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Sununary

The in-pile stress-relaxation behaviour of the materials usually

employed for the elastic structural elements, in nuclear reactors,

is critically reviewed and the results are compared with those

obtained in conunercial zirconium alloys irradiated under similar

conditions.

Finally, it is shown that, under certain conditions, some zirconium

alloys may be used as an alternative material for these structural

elements.

Elastische Strukturelemente nuklearer Reaktoren

- Eine kritische Übersicht -

Zusammenfassung

Es wird eine kritische Übersicht des in-pile Spannungsrelaxations­

verhaltens von Werkstoffen gegeben, die gewöhnlich als elastische

Strukturmaterialien in nuklearen Reaktoren verwendet werden.

Ein Vergleich mit dem Verhalten kommerzieller Zirkonlegierungen

- unter ähnlichen Bestrahlungsverhältnissen - zeigt, daß in be­

stinunten Fällen einige dieser Zirkonlegierungen als alternative

Werkstoffe für elastische Strukturelemente in Frage konunen.



Introduction

Several elastic structural elements, mainly springs and spacers,

are included in the fuel bundles of nuclear power plants. These

elements are made with Inconel 718 and Stainless Steel (1.4980

= A 286 in the case of Atucha) and even if they show very good

mechanical properties, under servicing conditions, have the disad­

vantage of a large neutron absortion reducing considerably the

efficiency of the reactor. In fact, the cross-section for neutron

absortion of these alloys is of the order of 30 times higher than

that of the usual zirconium alloys.

It seems an interesting problem to look at the possibility of

substituting,from the metallurgical point of view, these structural

elements by similar ones but built with commercial available zir­

conium alloys.

If this is possible, from the point of view of the mechanical and

corrosion properties, one has the additional advantage of a possible

redesign of the fuel elements, reducing considerably fabrication

costs. The exact economic advantage has to be evaluated but a rough

estimate gives quatities that are important (at least 100.000 US-$,

per year, only from the point of view of the burn-up; this value

was estimated for Atucha).

It is the purpose of this report to review the mechanical properties

of Stainless Steels,Inconel 718 and several zirconium base alloys,

fundametally elastic properties and their degradation under service

conditions (temperature and neutron irradiation).

Finally, theavailable data will be analyzed and some additional

experiments will be suggested.

1. The problem of des~gn

The elastic structural elements are made mainly in two shapes:

springs with circular cross-section and sheets bent elastically.

The maximum shearing stress in aspring of mean radius R, supporting



a load P, is given by [1]

a = 16 P R/1f d 3
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( 1 )

where d is the diameter of the cross-section of the coil, Fig. 1.

For a sheet (beant beam) of rectangular cross-section, bent initi­

ally to a radius Rand that after the application of the loado
changes to a radius Rl' the maximum shear stress applied to it is

given by [2]

( 2)

where E is Young's modulus and t the thickness of the beam, Fig. 2.

It must be pointed out that equations (1) and (2) are useful only

for rough estimates and one should include additional effects such

as the changes in temperature, irradiation growth, etc.

From equation (1) it is seen that the load supported by the spring

is proportional to the stress applied to the material so that if

this stress relaxes the supported load decreases in the same

proportion. For the case of the bent beam, equation (2), if the

stress relaxes Rl will increases and consequently the load supported

by the beam will be reduced.

Then, from the point of view of the use of the structural materials

as elastic members the important mechanical property is the stress­

relaxation (or the total creep strain) under servicing conditions.

Once the load that must be sustained by the elastic element, and the

limits between it can varies during service, has been established,

the maximum stress applied to the material can be determined·from

equations (1) and (2) with the appropriate geometrical dimensions.

From the stress-relaxation behaviour of the material, as a function

of temperature and neutron dosis, it may be seen if this conditions

are fulfilled. Then, the important property to be analyzed is the

stress-relaxation behaviour under working conditions (temperature

and neutron flux) since, as it will be shown, the behaviour of the

unirradiated material is not representative of the situation in-pile.

Finally, the approximate working conditions of the elastic elements

in the Atucha reactor are given in table 1.
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Table 1:

Temperature

Instantaneous flux

Integrated flux

Total working time

T oe 573 K

~. oe 5 x 10 17 neutrons/m 2 s
1

~ oe 1 x 10 25 neutrons/m 2
t

t oe 8.000 h

(E > 1 MeV)

(E> 1 MeV)

2. Stress-relaxation and creep behaviour

a) Inconel 718

It was not possible to obtain information on the stress-relaxation

or creep behaviour of Inconel 718 under irradiation in conditions

similar to those given in table 1. There is some information,
I

given by Huntington alloys [3] on the relaxation of springs of

unirradiated material. The data are shown in Fig. 3 and it may be

seen that the stress-relaxation, for temperatures of the order

of 573 K, is expected to be lower that 1 % in several thousand

hours. Recent reports [4, 5] give information only on the influence

of neutron irradiation on short term mechanical properties (mainly

tensiles) for temperatures above about 673 K and neutron fluences

up to 7.5 x 10 26 n/m2 • It is stated in those reports that creep

tests are in progress. The information given in the literature

sometimes refers to the creep behaviour of the material and not

to its stress-relaxation. In order to correlate nurnerically both

data, the creep rate of the material, in terms of stress, time,

etc., must be given [6].

In fact, if the creep rate, E , can be expressed as
p

E = Acr n f (t) (3)
P 0

where cr o is the applied stress, A is a constant related to the

material and to the temperature f(t),is a function of the time t,

then the plastic strain E after a time t in a creep experiment
p 0

would be

n
E = AcrP 0

to
f f(t) dt + Cu
o

During stress-relaxation, since Ep = - ä/E = Acr n f(t), the stress,

cr, after a time twill be
o
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to
= - A E f f(t) dt + C2 =

o

n- E E /0P 0

If n = 1, then

In (0/0 ) = - E E /0 and % = exp (- E Ep/OO)o p 0 0

so that the stress-relaxation ßOrel , after the time t o is

If n i: 1

= 1 - [1 + (n-1) EE /0 ]l/(n-1)
p 0

(5)

It must be pointed out that "time-hardening" [7] was assumed,

which is a reasonable assumption for the in-pile behaviour.

In fact, the in-pile creep of some zirconium alloys [8] and stain-

less steels [9] seems to be described by an equation like (3).

When creep data are reported, the stress-relaxation will be

estimated by equations (4) and (5) for several values of n.

It should be reminded, however, that this will give only an idea

of the order of magnitude of the stress-relaxation involved

since, in addition, uniaxial conditions were assurned on deducing

these equations [10, 11].

As an example, from the reported creep properties of Inconel 718

[3], shown in Fig. 4:

Ep = 0,2 %; T = 866 K; t o = 1,000 h; = 703 MPa
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the estimated stress-relaxation is

n ßO rel %

o 48

1 38

2 33.7

3 28.6.

These values are reasonable, when compared with those shown

in Fig. 3 at lower stresses. The value for n = 0 is an over­

estimation.

b) Stainless Steels

b.1 SS 1.4980 (A-286)

No published data have been found for the in-pile creep and

stress-relaxation behaviour of this steel. Some results for the

tensile and creep properties, in unirradiated material, can be

obtained from the supplier [1~]. For exmnple, at 873 K with

00 = 360 MPa astrain of 0.2 % is obtained after 1,000 h.

No data are reported at lower temperatures.

With these values, the estimate stress-relaxation is

n ßO rel %

0 89

1 59

2 47

3 40

The stress-relaxation of this steel, for temperatures of

573 K and below, is expected to be slightly higher than that

of Inconel 718.

b.2 Other stainless steels

Only few published data were found for the stress-relaxation of

stainless steel, during irradiation.

J. W. Joseph, Jr. [13] reported some values of the stress-rela­

xation behaviour of SS type 304, under neutron irradiatton.

Round specimens under compression were used and the irradiation

temperature was lower than 373 K. No stress-relaxation was ob­

served in the unirradiated specimens tested at the same tempera­

ture. The results are shown in Fig. 5 and, as discussed in the
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paper, the data at the higher stresses are in error due to

the fact that the specimens were strained plastically.

In a later report by the same author and R. E. Schreiber [14]

some stress-relaxation data for the same material are reported,

but for measurements made in torsion with tubular specimens.

Essentially the same results were obtained as for compression

and they are shown in Fig. 6. The data shown in Fig. 5 are included

for a comparison.

There are some reported results on the stress-relaxation of

SS 302 and 347. These data are given in ref. [15] and it was

not possible, up to now, to obtain the original papers. The

data on the 302 steel are shown in Fig. 7 and were obtained

at an irradiation temperature of 583 K under a flux > 10 16 n/m 2 s

(~ 1 MeV), in compressionsprings.

The results in SS 347 are shown in Fig. 8 and were obtained at an

irradiation temperature of 333 K, in bending, for a stress of

53 HPa.

There are sorne data on the creep behaviour of SS 302 measured

in springs, wi th a diame"ter of 9 mm and a wire diameter of 1.5 mm,

under a stress of 407 MPa. These results, reported in [15],

obtained at irradiation temperatures between 293 and 333 Kare

shown in Fig. 9. It is seen that the plastic strain is large,

exceding the elastic strain, so that the stress-relaxation

is expected to be high.

R. A. Wolfe and B. Z. Hyatt [16], reported some in-pile stress­

relaxation data in Almar 362, a maranging stainless steel.

The measurements were done at two nominal temperatures 333 and

586 K, by using the bent beam technique. The results are shown

in Figs. 10 and 11. The authors did not give the initial stresses

but the radii of curvature. These stresses were calculated

from the radii taking E~190 GPa and the reported thickness.

The stress relaxation can be calculated from the figures with

the equation

~a = 1 - R IR.rel 0

It may be seen that the stress-relaxation varies between 40

and 60 %, according to the temperature and the initial stress.

The two type of specimens, A or B, differ in the initial cold-
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working conditions and thermal treatments. The B specimens

were stressed to values above the yield stress.

D. Mosedale et al [9, 17] and G. W. Lewthwaite and K. J. Proc­

tor [18], reported several data on the in-pile creep of SS

springs at stresses lower than 100 MPa. The data reported in

[18] were taken in two austenitic stainless steels, FV 548 and

ASI 316. The usual thermal treatments were given to the springs

with a diameter of 12.7 mm and a wire diameter of 1 mm. The

irradiation temperature was of the order of 373 K.

The results for the FV 548 springs are shown in Fig. 12.

These data correspond to the irradiation creep since the thermal

creep was subtracted out. The deflection, D, of the spring is

given in terms of the initial elastic deflection, D .e
The results for the ASI 316 springs are shown in Fig. 13. At

the stresses used, no thermal creep was observed in these

springs. The annealed spring crept transiently (~ 0.2 D ) ande
considerably less than the cold-worked ones. An estimate of the

stress-relaxation can be made, form the values given in Figs.

12 and 13, by using equation (4) and the reported deflections

for the springs. The results are

a ßa rel %
0

43.3 58

26.6 61 Fig. 12

41.8 41 Fig. 13

For the data reported in references [9] and [17] it was found

that springs made from seven austenitic stainless steels crept

far more in reactor, at temperatures of the order of 553 K,

than in the laboratory at the same temperatures. The specimens

were irradiated at a flux of the order of 3 x 10 19 n/m2 s

(> o. 1 MeV).

There are several addi tional ~su1fs reported in t.I1es~papers and they

will not be detailed. As an example, Fig. 14, taken from

reference [17], shows a comparison between the irradiation in­

duced creep in springs of ASI 316 and the thermal creep at a

much higher temperature. It is seen that the irradiation induced

creep is very high.
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A stress-relaxation of the order of 30 % is obtained with

equation (4) from the data of Fig. 14, in the irradiated specimen

and after 4000 h.

Finally, K. D. Closs et al [19], reported some data on the in­

pile creep of SS 1.4981, cold-worked 15 %. The measurements were

taken in rods of 3 mm in diameter and 50 mm long.

The change in length as a function of the irradiation time

is shown in Fig. 15 and it is independent of temperature for

temperatures between 623 and 723 K. Using equation (4), with

E = 180 GPa [12], a stress-relaxation of the order of 90 %

is obtained, with the reported dimensions.

c) Zirconium alloys

Several data for the in-pile creep and stress-relaxation of

zirconium alloys have been published in the literature [20-27]

and only the most representative will be shown.

Fig. 16 (a) to (e), from reference [20], shows some results on

the stress-relaxation of zircaloy-4 with different thermo-mechani­

cal treatments and in Zr + 2.5 wt % Nb + 0.5 wt % Cu. It is seen

that the irradiation increases the stress-relaxation at both tem­

peratures. It must be pointed out that the stress-relaxation data

in zirconium alloys, given in Figs. 16 to 19, were measured by

the bent beam technique. Fig. 17, taken from reference [23],

shows the stress-relaxation behaviour of zircaloy-2 specimens

with different initial conditions, at various stresses. The

specimens were prepared from pressure tubes in hoop (transverse)

and longitudinal directions. The longitudinal specimens were

cutted with the neutral axis either in the tangential (T) or

in the radial (R) direction. These data were taken at temperatures

of the order of 573 K and at a fast neutron flux (E > 1 MeV) of

2 x 10 17 n/m2 s. As for the data shown in Fig. 16, the in-pile

stress-relaxation is higher than that observed in the unirradia­

ted material. Similarly, Fig. 18, taken from reference [22],

and Fig. 19, taken from reference [23], show the stress-relaxation

behaviour of Zr-2.5 wt % Nb at similar temperatures and neutron

exposures.
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Discussion and conclusions

Under the working conditions given in table 1, the Zr-2.5wt%

Nb alloy shows the lowest stress-relaxations when compared with

the rest of the commercial zirconium alloys (no data were found

for Zr-1 wt% Nb). In fact, from Figs. 18 and 19(c) it is seen

that this alloy relaxes 50 % or less if the appropriate thermo­

mechanical treatments are used. These values are valid for stres­

ses of the order of 200 MPa since the creep rate and consequent­

ly the stress-relaxation is expected to increase very rapidly at

stresses above about 300 MPa [26].

It is clear that a stress-relaxation of the order of 50 % is too

high when compared with the values expected, from out of pile mea­

surements, for Inconel 718 (less than 1 %), Fig. 3, or SS 1.4980.

The question is: Are the out of pile data representative of the

in-pile behaviour? Unfortunately, as pointed out before, it was

not possible to obtain information on the in-pile creep or stress­

relaxation of these materials. However, if the stress-relaxation

of Inconel 718 and SS 1.4980 is affected by irradiation in a way

similar to the reported steels, shown in Figs. 5 to 15, then their

in-pile stress-relaxation is expected to become of the same order

of magnitude as that found in Zr-2.5 wt% Nb.

It is evident that an important experiment would be to measure the

elastic behaviour of the structural elements after servicing, i.e.,

when the fuel elements are changed. If the stress-relaxation is

found to be of a few 10%, then these elements can be made of Zr-2.5

wt% Nb it the working stresses are of the order of 150 MPa. No cor­

rosion problems are expected since this zirconium alloy shows ex­

cellent corrosion behaviour.

Finally, more experimental work is needed on the in-pile stress­

relaxation of zirconium alloys, stainless steels and Inconel 718,

since the out of pile data are not representative, specially at low

temperatures. For example, the irradiation induced creep and stress­

relaxation in stainless steels seem to decrease slightly with in­

creasing temperatures [9,17,18]. This is an interesting proble~ too,
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from the point of view of an understanding of the fundamental

mechanisms of irradiation damage.
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