Cross,Clarke u.a. /B109_7	1962	2 14.5MeV -		10%
Ni 58	Prestwood,Bayhurst / B118_7	1961	13.5-19.8MeV 0.1-0.3MeV		5%
Ni58	Glover, Weigold / B77 7	1962	13.8-14.9MeV	0.1-0.3MeV	8%

Element/ Isotop	Referenz	Jahr	Energie	Energieauflösung	$\frac{\frac{\Delta\sigma_{2n}}{\sigma_{2n}}(\%)}{\sigma_{2n}}$
Ni58	Bramlitt,Fink / B123 7	1963	14.7MeV	0.2MeV	13%
Ni58	Jeronymo u.a. / B78 7		12.6-21MeV	0.2MeV	15%
Ni 58	Csikai / B119 7		5 13.6-14.6MeV 0.1MeV		8%
Ni58	Cross,Clarke / B25 7	1962	14.5MeV		12%
Ni58	Temperley / B27_7	1968	13.7-14.8MeV	0.2-0,3MeV	10%
Ni58	Martin, Diven / B117 7	1952	12-18.5MeV	<1MeV	-
Ni58	Paul,Clarke / B37_7	1953	14.5MeV	-	30%
Ni58	Purser, Titterton / B81_7	1959	14.1MeV	-	20%
Ni58	Preiss, Fink / B36 7	1960	14.8MeV	0.9MeV	10%
Ni 58	Liskien,Paulsen / B1207	1965	13-19.6MeV	0.2-0.3MeV	7-10%
Ni58	Bormann u.a. / B121_7	1966	13-15.6MeV	0.2-0.3MeV	7%
Ni58	Csikai, Petö / B122 7	1967	15.4MeV	-	15%

Tabelle 4 (Fortsetzung)

σ_{n,np} Messungen für Cr, Fe, Ni-Isotope

Element/ Isotop	ement/ Referenz Ja otop Ja		Energie	Energieauflösung	$\frac{\Delta \sigma_{np}}{\sigma_{np}}$	
Cr50,Fe54,56 Ni58,Ni60	Cr50,Fe54,56 Allen / B45 7 1961 14MeV - Ni58,Ni60		-	14% ,6% 20%,8% 18%		
Cr53	Husain,Kuroda / B13_7	1967	14.8MeV	0.2MeV	20%	
Fe54,56, Ni58,60	54,56, Allan / B80 7 158,60		14MeV	-		
Fe54	Allan / B61 7	1959	14MeV	-	-	
Fe54,56	March, Morton / B129_7 1958 13.5MeV		13.5MeV	0.1MeV	-	
Fe56	Brown, Morrison, Muirhead Morton / B135 7		13.2MeV 0.2MeV			
Fe57	Chittenden,Gardner, Fink <u>/</u> B63_7	1961	14.8MeV	O⊾9MeV	40%	
Ni58	Purser, Titterton / B81_7	1957	14.1MeV	-	20%	
Ni 58	Glover,Weigold / B77_7	1962	13•9-14•9MeV	0.1-03MeV	10%	
Ni58	Bramlitt,Fink / B123_7	1963	14.7MeV	O.2MeV	20%	
Ni 58	Jeronymo / B78 7	1963	12.6-16.5MeV	0.2MeV	12%	
Ni58	Cross,Clarke / B25_7	1962	14.5MeV	-	12%	
Ni58	Kumabe,Fink / B136_7	1960	14.8MeV	-	10%	
Ni58	Temperley / B27_7	1968	13.7-14.8MeV	0.2-0.3MeV	12%	
Ni61,62,64	Preiss,Fink / B36 7	1960	14.8MeV	0 .9MeV	25%	
Ni60	March, Morton / B137_7	1958	13.5MeV	0.1MeV	-	
Ni62,64	Val'ter / B29 7	1962	14.1MeV	-	30%	
Ni62,64	Ward, Pile, Kuroda / B84_7	1969	14.8MeV		25%	

Messungen von σ_x , σ_n , σ_n , im Energiebereich 10-15MeV für Cr, Fe, Ni (weitere Referenzen in <u>/</u>A1_7, Cr-C5, Fe-C8, Ni-C10)

Target	Reaktion	Referenz	Jahr	Energie	Energieauflösung	$\frac{\Delta\sigma}{\sigma}$ (%)
Fe	σ n	Elliot / B138 7	1956	14MeV	-	-
Fe	σ _n	Coon u.a./B139_7	1958	14.5MeV	0 .35MeV	5%
Ni	σ _n	Bauer,Anderson, Christensen / B140 7	1963	14.5MeV	-	8%
Cr,Ni	σ _n	Stelson u.a./B141_7	1965	14MeV	0.3MeV	-
Ni	σ n	Clarke,Cross /B143_7	1967	1 ¹ 4MeV	-	10%

Tabelle 7

Messungen von σ im Energiebereich 1-15MeV für Cr, Fe, Ni

Target	Referenz	Jahr	Energie	Energieauflösung	
Cr,Fe	Cvelbar u.a./ B156 7	1969	14.1MeV	1.35MeV	20%
Ni58,Ni60	Bergqvist u.a./B157_7	1968	0.9-8.3MeV	50-200keV	20-25%

Werte für $\overline{\sigma}_{n,p}(\chi(E))$ (a)

Target	Referenz	Jahr	ō	Bemerkungen
Cr 50	Eriksson / B11 7 empfohlen	1968	32.8mb 31.5mb	(b) (c)
Cr52	Eriksson / B11 7 Rau / B14 7 empfohlen	1968 1966	0.47mb 0.92±0.037mb 0.92mb	(b) (c)
Cr53	Eriksson / B11 7 Reu / B14 7 empfohlen	1968 1966	0.47mb 0.37±0.0026mb >0.35mb	(b) (c)
Cr54	Eriksson / B11 7 Rau / B14 7 empfohlen	1968 1966	0.015mb 0.0047±0.0008mb >0.004mb	(b) (c)
Fe54	Mellish / B86 7 Shuman, Mewherter / B94 7 Rochlin / B87 7 Pasell, Heath 7 B88 7 Hogg, Weber / B89 7 Ritzman, u.a. / B90 7 Martin, Clark / B91 7 Carroll, Smith / B97 7 Fabry, Deworn / B92 7 Boldeman / B32 7 = Carter / B33 7 Bresesti u.a. / B34 7 Nasyrov / B35 7 Eriksson / B11 7 empfohlen	1958 1958 1959 1961 1962 1962 1964 1965 1964 1966 1966 1968 1968	23mb 15mb 56mb 54mb 65mb 51±7mb 76±3mb 67mb 68.5±3.8mb 66±3.5mb 65±2.3mb 67±9mb 75.8mb 71mb	rel. $\bar{\sigma}(s^{32}(n,p))=30mb$ rel. $\bar{\sigma}(Al^{27}(n,\alpha))=0.60mb$ rel. $\bar{\sigma}(Al^{27}(n,\alpha))=0.57mb$ rel. $\bar{\sigma}(s^{32}(n,p))=65mb$ rel. $\bar{\sigma}(s^{32}(n,p))=60mb$ $\bar{\sigma}(Fe^{54}(n,p))/\bar{\sigma}(Ni^{58}(n,p))$ =0.743±0.018 rel. $\bar{\sigma}(Al^{27}(n,\alpha))=0.61mb$ rel. $\bar{\sigma}_{f}(Pu^{239})=1.85b$ (b) (c)
Fe 56	Mellish u.a. / B86 7 Passell, Heath / B88 7 Hogg,Weber / B89 7 Fabry,Deworn / B92 7 Boldeman / B32 7 Bresesti 7 B34 7 Nasyrov / B35 7 Erikeson / B11 7 empfohlen	1958 1961 1962 1965 1964 1964 1968 1968	0.44mb 0.82mb 0.71mb 1.02±0.05mb 0.90±0.05mb 0.93±0.032mb 0.96±0.09mb 1.02mb 1.03mb	rel. $\overline{\sigma}(S^{32}(n,p))=30mb$ rel. $\overline{\sigma}(Al^{27}(n,\alpha))=0.57mb$ rel. $\overline{\sigma}(S^{32}(n,p))=60mb$ rel. $\overline{\sigma}(Al^{27}(n,\alpha))=0.61mb$ rel. $\overline{\sigma}_{f}(Pu^{239})=1.85mb$ (b) (c)

(a) χ(E)=U²³⁵ (Spaltspektrum)
(b) berechnet
(c) aus empfohlener Kurve errechnet

Target	Referenz	Jahr	ō	Bermerkungen
Fe57	Eriksson / B11 7 empfohlen	1968	0.77mb >0.62mb	(b) (c)
Fe58	empfohlen		<u>></u> 0.25mb	(c)
N158	Trice u.a. /B93 7 Mellish u.a. /B98 7 Shuman, Mewherter /B94 7 Mellish u.a. /B99 7 Rochlin /B87 7 Passel, Heath 7 B88 7 Mellish /B95 7 Boldeman, Nicholson/B97 7 Hogg, Weber /B89 7 Fabry, Deworm /B92 7 Boldeman /B32 7 Carter /B33 7 Bresesti /B34 7 Nasyrov /B35 7 Eriksson /B11 7 empfohlen	1955 1956 1957 1957 1959 1961 1961 1961 1963 1965 1964 1966 1967 1968 1968	66.4mb 45mb 40mb 45mb 140mb 92mb 90mb 102mb 102±3mb 90mb 95mb 105±5mb 91.5±3.2mb 96±13mb 142.2mb 105mb	rel. $\bar{\sigma}_{p}(S^{32})=30mb$ rel. $\bar{\sigma}_{p}(A127)=0.60mb$ rel. $\bar{\sigma}^{\alpha}(A127)=0.60mb$ rel. $\bar{\sigma}^{\alpha}(S32)=60mb$ rel. $\bar{\sigma}^{\alpha}(S32)=60mb$ rel. $\bar{\sigma}^{\alpha}(S32)=60mb$ rel. $\bar{\sigma}^{\alpha}(S32)=65\pm 3mb$ rel. $\bar{\sigma}^{\alpha}(S32)=65\pm 3mb$ rel. $\bar{\sigma}^{\alpha}(S32)=60mb$ $\bar{\sigma}(Fe^{54}(n,p))/\bar{\sigma}(Ni^{58}(n,p))$ =0.743±0.018 rel. $\bar{\sigma}^{\alpha}(Pu^{239})=1.85b$ (b) (c)
Ni60	Eriksson / B11 7 Paulsen / B28 7 Nasyrov 7 B35 7 Hogg,Weber / B101 7 Rochlin / B87 7 Robinson,Fink / B100 7 Shuman,Mewherter / B94 7 Mellish u.a. / B99 7 empfohlen	1968 1967 1967 1963 1959 1959 1957 1957	3.14mb 2.3±0.3mb 1.69±0.18mb <0.5mb <2.0mb <4.5mb 0.56mb 5.0mb 2.1mb	(b) (b) rel. $\bar{\sigma}$ (Pu ²³⁹)=1.85mb rel. $\bar{\sigma}^{(A127)}$ =0.57mb rel. $\bar{\sigma}^{\alpha}$ (A1 ²⁷)=0.60mb rel. $\bar{\sigma}^{\alpha}$ (S ³²)=30mb rel. $\bar{\sigma}_{p}$ (S ³²)=30mb (c)
Ni61 Ni62 Ni64	empfohlen empfohlen empfohlen		>1.6mb >0.13mb >0.002mb	(c) (c) (c)

(b) berechnet(c) aus empfohlener Kurve errechnet

Werte für $\overline{\sigma}_{n,2n}(\chi(E))$ (a)

Target	Referenz	Jahr	σ	Bemerkungen
Cr5 0	Pearlstein / B112 7	1965	2.8µb	(b)
Cr52	Pearlstein / B112 7	1965	0.023mb	(b)
C r 53	Pearlstein / B112 7	1965	1.1mb	(b),(c)
C r 54	Pearlstein / B112 7	1965	0.23mb	(b),(c)
Fe54	Pearlstein / B112 7	1965	0.001mb	(b)
Fe56	Pearlstein / B112 7	1965	0.043mb	(b),(c)
Fe57	Pearlstein / B112 7	1965	1.3mb	(b),(c)
Ni 58	Pearlstein / B112 7 Shuman, Mewherter 7 B94 7	1965 1957	2.0µb 12 µb	(b)
Ni60	Pearlstein / B112 7	1965	3.4µd	(b),(c)
Ni61	Pearlstein / B112 7	1965	1.1mb	(b),(c)
Ni62	Pearlstein / B112 7	1965	0.11mb	(b),(c)
Ni64	Pearlstein / B112 7	1965	0.31mb	(b),(c)

÷

(a) $\chi(E) = U^{235}$ (Spaltspektrum) (b) berechnet (c) = empfohlener Wert

Werte für $\overline{\sigma}_{n,\alpha}(\chi(E))$ (a)

Target	Referenz	Jahr	σ	Bermerkungen
C r 50	Eriksson / B11_7 empfohlen	1968	1.50 mb 1.48 mb	(b) (c)
C r5 2	Eriksson / B11 7 empfohlen	1968	0.15 mb 0.21 mb	(b) (c)
C r 53	Eriksson / B11 7	1968	0.42 mb	(b)
Cr54	Eriksson / B11 7	1968	0.024mb	(b)
Fe54	Mellish / B86 7 Nasyrov 7 B35 7 Eriksson / B11 7 empfohlen	1958 1968 1968	0.37 mb 0.50±0.15mb 0.84mb 0.89mb	rel. $\bar{\sigma}$ (S ³²)=30mb rel. $\bar{\sigma}_{f}^{p}(Pu^{239})=1.85mb$ (b) (c)
Fe56	Eriksson / B11 7	1968	0.39 mb	(b)
Fe57	Eriksson / B11_7	1968	0.72 mb	(b)
Ni58	Eriksson / B11 7 Shuman, Mewherter / B94 7 empfohlen	1968 1957	6.96 mb 0.17 mb 6.2 mb	(b) (c)
Ni6 0	Eriksson / B11_7 empfohlen	1968	0.77 mb 0.9 mb	(b) (c)
Ni61	empfohlen		0.2 mb	(c)
Ni62	Shuman, Mewherter / B94 7 Mellish u.a. / B86 7 Rochlin / B87 7	1957 1958 1959	0.013mb 0.025mb 0.14mb	rel. $\overline{\sigma}_{p}(s^{32})=30mb$
Ni	Weitman,Daverhög / B104 7	1968	4.2 mb	$\operatorname{rel}_{\sigma_{\alpha}^{p}(Cu^{58})}^{\left(\overline{\sigma}, (Ni_{46}^{58}) = 91.5 \mathrm{mb}\right)} = 10.2 \mathrm{mb}$

 $\chi(E) = U^{235}$ (Spaltspektrum) berechnet (a) (b) (c)

aus empfohlener Kurve errechnet

, 1

Vorgeschlagene Genauigkeiten der empfohlenen Querschnitte

Querschnitt		Energiebereich	$\frac{\Delta\sigma}{\sigma}$ (%)	Bemerkungen
Cr	on op os os os os os os os os os os os os os	10-15 MeV bis 15 MeV bis 15 MeV bis 15 MeV 1 -15MeV 10-15 MeV 10-15 MeV		unter 12MeV: ±30% keine exp.Daten für das Hauptisotop bis 13MeV:±30%,13-15MeV:±10% exp.Wert zur Normierung: $\frac{\Delta\sigma_{\gamma}}{\sigma_{\gamma}}$ ±20% (1)
Fe	σ _T σp σa σ2n σγ σ γ σ γ σ γ σ ν σ	10-15 MeV bis 15 MeV bis 15 MeV bis 15 MeV 1 -15 MeV 10-15 MeV 10-15 MeV 10-15 MeV	<pre><± 3% $\pm 10-15\%$ $\pm 30\%$ $\pm 30\%$ $\pm 30\%$ $\pm 30\%$ $\pm 8\%$ $\pm 8\%$ $\pm 8\%$ $\pm 8\%$</pre>	vgl. $\sqrt{-A1}$ keine exp.Daten für das Hauptisotop keine exp.Daten;nur statist. Theorie Schätzung exp.Wert zur Normierung: $\frac{\Delta\sigma_{\gamma}}{\sigma_{\gamma}} \pm 20\%$ (1)
Ni	σ _T σp σα σ2n σγ σ γ σ γ σ γ σ γ σ	10-15 MeV bis 15 MeV bis 15 MeV bis 15 MeV 1 -15 MeV 10-15 MeV 10-15 MeV	<±3% ±10-15% +20%bis±20% ±30% ±50% ±10% ±10% ±10%	vgl. / A1 7 ein exp.Wert bei 14 MeV keine exp.Daten;nur statist. Theorie Schätzung wegen schwieriger Trennung von DC und ST Anteil bei Normierung (1)

(1) enthält alle nichtelastischen Prozesse ausgenommen $\sigma_p, \sigma_\alpha, \sigma_{2n}$

$^{\sigma}$ TOT für Fe

- Cierjacksu.a. (B2)
- o Foster,Glasgow(B1)
- + Galloway, Shrader (B4)
- × Vervier, Martegani (B8)
- M Mc Callum u.a.(B9)

△ Manerou.a.(B7

X Albergotti, Fergusion (B3)

♦ Western u.a <u>(</u>B5) → Mev

Abb.3

on,p Für CR50

- Eriksson (B11)
- Gardner (B16)
- + Allan (B45)
- * Levkovskij (B46)
- 🕂 Büttner u.a. (B50)
- + Bisher empohlen(A1)
- derzeit empfohlen

onp Für CR 52

- Ferguson u.a. (B53)
- Wilhelmi(B44)
- + Nellis (B38)
- x Paul, Clarke (B37)
- 🖂 Husain, Kuroda (B13)
- \triangle Allan (B45)
- X Khurana, Govil (B48)
- ♦ Mitra, Ghose (B12)
- ▽ Strain, Ross (B26)
- 🗆 Eriksson (B11)
- ⊕ Gardner (B16)
- Ferguson (B52)
- **v** Mukherjee (B51)
- **v** Chittenden (B47)
- 🕂 Büttner (B50)
- -1- bisher empfohlen
- derzeit empfohlen

Abb.5

Abb.6 øn,p Für CR53

- 132 - **Abb. 8**

ơn,p für Fe 54

- March, Morton, (B54)
- o Lauber,Malmskog(55)
- ▲ Jonson ua.(B56)
- ∇ Caroll, Smith(B57)
- van Loef,(58)
- △ Salisbury, Chalmers (B59)
- ▼ Cross,Clarke,(B60)
- 🖽 Allan (B45)
- ♦ Allan,(B61)
- Pollehn, Neuert, (B 62)
- □ Chittenden (B63)
- --- Büttner, (B50)
- Eriksson, (B11)
- ₭ Rao,Fink,(B21)
- Gardner,(B16)
- empfohlen,KFK120,1966(A1)
- --- jetzt empfohlen, 7,5Mev bis13,5Mev

on,p für Fe⁵⁶

10,5 bis 15,5 Mev

- Santry, Butler (B65)
- o Terrell,Holm (B64)
- + Liskien, Paulsen (B66)
- × Hemingway (B68)
- ₩ Vonach u.a. (B18)
- △ Cuzzocrea (B19)
- X Grundl (B15)
- ♦ Strohal (B31)
- → Hassler, Peck (B17)
- 🛛 Levkovskij (B20)
- Pollehn, Neuert (B62)
- Ferguson u.a. (B53)
- Paul, Clarke (B37)

- Strain, Ross (B26)
- ▼ Cross, Clarke(B60)
- March, Morton (129)
- Forbes (B130)
- 🛛 Yasumi (B131)
- Mc Lure, Kent (B132)
- 🛛 Gabbard, Kern (B133)
- 🗄 Bormann u.a.(B134)
- 🖬 Depraz u.a. (B115)
- Chittenden u.a. (B63)
- 🕂 Büttner (B50)
- $++\frac{1}{2}$ *Bullock, Moore (B67)
- empfohlen (A1)
 - = derzeit empfohlen

- Pollehn, Neuert (B62)
- Fe⁵⁷ Chittenden (B63)
- ^I Fe⁵⁸ " "
- ▼ Gardner, Poularikas (B69)
- Seriksson (B11)
- ⊕ Gardner (B16)

t

- empfohlen,KEK120(1966)(A1) = jetzt empfohlen
- # Clarke, Cross(B25)

Abb.12

on,p Für Ni 58, 0-4 Mev

- Barry (B71)
- Nakai(B72)
- + Konijn, Lauber (B73)
- × Decowski (B24)
- X Temperley (B27)
- ⊠ Eriksson (B11)
- \triangle Gonzales (B70)
- □ Meadows, Whaten (B74)
- J.J. Schmidt (A1)
- # Bullock,Moore(B75)
Abb.12

on,p Für Ni 58 4-9 Mev

- Barry (B71)
- Nakai (B72)
- + Debertin (B76)
- × Eriksson (B11)
- + Büttner u.a. (B50)
- Bullock, Moore (B75)
- + KFK120 (A1)
- empfohlen
 - = KFK120 (bis 7,7 Mev) (A1)

on, p Für Ni 58 9-16 Mev

- Temperley (B27)
- Okumura (B23)
- **x** Glover, Weigold (B77)
- + Decowski u.a. (B24)
- 🖂 Jeronymo u.a. (B78)
- Δ Bormann u.a. (B22)
- 🗴 Chojnacki u.a. (B79)
- ♦ Allan (B80)
- □ Strain, Ross (B26)
- + Büttner (B50)
- Bullock, Moore (B75)
- # KFK120 (A1)
- empfohlen
 - = KFK 120 ab13 Mev

on,p Für Ni60

- Liskien, Paulsen (B82)
- Liskien, Paulsen (B83)
- + Paulsen (B28)
- × Eriksson (B11)

🖂 Cross , Clarke u.a. (B25)

△ March, Morton (B54)

🛛 Allan (B45)

♦ Gardner (B16)

+ Büttner (B50)

- KFK120 (A1)

ABB-00001

ABB+00001

1.20E 02

Abb.18

on,p für Ni 64

- Gardner (B16)
- Val'ter (B29)
- + Preiss-Fink (B36)
- × Pile,Ward,Kuroda (B84)
- empfohlen

- 151 -

Abb.25

Abb. 24 - 25

- Eriksson (B11)
- ⊙ Levkovskij (B20)
- 🛭 Gardner, Yu-Wen Yu (B85)
- △ Seebeck, Bormann (B102)
- ♥ Yu-Wen Yu,Gardner (B103)
- 🛛 Ward, Pile, Kuroda (B84)
- derzeit empfohlen
- --- Broncazio (B106)
- --- Büttner Ni⁵⁸: *<u>1</u> (B50)
- --- bisher empfohlen (A1)

🖾 Depraz (B115)

- Salisbury, Chalmers (B59)
- Pollehn, Neuert (B 62)
- Clarke,Cross (B109)
- Δ Carles (B116)
- □ Allan (B80)
- Strain,Ross(B26)
- ⊖ Andreev,Serov (B114)
- Schittenden u.a. (B63)
- --- Pearlstein (B112)
- empfohlen

- 157 - Abb. **31**

- 158 -

on, 2n für Ni 58

Cross, Clarke (B25)

⊡ Strain,Ross(B26)

 Δ J.K.Temperley (B27)

Paul, Clarke (B37)

• Preiss, Fink (B36)

⊗ Purser, Titterton (B81)

Cross, Clarke (B 109)

▼ Rayburn (B111)

☑ Glover, Weigold (B77)

Bramlitt, Fink (B123)

♦ Jeronymo (B78)

⊙ Csikai (B119)

🛛 Bormann u.a. (B121)

🖌 🛆 Csikai, Petö (B122)

Liskien, Paulsen (B120)

--- Pearlstein (B112)

— empfohlen

- 164 -

```
on,np für FE 54
```

(Erläuterungen im Text, Kap. VI)

○ $\sigma(n,np)$ ● $\sigma(n,np+p) - \sigma(np)$ ▲ $\sigma(n,np+pn)$ △ $\sigma(n,np)$ △ $\sigma(n,pemiss) - \sigma(n,p)$ □ $\sigma(n,pp)$ ○ $\sigma(n,p+pn) - \sigma(n,p)$ □ $\sigma(n,pemiss) - \sigma(n,p)$ Allan (B61)□ $\sigma(n,p+pn)$ ○ $\sigma(n,np+pn)$ • $\sigma(n,np+pn)$ • $\sigma(n,np+pn)$ • $\sigma(n,np+pn)$ ···· $\sigma(n,np+pn)$ ···· $\sigma(n,np)$ • empfohlen

```
on,np+pn für FE 56
```

(Erläuterungen im Text, Kap. VI)

```
σ(n,pemiss)-σ(n,p)

    σ(n,np)
    Allan (B80)
    σ(n,np+pn) Brown u.a. (B135)
    Δ σ(n,np+pn) March,Morton (B129)
    σ(n,np+pn) Atlan (B45)
    --- σ(n,np+pn)
    --- σ(n,np)
    Büttner u.a. (B50)
    --- σ(n,np)
    empfohlen
```


Abb. 42


```
Abb.43
```

```
on, np+pn für Ni 58
```

g(n, np+pn+d) Cross, Clarke (B25) ▼ σ(n, np +pn+d) Temperley (B27) □ σ(n, np + pn + d) Purser, Titterton (B81) • σ(n, np +pn+d) Glover, Weigold (B77) $\Delta \sigma(n, np+pn+d)$ Bramlitt, Fink (B123) o(n, np + pn + d) Jeronymo(B 78) $\Box \sigma(n, np)$ Allan (B80) 🖬 σ(n, pemiss) –σ(n,p) \bullet $\sigma(n, np + pn + d)$ Clarke, Cross (B109) $\Diamond \sigma(n, np)$ Kumabe,Fink (B136) ◆ σ(n, pemiss)-σ(np) \mathfrak{A} $\sigma(n, np + pn)$ Allan (B45) --- o(n,pn) Büttner (B50) ···· σ(n, np) $---\sigma(n, np + pn)$ — empfohlen

Abb.45

 $\sigma_{T}, \sigma_{x}, \sigma_{n}$ für Cr 10–15 Mev

--- Agee,Rosen (B142)

- empfohlen

⊙ Taylor u.a. (B149)o_x

▼ Stelson ua. (B141)ø_n

--- opt. Mod. Rechnung (siehe Text Kap.2)

Abb. 47

 $\sigma_{T}, \sigma_{X}, \sigma_{n}$ für Cr 10-15 Mev

--- σ_x , nach Agee, Rosen (B142) --- σ_n , Büttner (B50) ---- σ_n , bisher empfohlen (A1) --- σ_x, σ_n empfohlen -*- $\sigma_{n,p} + \sigma_{n,\alpha} + \sigma_{n,2n} + \sigma_{n,np}$ empfohlen

Abb. 48

στ,σx,σn für Fe, 10-15Mev

- ---- empfohlen, σ_{T} , σ_{x} , σ_{n}
- O Taylor u.a. (B149),σx
- ♦ Flerov u.a. (B150), σx
- ⊖ Degtiarev u.a. (B151), σx
- Phillips (B152), σx
- Graves, Davis (B 153) ox
- ∆ Coon u.a. (B 139) σel
- ∇ Elliot (B138)u.Yuasa (B144)σel
- --- Agee,Rosen (B142) o_T, o_X, o_n
- -- opt.Mod.Rechnung (siehe Text Kap.2

Abb.49

ox,on`für Fe , 10-15Mev

Sukhanov u.a. (B154) on,n'+on,2n

- --- Agee, Rosen, (B142) ox
- --- Büttner u.a. (B 50) on'
- ---- bisher empfohlen
- empfohlen, ox, on'

--- empfohlen

Abb.50

 $\sigma_{T}, \sigma_{X}, \sigma_{n}$, für Ni , 10–15 Mev

Taylor (B149) σ_x

△ Bauer, Anderson (B140) o_{el}

□ Clarke,Cross (B143) o_{el}

🛛 Mac Gregor u.a. (B155) 🔩

---Agee,Rosen (B142) $\sigma_{T}, \sigma_{X}, \sigma_{n}$

- empfohlen, $\sigma_T, \sigma_X, \sigma_n$

-- opt.Mod.Rechnung (siehe Text,Kap.II)

Abb. 51

 σ_x, σ_n , für Ni 10-15 Mev

– – Büttner u.a. (Β50)σ_n′ –--σ_n,bisher empfohlen (A1)

--- empfohlen $\sigma_{n'}$, σ_{x}

 $-x - \sigma n, p + \sigma n, \alpha + \sigma n, 2n + \sigma n, np$ empfohlen

Abb. 52

Erläuterungen im Text, Kap. VI

