v

 KERNFORSCHUNGSZENTR

November 1977 KFK 2387/ Vi

Institut fur Neutronenphysik und Reaktortechnik
Projekt Schneller Briter

The KEDAK Program Compendium
Part Vil
CALCUL-Calculation of Compesed Cross Sections

l. Langner, R. Meyer

Als Manuskript vervielfaltigt

Fir diesen Bericht behalten wir uns alie Rechte vor

GESELLSCHAFT FUR KERNFORSCHUNG M. B.H.
KARLSRUHE

KERNFORSCHUNGSZENTRUM KARLSRUHE
KFK 2387/VIL
Institut fiir Neutronenphysik und Reaktortechnik

Projekt Schneller Briiter

The KEDAK Program Compendium
Part VIL

CALCUL-Calculation of composed cross sections

I. Langner, R. Meyer

Gesellschaft flir Kernforschung mbH., Karlsruhe

Abstract

CALCUL is a program system to calculate composed cross section quantities
and to arrange them according to KEDAK-conventions. A special command
language has been generated to simplify the input and to provide inter-
active communication under time-sharing—option. In CALCUL any amount of
data can be processed. The output of the program is a data set which can
be directly used as an input to program system KEMA which modifies the

KEDAK-library.

Das KEDAK Programm Compendium
Teil VII

CALCUL - Berechnung von zusammengesetzten Wirkungsquerschnitten

Zusammenfassung

Das Programmsystem CALCUL berechnet zusammengesetzte Wirkungsquerschnitte
und besorgt deren Aufbereitung entsprechend den KEDAK-Konventionen. Zur
Vereinfachung der Eingabe wurde eine eigene Kommandosprache entwickelt,
die es auch ermdglicht, interaktiv im Time—sharing-Betrieb zu arbeiten.
Mit CALCUL konnen beliebige Datenmengen bearbeitet werden. Die Ausgabe
des Programms ist ein Datensatz, der als Eingabe fiir das Programmsystem

KEMA dient, welches die KEDAK-Bibliothek veridndert.

Contents

Introduction

1. User's guide

1.1 Purpose and capability of CALCUL

1.1.1 The

commands and formulae for calculation of composed cross

section values

1.1.2 The
1.1.3 The
1.1.4 The

1.2 Structure

1.2.1 The
1.2.2 The
1.2.3 The
1.2.4 The
1.2,5 The

arithmetic operations
data organization commands

program control commands
of CALCUL

control module ‘

operation code definition package OPDEF
control input processing package PROCINP
calculation package CALCPAC

cross section formula calculation CROSSEC

1.2.6 Data management of the auxiliary data sets — DATAMAN

1.2,7 Output edition package ~ OUTPUT

1.3 External references

1.4 The control input for CALCUL

1.4.1 The function of the control input
1.4.2 The GO-mode and the WAIT-mode
1.4.3 Input coding in the WAIT-mode

1.4,4 The commands and their valid abbreviations

1.4.5 The

1.4,
1.4,
1.4,

1.4,

control input list

5.1 The data types of the parameter values
5.2 The keywords defined, Table I

5.3 The commands and their positional and keyword operands,
Table I

5.4 The function of the commands

1.4.6 An example of a control input for CALCUL

1.4.7 The

control input to print the information available from the program

1.5 The job control statements for a GO-mode job

page

N

P N R VS L]

N O W

10
10
|

il

12

12
12
12
16
16

16
17

18
20

21

23
24

25

1.6 The output of CALCUL

1.6.1 List output for checking purposes

1.6.2 The output of the set of data processed in a format suitable for
KEMA

2. Programmer's guide - detailed description of subroutines, labeled common
blocks, work areas and temporary auxiliary data sets

2.1

2.2

2.3

2.4

The control module — call scheme

2.1.1 Function of the control module

2.1.2 Initialization subroutines: INITI, INQ, TESTOP, FILLTP; the common
/INOUT/ and /PARM/: initial and input parameter values

2.1.3 Transfer of data from an external source into DADS2 by the sub-
routines INPUT, INTERP (UPDAT, UPDN)

2.1.4 Construction of the control input in card image format: XXSIMU,
XXOUT, COCARD

The operation code definition package - call scheme and function

2.2.1 The control routine OPDEF
2.2.2 The definition entries comprised in OPLIST and the common /OPXX/

2.2.3 The definition subroutines for: keywords IXKEYW, operation codes -

XOPCOD, auxiliary subroutines: CHKEY, LOPi, LOP2, LOP3, LOP4, TYPCHK

positional parameters — XPOSPA, default values - XDEFLT, exclusive
keywords - XEXCLU. The subroutine to print operation code package
tables — XOPRIN

2.2.4 The arrays containing the operation code package:
Table 1 ~ structure of the G-array
Table 2 - structure of the H-array
Table 3 - structure of the common /OPAR/

The control input processing package — call scheme and function

2.3.1 The control routine XOPCHK. Processing operation code operands -
OPCD, CHKOPC, CONKEY. Processing keyword operands — DEFIN, PROKEY,
KEYCD

2.3.2 Processing interactive (real time) input -~ INQKEY, VERIFY, XXTWM,
DISPLA

2.3.3 The subroutines to decode the control input list: NITEM, CHKREL,
CHKINT, CHKLOG, CHKL

The calculation package CALCPAC - call scheme and function

2.4,1 Preparation of data to be processed: ARITHO, FINDAT, ORDNEN, KEDCH,
AVAIL, XLIMI

2.4.2 The arithmetic operations: CALCI, CALCC, OPERCC, ETACC

page
26

26

27

28

28

28

29

34

35

38

39
41

52

55

57

64

67

72

80

page

2.5 Cross section calculation package CROSSEC = call scheme 91
and function

2.5.1 CROSEC - the control routine of CROSSEC 93

2.5.2 The subroutines for the calculation of the particular 95
cross sections:
TWOOP - for ALPHA, SGG, SGT, SGX, SGN , NUSF
THROP - for SGA, SGG
SIX0P - for SGI, SGX
ETA2 - for ETA
SGGSTR -~ for SGG, SGTR
ALPETA - for ALPHA and ETA

2.6 Data Management of the auxiliary data sets DATAMAN - 97
call scheme and function

2.6.1 Create and update the temporary data set DADS2: 99
subroutines EDIT, UPDATE, UPDN, common blocks
/DA1/, /DA2/, /DA3/, /DA4/, [DA5/

2.6.2 The subroutine CRECT (command DELETE) 104

2.6.3 Print out for checking purposes: 105
PRIDAT, LIMPR, PRTDAT

2.7 The output editing package - OUTPUT 107
call scheme and function
2.7.1 The control routine - EXIT 109
2.7.2 Handling of the dynamic storage allocation - 110
SPACE2, SPACEX
2.7.3 The subroutines ADDREC, DROREC - to write the 112

output records

2.7.4 Preparation of the data for output: 114
ORDM, ORDT, EQUENX

3. References 116

Introduction

This report is intended to provide the information needed to use and maintain
the program system CALCUL. The program system CALCUL assists

the evaluator of neutron crosSs section data by the computation of composed
cross section values processing any amount of data points and interpolating
the cross section values linearly, if necessary. The data processed are re-
trieved from the KEDAK-library and/or from an external source (tape, disk or

cards).

The output is a set of neutron cross section data in a format suitable for

KEDAK-update by the program system KEMA.

The report is divided in two parts:

l. User's guide to give the information necessary to use the program
system CALCUL: purpose, capability layout, input, output, job control

language.

2. Programmer's guide - the detailed description of the particular sub-

routines, auxiliary data sets, work areasand common blocks used in CALCUL.

zum Druck eingereicht am: Nov. 1977

1. User's guide

1.1 Purpose and capability of CALCUL

CALCUL is a program system to calculate cross section quantities. In order to
insert neutron cross section data evaluated elsewhere (or at Karlsruhe) into
the KEDAK-library it is necessary to (re-) calculate and arrange them
according to KEDAK-conventions. CALCUL processes data from an external source
and/or data from the KEDAK-library. A control input, in form of a command

language, controls in which manner the data are processed.
The output is a set of data consisting of ADD-records and DROP-records, that

tells the KEDAK-Management program, which data are to be added to the library,
and which data are to be deleted from the KEDAK-library.

l.1.1 The commands and formulae for calculation of composed data

The commands and formulae for computation of composed cross section values are

listed below.

The calculation of these values is performed with the aid of the single
arithmetic operations described below, but the control in this case is per-
formed by a subprogram, instead of the control input lists for the single
commands, i.e. the writing, reading, and processing of these control input

lists is spared.

ALPHAI

a = cy/of
ALPHA?2 a = (v/n)-l
ETAIl n = \;/(‘+Q)
ET =
A2 n v*cf/(of+cy)
NUSF1 vf = vugf
SGA1 =
oa oY + of+ op+ g, + o4
SGG1 g = g_%a
Y f
SGG2 = Y -
9, = 9gx((v/m)-1)
SGG3 = - - - -
OY o, Of op % 94
SGI) = - - - - - - -
O oy OY op 02n Oy °3n O¢ %

SGN1

SETI

SGTRI

SGX1

SGX2

n T X
0T = 0n * 0x
Otrans B T on) uL
ox = UT -0

1.1.2 The arithmetic operations

CALCUL assists the user in the general problem of exercising the basic mathe-

matical operations upon functions depending on one variable (energy). Thus

CALCUL simulates a desk calculator operating on functions instead of single

numerical values, with the necessary interpolation being performed.

I.

Operation

R = R+y

Operation

R = R~y

operation

R = Rey

operation

R = R/y

LI

ll/"

composed arithmetic

operation

R = IA1+R)

ADD-command
R - the current result, is equal to
zero at the start of the calculation

R,y are data arrays

SUBTRACT-~command

MULTIPLY-command

DIVIDE~command

ETA calculation

1.1.3 The data organization commands

Reset the current result to zero - INIT-command
Delete the previous operation - DELETE~command
Store the current result for later use - NAME ~command
in CALCUL .
Store the current result for the output - SAVE~-command
data set

Read the data from external source, - INPUT=command
(i.e. data not stored in the KEDAK-

library)

1.1.4 The program control commands

Restart the program at beginning - RESTART~command

Create the output data set from the - STOP-command
data saved during the calculation

1.2 Structure of CALCUL

CALCUL is written in modular form with many subroutines to facilitate the
addition of new options and to permit the generation of a compact overlay

structure.

The subroutines of CALCUL are comprised in the following modules:

. Control module

2. Operation code (command) definition package - OPDEF
3. Control input processing package — PROCINP

4. Calculation package - CALCPAC

5. Cross section formula ealculation package — CROSSEC
6. Data management of the auxiliary data sets - DATAMAN.

7. Output edition package (KEMA-input—-format data set) = OUTPUT

1.2.1 The control module

The program flow of CALCUL is mainly controlled by the control input. The main
program and the subroutines described in 2.1 "The controle module" perform
the functions required to control the program execution. The command language
for the control input is defined in the module OPDEF before the calculations

once at program start of CALCUL.

The control input processing module is executed for each entered command.

First command entered should be INIT - to initialize parameter values. Then

the operation mode: GO or WAIT is ascertained, a check for DD-cards is performed,
the operation code is tested, the data to be processed are transferred into the
work area, and calculations are performed, as required by the operation code

entered.

1.2.2 The operation code definition package - OPDEF

The operation code definition package defines the operation codes (commands)
and the corresponding positional and keyword parameters of the control

input for CALCUL.

The operation codes, keywords and their parameters are stored in internal tables,

the G-array, H-array and the common /OPAR/.

The lengths of the G-array and H-array depend on the number of defined commands,
and keywords, and on the number of their parameter values. The area for the
arrays G and H is provided by the main program and fixed in OPDEF, at present

500 REAL#4 words for each array.

The G-array (see Table 1) retains the data for the operation code definition:
the operation code names (commands = alphameric text as listed above), for
each command: the length in characters, the abbreviation length, the number
of keywords defined for each command, the number of positional parameters,
the addresses of the definition data for each keyword in the H-array, the
addresses of the locations in the common /OPAR/ where the values of the posi-

tional parameters are stored and the types of the positional parameters.

The H-array (see Table 2) retains the data for the keywords defined for each
command: the keyword names (alphameric text), for each keyword: the length of
its name, the abbreviation length of its name, address of a flag byte in the
common /OPAR/ retaining a flag, which indicates if a parameter value was
found in the central input list, the address of the list of the keywords ex-
clusive with this key, the default control parameter, the number of parameters,
addresses of the locations in the common /OPAR/ where the parameter values for

the keys are to be stored and the parameter type.

The common /OPAR/ retains the names and the definition data of the keywords
and positional operands for the package. The keywords are defined before the
commands. If the key is to be assigned to a command, the definition data are

stored from /OPAR/ into the H~array. (For /OPAR/ see Table 3.)

1.2.3 The control input processing package PROCINP

The control input processing package decodes the character string of a control
input list, processes the control input and prepares the positional = and the

keyword parameter values from input in the common /OPAR/.

The processed control input list is printed for checking.

If the control input for CALCUL is produced in the WAIT-mode in a fareground
job on a terminal in TSO, the input entered is completed by the control input
processing package and the control input list is printed at the terminal

for checking.

The user may then decide, whether this input list should be added to the control

input in card image format created on the data set with the reference number 9

or not. The control input list is added by a call to SIMUL for KTOUT = 9.

1.2.4 The calculation package CALCPAC

The basic arithme tic operations (with interpolation if necessary) on tabulated

functions are performed in CALCPAC. Also the preparation of data to be processed

is done:

i. Check, if data to be processed are already retrieved or calculated and

stored in the temporary direct access data set DADS2.

2. Find out, which data are to be read from the KEDAK -library.

3. Find out, if they are available on the KEDAK-library.

4, The requested data are transfemed from DADS2, and from KEDAK, respectively,

into the working area of CALCPAC by the aid of the proper retrieval routines.

The working area is subdivided in three arrays:

e (x,y) The data from previous operation and the current result. A
(x1,y1) flag ADR in the common /CALCOM/ determines which is the
current result:
ADR = ,TRUE. = (x,y) = current result

ADR = ,FALSE. = (x1,yl) = current result

(E,s) - The data from DADS2 or KEDAK.

If the work area in main storage is not sufficient to store the processed
data (i.e. the number of data is greater than the array length), the data are
stored on two auxiliary sequential data sets with the data set reference

numbers 3 and 4 (DCB =(RECFM = VBS, BLKSIZE = 2008)).

The following picture assists in deciding upon the result obtained in cases
where the energy ranges of the current result and the data from KEDAK or DABS?

do not coilncide.

In our sample the current result extends below the data from KEDAK, while
the latter extends to energies above, with an overlapping range between Emin
and X .

max

Then the results of the different types of arithmetic operations would be as

follows:

min max
| (x,)
i]
{ | ® ap ‘
| g SUBTRACT'
! MULTIPLY,
| £ DIVIDE E
min max
! (E,s)]
1 |
i
| [|
i | | ’
h AN
! Y | Y {\ V {
!
I ! i
| |
I. ADD ! !
: i i
,X=x | Xl = XUE | Xl = E ’
RIS V=S l Y1 =8 !
]
i.e. Y=0 for (E<X .,)E>X
min max
S=0for X<E, (X>E)
% min max
2. SUBTRACT
{ T] i
| X=X Xl = XUE | Xl = E |
| Y=y Y1 =7¥-5 | ¥ = -§ ;
i.e, ¥Y=0 for (E<X .)E?>X
min max
S =0 for (X>E) X<E_,
max min
®
3. MULTIPLY
Foxio=x I X1 = xuE | Xl = E '
| Yi =0 .
or Y1 = ¥ | Yl = YeS | YI =0 |
] | | 1
. ZERC = .TRUE. = § = 0
@ W (o
teee for X< Epin < ZERO = .FALSE ® § = 1
ZERO & ZLOW from input
ZEROl = T = S =0
for X > E <[ZEROl =F = S 9]
ZERQI = ZUP from input
for E é (Xmin’ Xmax) : §=0
4, DIVIDE
]
Xl = X X1 = XUE ! Xl = E '
Yl = 0 ! | !
or ¥1 = Y Y1 = ¥/8 Yl = 0
! | [
. } ZERO = ,TRUE. = S = O
3 ® < 3
ice. for X < E .0 < ZERO = .FALSE = § = |
ZEROL = ,TRUE. = S = 0
>
for X > E v <X ZERO! = .FALSE. = § = 1
for E 4 (X w X) ¢+ $=0
ifS=0 % Y=0

Outside the energy range [EMIN,EMA&] the

(X,Y)-data to be processed are not changed.

Outside the range of available X-values the

(E,S)-data are stored unchanged for ADD.

For SUBTRACT the S-values change to negative.

1.2.5 Cross section formula calculation package CROSSEC

The module CROSSEC provides a set of often used calculation formulae that
will be satisfactory for most applications. The user is released from the

job of writing the complex input list for each operation and data type
included in the formula, but he must know which cross sections are involved in
the formula, and whether data for these types are available on the KEDAK-
library (or as external source). If the data for a type are not available,

the calculation is performed without these data and a warning is printed.

For each formula a command is provided in the command list. (See the commands

in 1.1.1). The commands are defined in OPDEF (see 2.2.1).

The subroutines for the formulae for calculation of composed cross section
values are comprised in the cross section calculation package. The subroutines
of the calculation package CALCPAC are used by CROSSEC to perform the basic
operations. The subroutine EDIT is called to store calculated data inter-

mediate into the temporary direct access data set DADS2.

1.2.6 DATAMAN -~ The auxiliary data sets of CALCUL:
DADS2 - ‘direct access data set and

work area - sequential data sets

In order to provide increased flexibility, a special direct access data set
(DADS2), with the dataset reference number 2, is created (DCB = (BLKSIZE =
2000, RECFM = F)).

The data from the external source (read by the INPUT command) and the data
calculated in CALCUL are stored in DADS2 for later use in calculation and/or

to edit them in the KEMA-input-format.

The data to be edited are specified to the program by the SAVE-command, data
for later use in CALCUL only by the NAME-command.

The data are stored in records of 2000 bytes = 500 words.

- 11 -

The common /DAl/ retains information about the layout and the status of DADS2,
the common /DA2/ the entry tables for the reaction types for which data are

stored.

The DELETE-command is provided to delete the result of the last arithmetic
operation in CALCPAC. The printout of the data currently stored as result

(in CALCPAC) or of the data to be named or saved on DADS2 for checking pur-
poses is managed in DATAMAN and controlled by the key PRINT or NO PRINT in

the control input of the processed command.

1.2,7 Output editing package (KEMA-input-format data set)

The data calculated in CALCUL are written for output in ADD-records - with
a maximum of 2000 words - for the KEDAK-management program KEMA. The records
are sorted for material names, reaction type names, energy, and energy range

in the same order as in the KEDAK-library.

The KEDAK-library is checked, whether data already exist on the library at
energy points for which data are to be added. To delete these data DROPS-
records are written on the output data set for each energy. All data for a
requested type may be deleted from the library by DROPA-records. DROPA-records

are written on the output,only 1if indicated by the control input.

1.3 The external references

The retrieval packages RETPAC (see reference &) and LDFPAC (see reference 1)
are used to read the data from the KEDAK-library. The following subroutines are
external references: XTAREA (see reference 2) and FREESP (see reference 8) -

to handle the dynamic storage allocation

CONVY (see reference 7) and STRING - to convert fleoating point and integer

data to alphameric and vice versa.

DEFI and DINF (see reference 4)- to make the DEFINE FILE statement dynamical.

DDTEST (see reference 3) - to test DD-cards.

1.4 The control input for CALCUL

1.4.1 The function of the control input

The control input for CALCUL has the form of a command language and controls

the flow of the program and in which manner the data are processed.
The control input is read in from cards or from a card image input data set
on type or disk, and processed by the control input processing package, and

provided for the program via common /PARM/.

1.4.2 GO-mode and WAIT-mode

CALCUL is designed to operate either in the GO-mode or the WAIT-mode. An
interactive facility enables the communication between the user and the
control input processing program, in WAIT-mode in a foreground job on a
terminal in TSO,in a COMMAND-mode and in a REPLY-mode. In the COMMAND-mode
the user may enter control input according to syntax rules,and in the REPLY-
mode he replies to a message from the program. The user may inform himself
which replies are allowed by entering a question mark. The GO~mode can

be used (in a foreground or) in a background job and is restricted to the
COMMAND-mode. The syntax rules for the control input list apply to the
WAIT-mode and to the GO-mode.

1.4.3 Input coding in the WAIT-mode

A special facility is provided in the WAIT-mode of CALCUL. The input entered
at the terminal via keyboard is supplied by the control input processing
program, if necessary, to a complete control input list for each command
entered, and provided in a "card-image-format' data set for later use in a

GO-mode run.

Input coding in the WAIT-mode enables the user to reduce the possible errors
in the complex input coding for the cross sgection evaluation by a programmed

check:

1. if the entered parameter types are valid for the positional and keyword

operands,

2. if all required positional and keyword operands for the command are

entered,

3. if the syntax rules for coding the control input list for the command

are violated,

4. and by completion of the control input list for a command with the
default values of parameters (default values remain valid until ex-

plicitly overridden by a new input value),

5. and by prompting the mput for the parameter values without a default

value available.

A brief description of the available commands can be obtained by the HELP
command. Information about some general rules for the use of some special

characters 1s also available:

1. hyphen (=) :input expected or will be entered

2. question mark (?) :requests information from the program

3. exclamation mark (!) :cancels the last input

4. underscore () tinput continuation is indicated

5. slash (/) :terminates the input (request) for a command.

The special characters are allowed in the REPLY-mode at the terminal only.

The input of a question mark is always allowed, also in the COMMAND-mode, that
is whenever the message: "ENTER CONTRCL INPUT LIST -" is printed. The user
may enter the control input list for a command according to syntax rules
specified below. Moreover information about syntax rules and background use

is available from the program. If HELP'command name' is entered all available

information about the command named is printed.

The user may alter the mode at the terminal (e.g. for testing purposes) by
the TERMINAL command (TERM, NOTERM). The LOAD-module of CALCUL is required
as a TSO-data set to operate CALCUL in the WAIT-mode on a TSO terminal.

The listing of the TSO procedure OPTEST shows an example of TSO commands

necessary to work with CALCUL in a foreground job.

The command:'exec optest' initiates the execution of the program for input

coding.

OPTEST.CLIST

00010 PROC O

00015 TERMINAL LINESIZE(130) SCRSIZE(12,80)
00020 FREE F(FTO5F001)

00030 FREE F(FTO6F0O0!)

00040 ALLOC F(FTO6FO001) DA(%)

00050 ALLOC F(FTO5F001) DA(x)

00055 ALLOC F(FTO9F0OI) DATASET('TS0048.DATA.CNTL')
00060 CALL 'TS0048.0PAC.LOAD(OP1)’

00070 END

READY

exec optest.clist

The following list ig a protocol of a session at a terminal. The user may enter
input whenever a hyphen appears as last character of a message. If "VERIFY -"
appears, the user may hit the return key for verification of the input, or
enter the exclamation-mark to delete this input. The user may enter a question-

mark to obtain information upon the type of input expected.

INVALID SCRSIZE OPERAND, USE LINESIZE

ARE YOU FAMILIAR WITH PROGRAM DESCRIPTION AND INPUT-CODING? ENTER YES OR NO. -
yes

DO YOU WISH TO OPERATE IN GO MODE OR IN WAIT MODE? ENTER GO OR WAIT -
wait

NO DD-CARD FOR FTO1FOO! HAS BEEN SUPPLIED TO DEFINE THE KEDAK LIBRARY.
NO EXTENDED TESTS WILL BE PERFORMED.

YES
GO

YOU ARE USING THE KEYED CONTROL INPUT PROCESSING PROGRAM NOW. ENTER INPUT

IF A BREAK IS THE LAST CHARACTER OF A MESSAGE DISPLAYED. TO OBTAIN INFORMATION
UPON THE TYPE OF INPUT EXPECTED YOU ALWAYS MAY ENTER A QUESTION MARK, IF

THIS IS NOT LITERALLY EXCLUDED. TO OBTAIN GENERAL AND SYNTAX INFORMATION

ENTER HELP OR ? WHEN YOU ARE IN THE COMMAND MODE. USE THE TERMINAL COMMAND

AT A 2260 TERMINAL. YOU ARE IN THE COMMAND MODE NOW. ENTER CONTROL INPUT

LIST -

add

DEFAULT ASSUMED.

VERIFY -

NO MATERIAL NAME AVAILABLE. REENTER NAME ONLY, WITHOUT DELIMITING APOSTROPHES -
u 238
NO TYPE NAME AVAILABLE. REENTER NAME ONLY, WITHOUT DELIMITING APOSTROPHES -

sgt

THE FOLLOWING CONTROL INPUT LIST HAS BEEN PREPARED FOR OUTPUT:

ADD 'U 238" 'SGT" 0.0 FROM= 0.0 TO= _
~1.00000E+00 NOPRINT OUTUNIT= 10 CONST= 0.0

VERIFY -

ENTER CONTROL INPUT LIST -
i

DEFAULT ASSUMED.

VERIFY -

THE FOLLOWING CONTROL INPUT LIST HAS BEEN PREPARED FOR OUTPUT:
INIT FROM= 0.0 TO= -1.00000E+00
VERIFY -

ENTER CONTROL INPUT LIST -

su 'u 238" ‘sgx' from=2.e+3 to=12.e+5 print=6
THE FOLLOWING CONTROL INPUT LIST HAS BEEN PREPARED FOR OUTPUT:
SUBTRACT 'U 2387 'SGX' 6.0 FROM= 2 .00000E+03 TO= __
1. 50000E+06 PRINT= 6 CONST= 0.0
VERIFY -

!
READY

1.4.4 The commands and their valid abbreviations

A command is one of the listed below operation codes. The bracket denotes the
valid minimum abbreviation. It may be extended by an optional number of

characters up to the full length of the operation code name:

ADD(A), SUBTRACT(SU), MULTIPLY(M), DIVIDE(D), ETA(E), NAME(N), SAVE(S),
DELETE (DE), STOP(ST), RESTART(R), INIT(I), INPUT(INP), ALPHA!(AL), ALPHA2,
ETAl, ETA2, SGAI(SG), SGG1(SGG), SGG2, SGG3, SGI1(SGI), SGNI(SGN), SGTI(SGT),
SGTR1(SGTR), SGX1(SGX), SGX2.

1.4.5 The control input list

The control input list is a block of control input data which must be entered
as a logical unit. A control input list consists at least of one command, in

general:

1. of the command

2. of the (max. 3) positional parameters
a) isotope ‘name
b) data type name
¢) third name (e.g. excitation level energy)
(e.g. 'U238' 'SGIZ' 1.4E+3)

3. and of up to seven keyword operands with their parameter lists.

1.4.5.1 The data types of the parameter values of positional and keyword

oEerands

Four types of data are accepted by the control input processing program as
input data: real, integer, logical, and text data. The real and integer data
are coded as usual in FORTRAN; if the type of data entered is not of the type
expected, it is converted. Real data of single precision only can be handled.
Logical data are coded as F or T for .TRUE. or .FALSE. respectively. Text

data must be enclosed within quotes and must not exceed the size expected by

- 17 -

the program (maximum 36 characters). The parameter value is assigned to the

keyword by the equal sign, e.g. PRINT = 6. The keywords may appear in any

sequence and the input of keywords with default values is optional. For

these keywords not specified in the control input list the default value is

inserted.

Example of a control input list

'U 238" 'SGT'
TO = 12.E+4

ADD

FROM = 1.E+3__
PRINT = 6

1.4.5.2 Table I The defined keywords, their parameter types and syntax (R-real,

I~integer, L-logical, T-text)

b . .
keyword parameter abbreviation . default
of the explanation
name value type name value

FROM = 1.0 R F lower energy limit 0.

TO = 10.0 R T upper energy limit -1,

PRINT = 6 I P output unit number for the _
printed output

NOPRINT no parameter N Print out is suppressed NG PRINT

OUTUNIT = 10 I 0 data set reference number of
the output data in KEMA-input 10
format

R] C constant to be added, sub-

CONST > R tracted etc. to the éurrent 0.0
reasult

ZUp = T L Z zero range upper T0 T

ZLOW = T L ZL zero range lower FROM T

= '(IX,2 .6)% .

FORMAT (IX,2E13.6) TR FO format of the data record obligatory
on the external source

UNIT = 20 I U data set reference number for obligatory
the external source

SKIP = 2 I S number of data records to be
skipped on unit = 20 before o
transfer of data into DADS2
begins

REWIND no parameter REWIND

Note: The keywords PRINT and NOPRINT are mutually exclusive. IF CONST is

entered, no positional operands are allowed in the input.

The input of the keywords FORMAT and UNIT defined for the INPUT command is

obligatory,no default values are available.

The single keyword operands with their parameter values are separated in the
control input list by a comma or a blank. The positional parameters are

also separated by a comma or by blanks. If only the separating comma is coded,
the preceeding positional operand is bypassed and its current value is taken
as default. Trailing positional operands to be bypassed need not be indicated
by commas, but they simply may be omitted from the list. If the number of
positional operandsentered in the input list exceeds the number permitted by
the current command, an error condition will be raised and the excessive
values will be skipped by default. If a control input list does not fit in one
line, an underscore after the last input item indicates a continuation line
for the control input list. A control input list may consist of as many lines

as necessary, but its size must not exceed 360 characters.
A slash (/) may be used to indicate the end of a control input list.

The use of the slashis optional, but in case of numbered input cards it may be

used to inhibit reading of sequence numbers.

1.4.5.3 The commands and their positional and keyword operands

The three positional parameters (isotope name, reaction type name, and third
name) are defined for the following commands: ADD, SUBTRACT, DIVIDE, MULTIPLY,
NAME, SAVE, INPUT and all 15 commands for composed cross sections: ALPHAL,
ALPHA2, ETAl, ETA2, NUSFI, SGAl, SGGl, SGG2, SGG3, SGIl, SGNI1, SGT!, SGIRI, .
SGX1, SGX2.

Commands with no positional and keyword parameters are: DELETE, RESTART, STOP.
The control input list for these commands consists of the single command name.
The command HELP without operands provides the print out of information

available from the program.

HELP command name (e.g. HELP ADD) provides the information for the command.

Two keywords are defined for the command INIT: FROM and TO . The command INIT

must be entered before each command to calculate the composed cross section

values (e.g. ALPHAl, etc.) and whenever a new calculation for a type is

started with the aid of single commands. The current result is set equal to

zero by INIT.

20.

Table II The commands and their positional and keyword

- operands

number of £
command positional EZ?:E:dZ keyword names

parameters
INIT o 2 FROM, TO
SUBTRACT 3 5 FROM, TO, NOPRINT, (PRINT),CONST
MULTIPLY 3 7 FROM, TO, NOPRINT, (PRINT), CONST, ZLOW, ZUP
DIVIDE 3 7 FROM, TO, NOPRINT, (PRINT), CONST, ZLOW, ZUP
ETA 0 2 NOPRINT, (PRINT)
INPUT 3 6 FROM, TO, FORMAT, UNIT, SKL P, REWIND
NAME 3 4 FROM, TO, NOPRINT, (PRINT)
SAVE 3 5 FROM, TO, NOPRINT, (PRINT), OUTUNIT
ALPHAI 3 7 FROM, TO, NOPRINT, (PRINT), OUTUNIT, ZLOW, ZUP
ALPHA2 3 7 FROM, TO, NOPRINT, (PRINT), OUTUNIT, ZUP, ZLOW
SGX2 3 7 fROM, TO, NOPRINT, (PRINT), OUTUNIT, ZUP, ZLOW
DELETE (] 0
RESTART 0 0
STOP 0 o

1.4.5.4 The

- P} =

function of the commands:

INIT

SUBTRACT

MULTIPLY

DIVIDE

ETA

NAME

SAVE

DELETE

RESTART

INPUT

STOP

resets the current result to zero.

adds a set of cross section data to the current

result,

subtracts a particular set of data from the

current result.

multiplies the current result by a particular

set of data.

divides the current result by a particular set

of cross section data.

calculates ETA using the current result as ALPHA,
i.e. the new result is 1/(1+R), where R is the

old result.

assigns a name to the current result and stores this
set of data for later use within the current run.

The data are not saved beyond the end of the run.

assigns a name to the current result and stores this
data set for later use within the current run. Data
will be edited at the end of the current run in a

format suitable for KEDAK-updata by KEMA.
deletes the result of the previous operation (only
if the data were not stored in main storage but on

an auxiliary data set).

restarts the program at beginning. All data con-

structed so far will be lost.

reads the formatted input from an external source.

causes editing of all saved data and stops program

execution.

- 22 -

The function of the particular commands for cross section calculation is

described above by the formulae (see 1.1.1).

The user must know which cross section values are used for calculation by
the command chosen, and whether the data are to be used from the KEDAK-
library or from DADS2. First the dataset DADS2 - with the data calculated

in the current run - is checked, if the data needed in the formula are avai-
lable, otherwise the data are read from the KEDAK-library. The user must

consider this priority of calculated data in coding the control input.

...23..

1.4.6 An example of a control input for CALCUL

F7INROLBTY J0B (0U4R,Y014PEMIL) LANGNER JULASSE=A,REGINN=310K
/XSETUP NDEVICE=23214,1D=CFK02%
/ESETUP DEVICE=%274, ID=GFK(UFD

Z/7STFPLIR BN UMIT=23]4,VOL =200 =GFKOZ3 yDAN=INR.CALCULLLCADR yDISP=SHR
/7GFTIIFO0Y B0 UNTIT=7314,VOL=SEr=0CFKCSC,DT SP=SHR ,NDSN=KEDAK?R
/7GFTG2FO0 DD UNIT=SYSDALSPACE=(700C,190) 4DCE=(BLKSL 72=200) yRFCFM=F)
//G.FTO3F00L CC UNIT=SYSDALSPACE=(200%,130),

/7 LCB={RZCFVM=VES,BLKS12F=2008)

/G FTO&FOOT BD UNYT=SYSDA,,5PACE=(200R,100) ,

// DCB=(PECFM=V 35, RLK312E=2008%)

//G.FTOCFO0T CD SYRNUT=2,DCP=(RECFM=FE,LKECL=133,30LKS]ZE=931)
F/GFTIORODL OD UMTT=S5YSDAWDTRP =(NEW,DE LI TE) 3 SPACFE={TRK,30)
//7GSYSUDUMP [0 SYSOUT=A

//GLEYSIN DD *

NG
G0
I v
SGN YPUZ39Y PEGNY FROCM=)L.F- 2 T0=3,0 /
T 7
SGTR L VEGTRY /
I 7
SGG fPUZRIY , PEGEY, FRUOM=IT.E4+2 TN=30.5+3 /
17
SOX2 PS6X?E /
I/
SGh L, Y5CA /
I 7/
SGN 4 'EGNY
O
SGTR 4 *SGTRY /
r 7
SGTF YPUPZRY 'SGTRY FROM=0.8 T0=5,
INTTY /
SGX2 "WoZane FSEX FRCOM=4,1N0000F+03 TO=_
1. G95000T+06 DUTUNLIT= 1C Lup=1 LLCw=T
INIT 7/
SGAL o238¢ tseae FRUM=4.0000084+03 TO=_
1+50000F+07 OUTUNTT= 310 Zup="1 ILOW=T
INTT 7/
SGNL vy 2748t YSON Y FROM=6,00000403 TO=_
1.50000F+G7 QuTuUNIT= 10 rup=T LLOwW=T
INIT 7
ALPHAT 1Dyz22G AL PHL S FROM=1.00000E-03 TO=_
&o TEERZ SUTUNTIT= ¥Q TuP=1 ZLOW=T
5TCP
7%

/7

2[‘

1.4.7 The control input to print the information available from the program

//INRO4SGU JOR (004%3,101sPEMIA) JLANGNER yCLAS3S=A,REGION=310K
/ESETUP DEVICE=2314, (D=GFKQ29
/RSETUP DFVICE=7Z2%4, IND=GFKODI L
/7 EXEC FHG,NAME=NP)
f/STEPLIR ND l.JT‘\,“iT‘—‘Z?Bfi'i*vVUL=SE}?=GFK02‘?pDSN=INP.CALBP.LUADy{)Ifap:SHR
//G.FTOIFQ0OT DD UNIT=2334,VOL=SER=GFK (I &4DI SP=SHR,DSN=KEDAK?
//GLFTO2F00 HN UMFT=SYSDA.EPACF=(ZCOO,EOO),DCB=(BLKSIZE=200),RECFM=F)
//G.FTORFDOL DO UNTT=SYSDA, SPACE=(2008,10C),
/7 DC?=(@El.':FW‘:‘Jl_B.SvBLKSTZF:ZOO@)
f7GFTO4FO0Y DO INTT=SYSDA,SPACE={ 2008,100) v
/7 DCR=(PECFM=VRS,ELKSIZE=70080)
7/ G, FTOSFO01 DO SYS”UT'—'—»’—‘pl:)(‘_,f?v‘—‘(RECFM:FB,LRECL=133,BLKSI IF=931}
//G.FTI0FO0OY N UVTT:SYSDA,DISP=(NFW,DELETE)ySPACE=(TRK,30)
[/ GaS5YSUTUMP CD SyYsOUT=»
//7G.SYSIN [T *
NG
GC
HFELP
HELP AND
HEL P [CIVILE
HELP FTA
HELP MAME
HELP SavE
HELP #MULTIPLY
HELP SURTRACT
HELP INTT
HEL P INPUT
HELF 5T0P
HELP ET 23
HELF AL PHAY
HELP ALPHA?
HELP FTaZ
HELP NUSF
HELP 5GA1L
HELP SGGI
HELP 5GG2
HELP SGGR
HELP 56T
HELP SG67173
HELP SGN1I
HELP S5GTRI
HELP SGX1
HELP SGX2
STap
/%
/7

- 25 =

1.5 The job control statements for a GO-mode job

//INRO4BTA JIB (0048, 10 1,P6M1A) ,LANGNER ,CLASS=A,REGION=310K

/R SETUP TEVICE=2314, ID=GFKO29

/®SETUP CEVICE=2314, ID=GFKJl¢

// EXEC FRCyNAME=0OP1

//STEPLIB DD UNIT=2214,VOL=SEPR=5F KT29 0 SN=I NRe CALCULe LUAD¢DIS P=SHR
//GoFTOLIFOO]1 DD UNIT=2314,VOL=SER=5FKM 6,DI SP=5HR,DSN=KNDF

/7Go FTA2F001 DD UNIT=SYSDA,SPACE=(2000,100) oDCR={BLKST ZE=20"0 ,RECFM=F)
//GoFTO2FO01 OD UNIT=SYSDASPACE=(2708,100),

/77 CCB=(RECFM=VE S,BLKSIZE=2{238)

F/CGFTN4FGCL DD UN IT=SYSDA (SPACE=(2008,19G)

7/ CCB=(RECAM=VB S, BLKSIZE=2038)

/7 Go FTI9F0O01 DD SYSDUT=A,DC8={REC~-M=FB8 ,LRECL=133 ,BLKSIZE=931)

F7G. FT10F001 DD UNIT=SYSDA ,DISP={NEW,DELETE} ;SPACE=(TRK,30}
//7G.SYSUDUMP DD SYSOUT=A

/7GoSYSIN DD *

A

J7INRCAGETE JOB (4B 101y FEMIA) G LANGNFF CLASS=8,FEGICN= 22 (K

/*#SETUP CEVICE=2314,ID=GFKL2S

/SETUP CEVICE=2314,1C=CGFKU16

// EXEC FHG

//LOAC BC UNIT=2214,VOL=SER=GFK2G,DSN=TNF oL ALOPL LIAD(IOPL) 4D ISP =SHE
//Go FTOLFOCT NC UNIT=2314,VOL=SER=CFK - 15,DISP=SHR,DSM=KNDF

F7Co FTH2FGOY DD UNIT=SYSDAZSPACE=(20 3 31) g DCR=(RLKSTZE=27)0, RECFM=F
//Ge FTO3FODL CC UNIT=SYSDAZSFACE=({20308,10),

7/ DCR={RECFM=VYBS,BLKSI ZE=2{"4)

f/CoFTHGFROT NC UNIT=SYSDA,SPACE=({2.0E84100),

I CCP={RECFV=VRS,RI KSIZE=2 18}

/7Ce FTEGFUELL DD SYSOUT=A,DCB=(RECFM=FH ,LRFCL=133,ALKS]Z2C=321}

//Co FTICFH0Y OC UNIT=23140SN=INRLLANGPUZEG, CISP={NEW,KFEEP),

/7 VOL=5ER=GFK"16,SPACE=(TRK 3}

//Ce FTLIFZCT DL UNIT=2314,VOL=SCR=GFK1A43DSN=INFELANePLUTG,

a4 DISP=I0LD,DELFTE)

//Ce SYSUCUMP DD SYSOUT=A

f7Gs SYSIM DL %

- 26 -

1.6 The output of CALCUL

There are two different output types of CALCUL:

a) List output for checking purposes and error messages:

1. The control imput list

2.1 NOPRINT was specified: short output is printed by ARITHO

2.2 PRINT was specified: l. and 2.1 is printed and additionally the
lists of the current result of each single operation, of the

data to be named or saved, and of the data edited for KEMA,

b) The data processed and calculated by CALCUL are written in a dataset
edited in the KEMA-input-format for later use to update the KEDAK-library.

1.6.1 List output for checking purposes

The user may produce a listed output for checking purposes if desired. He may
exercise the control over this Print out by the keywords PRINT or NOPRINT.
The standard option is NOPRINT.

The keyword PRINT = 6 must be entered for each operation where the complete

control output is requested.

Then a "print out of data currently stored as result and the total number of
data points available" is edited after the performed operation. If NOPRINT
was entered, the control input list only is printed and the messages from
ARITHO: the number of names, the names of the reaction type, and the lower

and upper limit of the energy range processed.

For each SAVE command entered, the entry table of the temporary direct access

data set DADS2 is listed additionally:

MAT - material (isotope) name

TYP - reaction type name

NNAM - the number of names

EXC - third name (e.g. excitation energy)
EMIN - lower

energy limit
EMAX - upper

IR - entry count

27.

NP - the number of data points for each entry
KENN - = 0 indicates data to be stored for later use
in CALCUL only (NAME-command)
= 10 (or > 0) indicates data to be also edited
in the KEMA-input-format (SAVE-command) on
a data set with the data set reference number
equal to KENN.

The current result of the single operations is not printed for commands to

calculate composed cross sections. Only the final result is listed completely,

if PRINT = 6 was specified for these commands.

1.6,2 The output of the set of data processed in a format suitable for KEMA

The output is edited in the module OUTPUT. The data are sorted by OUTPUT in
KEDAK-order. The data to be written in KEMA-input-format on the output data
set with the data set reference number 10 (¥ KENN = OUTUNIT) are specified

to the program by the SAVE-command., The user may alter the default value = 10
by an input for the keyword OUTUNIT of the SAVE-command. A DD-statement must
be supplied at the job control statements for CALCUL, e.g.

//G.FT10FO01 DD UNIT=2314,VOL=SER=GFKO50, SPACE=(TRK, 30),
// DISP=(NEW,KEEP) ,DSN=INR.GOEL.CALCUL

The amount of space in the SPACE parameter depends on the number of calculated
data points and the length of the track. If PRINT = 6 was specified in the
SAVE-command, the complete output written is listed also. If NOPRINT was
specified, the data values are not written, only the type of records and the

data type names e.g.

DROPS PU239 SGX
FROM=1.E+3 TO=3.E+4
or
ADD PU239 SGX
FIRST PAIR: 1.E+3 1.241E+1
LAST PAIR: 3.E+4 2.445E+0

are listed.

- 28 -

2. Programmer's guide -~ detailed description of subroutines, labeled
common blocks, work areas and temporary auxiliary data sets

2.1 The control module

2.1.1 Function of the control module

The control module for CALCUL consists of the main program and the following

subroutines:

INITI ~ to initialize data set parameters

OPDEF - the control routine of the module OPDEF (see 2.2.1)

INQ - to set the operation mode: GO or WAIT

DDCHK - to test for DD-cards and attach the KEDAK library

DEFI - to define the direct access dataset DADS2 (see reference 3)
GETOP - to call the module PROCINP (see 2.3)

NAMIN - error correction of the input for the positional operands
TESTOP - to test the operation to be performed

FILLTP - to provide from KEDAK library the list of reaction types
available for the isotope and serviceable for CALCUL

SPACE2 - to handle the dynamic storage allocation (see 2.7.2)

CROSEC - to call the formula calculation module CROSSEC (see 2.5.1)

INPUT to read data from an external source

ARITHO the control routine for CALCPAC (see 2.4.1)
EDIT,CRECT,PRIDAT - the control routines of the module DATAMAN (see 2.6)
EXIT - the control routine of the OUTPUT module (see 2.7.1)

XXSIMU,XXOUT,COCARD - to construct control input in card-image-format

The subroutines INIT!, INQ, DDCHK, TESTOP, FILLTP, INPUT, XXSIMU, XXOUT,
COCARD, the common /INOUT/ and /PARM/ are described in the following. The

control routines for the modules:

OPDEF - operation code definition

PROCINP - control input processing

CROSSEC - cross section formula calculation

CALCPAC - basic arithmetic operations

DATAMAN - data management of the auxiliary data sets
OUTPUT - edition of the output in KEMA-input-format

- 20 -

are described together with the particular modules.

2.1.2 Init%@}izatgggwgghrougiggi

The subroutine INITI1, entry INIT2

INIT! serves for initialization of the dataset reference numbers (common
/INOUT/) and characteristics (common /DA1/) of the datasets used in CALCUL
and of the parameters of processed data (common /PARM/) at program start.
INIT2 is for repeated initialization (in case of a new reaction type to be

calculated) of parameters in the common /DAY and /PARM[

The parameters in the common /INOUT/ and /PARM/ and their initial values are
listed below.

The common /INOUT/

COMMON / INOUT /KOUT ,KIN,KED ,KDA,K2W1 ,K2W2 ,KTOUT ,KTAPE , KINOUT

The parameters provided in INOUT are initialized by the subroutine INITI.

KouT = 6~system output unit number

KIN = 5-gystem input unit number

KED =]-dataset reference number of the KEDAK-library

KDA = 2-dataset reference number for the temporary direct access
dataset (DADS2) for CALCUL

K2W} = 3 | data set reference numbers of the auxiliary workarea for

K2w2 = 4 | the current result in CALCPAC

KTOUT = KOUT -~ dataset reference number for the output on the terminal

KITAPE = l0 - dataset reference number for the output of CALCUL

(evaluated data)
KINOUT = 9 - dataset reference number for card image input produced

in the WAIT-mode at the terminal

The common /PARM/

The common /PARM/ retains input parameters for the processed data type.
The parameters in/PARM/are initialized in INIT1/INIT2, and modified in
GETOP/READOP by parameters from the input.

- 30 -

COMMON /PARM/ EXTMS,LGO,LKED,NAMZ,NAMES(4),EA,EB,Z1,Z2,NOP,NEW,P,C,XCON

arguments initial values
EXTMS = ,FALSE.
LGO = ,TRUE. = GO~ or WAIT-mode
LKED = ,FALSE. - data are to be retrieved from KEDAK, if ,TRUE.
NEW = ,TRUE. -~ start of the calculation for a reaction type
The logical data above are initialized by INITI.
NAMZ - the number of names of the processed
~ data type (from input)
NAMES (1) -~ the names of the processed
NAMES (2) = BLANK P data type, initialized in INIT2,
NAMES (4) modified by the input
NAMES (3) = 0. »
EA = 0, lower :>energy limits for the
EB = 0, upper -/ processed energy range
Z1 = ,TRUE. = ZLOW,ZERO :>see description
22 = .TRUE. = ZUP, ZERO1.Sof MULT1 , CALCC
NOP =] ~ the number of the operation code (I ;ADD)
P = .FALSE = NOPRINT
C = ,FALSE. - no constant
XCON = 0, value of the constant for which the operation

The initial

is to be performed

values are assigned in INIT2 to the parameters and modified by

the input data in READOP. The common /PARM/ is used in the subroutines
MAIN,GETOP,INIT!,ARITHO,DROREC,CRECT ,LIMPR,TESTOP.

The subroutine INQ

The subroutine INQ sets the operation mode: GO or WAIT and provides input

description,

- 3] -

GO-MODE: each operation code entered (command) is executed immediately

(foreground or background job).

WAIT-MODE: for each operation code entered output cards are produced, which

may serve as input to a background (GO-mode) job,

In both cases syntax checks are performed and if a DD-card describing KEDAK
(LKED=.TRUE.) has been supplied, checks on availability of data etc. are

performed in the WAIT-mode also, The WAIT-mode is only defined for foreground jobs.

Subroutine DDCHK

The subroutine DDCHK checks with the aid of the subroutine DDTEST (see

reference 4) if DD-cards are available for the following datasets:

FTO1FOO!1 - The KEDAK-library. The LDFOPN for the KEDAK-file is performed
in DDCHK. Missing DD-card for the KEDAK-
library causes program stop in the GO-mode.
In the WAIT-mode the message is printed:
No DD~card for FTOIFOO1 has been supplied
to define the KEDAK-library. No extended
tests will be performed.

FTO9F001 - card-image-format
input generated in XXSIMU (is checked in the WAIT-mode only)

(DCB = (RECFM=FB,BLKSIZE=800,LRECL=80)

FTO2F001 - the temporary direct access dataset DADS2.
(DCB=(RECFM=F ,BLKSIZE=2000)) or in a foreground job:
(BLOCK(2000) SPACE(100))

FIO3F00! | sequential data sets for the work

FTO4F001 area in CALCPAC (DCB=(RECFM=VBS,BLKSIZE=2008))

Missing DD-card causes a printout of a message and stop of the program.

- 32 -

Subroutine NAMIN

The subroutine NAMIN is called, if an error occured during processing of
positional operands of the operation code.

The call:
CALL NAMIN (N,NAM)

N = | error in processing material name
2 error in processing reaction type name
= 3 no material name available
4

no type name available

NAM a real#8 variable to return the name prompted (WAIT-mode)
In batch processing (background job) an error message is printed.

In the WAIT-mode the erroneous or missing name is prompted at the

terminal.

Subroutine TESTOP (NRET)

The subroutine TESTOP checks, whether the operation to be performed

allows positional operands; if not, operations with a constant will be performed.

The argument:

NRET - returncode

0 no error

]

! error: no ETA calculation performed since no result
from previous operation available

For operation codes with positional parameters the data type names are read
in by NAMIN, if necessary. No positional operands are allowed for all
commands, if anoperation with a constant is performed (see 2.4.2 - subroutine

OPERCC). Then the data type names from the previous operation are used.

Subroutine FILLTP

The subroutine FILLTP selects from the data types available on the KEDAK-
file the single valued energy dependent types according to the list in TYPS
and stores them into the common /TPFILL/.

...33_

The call:

CALL FILLTP (MAT,NR)

MAT -~ name of the isotope for which the data types
are to be selected

NR = returncode
= 0 - error
=] - No error

A call to the subroutine LDFITN provides the list of data types available
on the KEDAK-file for the requested isotope.

The names of data types listed in TYPS are:
SGT,SGN, SGX,SGI,SGIZC,SGIZ,SG2N,SG3N,SGIA, SGI3A, SG2NA, SG3NA, SGIP,SGNI, SGA,

SGF,SGG, SGP, SGD, SGH3, SGALP , SG2HE , SGTR ,MUEL ,ETA , ALPHA ,NUE ,NUEP ,CHIF, CHIFD,
SGHE3.

- 3 -

2.1,3 The subroutines INPUT, INTERP to read the data from an
external source and store them into DADS2

The subroutine INPUT

The subroutine INPUT is provided to process data from an external source,
i.e. other than the KEDAK-library, for calculation of the cross section

data.

These data are assumed as formatted records, each including one energy

value and the corresponding cross section value.

The format of these records is obligatory as input to the keyword FORMAT
of the INPUT command. The INPUT command initiates the processing of the
INPUT subroutine. The data are read by the INPUT routine and stored with
the aid of the UPDAT (UPDN) routine into the temporary direct access data-
set DADS2 for later use in the calculation package and/or editing them

without change for the KEDAK-management program.

If necessary the data are interpolated at the limits of the processed
energy range (EMIN,EMAX) by the subroutine INTERP.

The description of the INPUT command:

The INPUT command has three positional parameters and six keyword

parameters. The positional parameters are:
the isotope name alphameric text, up to 8 characters
the reaction type name | enclosed in apostrophes

the third name ~ REAL*4 - floating point number

The keyword parameters are:

FROM = EMIN lower limit of the processed energy range,
REAL*4 - floating point number

T0 = EMAX upper limit of the processed energy range,
REAL#¥#4 -~ floating point number
FORMAT alphatext up to 36 characters enclosed in apostrophes

(e.g. "(1X,24A42E16.5)")

..35_

UNIT integer number specifying the dataset reference number
of the external dataset from where the data are to be read

SKIP integer number that specifies the number of records
of the dataset to be skipped before reading. Default value = O

REWIND - no input parameter. A rewind is requested for the dataset
before processing.

2.1.4 The subroutines to construct the control input in card-image-format

The subroutines: XXSIMU,XXOUT,COCARD

are provided to create the control input lists in card-image-format.

XXSIMU is called to print the entered input for checking or for construction
of a complete control input list, if the control input is to be created
interactive in a foreground job in the WAIT-mode and collected on a data

set with the reference number 9 for later use in a background job.

The function of the subroutines:

ZXSIMU - to prepare the control input list
XX0UT - to create card-image—-format
COCARD - to concatenate output lines

Subroutine XXSIMU

The subroutine XXSIMU provides card image output of the current control
parameters in form of a control input list readable by the control imput
processing program.

The call:

CALL XXSIMU(KPUN,MOPT,OP,IADOP,IG,V,KEY,IADKEY,IH)

The arguments:

KPUN dataset reference number for the card image output data to
be punched
MOPT number of the operation code for which a control input

list is produced

- 36 =

op = G(1) block of the operation code names in the G-array

IADOP = G(2*MAXOP+1) address of the block in the G-array retaining
the data for each operation code

IG = G(1) address of the G-array

N = COMMON /OPAR/ retaining the current values of the parameters
for the positional and keyword operands

KEY = H(1) block in the H~array retaining the keyword names

IADKEY = H(2#MAXKEY+1) address of the block in the H-array
retaining the data describing each keyword

IH = H(1) address of the H-array

The subroutine XXSIMU is called, if the control input is produced in the
WAIT-mode at the terminal, or to print the entered input for checking

purposes.

The input from the keyboard (WAIT-mode) is completed by X{SIMU with the
default values (if any) from the common /OPAR/ and printed for verification,
The prepared control input list can be deleted depressing the attention
key or accepted depressing the return key., Then the created control input
list is added to the card-image-format dataset with the dataset reference
number KPUN. This dataset may serve as input for a later background GO-mode

job.

Subroutine XXOUT

The subroutine XXOUT prepares the data in the B-array for editing in the
card-image—format. XXOUT is called by XXSIMU,
The call:

CALL XXOUT(B,LB,NC,LC,LBMAX,V,VAD,TYP, £900)

B -~ LOGICAL%*l-array containing the data to be converted,
adjusted and concatenated

LB ~ length of the B-array
NC - number of characters in B

LC - length of card (; 80)

37.

LBMAX the maximum number of characters in B (; 320)
v address of the common /OPAR/
VAD address of a storage location in the common /OPAR/ where

the value of the positional parameter 18 stored
TYP type of the positional parameter (R,I,L,T)
2900 Statement number to continue processing in case of an error return;

the error message is printed: input list to long for output and
will be truncated.

The subroutine XXOUT calls the subroutine CONVY to convert integer and
real data to characters.The subroutine COCARD is called to concatenate

output lines.

Subroutine COCARD

The subroutine COCARD concatenates two output lines. An underscore is
placed at the end of the first line indicating, that a

continuation line is to be expected.

The call:

CALL COCARD(B,LB,NC,LC)

B array retaining the characters of the input list
LB current length of the input list

NC total length of the input list (maximum 320)

LC length of a card (maximum 80)

The underscore is placed in B(LB+1).

LB is set LB=NC+8
NC is set NC=NC+LC

- 38 -

2.2 Operation code definition package call scheme

MAIN
OPDEF
|
l l | | I l l |
OPLIST INITOP IKEYWD OPCODE KEYWD POSPAR EXCLUD DEFLT ENDOP OPRIN
l ‘ l XKEYW XPOSPA XEXCLU XDEFLT XOPRIN
CHKEY IXKEYW
‘]
CHKEY XOPCODE
|1
LOP1 LOP2 LOP3 LOP4 TYPCHK

- 39 -

2.2 The operation code definition package—function

The operation code definition package consists of the following subroutines:

OPDEF ,0PLIST with the entries: INITOP,OPCODE,IKEYWD,POSPAR,EXCLUD,DEFLT,
ENDOP ,OPRIN, HELP , SIMUL ,READOP; CHKEY,XOPCODE,IXKEYW,LOP1,LOP2,LOP3,LOP4,
TYPCHK , XPOSPA,, XEXCLU , XDEFLT , ENDOP , XOPRIN.

The definition of the different operation codes is performed in the

subroutine OPDEF.

2.2.1 The control routine OPDEF

The subroutine OPDEF is used to define the operation code package: the
operation codes by a call to OPCODE, the keywords for the operation code
by a call to KEYWD, the positional parameters (the isotope and reaction

type name) by a call to POSPAR.

The call:

CALL OPDEF(F)

F 1is the address of an array used to define the G-array (see Table 1),
H-array (see Table 2) and the arrays VZ,VI,VFOUND which are structured
as the common /OPAR/ (see Table 3)

[

G(1) = F(1) - "G-array" (length: 500 words)
the data for operation code definition are stored in G
H(D - F(501) - "H-array" (length: 500 words)
the data for keyword definition are stored in H
vz = F(1001) - (length: 100 words) array to store the default
parameter values (auxiliary storage)
Vi = F(1101) - (length: 100 words) array to store the initial

default parameter values

VFOUND = F(1201) - (length: 100 words) array to store the default
parameter values from the input

The array addresses and the number of commands and keywords defined for
the operation code package are initialized by a call to OPLIST. At
present 27 commands (operation codes) and 12 keywords are defined. The
operation code package and the package pointers are initialized by a
call to INITOP.

- 40 -

The keywords defined are:

FROM,TQ ,PRINT ,NOPRINT ,CONST,2UP, ZLOW,OUTUNIT , SKIP ,REWIND ,FORMAT ,UNIT.

FROM, TO - the lower and upper limit of the energy range to be
processed

CONST - a constant to be added, subtracted etc. from the
processed data

ZuP T 2ero upper range j>if .TRUE. (see also description

ZLOW - zero lower range of CALCC (2.4.2))

OUTUNIT ~ dataset reference number for the output data of CALCUL.
The processed data are written in records which could

- be read by KEMA (see reference 5)

REWIND -~ are used by the command

SKIP INPUT to read data from

FORMAT an external source on "UNIT"

UNIT) under "FORMAT"

The keywords for the package (name, number of parameters, parameter
type, location for the parameter values) are defined by a call to

IKEYWD and stored in the common /OPAR/. The default values for a keyword
parameter are defined by a call to DEFLT.

Keywords are defined mutually exclusive by a call to EXCLUD. A call to
ENDOP provides the utilized length of the G-array and H-array {(in the
common /OPXX/). A call to OPRIN supplies the print out of the operation
code package tables, INITOP,IKEYWD,OPCODE,KEYWD,POSPAR ,EXCLUD,DEFLT , ENDOP,
OPRIN are entries in the subroutine OPLIST.

The commands defined are: ADD,DIVIDE,ETA,NAME,SAVE,SUBTRACT ,MULTIPLY,
DELETE,STOP ,RESTART ,INIT for single operations, INPUT to read external
data, ALPHAl,ALPHA2,ETA1,ETA2 ,NUSF1,SGA1,SGG1,5G6G2,5SGG3,3GI1,5GN1,SGT1,
SGTR1,SGX1,SGX2 - for composed operations. The commands for composed
operations are used for calculation of the cross sections for a reaction
type with the aid of the operationswhich are controlled by the single
commands; but the control is performed in this case by a'program that
replaces the single commands and the control input for each command

(see CROSSEC).

- 41 -

2.2,2 The definition entries comprised in the subroutine OPLIST
and the common /OPXX/

The subroutine OPLIST comprises the entries for the operation code package

definition.

The call:

CALL OPLIST(G,LG,H,LH,VZ,VI,VFOUND,JOP,JOP2,MAXOP ,MAXKEY)

G - array to retain the data for the defined operation codes

LG =~ length of the G-array

H ~ array to retain the data for the defined keywords

LH - length of the H-array

vz - arrays of the same length as the array VAL (common /OPAR/)

VL used to store the default values of the keywords. VZi-auxiliary

storage, VI - for initial values

VFOUND —~ array to store the keyword parameters supplied by the
control input
Jop - ambiguity control parameter

= 0 ~ abbreviations of the operation code are not
allowed in the control input list

L]
—
i

the abbreviation must be unique (e.g. SUBTRACT=SUBT,
STOP=ST, etc.)

=+2 -~ the length of the operation code is not checked
(e.g. SUBTRACTSSUBT, is also valid)

==] - the abbreviations are not necessary unique (e.g.
SU=SUB=SUBT=SUBTRACT are all valid) but the length
of the code is checked and the character string must
be clear-cut

Jop2 -~ default control parameter for positional operands:

0 the current value of the positional parameter is default

A

0 no default valuesavailable for the positional parameters,
the input of positional parameters is obligatory in any
case

MAXOP

specifies the maximum number of commands for this package

MAXKEY - maximum number of keywords defined for this package

- 42 -

The entries included in OPLIST are:

INITOP

IKEYWD

OPCODE

KEYWD

POSPAR

EXCLUD

DEFLT

ENDOP

OPRIN

HELP

SIMUL

READOP

-~ to initialize package pointers
- to define the keyword operands
- to define operation code names

- to assign a keyword name as keyword operand to the
operation code defined last

- to define the positional parameters for the operation
code defined last

- to make keywords mutually exclusive

- to define default control parameters and default values
for the parameter of a given keyword

- to retrieve the current pointer values for the G-array
and H-array:

LG and LH

and to terminate operation code definition (final pointer
setting)

to print the operation code definition tables
- to display HELP information
- to produce card image input

- to read a control input list

Description of the argument listsof the entries in OPLIST.

ENTRY INITOP no arguments

ENTRY IKEYWD(NAME,IADR,NPAR,PARTYP,PARAD)

NAME

IADR

NPAR

PARTYP

PARAD

REAL#8 - keyword name to be defined

address of a location in the common /OPAR/ where a
flag is set .TRUE. or .FALSE. for the defined key

the number of parameters for the key
array to retain the types of the parameters

address of a location in the common /OPAR/ where the
values of the keyword parameters are to be stored

43

ENTRY OPCODE (NAME)

NAME REAL#8 the name of the operation code to be defined

ENTRY DEFLT (KONTR,NAME,V)

KONTR default control parameter

NAME REAL#8 keyword name for which the default value is to be
defined

v default value(s)

ENTRY ENDOP(LG,LH,NR)

LG length of the used G-array
LH length of the used H—array
NR error return code:

= 0 no error

O the number of errors that occured at definition
of operation codes and keywords

ENTRY KEYWD (NAME)

NAME REAL*#8 - keyword name to be assigned to the operation
code defined last

ENTRY POSPAR(TYP,IADR)

TYP type of the positional parameter for the operation
code defined last

IADR address of a location in the common /OPAR/ where the
value for the positional operand is to be stored

ENTRY EXCLUD(N,LIST)

N number of keywords in LIST

LIST the list of keywords to be defined mutually exclusive

- Hfy -

ENTRY OPRIN = no arguments

ENTRY HELP - no arguments

ENTRY SIMUL(KPUN)

KPUN unit number e.g. dataset reference number of
created card-image-format control input which
may be punched on cards

ENTRY READOP (NOPT,NPOS)

NOPT the number of the operation code read in from the
control input list

NPOS number of positional parameters for this operation
code

OPLIST is called to initialize the addresses of the G- and H-array,
the ambiguity control parameter, and the default control parameter.

A call to OPLIST must be performed before the call to any other
entry in OPLIST. After that INITOP is to be called. All keywordsfor
the package are defined by a call to IKEYWD before the first call to
OPCODE,

OPLIST initializes the length of the arrays: H,G,VZ,VI,VFOUND

The common /OPXX/

The common /OPXX/ is used in the subroutines of the operation code
definition package and transfers the parameters used at the definition

of operation codes and keywords into the G-array and H-array respectively.

COMMON /OPXX/ L1,L2,IOP,MAXOP,MAXKEY,NOP,NKEY,LIG,LIH,EX,IEXCL,IFI,IOP2

- 45 -

L1 length of the G-array
L2 length of the H-array
I0P ambiguity control parameter for abbreviations of

the operation code names and keyword names

-1 the abbreviations are not necessary definite,
but the length is checked and the character
string must be clear-cut (e.g. SU,SUB,SUBT,SUBIR,
SUBTRA, SUBTRAC2SUBTRACT are all valid)

0 abbreviations are not allowed

+1 the abbreviation must be definite
(e.g. SUBTRACT2SUBT
SUBMIT&SUBM
STOP&ST)

+2 the length of the code is not checked
(e.g. SUBMIT2SUBM is also valid)

MAXOP the maximum number of operation codes which could be defined
by the package (27 at present)

MAXKEY the maximum number of keywords which could be defined
(12 at present)

NOP the number of the operation code defined now

NKEY number of keywords to be defined for operation,
currently defined

LIG index indicating the occupied length of the G-array

LIH index indicating the occupied length of the H—-array

EX indicates if there are keyword parameters to be

defined mutually exclusive

IEXCL number of keyword parameters to be defined mutually
exclusive

I0P2 default control parameter for the positional operand
parameter

> O the current value of the positional operand
parameter is default

< 0 no default values available, input for the
positional operands is obligatory

L1,L2,I0P2,MAXOP ,MAXKEY are set in OPLIST; NOP,NKEY,LIG,LIH,EX,IEXCL
are initialized in INITOP and modified in the operation code definition

package.

- 46 -

2.2.3 The definition subroutines
Subroutine IXKEYW - keyword definition

The subroutine IXKEYW, entry XKEYW performs the definition of the keywords

for the operation code package.

The call:

CALL IXKEYW(NAME,IADR,NPAR,PARTYP ,PARAD,IADOP,KEY,IADKEY,IH,IG)
CALL XKEYW(NAME,IADOP,KEY,IADKEY,IH,IG)

The arguments:

NAME - literal constant specifying the keyword name

IADR - location in the common /OPAR/ where a flag is set
to indicate, if this key was found in input for
this command or not

NPAR - the number of parameters for the key NAME

PARTYP - type of the parameters (R,I,L,T) (real,integer,logical,text)
(array)

PARAD - location in the common /OPAR/ where the input value of the

keyword parameter is to be stored (array)

IADOP - address of the block in the G-array (see Table 1) where
the pointers to the data field for the operation codes
are stored

KEY - address of the block in the H-array where the keyword names
are stored (see Table 2)

IH - address of the H~array-data for keyword definition

IG - address of the G-array-data for operation code definition

The entry XKEYW is used to assign the keyword name as a keyword operand to
the operation code defined last. The keyword name, the length of the name,
the length of the abbreviation, the number of keyword parameters and the
type of the parameters are determined and stored into the H-array (see

Table 2). The keyword definition data stored into the common /OPAR/.

- 47 -

Subroutine XOPCOD - operation code definition

The subroutine XOPCOD is called by OPCODE to define the operation code NAME

and store the data for this code into the G-array (see Table 1).

The call:

CALL XOPCOD (NAME ,OP , IADOP, IG)

NAME -~ the name of the operation code to be defined as a
character string (literal constant)

oP - address of the block in the G-array, where the
operation code names are stored

TADOP

address of the block of data for the operation code NAME

IG - address of the G-array

Subroutine CHKEY (NAME,#)

The subroutine CHKEY is called by IKEYWD and OPCODE to check if the
keyword name or operation code name (NAME) to be defined is valid.

An error message is printed if a syntax error occured in NAME: the

first character is a digit, or the code is too long, or contains

invalid characters.

Subroutine LOPI

LOP! is called to specify the abbreviation length of the code name to

be defined, if the ambiguity control parameter is greater than zero, e.g.
the abbreviation must be unique. If the code name corresponds to a name
already defined, an error return is initiated. LOP! defines the minimum
abbreviation length of the code just processed, and alters the abbrevi-

ation length of any similar code defined before with an equal abbreviation.

The call:

CALL LOP 1(NAME,LNAM,OP,IAD,IG,NK,LK,880)

NAME - literal constant, the name of the code to be defined
LNAM - the number of characters in NAME

oP - array retaining the code names

- 48 -

IAD - addresses of the data block for each code

IG - address of the G-array and H-array respectively
NK - the number of code names already defined

LK - the number of characters in the valid abbreviation

of the code

&80 - statement number to continue processing in case of an
error return

Subroutine LOP2

LOP2 is called, if the ambiguity control parameter for the abbreviations
of the code names is less than zero, and returns the minimum length of

the abbreviation.

The call:

CALL LOP2(NAME,LNAM,OP,NK,LK,&80)

The arguments:

NAME - literal constant, the name of the code to be defined

LNAM -~ the number of characters in the code name

oP - array retaining the code names defined

NK - number of code names already defined

LK - number of characters in the abbreviation

&80 - statement number to continue processing in case of an error return

Subroutine LOP3

The subroutine LOP3 is called, if the ambiguity parameter for the code
name abbreviations is equal zero, e.g. no abbreviation is allowed. LOP3
checks, whether a name similar to the code name to be defined was
already defined or not.

The call:

CALL LOP3(NAME,OP,NK,LK,&80)

NAME -~ literal constant, the name of the code to be defined

- 49 -

oP - array retaining the code names defined
NK - the number of defined code names
LK - (in case of an error return)

the number of the code similar to NAME

&80 - statement number to continue processing
in case of an error return

Subroutine LOP4(NAME,LNAM)

The subroutine LOP4 is called to evaluate the number of characters (LNAM)

in the literal variable NAME which specifies the code name to be defined.

Subroutine TYPCHK(TYP,IA,880)

TYPCHK is called to check, whether a valid type identifier is available
for the keyword parameter of the key to be defined.

The arguments:

TYP ~ parameter type to be checked
IA -~ address of the parameter value which type is to be checked
&80 - statement number to continue processing in case of

an error return

Subroutine XPOSPA -~ definition of positional parameters

The subroutine XPOSPA is called by POSPAR to define the positional

parameters for the operation code defined last.

The call:

CALL XPOSPA(TYP,IADR,IADOP,IG)

TYP - type of the positional parameter (R,TR)

IADR - pointer to the storage location im the common /OPAR/
where the value of the positional parameter is to
be stored

IADOP - address of the data block of the last defined operation

code in the G-array

IG -~ address of the G-array

- 50 -

IADR and TYP are stored into the G-array, IADR in ADPOS and TYP in TYPOS.

Subroutine XEXCLU

The subroutine XEXCLU is called by EXCLUD to make keywords in LIST

mutually exclusive.

The call:

CALL XEXCLU(N,LIST,KEY,IADKEY,IH,V,VI)

The arguments:

N -~ the number of keywords to be mutually exclusive
LIST - array retaining the keyword names to be exclusive
KEY - address of the block in the H-array where the keyword

names of the operation package are stored

IADKEY - address of the block in the H-array where the data
for keyword definition are stored

IH ~ address of the H-array
v ~ address of the common /OPAR/
Vi - address of the array (structured as /OPAR/) retaining

the default parameters initialized at the program start

Subroutine XDEFLT

The subroutine XDEFLT is called by DEFLT (KONTR,NAME,V) to define the
default control parameter (KONTR) and the default values (V) for the

keyword operand NAME.

The call:

CALL XDEFLT (KONTR,NAME,VALI,VAL,V,KEY, IADKEY, IH)

KONTR

default control parameter:

=] - the default parameter is initialized by the program,
but the current value is default

= 2 - the initial value set up at command definition time
is default

= 0 — no defaults available

< 0 - no default values initialized, input is obligatory

..5]...

NAME - name of the keyword for which the default parameter value
is to be defined

VALI - array to store the default parameters initialized at
program start

VAL - address of the common /OPAR/ where the parameter values
from input are stored

v - array retaining the default values for the initialization

KEY -~ address of the block in the H-array retaining the keyword
names

IADKEY - address of the block in the H-array retaining the addresses

of the definition data for each key

Id ~ address of the H-array

Subroutine XOPRIN

The subroutine XOPRIN is called by OPRIN to print the operation code
package tables.

The call:

CALL XOPRIN(OP,IADOP,IG,KEY,IADKEY,IH)
The arguments:

op - address of the block in the G-array where the
operation code names are stored

TADOP - array retaining the addresses of the data blocks
for each operation code

IG -~ address of the G-array

KEY - address of the block with the keyword names
in the H-array

IADKEY - array retaining the addresses of the data block
for each key

In -~ address of the H—array

_52-

2.2.4 Table 1: Structure of the G-array
(retains the data for operation code definition)

L 2

logical, R = real, I = integer, T &

text

address contents comment
1 OPCODE 1 operation code name =
3 OPCODE 2 = command (realx8 word)

2#NOP-1 OPCODE NOP

2¥MAXOP .

2#MAXOP+1 IADOP(1) address of the array

TADOP (2) retaining the data for
. OPCODE (1,2...)

3#MAXOP °

3#MAXOP+1

(=IADOP (1)) LMAX length of the operation code name

IADOP(1)+1 LMIN length of the valid (minimum) abbreviation

IADOP (1) +2 NKEY number of keywordsof OPCODE 1

IADOP(1)+3 NPOS number of positional parameters for OPCODE 1

TADOP (1) +4 IADKEY (1) address of an array in H

IADOP(1)+5 IADKEY(2) where the data for key number ! (2,...NKEY)

. are stored

IADOP (1)+3+NKEY IADKREY (NKEY)

IADOP (1)+NKEY+4 IADPOS (1} Pointer to a storage location in the common
/OPAR/ where the value of the positional
parameter is to be stored

TYPOS(1) Type of the positional parameter
(R,1,L,T)
+(2#NPOS)~1 .
IADOP (1)+NKEY+3 IADPOS (WPOS)| see IADPOS (1)
+2#NPOS

IADOP (1) +NKEY+3 TYPOS (NPOS) see TYPOS (1)

IADOP (2) LMAX see above

IADOP(2)+1 LMIN see above

= 53 =

Table 2: Structure of the H-array
(retains the data for definition of keyword parameters)

L 2 logical, R = real, I = integer, T = text

address contents comment
| KEYNAM(1) name of the keyword
2 KEYNAM(2) (real#8 wvariable)
2#MAXKEY .
IAKEYTAB address of the array of data
2#MAXKEY+1 IADKEY (1)
R for each key
2¥MAXKEY+NKEY IADKEY (NKEY)
IADKEY (1) LMAXKEY 1 maximum length of the keyword name
IADKEY (1) +1 LMINKEY I minimum length of abbreviation
IADKEY (1)+2 AKEY(TIADR) location in common /OPAR/ to be set
.TRUE. (key in input)or .FALSE.
respectively
IADKEY (1)+3 IEXCL Exclusive list address
<0, 0, 1, 2
IADKEY (1) +4 KONTR default control parameter
IADKEY{1)+5 NPAR number of keyword parameters
TADKEY (1)+6 ADPAR(1) location in common /OPAR/ where the
parameter value is to be stored
IADKEY (1)+7 TYPPAR(1) parameter type (R,I,L,T)
IADKEY(1)+8 ADPAR(2) see above ADPAR(1)
+ 2#NPAR .
2¥MAXKEY+NKEY+6
IADKEY(2) LMAXKEY?2 see above LMAXKEY!

- 54 -

Table 3: The common /OPAR/
L= logical, R - real, I = integer, T = text
address| variable type comment
) LF (FROM) L is set .TRUE. or .FALSE.
2 LTO L if input is available
3 LP (PRINT) L for this keyword parameter
4 LNP (NOPRINT) L or not
5 LZUP L
6 LZLOW L
7 LOUT (OUTUNIT)| L
8 LC (const) L
9 FROM R keyword parameter values
10 TO R from the input or the
| B IPRINT 1 default values are
12 ZUP L stored here
13 ZLOW L
14 I0UT I
15 CONST R CONST has no default value ipitialized |
16 E R positional parameter values
17 MAT R are stored: E-energy
19 TYP R Mat-isotopename, TYP-type name
21 LSKIP L is set .TRUE. or .FALSE.
22 LFMT (FORMAT) | L if input is available
23 LREW(REWIND) L or not
24 LUN (UNIT) L
25 ISKIP I keyword parameter values
26 FMT (FORMAT) TR from the input or the default values
35 IUN(UNIT) I are stored here, FORMAT has
36 IUM I no default wvalue

MAIN

2.3 Control input processing package call scheme

READOP
XOPCHK
1
] l l | [] 7
INPUTO FITEM OPCD DEFIN CHKOPC OPCDA PROKEY VOUT
= 1] [2 2
[Equi | | verzry CDATA CDAﬁ@ |
1
‘ I ——
ERRIN E
} l RRSET 1 EQU1 LENTXT EQUI LENTXT
2 2
I | | L l L I | I l I 1
NITEM EQUI EQUT XXHELP XXTM NITEM KEYCD ERRDET RIFY/AB | CHECKL | | DATINO| [CONKE
3 | N 3 —___] L Yt
2,
| | | | | l | l]
NITEM VERIFY VERIFB EQU! BITEM CONKEY DISPLA| | VERIFA | | INQKEY
P
3
‘ ' EQUI LENTXT
EQUI VERIFY VERIFA
3
DATIN
K !
[[- | 1] .
FORTXT [equi | [restxr | [verwry | [cmkosr | [comvy | [ommer | | cmkroc | '

- 56 -

2.3 The control input processing package—-function

The subroutine GETOP is called by the main program to read the control
input list for each operation code. A call to READOP provides the
control input processing subroutine package to read and process the
control input: The positional and the keyword parameter values are
moved from card input into the common /OPAR/. The subroutine NAMIN is
called by GETOP to indicate and correct erroneous input for material or

data type names.

The subroutine of the control input processing package and their functions

are:

XOPCHK - the control routine for the input processing package

INPUTO -~ to read the next control input list

NITEM ~ to provide the next item from the control input list processed

OPCD - to provide the number of the operation code entered

DEFIN - to initialize default values for the positional and keyword
parameters of the entered operation code in V (current value)
transferring data from the common /OPAR/

CHKOPC - to test, whether any operands are allowed for the entered
operation code

PROKEY = to provide the values of keyword operands from input

DISPLA - to display or to prompt the default parameter values

XXTM ~ to define a character to simulate attention function

KEYCD - to return the number of the entered key

CONKEY = to control the keyword operands in the input list

DATIN —- to process input data items

VERIFY =~ to enable error correction and interaction with the
program in a foreground job

INQKEY -~ to request the input data for a operation code

Auxiliary subroutines and functions are CDATA,CHKLOG,CHKREL,CHECKL ,CHKINT,
EQU1,LENTXT , FORTXT ,EQUT.

..57_

2.3.1 The input processing subroutines

Subroutine XOPCHK - the control routine

XOPCHK controls the processing of an input list,

The call:

CALL XOPCHK (NOPT,NPOS,VA,V,VI,VF,OP,IADOP,IG,KEY,IADKEY, IH, IFI)

NOPT

NPOS

VA

Vi

op

IADOP

IG

KEY

IADKEY

IH

IFL

number of the operation code

number of positional operands for this code found in the
input list

address of the common /OPAR/

array of the same length as the common /OPAR/ to store current
values of default parameters

array to store initial values of default parameters

array to store parameter values from input

“

G{(1) address of the block in the G~array where the operation

code names are stored

~

G(2*MAXOP+1) array containing the addresses of the data

block for each operation code

ity

address of the G-array
H(l) array retaining the keyword names

H{2#MAXKEY+1) array retaining the addresses of the data

blocks for each keyword

S

H(1) address of the H-array

serial count of the processed input lists

The subroutine XOPCHK calls the following subroutines and entries

respectively:

INPUTOG - to read the next input list

FITEM - to initialize pointers in the common /INPUTC/ before retrieving
the first item from the input list

OPCD - to provide the number of the operation code entered

DEFIN - to initialize default values

CHKOPC - to check the entered operation code

OPCDA - to identify an operation code entered repeatedly for

correction of an erronecus input item

- 58 -

PROKEY - to provide keyword parameter values

VOUT -~ to move the current values of the parameters from V
into the common /OPAR/

Subroutine OPCD

The subroutine OPCD provides the operation code from the input list and
returns the number of this code.
The call:

CALL OPCD (MOPT,NRET,OP,IADOP,IG,KEY,IADKEY,IH,IQO0,VI)

MOPT the number of the operation code

NRET return code:
= Q - no error

= 1 - error in the last input list

1

oP G(1) address of the block retaining the operation code

names in the G-array

IADOP = G(2#MAXOP+1) address of the array containing the addresses
of the blocks of data for each operation code

[

IG (= G(1)) address of the G-array

-~

KEY (= H(1)) block in the H-array retaining the keyword names

IADKEY (; H(2#*MAXKEY+1)) array retaining the addresses of the data
block for each key

IH (; H(1)) address of the H-array

Q0 counts the question marks entered at the terminal

VI array retaining the initial default values for the keyword
operands

The argument list of the entry OPCDA is the same as for OPCD. OPCDA is
called to identify an operation code entered repeatedly to correct an
erroneous input item or to prompt (interactive) the input of a valid

operation code in the WAIT-mode at the terminal.

- 50 =

Subroutine CHKOPC

The subroutine CHKOPC checks whether operands are allowed and available

for the chosen operation code.

The call:

CALL CHKOPC (MOPT ,NPOS,NRET,OP ,IADOP,IG,V,VF,KEY,IADKEY, IH)

The arguments:

MOPT number of the operation code
NPOS number of positional parameters for this code
NRET returncode

= 1,4,5 -~ VOUT should be called (the current parameter
values are default)

= 3 = a call to OPCDA provides the needed information
about the operation code

= 2 - a new input list must be requested

\Y (= VB or V2) array retaining the current values of the
keyword and positional operands

VF (VFOUND in OPDEF) array receiving the parameter values
from the input list

opP - array retaining the operation code names

IADOP -~ array retaining the addresses of the data block
for each operation code

IG = address of the G-array
KEY - array retaining the keyword names
IADKEY -~ array retaining the addresses of the data block

for each keyword

IH - address of the H-array

CHKOPC prompts also input for the operation code to correct erroneous
input. The subroutines NITEM,CONKEY,INQKEY,VERIFA,VERIFB,BITEM,DISPLA
are called in CHKOPC.

- 60 -

Subroutine CONKEY

The subroutine CONKEY controls whether all required operands have been

encountered in processing the input list.

The call:

CALL CONKEY (MOPT ,NPOSF,NRET, IADOP, IG,V,VG,KEY, IADKEY,IH)

The arguments:

MOPT the number of the tested operation code

NPOSF the number of the positional operands found in the
input list

NRET return code

=0 o error

= 2 the input list is deleted (too many errors, attention)

For IADOP,IG,V,VF,KEY,IADKEY,IH see the argument description in XOPCHK.

CONKEY prints a warning in batch processing of a background job, if
positional operands are expected for the tested operation code and not
found in the input. The input for the requested parameter is prompted

at the terminal in a foreground job.

The VF-array is checked for each keyword defined for the operation code,
whether data were entered for keyword parameters or not. A warning is

printed in a background job. The input is prompted in a foreground job.

- 61 =

Subroutine DEFIN

The subroutine DEFIN initializes the default values for keyword para-

meters dependent on the default control parameter for the key.

The call:

CALL DEFIN(NOPT,VA,VB,VI,VF,IADOP,IADKEY,IG,IH)

The arguments:

NOP number of the operation code for which the parameter
values are stored in VA,VI,VB respectively

VA address of the common /OPAR/ retaining the default
values for keyword parameters

iy

VB (VB(1) = F(1001)

VI (VI(1) = F(1001) see also OPDEF (2.2.1)

VF (VE(1) = F(1201)

VB auxiliary storage for the parameter values

VI array to store the initial values for the keyword
parameters

VF array to store the values for keyword parameters from
the input

IADOP array retaining addresses of the data blocks for each

operation code in the G-array

IADKEY array retaining the addresses of the data for each
keyword (H-array)

IG (IG(D) = G(1)) address of the G-array

IH address of the H-array

The values of the keyword parameters are moved from the common /OPAR/
into the array VB. If the ENTRY VOUT is called, the values in VB are
moved to the common /OPAR/.

- 62 -

Subroutine CDATA

The call:

CALL CDATA(LT,IA,VA,VB)

Data of the length of LT are moved from VB to VA beginning with VA(IA).
The subroutine CDATA is called by the subroutine DEFIN.

Subroutine PROKEY

The subroutine PROKEY provides the input for the keyword from the input

list.

The call:

CALL PROKEY (NOPT,NRET,IADOP,KEY,IADKEY,IG,IH,V,VF,IPOS)

The arguments:

NOPT number of the operation code for which the keyword parameters
are processed

NRET returncode:
= 0 no error

=] error

IPOS number of positional operands available in input

For the arguments: IADOP,KEY,IADKEY,IG,IH,V,VF see the description in
CHKOPC.

The subroutines NITEM,CHECKL,DATINO,VERIFA,CONKEY and KEYCD are called
by the subroutine PROKEY,

Subroutine KEYCD

The subroutine KEYCD returns the number of the entered key. The number

is defined by the index of the keyword name in the H~array.

The call:

CALL KEYCD (MOPT,NRET,KEY , IADOP, IADKEY, IG, IH)

- 63 -

The arguments:

MOPT number of the operation code for which the keyword is
processed
NRET returns the number of the key

For the arguments KEY,IADOP,IADKEY,IG,IH see the description of
arguments in XOPCHK.

- 64 -

2.3.2 The subroutines to process interactive input (real time processing)
Subroutine INQKEY

The subroutine INQKEY requests the input data for the operation code
OP (MOPT). Positional operands and keyword operands are prompted in a
foreground job at the terminal, if not available in the input list or

if the user is not versed in input coding and chooses prompting. A warning

is printed in batch processing if no defaults are available (background job).

The call:

CALL INQKEY (MOPT,MPOS,NRET,OP,IADOP,IG,V,VF,KEY,IADKEY, IH)

MOPT number of the requested operation code
MPOS the number of positional parameters entered for this code
NRET return code

= 0 no error

2 the processed input list

is deleted - too many errors

For OP,IADOP,IG,V,VF,KEY,IADKEY,IH see the description of arguments in
XOPCHK.

Subroutine VERIFY

The subroutine VERIFY is used to verify the input list entered at the
terminal. VERIFY allows error correction and enables the user to interact

with the program in a foreground job.

The input accepted by VERIFY is the question mark, blank, attention key,

hyphen and undercore.

The call:

CALL VERIFY(IOP)

IOP = 1 question mark was entered

IOP = 2 input is blank = return key was hit
IOP = 3 attention key was hit

IOP = 4 hyphen was entered

IOP = 5 underscore was entered

- 65 =

If the question mark is entered for the first time, the answer is:

Hit the return key for verification,

If attention key was hit, the whole input list is to be deleted. An under-
score entered indicates, that the input list is to be extended by additional
data. A hyphen entered indicates that the user wishes to supply replacement
data.

The ENTRY VERIFA(IOP) is called, if no further information is available.

The ENTRY VERIFB is called to verify the input item prompted.

Subroutine XXTM

The subroutine XXIM is called by OPCD. XXTM defines a character to

simulate the attention—-function.

The terminal commands NOTERM, TERMINAL or ATTN are accepted by XXTM.,
All characters except the underscore, dash or question mark

are allowed for attention definition.

The call

CALL XXTM(NR)

NR returncode
= 0 no error
= | error message is printed

EQU! and NITEM are used in XXIM,

Subroutine DISPLA

DISPLA is called by CHKOPC to display the default values for the operation
code: positional operands, keyword operands. DISPLA prompts these parameter

values, if no default wvalues are available (WAIT-mode).

- 66 -

The call:

CALL DISPLA(MOPT,NRET,OP,IADOP,IG,V,KEY, IADKEY, IH)

The arguments:

MOPT number of the operation code for which the parameter
values are to be displayed

For NRET,OP,IADOP,IG,V,KEY,IADKEY,IH see the argument description in
XOPCHK (2.3.1).

67

2.3.3 The subroutines to decode the control input list

Subroutine NITEM

The subroutine NITEM is called to provide the next item from the input
list. An item is any data surrounded by separators (comma, blank) or

functional separators (apostrophe, slash, equal sign). One data item has
a maximum of 38 characters and is passed to the calling subroutine via

common /ITEMC/ in the array B.

The ENTRY FITEM is called to initialize pointers IP,IPO in the common
/INPUTC/ before retrieving first item.

The ENTRY BITEM is called to backspace one item in the input list.

The ENTRY ERRDET is called to print the whole input list and the item

where an error appeared.

The call

CALL NITEM(NRET)

NRET - returncode
= 0 no error

= | error in the input item, the input is ignored

The entries VERIFA, VERIFY and the function subroutine EQU! are called
by the subroutine NITEM.

Subroutine DATIN

The subroutine DATIN processes input data items.
The call
CALL DATIN(IA,IIT,V,VF,IDEF,N,NRET,IC)

The arguments:

IA address of a location in VF where.TRUE. or .FALSE. is
stored, if input data are available for the respective
parameter or not

- 68 -

IIT type of the parameter

\Y array retaining the current value (= previous input for the
requested parameter) of positional and keyword parameters

VF array to accept data from the input for positional and
keyword parameters

IDEF default control parameter

A

0 no default values available, input is obligatory

! default values are initialized by the program, but
the current value is default (last input)

2 the initialized default values are always default

N number of the positional parameter for which input is
requested or to be processed (for printing
purpose)

NRET returncode

=] no input available, take default value
= 2 ATTENTION, the item was deleted

= 3 input error, data not recognizable, the item
is ignored

=10 end of the input list

IC index for the output text
i = POS.OP.
2 = PARM,

ENTRY DATINO(IA,IIT,V,VF,NRET,KEY,ERRMS)

The arguments:

For IA,IIT,V,VF,NRET see the argument list description for DATIN,

KEY the name of the keyword to be processed
ERRMS .TRUE. - the keyword name is to be printed in the
error message

.FALSE. - an error message for any data type is to be
printed without the keyword name

The entry DATIN is called to read and process the input items, the

entry DATINO for processing only.

- 69 -

The input data are read in as characters and corresponding to their type,

converted to internal representation by the subroutine CONVY.

The entry DATINO is called to check the data type: text data or real

data by a call to CHKREL, integer data by a call to CHKINT, and logical
data by a call to CHKLOG.

The length of the data item is provided by the function subroutine LENTXT.
The positional parameters and keyword parameters (not available in the
control input list of the processed operation code) are prompted (inter-
active) and processed by DATIN.

DATIN is called by the subroutines PROKEY,INQKEY and CONKEY.

Subroutine CHKREL

The subroutine CHKREL checks if the input item is a real number.

The call:

CALL CHKREL(B,LB,NR,C1,IS)

B - array retaining the input item to be checked
L3 - length of the B-array
NR - = (the checked data item is not in a floating point
number representation
0 NR returns the number of digits in the data item
ct — the number of digits of the mantissa of the real number
IS -= ¥ length of the number of special characters

in the floating point representation of the real number

- 70 -

Subroutine CHKINT (B,LB,NR)

The type and the length of the data item in the B array is checked in
the subroutine CHKINT.

The arguments:

B - array retaining the data item to be checked

LB length of the B array

NR - returns the number of digits in B

If the data item in B is not an integer number then NR
is returned with a minus sign.

CHKINT is called by DATIN.

Subroutine CHKLOG(B,LB,NR,V)

The subroutine CHKLOG checks if the variable B contains a T or a F.

LB must be equal 1, otherwise NR = 0 is returned.

If B

if B

[]

F than NR
T than NR

1 and V = ,FALSE.
1 and V = .TRUE.

1s returned,

CHKLOG is called by DATIN.,

Subroutine CHECKL

After a call to CHECKL the length of the input data item stored in B

is returned in L.

The call:

CALL CHECKL(LM,3B,L)

LM : — the maximum length of the B-array
B — the array retaining the input data item

L - the returned length of the data item

- 7] -

Logical function EQUI

The call:

CALL EQUI(A,B)

EQU! is called to compare the two characters A and B.
EQU! is .TRUE. if A equal B, otherwise ,FALSE.

Function LENTXT (TXT)

The length of the text TXT is returned:

minimum is 2, maximum is 9.

Subroutine FORTXT (LENT ,AFT)

The length LENT is returned in AFT as an alphanumeric text.

(LENT < 9)

Subroutine EQUT(LA,A,LB,B,LE)

The characters in the A array and B array are compared and the number

of equal characters is returned in LE.

2.4 Calculation package CALCPAC - call scheme

MAIN
l
l l l | |
PLUSC1 MINUCI MULTCI DIVICI] ARITHO ETACAL
i ! l l |
PLUSCC MINUCC MULTCC DIVICC ETACC
| l I I l l I 1
FINDAT ORDNEN KEDCH AVAIL ERRO STOSUB PLUSI MINUSI MULT! DIVID!
I I l I [
LDFLOC PLUSC MINUC MULTC DIVIC
L I l |
[l l | 1
LOCSUB RERTDF XLIM! NXTSUB XLIM2 ERRMS 1 LSUB ERRMS3 ERRMSO NSUB

—'8}..—

- 73 -

2.4 The calculation package CALCPAC-function

CALCUL simulates a desk calculator but operateson functions instead of

single numerical values. The basic arithmetic operations:

ADD,DIVIDE ,MULTIPLY,SUBTRACT are performed in the calculation

package CALCPAC.

CALCPAC consists of the following subroutines:

ARITHO

CALC!

CALCC

OPERCC

ETACC

FINDAT

ORDNEN

KEDCH

AVAIL

ERRMSO

LOCXS
RETXS

LTLOC
LTNXT

KLIMI

)

the preparation of the data for the arithmetic
operations

the interfacing routine to the arithmetic operatioms in
CALCPAC: CALCC,OPERCC,ETACC

arithmetic operations on tabulated functions with linear
interpolation

to perform the arithmetic operation with a constant

to calculate Y = 1/(l+y) for the evaluation of
ETA (y=ALPHA)

to check, if requested data are available on the
auxiliary dataset DADS2

to sort the values of a tabulated function in ascending
order of the arguments

to find the energy intervals for which the data are to
be retrieved from the KEDAK-file

to check, if requested data are available on the
KEDAR-file

to print error messages

Data retrieval from the KEDAK-file
(see reference 6)

Data retrieval from DADS2

Interpolation to the energy range limits

The labeled common block /CALCOM/ is used by the CALCPAC subroutines.

- 74 -

2.4,1 The subroutines to prepare the data to be processed

Subroutine ARITHO

The preparation of data for the arithmetic operations performed in
CALCPAC is done by the subroutine ARITHO with the aid of the subroutines
FINDAT ,ORDNEN, KEDCH,ERRO,AVAIL.

The subroutine FINDAT checks which data of the processed type are
available for the requested energy range on the temporary direct access

dataset with the reference number 2(DADS2).

The arrays EMIN,EMAX are arranged by the subroutine ORDNEN in ascending

order of the energy limits.

The subroutine KEDCH checks the energy ranges to find out gaps to be
filled with KEDAK data. KEDCH sets for each range a flag in the array IP:
1 - for the data available on DADS2

2 —~ for the data to be retrieved from the KEDAK-file

The subroutine AVAIL searches, if the requested data type is available
on the KEDAK-file.

The names of the proper retrieval routines are transferred to CALCPAC

by a call to STOSUB according to the source of data requested. RETXS,REPXS,
LOCXS,NXTXS,LDFLOC,LDFNXT are used for the retrieval from the KEDAK-file,
and RETXS,REPXS,LOCXS,NXTXS,LTLOC,LTNXT for retrieval from DADS2.

The arithmetic operations are performed corresponding to the command

(operation code) from the control input list calling:

PLUSI for the command ADD
MINUS]1 for the command SUBTRACT
MULT1 for the command MULTIPLY
DIVIDI for the command DIVIDE

ERRO is called to initialize the array with the number of errors that

occurred for CALCPAC to zero (in common /ERRORC/).

75

Subroutine FINDAT

The subroutine FINDAT searches the entry table in the common /DA2/, to
find out for which intervals of the energy range /FROM,TO/ of the data
type specified in NAMES, data are available on the temporary direct

access data set DADS2.

The call:

CALL FINDAT (NDAT,NDAMAX,NAMZ,NAMES,FROM,TO,E1,E2)

NDAT the total number of intervals on DADS2

NDAMAX the maximum number of intervals (79)

NAMZ the number of names for the checked data type

NAMES the names of the type

FROM, TO lower and upper limit of the processed energy range
El1,E2 arrays retaining the lower and upper energy limits

of the intervals

Subroutine ORDNEN

The subroutine ORDNEN sorts the arrays FELD,WERT, e.g. arguments and

function values, in increasing order of the arguments.

The call:

CALL ORDNEN (KMAX,FELD,WERT)

KMAX the length of the array to be sorted
FELD array of the arguments
WERT array of the function values

Subroutine KEDCH

The subroutine KEDCH states the intervals in /FROM,TO/ which are to be
filled with KEDAK-data.

The call:

CALL KEDCH(NDAT ,NDAMAX,EMIN,EMAX,El,E2,IP,F,T)

- 76 -

The arguments:

NDAT the number of energy intervals in the energy range (F,T)

NDAMAX the maximum number of intervals allowed
NDAMAX negative indicates an error return

= -1 the number of intervals generated is greater

than NDAMAX
= -2 no data found on KEDAK, and no data available
on DADS2
EMIN arrays, to transfer the lower and upper energy
EMAX limits of the intervals to KEDCH and to return the

stated new intervals

El auxiliary arrays, to retain the energy limits from
(EMIN,EMAX), and the additional limits of the intervals,
E2 to be filled with KEDAK data. These values are then returned

to the calling program in (EMIN,EMAX).

IP array retaining a flag for each interval:

= 2 for KEDAK data
1 for the data from DADS2, the auxiliary direct access
dataset

The subroutine AVAIL

The subroutine AVAIL checks if data of the requested type are available
on the KEDAK-file. The common /TPFILL/ is filled in FILLTP. LDFLOC is
called to check, whether the requested data type is available on KEDAX.

The call:

CALL AVAIL (MAT,TYP,&130)

MAT REAL#8 isotope name of the requested type
TYP REAL#8 reaction type name of the requested type
8130 error return, if requested data type not available on

the KEDAK-file

- 77 -

Subroutine ERRMSO

The subroutine ERRMSO with the entries ERRMS!, ERRMS3 and EPRRO

provides the error messages for the calculation package.

ERRO initializes the array NERR retaining the error rate for each
error. The entries ERRMSO,ERRMS!,ERRMS3 are used to transmit arguments

for printout together with error message. For example:
CALL ERRMSI(NR,X)

If ERRMSI was called with the error number NR = | the message is
written: warning message: Error | occured when performing requested
arithmetic operation. Energy of requested dataset X is below first
energy of current result. Action taken: the current result is assumed

to be zero at this energy, e.g.

new result:
g, 19 T

for: "+7 2 ¥y =8
for: "-" : y = =g
for: "' y =
for: "/ : y =

For NR = 4 the error message is: Energy of current result X is above
last energy of requested data set (E,S). Action taken: Depending on

ZUP, the values of the requested data type are assumed to be zero at
this energy, or current result is left unchanged at this energy, e.g.

(after the end of (E,S) data) X = X(L), the next X-value available.

for LAY 1y = y(L)
for Y-V iy = -y(L)
for e, /" iy =0 if ZUP = .TRUE.

For NR = 6 the message is: Energy EXC[EY7 of requested type is above
last energy of current result. Action taken: current result is assumed
to be zero at this energy, e.g. X = EXC - the next higher E value avail-
able (end of data for (x,y).

for "+ y =5
X = E(I) for "-" y = -8

for "', /M vy =0

- 78 -

Subroutine LTLOC, entry LTNXT

The subroutine LTLOC(LTNXT) handles the data retrieval from DADS2. The
retrieval is organised like the retrieval in LDFLOC,LDFNXT (see reference

1), but no OPEN call is required.

The call:

CALL LTLOC (NR,NARG,NAMES,Z)
CALL LTNXT (NR,NARG,NAMES,Z)

NR - returncode

0 - no data found

1 - requested data are available, stored in Z

NARG(1) the number of names
NAMES array retaining the reaction type names
Z array to receive the data values

The data are read by the aid of the subroutine LTREC (see reference 1)

Subroutine XLIMI, entry XLIM2

The subroutine XLIM! interpolates the retrieved data to EMIN, the entry
XLIM2 to EMAX.

The call:

CALL XLIMI(NARG,NAMES,EMIN,EMAX,E,S,NUMS,NR)
CALL XLIM2 (NARG,NAMES,EMIN,EMAX,E,S,NUMS,NR,EK, SK)

The arguments:

NARG (1) - the number of names of the processed data type
NAMES - the names of the processed type

EMIN energy limits for the

EMAX - processed energy range

(E,S) - arrays to retain the retrieved data

NUMS - the number of data in (E,S)

_79..

NR -~ returncode, from the previous data retrieval routine

EK
- if NR = 2, EK = E(NUMS), SK = S(NUMS)
SK

_80-

2.4.2 The subroutines to perform the arithmetic operations

Subroutine CALCI

CALC! is the interfacing routine to the arithmetic operations in

CAICPAC and includes the following entries:

STODSN, INQDSN, STOSUB, INQNUM , STONUM, CAL 1 IN, ERRSTO , XMGSTO , EQUAL , EQUALC ,
REMV1,PLUS1,MINUS!,MULT!,DIVIDI,PLUSC],MINUC1,MULTCI,DIVIC1,ETACAL.

CALC! translates calls to its entries into suitable calls into CAILPAC

and sets up the complete argument list.

The call:

CALL CALCI(X,Y,X1,Y!,L1,E,S,L2,NDA,NDB)

X working areas for CAILLPAC

¥ to store the current and

X1

Y1 previous result

Ll length of the work arrays

E array to store the energy values from
the KEDAK-file

S array to store the cross section values
from the KEDAK-file

L2 length of the arrays E and S

NDA dataset reference numbers for the datasets

NDB on disk, where the processed data are stored

(X,Y,X1,Y1), if the number of data is larger
than L1 and data do not fit into main storage

CALC! provides the addresses of the working area for CALCPAC (i.e. X,Y,
X1,Y1,E,S) and is called for new optimization of the storage allocation

each time a new cross section is to be calculated.

...8]..

The entries STODSN and STONUM are used to store data into the common
JCALCOM/ .

The calls:
CALL STODSN(NDA,NDB)

The dataset reference numbers of the auxiliary datasets are specified

and stored in NDI,NDXI

CALL STONUM(NUM)

The number NUM of data points in the current result is stored in NX

in the common /CALCOM/.

The entries INQDSN and INQNUM inquire the values of the dataset reference

numbers and of the number of data points processed.

The calls:

CALL INQDSN(NDA,NDB)
CALL INQNUM(NUM)

NDA,NDB and NUM respectively are returned by the call. If NUM is greater
L1, that is: the number of data points is greater than the length of the
working area, the data are stored on anexternal storage on sequential
datasets with the reference numbers NDA and NDB.

This storage must be made available to the program by data definition

statements for FTO3F001,FTO4F001 (DCB=(RECFM=VBS,BLKSIZE=2008)).

The entry STOSUB is provided to transfer the names of the data retrieval

routines to CALCPAC.

ENTRY STOSUB(LOCSUB,NXTSUB,LSUB,NSUB)

The actual arguments are:

1. (RETXS,REPXS,LTLOC,LTNXT)-to retrieve data from the temporary

direct access dataset DADS2,

2. (RETXS,REPX,LDFLOC,LDFNXT)~-to retrieve data from the KEDAR-library.

- 82 =

3. (LOCXS,NXTXS,LTLOC,LTNXT)-to retrieve data from DADS2,

4, (LOCXS,NXTXS,LDFLOC,LDFNXT)-to retrieve data from the KEDAK-library

1. and 2. are for the retrieval in a requested energy range [EMIN,EMA§7,

3. and 4. for the retrieval of all data of requested type available on
the dataset. STOSUB is called at the beginning of the calculation and

the call is repeated whenever new retrieval routines are needed.

The entry CALIIN initializes flags in the common /CALCOM/ which indicates

where the current result is stored (ADR,EXCH,EQC). NOLD - the number of
data of the previous result and NX - the number of data from current

result are set to zero.

The entry ERRSTO applies to store the error numbers into the NN-array

in /CALCOM/.

The call:
CALL ERRSTO(LL)

LL - array which supplies the error numbers

The function of the entry EQUAL is to store data from the KEDAK-file

or the external source unchanged into the array of the current result,

The call:

CALL EQUAL (NAMZ,NAMES,EMIN,EMAX)

NAMZ - number of names for the data type
NAMES =~ the names of the data type

EMIN - lower energy limit of the

EMAX - upper energy range to be processed

The entry EQUALC allows to enter a constant function value (cross

section value) XC for a given energy range /EMIN,EMAX/.

The call:
CALL EQUALC(XC,EMIN,EMAX)

._83..

The entry REMVI deletes the values at the energy points O. and 1. E+10.

The entries to perform arithmetic operations are PLUS! MINUSI MULTI,
DIVIDI.

The calls:

CALL PLUSI(NAMZ,NAMES,EMIN,EMAX)

CALL MINUSI (NAMZ,NAMES,EMIN, EMAX)

CALL MULT1(NAMZ,NAMES,EMIN,EMAX,ZERO,ZERO1)
CALL DIVIDI (NAMZ,NAMES,EMIN,EMAX,ZERO,ZERO1)

For description of arguments see the argument list description for the

entry EQUAL. The additional arguments ZERO and ZERO! are explained here:

ZERO - indicates that the function values in the interval
X < E are to be set equal to zero, if ZERO = .TRUE.,
otherwise they remain unchanged

ZERO1 - all function values for X > E are to be set equal to
zero, if ZERO! = ,TRUE.

Entry PLUSI

In the energy range [EMIN,EMA§7 the operation ADD: "+" is performed

Y] =y+§ withy=0 for E< X . or E > X
min max
X1 =X U E and S=0 for X < E ., orx > E
N min max
Y & Y1 X,Y)-data outside (EMIN,EMAX)
X & X1 remain unchanged
(E,S)-data outside (kmin’xmax)

are received unchanged, X1 is the mprged grid:
(X v E) (X1,Y1l), (X,Y) - the arrays retaining
the previous and the current result.
(E,S)-array retaining the data from KEDAK or

external source

Y =3 if the calculation started
X = E with the call to PLUSI.

- 84 -

Entry MINUSI

" 1"

The operation performed is SUBTRACT: "-' -

Yl =Y-S withY =0 for E < Xm' , E>X

in max
X1 =X U E and S = 0 for X > E s X < E_.
max min
Y &yl
X & X1
Y= -8 if the call to MINUS! was the first
X=E call for the calculation
Entry MULTI

i n
M .

The operation Multiply is performed:

) ZERQO = T =S =0
Yl = Y-8 for X < EMIN and<: _
21 - X 0 E ZERO = F=)S = |
ZEROI = T=S =0
? &Y for X > EMAX and<: ZEROI = F5§ = |
X1 X1
and E é (Xmin’xmax)zé S =0

Entry DIVIDI

The operation Divide: "/" is performed:

Yl =Y/s for X < EMIN and{ = o=
X1 =X U E . ZERO = F=S = |
Y& vl for X > EMAX and{ggggiigjgz?
X & X1 =

if S=0=3Y =0

The arithmetic operations between a constant and a cross section value
are performed by PLUSCI,MINUCI ,MULTC1,DIVIC]. The argument lists for these
entries are the same as described for the entry EQUALC. The entry ETACAL

is provided for the evaluation of ETA.

85

Subroutine CALCC

The subroutine CALCC provides the entries PLUSC,MINUC,MULTC,DIVIC

to perform the arithmetic operations. In CALCC the data for a requested
energy range EMIN,EMAX are retrieved, if necessary interpolated to
EMIN,EMAX by the subroutine XLIMI(ENTRY XLIM2), and processed.The
arithmetic operations ("+", "=", "/" "<") are performed upon the
functions (X,Y) (current result) and (E,S) (retrieved data) with linear
interpolation. (X1,Yl) contain the result of the operation on the

merged grid (X U E).

The interpolation is performed with the function: FUNC(A2,A1,B2,BI1,B) =
Al+(A2=-A1)/(B2-B1)#*(B~B1)

The argument lists for the entries MINUC,MULTC,DIVIC are as described
for PLUSC, but MULTC and DIVIC have two further arguments:

ZERO - (; ZLOW) = .TRUE. - all function values (current result)
in the interval ¥ < E are set equal to zero.
ZERO = ,FALSE. - the current result is set equal to the

previous result. If no data found for requested type on
KEDAK and ZERO or ZERO! is .TRUE., the current result is
set equal to zero.

ZERO1 - (= zZup)
set to zero

]

JTRUE, - all function values for X > E are

The call for PLUSC:

CALL PLUSC(X,Y,X!,Y1,E,S,NAMZ ,NAMES,EMIN,EMAX,LOCSUB,NXTSUB,LSUB,NSUB)

The arguments:

X,Y :> working areas contain the current result and

X1,Y1 the previous result by turns

E,.S arrays retaining the retrieved data (from the
KEDAK-=file or from DADS2)

NAMZ - the number of names of the processed data type

NAMES -~ array retaining the names of the data type

EMIN -~ lower and upper limit of the

EMAX - energy range to be processed

- 86 -

N
LOCSUB the external names of the

NXTSUB retrieval routines to be transferred
LSUB to the program (see entry STOSUB
NSUB) in CALC1)

The data to be combined with the current result are retrieved by a call

to LOCSUB and NXTSUB:

CALL LOCSUB(NARG,NAMES,EMIN,EMAX,E,S,NUMS,LE,NR,LSUB,NSUB)
CALL NXTSUB(NARG,NAMES,EMIN,EMAX,E,S,NUMS,LE,NR,LSUB,NSUB)

If EMIN is greater than EMAX, then EMIN, EMAX are ignored by the program,

and the retrieval entries without these arguments are used:

CALL LOCSUB(NARG,NAMES,E,S,NUM,LZ,NR)
CALL NXTSUB(NARG,NAMES,E,S,NUM,LZ,NR)

and all data available for the data type are retrieved.

The arguments:

NARG NARG(1) = NAMZ: the number of data type names

NAMES array retaining the names

EMIN ,EMAX if applicable, give the (energy) limits for retrieval.
Retrieval starts with the last energy < EMIN and will
stop with the first energy > EMAX. Interpolation to
EMIN(EMAX) is done by the subroutine XLIMI(XLIM2).

E,S are the arrays into which arguments and functional
values are stored successively

NUM is the number of data points transmitted by the current
call
LZ gives the maximum number of data points, that may be

stored into X,Y

NR is a returncode, set by the called routine, the value
of which depends on various conditions detailed below

NR=1 last data point for the requested data has been stored
in (E,S)
NR=2 LZ data points have been filled into (E,S), without

reading the end of the data type. (An entry is provided
to continue with retrieval, after a section of LZ data
points has been handled.)

- 87 -

NR=3 No data found for the requested type

NR=4 argument of the first data point already greater than
EMAX. This data point is transmitted.

NR=5 argument of the last data point for the requested
type less than EMIN, This data point is transmitted

NR=10 transmission of data stopped, because upper energy
limit was reached.

Returncode 1,2 and 10 indicate normal return, all other returncodes

indicate exceptional condition.

The calculation of a cross section value by CALCC is carried out,
operating on the current result, and the retrieved data by the
proper arithmetic operation, interpolating linearly if necessary.

The result of this operation replaces the former current result.

If the number NX of data points processed (X1,Y!) is less than the
length LX of the working areas, the data are kept in the main storaze.
Otherwise an external storage on disk is used, to store the data in

datasets with the reference numbers NDX,NDXI.

The data are read from NDX by the statement:

READ (NDX)LDAT, (X(I),Y(I),I=1,LDAT)

LDAT < LX

This read statement is repeated, till all NX data are read.

LDAT=LX LDAT=LX LDAT=LX LDAT<LX
N _J
n#LEX+LDAT=NX

Blocks of data read from NDX.

- 88 -

Each block of data is processed, and written on NDXI:
WRITE (NDX1) LX, (X1(I),YI(I),I=1,LX)

Note that the number of data may increase, since energy points may

have been inserted.

If a new data type is to be calculated, not using the current result,
then a call to CALIIN (by the main program) has to be performed for
initialization of the working areas (see also: ENTRY CALIIN in CALCI).

The current result is lost, and therefore should be saved first, if

required.

The common /CALCOM/

The common /CALCOM/ is used in the calculation package to transmit
specifications about the calculated data and datasets used./CALCOM/is
accessed in the subroutines CALC!,CALCC,ETACC,EQU,0PERCC of CALCPAC,
and in EDIT,PRIDAT and CRECT.

COMMON /CALCOM/ IRET,LE,LX,NX,NDX,NDX!,EQC,NN(9),XMGS(2),ADR,OLDADR,EXCH,NOLD

IRET returncode from CALCC

=] data (current result) are kept in main storage in
(X,Y) or (X1,Y1), dependent on the value of ADR

= 3 the current result is written on NDX or NDXI
respectively

= 4 the number of processed data is less or equal to LX
(the length of the working area), or the number of data
processed is equal to zero

LE —- length of the areas (E,S)

LX ~ length of the areas (X,Y), (X1,Yl)
LE and LX are set in the SPACE2 subroutine

NX =~ the number of data processed.
NX is initialized in CALIIN with O. As long as
NX < LX the processed data are kept in main storage,
as soon as NX > LX the data are stored on an external
storage on disk, in the dataset with the reference
number NDX!, and are retrieved from NDX.

89

NDX dataset reference numbers of the auxiliary
NDX1 datasets for the current result
EQC ~ is set .TRUE., if the entry EQUALC was entered.

EQC is initialized .FALSE. in CALIIN

NN(9) - an array to retain the numbers of the error
messages. NN is initialized in ERRSTO

XMGS(2) - not used in CALCUL

ADR - indicates where the current result is stored:
= .TRUE. in (X,Y)
= ,FALSE. in (X1,Y1)

OLDADR -~ indicates where the previous result was stored

EXCH - indicates, whether the dataset reference number NDX,NDX!
were exchanged, after processing the data type

Subroutine OPERCC

The subroutine OPERCC includes the entries, which perform the arithmetic
operations PLUSCC ,MINUCC ,MULTCC,DIVICC for a constant, and the entries
EQUCC and RMVC.

The calls:

CALL PLUSCC(X,Y,XC,EMIN,EMAX)
CALL MINUCC(X,Y,XC,EMIN,EMAX)
CALL MULTCC(X,Y,XC,EMIN,EMAX)
CALL DIVICC(X,Y,XC,EMIN,EMAX)
CALL EQUCC(X,Y,XC,EMIN,EMAX)

The arguments:

(X,Y) — the arrays of the data for which the
operation has to be performed

XC - the value of the constant, which is to be
combined with the cross section values in
the Y-array

EMIN, EMAX - lower and upper energy limit of the data for
which the operation is performed

- 90 -

The entry EQUCC sets Y to a constant either at O. and 1.E+10
(EMIN > EMAX) or at EMIN,EMAX. The values above EMIN, previously

defined, are lost.

The entry RMVC removes the function values (Y) at 0. and 1.E+10
(X), if EQC = .TRUE.

The call:
CALL RMVC(X,Y,X1,Y1)

x,Y) - arrays of the data before the operation

(X1,Y1) ~ arrays of the data after the operation

Subroutine ETACC

The subroutine ETACC performs the operation Y4 = 1/(14Y) which is needed
for the calculation of ETA, Y on the right side of the above formula
would stand for ALPHA in this case. For those energies, where Y is equalto

zero, no operation is performed, and Y4 remains unchanged.

2.5 Cross section calculation package—call scheme

MAIN
|
CROSEC
|
i I | | l | | l]
ALPHAI SGA1 SGG1 SGG3 SGIL1 SGN1 SGT1 SGX1 SGX2 ETAl
l | | { I l I l l
ETACAL
ARITHO
MAIN
|
CROSEC
|
| l | |
ETAl SGIRI1 ALPHA?2 SGG2
L |]
| 3
I | ARITHO MINUCI
ARITHO EDIT CALIIN

"L6“

- 92 -

2.5 The cross section calculation subroutines CROSSEC—-function

The module CROSSEC was written to provide the most commonly used
formulae for cross section calculation as an integral part of the
command language and to relieve the user at input coding. CROSSEC

consists of the following subroutines:

CROSEC, TWOOP , THROP , SIXOP ,ETA2 , SGGSTR ,ALPETA

The subroutine CROSEC is the control routine for the particular

subroutines:
Subroutine ENTRY-name
name

ALPHAT

THOOE NUSF1
SGG1
SGX1
SGT 1
SGN1

THROP SGAl
SGG3

SIXOP SGX2
SGI!

ETA2

SGGSTR SGG2
SGTR1

ALPETA ALPHA2
ETAl

93

2.5.1 Subroutine CROSEC - the control routine for the neutron
cross section calculation

The subroutine CROSEC is the control routine for the neutron cross

section calculation of the following data types:

ALPHA,ETA,SGA,SGG,SGI,SGN, SGT, SGTR, SGX

The explanation of the symbols:

op total cross section
o, - elastic scattering cross section
¢y = [Eransport cross section

o, - non~-elastic cross section

n =~ effective number of secondary neutrons emitted per neutron absorption

v = average number of secondary neutrons per fission

My ~ average of the cosine of the elastic scattering angle in
the laboratory system

oY - radiative capture cross sectlon

gg - fission cross section

cp - c¢ross section for the (n,p)-process

da - cross section for the (n,a)-process

o, - absorption cross section

I total inelastic scattering cross section

Oy, = Cross section for the (n,2n)~-process

Oy, = Cross section for the (n,3n)-process

The call:

CALL CROSEC(X,Y,X1,Y1,LX,NR)

X -~ array of the energy values

Y - array of the cross section values

_94..

X1 - see X

Y! — see Y

X,Y,X1,Y] are the work areas of the calculation
package CALCPAC

LX —~ the length of the X,Y,X1,Y!l arrays

NR —- returncode

= 0 no data found for the requested data type, either
on the KEDAK-file nor in the auxiliary dataset
DADS2

= 1 no more data available on KEDAK for the processed
data type

= 2 the index counter for the processed data point is
equal MAXNUM i.e. the length of the work area

= 3 no data available on the KEDAK-~file for the
requested data type

= 4 no data found for the requested energy range

= 5 mno further data on the KEDAK-file for the
processed data type

=10 data found on the KEDAK-~file lie above the
requested energy range

The subroutine CROSEC uses the operation code number NOP from the common
/OPAR/. The calls for the operation codes are performed based on the
sequence of the commands defined in OPDEF. The commands are conformable
to the subroutine or entry names respectively: ALPHA],ALPHA2 ,ETA1,ETA2,
NUSF1,SCAl1,SGG1,SGG2,SGI1,SGNT,SGT1,SGTR1, SGX1,SGX2.

The subroutine EDIT is called to store the calculated data type on the

auxiliary direct access dataset DADS2 for later use.

- 05 -

2.5.2 The subroutines for the calculation of the particular cross sections:
TWOOP , THROP , SIXOP ,ETA2, SGGSTR , ALPETA

The following applies to all subroutines listed above:

The names of the data type to be calculated and the operation code number
are transmitted to the subroutines via the common /PARM/. The arithmetic
operations: plus, minus, divide and multiply are performed by a call to

ARITHO. The operation code number specifies the data type (cross section)

and the formula for this calculation.

The subroutine EDIT is called in ETA2 and SGGSTR to store the calcu-
lated data into the auxiliary direct access dataset DADS2. A call to
CAL1IN causes the initialization of the work areas, i.e. the areas are
set to zero, when the operation was carried out and the data were stored

on DADS2.

The subroutine TWOOP provides six entries which manage the calculation of the

following data types:

Entry name

ALPHA1: ALPHA = SGG/SGF
NUSF1 : WUSF = NUE # SGF
SGG! : SGG = SGF # ALPHA
SGT1 : SGT = SGN + SCX
SGX!1 : SGX = SGT - SGN
SGN1 : SGN = SGT - SGX

The subroutine THROP with two entries allows the calculation of the types:

Entry name
SGAl: SGA
SGG3: SGG

SGG+SGF+SGP+SGALP+SG2N+SG3N+SGD
SGA~SGF~SGP-SGALP-5G2N~SG3N-5GD

]

The subroutine SIXOP with two entries calculates the tvpes:
SGX2 : SGI = SGX=SGG~SGF-SG2N~-SGP-SGALP-SG3N~SGD
SGII : SGX = SGI+SGG+SGF+SG2ZN+SGP+SGALP+SG3N+SGD

..96..

The subroutine ETA2 calculates the data type ETA = NUE # SGF/(SGF+SGG)

The subroutine SGGSTR provides two entries for the calculation of

the data types:

SGG2 : SGG
SGTR1 : SGTR

SGF # ((NUE/ETA) - 1)
SGT - SGN % MUEL

L]

The subroutine ALPETA provides two entries for calculation of:

ALPHAZ : ALPHA
ETA1 : ETA

]

(NUE/ETA) - 1
NUE/ (1+ALPHA)

[}

The subroutine ETACC supplies the value Y = 1/(1+ALPHA).

MINUC1 is called to subtract the comstant XC = | from the processed
data type in the energy range ZEROM,TQ7. The values FROM,TO are
obtained from the common /OPAR/.

MAIN

2.6 DATAMAN - call scheme

EDIT

|

INQNUM

INQDSN

UPDAT

UPDH

CRECT

[

i

|

PRIDAT

|

|

|

|

INQNUM

INQDSH

LIMPR

PRTDAT

INQNUM

INQDSN

STONUM

STODSN

-)6 -

- 98 -

2.6 Data Management of the temporary direct access dataset DADS2
and of the two auxiliary datasets of CALCPAC — DATAMAN

The module DATAMAN manages the auxiliary datasets of CALCUL: the direct
access dataset DADS2 and the two auxiliary datasets (working area) of

CALCPAC.

The data to be processed in CALCPAC are transferred into the working area.
The data calculated by CALCPAC, or the data read from the external source
are stored into DADS2 for later use in CALCPAC and/or in other modules of
CALCUL (e.g. CROSSEC, OUTPUT,DATAMAN). DATAMAN consists of the following

parts:

l. The subroutines to create and update DADS2: EDIT,UPDAT,UPDN.
The labeled common blocks/DAVY/DAY/DAY/DAY DAY are used at the

definition and organization of DADS2,

2. The subroutine CRECT to delete data from the auxiliary datasets
of CALCPAC.

3. The subroutines to print data for checking purposes: PRTDAT,LIMPR,
PRIDAT,

99

2.6.1 The subroutines EDIT,UPDATE,UPDN to create and update the
temporary dataset DADS2

The subroutine EDIT is the data management routine for the temporary

direct access dataset on FTO2F00!1 (DADS2), where the processed data are
stored for later use in CALCPAC, CROSSEC and for editing by the OUTPUT

module.

The call:
CALL EDIT(X,Y,X1,Y1,LX,NERR)

The arguments:

~
— energy values

Y — cross section values arrays retaining the
X1 enerey values previous and current

8y result alternatively
Yi - cross section values

—
LX — length of the arrays
NERR ~ error returncode
= 0 - no error

=] -~ error appeared, no data saved

Data to be stored in DADS2 are specified to the program by the SAVE or
NAME command. Data ''nmamed" are for internal use only; the output unit

number for these data is set to zero in the directory (common /DA2/).

The subroutine EDIT inquires the number of processed data points (NUM)
by a call te INQNUM. If the number is greater than LX (the length of
the incore work area) a call to INQDSN provides the dataset reference
number (NDA) of the auxiliary dataset where the data are written by

CALCPAC.

EDIT reads the data with the read statement

READ (NDA) LDAT(X(I),Y(I),I=LLDAT)
[LDAT = NDAT = NUM]

- 100 -

and writes them with the aid of UPDAT,UPDN on DADS2.

If no data were processed (NUM=0) for the data type to be named
or saved, the error message is printed: SAVE/NAME REQUESTED. NO DATA
FOQUND, NO OPERATION PERFORMED.

If no data are found for the requested energy range, the error message
is printed: SAVE/NAME REQUESTED. NO DATA FOUND IN SPECIFIED ENERGY

INTERVAL.

Subroutine UPDAT, entry UPDN

The subroutine UPDAT creates the temporary direct access dataset DADS2

and updates the directory in [DA2/.

The call:

CALL UPDAT (NR, IKENN,NAM,NAMES ,NX,X)

NR returncode
= 0 no error

=] error message is printed

IKENN = 0 for data to be '"named" only
= unit number of the output dataset for data to be saved
NAM number of names
NAMES the names of the processed data type
NX number of data in X
X array retaining data to be stored on DADS2

The data on DADS2 are stored in records of 2000 bytes = 500 words.

The record length is initialized in the common /DAl/.

UPDAT 1is called for the first record to be written for a processed data

type. For each subsequent record of the same type UPDN is called.

- 1ol -

The common blocks/DAV and /DA2f are used to maintain the direct access

dataset DADS2,

DAY retains information about the layout and the status of DADS2.

[DA2/ retains the entry table of the data types stored in DADS2,

Data for a maxinum of 79 different reaction types may be stored on

DADS2.

The labeled common block /DAl/

COMMON /DA1/ LREC,NREC,MAXENT ,KENNA,NSREC ,NAVREC,KENT

DAl provides information about the specification and the status of

DADS2. The parameters are initialized in INIT!,INIT2.

LREC is the record length in the temporary direct access
dataset (DADS2) with the dataset reference number 2.
LREC=BLOCKSIZE/4=2000/4=500 at present

NREC maximum number of records available in the direct
access dataset. NREC is retrieved by the subroutine
DINF (reference 3) from the space parameter in the
DD-statement for FTO2F00!. NREC is initialized in
INIT! with 100.

MAXENT maximum number of entries that may be retained in
the entry table (directory) for DADS2 (= 79 at present)

KENNA(3) is anarray that contains the identifier '"TEMPSTORAGE"
NSREC number of records not used (NSREC=0 at present)
NAVREC number of the next available record

NENT the current number of entries in the entry table =

the actual length of the entry table

DAY is used in UPDAT ,MAIN,EDIT,LTLOC,LTREC,INPUT, FINDAT.

- 102 -

The labeled common block /DA2/

COMMON /DA2/ MAT,TYP,EXC,EMIN,EMAX,NNAM,IR,NP,KENN

[DA2/ contains the entry table of the data types stored in DADS2.

MAT

TYP

EXC

EMIN

EMAX

NNAM

IR

NP

KENN

REAL#8 is the array to retain the isotope names
REAL*8 is the array to retain the type names
REAL#4 is the array to retain the third names

(see reference 5, KEDAK conventions)

Energy boundaries of the energy range
REAL#4 for the data type specified by 'MAT,TYP,EXC"
stored in the DADS2 dataset

INTEGER#2 number of names for the specified data
type
INTEGER#%2 number of the record, where data are stored

on the DADS2 dataset (associated variable)
INTEGER%#2 number of data points stored for this type

INTEGER#2 a flag that indicates, whether the data
stored in DADS2 are to be edited for output
in KEMA-input—format.

KENN=dataset reference number of the output
dataset, which may be used to update the
KEDAK-library.

KENN=0 indicates that the data are used only
for calculation in the current job.

The default value for KENN is 10, it may be
changed via input for the keyword OUTUNIT.

[DA2[is used in UPDAT,LTLOC,INPUT.

The labeled common block /DAY

COMMON /DA3/ LR, X(500)

LR

X

record number (associated variable) of the record read from
the temporary direct access dataset by the subroutine
LTREC into X

the array to retain the data of one record from DADS2

pAY is used in EDIT,LTLOC,LTREC.

= 103 -

The labeled common block /DA4/

COMMON /DA4/ NZ,NI,NX

NZ current number of the processed (located)
data point NZ < NX

NI current number of the data point in the
record (NI < LREC)

NX the number of data points stored for the required
data type

fpA4 is used in LTLOC.

The labeled common block /DAY

COMMON /DA5/ NRS,NLRF

NRS a flag that indicates whether updating the temporary
direct access dataset with the subroutine UPDAT was
successful: NRS=0

or not: NRS=l

NLRF a flag that indicates whether the last written record
is complete: NLRF=0

or not: NLRF=1]

Error message: data truncated

JDAS/ is used in UPDAT.

- 104 -

2.6.2 The subroutine CRECT(LX)-Command: DELETE

The subroutine CRECT is called by the main program for deletion of the
result of the last arithmetic operation if the DELETE command was entered
in the control input. LX is the length of the work area for CALCPAC in

the main storage.

INQNUM is called to ascertain the number NUM of processed data. If NUM
is greater than LX, i.e. data are stored on the auxiliary data set,
INQDSN is called to inquire the dataset reference numbers, STODSN to
reset the dataset reference numbers, and STONUM to reset the number of

processed data.

If LX is greater than NUM, i.e. all processed data are kept in main storage,

then the erroneous result of the last operation is not deleted.

- 105 -

2.6.3 The subroutines PRIDAT,LIMPR,PRTDAT - to print an output
list for checking purposes

Subroutine PRIDAT

PRIDAT manages the printout of data currently stored as result or data

to be named or saved on DADS2 for checking purposes.

PRIDAT is called by the main program to print the data processed in
CALCPAC if the key PRINT=6 is specified in the control input list.

The call:

CALL PRIDAT(X,Y,X1,Y1,LX)

X array retaining energy values

Y array retaining cross section values to be printed
X,Y data are stored on the auxiliary dataset i.e. NUM>LX

X1 energy values for LX < NUM data

Y1 cross section values are kept in main storage
to be printed

LX length of the arrays X,Y,Xi,Yl

The following subroutines are called by PRIDAT:

INQNUM to inquire the number of data processed for the data type
to be printed

INQDSHN to provide the dataset reference number of the auxiliary
dataset, where data are stored, if the number of data NX

is greater than the length LX of the working area in CALCPAC

LIMPR to establish the energy limits for the data to be printed
according to the requested energy range FROM,TO

PRTDAT to print a block of LDAT data

- 106 -

Subroutine PRTDAT

The subroutine PRTDAT is called by PRIDAT to print the total number of

data points and the data processed for a data type.

The call:

CALL PRTDAT (X,Y,LDAT,LL,NP,FIRST,LAST,TX,LTX,NX)

X array of the energies to be printed
Y array of the cross section values to be printed
LDAT number of data to be printed from the X, Y arrays
LL number of the printed line
NP the number of the first point printed in the line LL
FIRST = ,TRUE. or .FALSE., indicates whether the line is the
first line or not
LAST = ,TRUE. or .FALSE,, indicating whether the
line is the last one or not
TX array containing the text for the heading line
NX the total number of data points for the printed
data type

Subroutine LIMPR

The subroutine LIMPR is called by PRIDAT to ascertain the first value of
the data to be printed.

The call:

CALL LIMPR(X,LDAT,IANF,LAST)

X array to retain the energy values of the data to be printed
LDAT the number of data in X

IANF index of the first value of the data to be printed from X
LAST = ,TRUE. or .FALSE. indicates whether the data in X are the

last for the processed data type or not

2.7 OUTPUT edition package - call scheme

MAIN
EXIT
| | | |
LDFOPN | | LDFERR RLSE2 SPACEX ORDM DROREC RETXS REPXS LOCXS NXTXS ADDREC ORDT
I | | EQUENX
FREESP XTAREA LDFLOC REPXS RETXS

- Lot -

- 108 ~

2.7 Output editing package (KEMA-input format dataset) - OUTPUT-function

The output of CALCUL is written in a dataset of ADD- and DROP-records for

the KEDAK-}Management program. The organization of this output dataset is

performed in the module QUTPUT with the aid of the following subroutines:

].

~N O NN

EXIT
ORDM
ORDT

- the control routine for OUTPUT
- to sort the isotope names in KEDAK-order

- to sort data for reaction types, energies, and energy ranges

SPACEX,SPACE2 - to allocate dynamically work area for OUTPUT

ADDREC
EQUENX
DROREC

- to write the ADD-records
- to remove data for multidefined points

- to write DROP-records

The retrieval routines RETXS,REPXS,LOCXS,NXTXS are used to retrieve the
data from the KEDAK-library and from DADS2.

= 109 -

2.7.1 The subroutine EXIT-control routine for OUTPUT

The subroutine EXIT performs the editing function for the output of CALCUL
in KEMA-input~format. The output is written in ADD and DROP-records which

could be processed by the KEDAK-Management program (reference 5).

The call: CALL EXIT

A call to LDFOPN (see reference 1) provides the KEDAK~-file on which data

are to be changed, added or deleted.

RLSE2 and SPACEX are called to provide the working areas for EXIT.

The subroutine ORDM sorts the material names in the directory (common
/DA2/) of the auxiliary direct access dataset in KEDAK-order. The sub-
routine ORDT sorts these data for type, energy and energy range in KEDAK-

order.

The subroutine DROREC is called to write the DROP-records (reference 5).
The ADD-records (reference S5) are written by the subroutine ADDREC.

RETXS and REPXS (reference 6) are called to retrieve data from the KEDAK-
file, LOCXS and NXTXS to retrieve data from the auxiliary direct access

dataset.

- 110 -~

2.7.2 SPACE2,SPACEX - handling of dynamic storage allocation

Subroutine SPACE2, entry RLSE2

The subroutine SPACE2 provides the space of the work areas for CALCPAC

in main storage.

The call:

CALL SPACE2(F,L!,LX,LE,NP)

F - address of the area
L1 - length of the area F
LX —~ the length of the areas retaining the current and

previous result

LE ~ the length of the area to retain the data from the
KEDAK library ¢
NP ~ the maximum number of data points for the reaction

types of the processed isotope

FREESP (reference 8) is called to provide the number of bytes available

for CALCUL in main storage.

XTAREA (reference 2) is called to establish the address of the work area.
The ENTRY RLSE2 is called (in the main program before a repeated call to

SPACE2, and in EXIT before the call to SPACEX) to release storage with the

aid of the REXTAR routine (reference 2).

Subroutine SPACEX

SPACEX is called to provide the work areas for the subroutine EXIT,

The call:

CALL SPACEX(X,LA,LX)

X -~ address of the work area provided for EXIT
LA — displacement

X - length of X

- {1 -

The available space is provided by a call to FREESP. The address of

the work area is ascertained in the XTAREA subroutine (reference 2).

- 112 -

2.7.3 ADDREC,DROREC - subroutines to write the output records

Subroutine DROREC

The subroutine DROREC writes the DROP~records (reference 5) to inform
the KEDAK-Management program which data on the processed KEDAK-file

are to be deleted.

The call:

CALL DROREC (MAT,TYP,EXC,NAMZ,EMIN,EMAX,X,Y,Z)

MAT is a real#8 variable to retain the name of the isotope
for which data are to be deleted

TYP? is a real#8 variable to retain the reaction type name
EXC excitation energy for the inelastic excitation cross section
EMIN lower and upper energy limits of the energy range
EMAX where data are to be deleted
X array to retain the energy values of data points to
be deleted
Y array to retain the cross section values
LX the number of data points to be deleted

If EMIN is greater than EMAX,all data are deleted for the processed reaction
type, i.e. a DROPA-record (reference 5) is written on a dataset with the

reference number KTAPE,

To delete the data for a given energy range [EMIN,EMA§7 the data are read
with the aid of the subroutines RETXS,REPXS from the KEDAK-library and
DROPS records are written for each energy available in the processed energy
range on KEDAK and in the ADD-records. If the key PRINT=6 was specified

in the control input list of the SAVE command,a list is printed, in order

to check the output.

- 113 -

Subroutine ADDREC

The subroutine ADDREC is called by the EXIT routine. ADDREC writes the
data processed in CALCUL as ADD-records for the KEDAK-Management program

on a dataset with the reference number NOUT=10.

The call:

CALL ADDREC (MAT,TYP,EX,NAMZ ,MX,X,Y)

MAT - a real#8 variable retaining the isotope name

TYP — a real*8 variable retaining the reaction type name
EX - the third name (i.e. excitation energy)

MX - number of data points processed

X - array retaining the energy values

Y - array retaining the cross section values

A list output is printed for checking the results, if the key PRINT=6

was specified in the control input list of the SAVE command.

The subroutine EQUENX is called to handle double defined energy points.

- 114 -

2.7.4 ORDM,ORDT ~ to sort data in KEDAK order, EQUENX - to remove
multidefined points

Subroutine ORDM

The subroutine ORDM sorts the array Ml according to the order of M2,

The call:

CALL ORDM(N,MI,K,M2)

The arguments:

N - the number of isotope names to be sorted
(= the number of isotopes to be edited for output)

MI - a real*8 array retaining the isotope names to be sorted
K ~ the number of isotopes available on the KEDAK-file
M2 - a real#8 array retaining the names of the isotopes

avallable on the KEDAK-file

Subroutine ORDT

The subroutine ORDT sorts the arrays TYP,ES,EMIN with the priority:
all types for ES,EMIN

The call:

CALL ORDT(NT,TYP,ES,EMIN,EMAX,NN)

NT - the number of reaction types

TYP -~ a real#*8 array to retain the reaction type names

ES - an array to retain the third names (e.g. excitation energy)
EMIN = energy limits of the processed

EMAX energy range

NN ~ array to retain the number of names for each

reaction type

- 115 -

The subroutine EQUENX

The call:

CALL EQUENX(N,E,S,NAMZ,NAMES)

The arguments:

N - the number of data points

E - array retaining the energy values

S -~ array retaining the cross section values
NAMZ -~ number of names

NAMES - the names of the reaction type

EQUENX is called by the subroutine EXIT to test the array E for equal
energies and to remove them from the arrays E,S resetting N. If
the cross sections at such multidefined points do not agree, a warning

megsage is printed in addition.

E,S is supposed to be ordered according increasing E. Two energies are

considered to be equal, if they differ less than 0.0001 Z.

In the absence of the authors the publication of this report was prepared

by B. Goel and R. Moser.

- 116 -

References

I. Langner, R. Meyer
IDFPAC/LDFPAC - two retrieval packages for the Karlsruhe)
Evaluated Nuclear Data Library, KFK 2387/III, Section 2, April 77

W. Hobel
XTAREA, REXTAR - dynamische Dimensionierung von FORTRAN-
Feldern, KFK, to be published

. G. Arnecke, H. Bachmann

DEF1, DINF dynamisches DEFINE FILE, KFK, to be published

G. Arnecke
DDTEST - Benutzte Dateien, KFK, to be published

B. Krieg
The KEDAK Program Compendium Part II
KEDAK Basic Management, KFK 2387/1I, 77

R. Meyer
RETPAC - A user oriented retrieval package for use with
the Evaluated Nuclear Data Library KEDAK, KFK 2387/TII, Section 4

H. Blesene

CONVY - FORTRAN-Unterprogramm fiir die IBM/360 zur Umwandlung
von in maschineninterner bzw. in alphanumerischer Darstellung
vorliegenden Test— und Gleitkommazahlen in alphanumerische bzw.
maschineninterne Darstellung, unpublished

G.H., Hinze
FREESP - Subroutine zur Bestimmung des noch freien Kernspeichers
fiir FORTRAN-Benutzer an der IBM/360-65, unpublished

