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Abstract

One of the important applications of reactor noise theory, which relies

on the mathematical methods for treating stochastic processes, is to deter

mine, either the confidence limits for the allowed deviations of the measured

signals during normal reactor operation, or the statistical properties of

their respective expectation values. In this report, we stress mainly on

the general mathematical aspects for treating this problem.

A global description of a reactor system, perturbed by stochastic re

activity input, leads to a stochastic differential equation with para

metric excitation. A discrepancy exists in literature about obtaining

the correct solution of such an equatio~ in its general frame. We discuss

this discrepancy and review the work done for solving such an equation.

Some recent work indicates that linearisation of system's equations is

justified in most cases of reactor operations. We develop a general

scheme for calculating the various covariances and correlation functions

in a stable and stationary system, which is perturbed by various noise

sources and where linearisation of system's equations is justified.

The formulation is easily.extendable to an unstable, nonstationary system,

like an uncontrolled critical reactor as demonstrated.
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Untersuchung der Antwort eines Reaktors auf stochastische Reaktivitäts

anregung

Zusammenfassung

Eine der wichtigen Anwendungen der Reaktor-Rauschtheorie, die auf den

mathematischen Methoden zur Behandlung von stochastischen Prozessen basiert,

ist die Bestimmung der Vertrauensgrenzen für die bei ungestörtem Reaktor

betrieb zulässigen Abweichungen gemessener Reaktorsignale oder ihrer

statistischen Kenngrölen vom jeweiligen Erwartungswert. In diesem Bericht

betonen wir hauptsächlich die allgemeinen mathematischen Aspekte für die

Behandlung dieses Problems.

Eine globale Beschreibung eines Reaktorsystems, das durch einen stochastischen

Reaktivitäts-Input gestört ist, führt zu einer stochastischen Differential

gleichung mit parametrischer Anregung. In der Literatur gibt es eine Dis

krepanz bezüglich einer korrekten Lösung einer solchen Gleichung in ihrer

allgemeinen Form. Wir diskutieren diese Diskrepanz und geben eine Übersicht

über die zur Lösung dieser Gleichung durchgeführten Arbeiten.

Einige neuere Arbeiten deuten darauf hin, dal für die meisten Fälle des

Reaktorbetriebs eine Linearisierung der Zustandsgleichung gerechtfertigt

ist. Wir entwickeln eine allgemeine Methode zur Berechnung verschiedener

Kovarianzen und Korrelationsfunktionen für ein stabiles, stationäres

System, das durch verschiedene Rauschquellen gestört ist, wobei eine

Linearisierung der Zustandsgleichung erlaubt ist. Diese Formulierung kann,

wie gezeigt, leicht auf instabile, nicht stationäre Systeme, wie z.B.

einen unkontrollierten, kritischen Reaktor erweitert werden.
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1. Introduction

In the theory of reactor n01se, one should distinguish between the two

categories of reactor noise, namely (a) zero power noise and (b) power

n01se.

The n01se 1n reactors operating at low power, 1.e. zero power noise,

mainly arises due to the branching process in nuclear fission. In this

case one deals with the behaviour of neutrons 1n an environment, which

is fixed and stationary, or which changes with time in a deterministic

manner. The behaviour of neutron noise source, in these cases, i.e. the

branching process, is well known and may be considered to be arising from

an external equivalent reactivity noise source, assumed to be white/1/. This

additive term accounts for all correlated neutron pair terms resulting

from the branching process within the neutron chains. For a system with

well defined parameters and with a noise source of known statistical

characteristics, it is not difficult to set up system's equations and

treat the problem in all desired details. From various papers and reviews

written on the subject, it is obvious that zeropower noise is fully

understood and is finding applications in various laboratories /2/.

In apower reactor, the sftuation 1S, however, quite different. Zero power

noise is still present in apower reactor, but in contrast to a fictitious

n01se equivalent source the true reactivity fluctuations due to sources

such as thermohydraulies, the coupled processes of coolant flow and heat

transfer, mechanical vibrations of fuel rods and control rods, completely

masks the zeropower effects due to the branching processes. The physical

reason for this 1S that the mean square amplitude of neutron fluctuations

is proportional to reactor power for the branching process, while the

reactivity induced noise is proportional to the square of reactor power

in apower reactor /3/.

It is obvious that 1n contrast to a single noise source in a zero power

reactor,there 1S a large number of noise sources in apower reactor. Thus

in order to understand power noise completely, one should have a realistic

Zum Druck eingereicht am: 23.8.1977
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description of these various noise sources. An analysis of reactor nOlse

can either be used (1) to obtain an early warning of the abnormal be

haviour, or (2) to diagnose an existing malfunction. The use of noise

analysis techniques to diagnose a malfunction can be made, if one has

apriori knowledge about the type of noise expected for the type of

malfunction being surveilled, i.e. a malfunction diagnosis would be

possible if we could correlate various classes of defects with particular

classes of reactivity noise spectra.

Another application of reactor noise theory comes, when we observe the

response of the reactor system to a deterministic input, like a control

rod movemen~ to obtain an early information about its abnormal behaviour.

Due to the omnipresence of fluetuations, the detector output will certainly

deviate from the expeeted behaviour. It.may then be our task to decide,

whether the true behaviour of the deteetor signal is within the allowed

deviations of the system or it is due to a malfunction. This problem

could be termed as decision problem and for this we need assess the

confidence limits for the allowed deviations of the measured signals. For

such calculations it is not neeessary to know exaetly the detailed be

haviour of all reactivity noise sourees. Rather one eould, in case of

neeesBity, make physically aeeeptable, but not too conservative assumptions

about them.

In a eomplete deseription of power reaetor noise, spaee dependent effeets should

be included. Using simplified models, some work treating space dependence

has been reported /4/ - /8/. Some experimental work on a boiling water

reaetor suggests that power nOlse may be treated by assuming it to be

separable into two eomponents, viz the loeal eomponent and the global

eomponent /9/-/15/. The two components have different spatial eorrelations. The

local component ehanges very rapidly along the axis, while the global

component varies slowly in spaee. Using this model of loeal and global

components, some authors have, reeently, treated the power noise /16/ - /19/.

However, if one is interested in the mean square deviations of the system

and if one wishes to take adecision about the allowed deviations in the

signals of an out of eore deteetor, it is suffieient to treat the reaetor

globally. Moreover, it should also be noted that an aeeurate deseription
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of a reactor system perturbed by reactivity noise, even ~n the frame of

the point reactor model treating global effects only, is complicated

and leads to a~ochastic differential equation with parametrie excitation.

The solution of such an equation has been of considerable interest and

lead to some controversies. In Sec.3~, we review the work done for the

solution of such an equation and describe the limitations and the merits

of this work. Earlier, in sec. 2 , we describe the state equations for

a reactor system. A method for calculating the variances and covariances

of a general reactor system perturbed by external noise sources is des

cribed in sec. 4 Finally, in sec. 5, we deal with some special aspects

of a nonstationary system and show connections with the earlier reported

work /52/-/53/.

2. The System's Equations: Parametrie and Source Excitations

The kinetic equations of a general reactor system, in the point model

approximation can be written in the following matrix equation form

dx(t)
dt =

where x(t) ~s the state vector, the components of which are various state

variables, A is the system's matrix in the steady state and the matrix

A1(t) contains the random parameters of the system. As an example, x(t)

may have the components

x(t) =
[

N(t) ]

C(t)

T( t)

where N and C are the neutron and delayed neutron precursor densities

respectively and T is a representative temperature of the reactor.
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For one group of delayed neutrons

A =

and

p(t)

-A

o

o

o

o

T

o

o

o

o

o

o

(2.4)

where ß is the delayed neutron fraction, A the mean delayed neutron decay

constant, t is the mean neutron generation time and y is the temperature

reactivity coefficient.

T and Td are the constants for power temperature coupling, T being the

time constant for temperature-changes in the core and Td the difference

in temperature resulting from the doubling of the neutron density. No
corresponds to the average neutron density.

For a system, which is critical on the average, p(t) represents the

fluctuations about the average zero value of the reactivity. In Eq. (2.1)

p(t) appears as adependent term on the neutron density rather than as

an inhomogeneous term like an e~ternal source. Such an equation is termed

as a stochastic differential equation with parametric excitation.
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The usual procedure in reactor kinetics is to linearise these system's

equations (2.1), assuming that the fluctuations are small and the second

order effects can be neglected. When linearised, the system's equations

can be written as

dx(t) = A(x(t)-x ) + R(t)
dt 0

where the noise source R(t) is a functional of the random matrix A
1
(t)

and average state vector x , i.e.
o

R(t) = f(~(t), x )o . (2.6)

It should be noted here, that after linearisation, the fluctuating term

appears as an inhomogeneous term like an external source and this type

of equation is termed a random differential equation with source excitation.

In the exact system's equations (2.1) as weIl as in the linearised system's

equations (2.5), if ~ (t) ,and R(t) respectively are random, the corres

ponding solutions will also be random. The solution of such an equation

then consists in finding the statistical properties of x(t) given those

of A1(t) or R(t). This means that if the probability distribution of

A,(t) or R(t) is given, we have to either find the joint probability

distribution of state variables or some moments of interest for the

probability distribution.

The solution of an equation such as (2.1), has been a subject of con

siderable interest, for a long time, to mathematicians and scientists,

because of the high importance of parametric excitations in technical

fields like electronics and plasma physics. In reactor physics, we generally

encounter a rather fortunate situation of dealing with a stable and

stationary system, showing small fluctuations about its mean behaviour.

Hence, one has more confidence in approximating the system with a linea

rized set of equations. However, as discussed briefly later, linearisation
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1n reactor physics is also not always valid and the higher order moments

being more sensitiye to parametric excitation, an extension of the linea

rised treatment to systems with many state variables for obtaining higher

order moments should be done only after getting some results in the exact

frame of parametric excitation. Without performing such calculations, the

validity of linearisation can not be established. Because of this the

solution of exact system's equations, rather recently, has drawn the

attention also of reactor physicists.

3. Solution of the Exact System's Equations: Parametric Excitation

The function A,(t), in Eq. (2.,), is a random process, i.e. for each fixed

t, the value of the function A,(t) is a random variable. A very commonly

made assumption about A,(t) is that it is a stationary Gaussian white

noise random process. This means that for each fixed t, the random

variable has a Gaussian distribution with zero mean, i.e.

<A, (t )> - 0,

where the brackets <> denote the expectation, i.e. averaging over the

statistical ensemble. Further, for any two times t" t 2 , with t, f t 2 ,

the two random variables A,(t,) and A,(t2 ) are completely independent of

each other. Mathematically

( 3. 'b)

where prime denotes the transpose of the matrix and the constant c is the

white noise covariance matrix, which expresses how the components of A,(t,)

are correlated amongst themselves. The name white comes from the fact

that the power spectral density function in this case is constant, inde

pendent of frequency, analogous to the spectrum of white light.
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In the theory of random processes, white noise is the same kind of mathe

matical pathology, as the Dirac delta function is in the theory of deter

ministic functions. As long as one does only linear operations on a

delta function, it is usually possible to interpret the result 1n a

meaningful way. However, one runs into trouble in trying to do nonlinear

things to a delta function. The square or the logarithmic of a delta

function is meaningless. A similar situation exists in the case of white

noise. For the linearised system equation (2.5), there is no difficulty

in interpreting, what is meant by a solution of this differential equation.

As a function of t, x(t} turns out to be a Gaussian process, and there is

no controversy about computing the means and covariances of this process.

However, whert the. exact system eq. (2.1) is considered, a problem of inter

pretation arises. A controversy exists in the literature about the

correct interpretation of such an equation and gives rise to two equations

for the joint probability distribution of state variables, which are

different from each other. About the discussion of this discrepancy, we

would refer the reader to a paper by Gray and Caughey /20/.

In reactor physics, the problem has been discussed rather recently by

Akcasu and Karasulu /21/. The arguments are nearly the same as given in

the papers by Gray and Caughey, but in the frame of reactor physics for

the first time. The reasons for obtaining two different equations for the

mean number of neutrons have also been discussed by Williams /22/, Karmeshu

and Bansal /23/ and Kishida /24/.

Reading through these papers, however, one gets the impression that the

subject is more bewildering to the reader than it was before he read the

paper. One should note the point that the fundamental difficulty arises

from the properties of the heuristic mathematical idealisation i.e. white

noise or its rigorous counterpart Brownian motion, which is heuristically

the time integral of white noise. The trouble arises when one attempts

to apply the usual rules of differential and integral calculus to functions

of time, which are actually sample functions of a stochastic process. Two

possible ways of extending ordinary calculus to stochastic functions have

been forwarded. These are known as the Ito calculus and Stratonovich

calculus. From an engineering point of view, a very good review has been

given by Mortensen /25/, who suggests an approach to the problems of
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mathematical modeling analysis and computation, which seems to have the

qualities of being both mathematically rigorous and consistent with

physical reality.

The subject of solving stochastic differential equation with parametric

excitation has been treated by a number of other workers /26-36/ and

has now appeared ~n various books also on random differential equations

/37,38/ •

In reactor physics, the interest in the solution of such an equation started

mainly from the work by Williams /39/.

He studied the pojnt model reactor kinetic equations with one group of

delayed neutrons. Assuming the reactivity to be a white noise function,

the following Fokker Planck equation for the probability distribution of

neutron density (without source), was formulated

ClP Cl
{(i(p 0 -ß )N+A C )p}=Clt ClN

Cl {(~N-AC)P} (3.2)
ClC

Cl
2 2

0

+ -- {(_"_ N2 )P}
Cl:-l2 R,2

2where 0 .. are a measure of the amplitude of fluctuations.
~J

The equation (3.2) is obtained if one uses Ito calculus for evaluating the

stochastic integral

t
f N(S) dW(S)
to

However, if one uses Stratonovich calculus the Fokker Planck equation ob

tained is
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ap a { ( ~o-ß 0 11 ] + XC)P}= -R,--~Nat aN

a
2 2

(3.4)
Cl .@.N

CI
{ ( - XC)p} + -- { ( _"_ N2 )P}-äC 1

ClN
2

1
2

The question now is, which one of the above two equations (3.2 and 3.4) is the

correct one. Without g01ng into the details of their derivation, we would

like to point out that Ito calculus is a strictly formulated mathematical

problem, whereas Stratonovich calculus is a mathematical approximation

to a physical problem. The mathematician starts with the transition

density for the process for discussing Markov process. He is able to

associate a Fokker Planck equation in an unambigous way with this tran

sition density. When he finds that he has two possible ways of modelling

the process as the solution to a stochastic differential equation, he

will choose the way which has the most mathematical elegance in its inter

nal structure, and which is capable of the greatest generalization. Con

sidered from this point, the Ito calculus is the right choice.

However, an engineer can not resolve the issue on the basis of mathematical

elegance alone. The engineer does not start with the transition density.

He starts with a differential equation (point reactor kinetic equations)

which has been obtained on the basis of known physical laws. He then adds

a white noise forcing term to get a stochastic model. If the coefficient

of the noise is itself random, than there are two possible ways of inter

preting the equation, leading to two different Fokker Planck equations

and two different processes. The question is, which process does one

"really" get in the physical world.

Without reproducing the arguments given in the literature /41-43/ we point

out what seems to be the conclusions of interest.

Let A(t) be a stationary delta correlated normal process with zero mean

(i.e., a white noise):

< A(t» = 0
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This process is not physically realizable because it has a constant

spectrum (the Fourier transform of the correlation function) i.e., in

finite energy. Let ß~(t) be a physical approximation to ~(t), i.e.,

a stationary, zero mean normal process with a correlation function con

centrated mostly around t 1 = t 2 :

< btit» = 0

with

Consider now the stochastic equation:

dx
't

---:=

dt

meaningful
= x 0

T

as T + 0:

(deterministic) functions. (3.8) defines a stochastic

not a diffusion process(in general it is noteven

with fand g arbitrary

process x (t) which is
T

Markov). If h (s) is well behaved as s + 0, x (t) has sample paths that
T T

possess a derivative (almost everywhere). Therefore Eq.(3.8) lS

and can be formally integrated with an initial condition x (t )
T 0

to yield the solution x (t). Let us now take the limit of (3.8)
T

dx
-- =f(x) + g(x) ~(t)

dt

where ~ (t) satisfies (3.5). In this case x(t) is a diffusion process. Using

the symmetrized integral defined by Stratonovich, Eq. (3.9) can be handled

like an ordinary differential equation. The result is that the transition



- 13 -

probability density function ~ of x{t) satisfies the Fokker Planck equation:

- =-
at

a r: (1~1 (12
{t(x)+g(X)gl(X~ ~} +"2

Clx

Therefore, the process described by this F.P. equation is the one to which

the physical process x (t) converges.
T

What about if the Brownian motion between w(t) is used? It should be re

called that dw(t) exists, but not dW/dt. Therefore, the identity

is misleading. However, one can show that Eq.(3.9) can be thrown into the

equivalent form

(12
dx = (f + "2 gg I )dt + (1 g dw

where now Itols integral must be used. Rewriting (3.9) as:

dx = f dt + g dw

is equivalent to changing model. The physical process xT(t) does not con

verge to the solution of (3.13).

since there is no physical process which is strictly delta-correlated,

the safest procedure is to use equations such as (3.9) together with

Stratonovich's recipe.
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Assuming the reactivity to be a Gaussian, stationary random function,

the problem of neutron density fluctuations was again considered by

Williams /44/ in 1971, where three simplified cases were studied

(1) no delayed neutrons

(2) prompt jump approximation

(3) infinite delay time model, i.e. assuming that the

delayed neutrons concentration remains constant

during a transient and equal to its value prior

to reactivity insertion.

For each of the three simple cases, the' probability distributions for the

resulting neutron densities have been computed and were shown to be non

Gaussian. However, it is not possible to extend this analysis for ob

taining the basic probability distribution in case of second order systems.

Hence, Williams investigated the possibility of obtaining the mean and

variances directly from the basic equations i.e. without solving it first.

However, even for these calculations, he had to introduce the approxi

mation (see Appendix)

<A(t)6(~)N(t') = <6(t)6(t'» <N(t'»

But even after using this approximation, the moments obtained by Williams

were of first order only, when delayed neutrons (i.e. the second order

effects) are included.

In 1975, Karmeshu and Bansal /45/ found the first and second order moments

of neutrons and precursors by assuming the fluctuations in reactivity to

be a D.M.P., which is defined as a two valued stepwise constant Markov

process in which the time changes are exponentially correlated. With this

choice for the random process, the artificially introduced approximation

(3.14) becomes exactly valid. Hence the expressions for the moments

obtained by these authors are exact /23/. But from these expressions it is

very difficult to extract, directly, any usable information and one has no

hope for extending the analysis to systems with state vectors having more

than two components.
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Next to mention in this field is the work of Akcasu and Karasulu /29/.

Using the simple point kinetic model with one group of delayed neutrons and

no feedback terms, they formulate the Fokker Planck equation for the

probability density using Stratonovich calculus. As mentioned earlier,

these authors,for the first time in reactor physics, discuss the dis

crepancy about the use of a particular type of calculus.

For the simple case of no delayed neutrons, an exact form of the Fokker

Planck equation is derived for a delta correlated reactivity from the

stochastic Liouville equation, for the first time in reactor physics

by Karmeshu and Bansal /46/. It is possible to extend this treatment to

get the complete probability balance equation for an extended system /36/

(i.e. with two or more state variables), but the solution of this equation

can only be obtained in some special cases /47/. Moreover it should

be noted that the assumption of white noise has been made for the noise

sources and this limiting case, sometimes leads to the problem of identi

fying various parameters to real kinetic parameters because of its infinite

total power.

Inspite of the limitations of the work done in the frame of parametric

excitation, such as the noncapability of extension to multicomponent

state vector and the direct extraction of useful information, due credit

should be given to this. Firstly they are a step ahead of the linearised

approximation in giving a solution for the nonlinearised kinetic equations.

Secondly, without obtaining at least some results in the nonlinear frame,

one would never be sure about the applicability of linearisation. Worthy

to note in this respect is the note of Kebadze and Adamovski /48/. This

work concludes that though linearisation is acceptable in most cases of

a reactor, it is not sufficient in the vicinity of, and for fixing

stability thresholds. This seems plausible as the nonlinearities may

lead to either stabilising or destabilising effects.

In arecent work, Dutre and Debosscher /49/ tabulated the cases where linearisation

~s justified. Employing a point reactor model, which applies to low

frequency range, where the delayed neutron dynamics can be reduced to

the use of an effective neutron life time and where the feedback processes

can be considered as promptly responding to power variations, these
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authors, in general, conclude that for large a, the linearisation of

system equations leads to accurate results for the probability distri

bution of state variables, where

t ko
a =

G
p

and R. effective neutron life time partially

accounting :tbr delayed neutrons

(1-ß)t + 1: ßi(t +
1= Ai)p p

G mean square amplitude of reactivityp
fluctuat ions

k amount cf reactivity needed to keep the
0

reactor at operating condition

We find that the condition of large a is completely fulfilled.

If our aim lS to find expressiüns for the confidence limits

to the mean square deviations observed in adetector placed outside the

core of a reactor, where one concerns with a general reactor system, it

lS obvious that one has to deal with astate vector with many components.

It is thus essential to have a formalism which is transparent and easily

operable for any general system.

4. A General Formulation for Calculating the Various Correlation Functions

of State Variables in a Reactor System: Linearised State Equations

If we envisage a practical situation of a critical power reactor operating

at steady state and at high power level, where the power fluctuations are

really small and if we are working in situations far away fram stability

margins, we can employ a linearised system of equatians, i.e.
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= A x(t) + R(t) (4.1)

where R(t) lS a vector whose components represent verlous nOlse sources

present in the system. As the most acceptable model for R(t), we assume

it to be generated by a linear system forced by a white noise vector i.e.

dR(t)
dt

where B 1S a square matrix.

= B R(t) + W(t) (4.2)

The physical system described by Eqs. (4.1) and (4.2) is drawn ln Fig. (1)

The vector W(t), contains various white nOlse sources and has the properties

described by Eqs. (3.1) for A,(t), with a constant (or time independent)

matrix c. The matrix B in Eq. (4.2) distributes various primary noise

sources to the components of the state vector and is also necessary for

introducing adequate corner frequencies.

Differential equations (4.1) and (4.2) can be combined to obtain another

differential equation for an extended system, l.e.

dP(t)
dt = M p(t) + F(t) (4.3)

where
p = (-~-) , (4.4a)
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M = [~-!-;-J (4. 4b)

(4.4c)

Let us now assume that the system is stable and stationary. This requires

that all the eigenvalues of M have real negative parts~ which means that

A and B have eigenvalues with real negative parts. Then if A is a stable

matrix~ a stable B matrix should be used and the solution of Eq. (4.3)
may be wri tten as

t
p(t) = J eM(t-u) F(u)du

-co

where eMu is the exponential of a matrixdefined by

Mu
e =

co

L
k=O

(4.6)

Taking the expectation of Eq. (4.5) we get

<p(t» = 0

because of the fact that W(t) satisfies Eqs. (3.1) and because of the

linearity of system's equations.

The covariance matrix is obtained by multiplying Eq. (4.5) by its transpose

at sorne other tirne~ say s~ and taking the ensemble average; we have
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t
fdu

s
fdv
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eM(t-u) <F(u)F'(v» M'(s-u)
e (4.8)

-00 -00

From the definition (4.4c) of F(u) and from the properties of W(t) given

by Eq. (3.1) we obtain

t s
<p(t)p'(s» = fdu fdv

-0) -00

M' (s-v)
e

Assuming arbitrarily, t > s, we obtain with some transformation

<p(t)p'(s» M(t-s)=e
00

fe Mx
o

ro °l eM'x
~ d dx

The above expression gives the complete correlation matrix, the components

of which are variousauto and cross-correlation functions fo the state

variables. Expression (4.9) describes better than the expressions for

the individual components, the dynamies of the system. It also ensures

stationarity because of the dependence of various terms on the time diffe

rence It-sl only, because 't ~ s is only an arbitrary assumption. For

treating the equation of the type such as (4.9), one can take recourse to

established mathematical techniques.

The exponential of a matrix e Mt , informally defined by (4.6), can be eva

luated by using Sylvester's theorem, according to which

n
exp (Mt) = I ZR eXP(ARt)

R=1

where AlS are the eigenvalues of the matrix M and

(4.10)

Z =R (M-A.I)/(AK-L)
J J

(4.11)
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It is also possible and some times more transparent, specially to reactor

physicists, to express the matrix in terms of its eigenvalues, eigenvectors

and adjoint eigenvectors. In this representation, we have

(4.12)

where
-1 -1 +

V=u =/\ U,

U being the matrix formed by the right hand eigenvectors and U+ is the matrix

formed by the adjoint left hand vecors. The diagonal matrixA is obtained from

For finding eigenvalues, one can use the standard computer programmes

supplied as part of the system. However, it has been observed that even

for simple systems, like described by Eq. (2.3), it is necessary to run

the programme in double precision (on IBM and similar computers).

To find the constantwrm given by the integral

00 ,

f eMx S eM ~x =Y
o

where

we may multiply it by M from left

00

J'~ eMx S eM'x dx = MY
o

and then from right by M', i.e.

00 M'
!dxeMx S ~ (e X) = YM'

dx
o

(4.13)

(4.14)

(4.15)

(4.16)
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Addition of expressions (4.15) and (4.16) yields

co

J~ (eMx S eM'x)dx ::: MY + YM'
o

Since M has all eigenvalues with real negative parts, we have

o = S + MY + YM'

The solution of Eq. (4.18) ean be obtained following Dalfes 150/.

(4.17)

(4.18)

Y satisfies the symmetrie property Y ::: Y' and also S is symmetrie. We ean

write

M = UA V and M'::: V, AU'

where V ::: U- 1 and

we get

is a diagonal matrix. Substituting (4.19) in (4.18),

where

I'. 1"'+ P 1\ + VSU' ::: 0

f" ::: V Y U'

(4.20)

(4.21)

The solution of Eq. (4.20) ean be written now as ~ is diagonal. One obtains

for k, t=O , •.• ,m

(4.23)
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and from Eq. (4.22)

y ::: U r VI (4.24)

It should be pointed out that for the solution of Eq. (4.18), one mayaIso

rely on methods, proposed by Wiberg /51/ for solving a more general equation

containing a nonlinear term, i.e. a matrix Riccati equation.

With the solution of Eq. (4.18) for Y and an expression (4.12) for the

exponential of a matrix, we have a formulation (Eq. 4.9) to calculate the

exact time development of all the correlation functions in any general

reactor system perturbed by noise sources, which may be of a general type.

One needs enly to redefine the parameters characteristic of the system to

obtain the desired results.

5. Critical Uncontrolled Reactor: One Group of Delayed Neutrons:

In this section we consider the special case of an uncontrolled reactor, at

criticality, which is pertubed by stochastic reactivity input. The special

feature of such an uncrontrolled system is that it is nonstationary and

hence the state of the system at any time would depend on its initial state.

However, it is possible to extend the treatment developed in sec. 4 for

a stationary system, to nonstationary systems by writing the solution

(Eq. 4.5) as

t
p(t) ::: Jl1t p(o) + f ~(t-s)F(S)dS

D

In our earlier work /52,53 / we had considered the case of a critical

reactor driven by band limited white reactivity noise with a corner frequency

wc . The first and second order moments were computed by employing two

complementary assumptions, depending on the corner frequency w . Two limitingc
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cases of corner frequency were considered viz (1) w »ß/t and (2) w «ß/t.
c c

The calculations were performed by linearising the equations in the first

case, while for the second case the treatment was done in the prompt jump

approximation, where it is possible to get the moments for the nonlinea

rised exact equations. The results of this analysis show/53/ an equiva

lence between linearised and nonlinearised treatments for most cases of

practical interest.

As a special result of the above analysis, it was found that for an initial

equilibrium between neutrons and precursors, all the normalised covariances

have the same asymptotic development, i.e. 2Dt, where D (we call it a

diffusion coefficient) is expressed in terms of usual kinetic parameters.

An estimate about the order of D gives a very low magnitude. This means

that the reactor system isa damped system as a result of the precursors

present in the system.

6. Conclusions

An important application of reactor noise theory is to assess the confidence

limits for the allowed deviations of the measured signals during normal

reactor operation. For taking adecision about the allowed deviations,

from its expected behaviour, in the signals of a detector, placed outside

the core of a reactor, it is sufficient to treat the reactor globally.

For this one can use the point reactor model for the kinetic equations,

where the reactivity appears as adependent parameter on the neutron density.

If the reactivity ~s fluctuating in a.random manner, then we have to deal

with the solution of a stochastic differential equation with parametrie

excitation. The solution of such an equation has led to a controversy,

which we have discussed. A review of the work done for the solution of such

equations has been presented.

In reactor kinetic problems, where one has to deal with a rather large system

with a multicomponent state vector, the analysis,in an exact frame of

parametric excitations,becomes very difficult. This is evident from the

work done for the simple model of two components, i.e. the neutron and

the precursor number, state vector. For a practical situation, where the



- 24 -

linearisation is a good approximation, a stable critical reactor opera-

ting at high power level with relatively small fluctuations of ~he state

variables about their mean values, a complete matrix formulation is

presented. Fromfuis formulation one could compute the exact time develop

ment of the various correlation functions. Input noise source to this

system could rather be of general type.

A critical reactor without a centrol is an unstable, nonstationary system.

The transient state of such a system depends on its initial state. It is,

however, possible to extend the treatment, developed for the stationary

system, to a nonstationary system if its initial state is known. For a

single group of delayed neutrons and for a bandlimited white reactivity

noise driving the system, we have calculated the exact time development

of first ~nd second order moments for the neutrons and precursors in /52/

and 153/. As a special result it is found that all the covariances have

the common asymptotic time development, suggesting that the system behaves

as a composite Brownian particle.
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Appendix

The necessity to introduce the approximation (3.14) arises due to the so

called problem of closure, which is encountered at a number of places 1n

mathematics. For example, in the solution of neutron transport equation,

if one expands the flux in terms of aseries of Legendre polynomials,

then one gets an equation for the nth order term in terms of the (n+1)th

order term. One, then tries to express th~ (n+1)th term in terms of the

lower order terms. Similarly, in the solution of random differential

equations, one gets an expression for a moment in terms of one higher

order moment. Let us look, for clarification, at a simple example of the

solution of the equation

where p(t) is random. Ir.

~ N(t) = p(t) N(t)
dt t

(A. 1 )

p(t) = p + 6(t)o
(A. 2)

where p the average steady part and 6(t) the fluctuating part, we haveo

d p 6(t)
(-- + ~) N(t) =---- N(t)
dt R, t

or

N(t)
t

=N G (t) + f 1 6(t')G (t-t')N(t')dt'
o 0 t 0o

where G is the Green's function defined by
o

d p
(-- + ~)G (t) = o(t)
dt t 0
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1.e. G (t) = e
o

t > 0

o t < 0

Let us take the ensemble average of Eq. (A.3), we have

<N(t»
t

= N G (t) + J1 <6(t')N(t'» G (t-t')dt'
o 0 t 0

o
(A.4)

Now <6N> is not known. If one makes the assumption <6N> = <6> <N>, this

amounts to linearising Eq. (A.1). More useful results may be obtained by

multiplying Eq. (A.3) by 6 and taking the ensemble average, i.e.,

1 t
<6(t)N(t» = t J <6(t)6(t')N(t'» Go(t-t')dt'

o

At this stage one can make the less restrictive assumption (3.14), which

expresses the unknown correlation in terms of the known autocorrelation

of the stochastic input 6(t).




