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Abstract

On Parameter Optimization for a Linear Accelerator

- A High Current Deuteron Linear Accelerator -

This report presents an analytical method to determine the main
parameters of a high current linear accelerator. First, the basic
theory on particle dynamics in linear accelerators is reviewed.
Particular emphasis has been given to include the space charge
effect. Second, the theory is applied to estimate the acceptances
of a high current deuteron linear accelerator. The main assumption
underlying this approach is that the accelerator structure consists

of a sequence of periodic subdivisions.

Zusammenfassung

Parameteroptimierung eines Linearbeschleunigers

- Ein Linearbeschleuniger mit groBer Stromstdrke fiir Deuteronen -

Dieser Bericht referiert eine analytische Methode zur Bestimmung
der wesentlichen Parameter eines Hochstromlinearbeschleunigers.
Zunidchst wird ein {iberblick {iber die grundlegenden Aspekte der
Theorie der Teilchendynamik in Linearbeschleunigern gegeben, wo-
bei insbesondere die Raumladungseffekte beriicksichtigt werden.
Dann wird die Theorie angewendet, um die Akzeptanzen eines Deu-
teronenlinearbeschleunigers mit grofem Strahlstrom abzuschitzen.
Eine wesentliche Annahme, die dieser Methode zugrunde liegt, ist,
daB die Beschleunigungsstruktur aus einer Folge von periodischen

Elementen besteht.
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1. Introduction

This report presentsan analytical method to determine the main para-
meters of a linear accelerator. Many books and reports have been
written on accelerator theory. This article contains no basic new
ideas, but rather unifies methods of various authors into a self
consistent approach. A basic assumption underlying this approach

is that the accelerator structure consists of a sequence of strictly
periodic subdivisions. The validity of this has been discussed in
2),3),4). Special emphasis has been given to include an estimate of
space charge effects. The method is applied to the design of a high
current deuteron linac, as part of a study for an intensive neutron

source (INKA) 32)-

2. Basic Formulas

First we recollect some basic formulas from relativistic particle
dynamics and from electrodynamics. The definitions of the symbols
used in this report are given in Appendix 3. MKS units are used.
The coordinate system x, y, z, t is the laboratory system.The z-

axis is identical with the axis of the linear accelerator.



2.1 Relativistic particle dynamics 1)
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3. Accelerating field in the beam hole region 2),3),4)

3.1 Wave equation

In order to arrive at some handy equations, one has to start right
away with approximations. These are chosen to be valid for accele-
ration by a sequence of rf gaps having cylindrical symmetry around
the beam axis. Examples for this are the Alvarez-, Wideroe- or iris
type accelerators. The symmetry of the helical structure is more com-
plicated, and so are the fields, although the accelerating E, - wave

turns out to be identical for both cases 5)’6)’7).

Polar coordinates (z, r, ) are used from now on.

Assumptions: 2)
%5 = 0 ‘ (rotational symmetry) (9)
P = 0, M = 0 (vacuum)
p = 0, J = o - (the beam current is treated later
in first order perturbation theory)
B, = C (TM field only, TE field neglected)
Using Maxwells equations one obtains 2)
2 2 2
Q"E; 1 O0FE, O“E2 o" Ez
+t - — + = (wave equation) (10)
dz* T Ot or* c? Ot? 4
1 9(rEs) __QJEs . _o. QEx _D09Ey__4 2E;
T Ar Az A x oy 2 0=
2 2By OE,
-C = ; B,=0 (12)
oz ot / T



To obtain Er and By from EZ the relation foo(x)dx = xIl(x) turns

out to be useful (I , I, are modified Bessel functions).

3)

3.2 Space harmonics

We are looking for stationary solutions only, and therefore assume
a harmonic dependence on time. We choose a standing wave field as

we are mginly concerned with standing wave accelerators:
EZ(z,r,t) = Ez(z,r) cos wt 3 w = 27f 3 ¢ = Af (13)

The accelerator structure is assumed to consist of geometrically
strictly periodic accelerating cells of length L (see Fig. 1).

We choose the origin of our coordinate system to be in the center
of such a cell. We expand the z-dependence of Ez(z,r) into a
Fourier series. The various terms of this series are called space

harmonics, if they are written in the travelling wave form.
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Fig. 1: Geometry close to the beam axis
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< Tz -
E,(z7) =m% |:am('r) cos '"L + by, (1) sin L"—E_'-Z— (14)
L
a, () =21—L/ E, (z,7) dz
-L
L
am('r)=4T/ E, (z,7) cos m'{_rz dz ; m+ O
-L
L
b (7) =4T/ E, (z,7) sin MTZ de
-L

For this expansion we take a geometrical period of a length of 2 L,
which includes two accelerating cells, and therefore two gaps. In

this manner structures operating in the m-mode can be treated easily
as well. In the m-mode two cells form one electrical period. We assume

the field to be symmetric about the center of a cell:

EZ(Z,P) = EZ(-z,r) (15)
Therefore: bm = 0, énd
o0
E,(z,7t) = > ap(m cos MTZ cos wt (16)
m=0

This expansion must satisfy the wave equation for E_ . From this one

gets conditions for the coefficients am(r):

< azam (’T) 1 aam (’T) 2 mmz
mzo I:T e K am(v*)jlcos__l__:o (17)

Applying the orthogonality relations of the trigonometric
functions (23) we find that each am(r) must satisfy Bessel's

modified differential equation:



Am(M = ApnIy(kpt) (18)

E, (z71)

Z Amn I, (k,7) cos "”LTZ cos wt (19)

m=0
2
mA\| _
(Z) 1 (20)

2
= (5)

From this the other field components can be derived to be:

oo r .
E,(z7t) = Z Am m I, (ky7) sin ""l’_"z cos wt (21)
m=

I

B.(zrt) = =5 AmY T (1 4)cos MTZ gin wt (22)
yoroo 2 1 m L

A main reason for writing the fields as a Fourier series is that
particles having the same velocity as one of the space harmonics
see on the average only the field of this single space harmonic.
The mathematical reason for this is the property of the orthogo-

nality relations of the trigonometric functions:

L L if m=n #0

. mWZ ... NNz
sin sin dz = 23
/ 3 3 (23)

-L O if m=n =0 o0or if m # n

L
cos MNZ .qg NNZ 4, - 2L, if m=n = 0
L L
-L 0 if m# n
L

i
o
=]

and n are integers.

. M2 nmz .4
gin 2 cog 12 d2

-L




The coefficients Am of the field expansion can be found in terms of

the field on the accelerator axis from (14) and (18):

L
o / E, (z,7) dz (ZLIO (ko7))

A =
31 (24)
L
Ap = / E, (z,7) cos mfz dz (Io(ka) L) m<+0
—‘_ /

AS Am does not depend on r we get:

L
Ao = / E,(z,7-0) dz/(ZL)
-L
L (25)
Ap = / E, (z,7-0) cos m1£z dz/L , . m#¥E0
-L

3.3 Estimate of amplitude of space harmonics 3)54)

For many types of accelerating structures the following approxima-

tion is reasonable:

‘E'OL

_ - - - &
E, (z,r=d) = = = const., for % 2z 23
+ L - & £
oL > 2z < +L o+ = (26)
E (z,r=d) = (-1)P =2 for
Z g
p =0, 1, 2, 3, «.... .
Ez(z,r=d) = 0O elsewhere.

pm gives the phase shift of the field from one cell to the next. One
says that the structure is operated in the pm-mode. Inserting the

boundary conditions (26) into (24), (25) one obtains:



: . mng
A =.__E£_;_.. A= 2Eo sin 2L , if p+m is even (27)
° " I, (k,d) ' mT oI, (kpd) M7
2L
Ay, = 0 if p+m is odd
L/2
Also: E, = I, (kod>[ E, (Z"r,O)dz./L if p is even
-L/2
d
Generally Io (kod) = ]o <2; ) ~ 1 (28)
L/2 L/2
= / Ez(z,'r=d)dz./L %/Ez(z'vno)dz_/L, if p is odd,
-L)2 -L/2

and if the penetration of fields through the drift tube can be neg-
lected: E(z = L/2, v) = O. E, can be determined b%)ng?eiégal methods,
e. g. by the LALA-, CLASL- or SUPERFISH-programs 2w . The gap
distance g (see Fig. 1) has to be determined at that radius r = d at
which E, does not depend on z (9 A gy + 0.85 ry; ry is the inner
corner radius of the drift tube bore and g; the geometrical gap

distance)11) 12).

3.4 Synchronous condition

The standing wave field (19) written as a sum of travelling waves
(space harmonics) looks like:

E,(z,7t) = z % I, (kpr) [COS (m_nz_wt) + cos (m—'l’_fz+w£] (29)

L
m=0

We consider only the case in which the relative change of particle
velocity due to acceleration is small, so that the assumption of a

constant particle velocity is justified for each accelerator period:

7/ / (Z)/iL | (30)




Synchronism between a particle of a velocity Ve and the space har-
monic number p is fullfilled if v, equals the phase velocity Vi, of
that space harmonic:

L
VE Ve =V, = 2= | (31)

o

This synchronous condition can be written as

| - pBsA

= (32)

Let ¢ be the phase of the particle relative to the field, then:

—_— = — 33
wt +y = v + @ T + ¢ (33)
Other important relations are:
2T '
Ky = ——F— (34)
P ¥sPs A

and if the approximations of section 3.3 are allowed:
APR’ZEOT (35)

In this equation we have introduced the transit time factor T:

T = Sin ('Fg /‘ﬂSA)
(Wg/ﬁsx)lo(kpd)

(36)

This relation does not depend explitely on p, although to obtain it,

synchronism between particle and the p-th space harmonic was essen-
tial.



3.5 Acceleration and defocussing by a standing wave

We now calculate the longitudinal energy gain of a particle synchro-

nous to space harmonic number p over one accelerator period:

n
£
>
3
-
[}
—~
x
3
-~
<
(2]
o
0
3
=
N
N
o
v
——
©
=
N
+
SN—r
Q.
N

m=0

L
quZ (z,'r,'tu.p) dz
-L

qApLI, (kpr) cos g
~ q 2Eo LTI, (kpt) cosyg (37)

Now we turn to the energy gained in transverse direction, again over
one accelerator period. Using for the fields the expressions (21),

(22) we get:

L
q/[E.,(z,r:const,'th) -V B,B,(z,r=const,’c+cp)] dz
~L
= -q LAP L_(kp_'r)sintp
¥
~ -q ZEOLT%W_ sin g (38)

The result of our calculation is that on the average the energy
gain of the particle both longitudinally and transversely results
from the influence of the p-th space harmonic only. To obtain this
result it was essential to assume that the radial position of the
particle does not change over one period. Due to strong focussing,
rf defocussing and space charge forces this is strictly not true.
However, handy equations are obtained by this averaging procedure,

which therefore will be used in the following treatment.

3.6  Smooth approximation for the rf field

We are now looking for a single travelling wave which gives over one
accelerator period the same energy gain in longitudinal and trans-
verse direction as the standing wave field of section 3.2. Using the

approximations of section 3.3 it can be written as:




E, (z,7.t)

Puc

Er (zxt) = =Y, E;TI,(kp7) sin (wt ~ bz ) (39)

Eo,TI, (kp7) cos (wt - Lz )

wC

Bﬁ(z,*,f) = _@EOTL(ku) sin (wt— {(3”ch>
| ]/2
E (ZT=O)dz
_ 2 2 ) ) 20
_sin ('rrg/ﬁwl) . B
T (79 /BuN) I,y (kpd) ! L= —— (41)

The phase velocityBw of this travelling wave will be chosen to be

equal to the particle design velocity B, . The phase

wz

Buc

for a particle of velocity B remains approximately constant over

(42)

? = wt -

one period, and the energy gain both longitudinally and transver-
sely will on the average be the same as in the standing wave case.
Therefore we can use this simpler travelling wave field to put into

the equations of motion. This method is called smooth approximation.

4. Space charge forces 4),13)

A modern linear accelerator accelerates bunches whicﬁ contain on the
order of 1O1O charged particles, which repel each other. To solve the
coupled equations of their motion is not possible, even with modern
high speed computers. Therefore some assumption about the distribu-
tion of the particles inside a bunch has to be made, to simplify the
problem. Various approaches to this have been reported in the litera-

fupe M),13)—20)'



In individual particle computer programs a bunch is represented by
up to a few thousand representative particles, which are traced along

the accelerator taking into account the Coulomb forces among them.

Much less time consuming are programs in which a bunch is represen-
ted by a three dimensional ellipsoid of uniform charge density all
along the accelerator. This assumption leads to simple expressions
for the space charge forces, however, it is not self - consistent 13)’19).
Generally, the image forces of the structure walls, the forces bet-

ween bunches, the scattering of particles within the bunch, and the
influence of residiual gas electrons and ions are neglected in these
calculations.

The electric field inside such an ellipsoid can be written as 4),21)

2 S
ES’X =£io (4—'{552)MXX)' E?Y =€£°(4_783 )MYYI E?zzé_oMZZ (43)

The distances X,Y,Z from the origin of the ellipsoid and the space
charge density p are measured in the laboratory system x,y,z. The

ellipsoid is moving at the speed B along the z-axis, its axes be-

ing parallel to the ones of the coordinate system.

LY
M. = Oxayazv/. dT .
‘ 2 (ay2+T) V(ar+T)(a2+T)(aF+T) '
0

u=x,\/,Z (4y)

a_ and a, are the transverse semiaxes of the ellipsoid; az=b/(/1-B;)

is the longitudinal one in the ellipsoid's own system, b the one in

the laboratory system.

Generally M. + M, + M = 1 (45)

If a =, ay then: M = M z — (us)



2 2
Mz=/l_-C (izfnu"e); (=V4—Z"z ; if a < a
3

¢? 1-¢ X z
2 2
1+ € , _a Ex° 4 .
M, = (31 (64—arc'tan€,)/ (_,—'V o,z 1 if a, > a, 7))
1
M. = 4. - M. = M if a, = a
z~ T3~ X Y ) X 2

If the bunches follow one another at a frequency f, the beam current

I is given by

o b a.a b
I = . Y f (48)

In an accelerator with strong focussing by quadrupoles the trans-
verse beam cross section is not circular, so the form factors Mu
should be calculated by (4u) 18). To obtain simpler analytic expres-

sions it is a common practice 13),147,15) to approximate the trans-

verse elliptic cross section by a circular one of radius

a = Vagay . (49)

The validity of this approximation is checked in appendix 1. Some

authors improve it by a correction factor

[ia_*v_} (50)
Ay tady

!

so that for the case a_ » « the formulas for an infinite elliptic

cylinder are obtained %9)’20):

1-M (2 _9 (4_p2)A=M[ 2as
Eg:ﬁ% (1-45") 12 {a:+yay}xi ESY“E (1-8°) 2 [a : IY(S“

xtay

Eg:z_:iMZ' M = Mz(ax=ay=aiaz>
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As the space charge forces are of importance only at small particle

velocities, most often the relativistic correction factors are neg-
lected,.

5. Focussing forces

Focussing in the transverse direction is generally achieved by strong
focussing quadrupole systems. If focussing is in the X-, and defocus-

sing in the y-direction the forces F inside a quadrupole of gradient

pr. 8Bx _ 8By ___ 22)
T3y 99X

F = =qVvBx ;

QP,x = qVBy. (52)

F
QP,y

The contributions of the Lorentz-force due to transverse velocities

have been neglected.

Alternating phase focussing has been suggested as an alternative

focussing method for slow particles in high gradient accelerator

systems 23),24).

6. Equations of motion 2)53),4)

This chapter recollects the differential equations for both the
longitudinal and transverse motion in a linear accelerator. From

(1) and (8) one gets for the longitudinal notion:

d_\;/ = qE, (53)

The contribution of the transverse motion to the change in energy
is neglected.

From (1), (3), (7) follows for the radial motion:

Be -g—z(my'ﬁcg—;)= q(E +VZX§)r (54)




z rather than t has been chosen to be the independent variable. Now
we consider the influence of the rf field in smooth approximation
(3.6). The space charge forces are taken into account by assuming
a bunch to be a homogeneously charged ellipsoid (4). Focussing is

achieved by quadrupoles (5).

The amplitude of the accelerating wave and the accelerator period
is chosen such that there exists a synchronous particle on the acce-
lerator axis Which has the speed Bs and a constant phase Yo relativ

to the wave.

The motions of all the other particles are calculated relativ to the

synchronous particle. From (42), (1), (2), (3):

d (@-w9) _ w<dt_d_ts) = &(ﬁfﬂ) o = 2T (W-Ws) g,

dz dz C. 7\1/553 Xss me2

dz dz B Ps

from (53), (39), (42), (u43)

E_L%ﬂs_) = q {EOT I,(kpT) [Cosny—cos%] +%o MZZ} (56)

In (56) it has been assumed that the position of the synchronous
particle is identical with the center of the charged ellipsoid.

Therefore from (42) for any fixed time t one has:

2T _ (57)

Combining (55), (56), (57) yields the second-order differential

equation governing the longitudinal motion:

'dd_z( sz s: d (th;Ps)): n?c’- {_ 7\‘"‘ EOTI,,(I(PT) [coscp—coscps_]-g..a M, By (¢ QPS)} (58)

From (54), (39), (43), (52) we get for the transverse motion:



i(ﬁyﬂ):mcz{ E,TL, (koX) sing y.,(;ﬁﬂw) 3 9 (1-4° )M X- cBX} (59)

P
a%(ﬁxﬂ) -';,q—-{ E,TI,(kpY)sing Yw('fﬂﬁﬂw) %’_ ’Pﬁ )MyY+cBY} (60)

If the change of parameters Bg, Tgo EOT, P along the accelerator

is sufficiently small, they can be considered to be piecewise con-

stant. Then the equations of motion are solved piecewise. A distingui-
shed discription of this idea is that the acceleration is assumed

to be adiabatic.

The equations of motion will be simplified by further approximations

in the following chapters. Generally Byw = B will be taken.

7. Longitudinal motion 2),3),4),13)

7.1 Motion close to the beam axis

In the following we consider only the particle motion close to the

beam axis for which

I, (kpm) = 1 (61)
holds. We introduce:
Ag =9-¢; ; AW = W-Ws (62)
2 q 2w E,T :
ke = - =5 e sin @ (63)
93 Mz

(64)

Fe mec? €, 357y * ke?

Using (48), the relation 3/(4mepgc) = 90 Q



o= H29l (65)
mec? B Ys
one has /"c = PMZ (66)

a,a,bk,?

Then (58) can be written in the form

1 -cosy)
By 4z (155 Ys ——‘P—> -~ k2 (Accz;zin% -,uc} Ay (67)

Mo is the ratic of the defocussing space charge force to the re-
storing force of the rf field. In the following My is assumed to
be independent of z, which means that the dimensions of the bunch
do not change along the accelerator. Under these assumptions the
longitudinal motion is independent of the radial one. Expansion

of the trigonometric functions as a function of A¢ yields:

2 3 4
: A A A
cosp, ~cosy ~ sing@ Ay +cosq, z‘f smcps——(y——cosq)s o (68)
Then cosgs —cosy 44 L9 L 94+ 29 (69)
Ay sin @ 2 tany, 249 )

if Pq is not too large. Using this approximation the differential

equation for the longitudinal motion turns out to be:

> (70)

ﬂs:xf o (0 dfzu}) = ke

We define:

‘Psg=‘?5(’l—,u£); k 2=l<‘,'(/l—,u€) (71)



_20_

Then (70) is written as

1 4 3,° dag) _ _, 2 A
1353&3 dz ('/35 Xs dz) k(,_g (1+-—"L2LPSQ>AL§J (72)

This has the same form as (70) in the zero space charge limit u,=0.

7.2 Acceptance

The particles are performing stable damped oscillations in the
Ay - AW - phase space if A¢ and AW are not too large. The area in

this phase space for which the particle motion is stable is called
the longitudinal acceptance of the accelerator Ag. The maximum ex-
cursions of Ay and AW can be calculated exactly in the zero space

charge limit 2) using equation (67):

ZL}?S-‘-‘Pﬁ-‘?s; L?sso (73)

3

BWnax = Y2 A ETmc? s’y (g cosg, - sing,) ()

The oscillations in the longitudinal phase space are stable only
if p, < 0. This means that the synchronous particle reaches the
center of the accelerating gap at a moment, when the accelerating
field is still rising. Thereby particles ahead of the synchronous

one get less acceleration, particles trailing get more acceleration.

Analysing (72) shows that approximately the acceptance in the non-
3)

Zzero space charge case 1 can be obtained from (73), (74) by sub-

stituting 9. by ¢ (1—u2) As

cys cos . ~ 5”"}’5 ~ —2S (75)

one then has:



29, (1-p,) £ ¢ £ —q)s(4—,uc)). ¢ <0 (76)

3’

| 3
Athx = ——23% quT mCz ﬂ53Y53 LPS (4"'/“() (77)

Equation (76) shows that generally the position of the synchronous
particle is not identical with the center of the bunch, although

this had been assumed in (56).

The acceptance area Ag in the Ay - AW - phase space can be appro-

ximated by that of an ellipse:

Ae ~ T 3 I‘Pslz(4"/~1-e) Awmo.x (78)

The maximum current I, which can be accelerated in the longi-
tudinal phase space can be estimated in the following manner u)’13).
Starting from (65), (66), then expressing the length of the bunch b

by a width in phase by means of (57),

4 meax

A‘P ax
= A —Zmax 79
b ﬂs P (79)

and taking from (76) that

T 3 I(,O | (’1"/—19_)
A"Pmax < ’2 (80)

one has:

¢ axdy Eolgs sings o (g (81)
Ie = 602 M, A (4= Fe) pre
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T is a safety factor, which according to Vlasov H) should be about

3/4. By assuming this value one excludes phase motions in the extreme
nonlinear region. However, Gluckstern in13) reports that the currents
actually observed in linacs, and those calculated numerically by more

realistic models are considerably higher than those predicted using
T = 1.

If one approximates M, by 13)

M, ~ Y929 [ 1i4 for 0.8 < —2— < 5 (82)
3b Ay ay

one obtains

2
1- < 3155 Vd,‘ay EoT (.psz lSI'nLPs| ‘tz (4—:“6) He
12

< ) (83)
po :
Optimizing I@ as a function of My yields
2 .
I <. Tzﬁs Vax Ay EOT (PJ ,Sln‘-Vs, . P = i (84)
¢ B 180 T Q rre s

7.3 Liouville's theorem

The equations (55), (56), (57), (62) can be written in the form of

canonical equations with a Hamiltonion

g 2 ) oM, PwA 2
H=- ATy T (4W) -qEOTIo(kp'r)(smq;-tycostps)+?:27r?“’— (Ag)” (85)
d (AW) _  2H d (A9) _  9H

= - = 86
dz 5(aq) ) dz 3(aW) (887
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Therefore Liouville's theorem applies to the motion in the Ap-AW-
plane also, if the space charge forces are approximated in the manner

of chapter 4. This theorem states among other that the phase Volume
Ap AW (for the radial direction Ar Ar') is a constant of motion, if coupling bet-

ween longitudinal and transverse motions is neglected.

7.4 Phase oscillations of small amplitude

For small deviations from the synchronous phase equation (72) can

be further simplified (see (1), (2), (53), (39), (42)):

A9 2
4 d 2 3 dAg\ _ d*Ag | qE.Teosgs 3 dA9 . _y 2 pAg  (87)
piy dZ(‘ﬁsYs dz>_ dz2 | mc? Phsys dz £s

H S

The acceleration can be considered as adiabatic if

qEoTcosys 3 dAag
mc? PPsys dz < 1 (88)
2
kl.g Ay

We take B/ = B and call A(Ag) the change of Ag over a length of

BSA. Then the condition (88) can be written as:

3y,” A(Ag)
21 tan @ (4-p,) Ay

& 1 (89)

For large particle energy (YS >> 1) there are no longer phase ?5011—
lations, as the particle velocity does not depend any more on its
energy. We therefore consider only the case Yg =~ 1. Generally

O

g, ~ -30%, W, < 0.5, then

A (Ag)
Ay

& 1 (80)

is the condition for adiabaticity.
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Under these assumptions the equations of motion in the A¢ - Ay phase

space are (see (87), (56), (57), (61), (55), (64), (71), (62))

d?a 2
—dz-;.— + keg Alf = O (91)
2
E_JA_:J— + kegz AW = 0 (92)
Z
dAwW 3
= = Bs'ys mczﬁ kegz Ay (93)

3 2
AW = '-#i ¥s ’nci41= ngﬂﬁ
27T oz

The oscillations are stable if kgp > 0, which is the case only if
P < 0 and uz < 1.

If we take as solution of (91):

A = ¢ cosk(gz (9u)

then the solution of (93) is:

: 3 N .
AW = 1[-q E,T sin @, B Y: mczZ_)T.l' (,,_qu) ¢ sin k(;gz (95)

As the parameters like Bs’ P and EOT will change along the acce-

lerator the amplitude of the oscillations will change too. One

can relate the amplitudes Ay, and AW, at a point 1 in the linac

with those at a point 2 by making use of Liouville's theorem
(see 7.3):
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Ag, AW, = Ay, AW, (96)

and assuming an adiabatic change of parameters:

!

. 3 .
AW.‘ = V‘qE°1T1 sm“?s; ﬂsi Ysig mcz%(4_#l;) A‘P,’ ) i=12 (97)

+|>

. 33
Then Ay, _ AW, Eo,T, sinys, ﬂs., Ys4 (’I —,u.zq)

Dg, AW, | E,,T, singg, B, ¥, (1= He,)

(98)

With increasing particle velocity the oscillations of the phase are
damped, whereas the absolute spread in energy increases. The behavior
of phase oscillations of large amplitudes is generally studied only

numerically.

8. Transverse motion close to the beam axis

We shall write down only the formulas for motion in the x-direction.
The one in the y-direction can be obtained by substituting x with y,
and y with x. Like for the longitudinal motion the rf field close to
the beam axis is expanded into a Taylor series and only the first

term of this expansion is kept:

ke X

I, (k,x) = =%

(99)

Using this and 8. = B_ =~ B, (59) is simplified to

a daxX _ q - EoTsing e My -¢cB (1(50)
dz (ﬂsys dz) mc? { ABs2yt * Eo Ps¥s” X



One defines

Eo,Tsin ke? sin ¢
k 2 - — q T E, $ = e
t,rf P 7\‘/5535’33 2 siny, (see (63)) (101)
B’ B’
k 2 = ._q__ <2 = q__ (102
9 met foys mysVs )
2 2
ke = Kyq = ke (103)
M 3 ¢ M - £ M (104)
t mc? g, '/-1’5z 333 k2 ayayb k.2
2 2

With these definitions (100) can be written as

4 d dX \ _ 2 - -l 2
i (B ) = s

In evaluating this equation one should keep in mind that many of
the variables on which kip depends are themselves dependent on z:
B'changes sign going from a focussing to a defocussing quadrupole,
being zero in between; for the effect of the rf field we have used
the smooth approximation (see chapter 3.6); ¢ is the phase of the
individual particle whose transverse motion is described by (106)
and its variation with z is given by the phase oscillations (67);
a, and ay very due to the strong focussing, and the variation of b
depends on the low of phase damping (e.q. (98)); further B; and vyg
change because the particles are accelerated; E T may also change

along the accelerator.
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9. Beam dynamics for periodic structures

9.1 Properties of Hill's differential equation 4),25),26),27)

Now we recollect some results of the theory on periodic structures

We start with Hill's differential equation

4T k(e = 0
de t zZ)T = (107)

where k(z) is a periodic function with a period 2.

The general solution of (107) can be written as

= C y Ps(2) cos [W(Z)*'é] (108)

C and 8 are constants fixed by the initial conditions, say at z=z,.

The betatron function Br(z) has the same periodicity as k(z), and

is a solution of

2
d_ s, - 1 f kKD T =0 (109)

2 3
dz (/)
VB, determines the amplitudes of the solutions of (107).
The phase function y(z) is obtained from B by
z
y(z) = dz (110)
Br
Z,

nce is the change of the phase over one period,

0f great importa
which is called u:

dz - y(z,+¢) (111)

We turn now to the question of acceptance and emittance. Call "a"

the maximum value which r(z) is allowed to take. As an example, in
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the transverse phase space "a" will be the maximum radius which
the beam is allowed. Be Bnay the maximum value of B,(z). Solutions

(108) in which r can actually reach the value of "a" can then be
written as

T = ﬁ VB, cos (y+8) (112)

The acceptance A is defined as an area in the f—r'-phase space

depending on "a": for any pair of initial conditions (ro,ré) at

z=z_  which are lying inside this acceptance area the maximum

value of r(z) will at most be "a". The shape of the acceptance

is an ellipse, we call its semi-axes Ar and Ar'. Its value is
' o wa’
A = TAT Ar = T('(a)( ) = - (113)
‘ﬁmax ﬂmu

The area in r-r'-phase space which is actually occupied by partic-
les is called emittance E. Generally one wants to have that E is
smaller than A. Now we want to write down a differential equation
for the envelope, that is for the maximum value of r as a function
of z, which we call T

From (112) we have

r (2) = 2% _ (z) (114)
m =~ V B+

We choose the emittance equal to the acceptance (E=A) and can then

write (109) as an envelope equation:

drm _ (E/ﬂ‘)z

2
= 3 k“(z)r, = 0 (115)

The interpretation of this equation is the following: if the beam
has the emittance E, than its envelope rm(z) can be derived from

this envelope equation.



Often the smooth approximation is used to study the behaviour of

the envelope. This is achieved by first calculating u,e. g. by
means of the matrix formalism (see 3.3). Next one defines a wave
number k of the oscillation, which is constant over the whole period

and gives the same p as the complicated function k(z):

from (107), (108) follows that if k2 = const., then also Br = const;
then from (109):

1 ‘
Bp = 2 T k = const. (1186)
T‘afgg
]
and from (111): k = % = const i A= ( (117)

9.2 Equations of the beam envelope 20)

The motion in the transverse phase space is described by a linear
differential equation (106), if the parameters B, and Y, change
adiabatically. Similarily a linear differential equation was deri-
ved for the motions of small amplitudé.in the longitudinal phase

space (91), (92). Important properties of these motions can be eva-
2

luated, if one assumes in addition that the coefficients kgp and kJCp

are periodic as a function of z. Then the results of the theory on
periodic structures can be applied to the motion of particles in a

linear accelerator. We take as a period (see Fig.2 on page 34, (32))
v =2NL =Npg_2 ' (118)

As an example, for an Alvarez structurewith N=1 we have p=2, so that one
period contains two drift tubes: one of them with a quadrupole fo-

cussing in the x-direction, the other one defocussing.
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From (79), (91) and (115) we get the envelope equation for the lon-~

gitudinal motion for small amplitudes:

2
dz (Ee/’ﬂ') 2
—— b - =7 4+ Kk, ()b = O
157 o3 eq (119)
E, is the longitudinal emittance in the Z-Z' - phase space (see (43)).

2 b is the length of a bunch (see (44)),

The relation between E, and the emittance mApAW measured in the

Ap - AW-phase space is given by (see (55), (79))

3
TAQ AW = i’ff\imcz E, (120)

From (106) and (115) we get the envelope equation for the trans-

verse motion:

2
2 E Vg 2
4 a, - (EelTy k Pa, - 0 (121)

X

E, is the transverse emittance in the X-X'-phase space (see (43)).

2aX is the diameter of the bunch measured in the x-direction
(see (uu)).

The envelope equations (119) and (121) are coupled, as both kgp

and kip depend on b, a_ and a_. Their solution has been studied

y
in the literature 13)’§5)’20).



9.3 Properties of matrix transformations 25)-28)

How can one obtain the betatron function Br(Z)’ and thereby also
W, the phase shift of r(z) over one period, and the acceptance A?
One possibility is to solve (109). Another method is furnished if
one relates the values of r and r' at any z to their values at z+%
by means of the matrix formalism. For stable oscillations of r(z)

this transformation is given by

t(z+€) cosp + d(z)sinp By (z) sinp r(z)
' = s (122)
T (2+€) - droilz) sin p cosp - owlz)sinp '(2)

ﬂ.r(z)

The oscillations of r(z) are stable, if the trace of the trans-

fer matrix for one period is smaller than two:

|cosp| < 1 (123)

0. is related to 8r by

oL . _ P (124)



The transfer matrix (122) - and therefore also Br(z) - can be cal-
culated as a function of z by a product of relatively simple matri-

ces, if kz(z) can be approximated by a function which is piecewise

constant. If for example kz(z)=i x? = const from z, to z_+L, then
the transfer matrix from z, to zO+L 22) for a focussing section is:
cos © —R——Si"@
, k* >0 (125)
~k sin@ cos @ H
with Q@ = kil (126)
for a defocussing section:
cosh @ sinh @
K - k%t <o (127)
k sinh 0 cosh© ;
and for a drift space:
1 L
kZ =0 (128)
0 1 )
We also quote the transfer matrix of a thin lens 22):
1 0
-1 (129)
1 1

F is the focal distance of the lens, being positive for a fo-

cussing and negative for a defocussing one.
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If the ensemble of varticles to be traced can be represented in
phase space by an ellipse the envelope of the particles can be traced
rather simple. Be M the transfer matrix for one structure element

of the type (125) to (129). Further the equation of the ellipse be

¢ ' Y. £
’r Fddhry +48r =

(129 a)

2
with By - =7
Then the ellipse transformation through the element M is obtained from

B —d(®) Blz) ~d(z.) -

-d () A/(a) ~dl(z,) (}/(2& (129 b)

34)

T being the transposed matrix belonging to M .

with M

The main parameters characterizing the motion of r(z) are p and

the maximum and minimum value of the betatron function, Bmax and
Bnin+ As will be shown now, these parameters can be obtained re-
latively easy, if the periodic structure posesses a symmetry plane.

Suppose a periodic structure which is symmetric about z=0:

k*(z+0) k%(z) and k%*(-2) = k*(z) (130)

2
Then k (%»uz) (131)

{
x.
N
—
|
N[
)
N
N
1]
>
N
P e
oo
!
N
N—r
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We divide the length % in 2n intervalls, such that k2(z) is appro-

ximately constant in each intervall. Then because of (131) the

transfer matrix M for the period from z = 0 to z = & can be written
as
M = M1 M2 P Mn'Mn . ..M2 M1

= MY . My , (132)

Each Mi will either have the form (125) or (127), and therefore

Misar T My o0 (133)

Let A and B be matrices with

= = 4
Ajy = B,y and By, = B,, (134)
then also (ABA)11 = (ABA)22 (135)
From this follows that M11 = M22 (136)

Comparing this result with (122) gives

a(0) = O (137)

Then from (124%) B'P(O) = 0. (138)

. 2
Thus B_(z) has the same symmetry properties as k“(z).




For the radial motion often symmetry planes will be located at the
center of focussing or defocussing quadrupoles. As Bé = 0 at these
locations, the maximum amplitude of the radial motion will occur

at the center of a focussing quadrupole, whereas the minimum ampli-
tude at the center of a defocussing one. For a symmetric periodic
structure all the information necessary is already cointained in
the transformation matrix M for half a period. Especially MA can

be obtained from Mh by the relation

Mh' = = (139)

which can be proven as follows:

For n = 1 the relation (139) is correct, as Mﬂ = My = M, . Suppose
we had proven (139) for some arbitrary number n. Then because of

(133) one has for n+1:

, Mh (n)zz Mh (n)12 Mnf‘f.“ Mnt’f,.'z
My (ne1) = M, (MM,,, = (140)
Mp (n)zy My (n)y Mnet, 3y Mnet

"1

Mho-‘l," M"'1I1Z Mh(n),ﬂ Mh (n)12
M, (n) = (141)
Mn+1,z1 Mn+1 Mh (n)z1 Mh (n)zz

Mh (n-l-") = M

n+1

(ki

Evaluating these equations shows that (139) is also true for the

number n+l, and therefore for any value of n.

Then the transfer matrix for one period, starting at the symmetry
plane at z = 0 is - using (122), (132), (138), and (139) -



cos M Pmax SinQ
M = = M, M, (142)
_sinp cos

Pmax

In (142) we assumed that z = 0 is the center of a focussing

quadrupole.

It follows that - because of det M; = 1, see (125) and (127) -

cosp = Mp, M, + MhnM ,Z Mh o Mgy —1

h21 (143)

ﬂz - Mhiz My,
max -

Suppose now that at z = £/2 there is the center of a defocussing
quadrupole and the betatron function at that point is Bmin‘ Then
calculating the transfer matrix for one period, starting at z = &/2

results in:

COS/J ﬁm:’n Sl'ﬂfl
!
= M, M, (144)
sin
- — cO0Ss
ﬁmin Iu
from which follows:
1/32 _ Mhy Mhy
min T T (145)
Mhae Mhny,

Therefore the modulation ratio of the beam is given by

Ymax Bmax 1/ Mhyy
Y = = - = (1u46)
Tmin ﬂmm Mh“
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9.4 Estimation of transverse acceptance

In this chapter we consider a periodic sequence of focussing (F) and
defocussing (D) quadrupoles, and of rf gaps (0) (as sketched in Fig. 2
for a N = 1 grouping of gquadrupoles).The integer N is the number of
quadrupoles of the same polarity in successive drift tubes. N = 2
would correspond to a FOFODODO lattice. Each drift tube contains one

quadrupole. One has to keep in mind that this is difficult to realize
in a Wideroe type structure (p = 1 or p = 3) 33),

Now we apply the methods developped in 9.3. However, instead of using
the smooth approximation for the defdcussing effect of the rf field

- a5 one could do by using (103) - we follow the common practice of
the literature, and use the thin lens approximation (see ref. 22)

On page 367). The defocussing effect of the space charge will be treated
as like.

¢ -

j |
e | ————= L ’1

: -
| |

I F D F:

|

> {

I L Lq l
:-q-—-z—q—-— Ly je——o Lqg— L-r-r"—7——z

1 + > Z
| |
z=0 z=€

L
Fig. 2: FODO lattice, 1 = 2NL ; L = »

The transfer matrix of a defocussing lens of the length L can be

. 22 h
written as )

M (147>
;s =
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4 . ~ k2 (kL)
. = + k sinh(klL) k“L <4+T—) 2 0 (148)
cosh (kL) -1 Lq L (k L)?
5 = - =3 &~ = (4-
k sinh (kL) Z 2 (4 12 ) (e

The term - Lq/2 appears in s, because the quadrupoles are treated
separately. We take )2 from (100), (101) and define

2 q TwTE,Tsingl? 2
O'T =T mCz l ﬁss ysl = ktz'rf L (150)
M, L? ALZ i M, L%
92 - q @ My = 900 q IM,AL = B iy (151)
g me® €y Pl ys] mc* a,a, b'pzx3 ayayb

(see (48), (65))
A = -(0,+08) = -(kL) (152)

In the literature A characterizes the defocussing effect of the rf
field only, whereas here also the space charge part is included.
I%>O,butA<O. In
this approximation A is assumed to be independent of z, which par-

Generally one will have @ < O and therefore ©

ticularly means that for g, axl—éy and b we shall take values

which are averaged over one period. By doing this the motion in

the x-direction is decoupled from those in the y-and z-directions.

Q

Rewriting: -4 --%% ( 4 - éi— ) (153)

2
S =~ ""(1+-4-) (154)
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For about |A| < 0.5 the following thin lens approximation for M., is
. ‘e 26)
Justified :
L L
1 = 10 1T 3
M, =~ (155)
o 1 -8 0 1

Be further

Lq

; 2ZNL=¢ (156)

Using Taylor series for the trigonometric and hyperbolic functions

one arrives at the following approximate formulas 273, 28) for the
transfer properties of the whole period from z = 0 to z = &:
N (N*+2-2A)] r2 o% 2
Cosp = 4—[ c ]_/\ 0, — 2N°A (157)
2 2
N°+1-A]1 A A2 A [8N®+1 }
Bmax, N ZN [}“{ NE } % Q0 12 {8N2-2 ]
Yy = - ~ (158)

2
N +1-A 2
4 + { ...... SRR }:&_O -zihﬁ
= {bmax'N ~ N $ 0 2 N'—’Odd} (159)
WN B ‘ﬁmin,N ~ ,- 'N = even

cos (,uN/Z)

Note that (158) in 27) contains an error. Exnlicitely for the cases

N=1 and N=2 the results are collected in Tahle (160) and also in
Fiag. 3 - 6.
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The x-axis of the acceptance ellipse is a, whereas the x'-axis is
26)
a/Bmax” .

One operates at the center of the stability region if cos My~ 0.

as our first quadrupole is focussing in the x-direction

About for this value of cos My the acceptance in the x-direction wiil
be maximum., The imput beam has to be matched to the acceptances in
the x- and y- direction to fully make use of the acceptance (162) in
both directions. Therefore at the first quadrupole of the linac the
beam should have a focus in the defocussing direction of that quadru-
pole, whereas in the focussing direction of it the beam will assume

its maximum extension.

The lower border of the stability region is reached for cosy= 1,
whereas for cos u < -1 overfocussing takes place. From (160) the

following trends can be analyzed:

the larger N is, the lower the quadrupole gradient has to be to
obtain stability of the x - x' - motion; however, the larger N is
the lower is the acceptance; the modulation ratio of the beam cross
section, ¥y gets larger with increasing N, therefore space charge
problems will be minimized for N = 1; the quadrupole gradient ne-
cessary to operate in the center of the stability region is pro-

portional to L—Q; however the acceptance scales as L—1

To conclude we point out once more that it has been assumed in (160)
that each drift tube contains a quadrupole. The formulas could be
applied also to the case of only every other drift tube containing

a quadrupole, as has been realized in a Wideroe type of accelerator

(p =1, 3; N=1) 33). The variables 2, L and A would have to be
changed and two rf gaps would have to be represented by one thin lens.
However, the condition |A| < 0.5 (153), (154) will then no longer

be fullfilled for high beam current. This case would be treated better
by applying (122) with computer methods, which on the other hand
means to dispense with handy formulas to study functional dependences
of the varions parameters.




Table (160):

_4]_

CoS fy 1—(%—%)/\26:—213 1—(4—%A>AZO:—8A
1 1
G)z 1-cospu,-2A 2 1~-cosu, - 8A 2
o (4 -2 A* (4- %)
A=z - 3) 3

21_[4 r(1-4) L0 34

4L 1+ n05 -5 4]

13 2 2 4
max N : -
sin 4 sin p,
2
Y 1+ (1—%) Aze° —% ’1+AO§—2A
N cos ((u4/2) cos (p,/2)

Having determined 03, the quadrupole gradient will we obtained from
(see (102), (156M:

BI = mc ys '{35 Of

q L*

and the acceptance in the x-plane is (see (113)):

ma?

A =
N
X ﬂmax,N

(161)

(162)
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(160)




fig 4 : (160)
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fig. 5+ (160)
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(160)

fig. 6 :
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10. Choice of linac parameters

10.1 The main parameters

First of all the choice of linac parameters is dictated by the de-

mands of the users. These are:

1. kind of particles to be accelerated: m and q
2. beam current I

3. final energy

Second, the properties of the injection system have a large in-

fluence on the linac parameters:

1. exit energy B and vy
longitudinal emittance Ey
3. transverse emittance Et

However, the parameters of the injection system may also be affec-

ted by properties of the linac, especially by its acceptances.

Once the kind of particles to be accelerated and the beam current

is specified by the users, the main parameters of a linac are:

1. type of accelerating structure and mode of operation
(e. g. O - or wm-mode)

2. rf frequency f or A

3. injection energy B and vy

4. accelerating field and fill factor EOT,A.

5. phase of synchronous particle P

6

maximum beam radius allowed a
Some criteria for the optimization of these parameters are:
1. high reliability of linac operation

2. low cost of construction

3. low cost of operation
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These criteria cannot be related to the linac parameters in a well
defined manner, and the optimization will have to be guided by ex-

perience and intuition.

A criterion to describe the efficiency of the linac to transform
the rf power into beam energy is the shunt impedance:
2

EeffL
cff = Ps ’ Eeff = EoT cos ¢ (163)

Z

PS is the rf power which is dissipated in the walls of the acce-

lerator structure of length L. A review on structures and on their

shunt impedances can be found in 7).

An upper limit on the amplitude EO of the electric field is given

29) ,30)
14

by the onset of sparking in the accelerating gap or by

problems in cooling the accelerator structure.

10.2 On designing a high current deuteron linac

10.21 Bunch dimensions

Now we shall leave the general treatment and turn to the problem
of designing a deuteron accelerator, which has as high a current
as possible and a final energy of about 40 MeV. This results in
the demand to optimize the acceptances in the longitudinal and
transverse phase space, A, and A

L t’

the emittances of the injection system.A2 and At depend on the

main parameters of the linac, as described in the previous chap-
ters 7.2 and 9.4.

which have to be larger than

A, is the larger the larger "a" "a"

t
are set by the required efficiency of acceleration and by strong

a" 1is. However, upper limits on
focussing requirements. Increasing "a" - and therefore also the
drift tube radius d - lowers the transit time factor T; increasing
ax at the pole tip of the
quadrupoles. BmaX should not be larger than about 1 Tesla, due to

d results in a higher magnetic field Bm

the saturation property of iron magnetization. Also, with increa-

sing "a" the coupling between the longitudinal and transverse mo-

tions gets larger resulting in a reduction of acceptances.
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Therefore, and to reduce the number of independent linac parame-

ters, we require for the first tank of the linac: (each drift tube con-

taining a quadrupole):
1) from (39), (40), (41):

B
ds —— b~ Ps; y =1 (164)

which corresponds to

kpd = 1;  I,(kpd) % 1.266 (165)

Further one allows for some clearance between beam and drift tube 16)

which we assume to be 25% of d, then

a=6-82; I (ka)< 115; G<o7s (166)

2) from (32) and (161)

Tq Bmax PzA 'ﬂA .
d < cha . @oz g Bax < 1 Tesla (167)
p? A 2 .
that is for deuterons: d < . . B (168)

4902 meter 27

The aperture will not be limited by the achievable quadrupole field
if:

A 404
meter p*

v

(169)

for deuterons:



0% can be taken from Fig. 3 and 4, we estimate:

02 ¢ 5 for N=1, 0F € 2.5 for N=2 if u, = 90° (170)

- )

Then the aperture will not be limited by the achievable quadrupole
field, if X is larger than indicated in (171); X = 3 m corresponds
to £ = 100 MHz.

A/meter > p =1 p = 2 p =3 p = U

for deuterons: N = 1 20 5 2.2 1.25 | (174)

For the new CERN p-linac N=1, p=2, A=1.5 m, uN=39o were chosen,

whereas A=2.5 would have been indicated by (i64), (167) for uN=9Oo

3) In order to be able to give an estimate of the space charge problem,
we will now also specify the bunch length 2b; and refer to the study

of the longitudinal acceptance in chapter 7.2. Taking t=1 and expec-
ting uy to be of the order of 1/3 we get from (79), (80):

Ay = l‘?sl i b= |<J>S|-£l (172)

Typically ¥ o will be of the order of -0.6, corresponding to -35°,
The shape of the bunch will be close to that of a sphere.

10.2.2 Longitudinal acceptance

As in 9.4 we assume that the focussing lattice of the linac starts
in the center of a quadrupole focussing in the x-direction. Then

the flutter factor due to strong focussing is

a
X a )
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According to 20)

¥, is space charge independent. However, our re-
sult in Fig. 6 together with (151), (152) is, that Yy does increase
with increasing I, if one wants to operate in the center of the sta-
bility region (cos u = o) for all currents. We assume that the ave-

rage bunch diameter is independent of z:

a, (z) a, (z) = 2 = G BA (174)
Ve ’ ¥, 2m vy

Further, approximating the longitudinal form factor M_ by (82),
using (166) and (172) the longitudinal space charge parameter (66) is:

120 2@ Wy I

lu = - (175)
¢ G2 sing EoT  47A
For a typical data get of Yy = 2.8, 0 = 0.75, ¢_ = -40°, E,T = 1MV/m
we get
-3
b, = gaeo? LIA (176>

B2A /m

In (84) we found that the current will be maximum for My = 1/3;

therefore the longidudinal phase space can accept at most a current
of

I = G s sinlg,| EoT ofszl = 39.5 B2 (177)
e 360 Q Ty, m

(177) is tabulated below for some typical values of B and A.

From (76) and (77), taking Mg = 1/3, the longitudinal acceptance is
for the data set given in table (177)

o

0.7 (178)

Ameax I ()OS I = 40

AWpmay %W/'%—quTmczﬁ’Y’%g?6-3MeVVﬁ’7l/m (179)



= = . = - © . =
for: —— d)N = 2.8 j o = 0.75 j 9 Lo ; E.T 1 MV/m
{E /A > A = 11.1 m A = 5.56 m A = 2.78 m A = 1.48 m
(f = 27 MHz) (f = 54 MHz) (f = 108 MHz) | (f = 202 MHz)

B = 0.0193 0.16 0.08 0.0 0.02

(d, 350 keV)

B = 0.0231 0.23 0.12 0.06 0.03

(d, 500 keV)

B = 0.0283 0.35 0.17 0.09 0.05

(d, 750 keV) .

B = 0.0k 0.70 0.35 0.17 0.11 A

(p, 750 keV) CERN new linac
E,T = 1.2 MV/m
Ys = - 35°
v, = 1.8

The CERN new 50 MeV linac for protons operates at 202.5 MHz with an

injection energy of 750 keV (B =

tion.

0.04) and EOT =

The maximum current to be accelerated is 150 mA .

1.2 MV/m at injec-

9) From (177)

we would have expected that in this case for currents above 110 mA

some particles would get lost from the longitudinal phase space.

In

a proton accelerator some particle loss can be tolerated, as the

activation problems are not as severe as with deuterons.

For a deu-

teron accelerator more accurate calculations than the ones presen-

ted above, and may be also experiments on existing linacs are ne-

cessary in order to predict the particle loss for currents higher
than indicated by (177).

10,.2.3 Transverse acceptance

According to (32),

(158),

(

162),

(166) the transverse acceptance 1is

(180)
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We assume to operate at the center of the stability region

(cospy = 0) for all currents 1u), recollect that then the frequency
should not be larger than indicated by (171). For a N = 1 quadrupole
grouping YN depends only slightly on the defocussing rf‘and space

charge forces A < O, as can be seen from Fig. 5 and (152):

R

Y‘1 3.3~-2.7A for cosp =0 (181)

-3
if (171), then: A, (N=1) = Tt. 8.6-10 B2 G =075 (182)
t 1-0.81A p !

For N = 2 Yo depends more strongly on A, and therefore also At(N = 2).
A good approximation is:

Y, ® 6.2 -164 {for cosp =0, (183)
-3
if (171), then: A, (N=2) = 7. %610 L $A j 6=07%5 (184)
1-2.64 p

The transverse space charge parameters can be written as follows:

from (u45), (82), (172), (174) and Mx = My:

M. ~ 1(1——§——) (185)
SR AR A

from (41), (151), (172), (174):

G
g0 7 q Yy (’l————) 27
Q. = Sloslfon/ | P (186)

s me2 6% |y, ] A

2
C]
from (104), (151): B, = F?LT (187)
4
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in smooth approximation from (103), (104), (105), (117), (156):

@; ‘ K § Jil. - FN

- (188)
Ft (FN)Z+ @; / fg ,C 2NL

2N

Note that uﬁ will finally become negative, if B' is kept constant

and I is increased.

Again for a typical data set like
Y o= 2.8 6=0%, Y =-40"°, py= /2 (189)

one has for deuterons:

MX = 0.39 (190)
2
2 -6 P I/A
C@ = 8.3:-10 —_—
Me = L/A

IJA +7.4-40%B%/(pN)*

Let us again check these estimates by comparing with the parameters
of the CERN new 50 MeV p-linac:

B=0.04, p=2, N=1, E_Tx1.2 MV/m, ¢@_* -35°, A=1.48 m, I=0.15 A, uN=39O

Then from (150) we get for P =g e; = 0.086

With o = 0.75, y, = 1.6 and (178): V& a_ = 5.7 x 1073 m;

x%y

from (172): - 5.8 x 10°°% n

b
from (185): Mx = 0.3u
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from (186): 0§ = 0.088
from (152): A - 0.17
from (160), (182), scaling At ~ o2 sinuN

A, = m « 250 mmemrad

According to 1)

At(CERN linac) = 7 300 mm mrad at 150 mA and
My = 39°. Thus the agreement between our estimates of acceptances

and the more accurate CERN calculations is reasonable.

10.2.4 Electric peak fields and drift tube geometry

We reduce the number of free parameters further: from (177) follows
that the accelerating field should be as large as possible for a

high current accelerator. We assume that cooling problems can be

solved and take as a limit for E  the conservative Kilpatrick

criterium 29)’30). A good approximation for the criterium is
E 1/3
_ 5.56 m
M ¢ 9.23 (22 for 1.5 m < A < 12 m
E_A? Y
if —E—— < 1.4 x 107 MV (191)

EP is the peak electric surface field and g is the gap distance,

If —g—— > 1.4 x 101 MV we approximate (see ref. 29 for notation)

-1.1 v/v¥
e

w = V(1- ) (192)

and obtain a transcendental equation for EP which we solve numeri-

cally for given values of g and A:
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-1 2 ? 3
3 _ - 9.33-40" Ep A > exp [ZAF A0 VeIt Y g Vel s,
Ep'g |:'1 exp ( FRESVAT: p E, meter 1.8-1 o

Ep can be related to Ej by (see (26))

= g = "] _R__.
E 2 Ez(z,r d) R (194)
The factor 1.3 is introduced empirically to account for the field
enhancement at the drift tube.

From transit time factor considerations generally

g = T 5 (195)

is taken at injection.

From (36), (164) and (193) we estimate the transit time factor to
be

sin 0 _
TR

T = —_— = 0.73 (196)
ET?’Io(i)

Then with (32), (182), (193), (194) we get

EpT 2.3 5.56m K MV
E,T = =F ; ( ) — (197)

A m

The effective accelerating field is

Ecep = EoT cosqp, (198)



The fill factor A is approximimated with (32), (19%) to be

L-g-0012m y O.44 _ 0.024m (199)
L P PPA

>
2

We assumed 0.012 m space for the drift tube housing.

We take the inner radius of the quadrupole dq to be

i . B
dq = d+ 0.002 m = 2ﬂ.+ 0.002 m (200)

Generally Lq > dq will hold, so that the quadrupole field is not
dominated by end effects.

11. A computer program to aid in linac design

Again we concentrate on designing a high current deuteron linac.
From the discussion above follows that the injection energy into
the linac and the rf wavelength should be as large as possible to
get large acceptances and small space charge problemg. From techni-
cal considerations just the opposite is desired: the dc preaccele-
rator for large currents is the less problematic the lower the ter-
minal voltage is, 750 keV seems to be the upper limit for an open
air cascade; Alvarez structures of 50 MHz operation frequency have
already a diameter of about 4 m, so that an even loWer frequency
seems not to be reasonable for this type of structure, whereas a

Wideroe accelerator of 27 MHz is still a possible option.

The choice of frequency and injection energy will also be influen-
ced by the beam emittance of the injection system; for the smaller
the emittance for a given current is, the larger frequency or in-

jection energy can be.

These complex considerations cannot be incorporated into the for-
malism presented in the previous chapters. We therefore choose to
write a computer program, which has among other the frequency and
injection energy as free parameters. This program will now be des-

cribed.
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The input parameters of the program are:

particle mass
particle velocity
rf wavelength
typ of rf mode
synchronous phase

particle phase

Z-Gc‘r‘)e*d > m™ o

quadrupole configuration
betatron phase advance/quadrupole period uN(I=O)

stay clear factor g

The program calculates as a function of beam current I the follow-

ing quantities (see appendix 2 for the description of the

program) :

see
current allowed in longitudinal phase space I, (84)
phase acceptance Apnax (80)
energy acceptance AW (77)
normalized transverse acceptance TrBAt (180)
longitudinal space charge parameter Mg (66)
transverse space charge parameter My (188)
bunch length 2b (172)
average bunch radius /axay ' ‘(174)
betatron phase advance/quadrupole period uN(I)
magnetic field at bore radius of quadrupole Bhax (200),(161)
magnetic field at bore radius of quadrupole
if uN(I) = uN(I=O) = const ' BLax (161),(200)
effective accelerating field E_rf (197)

In order to obtain these quantities at a current I the beam cross
section modulation ratio at that current wN(I) has to be known. Ho-
wever wN(I) depends on the defocussing space charge force parameter
o;, which again depends on ¥, (I) (see (151), (152), (159), (174)).
In the program I is increased in steps of AI, and AI is taken suffi-
ciently small such that 6$(I-AI) can be used to calculated wN(I),
which in turn is needed to obtain Oé(I).

As I, depends on wN(I) and wN(I) is not constant, also I, depends

on I.
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T. For

uN(I) is kept constant by the program as long as B 1
T = const.

<
max -—
1

x(I) =

BmaX > 1T uN(I) is decreased such that now Bm

a

The following formulas are used in the program:

(164), a = (166), dq = (200), g = (195), L = (u1), A = (199),
(1), Ep = (191), (193), E_ = (194), T = (196), e; = (160),
- N2 —
by = (160D, yy = (160), e; = (150), a,ay = (174), 6 = (151),
A = (152), M, = (47), M = (46).

A program list can be found in the appendix. In order to check
the results of the program it was applied to the design of the
new CERN 50 MeV linac. The results are shown in figs. 31 to 36.

They agree reasonably well with those given in 9), 1)
at I = 0.15 A CERN data this report
IQ(A) 0.15 0.105

¢ e () 35 35
Awmax (keV) 33 28
A.8/m (cm mrad) 1.2 x 0% = 0.68 0.67
B' (T/m) 93 83
Eeff (MV/m) 1 1.02
Ep (MV/m) 10 ‘ 14

A main discrepancy occurred in the value of Ep, which we calcula-
ted according to Kilpatrick's criterium. The lower value of

EP = 10 MV/m (also taken in our program to obtain figs.31, 32, 33)
was chosen by the CERN group, in order to obtain sligthly lower
quadrupole gradients and to be with regard to the electric peak
fields at the very conservative side especially also avoiding prob-
lems by field emission 31).

The results for Ep = 14 MV/m are shown
in fig. 34, 35, 36.
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12. Parameters of a high current deuteron linac

Next we calculated various deuteron accelerators (figs. 7 to 30).
The current which can be accelerated in the longitudinal phase
space increases as Yé sin\aS (177), the rate of acceleration de-
creases as coirs (198), the transverse space charge problems
decrease as Pg (186), whereas the rf defocussing effect scales
as sin? (150). Therefore, a reasonable choice for VS seems to be

-40°, which we kept constant for all cases computed.

Further we choose to operate at the center of the transverse sta-
bility region uy = 90° for all Qﬁrrents in order to reduce the
loss of particles from the transverse'phase space due to coupling
of longitudinal and radial motion. A lower value of My results in
smaller quadrupole gradients, smaller modulation of the beam cross
section but also smaller width of the stability region. More de-
tailed studies are necessary to find the optimum value of My > and

of course also of all the other parameters.

An analysis of fig. 7 to 30 is summarized in table (201).

To compare the varions options we require that the normalized
transverse acceptance At of the linac should be 17 cm mrad. Imax

is the maximum current which then can be accelerated. However, the
dependence of Imax ©n Ay and Ay is not always very strong. There-
fore the figures should be consulted as well.

Our conclusion is, that there are two options for a high current
deuteron linac. First, an Alvarez type linac, operating at about
St MHz (X = 5.56 m) with an injection energy of at least 500 keV
(B = 0.0231), but much preferable 750 keV (B = 0.0283), having

200 mA as maximum current. Second, a Wideroe type linac, operating

at about 27 MHz (X = 11.1 m) with an injection energy of at least

350 keV (Imax = 100 mA), but also preferable higher injection ener-
gies: at 500 keV we get Imax = 0.1 A, and at 750 keV ITnax = 0.4 A.
The results about the Alvarez option agree reasonably well with

those quoted in the literature 127> 16)

. The Wideroe option has
the disadvantage that it cannot accelerate +the deuterons much
beyond 10 MeV (B = 0.1) because the shuntimpedance of the struc-
ture gets too low. Therefore a second type of linac , probably an

Alvarez type operating at 54 MHz, is necessary to accelerate the
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deuterons further. This increases the complexity of the system and
also may cause acceptance mismatches between the two structures.

Further,the Wideroe structures considered here contain a quadrupole
in each drift tube, which may turn out to be too complicated to
realize in hardware'33). If gquadrupoles can be incorporated only
into every other drift tube, the required gradients will increase,
the beam cross section modulation will increase and the acceptances
will decrease. For this case the approximations of chapter 9.4 are

no longer valid.

Instead of the Wideroe type structure an IH - type structure

could also be considered, in which one quadrupole in each
drift tube is possible.

A more detailed analysis of the problem is necessary, which will be
presented in another report.
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tor configurations

Maximum beam current of various deuteron accelera-

B A/m
(Ey;/keV) | (£/MHz) P N limitation in current due taImax/A fig.
0.0193 11.1 1 1 B - 7
max
1 2 Bmax’ Aps Wideroe design? 0.1 8
2 1,2 | Alvarez diameter to large - 9
(350) (27) >3 1;2 | uy, A -
0.0231 11.1 1 1 Bmax - 10
1 2 Bhax» Wideroe design? 0.2 11
2 1,2 | Alvarez diameter to large - 12
(500) (27) 3 |1 Mgs Ay, Wideroe design? 0.05
3 2 uz, A.t -
b 152wy, At -
: i on? -
0.0283 11.1 1 1 Bmax’ Wideroe design? : 13
2 Wideroe design? 0.4 14
(750) (27) 2 1,2 | Alvarez diameter too large |- 15
221 1;2| p = 1 is a better choice -
0.0193 5.56 1 32 | B . - 16,17,
(350) (54) >2| 132 | ug, Ag - 18
0.0231 5.56 1 152 Bmax - 19
2 |1 | Ags uy 0.05 20
(500) (54) 2 2 At’ Mo - 21
>3] 152 | AL, 1y -
0.0283 5.56 1 12 Bmax - 22
(750) (54) 2 |1 Ay; not strong dependent 0.2 23
2 2 At - 24
>3 1;2 | Ag -
0.0231 2.78 >1 | 132 [ Ay, Mgy B - 25,26,
(500) (108) 27
0.0283 2.78 1 1,2 max - 28
(750) (108) 1 Brax> At - 29
2 |2 | A - 30
>3 1 1.2 —
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fig. 12
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BETR = @.0231 ; LAMEDA = S.5G METER ; SIGMA = B.75; MASG = 2
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fig. 20

BETH = @.B231 ; LAMEDA = S.5B METER ; SIGMA = B.7S; MASS = 2
MUECI=B) = 9@ DEBREE ; PHI-5 = -4 DEGREE ; PHI = -4 DEGREE
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BETH = B.B231 ; LAMEDA = S.Sb METER ; SIGMA = B.7S; MASG = 2

fig. 21

MUECI=@) = 9@ DEGREE ; PHI-5 = -4 DEGREE ; PHI = -4@ DEGREE

EFERK = 9.2 MVOLT/METER

Mt

e
llf
_.f
-'/
0.5
- 0 } |
04 CT[Al 04
27 a,a,
B2
B o5+
R —— _
~~~.:~\.. ~ e
XL T
— + - i 0 ¢ 4 : |
01 0.2 T [Al o4 0. 02  TI[A] 0.4



77

fig. 22

GETH = @.MZH3 ; LAMEDA = S.Sb METER ; SIGMA = B.75; MASS = 2
MUECI=@) = G DEGREE ; PHI-G = -4 DEGREE ; PHI = -4if DEBREE
EPERK = 9.2 MVILT/METER
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fig. 23

BETH = O.B2H3 ; LAMEDR = S.5B METER ; SIGMR = B.7S; MASS = 2
MUECI=) = 97 DEGREE ; PHI-5 = -4 DEGREE ; PHI = -4A DEGREE

EPERK = 9.2 MVOLT/METER
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79 fig. 2u

BETH = B.B2H3 ; L[AMEDH = S.8k METER ; SIGMR = B.75; MASS = 2
MUECI=B) = 3 DERREE ; PHI-5 = -4 DEGREE ; PHI = -4 DEGREE
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fig. 25

BETH = B.0231 ; LAMEDA = Z.78 METER ; GSIGMA = B.7S; MASS = 2
MUECI=@) = O@ DEGREE ; PHI-G = -UF DEGREE ; PHI = -4 DEGREE
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81 fig. 26

BETH = @.0231 ; LAMEDA = 2.78 METER ; GIbMR = B.75; MH2S = 2
MUECI=@) = 3@ DERREE ; PHI-5 = -Hd DEGREE ; PHI = -4d PEBREE
EPERK = [1.5 MVOLT/METER
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82 fig. 27

BETR = @.EZ31 ; LAMEDA = 2.70 METER ; GIGMA = B.75; MASS = 2
MUECI=B) = 9@ DEGREE ; PHI-G = -4 DEGREE ; PHI = -42 DEGREE
EPEAK = 11.6 MVOLT/METER
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83 fig. 28

BLTH = O.0283 ; LAMBDR = Z.7H METER ; SIGMR = @75 MASS = 2
MUECI=) = O DEGREE ; PHI-5 = -4i DEGREE ; PHI = -4@ DEGREE

EPERK = 1.5 MVOLT/METER
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84 fig. 29

BETH = B.H2H3 ; LAMEDH = 2.70 METER ; GIGMA = B.7%; MASS = 2
MUECI=H) = 30 DEEREE ; PHI-5 = -4 DEGREE ; PHI = -4d DERREE
EPEAK = 11.b MVOLT/METER
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fig. 30

BETH = @.M263 ; LAMEDH = 2.70 METER ; GIGMA = B.75; MASS = 2
MUECI=H) = 90 DEGREE ; PHI-5 = -4 DEGREE ; PHI = -4B DEGREE

EPERK = [1.6 MVOLT/METER
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fig. 31

BETA = B.0480 ; LAMBDR = | SAMETER ; SIGMA = B.75; MASS = |
MUECI=H) = 39 DERREF ; PHI-S = -35 DEGREE ; PHI = -35 DEGREE
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BETH = @.B42@ ; LAMBDR = [.SBMETER ; SIGMR = B.7S; MASS = |
NUECI=@) = 39 DEGREF ; PHI-S = -35 DEGREE ; PHI = -35 DEGREE
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fig. 33

BETH = W.0499 ; LAMEDA = |.5H METER ; SIGMA = B.75; MASS = |
MUECI=@) = 39 DEGREE ; PHI-5 = -35 DEBREE ; PHI = -35 DEGREE
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89 fig. 34

BETA = B.HYA@ ; LAMEDA = |.SHMETER ; SIGNA = HB.7S; MASS = |
MUECI=@) = 39 DEGREE ; PMI-S = -35 DEGREE ; PHI = -35 DEGREE
EPERK = (4.3 MVOLT/METER
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lfig. 35

BETR = O.H4A@ ; LAMEDH = 1.S@ METER ; SIGMA = B.7%; MASS = |
MUECI=B) = 39 DEGREE ; PHI-G = -3 DEGREE ; PHI = -3% DEGREE

EPERK = 14.3 MVOLT/METER
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fig. 36

GETH = U.04E@ ; LAMEDA = [.N@ METER ; SIGMA = H.75; MASD = |
MUECI=@) = 39 DEGREE ; PHI-5 = -3% DEGREE ; PHI = -35 DEBREE
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Appendix 1 Space charge form factors

In fig. 1 are shown the formfactors of a uniformly charged ellip-
soid, calculated numerically according to formulas (44), (47) and
(82). Formula (45) can be used to check the accuray in performing
the integrals (44). The error is at most 2%.

The approximation of the transverse bunch cross section by a cir-
cular one effects M, only sligthly. The approximation a = \/_a?a; results
in sligthly too large longitudinal space charge for ax/ay > 1.
Taking on the other hand 2/a = 1/ay + 1/ay gives sligthly too small
longitudinal space charge forces.

In the transverse direction the values of M, and M differ appre-

ciably from their average value, the more the larng ax/ay is. The
transverse space charge forces are stronger than given by the appro-
ximation at a focussing plane, and weaker at a defocussing plane.

In the accelerating gap the transverse bunch cross section will be

about circular, and then the approximation is good.
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List of variables used in "akzept

"akzept" report "akzept" report "akzept" report

A a W A r28 M,

B B X Yy r29 M,

C c ri (150) r30 a_a

x“y

D d r2 (47) r31 n

E E r3 (65) r32 My

F ¥ r4 to ril, rig | (160) r33 0%

G g r12 (161) r34 My

H ? rl3 (180) r3s I,

I I ri4 (84) r36 AP

2

K kg r15 (80) r37 AW _./q

L L r16 (77) r38 AtB/ﬂ
2

M m/mp rl7 L r39 uNﬂ/18O
2

N N rl8 a r40 an/180
L

U uy (1) r20 me*/q ris1 (36)

P p r21 y rh2 03

Q d r2? A r45 to r52, used for

q

R yN .r23 Bmax r57 to r60 plotting

S g r2h b r53 /axay

T T r25 (191) r5Y 2wb/BA

0 uN(Izo) r26 ,EP r55 2m /axay/BA
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Appendix 3 Nomenclature

Number in parenthesis refer to the equation which defines the symhol

a averacge bunch radius (49)

%’ ay, a, seml axis of ellipsoid (bunch) in the rest system (44)

b longitudinal semi axis of ellipsoid (bunch) in the laboratory
system (44)

c velocity of light

d inner drift tube radius (fia. 1), (26)

f frequency of linac

g accelerating gap (fig. 1), 26)

k

k longitudinal and transverse rf force constants (63), (101)

1’

kt,q force constant due to quadrupole focussinag (102)

t,rf

) 3 kD radial wave number (20), (34), (40)

ml

1 period of transverse focussing (107), (fig. 2)

m particle rest mass

'B particle momentum; p mode number (26)

q particle charge

r radius of polar coordinates; TN transverse beam envelope
radius (114)

s index referring to the synchronons particle

t time

v particle velocity

w index referring to properties of the travelling wave

X transverse cartesiah coordinate

v transverse cartesian coordinate

z longitudinal cartesian coordinate, accelerator axis
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1+ At longitudinal and transverse acceptance (78), (113)

A, of Ey_for r = o amplitude of Fourier expansion (18), (35)

B magnetic flux density
B' qguadrupole gradient
E beam emittance (115)

E kinetic energy; E electric field strength; EO amplitude of the
electric field in the accelerating gap (26), (40);
E  peak electric surface field (26), (194)

Eore effective accelerating field (198)

kin

F force

H Hamiltonian (85)

I beam current

I (x) , I1(x) modified Bessel functions

L lenath of accelerator cell (fig. 1, 2), (41)

L quadrunole length

M transfer matrix for one focussina veriod (132)

Mh’ Mh' transfer matrices for half a focussing period (132)

%! My, M, form factors of charged ellipsoid (44)

N number of quadrupoles of the same polarity per focussing
period (118)

T transit time factor (36), (41)

W relativistic particle eneray

X transverse cartesian coordinate of bunch (43)
Y transverse cartesian coordinate of bunch (43)

4 longitudinal cartesian coordinate of bunch (43)
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a related to the derivative of Br (124)
B normalized particle velocity v/c

Br‘betatron function (108)

] maximum and minimum of Br (z)

max’Bmin

Y normalized relativistic particle mass

YN normalized betatron amplitude (158)
j} angle of polar coordinates
A wavelenath

¢  betatron phase shift per period (111)

(112)

My sy longitudinal and transverse space charae parameters (64), (104)

~

¥ space charge constant (65)

™ 3.1415...

p charge density; as index indicatino that space charge effects

are included (71), (105)
o drift tube clearance factor (166)

T safety factor (80)

¥ phase of particle relative to the electric field (42), (57)

¥ modulation ratio of beam cross section (146)

U (z) phase shift of betatron oscillations (110)

w = 2nf

A thin lens defocussing parameter (152)

AP,AW deviations from values ﬁor synchronous particle (62)

0, quadrupole focussing parameter (156)

er,ep defocussing parameters for the rf field and for the space

charge (150), (151)

A  aquadrupole filling factor (156)



R

- 100 -

e ferences

1)

2)

3)

4)

5)

6)

7)

8)

9)
10)
11)
12)
13)

14)

15)
16)

17)

18)

19)

20)

J. D. Jackson, Classical Electrodynamics. J. Wiley, Inc.,
New York (1862)

H. G. Hereward, The General Theory of Linear Accelerators,
in Linear Accelerators by P.N. Lapostolle and A. L. Septier,
North-Holland Publ. Co., Amsterdam (1969)

L. Smith, Linear Accelerators, in Handbuch der Physik,
Band XLIV, Springer Verlag, Berlin (1959)

A. D. Vlasov, Theory of Linear Accelerators (1968)

R. M. Bevensee, Electromagnetic Slow Wave Systems,
J. Wiley, Inc., New York (1964)

H. Klein, Die Beschleunigung schwerer Ionen mit der Wendelstruk-
tur, Habilitationsschrift, Universitdt Frankfurt am Main, In-
stitut flir Angewandte Physik (1968)

G. Dome, Review and Survey of Accelerating Structures, in ref.2)

H. C. Hoyt, D. D. Simmmons, W. F. Rich, Rev. Sci. Instr. 37,
755 (1966)

~D. Warner, AECL~5677, 49 (1976)

.

K. Halbach, R. F. Holsinger, W. E. Jule, D. A. Swenson, ibid, 122
M. Martini, D. J. Warner, CERN Report No 68-11 (1968)

D. Boehne, IEEE Trans. Nucl. Sci., NS-16, No. 3, 380 (1969)

R. L. Gluckstern, Space Charge Effects. in ref.2)

D. J. Warner, M. Weiss, Proc. of the 1976 Prot. Lin. Acc. Conf.,
Chalk River, Ontario, AECL-5677, 245 (1976)

K. Batchelor, ibid, 160
J. Staples et al., ibid, 1u8

P. Tanguy, Proc., of the 1970 Prot. Lin. Acc. Conf., Batavia,
Illinois, 771 (1970)

B. Bru, M. Weiss , ibid, 851
I. M. Kapchinskij, V. V. Vladimirskij, Proc. of the Conf. on
High Energy Accelerators and Instrumentation, CERN, Geneva,

274 (1959)

S. Ohnuma, J. N. Vitale, IEEE Trans. Nuecl. Sci., NS 14, No. 3
594 (1967) -



- 101 -

21) 0. D. Kellog, Foundations of Potential Theory, Dover,
New York (1953)
22) E. Regenstreif, in Focussing of Charged Particles by A. Septier,
Academic Press, New York and London (1967)
23) D. A. Swenson, AECL-5677, 234 (1976)
24) H. Deitinghoff, P. Junior, H. Klein, ibid, 238
25) E. D. Courant, H. S. Snyder, Ann. Phys. 3, 1 (1958)
26) M. Promé, Focussing, in: ref. 2
27) L. Smith, R. L. Gluckstern, Rev. Sci. Inst. 26, 220 (1955)
28) R..Friemelt, Unilac report No. 5-67, GSI, Darmstadt (1967)
29) W. D. Kilpatrick, Rev. Sci. Inst. 28, 824 (1957)
30) D. BShne, W. Karger, E. Miersch, W. R&ske, B. Stadler
IEEE Trans. Nucl. Sci., NS 18, No. 3, 569 (1971)
31) D. Warner, private communication
32) J. E. Vetter, editor, KFK 2542, Kernforschungszentrum
Karlsruhe, (1977)
33) K. Kaspar, AECL - 5677, (1976)
34) K. G. Steffen, High Energy Beam Optics,
Interscience Publishers, New York (1965)
Acknowledgement

The many valuable discussions with C. Passow and J. E. Vetter

are appreciated.





