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Abstract

A finite difference scheme is described for three-dimensional time depen-
dent direct numerical simulation of turbulent velocity- and temperature
fields in channel flows. The details of the subgrid scale models inclu-
ding wall roughness effects are discussed. The calculation of the tur-
bulent flow through an infinite plane channel with one smooth and one
rough wall is successfully used for the verification of the method. It
is further successfully applied to a partly roughened channel to study
the effect of secondary flows. The numerical results for the fluid air
show, that the secondary flow is not only carrying momentum and heat,
but also the velocity— and temperature fluctuations and the cross-cor-
relation behaviour between velocity and temperature fluctuations. Thus
a strong influence on the eddy diffusivities is detected. The turbulent

Prandtl number seems to be unaffected.



Numerische Untersuchung des Einflusses von

Sekundirstrdmungen auf charakteristische Daten der Turbulenz

Zusammenfassung

Es wird ein finites Differenzenverfahren zur 3-dimensionalen instationdren
direkten numerischen Simulation turbulenter Geschwindigkeits- und Temperatur-—
felder in Kanalstrdmungen beschrieben. Insbesondere diejenigen Teile der
Feinstrukturmodelle werden diskutiert, die Wandrauhigkeitseffekte beriick-
sichtigen. Zur Verifikation des Verfahrens wird die turbulente Strdmung

in einem unendlich ausgedehnten Plattenkanal mit einer glatten und einer
rauhen Wand erfolgreich simuliert. Mit #hnlichem Erfolg wird das Verfahren
auch auf einen Kanal mit teilweise rauhen Winden zur Untersuchung der Aus-
wirkung von Sekundidrstrdmungen angewandt. Die Auswertung der numerischen
Ergebnisse fiir das Fluid Luft zeigt, daB die Sekund&drstrdmungen nicht nur
Impuls und Wirme transportieren, sondern auch Geschwindigkeits— und Tem-
peraturschwankungen. Uberdies sind auch die Kreuzkorrelationseigenschaften
zwischen Geschwindigkeits— und Temperaturschwankungen transpcrtierbare
GréBen. Die turbulenten Austauschgrdfen werden ebenfalls als transportier-
bar erkannt. Die turbulente Prandtl-Zahl scheint von den Sekundidrstrdmungen

nicht beeinfluBt zu werden.
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1. Introduction

The method of direct numerical simulation of turbulent flows is based on
the entire time-dependent, three-dimensional equations for mass, momentum
and heat. Using finite difference grids with finite spatial resolution,
sub-grid scale models are required for the consideration of the momentum
and heat transport within the grid cells. Turbulence-elements which are
greater than a few grid cells are simulated directly. Therefore, all
those turbulence quantities may be calculated from the numerical results,

which are largely dominated by the gross-scale turbulence.

For turbulent channel flows this method was used for the first time by
Deardorff [—1_7. The method was extended by Schumann [—2_7 for applica-
tion to non-equidistant meshes,to finite Reynolds-numbers and to a more
realistic consideration of the sub-grid scale fluxes in the near wall
region. Further extensions [_3_7 relate to the applicability to low
Reynolds-number flows, coarse grids, rough walls and additional simula-
tion of the temperature field. Thus the accuracy of the numerical results
becomes comparable to experimental data, even if rather coarse grids are
used and short time intervalls are calculated 1_3, 4_7. Studying the tur-
bulent temperature fields of the flow of liquid metals with very small
molecular Prandtl-numbers, the method has some advantages compared to

experiments [_3, 5_7 especially with regard to accuracy.

Because of these advantages, the method of direct numerical simulation
provides a good possibility to study the effect of secondary currents,
which occur in many technical flow problems like in rectangular or

square ducts, eccentric annuli, or in fuel elements of nuclear reactors.
Some of the models usually used to calculate the detailed flow in such
geometries do not include secondary flows, but only non-isotropic eddy
diffusivities [_6, 7_7. Some include secondary flows, but use eddy dif-
fusivities which do not depend on the secondary flow 1_8, 9_7. In some
models additional approximative transport equations are used for all
Reynolds stresses [_10_7. Nevertheless all models are of modeste accuracy.
This is due to the large number of unknown 'constants' included in the
models. By appropriate estimation of these 'constants' from proper experi-
mental results / 11 - 14_/ one can reproduce similar numerical results
with very different models. But the same values of the 'constants' may

not be used for other types of flows or geometries. The models are there-



fore not universal.

In this paper the method of direct numerical simulation using sub-grid
scale models is shortly discussed, as realized in the computer code
TURBIT-2 (Turbulenter Impuls Transport) [_3_7. It will be shown which
parts of the model account for wall roughness effects. The main pur-
pose is to present some numerical results for turbulent flows through
partly roughened plane channels with and without secondary flow. There-
by we find it as a further advantage of the method that the instantaneous

velocities, pressure and temperature values are known in each grid cell

at the same time,



2. Basic equations of the direct numerical simulation method

2.1 _Averaged conservation equations

The method of direct numerical simulation presented in this paper is based
on a finite difference scheme which solves the Navier-Stokes equation, the
continuity and the thermal energy equations. For the deduction of this
scheme the basic equations are averaged over finite grid volumes

V = Ax] . sz . Ax3:

v; s 1 f s Joy(x ',x, ',x,")dx, 'dx_'dx. ' (n
A 1 2 3 3 2 1
X A0S Ak Ax. Ax
1 2 3
Ve Ax Ax
3y _ 1~ 1- 1, _ 1= . P 1=
T T Ix / y(x]+ 7 ) y(x] 3 ) _/ 61 y (2)

1 1

Hereby, the triple integral defining the average v; (1) is integrated by
parts with respect to the divergence type terms (2) so that the average
is expressed in terms of finite differences of surface mean values i;
1_2_7. This allows using grid cells with different spacings Axi. The

resultant equations are the averaged mass, or continuity equation (3),
the averaged momentum, or Navier-Stokes equation (4) and the averaged
thermal energy equation (5), where 6 is the volumetrical heat source

within the fluid:

§., "u. =0 (3)
1 1

3 v- j= j- j - Ay

— = - - 1 L.

Y us §.7u. " u. §.7u. uj Gi p+6j(v v )+61ipX (4)
_a__ VE = "6 j— j-f - (S ju 'T' + 6 (a ja_—’.r_ + é (S)
ot i Y% i Y TS

Regarding to repeated lower indices the summation convention is assumed.
The geometry and the coordinate system are shown in Fig. 1. The x]—direc—

tion corresponds to the direction of the time mean velocity and pressure



X2 %
X3 Fig. 1:
u, u, Channel geometry
<g>
——U3

gradient P_ = 2 of the infinite plane channel. The x3—direction is per-
pendicular to the walls. All quantities of equations (3) to (5) are made
dimensionless by means of the channel width D, the friction velocity

j: = (?:/5)1/2 (?: = time mean wall shear stress, avet?ged Pvez Eotbkwalls,
p = constant density), and the heat flux temperature TX = qw/(p °5 uT)

(Qw = time mean wall heat flux, averaged over both walls, Ep = constant
specific heat capacity). The dimensionless diffusivities are

v = 3/(3:'6) = ]/ReT and a = ]/(ReTPr). By using the friction coefficient

c,. we get the common Reynolds-number:

f

Re = Re_ (ﬁb/at) = Re_/BTc, (6)

No approximations have been so far involved. However equations (3-5) are
yet unclosed. For the unknown subgrid scale (SGS) fluxes of momentum

Ju'iu'j and heat Ju'J.T' special subgrid scale models are introduced which
are appropriate for channel flows with smooth and rough walls and for

channels with and without secondary flows [_3_7.

First, according to [—2_7, the SGS-fluxes are split formally into a

fluctuating locally isotropic part and a time mean inhomogeneous part.
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Secondly, for both parts gradient diffusion is assumed, analogues to the

molecular diffusion:

Jor—— _ _ ij _ _ij %
u iu j u (Dij <Dij >) H <Dij> (7)
jor—=v _ _ ] g oo oJdmay _ 3. % hES
u J.'I‘ a, Gj T ~ <“T>) a, 6j< T> (8)
where
Dij = aui/axj + auj/axi (9

and <D, .> is the time mean value of (9). The unknown eddy diffusivities
1] 1Ju*, and eddy conductivities Jat and Ja * are calculated from

U and ¢

modified common turbulence models:

The isotropic eddy diffusivities Yy are determined by a Prandtl-energy-
length-scale-type model [-2_7. The isotropic eddy conductivities Jat are
modeled in an analogues manner, assuming that the subgrid scale heat flux

depends on the velocity fluctuations within the grid cells [-3_7:
W= c, Jc dr x vgTy1/2 (10)

vgny 1/2 (1)

o}
(]

b ip ]
¢ = Cpp "Cp CF °Cq

Here the characteristic length scale is the surface area 9F of the grid
cell over which the averages (7 and 8) are defined, and the characteristic
energy is the SGS-kinetic energy 'E' of the not resolved velocity fluctua-

tions (see chapter 2.3).

The coefficients J.CS, ijC and J.CT account for geometrical details of the
mesh and the finite difference scheme and are of order one. Because of
the formal splitting (7, 8) of the SGS-fluxes, these coefficients, and
the dominating coefficients C2 and CTZ’ may be determined theoretically
under the assumption of locally isotropic subgrid scale turbulence / 3_/.
To this purpose we assume the validity of the well-known KolImogorov

spectra for the kinetic energy and temperature variances.

The inhomogeneous eddy diffusivities lJux and eddy conductivities Jat*

are derived from modified common mixing length models /[ 3.7:



/3u
2 | /2%y
11 °3j \%%) 10° 4%;) (12)

Yy—

i, * 2 ST
a §,. 1 1 <3x3> £, (Cpppe 8%;) (13)

The mixing lengths 1 and 1H are well-known functions of the distance y
from the wall and the dimensional wall roughness h=n . Re‘r (h = height
of sand grain roughness). In addition 1H depends on the molecular Prandtl
number of the fluid. We use a Nikuradse-Van Driest, and Cebeci formula-

tion respectively / 3, 15_7:

—
I

£, (v, b (14)

1, = £.(y, Pr) (15)
The crucial factors in (12, 13) are the damping functions f and fH. They
are designed so that for very coarse meshes the SGS-models become equal
to the common models for time averaged turbulence (f, fH,E»l). For very
fine resolution the functions vanish (f, fH —>» 0) since in this case all
SGS-fluxes are described by the isotropic parts. These functions have

been adjusted numero-empirically once for all cases [—3_7.

2.3 Additional SGS-energy_ equation

The characteristic energy used in the isotropic parts (10, 11) of the

V—_2
SGS-flux models is the subgrid scale kinetic energy E' = % (ui— V"'u";) .
It is calculated using an additional time dependent three-dimensional

transport equation as deduced in / 2_7:

3VET

Yl Production + Diffusion - Convection - Dissipation (16)

To get a consistent formulation and a better physical behaviour of the
isotropic equation used in [—2_7 it is necessary / 3_/ to include in-
homogenuity effects in the production and dissipation terms. For the
SGS-flux in the production term

i—Tr—r

. L j—
Production = u, uj Gj u, (17)
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now not only the isotropic part is used, but also the inhomogeneous part
of equation (7). This means that all energy dissipated in the SGS-flux
model from the large scale structure appears in the subgrid scale struc-
ture. According to equations (12, 14) the production is now influenced
directly by the wall roughness n'. (In the final finite difference form
of the production term the additional theoretically determined coeffi-
cient Cpo = c,/c, /2, 3_/ corrects some further required finite differ-

ence approximations.)

The extended model for the SGS-dissipation 'e' accounts also for inhomo-

genuity and roughness effects. In addition it allows the application of
the method to smaller Reynolds numbers (Re > 104) and coarser grids. We

use the following Rotta-type formulation / 3, 4_/:

2

Ve = ¢ "E’3/2/Min(h, Cyyl) + C (18)

veT .
3 v E' /Min(h, C311)

32

hoo= (ax, dx, axg) '3 (19)

The first term is dominant at large Reynolds numbers, while the second
term at small Reynolds numbers. The minimum function gives the grid size
h as a characteristic length scale in the core of the flow, and the
mixing length 1 (14) in the near wall region. For the determination of
the coefficient C3 and of the constants C31 = 0.74 and C32 = 20.0 see

/ 3_/.

2.4 _ Boundary conditions

In the x|~ and the xz-direction it has been assumed periodicity with
periodic lengths X, and X, (Fig. 1). In the x3fdirection, the normal
velocity has been set to zero at the walls. Regarding to the xl-direc-
tion the time dependent wall shear stresses Tt =—v353775§; are com~
puted from the proportion / 2_/:

1—

L _' (20)
wi <'u,> ]| wall adjacent grid cell.
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From experiments / 16_/ it is known that there is a phase lag between u,
and Tt The phase lag is not explicitely included in equation (20), but
the present model accounts for the time dependence of Ti which leads

~

anyway to a better approximation than assuming Toi © <Tui’" The time mean
values <t,;> are calculated from the actual and recent velocity fields

by proper averaging of the universal logarithmic velocity profile [-3_7

<u1> 1

+ +
u = ﬁi = :111 (y E()) (21)

over a grid cell in which the law of the wall is valid. For the Karman
constant we use Kk = 0.4, The wall roughness coefficient E(h+) in the
logarithmic profile can be a function of the equivalent sand grain rough-
ness height n* [—15_7 and of the x2—coordinate. This allows studying

secondary flows caused by non-constant roughness.

The normal wall heat flux qwi = -a33f7§;; is formulated in two different
ways depending on the molecular Prandtl number Pr of the fluid. For very
small Pr of liquid metals (Hg:Pr = 0.02, Na:Pr = 0.007) a linear approxima-
tion for the gradient in the wall heat flux has been used 1-3, 4_]. For
large Prandtl numbers a formulation has been used similar to (20):

c.lwi wi (22)

—
<qwi> Tui” wall adjacent grid cell

VT-T .

< T-

The time mean values <qwi> are calculated from the actual temperature field

by proper averaging of the universal logarithmic temperature profile [_3_7:
<T-T .> 1

™ o= E <Twi>l/2 =— 1lny' + BT(h+, Pr) (23)
<qwi> “H

After extensive comparisons of experimental data the Karman constant for

heat has been set to ky = 0.465 /3.7, and for the function BT(h+’ Pr)

the theoretical approach of Dipprey and Sabersky [—3, 15_7 has been

followed.

Details of the finite difference scheme adapted to integrate the basic

equations (3-5) in space and time are given in /"3, 4_]. Here the main
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features of the method of subgrid-scale modeling are discussed only with
particular reference to the aspects including wall roughness effects. The
inhomogeneous parts (12, 13) of the SGS-models, the production (17) and
the dissipation terms (18) of the SGS-energy equation account for rough-
ness effects by means of the mixing length (14). The formulation of the
boundary conditions (20, 22) accounts for the wall roughness by using
the universal logarithmic laws of the wall (21, 23). No special assump-
tions are added which refer to secondary flows. Therefore the results
derived for the secondary currents do not reflect a peculiarity of the
model or of the numerical method of solution but reflect a physical
situation which is implicitely described by the full set of equations
(3-5).
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3. Numerical Results

Purpose of this section is first to demonstrate the general agreement
between experiments and TURBIT-2 results for rough-walled channels. For
smooth channels the agreement has been proven in [_3, 4, 5_7 for plane
channel and annular flows in a wide range of Reynolds and Prandtl numbers.
Secondly we aim at showing the capability of this method to study the

effect of secondary flows on typical turbulence data.

For the verification of the code in the case of rough walled channels an
experiment of Baumann [—17_7 has been recalculated. The experiment was
performed in a plane channel [_18_7 with one rib-roughened wall. The
measured velocity profiles were used to determine the equivalent sand-
grain roughness height hl+ = 465, All input data used for the calculation

of this test case, called K7, are listed in Tab. 1. The mesh contains

Tab. 1: Case specifications

' + |Problem no.of CPU-time
Xl x2 IM JM KM] Re Pr hl time time steps 1IBM 370/168
K7 2 1 16 8 16| 194900 7 465 (6.09 1500 30 min
T 9.54

Baumann

180
K8 2 3 16 16 16| 80000 0.7 0 }|6.57 2730 105 min
Hinze 180

only 16-8:16 grid cells. The widths of the meshes are Ax, = X]/IM = 2/16,
Ax, = XZ/JM = 1/8, and Ax3 = 1/KM = 1/16, In addition to this input data

in both cases the wall roughness height at the second wall was set to

hz+ = 0; the wall temperatures were Twi = 0; the volumetrical heat source
was set to Q = 2 to obtain a stationary time mean temperature field. The
subgrid scale coefficients calculated for the grid K7 and the corresponding
Reynolds and Prandtl number with the method given in 1_3_7 are listed in

Tab. 2. A sensitivity study has shown [-3_7, that the theoretical values
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Tab. 2: Theoretical values of the subgrid scale coefficients
SGS- K7 - Baumann K8 - Hinze
coefficients j=1 2 3 j=1 2 3
C2 0.0755 - - 0.0691 - -
¢ 1.5842 1.5842 1.4305 1.5621 1.7659 1.4570
e - 0.9813 | 0.7481 - 1.0245 | 0.6907
2ig - - 0.7481 - - 0.7608
JC5 0.7752 0.7752 0.9242 0.8379 0.6783 0.9438
Cro 0.1753 - - 0.1699 - -
JCT 1.1317 1.1317 0.8112 1.0462 1.3295 0.7740
c, 0.8247 - - 0.8395 - -
o
C3 0.5926 - - 0.5553 - -
of C2 and CT2 are somewhat too large. Therefore in all cases C, and CT2

were divided by a factor y = 1.4 instead of the previously used factor

y=3/21.

1 Time mean_ flow field

The time mean value of the velocity profile, calculated from the simulated
time dependent velocity fields, is shown in Fig. 2. The computed profile
is in very good agreement with the experimental data of Baumann [-17_7,
except in the near roughness region. This deviation may be due to the
different types of roughnesses (rib roughness with recirculation zones
behind the roughness elements in the experiment and sand grain roughness
without resolvedrecirculation zones in the calculation) and due to the
different types of variables compared: The experimental data are given

as local mean values, while according to (1, 2), the numerical data are

given as linear averaged surface mean values.
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Umax TURBIT-2 HUn'\ox Baumann

« Baumann 1976 uy
« TURBIT-2, K7 Qi

Fig. 2: Time mean velocity profile between the
rough (hl+= 465) and smooth (h2+= 0) wall in

the constant roughened channel

The logarithmic presentation of the time mean velocity profile near the
rough wall shows a steeper increase than the averaged law of the wall (1,21).
The resulting Karman constant is Krough = 0,333, This is in rather good
qualitative and quantitative agreement with several experimental results

of Baumann [—17, 19_7.

24+

(g}
16
8-
o law of the wall
» TURBIT-2, K7
hi
0 1 1 T T 1
20 2.6 32 38 L4

log Y{

Fig. 3: Logarithmic presentation of the velocity

profile near the rough wall
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Tab. 3: Comparison of some characteristic numerical data with

experimental data of Baumann / 17_7

! - -
Baumann / 17_/ TURBIT-2, K7 Deviation

Gl /4 16.53 17.25 +h 7

max’ “tl
ulmax/uTZ 24,72 25.7 +4 7
w fE 19.82 20.3 +2.5 %

max T
cf 0.0254 0.0267 +5,1 7%
Yemo 0.722 0.7 -3 %
y 0.614 0.6 -2.3 7
umax

The quantitative comparison of some characteristic data of the velocity
profiles in Tab. 3 shows that the deviation of the maximum values of the
velocities is only 2.5 %, and of the friction factor 5.1 Z. The small
positiv deviations of the numerical results from the experimental results
are due to the simulation of the experimental finite plane channel with
side walls with a in the xz-direction infinite plane channel in the
calculation 1_20_7. The position of the maximum velocity is reproduced

with comparable accuracy.

Some typical vector- and contour-line plots are given in Fig. 4, which
shows the instantaneous fields of the resolved fluctuating velocities,
the total turbulence energy, the turbulent pressure, and the resolved
fluctuating temperature., The main flow direction is from left to right.
The lower boundary represents the roughened wall, the upper boundary the
smooth wall. All the contour lines and velocity vectors show the known
quasi-random behaviour. The velocity-, energy—, and temperature contour
lines show some inclination against the flow direction towards the
middle of the channel; this can be observed in all plots of this type
[—3, 4, 21_7. As expected from experimental results [—22_7 the



Vil 05

1 H i 1 Il 1 1 1
717 710 LT 77 A8}
'17 )\\\//u/? N
4 a
&

L

A

ITTTTTTTT

S Lb) LIS L ] L4 L

AL L]
T

L

o111 1d]]

AT

Fig. 4: Instantaneous resolved fluctuating velocities
i__ ' i_ i— i'—| 2 V=T
N = ., = < . > = . +
uy ug u.>, tsfél energy E_ . ug /2 E',
fluctuating pressure p and temperature VT' in the K7-
Baumann channel. A = contour line increment; dashed

curves correspond to negative values. .

fluctuations are larger near the roughened wall than near the smooth wall.
A correlation between the pressure field and the other fields is not
obvious. Indeed, the quantitative results for this cross—-correlations are

almost close to zero (see Fig. 16, 18 in the Appendix and [—3_7).

The root mean square values (rms) of the velocity fluctuations calculated
from the simulated time-dependent velocity fiels are shown in Fig. 5. As
remarked above the fluctuations are larger near the rough wall (x3 = 0)
than near the smooth wall (x3 = 1) as concluded from Fig. 4. The minima
are found between the locations of maximum velocity and of zero shear
stress. No experimental data from Baumann are available for comparison.
Some measurements of Hanjali¢ and Launder [—22_7 have therefore been
included to show the general agreement. The experimental data are trans-
formed in such a way, that the minima appear at the same cross—stream

position as the minima of the numerical results. This position has been
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259 i=1i=2 i=3
(v:2) ., e « a  Hanjali¢, Launder 1972
: . » o & TURBIT-2, K7

0 2 4 B 8 10

Fig. 5: Root-mean-square values of the velocity fluctuations

T " —
Véui2> = /£IE£2> + % <"E'> in the K7-Baumann channel

found numerically to lay between the positions of maximum velocity and
zero shear stress, perhaps nearer to the last one. This is in qualitative
agreement with the experimental results of Rehme 1_23_7 for the non-
symmetric flow through annuli with very small ratios of radii, or with

the experimental results of Lawn / 24_/ for smooth/rough annuli, but this
is discordant to the experimental results of Hanjalié et al. [—22_7.

These experimental results are anyway not yet fully understood regarding
to the behaviour of the rms-values of the xy-component beyond the position

of the minima.

The total turbulent shear stress is shown in Fig. 6 as sum of the
directly resolved part and of the inhomogeneous part of the SGS-model

(7, 12). The smaller computed values correspond to that part of the shear
stress resolved directly by the large scale flow. With that, the major
part of the momentum transport is accomplished by the resolved flow part,
The shear stress distribution is not linear because of insufficient time

averaging caused by the small computing time invested in this problem
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075+ {uju3) R RECTATY)
Baumann 1976 s
0.25- (5333
5 10
-0.251 -
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Fig. 6: The turbulent shear stress as sum of the directly
resolved part T = <]E-'Eu !
res 1 3

SGS-model <3u1'u3'>

> and the inhomogeneous

(Tab. 1). The position of the zero-crossing of the turbulent shear stress
is calculated with an accuracy of 3 % (Fig. 6, Tab. 3). The small dis-
placements are caused by the gradient-type SGS-model for the inhomoge-
neous part (12) of the 3GS-shear stress. This part, and therefore the
deviation as well, becomes smaller if grids with finer spatial resolu-

tion are used.

The analysis of the simulation of the turbulent flow through a plane
channel with one roughened and one smooth wall has shown good agreement
with the experimental results of Baumann. Not a single adjustment of
additional correction factors has been required to tune the numerical
results. Even using a rather coarse grid the accuracy of the numerical
results is better than 5 % nevertheless. The accuracy of the numerical
simulation of turbulent channel flows is therefore comparable to that

of experiments.
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3.2 __ Plane channel flow with one partly roughened wall

To study the consequences of secondary currents on characteristic¢ turbu-
lence data the turbulent flow through a channel with one smooth wall and
one wall divided into rough and smooth stripes was calculated. The channel
looks like that of Hinze / 14_/, except for the infinity in the X,-direc—
tion of the channel in the numerical simulation. As a consequence, the
pattern of the secondary flow is not directly comparable. With this in
mind, to save computing time the lateral periodicity length of the walls

X2 (Fig. 1) was reduced to X2 = 3 (Tab. 1).

For the same reason the mesh width Ax, of the grid K8 was chosen to be
Ax, = X2/JM = 3/16 only. The data given by Hinze are not sufficient to
estimate an equivalent sand-grain roughness height h' for the rough
stripes. The numerical results will therefore be comparable only in a
qualitative manner with the channel data of Hinze [—14_7. Further input
data for the simulation are summarized in Tab. 1. The theoretical values
of the subgrid scale coefficients are given in Tab. 2. (Some of the

following numerical results have also been published in / 25_7.)

In Fig. 7 vector- and contour~line plots are given for the time averaged
fields of the velocities, the temperature, the resolved parts of the turbu-
lent shear stresses and heat fluxes. The main stream direction is perpen-
dicular to the plots. The roughness discontinuitieg at the lower wall cause
secondary currents in the plane perpendicular to the mean velocity, which
are represented by the vectors. For instance in the plane of symmetry in
the smooth region the secondary flow carries fluid of low momentum and
temperature from the cooled walls in the cross-stream direction to the
middle of the channel. By that means the maxima of mean velocity and
temperature do not appear in this region. These maxima are rather found
near the boundaries between the smooth and rough stripes in regions, in
which the secondary flow is almost zero. In the rough region the secondary
flow carries fluid of high momentum from the near smooth wall region to

the near rough wall region.
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The velocity field calculated by time averaging the simulated turbulence

fields is in good qualitative agreement with the experiments of Hinze

[-14_7. For the temperature field no comparable experimental data are
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available. But the experimental results from Kirsch [_26, 27_7 for the

temperature field behind blockages in fuel elements of nuclear reactors

indicate that the position of maximum temperature should be in a region

of very small secondary flow, which agrees with the numerical result.
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The isolines of the resolved part of the radial turbulent shear stress

32t 197 and heat flux <Juy' VT'> show regions of nearly constant

3 ] 3
values especially near the lower wall. Some of the isolines are even

parallel to the secondary flow vectors. This behaviour is not so obvious

at the lateral turbulent shear stress <ZG;" ET'> and heat flux
<ZE;' VT's, which is mainly dominated by extrema at positions at which

the mean flow or temperature field shows larger lateral gradients.
Except for these two plots most of the isolines are distorted in the
direction of the secondary flow. It is therefore supposed that the
secondary flow is not only carrying momentum and heat, but also other

turbulence data like the turbulent shear stress and heat flux.

Several cross stream profiles are given below for the lateral positiomns
Xy = 1.5 (smooth) and Xy = 2.44 (rough). The mean velocity profile (Fig. 8)

in the rough region is somewhat more symmetrical than in the smooth region.
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Fig. 8: Main and cross-stream velocities in the smooth (x2 = 1,5)

and rough regions (x2 = 2.44)
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This behaviour is contradictory to that obtained without secondary flow
at an even larger wall roughness height (see Fig. 2). The reason is that
the cross stream velocity <uqg> carries fluid of low momentum from the
rough region to the smooth region and vice versa. The prediction of a
partly linear and not symmetrical profile in the plane of symmetry is
consistent with the results of Hinze [_14_7. The calculated secondary
flow is smaller by a factor of 3. This is mainly a consequence of the
infinite plane éhannel and a too small equivalent sand-grain roughness.
(The roughness height which has been chosen here results in an over all
friction coefficient ce = 0.0214 and a Nusselt number Ny, = 150.4.)

Nevertheless all results of Hinze can be verified sufficiently.

The above conclusion applies also to the rms-values of the velocity

fluctuations (Fig. 9), which show the same symmetrical behaviour as the

Fig. 9:

Root-mean~square velocity
fluctuations <u{2> =
/<lﬁi'2> + 2/3 <VE'> in the

0 2 4 6 8 10
1—————'-X3 smooth (x, = 1.5) and rough
=2 ‘aﬁjs-zs (x2 = 2.44) regions of the
=3 02 K8-Hinze channel.
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15
F1.0
-05
0
1.0
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mean velocity. The fluctuations are larger near the rough wall, than near
the smooth wall, which is consistent with Fig. 5, but they are of compa-
rable magnitude if normalized with the local wall shear stress. The minima
are mainly located between the points of maximum velocity and zero shear

stress.

The radial turbulent shear stress shows a similar behaviour (Fig. 10). The

shear stress profile is strongly non linear, so that for example the point
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of zero shear stress in the smooth part of the channel (near the plane of
symmetry) is not to be found in the middle of the channel, also the wall
shear stresses lTwil at both walls are nearly equal. The curvature of the
shear stress profiles is directly connected with the direction of the

cross stream velocity ug (Fig. 8).
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Thus one can verify that the secondary flow is not only carrying momentum,
but also the kinetic energy of the velocity fluctuations, here represented
by the rms-values, and the cross—correlation behaviour between several
velocity fluctuations, here represented by the turbulent shear stress.

The existence of distortions in these fields is therefore an additional
indication for the existence of secondary flows, as assumed by the inter-
pretation of experimental results in [—28, 29_7. The reason for this pro-
nounced transport behaviour seems to lay in the slow build up (over large
distances) [-3, 30_7 and just so slow reduction [—30_7 of these physical

quantities.

15-¢tw) /2
— * x ¥ Fig. 11:

Wall shear stress profile

0 P oSl S A

V2 at the partly roughened wall
051 x (- Twy
- °(Tw2)V2 Wl and smooth wall W2.
h{=180 h{=0 h{=180
0 1 2 3

= X2

Because of the coarse grid no data are available for the nearest region to
the wall. From the lateral wall shear stress profile (Fig. 11), calculated
from the numerical results by using grid cell averaged logarithmic velocity
profiles (1,21), one can see that there is no strong influence of the
secondary flow. As found experimentally by Wang and Nickerson 1_13_7 the
wall shear stress shows sharp jumps at the positions of the roughness dis-
continuities. That means, that nearest to the wall a region exists which
shows no or very small influence of the secondary flow. There is no numer-—

ical evidence that this region is only limited to the viscous sublayer.

The effect of the lateral roughness discontinuities on the temperature field
can hardly be estimated. In the rough region one would expect an augmenta-

tion of the heat transfer rate, so that the internally heated air should be
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cooler in this region. But from the temperature field shown in Fig. 7 and
the corresponding profiles in Fig. 12 one can see, that the temperature

field is rather unaffected by the roughness. The secondary flow carries

151
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Fig. 12:
10- Time mean temperature
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5 .
and rough region.
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fluid with high temperature from the middle of the channel to the rough
wall, and cooler fluid from the rough wall to the smooth wall and to the
plane of symmetry. Thus the temperature differences within the fluid are
largely compensated. The same holds also for the rms-values of the temper-
ature fluctuations (Fig. 13) and for the radial turbulent heat flux

(Fig. 14). Compared to the velocity fluctuations (Fig. 9), the temper-
ature fluctuations in the rough and smooth regions are not very different,
being only a little larger near the rough wall. Except for the displace-
ment of the positions of the minimum fluctuations and for the zero turbu-
lent heat flux these profiles are rather unaffected by the roughness

discontinuities and the secondary flow. Nevertheless the turbulent heat
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flux profiles show the typical curvature mainly correlated with the local
cross stream velocity (Fig. 8). The temperature fluctuations are therefore
transportable physical quantities as well, but the influence of the second-

ary currents upon them is not so distinct as on the velocity fluetuationms.

The wall heat flux profile calculated from the numerical results by proper
averaging the logarithmic temperature profile (1, 23) shows a similar de-
pendency (Fig. 15) on the wall roughness discontinuities as the wall shear
stress. This is mainly due to the interconection represented by equation
(23 1.h.s.). The wall heat flux éw] at the partly roughened wall is weakly
ascending in the direction to the plane of symmetry, that means in the
direction of the secondary flow near this wall (see Fig. 7). From this
behaviour one may conclude that nearest to the wall a region exists which

shows a very small influence of the secondary flow omnly.
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From the results of the time dependent three-dimensional direct numerical

simulation of turbulent flows one is not only able to calculate physical

quantities like rms-values, shear stresses and heat fluxes, but also all

quantities which are largely dominated by the resolved large scale
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structure. Quantities of large interest for most of the turbulence models
are the turbulent eddy diffusivities €n and eddy conductivities €y which
can be calculated from the results given in the last two sections. Instead
of the correct fourth- and second-order tensor notation [_31, 32, 33_7
let introduce here the following generally known definitions:

<u,' u

]
>
IS = - .__.1__.—3—— (24)

<u3' T'>
€&¢ T 7 3<T> (25)

8x3

The radial eddy diffusivity for momentum € (24), calculated from the data
shown in Fig. 8 and 10 is presented in Fig. 16. The eddy diffusivity is very

small near the upper smooth wall, smaller than for smooth pipes
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Fig. 16

Radial eddy diffusivity for momentum €0 and heat €y in the

rough (x2 = 2,44) and smooth (x2 = 1.5) region.
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(em max ~ 0.04), even when normalized with the local wall shear stress.
Near the partly roughened wall (at Xq = 0) € is comparable to the pipe
data in the rough region, but is somewhat greater in the smooth region.
This is caused by the secondary flow, which carries fluid of high cross
correlation from the rough wall to the plane of symmetry. By that means
the highly turbulent boundary layer concentrated near the partly rough-
ened wall in the plane of symmetry causes a very effective radial tur-
bulent momentum exchange. For the lower wall the local wall shear stress
of the rough region seems to be a good quantity to normalize the eddy
diffusivity in the smooth region in order to get results which are
comparable to pipe data (use the left inner nomenclature of the right
profile for the left profile of Fig. 16. From this it is concluded, that
the influence of the secondary flow on the velocity profile is different
from that on the shear stress profile. Therefore the eddy diffusivity

is not only a function of the geometry, but also a function of the sec-
ondary flow, except for the nearest region to the wall, as may be con-
cluded from the small influence of the secondary flow on the wall shear
stress distribution (Fig. 11). This implies that in the core of the flow
field the eddy diffusivity for momentum is a transferable quantity as

assumed in / 34_/.

008¢ my

0.06

0.04+

0.02- Fig. 17:

0 Lateral eddy diffusivity
for momentum ¢ in the

mé
rough region.
The lateral eddy diffusivity for momentum €m¢ = - <ul' u2'>/(8<ul>/8x2),

calculated from the numerical results given in Fig. 7, is shown in Fig. 17

for the positions X, = 2.81 and X, = 3.0 in the rough region. The
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scattering of the numerical data is very large, especially near the smooth
wall, so that no conclusions can be drawn from these data. The reason for

this consists in the fact that firstly e€_, is mostly dominated by small

m
gradients 3<u|>/3x2, and secondly these siall effects can only be esti-
mated with sufficient accuracy using large time intervals for time aver-
aging. The time interval realized (see Tab. 1) is too small to evaluate
€ from the time dependent numerical results. Comparing the length, in
units of the channel width, over which the fluid is transported meanwhile
time averaging in experiments and in our numerical simulation, one can
estimate that the computing time needed for comparable accuracy should

be larger by a factor of about 10. Therefore only quantities which are

less sensitive to short time averaging have been discussed here.

The radial eddy diffusivity for heat €q (25) calculated from the data

shown in Fig. 12 and 14, is a little larger than that for momentum (Fig. 16).
The influence of the secondary flow upon it seems to be nearly the same

as on the eddy diffusivity for momentum. The resulting turbulent Prandtl-
number Pr_ = em/eH averaged over the total channel is 5;; = 0.74. The
positions of the zero fluxes and of the maxima of the velocity and temper-
ature profiles are not always the same. Therefore one has not only to

use negative eddy diffusivities in the regions between the locations of

zero fluxes and corresponding maxima (see Fig. 16), but also to use neg-
ative turbulent Prandtl-numbers in regions, in which the eddy diffusiv-

ities are of different sign.

Except for this sign change caused by the smaller influence of the sec-
ondary flow on the temperature statistics than on the velocity statistics
the turbulent Prandtl-number is fairly unaffected. This means that the
behaviour of €y and € is nearly similar. One can therefore conclude that
not only € but also €4 is strongly dependent on the secondary flow.
Regarding to the rather unaffected wall shear stress distribution

(Fig. 11) and wall heat flux distribution (Fig. 15), one may conclude,
that close to the wall both radial eddy diffusivities show no or small

influence of the secondary flow.
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4, Conclusions

An extended version of the method of direct numerical simulation of turbu-
lent flows has been used to study the effect of wall roughness on flow
phenomena. The subgrid scale models used include the wall roughness effects
in a consistent manner. No special additional assumptions have been intro-
duced to account for wall roughness and secondary current effects. In
addition, the same values of the correction factors have been used as

determined earlier for smooth channels.

For verification of the computer code TURBIT-2 for rough channels the turbu-
lent flow through a channel with one smooth and one rough wall has been
calculated. Most of the quantities evaluated from the time dependent three-
dimensional simulation agree with the experimental results within 5 Z.

This accuracy is remarkable because of the coarse grid used.

To study the influence of secondary flows the turbulent flow of air through
a channel with lateral roughness discontinuities has been simulated. The
method predicts successfully secondary flows. In accordance with experi-
mental results the mean velocity field, the rms-values of the velocity
fluctuations and the shear stress profiles in the plane of symmetry show
strong distortions caused by the secondary flow. The numerical results
for other planes within the channel show that these distortions are
strongly correlated with the secondary flow. This is not only true for
the velocity statistics, but also for the temperature, temperature fluc-
tuations and turbulent heat flux fields. The radial eddy diffusivities
calculated from the time dependent simulated turbulence are strongly
affected by the secondary flow. Regarding to the lateral eddy diffusiv-
ities no conclusions may be drawn due to statistical errors caused by
short time averaging. The turbulent Prandtl-number seems to be unaffected
by the secondary flow, except for the occurrence of small regions where

it takes negative values.
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Nomenclature

Operator notation for any quantity Y:

’_41 <o

e
=<

<Y>

any dimensionless quantity
any dimensional quantity
volume mean value (eq. 1)

surface mean value for the surface JF with the normal

in the xj-direction (eq. 2)

time mean value

deviation from a mean value

volume mean value of the subgrid scale structure

finite difference operator in the xj—direction (eq. 2)

Latin symbols

a

M

JM

a, isotropic, Ja: inhomogeneous part

thermal diffusivity, ]
(eq. 8, 11, 13)
subgrid scale coefficients for momentum (eq. 10, 18)
subgrid scale coefficients for heat (temperature) (eq. 11)
friction factor (eq. 6)

specific heat at constant pressure

channel width (2 D = Dhydr.)

kinetic energy

surface area of a grid surface with the normal in the

xj—direction

characteristic width of grid cell (eq. 19), height of sand
grain roughness

number of grid cells in the xl—direction (Fig. 1)

number of grid cells in the xz-direction
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KM number of grid cells in the x3—direction
1 mixing length

Min(a,b) Minimum between a and b (Min(a,b) = a for a < b and vice versa)

P turbulent fluctuating pressure

P time mean pressure gradient in the xl-direction
Pr molecular Prandtl number, Pr = v/a

q heat flux

é volumetrical heat source
Re Reynolds number Re = v<u]> D/v, V<u1> bulk velocity
ReT Reynolds number ReT = <GT> D/v
T temperature

+ . . + " 2 X
T dimensionless temperature T = <T - Tw>/T
7% friction temperature * = a /(; e Gl)
W P T

u; velocity component in the xj-direction
u dimensionless velocity = <Gl>/GT
u_ friction velocity v = J%w/s

xj coordinate (Fig. 1)

ij width of grid cell in the xj-direction

Xj periodicity length in the xj-direction (Fig. 1)

y distance from the wall

+ . . . ~ ~
y dimensionless distance from the wall y+ = y.ReT/D
Greek symbols

Gij Kronecker Delta

A contour—line increment

€ dissipation, eddy diffusivity (eq. 18, 24, 25)

. . iy . . ij x .
i turbulent viscosity, u isotropilc, ¢~ inhomogeneous

(eq. 7, 10, 12)
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v kinematic viscosity (dimensionless: v = l/ReT)
P density

T shear stress

Indices

1, 2 number of walls

D calculated using the channel width D

H heat transfer

i, j indices of the direction in the coordinate system
m momentum

res resolved part

t turbulent

tot resolved + subgrid scale part

W wall

) lateral (xz-) direction
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7. Appendix

TURBIT-2-Plotoutput for the channel with one constant roughened wall

(K7-Baumann)

To show the capabilities of direct numerical simulation method for turbu-
lent flows the complete profile - plotoutput of the TURBIT-2-analyzing
program is included here for the constant roﬁghened K7-Baumann channel.
The data are averaged over the time dependent three-dimensional results
from t, = 7.795 to t = 9.543 using the results at 13 different time
steps only. (The number of data sets used is restricted by the practi-
cability of storing the time dependent 3-d fields on magnetic tapes,
especially when rather large meshes are used.) Some of the profiles
appear twice because of using different time averaging technics (Fig. 8,
40; 10, 41; 35, 38; 37, 39), or depending on whether the subgrid scale
parts are included (Fig. 37, 39) or not (Fig. 32). In addition to the
nomenclature given in chapter 5 the following symbols have to be

added:
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