
November 1977

Institut tür Neutronenphysik und Reaktortechnik
Projekt Schneller Brüter

KFK 2387/V11

The KEDAK Program Compendium
Part VII
CALCUL-Calculation 01 Composed Cross Seetions

I. Langner, R. Meyer

Als Manuskript vervielfältigt

Für diesen Bericht behalten wir uns alle Rechte vor

GESELLSCHAFT FÜR KERNFORSCHUNG M. B. H.

KARLSRUHE

KERNFORSCHUNGS ZENTRUM KARLSRUHE

KFK 2387/VII

Institut für Neutronenphysik und Reaktortechnik

Projekt Schneller Brüter

The KEDAK Program Compendium

Part VII

CALCUL-Calculation of composed cross sections

I. Langner, R. Meyer

Gesellschaft für Kernforschung mbH., Karlsruhe

Abstract

CALCUL is a program system to calculate composed cross section quantities

and to arrange them according to KEDAK-conventions. A special command

language has been genera ted to simplify the input and to provide inter­

active communication under time-sharing-option. In CALCUL any amount of

data can be processed. The output of the program is a data set which can

be directly used as an input to program system KEMA which modifies the

KEDAK-library.

Das KEDAK Programm Compendium

Teil VII

CALCUL - Berechnung von zusammengesetzten Wirkungsquerschnitten

Zusammenfassung

Das Programmsystem CALCUL berechnet zusammengesetzte Wirkungsquerschnitte

und besorgt deren Aufbereitung entsprechend den KEDAK-Konventionen. Zur

Vereinfachung der Eingabe wurde eine eigene Kommandosprache entwickelt,

die es auch ermöglicht, interaktiv im Time-sharing-Betrieb zu arbeiten.

Mit CALCUL können beliebige Datenmengen bearbeitet werden. Die Ausgabe

des Programms ist ein Datensatz, der als Eingabe für das Programmsystem

KEMA dient, welches die KEDAK-Bibliothek verändert.

Contents

page

Introduction

1. User's guide

1.1 Purpose and capability of CALCUL

1.1.1 The commands and formulae for calculation of composed cross
section values

1.1.2 The arithmetic operations

1.1.3 The data organization commands

1.1.4 The program control commands

1.2 Structure of CALCUL

1.2.1 The control module

1.2.2 The operation code definition package OPDEF

1.2.3 The control input processing package PROCINP

1.2.4 The calculation package CALCPAC

1.2.5 The cross section formula calculation CROSSEC

1.2.6 Data management of the auxiliary data sets - DATAMAN

1.2.7 Output edition package - OUTPUT

1.3 External references

1.4 The control input for CALCUL

I. 4. 1 The function of the control input

1. 4. 2 The GO-mode and the WAIT-mode

1. 4.3 Input coding ~n the \vAIT-mode

I. 4. 4 The commands and their valid abbreviations

I. 4. 5 The control input list

1.4.5.1 The data types of the parameter values

1.4.5.2 The keywords defined, Table I

1.4.5.3 The commands and their positional and keyword operands,
Table II

2

2

2

3

4

4

4

5

6

7

7

10

10

1 1

11

12

12

12

12

16

16

16

17

18
20

1.4.5.4 The function of the commands 21

1.4.6 An example of a control input for CALCUL 23

1.4.7 The control input to print the information available from the program 24

1.5 The job control statements for a GO-mode job 25

1.6 The output of CALCUL

1.6.1 List output for checking purposes

1.6.2 The output of the set of data processed ~n a format suitable for
KEHA

2. Programmerls guide - detailed description of subroutines, labeled corumon
blocks, work areas and temporary auxiliary data sets

2.1 The control module - call scheme

2. I. 1 Function of the control module

2.1.2 Initialization subroutines: INIT1, INQ, TESTOP, FILLTP; the common
!INOUT! and !PARM!: initial and input parameter values

2.1.3 Transfer of data from an external source into DADS2 by the sub­
routines INPUT, INTERP (UPDAT, UPDN)

2.1.4 Construction of the control input in card image format: XXSIMU,
XXOUT, COCARD

2.2 The operation code definition package - call scheme and function

2.2.1 The control routine OPDEF

2.2.2 The definition entries comprised in OPLIST and the common !OPXX!

page

26

26

27

28

28

28

29

34

35

38

39

41

2.2.3 The definition subroutines for: keywords IXKEYW, operation codes ­
XOPCOD, auxiliary subroutines: CHKEY, LOPI, LOP2, LOP3, LOP4, TYPCHK
positional parameters - XPOSPA, default values - XDEFLT, exclusive 46
keywords - XEXCLU. The subroutine to print operation code package
tables - XOPRIN

2.2.4 The arrays containing the operation code package:
Table 1 - structure of the G-array
Table 2 - structure of the H-array
Table 3 - structure of the common !OPAR!

2.3 The control input processing package - call scheme and function

2.3.1 The control routine XOPCHK. Processing operation code operands ­
OPCD, CHKOPC, CONKEY. Processing keyword operands - DEFIN, PROKEY.
KEYCD

2.3.2 Processing interactive (real time) input - INQKEY, VERIFY. XXTM,
DISPLA

2.3.3 The subroutines to decode the control input list: NITEM, CllliREL.
CHKINT. CHKLOG, CHKL

2.4 The calculation package CALCPAC - call scheme and function

2.4.1 Preparation of data to be processed: ARITHO, FINDAT. ORDNEN, KEDCH,
AVAIL, XLIM1

2.4.2 The arithmetic operations: CALCI, CALCC, OPERCC, ETACC

52

55

57

64

67

72

74

80

2.5 Cross section calculation package CROSSEC - call scheme
and function

2.5.1 CROSEC - the control routine of CROSSEC

2.5.2 The subroutines for the calculation of the particular
cross sections:
TWOOP - f or ALPHA, SGG, SGT, SGX, SGW, NUSF
THROP - for SGA, SGG
SIXOP - for SGI, SGX
ETA2 - for ETA
SGGSTR - for SGG, SGTR
ALPETA - for ALPHA and ETA

2.6 Data Management of the auxiliary data sets DATAMAN ­
call scheme and function

2.6.1 Create and update the temporary data set DADS2:
subroutines EDIT, UPDATE, UPDN, common blocks
/DAI/, /DA2/, /DA3/, /DA4/, /DA5/

2.6.2 The subroutine CRECT (command DELETE)

2.6.3 Print out for checking purposes:
PRIDAT, LIMPR, PRTDAT

2.7 The output editing package - OUTPUT
call scheme and function

2.7.1 The control routine - EXIT

2.7.2 Handling of the dynamic storage allocation ­
SPACE2, SPACEX

2.7.3 The subroutines ADDREC, DROREC - to write the
output records

2.7.4 Preparation of the data for output:
ORDM, ORDT, EQUENX

3. References

page

91

93

95

97

99

104

105

107

109

110

112

114

116

- 1 -

Introduction

This report is intended to provide the information needed to use and maintain

the program system CALCUL. The program system CALCUL assists

the evaluator of neutron croSs section data by the computation of composed

cross section values processing any amount of data points and interpolating

the cross section values linearly, if necessary. The da ta processed are re­

trieved from the KEDAK-library and/or from an external source (tape, disk or

cards).

The output is a set of neutron cross section data 1n a format suitable for

KEDAK-update by the program system KE~1A.

The report is divided 1n two parts:

1. User's guide to g1ve the information necessary to use the program

system CALCUL: purpose, capabilit~ ~yout, input, output, job control

language.

2. Programmer's guide - the detailed description of the particular sub­

routine~ auxiliary data sets, work are~and common blocks used in CALCUL.

Zum Druck eingereicht am: Nov. 1977

- 2 -

I. User's guide

1.1 Purpose and capability of CALCUL

CALCUL is a program system to calculate cross section quantities. In order to

insert neutron cross section data evaluated elsewhere (or at Karlsruhe) into

the KEDAK-library it is necessary to (re-) calculate and arrange them

according to KEDAK~conventions. CALCUL processes data from an external source

and/or data from the KEDAK-library. A control input, in form of a command

languag~controls in which manner the da ta are processed.

The output is a set of data consisting of ADD-records and DROP-records, that

teIls the KEDAK-Management program, which data are to be added to the library,

and which data are to be deleted from the KEDAK-library.

1.1.1 The commands and formulae for calculation of composed data

The commands and formulae for computation of composed cross section values are

listed below.

The calculation of these values is performed with the aid of the single

arithmetic operations described below, but the control in this case is per­

formed by a subprogram, instead of the control input lists for the single

commands, i.e. the writing, reading, and processing of these control input

lists is spared.

ALPHA I a = o../Of

ALPHA2 a = (v/n}-I

ETAI n = v/(I+a)

ETA2 n = vlltOf/(Of+Oy}

NUSFI vf .. v-of

SGAI 0 = 0 + °f+ o + 0 + °da y p a
SGGI 0 = 0 Way f

SGG2 0 = °fll«v/n)-l}y

SGG3 0 .. 0
°f - 0 - 0 - 0y a p a d

SGII 0 n'
.. 0 - 0 - 0 - 0 - 0 -0 -0-0x y p Zn a 3n f d

- 3 -

SGNI 0 == 0 - 0n T x

SlbTI °T 0 + 0
n x

SGTRI 0 o - 0 • ~Ltrans T n

SGXI 0 == o - 0
x T n

SGX2 0 == 0n' + 0 + °f + 0 + 0 + 0 + 0 + 0d
x y P Cl 2n 3n

1.1.2 The arithmetic operations

CALCUL assists the user 1n the general problem of exercising the basic mathe­

matical operations upon functions depending on one variable (energy). Thus

CALCUL simulates a desk calculator operating on functions instead of single

numerical values t with the necessary interpolation being performed.

I. Operation "+"

R == R+y

2. Operation "-"
R == R-y

3. operation " "
R == R.y

4. operation 11/"

R == R/y

5. composed arithmetic

operation

R "" IA: I+R)

ADD-command

R - the current result t is equal to

zero at the start of the calculation

~ are da ta arrays

SUBTRACT-command

MULTIPLY-command

DIVIDE-command

ETA calculation

- 4 -

1.1.3 The data organization commands

Reset the current result to zero

Delete the previous operation

Store the current result for later use
in CALCUL

Store the current result for the output ­
data set

Read the da ta from external source,
(i.e. data not stored in the KEDAK­
library)

1.1.4 The program control commands

Restart the program at beginning

Create the output data set fro~ the
data saved during the calculation

1.2 Structure.of CALCUL

INIT-command

DELETE-command

NAME-command

SAVE-command

INPUT-command

RESTART-command

STOP-command

CALCUL is written in modular form with many subrout to

addition of new options and to permit the of a

structure.

litate the

over

The subroutines of CALCUL are comprised in the folLVWLu~

I. Control module

2. Operation code (command) definition package - OPDEF

3. Control input processing package - PROCINP

4. Calculation package - CALCPAC

5. Cross section formula calculation package - CROSSEC

6. Data management of the auxiliary data sets - DATAMAN.

modules:

7. Output edition package (KEMA-input-format data set) - OUTPUT

- 5 -

1.2.1 The control module

The program flow of CALCUL is mainly controlled by the control input. The main

program and the subroutines described in 2.1 "The controle module" perform

the functions required to control the program execution. The command language

for the control input is defined in the module OPDEF before the calculations

once at program start of CALCUL.

The control input processing module is executed for each entered command.

First command entered should be INIT - to initialize parameter values. Then

the operation mode: GO or WAIT is ascertained, acheck for DD-cards is performed,

the operation code is tested, the data to be processed are transfe~d the

work area, and calculations are performed, as required by the code

entered.

- 6 -

1.2.2 The operation code definition package - OPDEF

The operation code definition package defines the operation codes (commands)

and the corresponding positional and keyword parameters of the control

input for CALCUL.

The operation codes, keywords and their parameters are stored in internal tables,

the G-array, H-array and the common /OPAR/.

The lengths of the G-array and H-array depend on the number of defined commands,

and keywords, and on the number of their parameter values. The area for the

arrays G and H is provided by the main program and fixed in OPDEF, at present

500 REAL*4 words for each array.

The G-array (see Table I) retains the data for the operation code definition:

the operation code names (commands = alphameric text as listed above), for

each command: the length in characters, the abbreviation length, the number

of keywords defined for each command, the number of positional parameters,

the addresses of the definition data for each keyword in the H-array, the

addresses of the locations in the common /OPAR/ where the values of the posi­

tional parameters are stored and the types of the positional parameters.

The H-array (see Table 2) retains the da ta for the keywords defined for each

command: the keyword names (alphameric text), for each keyword: the length of

its name, the abbreviation length of its name, address of a flag byte in the

common /OPAR/ retaining a flag, which indicates if a parameter value was

found in the central input list, the address of the list of the keywords ex­

clusive with this key, the default control parameter, the number of parameters,

addresses of the locations in the common /OPAR/ where the parameter values for

the keys are to be stored and the parameter type.

The common /OPAR/ retains the names and the definition data of the keywords

and positional operands for the package. The keywords are defined before the

commands. If the key is to be assigned to a command, the definition data are

stored from /OPAR/ into the H-array. (For /OPAR/ see Table 3.)

- 7 -

1.2.3 The control input processing package PROCINP

The control input processing package decodes the character string of a control

input list, processes the control input and prepares the positional and the

keyword parameter values from input in the common /OPAR/.

The processed control input list is printed for checking.

If the control input for CALCUL is produced 1n the WAIT-mode in a fcr.eground

job on a terminal in TSO, the input entered 1S completed by the control input

processing package and the control input list is printed at the terminal

for checking.

The user may then decide, whether this input list should be added to the control

input in card image format created on the data set with the reference number 9

or not. The control input list is added by a call to SIMUL for KTOUT = 9.

1.2.4 The calculation package CALCPAC

The basic arithnetic operations (with interpolation if necessary) on tabulated

functions are performed in CALCPAC. Also the preparation of data to be processed

is done:

i. Check, if da ta to be processed are already retrieved or calculated and

stored 1n the temporary direct access data set DADS2.

2. Find out, which data are to be read from the KEDAK -library.

3. Find out. if they are available on the KEDAK-library.

4. The requested data are transferred from DADS2, and from KEDAK, respectively,

into the working area of CALCPAC by the aid of the proper retrieval routines.

The working area 1S subdivided 1n three arrays:

I. (x,y)

(x I ,y I)

The data from previous operation and the current result. A

flag ADR in the common /CALCOM/ determines which is the

current result:

ADR = .TRUE. =

ADR •FALSE. =

(x.y) ~ current result

(xl,yl) ~ current result

- 8 -

The data from DADS2 or KEDAK.

If the work area in main storage 1S not sufficient to store the

data (i.e. the number of data is greater than the array the data are

stored on two auxiliary sequential data sets with the data set reference

numbers 3 and 4 (DCB =(RECFM = VBS t BLKSIZE = 2008».

The following picture assists 1n deciding upon the result in cases

where the energy ranges of the current result and the da ta from KEDAK or DADS2

do not coincide.

In our sample the current result extends below the data from KEDAK,

the latter extendBto energies above, with an overlapping range between

and X •
max

Then the results of the different types of arithmetic

follows:
would be as

I. ADD

XI .. X XI .. XUE XI .. E

YI .. 1 YI .. Y+S 11 .. S

Le. Y .. 0 for (E < X .) E :> X
mln max

S .. 0 for X < E • (X:> E)
* IDln max

2. SUBTRACT

XI .. X XI .. XUE

YI .. Y YI .. Y-S

i.e. y • 0 for (E < X .) E :> Xmln ux
S .. 0 for (X :> E) X < Eminmax

*

XI .. E

YI s -S

* Outside the energy range [EMIN ,EMAXJ the

(X,Y)-data to be pracessed are not changed.

Outside the range of available X-values the

(E,S)-data are stored unchanged for ADD.

For SUBTRACT the $-values change to

XI = X XI .. XUE XI .. E
YI .. 0

YI .. Y"'S YI .. 0
or YI .. Y

I

i$e~ for X < E <
ZEBO .. •TRUE. s) S .. 0

min ZERO .. .FALSE ..> S .. I
ZERO ;; ZLOW from input

ZEROI .. T .. S=>O
for X :> < ZEROl .. F .. S => I

ZEROl ;; ZUP fram input

for E ~ (X . , Xma) : S .. 0
IDln

4. DIVIDE

XI .. X XI = XUE XI .. E
YI .. 0

YI .. Y/S .. 0
or YI .. Y YI

I

.e. for X < < ZERO .. .TRUE. => S .. 0
ZERO - •FALSE -) S • I

for X :> E < ZERO I ••TRUE. -> S • 0
max ZEROl .. .FALSE. ..> S • I

for E ~ Xma) S • 0

if S .. 0 ~ Y .. 0

- 10 -

1.2.5 Cross section formula calculation package CROSSEC

The module CROSSEC provides a set of often used calculation formulae that

will be satisfactory for most applications. The user is released from the

job of writing the complex input list for each operation and data type

included in the formula, but he must know which cross sectio~are involved in

the formula, and whether data for these types are available on the KEDAK­

library (or as external source). If the data for a type are not available,

the calculation is performed without these data and a warning is printed.

For each formula a command is provided in the command list. (See the commands

in 1.1.1). The commands are defined in OPDEF (see 2.2.1).

The subroutines for the formulae for calculation of composed cross section

values are comprised in the cross section calculation package. The subroutines

of the calculation package CALCPAC are used by CROSSEC to per form the basic

operations. The subroutine EDIT is called to store calculated data inter­

mediate into the temporary direct access data set DADS2.

1.2.6 DATAMAN - The auxiliary data sets of CALCUL:

DADS2 -direct access data set and

work area - sequential data sets

In order to provide increased flexibility, a special direct access data set

(DADS2), with the dataset reference number 2, is created (DCB = (BLKSIZE =
2000, RECFM = F».

The data from the external source (read by the INPUT command) and the da ta

calculated in CALCUL are stored in DADS2 for later use in calculation and/or

to edit them in the KEMA-input-format.

The da ta to be edited are specified to the prograrn by the SAVE-command, data

for later use in CALCUL only by the NAME-command.

The data are stored 1n records of 2000 bytes 500 words.

- 1I -

The common /DAI/ retains information about the layout and the status of DADS2,

the common /DA2/ the entry tables for the reaction types for which data are

stored.

The DELETE-command is provided to delete the result of the last arithmetic

operation in CALCPAC. The printout of the data currently stored as result

(in CALCPAC) or of the data to be named or saved on DADS2 for checking pur­

poses is managed in DATAMAN and controlled by the key PRINT or NO PRINT in

the control input of the processed command.

1.2.7 Output editing package (KEMA-input-format data set)

The data calculated in CALCUL are written for output in ADD-records - with

a maximum of 2000 words - for the KEDAK-management program KEMA. The records

are sorted for material names, reaction type names, energy, and energy range

in the same order as in the KEDAK-library.

The KEDAK-library is checked, whether da ta already exist on the library at

energy points for which da ta are to be added. To delete these data DROPS­

records are written on the output data set for each energy. All da ta for a

requested type may be deleted fram the library by DROPA-records. DROPA-records

are written on the output,only if indicated by the control input.

1.3 The external references

The retrieval packages RETPAC (see reference 6) and LDFPAC (see reference 1)

are used to read the data from the KEDAK-library. The following subroutines are

external references: XTAREA (see reference 2) and FREESP (see reference 8) ­

to handle the dynamic storage allocation

CONVY (see reference 7) and STRING - to convert floating point and integer

data to alphameric and vice versa.

DEFI and DINF (see reference 4)- to make the DEFINE FILE statement dynamical.

DDTEST (see reference 3) - to test DD-cards.

- 12 -

1.4 The control input for CALCUL

1.4.1 The function of the control input

The control input for CALCUL has the form of a command language and controls

the flow of the program and in which manner the data are processed.

The control input is read in from cards or from a card image input data set

on type or disk, and processed by the control input processing package, and

provided for the program via common /PARM/.

1.4.2 GO-mode and WAIT-mode

CALCUL is designed to operate either in the GO-mode or the WAIT-mode. An

interactive facility enables the communication between the user and the

control input processing program, in WAIT-mode in a foreground job on a

terminal in TSO,in a COMMAND-mode and in a REPLY-mode. In the COMMAND-mode

the user may enter control input according to syntax rules,and in the REPLY­

mode he replies to a message from the program. The user may inform himself

which replies are allowed by entering a question mark. The GO-mode can

be used (in a foreground or) in a background job and is restricted to the

COMMAND-mode. The syntax rules for the control input list apply to the

WAIT-mode and to the GO-mode.

1.4.3 Input coding 1n the WAIT-mode

A special facility is provided in the WAIT-mode of CALCUL. The input entered

at the terminal via keyboard is supplied by the control input processing

program, if necessary, to a complete control input list for each command

entered, and provided in a "card-image-format" data set for later use in a

GO-mode run.

Input coding in the WAIT-mode enables the user to reduce the possible errors

in the complex input coding for the cross section evaluation by a programmed

check:

- 13 -

1. if the entered parameter types are valid for the positional and keyword

operands,

2. if all required positional and keyword operands for the comaand are

entered,

3. if the syntax rules for coding the control input list for the command

are violated,

4. and by completion of the control input list for a command with the

default values of parameters (default values remain valid until ex­

plicitly overridden by a new input value),

5. and by prompting the nput for the parameter values without adefault

value available.

Abrief description of the available commands can be obtained by the HELP

command. Information about some general rules for the use of some special

characters is also available:

1. hyphen (~)

2. question mark (7)

3. exc1amation mark (!)

4. underscore (_)

5. slash (/)

:input expected or will be entered

:requests information from the program

:cancels the last input

:input continuation is indicated

:terminates the input (reques~ for a command.

The special characters are al10wed in the REPLY-mode at the terminal only.

The input of a question mark is a1ways allowed, also in the COMMAND-mode, that

is whenever the message: "ENTER CONTROL INPUT LIST _" is printed. The user

may enter the contro1 input list for a command according to syntax ru1es

specified be1ow. Moreover information about syntax rules and background use

is availab1e from the program. If HELP'command name' is entered all available

information about the command named is printed.

- 14 -

The user may alter the mode at the terminal (e.g. for testing purposes) by

the TERMINAL command (TERM, NOTERM). The LOAD-module of CALCUL is required

as a TSO-data set to operate CALCUL in the WAIT-mode on a TSO terminal.

The listing of the TSO procedure OPTEST shows an example of TSO commands

necessary to work with CALCUL in a foreground job.

The command:'exec optest' initiates the execution of the program for input

coding.

OPTEST.CLIST

00010 PROC 0

00015 TERMINAL LINESIZE(130) SCRSIZE(12,80)

00020 FREE F(FT05FOOI)

00030 FREE F(FT06FOOI)

00040 ALLOC F(FT06FOOI) DA(~)

00050 ALLOC F(FT05FOOI) DA(~)

00055 ALLOC F(FT09FOOI) DATASET('TS0048.DATA.CNTL')

00060 CALL 'TS0048.0PAC.LOAD(OPl),

00070 END

READY

exec optest.clist

The following list is a protocol of a session at a terminal. The user may enter

input whenever a hyphen appears as last character of a message. If "VERIFY -"

appears, the user may hit the return key for verification of the input, or

enter the exclamation-mark to delete this input. The user may enter a question­

mark to obtain information upon the type of input expected.

- 15 -

INVALID SCRSIZE OPERAND, USE LINESIZE

ARE YOU FAMILIAR WITH PROGRAM DESCRIPTION AND INPUT-CODING? ENTER YES OR NO. ­
yes

DO YOU WISH TO OPERATE IN GO MODE OR IN WAIT MODE? ENTER GO OR WAIT ­
wait

NO DD-CARD FOR FTOIFOOl HAS BEEN SUPPLIED TO DEFINE THE KEDAK LIBRARY.
NO EXTENDED TESTS WILL BE PERFORMED.

YES
GO

YOU ARE USING THE KEYED CONTROL INPUT PROCESSING PROGRAM NOW. ENTER INPUT
IF A BREAK IS THE LAST CHARACTER OF A MESSAGE DISPLAYED. TO OBTAIN INFORMATION
UPON THE TYPE OF INPUT EXPECTED YOU ALWAYS MAY ENTER A QUESTION MARK, IF
THIS IS NOT LITERALLY EXCLUDED. TO OBTAIN GENERAL M~D SYNTAX INFO~~ATION

ENTER HELP OR ? WHEN YOU ARE IN THE COMMAND MODE. USE THE TERMINAL COM}~D

AT A 2260 TERMINAL. YOU ARE IN THE COMMAND MODE NOW. ENTER CONTROL INPUT
LIST -
add
DEFAULT ASSln1ED.
VERIFY -

NO ~~TERIAL NAME AVAILABLE. REENTER N~ffi ONLY, WITHOUT DELIMITING APOSTROPHES ­
u 238
NO TYPE N~ffi AVAILABLE. REENTER NM1E ONLY, WITHOUT DELI}fITING APOSTROPHES ­
sgt
THE FOLLOWING CONTROL INPUT LIST HAS BEEN PREPARED FOR OUTPUT:
ADD 'u 238' , SGT ' 0.0 FROM= 0 . 0 TO= _

-I.OOOOOE+OO NOPRINT OUTUNIT= 10 CONST= 0.0
VERIFY -

ENTER CONTROL INPUT LIST ­
1.

DEFAULT ASSUMED.
VERIFY -

THE FOLLOWING CONTROL INPUT LIST HAS BEEN PPillPARED FOR OUTPUT:
INIT FROM= 0.0 TO= -I.OOOOOE+OO

VERIFY -

ENTER CONTROL INPUT LIST -
su 'u 238' 'sgx' from=2.e+3 to=12.e+5 print=6
THE FOLLOWING CONTROL INPUT LIST HAS BEEN PREPARED FOR OUTPUT:

SUBTRACT 'u 238' 'SGX' 0.0 FROM= 2.00000E+03
1.50000E+06 PRINT= 6 CONST= 0.0

VERIFY ­
!
READY

TO=_

- 16 -

1.4.4 The commands and their valid abbreviations

A command is one of the listed below operation codes. The bracket denotes the

valid minimum abbreviation. It may be extended by an optional number of

characters up to the full length of the operation code name:

ADD(A), SUBTRACT(SU), MULTIPLY(M), DIVIDE(D), ETA(E), NAME(N) , SAVE(S),

DELETE(DE), STOP(ST), RESTART(R), INIT(I), INPUT(INP), ALPHA 1(AL), ALPHA2,

ETAI, ETA2, SGAI(SG), SGGI(SGG), SGG2, SGG3, SGII(SGI), SGNI(SGN), SGTI (SGT) ,

SGTRI(SGTR), SGXI(SGX), SGX2.

1.4.5 The control input list

The control input list is a block of control input data which must be entered

as a logical unit. A control input list consists at least of one command, in

general:

I. of the command

2. of the (max. 3) positional parameters

a) isotope name

b) data type name

c) third name (e.g. excitation level energy)

(e.g. 'U238' 'SGIZ' 1.4E+3)

3. and of up to seven keyword operands with their parameter lists.

1.4.5.1 The data types of the parameter values of positional and keyword

operands

Four types of data are accepted by the control input processing program as

input data: real, integer, logical, and text data. The real and integer da ta

are coded as usual in FORTRAN; if the type of data entered is not of the type

expected, it is converted. Real data of single precision only can be handled.

Logical data are coded as F or T for .TRUE. or .FALSE. respectively. Text

data must be enclosed within quotes and must not exceed the size expected by

- 17 -

the program (maximum 36 characters). The parameter value is assigned to the

keyword by the equal sign, e.g. PRINT "" 6. The keywords may appear in any

sequence and the input of keywords with default values is optional. For

these keywords not specified in the control input list the default value ~s

inserted.

Example of a control input list

ADD 'u 238' 'SGT' FROH"" I .E+3

TO "" 12.E+4 PRINT "" 6

1.4.5.2 Table I The defined keywords, their parameter types and syntax (R-real.

I-integer, L-Iogical, T-text)

. . parameter abbreviation
default".1~"' .. y of the explanation

name value type valuename

FROH .. 1.0 R F Iower energy limit 0,

Ta "" 10.0 R T upper energy limit -I.

PRINT "" 6 I P output unit number for the
printed output -

NOPRINT no parameter N Print out is suppressed NO PRINT

OUTUNIT "" 10 I 0 data set reference number of
the output data in KEMA-input 10
format

CONST "" 5. R C constant to be added, sub-
0.0tracted etc. to the current

rl"l'lult

zup "" T L Z zero range upper TO T

ZLOW "" T L ZL zero range Iower FROH T

FORMAT .. ' (I X, 2E 13 . 6)' TR FO format of the data record obI _lSdLULy
on the external souree

UNIT .. 20 I U data set reference number for obliödLuLy
the external souree

SKIP "" 2 I S number of data reeords to be
skipped on unit • 20 before 0
transfer of data into DADS2
begins

REI.JIND no parameter REWIND

- 18 -

Note: The keywords PRINT and NOPRINT are mutually exclusive. IF CONST is

entered, no positional operands are allowed in the input.

The input of the keywords FO&~T and UNIT defined for the INPUT command 1S

obligatory,no default values are available.

The single keyword operands with their parameter values are separated in the

control input list by a comma or a blank. The positional parameters are

also separated by a comma or by blanks. If only the separating comma is coded,

the preceeding positional operand is bypassed and its current value is taken

as default. Trailing positional operands to be bypassed need not be indicated

by commas, but they simply may be omitted from the list. If the number of

positional operandsentered in the input list exceeds the number permitted by

the current command, an error condition will be raised and the excessive

values will be skipped by default. If a control input list do~s not fit in one

line, an underscore after the last input item indicates a continuation line

for the control input list. A control input list may oonsist of asmany lines

as necessary, but its size must not exceed 360 characters.

A slash (/) may be used to indicate the end of a control input list.

The use of theslashis optional, but in case of numbered input cards it may be

used to inhibit reading of sequence numbers.

1.4.5.3 The commands and their positional and keyword operands

The three positional parameters (isotope name, reaction type name, and third

name) are defined for the following commands: ADD, SUBTRACT, DIVIDE, MULTIPLY,

NAME, SAVE, INPUT and all 15 commands for composed cross sections: ALPHAI,

ALPHA2, ETAI, ETA2, NUSFI, SGAI, SGGI, SGG2, SGG3, SGII, SGNI, SGTI, SGTRI,

SGXI, SGX2.

- 19 -

Commands with no positional and keyword parameters are: DELETE, RE START , STOP.

The control input list for these commands consists of the single command name.

The command HELP without operands provides the print out of information

available from the program.

HELP command name (e.g. HELP ADD) provides the information for the command.

Two keywords are defined for the command INIT: FROM and TO • !he command INIT

must be entered before each command to calculate the composed cross section

values (e.g. ALPHA I , etc.) and whenever a new calculation for a type is

started with the aid of single commands. The current result is set equal to

zero by INIT.

Table II The commands and tional and

o
N

number of number ofcommand positional
,

k~J ~~ s
fl'.""'ywv,-u names

parameters

INIT 0 2 FROM. TO

SUBTRACT 3 5 FROM. TO, NOPRINT).CONST

MULTIPLY 3 7 FROM. TO, NOPRINT,). CONST. ZLOW. ZUP

DIVIDE 3 7 FROM, TO, NOPRINT. (PRINT). CONST. ZLOW. ZUP

ETA 0 2 NOPRINT. (PRINT)

INPUT 3 6 FROM. TO, FORMAT, UNIT. SKI p. REWIND

NAME 3 4 FROM, TO, NOPRINT. (PRINT)

SAVE 3 5 FROM. TO. NOPRINT. (PRINT).OUTUNIT

ALPHA) 3 7 FROM. TO. NOPRINT. (PRINT). OUTUNIT. ZLOW. ZUP

ALPHA2 3 7 FROM, TO. NOPRINT. (PRINT), OUTUNIT, ZUP, ZLOW

· · · · · · · · · ·· · · · · · · · · ·· · · · · · · · · ·
SGX2 3 7 FROM. TO. NOPRINT, (PRINT), OUTUNIT, ZUP, ZLOW

DELETE 0 0

RE START 0 0

STOP 0 0

- 21 -

1.4.5.4 The function of the commands:

INIT

ADD

SUBTRACT

MULTIPLY

DIVIDE

ETA

NAME

SAVE

DELETE

RE START

INPUT

resets the current result to zero.

adds a set of cross section data to the current

result..

subtracts a particular set of data from the

current result.

multiplies the current result by a particular

set of data.

divides the current result by a particular set

of cross section data.

calculates ETA uS1ng the current result as ALPHA.

i.e. the new result is I!(I+R). where R is the

old result.

assigns a name to the current result and stores this

set of da ta for later use within the current run.

The da ta are not saved beyond the end of the run.

assigns a name to the current result and stores

data set for later use wi the current run. Data

will be edited at the end of the current run a

format suitable for KEDAK-updata by KEMA.

deletes the result of the preV10US operation

if the data were not stored in main storage but on

an auxiliary data set).

restarts the program at beginning. All data con­

structed so far will be lost.

reads the formatted input from an external source.

STOP causes editing of all saved data and

execution.

program

- 22 -

The function of the particular commands for cross section calculation is

described above by the formulae (see 1.1.1).

The user must know which cross section values are used for calculation by

the command chosen, and whether the data are to be used from the KEDAK­

library or from DADS2. First the dataset DADS2 - with the data calculated

in the current run - is checked, if the data needed in the formula are avai­

lable, otherwise the data are read fram the KEDAK-library. The user must

consiJer this priarity of calculated data in coding the control input.

FPOM=4.00000~+03 TO=
IUP=l LLC~=T

- 23 -

1.4.6 An example o~ a control input for CALCUL

IIINP048TI ,JC1ß (OU l -·8,101,P6MJL),LU~GNEF,CLÄSS-=!I"R,=(;ll1r~=310K

I*SETUP nrV!CF=23]4,ID=GFKO?S
I*SETUP OFV lC=:= :::31'+, ID=GFKOr:;O
11 EXfC FHG,N6"1f=DPl
11 ST F PLI R nn UN n = ? :l, l4- , V() l -= SEr. = GF K 029 , J) SN = 1 1\1 R• C A l C U L. L CA D , i) I S P =5 H H
IIG.FT,J1FOOl CD U\J tT=?314,VCJl=Sf-R=GFKC5C,OI SP=SHR ,f)SN=KEDAK~

IIG.FT02FOOl OD U\!IT=SYSD/",SP~C[::=(;;OnC,lUOI ,OCP=(i3LKSI ZE=200) ,RFCFfI.'=FI
IIG.FT03FOOl ce Ui'JIT=SYSfJA,SPACF=(?OJS,~:JO),

11 CCB= (R;:(F:\i1=VES,11lKSIlF=2üOSI
IIG.FT04FOOl CO U~JT'r=SYS04,:,rt'\CF=(2!)OR,lGO),

11 OCB=(PECFM=Vß~,RLKSIlE=ZCJ8)

11 G • Fr 0 0 F 0 0 i ces YS] l JT = 1\ , oe p = { 1:.: ECF M=F b , U" EC. L -= 1. 33 , 3 L KSI ZE =(1 3 1.)
IIG.FT1.0FOOJ CfJ ll\jTT=$YSDA,nr<:.p=(NEW,UELr:-Tf:j ,SPACf={TRK,301
IIG.YlJDlJMP co SYSJlIT=A
11G.:;Y$IN er *

NO
GO

I 1
S GN ' PU? 39 ' 'q;\j' For~ M= 1 • F? Ti' = L 0 1

I 1
SGTR ,'SGTRI 1
I I

S GG 'PU 2.,9 1 , ';', Gel, FR U ;1 = :i .;:: +3 T Cl =~ tJ • ;: + :, 1
I I
SGX?'SGXII
I 1
SCA ,'SGA' I
r 1

S SN " s (;1'] , 1
I 1

SGTR ,'SGTR' I
I 1
SGT~ 'PU?~:,8' ISGTRI FPQ,vl=O.3 T(1=S.

INIT 1
SGX2 'U 23P' 'sr:x

1.95000~+06 OUTUNIT= 10
HHT

S GAl

HJIT
S GNl

1
'U 238 1

1. 50000f+07
I

1 U 2? 8 1

'I. '50000F+07

, s (~. '

1 SG~ 1

CiUTlJf\JT T:;

CJljTU"jJ T=

, ,...
• \ •.1

10

FRUI'I='t.O(h)OO~+03 TrJ=
ZUP=l' lLOv-J=T

FPC('J=4.0UOO,lE+03 Tr;=
lUP=T lLOw=T

INIT I
ALPH~,l IPU;~~GI 'l},LP~It:; 1

6.7~;E"'2 :JUTtJr"~TT=!O

STGP
1*
11

zUP = T
F\W!~1=1.00000E-U3 TO=
IL()\o.=T

- 24 -

1.4.7 The control input to print the information available from the program_._,,_.... .

IIINP048GU JOR IOOLA,10J,P6MJAI,LANGNER,CLASS=A,REGION=310K
I*SETUP DEVICF=2314,IO=GFK029
I*SETUP DI=VICE=.2311.. ,I')=GFKOH::
1/ EXF:C FHG,\I11V,F='lPi

IISTEPLIR 00 U~lT=2314,VOL=SEP=GFK02g,DSN=INR.CAlOP.LOAD,DISP=SHR
IIG.FT,J1FJOl, Df) iJ'JIT=:?3J4,VCjL=SER=GFKG6,DI SP=SHR,DSN=KEDAK3
IIG.n02FOO:, on U\IJT=SY~DA,SPACF=(2000,100) ,DCß=(BlKSI lE=200J ,RECFM=F}
IIG.FT{PFOOl ce 111\1 IT=SYSlJA, SPATE=(20J8,lUC) ,
11 DCR= (R tCi="1=VES,ßLKSllF= 200P)
IIG.FTOLI-F001 oe lJ\llT=SYSDL\,SPl'\Ct=(2008,lOO>,
11 DCf?= (OECF'-"=VBS,fLKSIlE:=200PI
IIG.FT09FOOi 00 SYSilIT=t ,Dre=(RECFM=Fß,LRECL=133,ßlKSIZE=931~
IIG.FTIOFOOJ CD INtT=SY5DI\,DJSP=(NFW,DELETE) ,SPACE=(TRK,30)
IIG.:;YSIJCUMP ce SYS:JIJT=r
IIG.SYSlf\l ce *

NO
GC
HFLP
HEL.P A!JC
HELP f:IVTCE
HELP ET/I
HFLP ~IAMf

HEL P S {:.v f:
HEL P ".IIUL. Tl PL Y
HELP SUPTPtlCT

HELP H\iIT
HEL P UJPLJl
HEL r:: ::, TrlP
HfL P FT I' J
HHr MPHAl

HFLP tlLPHA2
HEL P FT A2
HELP i\lllSFl
HHP SGAl
HELP SGGl

HELP SGG?
HELP SGG3

HFlP SGTJ
HEL P SC;" 1

HEL. P S Gi'Jl
HELP SGHiJ
HELP Sr.Xi
HElP SGX2

STiJP
1*
11

- 25 -

1.5 The job control statements for a GO-mode job

IIINR048TA JJB (0048,lC'l,P6MIAI,lANGNER,ClASS==A,REGION=31ClK
I*SETUP CEVICE=2314, ID==GFK029
I*SETUP CEVICE=2314, ID=GFKü16
11 EXEC fI-G,'4AME=OPl
I/STEPl IB 00 U'l IT= 2314, VOL=StR=:;F K029 ,0 SN=! NR" CAlCUL" lOALJ,OIS P=S HK
IIG"FTOIFOOl 00 Ur-,jlT=2314,VOL=SER=3FK'H6,OI SP=SHR,DSN=KNOF
//G o FT'12FOOl 00 UNIT=SYSDA,SPACE=(Zf'CC,li.hJl ,OCB=(BLKSI lE=2l, U ,RECF~J\=FI

IIG"FT03FOOl 00 UNlT=SYSDA,SPACE=(ZCC8,lOOl,
11 [C B== «R EC FM = '118 S, BLKSI l E == ZC() 81
I I G" FT 0 4 F0 (I 1 0 D UN IT== SV sn A , SPACE = (2 0 C8 ,1 ,) (;) ,
11 CCB=(RECF"I=VBS,ßlKSIZE=2CD81
IIG"FTJ9FOOl OD SYSOUT=A,D:B=(REC;::~"'=FB,LRECl::133 ,BlKSIlE=9311
IIG"FTIOFOOl 00 UNIT==$YSOA,JISP=(NEW,OELETEI ,SPACE=(TRK,3UI
IIG.. SYSUDUMP 00 S YSO UT=A
11 Go S YS IN lJ D *

IIINR04ETE Jne (4t,1 1,F6MIAI,LANG~~F,CLASS=ö,~EGlrN=3)K

I*SETUP CEVICE=2314,ID=GFKC2S
I*SETLP CEVJCE=2314,IC=GFK016
11 E>:[C FHG
I/LOAC oe UNIT=2314,vnL=SEF=GFK 2S,DS';=INF"CßLCP"LlAf)(I]Pll DISP=SHF

IG.FTOIFQCl OC UNIT=2314,vnL=SE~=GFK 16,DISP=SHR,DS~=KNDF

IIG"FT 2H;ül 00 Ut'.JIT=SYSDA,SPACF=(2\ ,h l,CC P =(F'ILK5IZf-:=2)'",PECFrv=f
/ I G", F T0 3 FOOIe C UNIT == S YS [).A , S (: 6 CE= (? \ J R, 1 I ,
11 OCR=(RECFM=\lBS,BLKSI l!:=;:"'_ 81
IIG"FT 4FOOl oe UNIT=SYSDA,SPACE=(2 E,l~i I,
/1 CCE=(PECFN=VBS,RlKSIlE=2 8 I
IIG"FT SEt 1 00 sysnUT=A,OC8=(RECF~=FB,LPfCL=133,BLK~Il[=g"1I
I 1 G.. FT10 F,)() 1 CC UNIT = 2 3 14 , CS f\,= HJ R" L"I N<> PU 2::' 9, CIS p:: (Nt w, Kr: EP l ,
1I VOL=SER=GFK 16,SPACE=(TFK,3 f I
I/G"FTIIFOOl GO UNIT=2314,VOL=S[P=GFK'lh,DSN=I~FGLA~oPLUTC~

11 DISP=(OlD,OELE1EI
IIG .. SYSUCU~P 00 SYSOUT=A

IG",SYSI/\ 00 *

- 26 -

1.6 The output of CALCUL

There are two different output types of CALCUL:

a) List output for checking purposes and error messages:

1. The control input list

2.1 NOPRINT was specified: short output is printed by ARITHO

2.2 PRINT was specified: 1. and 2.1 is printed and additionally the

lists of the current result of each single operation, of the

data to be named or saved, and of the data edited for KEMA.

b) The dataprocessed and calculated by CALCUL are written in a dataset

edited in the KEMA-input-format for later use to update the KEDAK-library.

1.6.1 List output for checking purposes

The user may produce a listed output for checking purposes if desired. He may

exercise the control over this print out by the keywords PRINT or NOPRINT.

The standard option is NOPRINT.

The keyword PRINT • 6 must be entered for each operation where the complete

control output is requested.

Then a "pr int out of data currently stored as result and the total number of

data points available" is edited after the performed operation. If NOPRINT

was entered, the control input list only is printed and the messages from

ARITHO: the number of names, the names of the reaction type, and the lower

and upper limit of the energy range processed.

For each SAVE command entered, the entry table of the temporary direct access

data set DADS2 is listed additionally:

MAT material (isotope) name

TYP reaction type name

NNAM the number of names

EXC third name (e.g. excitation energy)

EMIN lower } energy limi t
EMAX upper

IR entry count

NP

KENN

- 27 -

the number of da ta points for each entry

z 0 indicates data to be stored for later use

in CALCUL only (NAME-command)

= 10 (or > 0) indicates data to be also edited

in the KEMA-input-format (SAVE-command) on

a data set with the data set reference number

equal to KENN.

The current result of the single operations is not printed for commands to

calculate composed cross sections. Only the final result is listed completely,

if PRINT = 6 was specified for these commands.

1.6.2 The output oE the set of data processed in a format suitable for KEMA

The output is edited in the module OUTPUT. The data are sorted by OUTPUT in

KEDAK-order. The data to be written in KEMA-input-format on the output data

set with the data set reference number 10 (: KENN ; OUTUNIT) are specified

to the program by the SAVE-command. The user may alter the default value = 10

by an input for the keyword OUTUNIT of the SAVE-command. A DD-statement must

be supplied at the job control statements for CALCUL, e.g.

//G.FTIOFOOI DD UNIT=2314,VOL=SER=GFK050,SPACE=(TRK,30),

// DISP=(NEW,KEEP),DSN=INR.GOEL.CALCUL

The amount of space 1n the SPACE parameter depends on the number of calculated

data points and the length of the track. If PRINT = 6 was specified in the

SAVE-command, the complete output written is listed also. If NOPRINT was

specified, the data values are not written, only the type of records and the

data type names e.g.

DROPS

or

~D

are listed.

PU239

FROM=I.E+3

PU239

FIRST PAIR:

LAST PAIR:

SGX

TO=3.E+4

SGX

I.E+3

3.E+4

1.24IE+I

2.445E+0

- 28 -

2. Programmer's guide - detailed description of subroutines, labeled
_co~on_b}oc_~~_":.c:~~__aEe_c:~ _anc!..-~_e..n~p"orc:ry ~ux~!.-~c:.s':..-data~ets _

2. 1 The contral module

2. I. 1 Function of the control module

The control module for CALCUL consists of the main program and the following

subroutines:

INITI - to initialize da ta set parameters

OPDEF - the control routine of the module OPDEF (see 2.2. I)

INQ - to set the operation mode: GO or WAIT

DDCHK - to test for DD-cards and attach the KEDAK library

DEFI - to define the direct access dataset DADS2 (see reference 3)

GETOP - to call the module PROCINP (see 2.3)

NAMIN - error correction of the input for the positional operands

TESTOP - to test the operation to be performed

FILLTP - to provide from KEDAK library the list of reaction types
available for the isotope and serviceable for CALCUL

SPACE2 - to handle the dynamic storage allocation (see 2.7.2)

CROSEC - to call the formula calculation module CROSSEC (see 2.5. I)

Il~UT - to read data from an external source

ARITHO - the control routine for CALCPAC (see 2.4.1)

EDIT,CRECT,PRIDAT - the control routines of the module DATAMAN ee 2.6)

EXIT - the control routine of the OUTPUT module (see 2.7. I)

XXSlMU,XXOUT,COCARD - to construct control input in card-image-format

The subroutines INITI, INQ, DDCHK, TESTOP. FILLTP, It~UT, XXSlMU, XXOUT.

COCARD, the common !INOUT/ and !PARM! are described in the following. The

control routines for the modules:

OPDEF - operation code definition

PROCINP - control input processing

CROSSEC - cross section formula calculation

CALCPAC - basic arithmetic operations

DATAMAN - data management of the auxiliary data sets

OUTPUT - edition of the output in KE~1A-input-format

- 29 -

are described together with the particular modules.

2.1.2 Initialization subroutines

The subroutine INITl, entry INIT2

INITI serves for initialization of the dataset reference numbers (common

/INOUT/) and characteristics (common /DAI/) of the datasets used in CALCUL

and of the parameters of processed data (common /PARM/) at program start.

INIT2 is for repeated initialization (in case of a new reaction type to be

calculated) of parameters in the common /DAl/ and /PARM/.

The parameters :Ln the common !INOUT/ and /PARM/ and their initial values are

listed below.

The common /INOUT/

COMMON/INOUT!KOUT,KIN,KED,KDA,K2Wl,K2W2,KTOUT,KTAPE,KINOUT

The parameters provided in INOUT are initialized by the subroutine INITl

KOUT

KIN

KED

KDA

= 6-system output unit number

= 5-system input unit number

= I-dataset reference number of the KEDAK-library

= 2-dataset reference number for the temporary direct access
dataset (DADS2) for CALCUL

KZWI

K2W2

= 3} data set reference numbers of the auxil

= 4 the current result in CALCPAC

work area for

KTOUT = KOUT - dataset reference number for the output on the

KTAPE = 10 - dataset reference number for the output of CALCUL
(evaluated data)

KINOUT = 9 - dataset reference number for card image input produced
in the WAIT-mode at the terminal

The common !PARM!

The common !PAR}l! retains input paramete~for the processed data type.

The parameters /p~are initialized in INITl!INIT2, and fied in

GETOP!READOP by parameters from the input.

- 30 -

COMMON !PARM! EXTMS,LGO,LKED,NAMZ,NAMES(4),EA,EB,ZI,Z2,NOP,NEW,P,C,XCON

ar uments initial values

EXTMS

LGO

LKED

NEW

NAMZ

= .FALSE.

= •TRUE.

= .FALSE.

= .TRUE.

- GO- or WAIT-mode

- data are to be retrieved from KEDAK, if .TRUE.

- start of the calculation for areaction type

The logical data above are initialized by INITI.

- the number of names of the processed
data type (from input)

= o.

NAMES(I) }
NAMES(2) =

NAMES(4)

NAMES(3)

BLANK

- the names of the processed

data type, initialized in INIT2,

modified by the input

EA

EB

ZI

Z2

NOP

P

C

XCON

= o.
= o.

= .TRUE.

= .TRUE.

= I

= .FALSE

= .FALSE.

= o.

lower)energy limits for the

upper processed energy range

= ZLOW,ZERO)see description

= ZUP, ZERO I of MULTl , CALCC

- the number of the operation code (I ~ADD)

..
= NOPRINT

- no constant

value of the constant for which the operation
is to be performed

The initial values are assigned in INIT2 to the parameters and modified by

the input data in READOP. The common !PARM! is used in the subroutines

MAIN,GETOP,INITI,ARITHO,DROREC,CRECT,LIMPR,TESTOP.

The sub routine INQ

The subroutine INQ sets the operation mode: GO or WAIT and provides input

description.

- 3\ -

GO-MODE: each operation code entered (command) is executed immediately

(foreground or background job).

WAIT-MODE: for each operation code entered output cards are produced, which

may serve as input to a background (GO~ode) job.

In both cases syntax checks are performed and if a DD-card describing KEDAK

(LKED=.TRUE.) has been supplied, checks on availability of data etc. are

performed in the WAIT-mode also. The WAtT-mode is only defined for foreground jobs.

Subroutine DDCHK

The subroutine DDCHK checks with the aid of the subroutine DDTEST (see

reference 4) if DD-cards are available for the following datasets:

FTOIFOO\ - The KEDAK-library. The LDFOPN for the KEDAK-file is performed
in DDCHK. Missing DD-card for the KEDAK­
library causes program stop in the GO-mode.
In the WAIT-mode the message is printed:
No DD-card for FTOIFOOl has been supplied
to define the KEDAK-library. No extended
tests will be performed.

FT09FOOl - card-image-format
input generated in XXSI}lli (is checked in the WAIT-mode only)

(DCB = (RECFM=FB,BLKSIZE=800,LRECL=80)

FT02FOOl - the temporary direct access dataset DADS2.
(DCB=(RECFM=F,BLKSIZE=2000)) or in a foreground job:
(BLOCK(2000) SPACE(IOO))

FT03FOOl} sequential data

FT04FOOl area in CALCPAC

sets for the work

(DCB=(RECFM=VBS,BLKSIZE=2008))

Missing DD-card causes a printout of a message and stop of the program.

- 32 -

Subroutine NAMIN

The subroutine NAMIN is called, if an error occured during processing of

positional operands of the operation code.

The call:

CALL NAMIN(N,NAM)

N = error in processing material name

= 2 error in processing reaction type name

= 3 no material name available

= 4 no type name available

NAH a real*8 variable to return the name prompted (WAIT-mode)

In batch processing (background job) an error message is printed.

In the WAIT-mode the erroneous or missing name is prompted at the

terminal.

Subroutine TESTOP (NRET)

The subroutine TESTOP checks, whether the operation to be performed

allows positional operands; if not, operations with a constant will be

The argument:

NRET returncode

o no error

= error: no ETA calculation performed since no result
from previous operation available

For operation codes with positional parameters the data type names are read

in by NAMIN, if necessary. No positional operands are allowed for all

commands, if anoperation with a constant is performed (see 2.4.2 -

OPERCC). Then the data type names from the previous operation are used.

Sub routine FILLTP

The subroutine FILLTP selects from the data types available on the KEDAK­

file the single valued energy dependent types according to the list in TYPS

and stores them into the common !TPFILL!.

- 33 -

The call:

CALL FILLTP(MAT,NR)

MAT name of the isotope for which the data types
are to be selected

NR returncode

== 0 - error

== - no error

A call to the subroutine LDFITN provides the list of data types available

on the KEDAK-file for the requested isotope.

The names of data types 1 ted in TYPS are:

SGT,SGN,SGX,SGI,SGIZC,SGIZ,SG2N,SG3N,SGIA,SGI3A,SG2NA,SG3NA,SGIP,SGNI,SGA,

SGF,SGG,SGP,SGD,SGH3,SGALP,SG2HE,SGTR,MUEL,ETA,ALPHA,NUE ,CHIF, CHIFD,

SGHE3.

- 34 -

2.1.3 The subroutines INPUT, INTERP to read the data from an
external source and store them into DADS2

The subroutine INPUT

The subroutine INPUT is provided to process data from an external source,

i.e. other than the KEDAK-library, for calculation of the cross section

data.

These data are assumed as format ted records, each including one energy

value and the corresponding cross section value.

The format of these records is obligatory as input to the keyword FORMAT

of the INPUT command. The INPUT command initiates the processing of the

INPUT subroutine. The data are read by the INPUT routine and stored with

the aid of the UPDAT (UPDN) routine into the temporary direct access data­

set DADS2 for later use in the calculati.on package and/or editing them

without change for the KEDAK-management program.

If necessary the data are interpolated at the limits of the processed

energy range (EMIN,EMAX) by the subroutine INTERP.

The description of the INPUT command:

The INPUT command has three positional parameters and six keyword

parameters. The positional parameters are:

the isotope name

name}
alphameric text, up to 8 characters

the reaction type enclosed in apos trophes

the third name - REAL*4 - floating point number

The keyword parameters are:

FROM

TO

FORMAT

= EMIN lower limit of the processed energy range,
REAL*4 - floating point number

...
= EMAX upper limit of the processed energy range,

REAL*4 - floating point number

alphatext up to 36 characters enclosed in apostrophes
(e. g. I (I X, 24A1, 2E 16.5) I)

UNIT

SKIP

REWIND

- 35 -

integer number specifying the dataset reference number
of the external dataset from where the data are to be read

integer number that specifies the number of records
of the dataset to be skipped before reading. Default value = 0

- no input parameter. Arewind is requested for the dataset
before processing.

2.1.4 The subroutines to construct the control input in card-image-format

The subroutines: XXSIMU,XXOUT,COCARD

are provided to create the control input lists in card-image-format.

XXSIMU is called to print the entered input for checking or for construction

of a complete control input list, if the control input is to be created

interactive in a foreground job in the WAIT-mode and collected on a data

set with the reference number 9 for later use in a background job.

The function of the subroutines:

XXSIMU

XXOUT

COCARD

- to prepare the control input list

- to create card-image-format

- to concatenate output lines

Subroutine XXSlMU

The subroutine XXSIMU provides card image output of the current control

parameters in form of a control input list readable by the control input

processing program.

The call:

CALL XXSDm (KPUN ,HOPT , OP , IADOP , IG ,V, KEY , IADKEY , IR)

The arguments:

KPUN

HOPT

dataset reference number for the card image output data to
be punched

number of the operation code for which a control input
list is produced

OP

IADOP

IG

v

KEY

IADKEY

IH

- 36 -

...
= G(l) block of the operation code names in the G-array

= G(2*MAXOP+I) address of the block in the G-array retaining
the data for each operation code

= G(l) address of the G-array

= COMMON /OPAR/ retaining the current values of the parameters
for the positional and keyword operands

= H(l) block in the H-array retaining the keyword names

= H(2*MAXKEY+I) address of the block in the H-array
retaining the data describing each keyword

= H(l) address of the H-array

The subroutine XXSIMU is called, if the control input is produced the

WAIT-mode at the terminal, or to print the entered input for

purposes.

The input from the keyboard (WAIT-mode) is completed by XXSIMU with the

default values (if any) from the common /OPAR/ and printed for

The prepared control input listcan be deleted depressing the attention

key or accepted depressing the return key. Then the created control

list is addedto the card-image-format dataset with the dataset reference

number KPUN. This dataset may serve as input for a later

job.

Subroutine XXOUT

The subroutine XXOUT prepares the data in the B-array for edi

card-image-format. XXOUT is called by XXSll1U.

The call:

CALL XXOUT(B.LB,NC,LC,LBMAX.V,VAD,TYP.&900)

B - LOGICAL*I-array containing the data to be converted,
adjusted and concatenated

LB - length of the B-array

NC - number of characters 1n B
...

LC length of card (= 80)

GO-mode

the

LBMAX

v

VAD

TYP

8.900

- 37 -

....
the maximum number of eharaeters in B (= 320)

address of the eommon /OPAR/

address of a storage Ioeation in the eommon /OPAR/ where
the value of the positional parameter is stored

type of the positional parameter (R,I,L,T)

Statement number to eontinue proeessing in ease of an error return;
the error message is printed: input list to long for output and
will be truneated.

The subroutine XXOUT ealls the subroutine CONVY to eonvert integer and

real data to eharaeter~The subroutine COCARD is ealled to eoneatenate

output lines.

Subroutine COCARD

The subroutine COCARD eoneatenates two output lines. An underseore i5

placed at the end of the first line indieating, that a

continuation line is to be expected.

The call:

CALL COCARD(B,LB,NC,LC)

B

LB

NC

LC

array retaining the characters of the input list

eurrent length of the input list

total ~ngth of the input list (maximum 320)

length of a card (maximum 80)

The underscore i5 placed in B(LB+l).

LB is set LB=NC+8

NC i5 set NC=NC+LC

I

co
C"'l

2.2 Operation code definition package call scheme

MAIN

I
OPDEF

I
I I I I I I I

OPLIST INITOP lKEYWD OPCODE KEYWD POSPAR EXCLUD DEFLT ENDOP OPRIN

I I I I I
XKEYW XPOSPA XEXCLU XDEFLT XOPRIN

CHKEY 1 IIXKEYW I

I CHKEY I XOPCODE

I

LOPI I I LOP2 l I LOP3 I I LOP4 TYPCHK

- 39 -

2.2 The operation code definition package-function

The operation code definition package consists of the following subroutines:

OPDEF,OPLIST with the entries: INITOP,OPCODE,IKEYWD,POSPAR,EXCLUD,DEFLT,

ENDOP,OPRIN,HELP,SI}IDL,READOP; CHKEY,XOPCODE,IXKEYW,LOPl,LOP2,LOP3,LOP4,

TYPCHK,XPOSPA,XEXCLU,XDEFLT,ENDOP,XOPRIN.

The definition of the different operation codes is performed in the

subroutine OPDEF.

2.2. I The control routine OPDEF

The subroutine OPDEF is used to define the operation code package: the

operation codes by a call to OPCODE, the keywords for the operation code

by a call to KEYWD, the positional parameters (the isotope and reaction

type name) by a call to POSPAR.

The call:

CALL OPDEF(F)

F is the address of an array used to define the G-array (see Table I),
H-array (see Table 2) and the arrays VZ,VI,Vl'OUND which are structured
as the common /OPAR/ (see Table 3)

...
G(l) = F(I) - "G-array" (length: 500 words)

the data for operation code definition are stored ~n G

H(I) = F (50 1) - "H-array" (length: 500 words)
the data for keyword definition are stored in H

VZ = F(lOOI) - (length: 100 words) array to store the default
parameter values (auxiliary storage)

VI = F(II01) - (length: 100 words) a~ray to store the initial
default parameter values

VFOUND = F(1201) - (length: 100 words) array to store the default
paramet~r values from the input

The array addresses and the number of commands and keywords defined for

the operation code package are initialized by a call to OPLIST. At

present 27 commands (operation codes) and 12 keywords are defined. The

operation code package and the package pointers are initialized by a

call to INITOP.

- 40 -

The keywords defined are:

FROM,TO,PRINT,NOPRINT,CONST,ZUP,ZLOW,OUTUNIT,SKIP,REWIND,FORMAT,UNIT.

FROM, TO

CONST

ZUP

ZLOW

OUTUNIT

REWIND

SKIP

FORMAT

UNIT

- the lower and upper limit of the energy range to be
processed

- a constant to be added,subtracted etc. from the
processed data

- zero upper range "f RU (I d ""
)

1. •T E. see a so escr1.pt1.on
of CALCC (2.4.2))- zero lower range

- dataset reference number for the output data of CALCUL.
The processed data are written in records which could
be read by KE}ß (see reference 5)

- are used by the command

INPUT to read data from

an external source on "UNIT"

under "FORMAT"

The keywords for the package (name, number of parameters, parameter

type, loeation for the parameter values) are defined by a eall to

lKEYWD and stored in the common /OPAR!. The default values for a

parameter are defined by a call to DEFLT.

Keywords are defined mutually exelusive by a call to EXCLUD. A call to

ENDOP provides the utilized length of the G-array and H-array the

eommon !OPXX!). A call to OPRIN supplies the print out of the

eode paekage tables. INITOP,IKEYWD,OPCODE,KEYWD,POSPAR.EXCLUD,DEFLT.~~u~'L

OPRIN are entries in the subroutine OPLIST.

The commands defined are: ADD,DIVIDE,ETA,NAME,SAVE,SUBTRACT

DELETE,STOP,RESTART,INIT for single operations, INPUT to read external

data, ALPHAl,ALPHA2,ETAl,ETA2,NUSFl,SGAl,SGGI,SGG2,SGG3,SGII,SGNl,SGTI,

SGTRl,SGXI,SGX2 - for composed operations. The commands for composed

operations are used for caleulation of the eross seetions for a react

type with the aid of the operationswhieh are eontrolled by the

commands; but the control is performed in this case by a program that

replaces the single commands and the control input for each command

(see CROSSEC).

- 41 -

2.2.2 The definition entries comprised in the subroutine OPLIST
and the common /OPXX/

The subroutine OPLIST comprises the entries for the operation code package

definition.

The call:

GALL OPLIST(G,LG,H,LH,VZ,VI,VFOUND,JOP,JOP2,MAXOP,MAXKEY)

G - array to retain the data for the defined operation codes

LG - length of the G-array

H - array to retain the data for the defined keywords

LH

VZ

VI }
- length of the H-array

- arrays of the same length as the array VAL (common /OPAR/)

used to store the default values of the keywords.

storage, VI - for initial values

VFOUND - array to store the keyword parameters supplied by the
control

control parameter

= 0 - of the operation code are not
allowed in the control input list

= I - the abbreviation must be unique .g. SUBTRACT=SU~r,

STOP=ST, etc.)

=+2 - the length of the operation code is not checked
.g. SUBTRACT~SUBT, also val

=-] - the abbreviat are not necessary
SU=SUB=SUBT=SUBTRACT are all valid) but the
of the code is checked and the character s
be clear-cut

JOP

JOP2 - default control parameter for positional operands:

= 0 the current value of the positional parameter default

< 0 no default valuesavailable for the positional parameters
the of positional parameters is obI in any
case

NAXOP the maximum number of commands for

MAXKEY number of keywords defined for

- 42 -

The entries included ~n OPLIST are:

INITOP

IKEYWD

OPCODE

KEYWD

POSPAR

EXCLUD

DEFLT

ENDOP

OPRIN

HELP

SIMUL

READOP

- to initialize package pointers

- to define the keyword operands

- to define operation code names

- to assign a keyword name as keyword operand to the
operation code defined last

to define the positional parameters for the operation
code defined last

- to make keywords mutually exclusive

- to define default control parameters and default values
for the parameter of a given keyword

- to retrieve the current pointer values for the G-array
and H-array:

LG and LH

and to terminate operation code definition (final pointer
setting)

- to print the operation code definition tables

- to display HELP information

- to produce card image input

- to read a control input list

Description of the argument listsof the entries in OPLIST.

ENTRY INITOP no arguments

ENTRY lKEYWD (NAHE, IADR,NPAR,PARTYP ,PARAD)

NAME

IADR

NPAR

PARTYP

PARAD

REAL*8 - keyword name to be defined

address of a location in the common /OPAR/ where a
flag is set •TRUB. or .FALSE. for the defined key

the number of parameters for the key

array to retain the types of the parameters

address of a location in the common /OPAR/ where the
values of the keyword parameters are to be stored

- 43 -

ENTRY OPCODE(NAME)

NAME REAL*8 the name of the operation code to be defined

ENTRY DEFLT(KONTR,NAME,V)

KONTR

NAME

v

default control parameter

REAL*8 keyword name for which the default value 1S to be
defined

default value(s)

ENTRY ENDOP(LG,LH,NR)

LG

LH

NR

length of the used G-array

length of the used H-array

error return code:

= 0 no error

+0 the number of errors that occuned at definition
of operation codes and keywords

ENTRY KEYWD(NAME)

NAJffi REAL*8 - keyword name to be assigned to the operation
code defined last

ENTRY POSPAR(TYP,lADR)

TYP type of the positional parameter for the operation
code defined last

IADR address of a location in the common /OPAR/ where the
value for the positional operand is to be stored

ENTRY EXCLUD(N,LIST)

N number of keywords in LIST

LIST the list of keywords to be defined mutually exclusive

ENTRY OPRIN

ENTRY HELP

ENTRY SIMUL (KPUN)

- 44 -

- no arguments

- no arguments

KPUN unit number e.g. dataset reference number of
created card-image-format control input which
may be punched on cards

ENTRY READOP(NOPT,NPOS)

NOPT

NPOS

the number of the operation code read in from the
contral input list

number of positional parameters for this operation
code

OPLIST is called to initialize the addresses of the G- and H-arra~

the ambiguity control parameter, and the default control parameter.

A call to OPLIST must be performed before the call to any other

entry in OPLIST. After that INITOP is to be called. All keywordsfor

the package are defined by a call to lKEYWD before the first call to

OPCODE.

OPLIST initializes the length of the arrays: H,G,VZ,VI,VFOUND

The common /OPXX/

The common /OPXX/ is used in the subroutines of the operation code

definition package and transfers the parameters used at the def

of operation codes and keywords into the G-array and H-array respect

COMMON /OPXX/ Ll,L2,IOP,~~OP,MAXKEY,NOP,NKEY,LIG,LIH,EX,IEXCL,IFI,IOP2

LI

L2

IOP

MAXOP

MAXKEY

NOP

NKEY

LIG

LIH

EX

IEXCL

IOP2

- 4S -

length of the G-array

length of the H-array

ambiguity control parameter for abbreviations of
the operation code names and keyword names

= -I the abbreviations are not necessary definite,
but the length is checked and the character
string must be clear-cut (e.g. SU,SUB,SUBT,SUBTR,
SUBTRA, SUBTRAC~SUBTRACT are all valid)

= 0 abbreviations are not allowed

= +1 the abbreviation must be definite
(e.g. SUBTRACTaSUBT

SUBMITS,SUBM
STOPS,ST)

= +2 the length of the code is not checked
(e.g. SUBM[TS,SUBM is also valid)

the maximum number of operation codes which could be defined
by the package (27 at present)

the maximum number of keywords which could be defined
(12 at present)

the number of the operation code defined now

number of keywords to be defined for operation,
currently defined

index indicating the occupied length of the G-array

index indicating the occupied length of the H-array

indicates if there are keyword parameters to be
defined mutually exclusive

number of keyword parameters to be defined mutually
exclusive

default control parameter for the positional operand
parameter

> 0 the current value of the positional operand
parameter is default

< 0 no default values available, input for the
positional operands is obligatory

LI,L2,IOP2,MAXOP,MAXKEY are set in OPLIST; NOP,NKEY,LIG,LIH,EX,IEXCL

are initialized in INITOP and modified in the operation code definition

package.

- 46 -

2.2.3 The definition subroutines
Subroutine IXKEYW - keyword definition

The subroutine IXKEYW, entry XKEYW performs the definition of the keywords

for the operation code package.

The call:

CALL IXKEYW(NAME, IADR,NPAR,PARTYP ,PARAD, IADOP ,KEY, IADKEY, IR, IG)

CALL XKEYW (NAME, IADOP ,KEY , IADKEY , IR , IG)

The arguments:

NA..'1E

IADR

NPAR

PARTYP

PARAD

IADOP

KEY

IR

IG

- literal constant specifying the keyword name

- location in the common /OPAR/ where a flag is set
to indicate, if this key was found in input for
this command or not

- the number of parameters for the key NAME

- type of the parameters (R,I,L,T) (real,integer,logical,text)
(array)

location in the common /OPAR/ where the input value of the
keYword parameter is to be stored (array)

- address of the block in the G-array (see Table t) where
the pointers to the data field for the operation codes
are stored

- address of the block in the R-array where the keyword names
are stored (see Table 2)

- address of the R-array-data for keyword definition

- address of the G-array-data for operation code definition

The entry XKEYW is used to assign the keyword name as a keyword operand to

the operation code defined last. The keyword name, the length of the name,

the length of the abbreviation, the number of keyword parameters and the

type of the parameters are determined and stored into the R-array (see

Table 2). The keyword definition data stored into the common /OPAR/.

- 47 -

Subroutine XOPCOD - operation code definition

The subroutine XOPCOD is called by OPCODE to define the operation code NAME

and store the data for this code into the G-array (see Table I).

The call:

CALL XOPCOD(NAME,OP,IADOP,IG)

NAME

OP

IADOP

IG

- the name of the operation code to be defined as a
character string (literal constant)

- address of the block in the G-array, where the
operation code names are stored

- address of the block of data for the operation code NAME

- address of the G-array

Subroutine CHKEY (NAME,*)

The subroutine CHKEY is called by lKEYWD and OPCODE to check if the

keyword name or operation code name (NAME) to be defined is valid.

An error message is printed if a syntax error occured in NAME: the

first character is a digit, or the code is too long, or contains

invalid characters.

Subroutine LOP 1

LOPI is called to specify the abbreviation length of the code name to

be defined, if the ambiguity control parameter is greater than zero, e·ß·

the abbreviation must be unique. If the code name corresponds to a name

already defined, an error return is initiated. LOPI defines the minimum

abbreviation length of the code just processed, and alters the abbrevi­

ation length of any similar code defined before with an equal abbreviation.

The call:

CALL LOPl(NAME,LNAM,OP,IAD,IG,NK,LK,&80)

NAME

LNAM

OP

- literal constant, the name of the code to be defined

- the number of characters in NAME

- array retaining the code names

- 48 -

lAD - addresses of the data block for each code

IG - address of the G-array and H-array respeetively

NK - the number of code names already defined

LK - the number of characters in the valid abbreviation
of the code

&80 - statement number to continue processing in case of an
error return

Subroutine LOP2

LOP2 is called, if the ambiguity control parameter for the abbreviations

of the code names is less than zero, and returns the minimum length of

the abbreviation.

The call:

CALL LOP2(NAME,LNAM,OP,NK,LK,&80)

The arguments:

NAME

LNAH

OP

NK

LK

&80

- literal constant, the name of the code to be defined

- the number of characters in the code name

- array retaining the code names defined

- number of code names already defined

- number of characters in the abbreviation

- statement number to continue processing in case of an error return

Subroutine LOP3

The subroutine LOP3 is called, if the ambiguity parameter for the code

name abbreviations is equal zero, e.g. no abbreviation is allowed. LOP3

checks, whether a name similar to the code name to be defined was

already defined or not.

The call:

CALL LOP3(NAME,OP,NK,LK,&80)

NANE - literal constant, the name of the code to be defined

- 49 -

OP - array retaining the code names defined

NK - the number of defined code names

LK - (in case of an error return)
the number of the code similar to NAME

&80 - statement number to continue processing
in case of an error return

Subroutine LOP4(NAME,LNAM)

The subroutine LOP4 is called to evaluate the number of characters (LNAM)

in the literal variable NAME which specifies the code name to be defined.

Subroutine TYPCHK(TYP,IA,&80)

TYPCHK is called to check, whether a valid type identifier is available

for the keyword parameter of the key to be defined.

The arguments:

TYP - parameter type to be checked

IA - address of the parameter value which type is to be checked

&80 statement number to continue processing in case of
an error return

Subroutine XPOSPA - definition of positional parameters

The subroutine XPOSPA is called by POSPAR to define the positional

parameters for the operation code defined last.

The call:

CALL XPOSPA(TYP,IADR,IADOP,

TYP

IADR

IADOP

IG

- type of the positional parameter (R,TR)

- pointer to the storage location in the common /OPAR!
where the value of the positional parameter is to
be stored

- address of the data block of the last defined operation
code in the G-array

- address of the G-array

- 50 -

IADR and TYP are stored into the G-array, IADR in ADPOS and TYP in TYPOS.

Subroutine XEXCLU

The subroutine XEXCLU is called by EXCLUD to make keywords in LIST

mutually exclusive.

The call:

CALL XEXCLU(N,LIST,KEY,IADKEY,IH,V,VI)

The arguments:

N

LIST

KEY

IADKEY

IH

v

VI

- the number of keywords to be mutually exclusive

- array retaining the keyword names to be exclusive

- address of the block in the H-array where the keyword
names of the operation package are stored

- address of the block in the H-array where the data
for keyword definition are stored

- address of the H-array

- address of the common !OPAR!

- address of the array (structured as !OPAR!) reta1n1ng
the default parameters initialized at the program start

Subroutine XDEFLT

The subroutine XDEFLT is called by DEFLT(KONTR,NAME,V) to define the

default control parameter (KONTR) and the default values (V) for the

keyword operand NAME.

The call:

CALL XDEFLT (KONTR,NAME, VALI ,VAL,V,KEY, IADKEY, IH)

KONTR - default control parameter:

= - the default parameter is initialized by the program,
but the current value is default

= 2 - the initial value set up at command definition time
is default

= 0 - no defaults available

< 0 - no default values initialized, input 1S obligatory

NAME

VAL I

VAL

V

KEY

IADKEY

IH

- 51 -

- name of the keyword for which the default parameter value
is to be defined

- array to store the default parameters initialized at
program start

- address of the cmßmon /OPAR/ where the parameter values
from input are stored

- array retaining the default values for the initialization

- address of the block in the H-array retaining the keyword
names

- address of the block in the H-array retaining the addresses
of the definition data for each key

- address of the H-array

Subroutine XOPRIN

The subroutine XOPRIN is called by OPRIN to print the operation code

package tables.

The call:

GALL XOPRIN(OP,IADOP,IG,KEY,IADKEY,IH)

The arguments:

OP

IADOP

IG

KEY

IADKEY

IH

- address of the block in the G-array where the
operation code names are stored

- array retaining the addresses of the data blocks
for each operation code

- address of the G-array

- address of the block with the keyword names
in the H-array

- array retaining the addresses of the data block
for each key

- address of the H-array

- 52 -

2.2.4 Table 1: Structure of the G-array
(retains the data for operation code definition)

L ~ logical, R ~ real, l ~ integer, T ~ text

address contents connnent

1 OPCODE 1 operation code name ::

3 OPCODE 2 :: connnand (reah8 word)

···2*NOP-l OPCODE NOP

2*l1AXOP ···
2*MAXOP+l lADOP (1) address of the array

IADOP(2) retaining the data for

· OPCODE (l, 2•••)·3*MAXOP ·
3*HAXOP+l
(::IADOP(1) LMAX length of the operation eode name

lAOOP(l)+1 LHlN length of the valid (minimum) abbreviation

lADOP (1)+2 NKEY number of keywordsof OPCODE 1

lADOP(1)+3 NPOS number of positional parameters for OPCODE 1

lADOP(1)+4 lADKEY(1) address of an array in H

IADOP(1)+5 IADKEY(2) where the data for key number 1 (2, ••. NKEY)

· are stored··lADOP (1)+3+NKEY lADKEY (NKEY)

lADOP (1) +NKEY+4 IADPOS (1) Pointer to a storage loeation in the connnon
/OPAR! where the value of the positional
parameter is to be stored

TYPOS (1) Type of the positional parameter
(R,l,L,T)

·+(2*NPOS)-1 ··lADOP (1)+NKEY+3 IADPOS(NPOS) see IADPOS (I)

+2*NPOS
IADOP (1)+NKEY+3 TYPOS{NPOS) see TYPOS (1)

lADOP(2) LMAX see above

lADOP(2)+J LHlN see above

- 53 -

Table 2: Structure of the H-array
(retains the data for definition of keyword parameters)

L ~ logical, R ~ real, I ~ integer, T ~ text

address contents comment

I KEYNAM(1) name of the keyword

2 KEYNAM(2) (real*8 variable)

··2*MAXKEY ···
IAKEYTAB address of the array of data

2*MAXKEY+l IADKEY(J)

· for each key
··2*MAXK.EY+NKEY IADKEY (NKEY)

IADKEY(1) LMAXKEYJ maX1.mum length of the keyword name

IADKEY(1)+ I LMINKEYJ minimum length of abbreviation

IADKEY(1)+2 AKEY(IADR) location in common /OPAR/ to be set
•TRUE. (key in input)or .FALSE •
respectively

IADKEY (1) +3 IEXCL Exclusive list address

IADKEY(I)+4 KONTR default control parameter <0, 0, I , 2

IADKEY (J) +5 NPAR number of keyword parameters

IADKEY (J) +6 ADPAR(1) location in common /OPAR/ where the
parameter value is to be stored

IADKEY (l) +7 TYPPAR(l) parameter type (R,I,L,T)

IADKEY(I)+8 ADPAR(2) see above ADPAR(J)

+ 2*NPAR ··2*HAXKEY+NKEY+6 ·
IADKEY(2) LMAXKEY2 see above LMAXKEYl

- 54 -

Table 3: The common /OPAR/
4 ~

L = logical, R = real, I = integer, T = text

address variable type comment

1 LF(FROM) L is set •TRUE. or .FALSE.

2 LTO L if input is available

3 LP(PRlNT) L for this keyword parameter

4 LNP(NOPRlNT) L or not

5 LZUP L

6 LZLOW L

7 LOUT(OUTUNlT) L

8 LC (const) L

9 FROM R keyword parameter values

10 TO R from the input or the

11 lPRlNT I default values are

12 ZUP L stored here

13 ZLOW L

14 lOUT I

15 CONST R CONST has no default value initialized

16 E R positional parameter values

17 HAT R are stored: E-energy

19 TYP R Mat-isotope name, TYP-type name

21 LSKlP L is set •TRUE. or .FALSE.

22 LFMT(FORMAT) L if input is available

23 LREW(REWlND) L or not

24 LUN(UNIT) L

25 lSKIP I keyword parameter values

26 FMT(FORMAT) TR from the input or the default values

35 IUN(UNIT) I are stored here. FORMAT has

36 IUM I no default value

I MAIN I

I GETOP I

r READOP l
I

I XOPCHK I
11
I I I I

IINPUTO I r FITEM ·1 I OPCD I I DEFIN I ICHKOPC I r OPCDA l 1 PROKEY I I VOUT I2 12
2

1
CDA~A II I

I EQUI I r VERIFY I r CDATA I
3 I

~
II ERRIN 1 I ERRSET I I EQUI 1 I LENTXT I I LENTXT I

/

2 I' 2-
I 1 I I

I 11 ~ I1 II NITEM I I EQUI I I EQUT\ I XXHELP I I XXTH I I NITEM I I KEYCD 11 ERRDET 1 RIFY/A ICHECKL 1 IDATINOIICONKE~
1~

1 NITEM I r EQUTI
2-

r I
IVER~FB I I EQ~ I

I I I
r NITEM I I VERIFY I I I BITEM I ICONKEY 1 I DISPr;] I VERIFAJ I INQKEY I

13
r I I I EQUI I I LENTXT II EQUI I rVERIFY I I VERIFA I

3

I DATIN I
4- I

I I I I I I 1

I VERIFY I ICHKINT I I CONVY I r CHKREL I rCHKLOG IrFORTXT I IEQUI I I LENTXT I

- 56 -

2.3 The control input processing package-function

The subroutine GETOP is called by the main program to read the control

input list for each operation code. A call to READOP provides the

control input processing subroutine package to read and process the

control input: The positional and the keyword parameter values are

moved from card input into the common /OPAR/. The subroutine NAMIN is

called by GETOP to indicate and correct erroneous input for material or

data type names.

The subroutine of the control input processing package and their functions

are:

XOPCHK - the control routine for the input processing package

INPUTO - to read the next control input list

NITEM - to provide the next item from the control input list processed

OPCD - to provide the number of the operation code entered

DEFIN - to initialize default values for the positional and keyword
parameters of the entered operation code in V (current value)
transfening data from the common /OPAR/

CHKOPC - to test, whether any operands are allowed for the entered
operation code

PROKEY - to provide the values of keyword operands from input

DISPLA - to display or to prompt the default parameter values

XXTM - to define a character to simulate attention function

KEYCD - to return the number of the entered key

CONKEY - to control the keyword operands in the input list

DATIN - to process input data items

VERIFY - to enable error correction and interaction with the
program in a foreground job

INQKEY - to request the input data for a operation code

Auxiliary subroutines and functions are CDATA,CHKLOG,CHKREL,CHECKL,CHKINT,

EQUl,LENTXT,FORTXT,EQUT.

- 57 -

2.3.1 The input processing subroutines
Subroutine XOPCHK - the control routine

XOPCHK controls the processing of an input list.

The call:

CALL XOPCHK(NOPT,NPOS,VA,V,VI,VF,OP,IADOP,IG,KEY,IADKEY,IH,IFI)

NOPT

NPOS

VA

V

VI

VF

OP

IADOP

IG

KEY

IADKEY

IH

IFI

number of the operation code

number of positional operands for this code found in the
input list

address of the common /OPAR/

array of the same length as the common /OPAR/ to store current
values of default parameters

array to store initial va lues of default parameters

array to store parameter values from input

; G(l) address of the block in the G-array where the operation
code names are stored

; G(2*MAXOP+ 1) array containing the addresses of the data
block for each operation code

- address of the G-array

= H(l) array retaining the keyword names

= H(2*MAXKEY+l) array retaining the addresses of the data
blocks for each keyword

=H(l) address of the H-array

serial count of the processed input lists

The subroutine XOPCHK calls the following subroutines and entries

respectively:

INPUTO

FITEM

OPCD

DEFIN

CHKOPC

OPCDA

- to read the next input list

- to initialize pointers in the common /INPUTC/ before
the first item from the input list

- to provide the number of the operation code entered

- to initialize default values

- to check the entered operation code

- to identify an operation code entered repeatedly for
correction of an erroneous input item

PROKEY

VOUT

- 58 -

- to provide keyword parameter values

- to move the current values of the parameters from V
into the common /OPAR/

Subroutine OPCD

The subroutine OPCD provides the operation code from the input list and

returns the number of this code.

The call:

CALL OPCD(MOPT,NRET,OP,IADOP,IG,KEY,IADKEY,IH,IQO,VI)

MOPT

NRET

OP

IADOP

IG

KEY

IADKEY

IH

IQO

VI

the number of the operation code

return code:
= 0 - no error

= 1 - error in the last input list

= G(l) address of the block retaining the operation code
names in the G-array
~

= G(2*MAXOP+l) address of the array containing the addresses
of the blocks of data for each operation code

A

(= G(l» address of the G-array

(= H(l» block in the H-array retaining the keyword names

(~ H(2*MAXKEY+l» array retaining the addresses of the data
block for each key

(: H(l» address of the H-array

counts the question marks entered at the terminal

array retaining the initial default values for the keyword
operands

The argument list of the entry OPCDA 1S the same as for OPCD. OPCDA is

called to identify an operation code entered repeatedly to correct an

erroneous input item or to prompt (interactive) the input of a valid

operation code in the WAIT-mode at the terminal.

- 59 -

Subroutine CHKOPC

The subroutine CHKOPC checks whether operands are allowed and available

for the chosen operation code.

The call:

CALL CHKOPC(MOPT,NPOS,NRET,OP,IADOP,IG,V,VF,KEY,IADKEY,IH)

The arguments:

MOPT

NPOS

NRET

v

VF

OP

IADOP

IG

KEY

IADKEY

IH

number of the operation code

number of positional parameters for this code

returncode

= 1,4,5 - VOUT should be called (the current parameter
values are default)

= 3 - a call to OPCDA provides the needed information
about the operation code

= 2 - a new input list must be requested

(~ VB or VZ) array retaining the current values of the
keyword and positional operands

(VFOUND in ORDEF) array receiving the parameter values
from the input list

- array retaining the operation code names

- array retaining the addresses of the data block
for each operation code

- address of the G-array

- array retaining the keyword names

- array retaining the addresses of the data block
for each keyword

- address of the H-array

CHKOPC prompts also input for the operation code to correct erroneous

input. The subroutines NITEM,CONKEY,INQKEY,VERIFA,VERIFB,BITEM,DISPLA

are called in CHKOPC.

- 60 -

Subroutine CONKEY

The subroutine CONKEY controls whether all required operands have been

encountered in processing the input list.

The call:

CALL CONKEY(MOPT,NPOSF,NRET,IADOP,IG,V,VG,KEY,lADKEY,IH)

The arguments:

MOPT

NPOSF

N~T

the number of the tested operation code

the number of the positional operands found in the
input list

return code

= 0 no error

= 2 the input list is deleted (too many errors, attention)

For IADOP,IG,V,VF,KEY,IADKEY,IH see the argument description 1n XOPCHK.

CONKEY prints a warning in batch processing of a background job, if

positional operands are expected for the tested operation code and not

found in the input. The input for the requested parameter is prompted

at the terminal in a foreground job.

The VF-array is checked for each keyword defined for the operation code,

whether data were entered for keyword parameters or not. A warning is

printed in a background job. The input is prompted in a foreground job.

- 61 -

Subroutine DEFIN

The subroutine DEFIN initializes the default values for keyword para­

meters dependent on the default control parameter for the key.

The call:

CALL DEFIN(NOPTtVA,VB,VI,VFtIADOP,IADKEY,IG,IH)

The arguments:

NOP number of the operation code for which the parameter
values are stored in VA,VI,VB respectively

VA address of the common /OPAR/ retaining the default
values for keyword parameters

VB

VI

VF

(VB (I) = F (100 I)

(VI (I) = F (100 I)

(VF (I) ~ F(120 I)

see also OPDEF (2.2. I)

VB

VI

VF

IADOP

IADKEY

IG

IR

auxiliary storage for the parameter values

array to store the initial values for the keyword
parameters

array to store the values for keyword parameters from
the input

array retaining addresses of the data blocks for each
operation code in the G-array

array retaining the addresses of the data for each
keyword (H-array)

(IG(I) : G(l» address of the G-array

address of the H-array

The values of the keyword parameters are moved from the common /OPAR/

into the array VB. If the ENTRY VOUT is called t the values in VB are

moved to the common /OPAR/.

- 62 -

Subroutine CDATA

The call:

CALL CDATA(LT,LA,VA,VB)

Data of the length of LT are moved from VB to VA beginning with VA(IA) .

The subroutine CDATA is called by the subroutine DEFIN.

Subroutine PROKEY

The subroutine PROKEY provides the input for the keyword from the input

list.

The call:

CALL PROKEY(NOPT,NRET,IADOP,KEY,IADKEY,IG,IH,V,VF,IPOS)

The arguments:

NOPT number of the operation code for which the keyword parameters
are processed

NRET returncode:

= 0 no error

= I error

IPOS number of positional operands available in input

For the arguments: IADOP,KEY,IADKEY,IG,IH,V,VF see the description in

CHKOPC.

The subroutines NITEM,CHECKL,DATINO,VERIFA,CONKEY and KEYCD are called

by the subroutine PROKEY.

Subroutine KEYCD

The subroutine KEYCD returns the number of the entered key. The number

is defined by the index of the keyword name in the H-array.

The call:

CALL KEYCD(MOPT,NRET,KEY,IADOP,IADKEY,IG,IH)

- 63 -

The arguments:

MOPT

NRET

number of the operation code for which the keyword is
processed

returns the number of the key

For the arguments KEY,IADOP,IADKEY,IG,IH see the description of

arguments in XOPCHK.

- 64 -

2.3.2 The subroutines to process interactive input (real time processing)
Subroutine INQKEY

The subroutine INQKEY requests the input data for the operation code

OP(MOPT). Positional operands and keyword operands are prompted in a

foreground job at the terminal, if not available in the input list or

if the useris not versed in input coding and chooses prompting. A warning

is printed in batch processing if no defaults are avail~ble (background job).

The call:

CALL INQKEY(MOPT,MPOS,NRET,OP,IADOP,IG,V,VF,KEY,IADKEY,IH)

MOPT

MPOS

NRET

number of the requested operation code

the number of positional parameters entered for this code

return code

= 0 no error

= 2 the processed input list

is deleted - too many errors

For OP,IADOP,IG,V,VF,KEY,IADKEY,IH see the description of arguments in

XOPCHK.

Subroutine VERIFY

The subroutine VERIFY is used to verify the input list entered at the

terminal. VERIFY allows error correction and enables the user to interact

with the program in a foreground job.

The input accepted by VERIFY is the question mark, blank, attention key,

hyphen and undercore.

The call:

CALL VERIFY(IOP)

IOP = question mark was entered
...

IOP = 2 input is blank"" return key was hit

IOP "" 3 attention key was hit

IOP = 4 hyphen was entered

IOP = 5 underscore was entered

- 65 -

If the question mark is entered for the first time, the answer is:

Hit the return key for verification.

If attention key was hit, the whole input list is to be deleted. An under­

score entered indicates. that the input list is to be extended by additional

data. A hyphen entered indicates that the user wishes to supply replacement

data.

The ENTRY VERIFA(IOP) 1S called, if no further information is available.

The ENTRY VERIFB is called to verify the input item prompted.

Subroutine XXTM

The subroutine XXIM is called by OPCD. XXTM defines a character to

simulate the attention-function.

The terminal commands NOTERl1,TERMINAL or ATTN are accepted by XXTM.

All characters except the underscore. dash or quest ion mark

are allowed for attention definition.

The call

CALL XXTI'1(NR)

NR returncode

= 0 no error

= error message is printed

EQUI and NITEM are used 1n XXTM.

Sub routine DISPLA

DISPLA is called by CHKOPC to display the default values for the operation

code: positional operands, keyword operands. DISPLA prompts these

values. if no default values are available (WAIT-mode).

- 66 -

The cal1:

CALL DISPLA(MOPT,NRET,OP,lADOP,IG,V,KEY,IADKEY,IH)

The arguments:

MOPT number of the operation code for which the parameter
values are to be displayed

For NRET,OP,lADOP,IG,V,KEY,lADKEY,IH see the argument description in

XOPCHK (2.3. I).

- 67 -

2.3.3 The subroutines to decode the control input list

Sub routine NITEM

The subroutine NITE~l is called to provide the next item from the input

list. An item is any data surrounded by separators (comma, blank) or

functional separators(apostrophe, slash, equal sign). One data item has

a maximum of 38 characters and is passed to the calling subroutine via

common /ITEXC/ in the array B.

The ENTRY FITEM is called to initialize pointers IP,IPO ~n the common

/INPUTC/ before retrievi~g first item.

The ENTRY BIT&~ is called to backspace one item in the input list.

The ENTRY ERRDET is called to print the whole input list and the item

where an error appeared.

The call

CALL NITEM(NRET)

NRET - returncode

= 0 no error

= I error in the input item, the input is ignored

The entries VERIFA, VERIFY and the function subroutine EQUI are caIIed

by the subroutine NITEM.

Subroutine DATL~

The subroutine DATIN processes input data items.

The caII

CALL DATIN(IA,IIT,V,VF,IDEF,N,NRET,IC)

The arguments:

IA address of a Iocation in VF where.TRUE. or .FALSE. is
stored, if input data are a~aiIabIe for the respective
parameter or not

IIT

v

VF

IDEF

N

N~T

IC

- 68 -

type of the parameter

array retaining the current value (= previous input for the
requested parameter) of positional and keyword parameters

array to accept data from the input for positional and
keyword parameters

default control parameter

~ 0 no default values available, input is obligatory

= 1 default values are initialized by the program, but
the current value is default (last input)

= 2 the initialized default values are always default

number of the positional parameter for which input is
requested or to be processed (for printing
purpose)

returncode

= no input available, take default value

= 2 ATTENTION, the item was deleted

3 input error, data not recognizable, the item
is ignored

=10 end of the input list

index for the output text

= POS.OP.

2 = PllRl1.

ENTRY DATINO(IA,IIT,V,VF,NRET,KEY,ERRMS)

The arguments:

For IA,IIT,V,VF,NRET see the argument list description for DATIN.

KEY the name of the keyword to be processed

.TRUE. - the keyword name is to be printed in the
error message

.FALSE. - an error message for any data type is to be
printed without the keyword name

The entry DATIN is called to read and process the input items, the

entry DATINO for processing only.

- 69 -

The input data are read in as characters and corresponding to their type,

converted to internal representat by the subroutine CONVY.

The entry DATINO is called to check the data type: text data or real

data by a call to CHKREL, integer data by a call to CHKINT, and logical

data by a call to CHKLOG.

The length of the data item ~s provided by the function subroutine LENTXT.

The positional parameters and keyword parameters (not available in the

control input list of the processed operation code) are prompted (inter­

active) and processed by DATIN.

DATIN is called by the subroutines PROKEY,INQKEY and CONKEY.

Subroutine CHKREL

The subroutine CHKREL checks if the input item is areal number.

The call:

CALL CHKREL(B,LB,NR,Cl,IS)

B

LB

NR

CI

IS

array retaining the input item to be checked

- length of the B-array

= 0 the checked data item is not ~n a floating point
number representation

0 NR returns the number of digits in the data item

the number of digits of the mantissa of the real number

= 7: length of the number of special characters
~n the floating point representation of the real number

- 70 -

Subroutine CHKINT (B,LB,NR)

The type and the length of the data item ~n the B array is checked in

the subroutine CHKINT.

The arguments:

B

LB

NR

- array retaining the data item to be checked

- length of the B array

- returns the number of digits in B

If the data item ~n B is not an integer number then NR
is returned with a m~nus sign.

Clil(INT ~s called by DATIN.

?ubroutine CHKLOG(B,LB,NR,V)

The subroutine CHKLOG checks if the variable B contains a T or a F.

LB must be equal 1, otherwise NR = 0 is returned.

If B = F than NR

if B T than NR =

and V = .FALSE.

and V = .TRUE.

~s returned.

CHKLOG ~s called by DATIN.

Subroutine CHECKL

After a call to CHECKL the length of the input data item stored ~n B

is returned in L.

The call:

CALL CHECKL(LM,B,L)

LM

B

L

- the maximum length of the B-array

-the array retaining the input data item

- the returned length of the data item

- 71 -

Logical function EqUI

The call:

CALL EQUI(A,B)

EQUI is called to compare the two characters A and B.

EQUI is .TRUE. if A B, otherwise .FALSE.

Function LENTXT(TXT)

The length of the text TXT is returned:

minimum is 2, maximum is 9.

Subroutine FORTXT(LENT,AFT)

The length LENT is returned in AFT as an alphanumeric text.

(LENT < 9)

Subroutine EqUT(LA,A,LB,B,LE)

The characters in the A array and B array are compared and the number

of equal characters is returned in LE.

2.4 Calculation package CALCPAC - call scheme

HAIN

I PLU~CC I MULTCC DIVICC

ARITHO ETACAL

ETACC

~
f\)

ERRO I STO~UB I

DIVIC

- 73 -

2.4 The calculation package CALCPAC-function

CALCUL simulates a desk calculator but opera~son functions instead of

single numerical values. The basic arithmetic operations:

ADD,DIVIDE.MULTIPLY,SUBTRACT are performed in the calculation

package CALCPAC.

CALCPAC consists of the following subroutines:

ARITHO

CALCl

CALCC

OPERCC

ETACC

FINDAT

ORDNEN

KEDCH

AVAIL

ERRHSO

LOCXS)RETXS

LTLOC)LTNXT

XLllil

the preparation of the data for the arithmetic
operations

the interfacing routine to the arithmetic operations 1n
CALCPAC: CALCC,OPERCC,ETACC

arithmetic operations on tabulated functions with linear
interpolation

to perform the arithmetic operation with a constant

to calculate Y = l!(l+y) for the evaluation of
ETA (y=ALPHA)

to check, if requested data are available on the
auxiliary dataset DADS2

to sort the values of a tabulated function 1n ascending
order of the arguments

to find the energy intervals for which the data are to
be retrieved from the KEDAK-file

to check. if requested data are available on the
KEDAK-file

to print error messages

Data retrieval from the KEDAK-file
(see reference 6)

Data retrieval from DADS2

Interpolation to the energy range limits

The labeled common block /CALCOM/ is used by the CALCPAC subroutines.

- 74 -

2.4.1 The subroutines to prepare the data to be processed

Subroutine ARITHO

The preparation of data for the arithmetic operations performed in

CALCPAC is done by the subroutine ARITHO with the aid of the subroutines

FINDAT,ORDNEN,KEDCH,ERRO,AVAIL.

The subroutine FINDAT checks which data of the processed type are

available for the requested energy range on the temporary direct access

dataset with the reference number 2(DADS2).

The arrays EMIN,E~UlK are arranged by the subroutine ORDNEN in ascending

order of the energy limits.

The subroutine KEDCH checks the energy ranges to find out gaps to be

filled with KEDAK data. KEDCH sets for each range a flag in the array IP:

- for the data available on DADS2

2 - for the data to be retrieved from the KEDAK-file

The subroutine AVAIL searches, if the requested data type is available

on the KEDAK-file.

The names of the proper retrieval routines are transferred to CALCPAC

by a call to STOSUB according to the source of data requested. RETXS,REPXS,

LOCXS,NXTXS,LDFLOC,LDFNXT are used for the retrieval from the KEDAK-file,

and RETXS,REPXS,LOCXS,NXTXS,LTLOC,LTNXT for retrieval from DADS2.

The arithmetic operations are performed corresponding to the command

(operation code) from the control input list calling:

PLUSI

MINUS 1

MULTI

DIVIDI

for the command ADD

for the command SUBTRACT

for the command MULTIPLY

for the command DIVIDE

ERRO is called to initialize the array with the number of errors that

occuned for CALCPAC to zero (in common /ERRORC/).

- 75 -

Sub routine FINDAT

The subroutine FINDAT searches the entry table in the common /DA2/, to

find out for which intervals of the energy range /FRO~f,TO/ of the data

type specified in NAHES, data are available on the temporary direct

access data set DADS2.

The call:

CALL FINDAT (NDAT, NDAMAX, NAHZ , NAME S, FROH, TO , E] ,E 2)

NDAT

NDAMAX

NAMZ

NAHES

FROM,TO

El,E2

the total number of intervals on DADS2

the maximum number of intervals (79)

the number of names for the checked data type

the names of the type

lower and upper limit of the processed energy range

arrays retaining the lower and upper energy limits
of the intervals

Subroutine ORDNEN

The subroutine ORDNEN sorts the arrays FELD,WERT, e.g. arguments and

function values, in increasing order of the arguments.

The call:

CALL ORDNEN(~1AX,FELD,WERT)

KMAX

FELD

WERT

the length of the array to be sorted

array of the arguments

array of the function values

Subroutine KEDCH

The subroutine KEDCH states the intervals in /FRO}I,TO/ which are to be

filled with KEDAK-data.

The call:

CALL KEDCU(NDAT ,NDAMAX, EMIN ,EMAX,E 1.E2, IP ,F, T)

- 76 -

The arguments:

auxiliary arrays, to retain the energy limits from
(EMIN,EMAX), and the additional limits of the intervals,
to be filled with KEDAK data. These values are then returned
to the calling program in (EMIN,EMAX).

NDAT

NDAl'1AX

EHIN

EHAX

EI

E2

IP

the number of energy intervals in the energy range (F,T)

the maximum number of intervals allowed

NDM1AX negative indicates an error return

= -I the number of intervals generated is greater
than NDAMAX

~ -2 no data found on KEDAK, and no data available
on DADS2

}

arrays, to transfer the lower and upper energy

limits of the intervals to KEDCH and to return the
stated new intervals

}
array retaining a flag for each interval:

= 2 for KEDAK data
= I for the data from DADS2, the auxiliary direct access

dataset

The subroutine AVAIL

The subroutine AVAIL checks if data of the requested type are available

on the KEDAK-file. The common /TPFILL/ is filled in FILLTP. LDFLOC is

called to check, whether the requested data type lS available on KEDAK.

The call:

CALL AVAIL OfAT, TYP, &.130)

MAT

TYP

&130

REAL*8 isotope name of the requested type

REAL*8 reaction type name of the requested type

error return, if requested data type not available on
the KEDAK-file

- 77 -

Sub routine ERRMSO

The subroutine ERRMSO with the entries ERRMSI, ERRMS3 and ERRO

provides the error messages for the calculation package.

ERRO initializes the array NERR retaining the error rate for each

error. The entries ERRMSO,E~~SI,ERR}IS3are used to transmit arguments

for printout together with error message. For example:

GALL ERRMSI(NR,X)

If ERRMS! was called with the error number NR '" I the message is

written: warning message: Error I occmT-ed when performing requested

arithmetic operation. Energy of requested dataset X is below first

energy of current result. Action taken: the current result is assumed

to be zero at this energy, e.g.

new result:
for: 11+11 y '" s

for: 11- 11

'" -sy

for: " .11 Y '" 0

for: 11

'" 0Y

For NR '" 4 the error message is: Energy of current result X is above

last energy of requested data set (E,S). Action taken: Depending on

ZUP, the values of the requested data type are assumed to be zero at

this energy, or current result is left unchanged at this energy, e.g.

(after the end of (E,S) data) X '" X(L~ the next X-value available.

for 11+" Y '" y(L)

for "- 11
Y -y(L)

for I1 • Jf 11 I" y '" 0 if ZUp '" . TRUE.

For NR '" 6 the message is: Energy EXGLEy7 of requested type ~s above

last energy of current result. Action taken: current result ~s assumed

to be zero at this energy, e.g. X '" EXG - the next higher E value avail­

able (end of data for (x,y».

for u+u

for li_li

y = s

X '" E(I)

for U ." ,
y

y

-s

o

- 78 -

Subroutine LTLOC, entry LTNXT

The subroutine LTLOC(LTNXT) handles the data retrieval from DADS2. The

retrieval is organised like the retrieval in LDFLOC,LDFNXT (see reference

1), but no OPEN call is required.

The call:

CALL LTLOC(NR,NARG,NAl1ES,Z)

CALL LTNXT(NR,NARG,N~lliS,Z)

NR

NA..~G(1)

NAHES

Z

- returncode

= 0 - no data found

- requested data are available, stored ~n Z

the number of names

array retaining the reaction type names

array to receive the data values

The data are read by the aid mthe subroutine LTREC (see reference 1)

Subroutine XLIM 1, entry XLItf2

The subroutine XLIMI interpolates the retrieved data to EMIN, the entry

XLL'12 to EMAX.

The call:

CALL XL ll11 (NARG, NAMES, EMIN, EHAX, E, S,NUMS , NR)

CALL XLIH2(NARG,NAHES,EMIN,EMAX,E,S,NUMS,NR,EK,SK)

- arrays to retain the retrieved data

- the number of data in (E,S)

NARG(1)

NAHES

EMIN
)EMAX

(E, S)

NUHS

The arguments:

- the number of names of the processed data type

- the names of the processed type

energy limits for the

processed energy range

- 79 -

- returncode, from the previous data retrieval routineNR

EK

SK J - if NR = 2, EK = E (NUHS), SK S(NUMS)

- 80 -

2.4.2 The subroutines to perform the arithrnetie operations

Subroutine CALCI

CALCI is the interfaeing routine to the arithrnetie operations in

C~PAC and ineludes the following entries:

STODSN,INQDSN,STOSUB,INQNUM,STONUM,CALIIN,ERRSTO,x}lGSTO,EQUAL,EQUALC,

REMV I ,PLUS I ,MINUS I ,MULT I ,DIVID I ,PLUSC I ,MINUC I ,HULTCI,DIVIC I ,ETACAL.

CALCI translates ealls to its entries into suitable ealls into C~C

and sets up the eomplete argument list.

The eal1:

CALL CALCI (X,Y,XI ,YI ,LI ,E,S,L2,NDA,NDB)

x
Y

XI

YI

LI

E

S

L2

NDA

NDB }

working areas for CA~C

to store the eurrent and

previous result

length of the work arrays

array to store the energy values from
the KEDAK-file

array to store the cross seetion values
from the KEDAK-file

length of the arrays E and S

dataset referenee numbers for the datasets

on disk, where the processed data are stored
(X,Y,XI,YI), if the number of data is larger
than LI and data do not fit into main storage

CALCI provides the addresses of the working area for CALCPAC (i.e. X,Y,

XI,YI,E,S) and is ealled for new optimization of the storage alloeation

eaeh time a new cross seetion is to be ealeulated.

- 81 -

The entries STODSN and STONUM are used to store data into the connnon

/CALCOM/.

The calls:

CALL STODSN(NDA,NDB)

The dataset reference numbers of the auxiliary datasets are specified

and stored in NDI,NDXI

CALL STONUM (NUM)

The number NUM of data points in the current result is stored ~n NX

in the connnon /CALCOM/.

The entries INQDSN and INQNUM inquire the values of the dataset reference

numbers and of the numher of data points processed.

The calls:

CALL INQDSN(NDA,NDB)

CALL INQNUM (NUM)

NDA.tIDB and Infl1 respectively are returned by the call. If NUlf is greater

LI. that is: the number of data points is greater than the length of the

working area, the data are stored on anexternal storage on sequential

datasets with the reference numbers NDA and NDB.

This storage must be made available to the program by data definition

statements for FT03FOOI.FT04FOOI (DCB=(RECFM=VBS.BLKSIZE=2008)).

The entry STOSUB is provided to transfer the names of the data retrieval

routines to CALCPAC.

ENTRY STOSUB(LOCSUB.NXTSUB,LSUB,NSUB)

The actual arguments are:

I. (RETXS,REPXS.LTLOC,LTNXT)-to retrieve data fram the temporary

direct access dataset DADS2.

2. (RETXS,REPX,LDFLOC,LDFNXT)-to retrieve data fram the KEDAK-library.

- 82 -

3. (LOCXS,NXTXS,LTLOC,LTNXT)-to retrieve data from DADS2.

4. (LOCXS,NXTXS,LDFLOC,LDFNXT)-to retrieve data from the KEDAK-library

I. and 2. are for the retrieval in a requested energy range LEHIN,E~7,

3. and 4. for the retrieval of all data of requested type available on

the dataset. STOSUB is called at the beginning of the calculation and

the call is repeated whenever new retrieval routines are needed.

The entry CALIIN initializes flags ~n the common /CALCOH/ which indicates

where the current result is stored (ADR,EXCH,EQC). NOLD - the number of

da ta of the previous result and NX - the number of data from current

result are set to zero.

The entry ERRSTO applies to store the error numbers into the NN-array

in /CALCOH/.

The call:

CALL ERRSTO(LL)

LL - array which supplies the error numbers

The function of the entry EQUAL is to store data from the KEDAK-file

or the external source unchanged into the array of the current result.

The call:

CALL EQUAL(NA}ß,NAMES,EMIN,E~UlK)

NA}ß - number of names for the data type

NAMES - the names of the data type

EHIN - lower Jenergy limit of the

EMAX - upper energy range to be processed

The entry EQUALC allows to enter a constant function value (cross

section value) XC for a given energy range /EMIN,EMAX/.

The call:

CALL EQUALC(XC,EMIN,EMAX)

- 83 -

The entry RE}WI deletes the values at the energy points O. and 1. E+I0.

The entries to perform arithmetic operations are PLUSI.MINUSI.}ruLTl,

DIVID 1.

The ealls:

CALL PLUS 1(NAHZ,NAHES,EMIN,EHAX)

CALL MINUS 1 (NA.1'1Z, NAME S,EMIN, EHAX)

CALL MULT 1(NAMZ, NAME S, EMIN, EMAX, ZERO, ZERO 1)

CALL DIVIDI(NAMZ,NAMES,EMIN,EHAX,ZERO,ZEROl)

For deseription of arguments see the argument list deseription for the

entry EQUAL. The additional arguments ZERO and ZEROI are explained here:

ZERO

ZERO 1

Entry PLUSI

indieates that the funetion values ~n the interval
X < E are to be set equal to zero, if ZERO = .TRUE.,
otherwise they remain unehanged

- all funetion values for X > E are to be set equal to
zero, if ZERO 1 = .TRUE.

In the energy range LEMIN,E~7 the operation ADD: "+" ~s performed

YI =Y+S

Xl =X u E

Y {= YI

X {= Xl

y = S

X E

with y =0 for E < X. or E > X
m~n max

and S=O for X < E. or X > E
m~n max

(X,Y)-data outside (EMIN,EHAX)

remain unehanged

(E,S)-data outside (X X)min' max
are reeeived unehanged, Xl is the rnerged grid:

(X u E) (Xl,Yl), (x,y) - the arrays retaining

the previous and the eurrent result.

(E,S)-array retaining the data from KEDAK or

external souree

if the ealeulation started

with the call to PLUSl.

- 84 -

Entry MINUSI

The operation performed ~s SUBTRACT: tI_ ~,

YI =Y-S

Xl =X u E

Y~ 11

X~ XI

Y = - S

X = E

Entry MULTI

wi th Y =0 for E < X . , E > X
m~n max

and S = 0 for X > E , X < E .
max m~n

if the call to MINUSI was the first

call for the calculation

The operation Multiply: "." is performed:

and(
ZERO = T =:::;> S = 0YI = Y·S for X < EMIN ZERO = F~ S = IXI = X u E

~YI and(
ZERO I = T =9 S = 0

Y for X > EMAX ZERO I = F~S I=XI<:=XI
and E ~ (X .,X)~ S = 0

m~n max

Entry DIVIDI

The operation Divide: "/" is performed:

YI = Y/s for X < EMIN (ZERO = T~S = 0

= X u E
and .. ZERO = F~S = IXI

Y<{=YI for X (ZERO I = T~S = 0
> EMAX and ZERO I = F ?S

X~ Xl
= I

and E t (X. X)==}S = 0
m~n' max

ifS=O=}Y=O

The arithmetic operations between a constant and a cross section value

are performed by PLUSCI,MINUCI,MULTCI,DIVICI. The argument lists for these

entries are the same as described for the entry EQUALC. The entry ETACAL

is provided for the evaluation of ETA.

- 85 -

Subroutine CALCC

The subroutine CALCC provides the entries PLUSC,}1INUC,}IDLTC,DIVIC

to perform the arithmetic operations. In CALCC the da ta for a requested

energy range EMIN,EMAX are retrieved, if necessary interpolated to

EMIN,EMAX by the subroutine XL IM 1(ENTRY XLIM2) , and processed.The

arithmetic operations ("+", li_li, li/li, ".") are performed upon the

functions (X,Y) (current result) and (E,S) (retrieved data) with linear

interpolation. (XI,YI) contain the result of the operation on the

merged grid (X U E).

The interpolation is performed with the function: FUNC(A2,AI,B2,Bl,B)

AI+(A2-AI)/(B2-Bl)*(B-Bl)

The argument lists for the entries MlNUC,MULTC,DIVIC are as described

for PLUSC, but lillLTC and DIVIC have two further arguments:

ZERO

ZERO 1

- (~ ZLOW) = .TRUE. - all function values (current result)
in the interval X < E are set equal to zero.
ZERO = .FALSE. - the current result is set equal to the
previous result. If no data found for requested type on
KEDAK and ZERO or ZEROl is .TRUE., the current result is
set equal to zero .

...
- (= ZUP) = .TRUE. - all function values for X > E are
set to zero

The eall for PLUSC:

CALL PLUSC(X.Y,Xl,YI,E,S,NAL~,NA}mS,EMIN,EMAX.LOCSUB,NXTSUB,LSUB,NSUB)

The arguments:

X,Y)XI, Yl

E,S

NAMZ

NAMES

EMIN

EMAX }

working areas contain the current result and

the previous result by turns

arrays retaining the retrieved data (from the
KEDAK-file or from DADS2)

- the number of names of the processed data type

- array retaining the names of the data type

- lower and upper limit of the

- energy range to be processed

LOCSUB

NXTSUB

LSUB

NSUB

- 86 -

the external names of the

retrieval routines to be transferred

to the program (see entry STOSUB

in CALCl)

The da ta to be combined with the current result are retrieved by a call

to LOCSUB and NXTSUB:

CALL LOCSUB(NARG,NAMES,EMIN,EMAX,E,S,~1S,LE,NR,LSUB,NSUB)

CALL NXTSUB(NARG,NAMES,EMIN,EMAX,E,S,NUMS,LE,NR,LSUB,NSUB)

If EMIN is greater than EMAX, then EMIN, EMAX are ignored by the prograrn,

and the retrieval entries without these arguments are used:

CALL LOCSUB(NARG,NAMES,E,S,NUM,LZ,NR)

CALL NXTSUB(NARG,NAMES,E,S,NUM,LZ,NR)

and all data available for the data type are retrieved.

The arguments:

NARG

NAMES

EMIN,EMAX

E,S

NUM

LZ

NR

NR=I

NR=2

NARG(I) = NAMZ:the number of data type names

array retaining the names

if applicable, give the (energy) limits for retrieval.
Retrieval starts with the last energy < EMIN and will
stop with the first energy > EMAX. Int;rpolation to
EMIN (EMAX) is done by the s~broutine XLIM 1(XLIH2).

are the arrays into which arguments and functional
values are stored successively

is the number of data points transmitted by the current
call

gives the maximum number of data points, that may be
stored into X,Y

is areturneode, set by the ealled routine, the value
of which depends on various eonditions detailed below

last data point for the requested data has been stored
in (E,S)

LZ data points have been filled into (E,S), without
reading the end of the data type. (An entry is provided
to continue with retrieval, after a seetion of LZ data
points has been handled.)

- 87 -

NR=3 No data found for the requested type

NR=4 argument of the first data point already greater than
EMAX. This data point is transmitted.

NR=5 argument of the last data point for the requested
type less than EHIN. This data point is transmitted

NR=IO transmission of data stopped, because upper energy
limit was reached.

Returncode 1,2 and 10 indicate normal return, all other returncodes

indicate exceptional condition.

The calculation of a cross section value by CALCC is carried out,

operating on the current result, and the retrieved data by the

proper arithmetic operation, interpolating linearly if necessary.

The result of this operation replaces the former current result.

If the number NX of data points processed (XI,YI) is less than the

length LX of the working areas, the data are kept 1n the main stora7.e.

Otherwise an external storage on disk is used, to store the data in

datasets with the reference numbers NDX,NDXI.

The data are read from NDX by the statement:

READ(NDX)LDAT, (X(I) ,Y(I),I=I,LDAT)

LDAT < LX

This read statement is repeated, till all NX data are read.

LDAT=LX LDAT=LX LDAT=LX LDAT<LX
'"~--------------~,-,--------~)

n*LX+LDAT=NX

Blocks of data read from NDX.

- 88 -

Each block of data is processed, and written on NDXl:

WRITE(NDXl) LX,(Xl(I),Yl(I),I=l,LX)

Note that the number of data may increase, since energy points may

have been inserted.

If a new data type is to be calculated, not using the current result,

then a call to CALIIN (by the main program) has to be performed for

initialization of the working areas (see also: ENTRY CALIIN in CALCl).

The current result 1S lost, and therefore should be saved first, if

required.

The common /CALCOM/

The common /CALCOM/ 1S used in the calculation package to transmit

specifications about the calculated data and datasets used./CALCOtVis

accessed in the subroutines CALCl,CALCC,ETACC,EQU,OPERCC of CALCPAC,

and in EDIT,PRIDAT and CRECT.

CO}ftiON /CALCOM/ lRET,LE,LX,NX,tIDX,NDXI,EQC,NN(9),XMGS(2),ADR,OLDADR,EXCH,NOLD

I~T

LE

LX

NX

returncode from CALCC

= I data (current result) are kept in main storage 1n
(X,Y) or (Xl,YI), dependent on the value of ADR

= 3 the current result is written on NDX or NDXl
respectively

= 4 the number of processed data is less or equal to LX
(the length of the working area), or the number of data
processed is equal to zero

- length of the areas (E,S)

- length of the areas (X,Y), (XI,Yl)
LE and LX are set in the SPACE2 subroutine

- the nurnber of data processed.
NX is initialized in CALIIN with O. As long as
NX ~ LX the processed data are kept in main storage,
as soon as NX > LX the data are stored on an external
storage on disk, in the dataset with the reference
number NDXl, and are retrieved from NDX.

NDX

NDX

NN(9)

XMGS(2)

ADR

OLDADR

EXCH

- 89 -

}

dataset reference numbers of the auxiliary

datasets for the current result

- is set .TRUE •• if the entry EQUALC was entered.
EQC is initialized .FALSE. in CALIIN

- an array to retain the numbers of the error
messages. IfN is initialized ~n ERRSTO

not used in CALCUL

indicates where the current result is stored:

•TRUE. in (X. Y)

= .FALSE. in (XI.YI)

indicates where the previous result was stored

- indicates. whether the dataset reference number NDX,NDXl
were exchanged. after processing the data type

Subroutine OPERCC

The subroutine OPERCC includes the entries, which perform the arithmetic

operations PLUSCC.MlNUCC.MULTCC.DIVICC for a constant. and the entries

EQUCC and &WC.

The calls:

CALL PLUSCC(X.Y,XC.EMIN.EMAX)

CALL MII~CC(X.Y.XC.EMIN,Et~)

CALL MULTCC ,XC ,EMIN , EMAX)

CALL DIVICC(X ,EMIN,&~)

CALL (X.Y.XC,EMIN.

The arguments:

the arrays of the data for which the
has to be performed

xc

EHIN EMAX

the value of the constant. which is to be
combined with the cross section values in
the Y-array

lower and upper energy limit of the da ta for
which the operation is performed

- 90 -

The entry EQUCC sets Y to a constant either at O. and I.E+IO

(EMIN > E~~) or at EMIN,EMAX. The values above EMIN, previously

defined, are lost.

The entry RMVC removes the function values (Y) at O. and I.E+IO

(X), if EQC = .TRUE.

The call:

CALL RMVC(X,Y,XI,Yl)

(X, Y)

(X I , YI)

- arrays of the data before the operation

- arrays of the data after the operation

Subroutine ETACC

The subroutine ETACC performs the operation Y* = I/(I+Y) which is needed

for the calculation of ETA. Y on the right side of the above formula

would stand for ALPHA in this case. For those energies, where Y is equalto

zero, no operation is performed, and Y* remains unchanged.

I ETACAL I

SGNI

2.5 Cross section calculation package-call scheme

I :nIIT I ICAL;IN I
ARITHO MINUC I

\.0

- 92 -

2.5 The cross section calculation subroutines CROSSEC-function

The module CROSSEC was written to provide the most cornmonly used

formulae for cross section calculation as an integral part of the

cornmand language and to relieve the user at input coding. CROSSEC

consists of the following subroutines:

CROSEC,TWOOP,THROP,SIXOP,ETA2,SGGSTR,ALPETA

The subroutine CROSEC ~s the control routine for the particular

subroutines:

Subroutine ENTRY-name
name

TWOOP
ALPHA)
NUSFI
SCCI
SGXI
SGT I
SGNI

THROP SGAI
SGG3

SIXOP SGX2
SGII

ETA2

SGGSTR SGG2
SGTRI

ALPETA ALPHA2
ETAl

- 93 -

2.5. I Subroutine CROSEC - the contral routine for the neutron
cross section calculation

The subroutine CROSEC is the control routine for the neutron cross

section calculation of the followin8 data types:

ALPt~,ETA.SGA,SGG,SGI.SGN,SGT,SGTR,SGX

The explanation of the symbols:

total cross section

cr
n

atr

ox

n

~l

a
y

elastic scattering cross section

transport cross section

non-elastic cross section

effective number of secondary neutrons emitted per neutron absorption

average number of secondary neutrons per fission

average of the eosine of the elastic scattering angle 1n
the laboratory system

radiative capture cross section

fission cross section

cross section for the (n,p)-process

a cross section for the (n,a)-process
a

a absorption cross sectiona

a total inelastic scattering cross section
n

eross section for the (n.2n)-process

cross section for the (n.3n)-process

The call:

CALL CROSEC Y.Xl,Yl.LX,NR)

X -array of the energy values

Y - array of the cross section values

XI

YI

LX

NR

- 94 -

see X

see Y

X,Y,XI,YI are the work areas of the calculation
package CALCPAC

the length of the X,Y,XI,YI arrays

returncode

= 0 no data found for the requested data type, either
on the KEDAK-file nor in the auxiliary dataset
DADS2

= no more data available on KEDAK for the processed
data type

= 2 the index counter for the processed data point is
equal MAXNUM i.e. the length of the work area

3 no data available on the KEDAK-file for the
requested data type

4 no data found for the requested energy range

= 5 no further data on the KEDAK-file for the
processed data type

=10 data found on the KEDAK-file lie above the
requested energy range

The subroutine CROSEC uses the operation code number NOP from the common

IOPAR/. The calls for the operation codes are performed based on the

sequence of the commands defined ~n OPDEF. The commands are conformable

to the subroutine or entry names respectively: ALPHAI,ALPHA2,ETAI,ETA2,

NUSFI,SGAI,SGGl,SGG2,SGII,SGNl,SGTI,SGTRI,SGXl,SGX2.

The subroutine EDIT is called to store the calculated data type on the

auxiliary direct access dataset DADS2 for later use.

- 95 -

2.5.2 The subroutines for the calculation of the particular cross sections:
TWOOP,THROP,SIXOP,ETA2,SGGSTR,ALPETA

The following applies to all subroutines listed above:

The names of the data type to be calculated and the operation code number

are transmitted to the subroutines via the corumon !PAID1!. The arithmetic

operations: plus, minus, divide and multiply are performed by a call to

ARITHO. The operation code number specifies the data type (cross section)

and the formula forfuis calculation.

The subroutine EDIT is called in ETA2 and SGGSTR to store the calcu­

lated data into the auxiliary direct access dataset DADS2. A call to

CALIIN causes the initialization of the work areas, i.e. the areas are

set to zero, when the operation was carried out and the data were stored

on DADS2.

The subroutine TWOOP provides S1X entries which manage the calculation of the

following data types:

Entry name

ALPHA I : ALPHA = SGG!SGF

NUSFI NUSF NUE * SGF

SGCI SGG SCF * ALPHA

SGT I SGT = SGN + SGX

SGXI SGX = SGT - SCN

SCNI SGN SCT - SGX

The subroutine THROP with two entries allows the calculation of the types:

Entry name

SGAI: SGA = SGC+SCF+SGP+SGALP+SG2N+SG3N+SGD

SGG3: SGG = SGA-SGF-SGP-SGALP-SG2N-SG3N~SGD

The subroutine SIXOP with two entries calculates the tvnes:

SGX2

SCII

SGI

SGX

= SGX-SGG-SGF-SG2N-SGP-SGALP-SG3N-SGD

= SGI+SGG+SGF+SG2N+SGP+SGALP+SG3N+SGD

- 96 -

The subroutine ETA2 calculates the data type ETA = NUE * SGF/(SGF+SGG)

The subroutine SGGSTR provides two entries for the calculation of

the data types:

SGG2

SGTRI

SGG SGF * ((NDE/ETA) - I)

SGTR = SGT - SGN * MUEL

Jhe subroutine ALPETA provides two entries for calculation of:

ALPHA2

ETAI

ALPHA = (NUE/ETA) - 1

ETA = NUE/(I+ALPHA)

The subroutine ETAce supplies the value Y = I/(lt-ALPHA).

MINUCI is called to subtract the constant XC = 1 from the processed

data type in the energy range /FROM,T07. The values FROM,TO are- -
obtained from the common /OPAR/.

2.6 DATAMAN - call scherne

[PR~DAT ICRECTEDIT

INQNUM INQDSN STONUH

\0
~

I

- 98 -

2.6 Data Management of the temporary direct access dataset DADS2
and of the two auxiliary datasets of CALCPAC - DATA}~

The module DAT~ manages the auxiliary datasets of CALCUL: the direct

access dataset DADS2 and the two auxiliary datasets (working area) of

CALCPAC.

The data to be processed in CALCPAC are transferred into the working area.

The data calculated by CALCPAC, or the data read from the external source

are stored into DADS2 for later use in CALCPAC and/or in other modules of

CALCUL (e.g. CROSSEC, OUTPUT,DATA}~N). DAT~ consists of the following

parts:

1. The subroutines to create and update DADS2: EDIT,UPDAT,UPDN.

The labeled common blocks/DAV/DA~JbA~JDAqJbA~ are used at the

definition and organization of DADS2.

2. The subroutine CRECT to delete data from the auxiliary datasets

of CALCPAC.

3. The subroutines to print data for checking purposes: PRTDAT,LL~R,

PRIDAT.

- 99 -

2.6. I The subroutines EDIT,UPDATE,UPDN to create and update the
temporary: data~_e_t_D_AD_S_2 _

The subroutine EDIT is the data management routine for the temporary

direct access dataset on FT02FOOI (DADS2). where the processed data are

stored for later use in CALCPAC. CROSSEC and for editing by the OUTPUT

module.

The call:

CALL EDIT(X,Y,XI,YI,LX,NERR)

The arguments:

x
Y

XI

YI

LX

NERR

- energy values

- cross section values

energy values

cross section values

length of the arrays

error returncode

= 0 - no error

arrays retaining the
previous and current
result alternatively

= - error appeared, no data saved

Data to be stored in DADS2 are specified to the program by the SAVE or

NAME command. Data "named" are for internal use only; the output unit

number for these data is set to zero in the directory (common /DA2/).

The subroutine EDIT inquires the number of processed data points (NUM)

by a call to INQNUM. If the number is greater than LX (the length of

the incore work area) a call to INQDSN provides the dataset reference

number (NDA) of the auxiliary dataset where the data are written by

CALCPAC.

EDIT reads the data with the read statement

READ (NDA) LDA~(X(I),Y(I).I=I~AT)

[LDAT = NDAT = NUM]

- 100 -

and writes them with the aid of UPDAT,UPDN on DADS2.

If no data were processed (NUM=O) for the data type to be named

or saved, the error message is printed: SAVE/NAME REQUESTED. NO DATA

FOUND, NO OPE1~TION PERFOR}ffiD.

If no data are found for the requested energy range, the error message

1S printed: SAVE/NMffi REQUESTED. NO DATA FOUND IN SPECIFIED ENERGY

INTERVAL.

Subroutine UPDAT, e?try UPDN

The subroutine UPDAT creates the temporary direct access dataset DADS2

and updates the directory in/DA~.

The cal1:

CALL UPDAT (NR, IKENN ,NAM, NMffiS, NX, X)

NR

IKENN

NM!

NAHES

NX

X

returncode

o no error

error message is printed

= 0 for data to be " named" only

= unit number of the output dataset for data to be saved

number of names

the names of the processed data type

number of data in X

array retaining data to be stored on DADS2

The data on DADS2 are stored in records of 2000 bytes = 500 words.

The record length is initialized in the common /DAI/.

UPDAT is called for the first record to be written for a processed data

type. For each subsequent record of the same type UPDN is called.

- 101 -

The common blocks /DAJ/ and IDA21 are used to maintain the direct access

dataset DADS2.

~AII retains information about the layout and the status of DADS2.

WA~ retains the entry table of the data types stored in DADS2.

Data for a max~@um of 79 different reaction types may be stored on

DADS2.

The labeled common block/DA!/

COMHON IDA 11 LREC, NREC ,HAXENT, KENNA, NSREC ,N AVREC ,HENT

~Al/provides information about the specification and the status of

DADS2. The parameters are initialized in INITI,INIT2.

LREC

NREC

MAXENT

KENNA(3)

NSREC

NAVREC

NENT

is the record length in the temporary direct access
dataset (DADS2) with the dataset reference number 2.

LREC=BLOCKSIZE/4-2000/4=500 at present

maximum number of records available in the direct
access dataset. NREC is retrieved by the subroutine
DINF (reference 3) from the space parameter in the
DD-statement for FT02FOOI. NREC is initialized in
INIT 1 with 100.

maximum number of entries that may be retained ~n

the entry table (directory) for DADS2 (= 79 at present)

is anarray that contains the identifier "TEMPSTORAGE"

number of records not used (NSREC=O at present)

number of the next available record

the current number of entries in the entry table
the actual length of the entry table

/DAlf is used in UPDAT,MAIN.EDIT,LTLOC,LTREC,INPUT, FINDAT.

- 102 -

The labe led connnon block /nA21

COMMON /DA2/ MAT, TYP ,EXC ,EHIN ,EHAX,NNAM, IR,NP ,KENN

mA~ contains the entry table of the data types stored in DADS2.

MAT

TYP

EXC

EHIN }EMAX

NNAM

IR

NP

KENN

REAL*8

REAL*8

REAL*4

REAL*4

INTEGER*2

INTEGER*2

INTEGER*2

INTEGER*2

is the array to retain the isotope names

is the array to retain the type names

is the array to retain the third names
(see reference 5, KEDAK conventions)

Energy boundaries of the energy range
for the data type specified by "MAT,TYP,EXC"
stored in the DADS2 dataset

number of names for the specified data
type

number of the record, where data are stored
on the DADS2 dataset (associated variable)

number of data points stored for this type

a flag that indicates, whether the data
stored in DADS2 are to be edited for output
in KEtt\-input-format.
KENN=dataset reference number of the output
dataset, which may be used to update the
KEDAK-library.

KENN=O indicates that the data are used only
for calculation in the current job.

The default value for KENN is 10, it may be
changed via input for the keyword OUTUNIT.

~A2/is used in UPDAT,LTLOC,INPUT.

The labeled connnon block fnA3/

COMMON /DA3/ LR, X(SOO)

LR

x

record number (associated variable) of the record read from
the temporary direct access dataset by the subroutine
LTREC into X

the array to retain the data of one record from DADS2

/DA3/ is used in EDIT,LTLOC,LTREC.

- 103 -

The labeled cornmon bloc~

COMMON /DA4/ NZ,NI,NX

NZ

NI

NX

current number of the processed (located)
data point NZ ~ NX

current number of the data point in the
record (NI ~ LREC)

the number of data points stored for the required
data type

/DM/ is used in LTLOC.

The labeled COInmon block /DAS;

COMMON /DA5/ NRS ,NLRF

NRS

NLRF

a flag that indicates whether updating the temporary
direct access dataset with the subroutine UPDAT was
successful: NRS=O

or not: NRS=I

a flag that indicates whether the last written re cord
is complete: NLRF=O

or not: NLRF=I

Error message: data truncated

/DA5/ is used in UPDAT.

- 104 -

2.6.2 The subroutine CRECT(LX)-Command: DELETE

The subroutine CRECT is called by the main program for deletion of the

result of the last arithmetic operation if the DELETE command was entered

in the control input. LX is the length of the work area for CALCPAC in

the main storage.

INQNilll is called to ascertain the number NUM of processed data. If Nill1

is greater than LX, i.e. data are stored on the auxiliary data set,

I~QDSN is called to inquire the dataset reference numbers, STODSN to

reset the dataset reference numbers, and STONUM to reset the number of

processed data.

If LX is greater than NUM, i.e. all processed data are kept in main storage,

then the erroneous result of the last operation is not deleted.

- 105 -

2.6.3 The subroutines PRIDAT,LIMPR,PRTDAT - to printanoutput
list for checking purposes

Subroutine PRIDAT

PRIDAT manages the printout of data currently stored as result or data

to be named or saved on DADS2 for checking purposes.

PRIDAT is called by the main program to print the data processed in

CALCPAC if the key PRINT=6 is specified in the control input list.

The call:

CALL PRIDAT(X,Y,XI,YI,LX)

x

Y

array retaining energy values

array retaining cross section values to be printed
X,Y data are stored on the auxiliary dataset i.e. Nill1>LX

for LX < tnJM data}Xl

YI

energy values

cross section values
to be printed

are kept in main storage

LX length of the arrays X,Y,XI,YI

The following subroutines are called by PRIDAT:

INQNUM

INQDSN

LIMPR

P~D~

to inquire the number of data processed for the data type
to be printed

to provide the dataset reference number of the auxiliary
dataset, where data are stored, if the number of data NX
is greater than the length LX of the working area in CALCPAC

to establish the energy limits for the data to be printed
according to the requested energy range FROM,TO

to print a block of LDAT data

- 106 -

Subroutine PRTDAT

The subroutine PRTDAT is called by PRIDAT to print the total number of

data points and the data processed for a data type.

The call:

CALL PRTDAT(X,Y,LDAT,LL,NP,FIRST,LAST,TX,LTX,NX)

x

Y

LDAT

LL

NP

FIRST

LAST

TX

NX

array of the energies to be printed

array of the cross section values to be printed

number of data to be printed from the X, Y arrays

number of the printed line

the number of the first point printed in the line LL

= .TRUE. or .FALSE., indicates whether the line is the
first line or not

= .TRUE. or .FALSE., indicating whether the
line is the last one or not

array containing the text for the heading line

the total number of data points for the printed
data type

Subroutine LIMPR

The subroutine LIMPR is called by PRIDAT to ascertain the first value of

the data to be printed.

The call:

CALL LIHPR(X,LDAT,IANF,LAST)

X

LilAT

IANF

LAST

array to retain the energy va lues of the data to be printed

the number of data in X

index of the first value of the data to be printed from X

= .TRUE. or .FALSE. indicates whether the data in X are the
last for the processed data type or not

2.7 OUTPUT edition package - call scheme

o
~

I

EQUENX
LDFLOCFREESP

~

- 108 -

2.7 Output editing package (KEMA-input format dataset) - OUTPUT-function

The output of CALCUL is written in a dataset of ADD- and DROP-records for

the KEDAK-Hanagement program. The organization of this output dataset is

performed in the module OUTPUT with the aid of the following subroutines:

I. EXIT - the control routine for OUTPUT

2. ORDM - to sort the isotope names in KEDAK-order

3. ORDT - to sort data for reaction types, energies, and energy ranges

4. SPACEX,SPACE2 - to allocate dynamically work area for OUTPUT

5. ADDREC - to write the ADD-records

6. EQUENX - to remove data for multidefined points

7. DROREC - to write DROP-records

The retrieval routines RETXS,P~PXS,LOCXS,NXTXSare used to retrieve the

data from the KEDAK-library and from DADS2.

- 109 -

2.7. I The sub routine EXIT-control routine for OUTPUT

The subroutine EXIT performs the editing function for the output of CALCUL

in KEMA-input-format. The output is written in ADD and DROP-records which

could be processed by the KEDAK-Management program (reference 5).

The call: CALL EXIT

A call to LDFOPN (see reference 1) provides the KEDAK-file on which data

are to be changed, added or deleted.

RLSE2 and SPACEX are called to provide the working areas for EXIT.

The subroutine ORD}I sorts the material names in the directory (common

!DA2!) of the auxiliary direct access dataset in KEDAK-order. The sub­

routine ORDT sorts these data for type, energy and energy range in KEDAK­

order.

The subroutine DROREC is called to write the DROP-records (reference 5).

The ADD-records (reference 5) are written by the subroutine ADDREC.

RETXS and REPXS (reference 6) are called to retrieve data from the KEDAK­

file, LOCXS and NXTXS to retrieve data from the auxiliary direct access

dataset.

- 110 -

2.7.2 SPACE2,SPACEX - handling of dynamic storage allocation

Subroutine SPACE2, entry RLSE2

The subroutine SPACE2 provides the space of the work areas for CALCPAC

in main storage.

The call:

CALL SPACE2(F,LI,LX,LE,NP)

F

LI

LX

LE

NP

- address of the area

- length of the area F

- the length of the areas retaining the current and
previous result

- the length of the area to retain the data from the
KEDAK library

the maximum number of data points for the reaction
types of the processed isotope

FREESP (reference 8) is called to provide the number of bytes available

for CALCUL in main storage.

XTAREA (reference 2) is called to establish the address of the work area.

The ENTRY RLSE2 is called (in the main program before a repeated call to

SPACE2,and in EXIT before the call to SPACEX) to release storage with the

aid of the REXTAR routine (reference 2).

Sub routine SPACEX

SPACEX is called to provide the work areas for the subroutine EXIT.

The call:

CALL SPACEX(X,LA,LX)

X

LA

LX

- address of the work area provided for EXIT

- displacement

- length of X

- I J I -

The available space is provided by a call to FREESP. The address of

the work area is ascertained in the XTAREA subroutine (reference 2).

- 112 -

2.7.3 ADDREC,DROREC - subroutines to write the output records

Subroutine DROREC

The subroutine DROREC writes the DROP-records (reference 5) to inform

the KEDAK-Management program which data on the processed ImDAK-file

are to be deleted.

The call:

CALL DROREC(}~T,TYP,EXC,NA.~Z,EMIN,Er~,X,Y,Z)

HAT

TYP

EXC

EMIN

EHAX

x

Y

LX

J

is a real*8 variable to retain the name of the isotope
for which data are to be deleted

is a real*8 variable to retain the reaction type name

excitation energy for the inelastic excitation cross section

lower and upper energy limits of the energy range

where data are to be deleted

array to retain the energy values of data points to
be deleted

array to retain the cross section values

the number of data points to be deleted

If EMIN is greater than EMAX,all data are deleted for the processed reaction

type, i.e. a DROPA-record (reference 5) is written on a dataset with the

reference number KTAPE.

To delete the data for a given energy range LEMIN,E~7 the data are read

with the aid of the subroutines RETXS,REPXS from the KEDAK-library and

DROPS records are written for each energy available in the processed energy

range on KEDAK and in the ADD-records. If the key PRINT=6 was specified

1n the control input list of the SAVE command,a list is printed, in order

to check the output.

- 113 -

Subroutine ADDREC

The subroutine ADDP~C is called by the EXIT routine. ADDREC writes the

data processed ~n CALCUL as ADD-records for the KEDAK-Hanagement program

on a dataset with the reference number NOUT=IO.

The call:

CALL ADDREC(MAT,TYP,EX,NAJß,MX,X,Y)

MAT - a real*8 variable retaining the isotope name

TYP -a real*8 variable retaining the reaction type name

EX - the third name (i. e. excitation energy)

MX - number of data points processed

X - array retaining the energy values

Y - array retaining the cross section values

A list output is printed for checking the results, if the key PRINT=6

was specified in the control input list of the SAVE command.

The subroutine EQUENX is called to handle double defined energy points.

- 114 -

2.7.4 ORDM,ORDT - to sort data in KEDAK order,EQUENX - to remove
multidefined points

Subroutine ORDM

The subroutine ORD~1 sorts the array MI according to the order of M2.

The call:

CALL ORDM(N,MI,K,M2)

The arguments:

N

MI

K

M2

- the number of isotope names to be sorted
(= the number of isotopes to be edited for output)

- a real*8 array retaining the isotope names to be sorted

- the number of isotopes available on the KEDAK-file

- a real*8 array retaining the names of the isotopes
available on the KEDAK-file

Subroutine ORDT

The subroutine ORDT sorts the arrays TYP,ES,EMIN with the priority:

all types for ES,EMIN

The call:

CALL'ORDT(NT,TYP,ES,EMIN,EMAX,NN)

NT

TYP

ES

EMIN

EHAX

NN

}

- the number of reaction types

- a real*8 array to retain the reaction type names

- an array to retain the third names (e.g. excitation energy)

- energy limits of the processed

energy range

- array to retain the number of names far each
reaction type

- 115 -

The subroutine EQUENX

The call:

CALL EQUENX(N,E,S,NAMZ,NAMES)

The arguments:

N

E

S

NAMZ

NAHES

- the number of data points

- array retaining the energy values

- array retaining the cross section values

- number of names

- the names of the reaction type

EQUENX is called by the subroutine EXIT to test the array E for equal

energies and to remove them from the arrays E,S resetting N. If

the cross sections at such multidefined points do not agree, a warning

message is printed ~n addition.

E,S is supposed to be ordered according increasing E. Two energies are

considered to be equal, if they differ less than 0.0001 %.

In the absence of the authors the publication of this report was prepared

by B. Goel and R. Moser.

- 116 -

3. References

1. I. Langner, R. Meyer
IDFPAC/LDFPAC - two retrieval packages for the Karlsruhe
Evaluated Nuclear Data Library, KFK 2387/111, Section 2, April 77

2. w. Höbel
XTAREA, REXTAR - dynamische Dimensionierung von FORTRAN­

Feldern, KFK, to be published

J. G. Arnecke, H. Bachmann
DEFI, DINF dynamisches DEFINE FILE, KFK, to be published

4. G. Arnecke
DDTEST - Benutzte Dateien, KFK, to be published

5. B. Krieg
,The KEDAK Program Compendium Part 11
KEDAK Basic Management, KFK 2387/11, 77

6. R. Meyer
RETPAC - A user oriented retrieval package for use with
the Evaluated Nuclear Data Library KEDAK, KFK 2387/111, Section 4

7. H. Blesene
CONVY - FORTRAN-Unterprogramm für die IBM/360 zur Umwandlung
von in maschineninterner bzw. in alphanumerischer Darstellung
vorliegenden Test- und Gleitkommazahlen in alphanumerische bzw.
maschineninterne Darstellung, unpublished

8. G.H. Hinze
FREESP - Subroutine zur Bestimmung des noch freien Kernspeichers
für FORTRAN-Benutzer an der IBM/360-65, unpublished

