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ABSTRACT

Utilisation of resonance theory in basic and applications-oriented neutron

cross section work is reviewed. The technically important resonance formalisms,

principal concepts and methods as weIl as representative computer programs

for resonance parameter extraction fram measured data, evaluation of resonance

data, calculation of Doppler-broadened cross sections and estimation of level­

statistical quantities from resonance parameters are described.

Angewandte Neutronenresonanztheorie

ZUSAMMENFASSUNG

Eine Übersicht über die Benutzung der Resonanztheorie bei grundlagen- und

anwendungsorientierten Neutronenquerschnittsarbeiten wird gegeben. Die

praktisch wichtigen Resonanzformalismen, grundlegenden Begriffe und Methoden

sowie typische Rechenprogramme für Resonanzparameter-Analyse von Meßdaten,

Generierung Doppler-verbreiterter Querschnitte und statistische Schätzung.
niveaustatistischer Größen aus Resonanzparametern wird beschrieben.

This review paper was prepared for the Winter Courses on Nuclear Physics

and Reactors, Part I: Nuclear Theory for Applications, held at the Inter­

national Centre for Theoretical Physics, Trieste, 16 January - 10 February 1978
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1. INTRODUCTION

This review on the practical applications of resonance theory originated
fram lecture notes distributed at a course organised by lAEA (Ref. 1).
The basic reaction formalism, in particular R-matrix theory, will be assumed
to be known but we shall not hesitate to retrace the practically important
parts of the theory. Althou~h the basic principles of resonance theory are
rather simple the general expressions can look quite formidable. A certain
amount of repetition may help the reader to overcome this initial barrier
and to realize that for practical work only few but thoroughly understood
key formulae are needed.

We shall be concerned mainly with compound resonances, those prominent
features of particle- and phonon-induced nuclear reactions which are due to
excitation of relatively long-lived (quasi-stationary) states of the compound
system. At low bombarding energies they appear fairly weil separated, but
as the energy increases their spacings decrease and their widths increase.
Finally the overlap washes out all compound resonance structure and onlY
broader structures like the single-particle or size resonances described by
the optical model surV1ve.

The more nucleons belong to the compound system the finer is the compound
resonance structure. Typical level spacings observed in neutron reactions
are of the order

- MeV
- keV
- eV

for the lightest,
for medium-mass and
for the heaviest nuclei.

2. ANALYSIS OF RESONANCE DATA

The importance of resonance reactions for nuclear technology lS obvious.
Interpretation and prediction of reactor properties such as

- resonallce absorption,
- resonance escape probability,
- resonance self-shielding
- temperature-dependent reactivity (Doppler coefficient)

require both a detailed understanding of resonance cross sections and
comprehensive, machine-readable resonance data files.

2.1 The various steps in the preparation of resonance data for applications

The resonance data for reactor calculations and other applications (e.g. as
cross section standards) are usually produced in several steps.

(1) Measurement: Experimenters take data at pulsed accelerators or with the
help of nuclear explosions. The time-of-flight technique is employed to
cover broad energy ranges with high resolution and under exactly the same
experimental conditions for all energies, isotopicallY pure or highly
enriched sampies to get reliable isotopic assignments and, in the most
advanced experiments, polarized neutrons and targets to get reliable spin
assignments for the (Jbserved resonances.

Zum Druck eingereicht am: Juli 1978
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(2) Reduction of raw data: Constant and time-dependent backgrounds are
subtracted, sampie impurities are corrected for, and, in the case of
partial cross section (yield) data, flux and detector efficiency are
factorised out.

(3) Analysis of clean data: Resonance parameters (Eo ' f n , f y , ff, ... JIT) and
potential-scattering parameters (R' , ... ) are extracted. At the same time
instrumental resolution and (except for transmission data) multiple
scattering are accounted for.

(4) Data evaluation: Resonance parameters from all available sources are
collected by evaluators who try to understand and to reconcile the
discrepancies. Gaps are filled with the help of level statistics,
nuclear models and systematics. The complete sets of recommended cross
section parameters (Eo ' f n , f y ' ff,.~.JIT; ~I , ••• ) and the deduced level
stat~stical parameters (DJ, St' Ri, f y t' ff JIT"") are put into a
machlne-readable (card, tape or dlSk) tlle. '

(5) Generation of group constants: Doppler-broadened point cross sections
for various temperatures and all energetically possible reactions can
now be calculated from the evaluated cross section parameters and
averaged in a special way over relatively large energy intervals. The
result is a set of group cross sections and self-shielding factors
suitable as input for reactor codes.

International coordination

All these steps require time and years may pass before resonance data needed
for technological applications become available in the required form of
machine-readable evaluated data files. The great effort to speed up this
process and to coordinate the work on an international scale is described
for instance in Hef. 2. It may suffice here to mention that regional
and international nuclear data committees (INDC, NEANDC, ... ) collect and
screen formal requests for data which are periodically published by IAEA/NDS
in WRENDA, the World Request List for Nuclear Data. Measured data are
collected by data centres, neutron dat~ in particular by the four-centre
network consisting of

- NNDC

- CCDN

- CJD

- NDS

(National Nuclear Data Centre)
at Brookhaven, servicing the US and Canada,

(Centre de Compilation de Donnees Neutroniques,
NEA Data Bank)
at Saclay, France, servicing the non-American OECD
countries,

(Centr po Jadernym Dannym)
at Obninsk, servicing the Soviet Union, and

(Nuclear Data Section, IAEA)
in Vienna,servicing all other countries.

Regular data e~change ensures that the data base is essentially the same at
all four centres. Evaluated data are also collected, the most important
evaluated files being
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- ENDF, the US ~valuated ~uclear ~ata Eile,
- UKNDL, the uk Nuclear Qata 1ibrary,
- KEDAK, the German file Kerndaten !arlsruhe,
- SOKRATOR, the USSR file.

Moreover, the Four Centres produce periodically such widely used handbooks
as the Computer Index of Heutron Data (CINDA) (TIef. 3) or the "barn book"
BNL 325-(Ref. 4)-which co~tains resonance parameters and cross section plots.

Associated computer programs, for instance resonance analysis programs or
codes generating cross sections from resonance parameters, are collected
and distributed to requestors by the

- US Code Center at ANL, USA;
- CPL, the Computer Program Library, NEA Data Bank at Sa9~ay

(formerly at Ispra)
- RSIC, the Radiation Shieldine Information Center at

Oak Ridge, USA.

Information as to where other types of data and programs are available can
be obtained from NDS/IAEA, Vienna.

2.2 Why parametrise?

Practically all resonance cross section data that go into reactor calculations
(in group constant' form or directly, e.f,. in Monte Carlo calculations) are
generated from resonance parameters. It might be asked why one cannot use
the best measured high-resolution cross sections directly and thus eliminate
the need for resonance parameter extraction. There are several reasons:

(1) Resonance parameters along with consequent utilisation of resonance
theory enable us to represent the often staggering detail of cross
section structure by relatively few numbers.

238
Example: The 400 presently known resonances of the compound system U+n
are specified by 1600 parameters (Eo ' r n , r y , Jrr for each level) whereas
a reasonably accurate point-wise representatton of the capture and t~e

scattering cross section requires about 2·10 data points, i.e. 4'10
numbers. If one considers also angular distributions and different
temperatures one gets easily several 106 cross section points that would
be needed to describe the behaviour of 238U in a fast reactor.

(2) Temperature broadening of resonances is often more easily calculated 1n
terms of resonance parameters than from point data.

(3) Resonance parameters and an inherently unitary cross section formalism
such as R-matrix theory guarantee consistency with physical limits such
as the unitarity limits for the total cross section in each reaction
channel (0<ac<4~~~gc where gc is the spin factor, see below) or Wick's
limit for scattering in the forward direction (docc(O)/dnc ~ a~/(4~~c)2).

Another consistency is more subtle but practically at least equally
important, especially for the calculation of self-shielded group cross
sections. Theory teIls us that there is a very rigid relationship between
the line shape in one reaction channel and the line shape corresponding
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to the same compound level in other channels. This relationship is
guaranteed if cross sections are generated from a coherent set of resonance
parameters, but not with measured data.

(4) At least equally important is the fact that even the best measured
resonance data are affected by resolution and Doppler broadening and
(except transmission data) by multiple scattering. The most reliable
way to correct for these effects is full-scale resonance parameter
analysis of the data.

(5) Extrapolation into the region of non-measured or unresolved reSOnances
by level-statistical (Hauser-Feshbach) cross section calculations
require statistical parameters such as average level spacings and
strength functions. These in turn must be estimated from resonance
parameters.

2.3 Practical resonance formalisms

In applications-oriented neutron resonance work and especiallY in evaluated
neutron data files the following formalisms are used almost exclusively.

- BB
- SLBI-l
- MLBW
- RM
-AA

(Blatt- Biedenharn formalism) ,
(single-level Breit-Wigner formulae),
(multi-" "" ") ,
(11 "Reich-Moore ") ,
(" "Adler-Adler ") ,

The first one is quite general. It shows how cross sections can be expressed
in terms of the unitary, symmetrie collision matrix with special emphasis· on
angular distributions and the influence of particle spins. It can be combined
with any of the other four which provide different approximations to the
cOllision matrix.

In the following sections the notation of the comprehensive review written
by Lane and Thomas (Ref. 5) will be used.

2.3.1 The Blatt- Biedenharn formalism._------------------------------

We remember that in reaction theory one employs the concept of reaction
channels which are fully specified by

a, the partition into reaction partners, e.g.' 235U+n or 236U+y,
J, the total angular momentum in units of fl,
R., the orbital " " " " " 1'1,
s, the cnannel sp:tn " " " fl,

with
-+ -+-+
J = R.+s, Le. i9,-sl < J < R.+s,

-; = 1+1, Le. II-ii < s < I+i,

( 1)

(2 )

where I and i ar-e the spins of the (two) collision partners. Total energy,
total angular momentum and parity are conserved quant i ties in nuclear
reactions, therefore the Hamilton operator can be taken as real, sYmmetrie
and invariant under rotations and spatial reflections.
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We further rememoer that for spinless, neutral particles one can solve the
Schrödinger equation for the boundary condition lIingoinfT, plane wave + out­
goine; spherical wave ll with the result that the differential cross section·
for elastic scattering is ßiven by

00 2d~
da = 1T~21 I (2H1)(1-Ui)Pi(cos8)1 4 (3)

aa a 2=0 1T

where Pi .. is the,i:th_order LeE;endre pol~nomial (angular-momentum eigenfunction).
The swn ~erms w1tn i-O,1 ,2,3, ... are sa1d to belon~ to the s-, p-, d-, f-, ...
wave, a nomenclature t~~en over from atomic spectroscopy. The collision
function Ui describes the modification of the i-th outgoinß partial wave
relative to the case without interaction, its absolute value gi~in~ the re-

2duction in runplitude, its argunent the phase shift. With PtPt,=LL(tt'OO,LO) PL,
where (ii'OO,LO) is a Cle~~~Q-Gord~ coefficient (vanishin~ unlcss
Ii-t' I ~ L ~ Hi I and (-) = (-) ), one can wri te this as a sir.lple expansion
in Legendre polynomials,

00

da
aa

(4 )

BL = i I (2t+1)(2i'+1)(tt'OO,LO)2(1-U~)(1-Ut')'
t,t'

Blatt and Biedenharn (Ref. 6) worked out the ßeneralisation for particles
with spins and for partition-changing (rearran~ement) collisions. For zero
Coulomb interaction they obtained

(2i+1)(2I+1)

~2
ada ,= -----'--­

aa I
s,s'

00

I BL(as,a's')PL(cos8)d~
L=O

(6)

s-s'(-)
BL(as , a ' Si) = ---

4

. (0 0 0 _u
J1

)*(0 0 0 u
J2

) (7)aal t t' ss' ai s a't's' aa' n t' ss'- a9, s altIst ,
1 1 l' 1 "'2 2' 2' 2

(8)

where W~9,1J19,2J2,sL2 ~s a Raca~ coefficient (~ee e.g .. Ref. 7). Our ph~se .
convent10n for the Z lS that of Ref. 5, a Sllßhtly d1fferent convent1on lS
used in the Z-coefficient tabulation Hef. 8. The Z coefficients vanish unless
the tri angle conditions for the vector sums

-+ -+ -+ -+ -+
R. 1 + 9,2 = L = i' + t' .:>1 2

-+ -+ -+ -+, ;, (i 1 ,2)9,. + s = J. = 9, . + =1 1 1
( 10)
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are fulfilled. Parity conservation in nuclear reactions demands that
(-)~iTI = TI. = (-) iTI " where TI , TI , are the eigen-parities of the in-

(,l • 1 . a ( .. a a d 1 h t' 1 )and outgo1ng part1cles pos1t1ve for neutrons, proto~s an a pa-par 1C es
and TI. is the parity of the compound system with total angular momentum J i
(i=1,2).

If there is Coulomb interaction between the collision partners additional
terms must be included (see Ref. 5).

Let us now integrate Eq. 6 over all angles. Because all terms with L > 0
vanish due to the orthogonality of the PL and because of

(cf. Hef. 7) one finds

°aa' 2
s,s'

J 2
g 1 0 0 0 - U IJ aa' ~~I ss' a~s,a'Q,lsl

( 12)

where

2J+1

(2i+1) (21+ 1)

lS the so-called spin factor.

( 13)

We shall not go into the details of angular distributions but point out that
they show interference between different partial waves, e.g. s- and p-wave
interference, whereas anr,le-integrated cross sections do not. The latter are
simple sums over terms with given ~ and s without mixed terms. Nevertheless,
a certain cOnnexion exists between different partial waves provided they can
excite the same compound states. As mentioned already the compound system
and its quasi-stationary states are characterised, apart from energy, by
the total angular momentum J and the parity TI. Table 1 shows, for given
target spin I and positive target parity, the possible combinations of ~,s

and J if the incident particles have spin i = 1/2. (If the target parity is
negative all signs in the table must be reversed.)

We see that certain JTI values can be formed through more than one channel
if ~>O and 1>0. If ITI =1/2+, for instance, resonances with JTI=1- can be excited
by the two p-waves (~g1) with s=O and s=1, and the 2+ levels can be excited
by the two d-waves (~=2) with s=O and s=1. The SLBW neutron widths (see below)
of 1- and 2+ levels are therefore sums of two partial widths, for s=O and s=1.
For ITI =1+ the 1/2+ levels can even be exeited by two partial waves with
differ~nt t (s-wave with 8=1/2, d-wavewith s=3/2), while the 3/2+ levels are
accessible to three partial waves, the s-wave with s=3/2 and the two d-waves
with s=1/2 and s=3/2, etc.

This means that the sa~e resonances (with the same total widths) may show
up in channels with different t and s if the spin and parity selection rules
allow this. In this context it should ·be understood that the term s- or p-wave
resonance actually means that the resonance can be excited by the s- or p-wave
but possibly also by the next higher partial wave with the same parity. As an
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example the 3/2+ s-wave resonance peaks of a target nucleus with IITo=1+
contain also a d-wave component. The fact that certain d-, f- etc. resonance
sequences are masked by s-, p- etc. sequences, respectively, must be kept in
mind if the J-dependence of level densities is discussed and compared to
resonance data. Finally we note that the sum of all spin factors for a given
1 is always equal to 21+1 as shown in the table.

Table 1: Possible combinations of target spin I, orbital angular momentum 1
and channel spin s resultin~ in total spin and parity JIT and spin
factor g for positive tarset parity ITo and incident particles with
spin 1/2:

IIT 1 s JIT g Ig spectroscopic
0 symbol

0+ , 0 1/2 1/2+ 1 1 s

1 1/2 1/2-, 3/2- 1, 2 3 p

2 1/2 3/2+, 5/2+ 2, 3 5 d

etc.

1/2+ 0 0 0+ 1/4 1 s
1 1+ 3/4

1 0 1- 3/4
J3

p ,
1 0- 1- 2- 1/4,3/4,5/4

2 0 2+ 5/4 )5 d
1 1+ 2+ 3+ 3/4, 5/4, 7/4 J

etc.

1+ 0 1/2 1/2+ 1/3 J1 s
3/2 3/2+ 2/3

1 1/2 1/2-, 3/2- 1/3, 2/3
~3 p

3/2 1/2-, 3/2-, 5/2- 1/3, 2/3, 3/3

2 1/2 3/2+, 5/2+ 2/3, 3/3
~5 d

3/2 1/2+, 3/2+, 5/2+, 7/2+ 1/3, 2/3, 3/3, 4/3
etc.

I , I
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The angle-integrated cross section a "Eq. 12, is a SUffi over partial cross
sections acc', summed over all thosea~ntrance channels c = {aJ~s} and exit
channels c, = {a'J~'s'} which lead from partition a to partition a'. In slightly
simplified notation we can write

a = n~2g IIÖ -u 1 2 •cc' c c cc' cc'
( 14 )

The collision matrix U is symmetrie (beeause the Hamiltonian is invariant
under time reversal) and unitary (beeause the total probability for transitions
into exit ehannels is equal to unity).

Due to the unitarity of U one gets for the total cross section

a = \ a = 2n~2u (l-Re U ) (15)c l cc' coc cc
c'

while the symmetry of U yields the reciprocity relation for the cross section
ac'c describing the inverse reaction,

a
cc'::-xr .

gc c
( 16)

These equations are quite general. The wave length 2n~c is that corresponding
to the total kinetic energy in the centre-of-mass system, ~c = ~ =~/(~cVrel) ,
where ~ is the reduced mass and v 1 the relative speed. It shoald be noted
that 0cCbeing a linear function of

r 5 is easier to calculate and to average etc.
than a ,.cc

Next we invoke R-matrix theory. It teaches us that one can express the collision
matrix either "in terms of the channel matrix (resonance parameter matrix) R,

-i(lj> +lj> ,)
U = e c c p1/2{ [1-R(L-B)]-1 [l-R(L*-B)]} p-1/2
cc' c cc' C'

-i(lj>+lj> ,)
= e c c {ö + 2ip1/2[(1-RLo)-1R] p1/2} (17)

cc' c cc' c' ,

LO
- (L-B)cc' = LOö = (L -Bc)ö , - (8 +ip -B)ö , ( 19)

cc' c cc' c cc c c c cc

or, alternatively, in terms of the level matrix A,

-i(lj> +lj> ,)
+ i I r 1/ 2 A r 1/ 2 )Ucc' = e c c (ö (20)

cc' I. AC A~ Il C '
,~

r 1/ 2 = YA I2p (21)
AC c c

(A-1 ) = (E -E)ö - I LO (22)
A~ I. All c

YAc cY~c

Here lj> lS the potential-scattering phase, 8 and P are level shift factor and
centrifugal-barrier penetrability, B is theCarbiträry boundary constant at
the channel radius, EI. an energy eiggnvalue (resonance energy), Y a reduced
width amplitude and rA the corresponding partial width. Roman su~~cripts refer
to reaction channels, Greek subscripts to compound levels. We mention here that
in applied work all energies, resonance widths etc. are given in the laboratory
system, i. e. in the reference frame in which the target nucleus is at rest.
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It is useful to remember that ~ and L depend only on the values of the
. . . c . c .

prec1sely known 1n- or outgo1ng radlai wave funct10ns I and 0 at the channel
radius a

c
' c c

Im o (a )

cf>c arg 0 (a ) c c
= = arc tan o (a )

,c c Re c c
0' (a )

ac c
L = a o (a ) = a (-- In 0 )c c c ar cc c c r =ac c

(24)

For neutral particles one has , with k c - 1/'X ,
c

o = 1* = ik rc c c c
(1) .-~ikcrc

h (k r ) (= 1 e for k r »~~(~+1)),t c c c c

where h~1) is a spherical Hankel function of the first kind. With the recurS10n
relations for spherical cylinder functions (cf. e.g. Ref. 5) one gets Table 2.

Table 2: Channel wave functions and related quantities for neutral particles
(p = k r , a = k a )c c c c

t 0 <P c s p
c c c

0 e1P a 0 a

1 ip ( 1 . ) a-arc tan a 1 a 3
e --1

~ ~p

2 ip (3 _ 3i -1) a-arc tan 3a 3(a2+6) a 5
e -2 3-a2 a 4+3a 2+9 a 4+3a 2+9p p

etc.
I

Note that S =0 for ~=O, so that one can choose B =8 =0 which simplifies all
s-wave formSlae. Sand P for photon and fissiog cfiannels are usually taken

c c
as constant.

The basic resonance parameters EA, YA depend on the very com~licated nuclear
interaction and can therefore normall~ not be calculated. In most technological
applications they are just fit parameters of the theory. Depending on the choice
of Bcthey can be real and constant or complex and energy-dependent.

The Wißner-Eisenbud version of R-matrix theory (Hef. 9) is obtained if the
boundary quantities B are chosen as real constants. Then the resonance para-c .
meters EA and YA are also real and constant, and the enerrY dependence of U
is exclusively dSe to <p and LO , i.e. it is explicitly specified. This renders
the Vli~ner-Eisenbud ver~ion thg most suitable formalism for most purposes. A
major problem, however, is the required

1
inversion of either a channel matrix

(1-RLO in Eq. 17) or a level matrix (A- in Eq'_i2). In practice it is overcome
by various approximations to the level matrix A as we shall see below.
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The Kanur-Peierls version of R-rnatrix theory (Ref. 10) is obtained with the
choice B =L , i.e. LO=O. This removes the matrix inversion problem completely
(1-RLo=lJ bSt lea~s to complex EA, YAC which implicitlY depend on energy in
a rather obscure way. ~evertheless formulae of the Kapur-Peierls type are
convenient in narrow energy ranges, for instance for Doppler broadening.

The R-natrix equations reviewed so rar are practically all that is needed ln
a:?plied work fro:n the whole apparatus of resonance theory. 'rhey should be
thorouGhly understood, however, andexperience shows that this is not easy
for the beginner. He might thereforewish to look at a sim:nle illustration
which shows the essential steps in the development of R-matrix theory and
exhibits the meaning of the various quantities without the complexities of
spin alzebra and matrix notation. The more experienced reader can i~ediately

go to Sect. 2.3.4.

2.3.3 Illustration: R-matrix formulation of single-particle interaction with
______________~_~~~E!~~_E~~~~~i~~ _

(1) Schrödinger equation and boundary conditions:

11 + rk 2- ~(V+'TT)- t(U1 )J =0u t L 11'" 1.~ 1'2 u t .

(E=n2k2/(2m)). The boundary conditions

r

w

o

Consider the.interaction of a spinless, neutral particle with a spherical complex
potential V+Hi. From the Schrödinger equation

V ~2
(--- V2+V+iW)1"=~W (26)2m Y •

one finds with the usual partial-wave
expansion in Legendre polynomials,

~ = I t ut(r)pt(cos8)/r, the radial wave

equation

O'!--------:.,.p.--t...
r

follow from the requirements that probabilities,
i.e. Iwj2, remain finite and that outside the
range of the potential (which is assumed to
vanish for radial separations r~at) one has in-

Fl' going and outgoing spherical waves 1
1
, On, whereg. Il.

the outgoinf, wave 0t is modified, re ative to
the case without interaction, by a complex factor Ul , the collision function.
~he channel wave functions I

t
, 0 are given by Eg. 25. Note that in our example

a channel is completely speclfiea by the orbital (01', since t=J, the total)
anßular momentum •

.(2) Ortho,10nal base ln the internal re~n (rs.atl

Hext we introduce, for each t, a base of real, orthogonal functions u by de­
Atmanding

(30)
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where Bi' the boundary parameter, is seen to be essentially the logarithmic
derivat~ve of the internal ei6 enfunctions UA~ at the channel radius a~.

Compare the similar definition of L~ in terms of external wave functions,
Eq. 24. Since we omitted the imaginary part of the potential in the differential
equation (30) everything becomes real, includinr, the eigenfunctions, if we
choose B~ real. (Similarly the self-adjoint Hamiltonian in the general theory
leads to real eigenfunctions for real B .) The orthogonality of the eigenfunctions
is checked as folIows. The wave equatiog (30) yields

a t 'l a~

J dr (u~~U).J~-UA~U).J"~) = (k2_k~) J dr UA~U ~
o ).J 0 ).J

= u~t(at)ulJt(at) - uU(at)u~t(at)' (33)

The integration by parts leading to the last line corresponds to the application
of Green's theorem in the general R-matrix case. The whole expression vanishes
because of the boundary condition (32). This proves the ortho~onality, i.e.

a~

J dr uAtu t = a t 0A ' (34)
o lJ lJ

where the normalisation constant a
t

ensures the correct dimensions.

(3) Surface equation

We can now expand the true wave function inside the interaction sphere as follows

ut = L CAtUAt (r~at) (35)
A

a
t

with c At = a J dr UA~Ut· (36)
t 0

Specific information about the last integral, i.e. about the expansion coefficients
cAt ' must COme from the wave equations and boundary conditions. He employ the
same procedure that we just used to study the quite similar orthogonality integral.
From the wave equations (21), (30) we get

at 2m _ a~

r dr(u~uAt-UtU~t) = (k~-k2+i~ WA)J dr U~UAt (31)
o 0

a
J dr utuAR,W

WA -
o
a
J dr U~UAR,
o

is a volume average over the absorptive potential. Integrating by parts ("Green's
theorem") and uSlng the boundary conditions (Eqs. 28, 31, 32) one finds

where

[ , ( )-B ( )' ( ) - 2m ( __ ·]."r ) 2 ( )atuR, a t tU~ aR, jUAt a t - ~ EA E l~A atc t 39

wher~ EA=~2kl/(2m). Insertine c t from this equation in the expanSlon (35) one
obtalns

UR, = RR,(atui-BtuR,) for r=a~,

2
where R~ L

YU
- E-E-ir /2

A A Aa

(40)

( 41)



- 12 -

with YA~ - vi 2~:2 uAt(at ), rAa = - 2WA (42)(43)
~

The " surface equation" (40) is the analoßue of the matrix equation V=R(D-BV) of
the general theory which connects the "val ue" and "derivative quantities" V and
D at the surface by means of the R matrix. Eq. (42) shows that the reduced
width amplitudes YAt are essentially the values of the eigenfunctions at the
channel radius.

(4) R-function expression for the collision function

Our ultimate goal is an expression of the collision function U (from which,
the cross sections can be calculated) free of the unknown quantities u t and u t .
In general this requires matching of the external and internal wave functions
at r=a

1
. ~ith the surface equation this is surprisingly easy. We simply replace

the internal quantities in Eq. 40 by the channel quantities I~ and O~ with the
help of the matchine conditions,

u~ = I t - U~O~,

atu t = at(I~-UtOt) = L~I~-UtL~Ot'

and salve for U~ . The final result,

=~ 1-Rt(L~-Bt) -2i<p 2iR~P~
U

1 1-R~(Lt-Bt)
= e ~ ( 1 +

1-R La )
°t

,
~ ~

(44)

(45)

(46)

with Rt glven by Eq. 41, is the analogue of the general Eqs. 17, 18.

In contrast to the Wigner-Eisenbud R-matrix, Eq. 18, our R-function, Eq. 41, is
complex. It looks,' in fact, exactly like the reduced R-matrix of the Reich-Moore
approximation (see below) where r

A
is the radiation width and originates from

elimination ofall photon channelsaby means of the Teichmann-Wigner prescription
(Ref. 11) if the width amplitudes YA of the eliminated channels are relatively
small and have random signs. The abs8rptive potential W is thus equivalent to
reactions leading from the entrance channel to other eliminated channels.

A more rigorous connexion with the theory of compound resonances is established ­
as fallows. One averages the collision matrix element U over an energy interval
that is so wide that it contains many compound levels bSt small enough that weak
enerGJ dependences (of X, <Pt' L~ and of level statistics) can be neglected.
With a Lorentzian weight function centered at E and having the width I (FWHr~)

one finds, because U has no poles above the real axis,ce

(47)(48)

Thus Ü is given by the optical-model expression (46), with R~ replaced by R
evaluatgd at the cornplex energy E+iI. This means that the average total crossce
section can be calculated from the optical model. If in R the summation over
levels is replaced by an integration, and I is treated asc~ small quantity, one
gets

R (E+iI)ce .
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with (pole strength function),

00 s (E')
c

dE ~, ~
,l!, -,l!,

(distant-level parameter),

where D is the average level spacing and f denotes Cauchy's principal value. At
low enefgies (E+O) the effective potential-scattering radius that follows from
Eqs. 33 and 36 is

The strength function SiJ normally used 1n applied work is related to Sc by

~

SiJ = 2kcacs c\ 1eV/E. (54)

The important fact for us is that level-statistical quantities such as YT/D canc c
be used to adjust the parameters of the optical potential.

(5) Square-well outical potential

For a little numerical exercise let

v

o a r

us specialise to a three-dimensional
complex square-well potential as in
FiC' 2, with the same well radius a
for the real and the imar,inary part.
The natural choice for the channel radii
is a,Q,=a for all ,Q,.-

-v
0

W

a. r
0

-w
0

Fig. 2

The eigenfunctions for r<a can now be expressed 1n terms of the spherical Bessel
functions j,Q,:

with

For the eißenvalues KA or E
A

one has, from Eq. 32,

= KAa cos KAa

(KAa)2 j,Q,_1(KAa)-,Q,KAa j,Q,(KAa)

Bo sin KAa

B,Q,KAa j,Q, (KAa) =
for ,Q,=O

for ,Q,>1
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for t=O cos K'A a = 0, l..e. E'A = (2)..+1 )2 1i2 - V-- 1T -;;:::-z-
0'2 2ma

112
for t=1 Sl.n K a = 0, l..e. E'A = ('An)2 2maZ - V

0''A

for t=2 tan K'A a = [('A a etc.

The last equation follows from the recursion relations for spherical Bessel
functions. With Bt=-t, the choice suggested by Eqs. 42 and 43, one finds

2 _ 11
2

(58)
Y'Ao- 2maZ

2 _ 11 2

Y'A1- 2maZ

As could be expected from an optical, i.e. wave-mechanical, model the eigenvalues
correspond to certain simple ratios between the internal wave length A = 2n/K
and the diameter of the potential:

2a = A/2, 3A/2, 5A/2, for t=O,

2a = A, 2A, 3A, for t=1.

The Y~ and Y~l for the square weIl are the same for all 'A and depend only on
the ragge (a) of the real potential. Furthermore, Eqs. 43 and 38 show that
r, /2=W for all 'A and t.

Aa 0

Inserting numbers that are compatible with average neutron cross sections,

a = 1.4 fm'A 1/3, v = 50 HeVo ' Yl = 3 MeVo

one sets for a heavy nucleus with A = 238 the resonance parameters of Table 3.

The scattering widths given in Table 3 are defined as usual by

the absolute values ensuring the validity of this definition for subthreshold
("negative") single particle states (E>.. <0) as weIl as for continuum states with
E'A>O. Th7 levels are rather broad, wi th total widths r 'Aa+r H of about 10 ~·1eV

and spacl.ngs of about 30 MeV near threshold (E=O).

One can also compare with the neutron strength functions and effective radi i
observed in the region of resolved resonances (E < 1 MeV) as a function of A
(or a). For E=O our model yields

(60)

The maXl.ma ("size resonances") of St are seen to occur where E'A (a)=O, l..e. at

2>..+1 11
a=-2-TT-~

v'2mV
o

for t=O,

( 61)

etc.for t=1,a = 'A1T ,----,
(2mV

o

With a = 1.4 fm A
1
/ 3 , V = 50 MeV one finds the size resonance positions that

are listed in Table 4 t8gether with the observed positions.
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Table 3: Resonance parameters for a three-dimensional complex square-weil

potential with a = 1.4 fm A1/3 , A = 238, v+iw = { -(5~+3i)MeV ~~~ ~;::

~ spectroscopic E), 2 2P~ ( IEAI) r Al ( iEA!) rAaY;U
symbol

(~1eV ) (MeV) (MeV) (NeV)

0 1s -49.32 0.275 26.77 7.37 6

2s -43.89 " 25.26 6.95 "
3s -33.02 " 21.91 6.03 11

4s -16.73 11 15.59 4.29 "
5s 5.00 " 8.52 2.34 11

6s 32·17 11 21.62 5.95 11

etc. "
1 1p -47.28 0.275 13.03 3.59 6

2p -39.14 " 11.84 3.26 "
3p -25.55 11 9·53 2.62 11

4p - 6.54 " 4.68 1. 29 "
5p 17 .91 " 7.94 2.19 "
6p 47.78 " 13.10 3.61 "

etc.

Table 4: size resonance peak positions

t spectroscopic nucleon n~~er at peak
symbol calculated observed

0 3s 47 '" 55
l~s 129 '" 150

1 2p 24 'v 25

3p 81 "'90

4p 193 "-'210

a) 6'Eqs. 1 Wlth a = 1.4 fm Al/3 , V =- 50 MeV for r<a.
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This should suffice to show the use of level-statistical data in the adjust~ent

of optical-model parameters. Let us now return td the discussion of the various
resonance approximations.

A convenient startine point for the various practically important approximations
is the inverse level matrix:

Wigner-Eisenbud representation (exact)

with B real and constant,c

(A- 1) = (E -E)o
)q.l A A).I

(20)

Kapur-Peierls representation (exact)

with TI = L i.e. LO = 0,c c' c

I •
.~~genvalues

(A-1 )
A\.l

€A complex, E-dependent) .

(62)

SLBW approximation

Only one level is retained,

real) .

+ A- 1 = E -E-\LOy2 = E +ß-E-if/2
o l. c AC 0

c
total width, both E-dependent,

(A-1 )
A).I

(ß: level shift, f = If :
c

c

MLBW approximation

All off-diagonal elements are neglected,

(A-
1

) = (E -E-IL
Oy2)0 = (E,+ß,-E-if,/2)0,"A).I A c AC A).I A A A A~

c
(~A: level shift, f A = IfAC : total width, both E-dependent, real).

c

(64 )

Reich-Moore anproximation

Off-diagonal contributions from photon channels (c e: y) are neglected,

(A-
1

)A).I = (EA+ßAy-E-ifAy/2)OA).I- I YAcL~y).lC (65)
c,..y

shift caused by photon channels, f Ay= L f AC : radiation width).
CEY

Adler-Adler approximation

The energy dependence of LO is neglected:
C

-1 \ I 0 0
(A )AlI = (EA-E)OA -I. YA ~ L (EA)L (E )y

~ ).I c C c c).l).lC
(66)
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It should be remembered that for ~=O everywhere, for ~>1 locally at a given
energy, ~A and ~A can be made to vanish in all these ~xpressions, and that
the P contain (at least) a factor IE for elastic channels (cf. Table 1) but
are pfacticallY constant for fission and capture channels.

2.3.5 Kauur-?eierls cross section formulae--.---------------------------------

ucc'

The Kapur-Peierls collision matrix is

-i(<jl+~ ,)
= e c c (6

CC'

G1/ 2G1/ 2

AC AC')

e:~-E

where we write €A' GA =2P g~ to distinguish the complex eigenvalues and partial
widths from their real Wi~nef-Eisenbud counterparts E" r, = 2P y~ . The

• • • • 1\ • I\C C I\C •
correspond~ng cross sect~on express~ons are, ~n a notat~on that ~s conven~ent

for the discussion of Doppler broadening,
lG I

[
\' I AC

a ~ 4nX2g sin2 ~ + L ($, cos 2~,+X, s~n 2~,)jC C C c A r A 1\ 1\ 1\ 1\

Re GA
= 4nX 2g [sin2 ~ + I C ($, cos 2~c+X, s~n 2~c)

C C C A r A 1\ 1\

Im GA
+ I r

A
C (~A s~n 2.C-X A cos 2~c)]' (68)

: G 1 2
2 I'I I AC

($A Re C + XA Im CAcc )a = 4nX g L r2cc C c I. A ACC

+ I(-
Re GAC

$1. +
Im GAC

XA)] + (69 )rA r A
a

A C

acc'

with ~ - arg g,C AC

1 Re GAC
= ~c- -::::-a2 rc tan Im G

Ac

CACC' = 1 +

= 2P g~ ,C AC
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rJ/4
and ljJ = ->. (E-E ) 2+r 2/4 ' 1+x~A A zero-tenperature

Voigt profiles
(E-EA)rA/2 xA

XA = =
(E-E )2+r 2/4 1+x2

A A A

In the derivation of EQs. 69 and 70 we used the partial-fraction decomposition

1 1 =
cA -E ~~-E

It is thus seen that apart from the potential-scattering term 4nX 2g sin2 ~ all
. . ( ') c c .ccross sectlons can be expressed by the symmetrlc Lorentzlan and asymmetrlc

Breit-Wigner ~ine.shape functi?ns ~A and XA ~~J~ coefficients th~t contain a
factor Pc (WhlCh ln turn contalns a factor E ) and are otherWlse weakly
energy-dependent. The line shape functions themselves are also slightly distorted
because E, and r,.are weakly energy-dependent. Note that r, +I !G, I in contrast

h
.I\.1\ •• '\ 1\ C I\C

to t e Wlgner-Elsenbud relatlonshlp r A = LCr AC '

2.3.6 §~~~_~~~_~~~~_~~2~~_~~~~i2~_f2~@g1~~

Rather than writing down the well-known SLBW formulae we go immediately to the
MLBW case. The collision matrix obtained with Eq. 64 is

that we can take
EA~EA+llA' rA~IrAC'

c

) .
-i (y +<1> ,)

= e c c (0 + i
cc'

u
cc'

r 1/ 2r 1/ 2

L AC AC'
A EA+llA-E-irA/2

Comparison with the Kapur-Peierls collision matrix (67) shows
over the Kapur-Peierls cross section formulae with the change
gAC~YAC' The result is

sin

( 81)

with C
ACC'

= 1 + (82)

The SLBW formulae are obtained by specialisation to a single level, with C, =1.
(

I\CC
The sum ln EQ. 82 describes level-level interference.)

In contrast to the Kapur-Peierls and the SLBW collision matrices the MLBW collision
matrix is not unitary. Therefore non-physical cross sections (0 <0 or 0 >4n~2~ )

c c c c
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can occur, but for mild level overlap the MLBW approximation is quite good. In
any case it is better than the very popular but often very bad approximation,
sometirnes tenned "many-level Brei t-l-1igner approximation", that results from
omission of the level-level interference sum in Eq. 82 and amounts to simply
adding SLBW resonance terms (plus the potential-scattering term in a and a ').. c . cc
The MLBW definition used in the US file ENDF (Ref. 12) is such that Eq. 80
is used for 0 but level-level interference is neglected by putting C ,=1 for
o ,. This iscgften justified because level-level interference is usuatrj quite
wg~ for capture (if not for fission or inelastic-scattering) cross sections.
The total cross section must then be computed as the sum of all partial cross
sections rather than from Eq. 79.

The MLBW approximation corresponds to the first term of the expansion

of the level matrix in powers of the nondiagonal part-N of its lnverse,

(84)

DA~ = (EA+ßA-E-irX/2)ÖX~ • (85)

Retaining also the second term (Ref. 13) one gets an improved collision matrix,

WACC'
with

ucc'

-i (lj> +cjl ,)
= e c c (0

cc'

= 1 +

r 1/ 2\ol r 1/ 2
Ac ACC ~ AC' )

EA+ß A-E-lr/2

I YAc"L~"y~c"
c"

(86)

Again one can take over the Kapur-Peierls cross section express ions üth
E,~E,+ß" r,~L r

t
' G, ~r, W, ,G, G ,~r, W~ ,r, " The partial ~~dths are

1\ 1\ 1\ 1\ C I\C I\C I\C 1\ .I\C I\CC I\C .. .
now complex bu% ne complex poles or tEe lmproved colllSlon matrlx, Eq. 85, are
still the same as those of the MLB\ol collision matrix, Eq. 78. This is no
longer true if higher-order terms of the von rIeumann series Eq. 83 are re­
tained as in ReL 14.

2.3.7 The Reich-Moore cross section formulae

The inverse level matrix in Reich-Moore approximation, Eq. 65, is exactly what
one would derive from a "reduced" R-matrix for particle channels only, ~':ith

E replaced bJ EA+ß -ir
A

/2. In fact, exactly such a reduced R-matrix results
i} one eliminates tAJ photon channels qy means of the Teichmann-Wigner channel
elimination method which is the usual way to derive the Reich-i'1oore formulae
(Ref. 15). One can thus calculate all cross sections except that for radiative
capture from Eqs. 14, 15 and 17 where R is to Ce taken as the reduced R-matrix

R L
YACYACI

(c,c'et~ y) (87 )=cc' € -E
A AY

~th c
AY = EA+ß"y-irA/2 . (88)
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The capture cross s ection can be either calculated as difference,

0=0
cy· c

or, according to Harris

I 0 ce'
c'$y

(ReL 16) as
2

€Ay-E

The calculation is Quite fast since doutle sums over levels as in MLBW apnroxi-
- - 0

mation (cf. Eq. 81) are not needed. The inversion of the reduced ~atrix 1-RL
is unproblematic since it is usually of rank 1, 2 or 3.

LO r, /2
c \' I\C

1- P L E: -E
c A Ay

2 IPcc l2

Y - Re P
cc

-iR Pce c
Pcc - =

1-R LO
cc c

Im p
ce

x - Re p
cc

In the most frequent case the only open particle channel is the elastic channel
and all matrices reduce to scalar functions. With the definitions

\

one gets then expressions which have the formal (and 1n single-level situations
the factual) SLBW form, viz.

cos2ep +x sin2d,>
4n~2rr (sin2ep +y2 c c ) , (94 )0 = 1+x2C c'::>c c

= 4n~2g y2(1-y2) 1 (95)0 1+x2cy c c

For pure elastic·scattering, y2=1, one gets, of course, the exact single-channel
R-function with

-1' -1 _ r A/ 2
x = I XA - I E-E

A A A

The Reich-Moore formalism is thus exact in the limit of one level or one channel
and otherwise very accurate. It is fast. Its (nonreduced) collision matrix is
unitary (as long as the number of levels does not exceed the number of photon
channels which can always be assumed without loss of generality) so that non­
physical cross sections are not produced.

2.3.8 The Adler-Adler cross section formulae

The approximation Eq.66 to the inverse level matrix means essentially that the
energy dependence of level shifts (if any) and total widths is ignored. This
works very well for fissile nuclei in restricted energy ranges where
r A := r A + r A := const, but not for lip,ht or medium-mass nuclei for which
f A := rA~= 2P

t
fE)y2 with P (E) given in Table 1. Diagonalising the inverse

level matrix Eq. gg by ortfiogonal transformation one finds a collision matrix
of the Kapur-Peierls form, Eq. 67. Its poles CA and reduced width amplitudes gAC
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are energy-independent as in the S-matrix formalism developped by Siegert,
Humblet and Rosenfeld (Refs. 18, 19), but unitarity is not automatically
guaranteed.

The Adler-Adler cross section formulae (Refs. 17,20,21) are usually written
not for specific channels (c, Cl) but for specific reaction types (total, n,
f, y, .•• ) and restricted to ~=o:

~ 1 ~ 1 ((x) (x))
ax - L L acc '= 7E L V- GA ~A-HA XA ' (x=y,f,n) , (98)

cEn cl€x A A

where 0 is the potential-scattering cross section, the G~x) /(/EVA), H~x) /(!EvA)
are sumR over ~ll coe:ficients of ~A' XA in Eqs. 68-70, respectively,.wit~
VA=f A/2 and IE stemmlng from P (E). The A-sumS extend over all contrlbutlng
l~v,ls tr)espective of JIT, the ~pin factors g being absorbed in the coefficients
GA

X , H.x . In principle one could even defin~ Adler-Adler parameters for iso­
topic mtXrures by similarly absorbing the relative abundances also in the
Gix ), HAX .

Inversion of the usually quite high-dimensional matrix A- 1 is possible by
brute force on modern computers (Refs. 17,20,21) but the orthogonal trans­
formation involved is so complicated that simple conversion formulae giving the
E ,gA (or Gix ) , Hix )) in terms of the EA, YA are not available except for
tße ca~e of a single level (see Sect. 3.2beloS). As a consequence the statisti­
cal laws for Adler-Adler or, generally, Kapur-Peierls parameters could not be
derived from the known statistics of the Wigner-Eisenbud parameters. An im­
provement of the conversion with respect to energy-dependent partial widths
was recently discussed by Segev (Ref. 22).

Further discussion of the advantages and weaknesses of the various approximate
resonance formalisms will be deferred until Doppler broadening has been treated.

2.4. Theory of Doppler broadening

In most practical applications of resonance cross sections these are needed in
Doppler-broadened form. It is sometimes argued that for light nuclei Doppler
broadening can be neglected. This, however, is true only for the broad s-wave
levels but certainly not for the very narrow p-, d- ...wave levels of these
nuclei which in the case of structural materials contribute significantly to
resonance absorption and Doppler coefficient in fast reactors.

Doppler broadening is caused by thermal motion of the target nuclei. Consider
a parallel beam of monoenergetic particles with lab velocity v colliding with
target nuclei whose velocities ~ are distributed in such a way that p(~)d3u
is the fraction with velocities in a small three-dimensional region d3u around
~. If Pl and P2 are the densities of beam and target particles, respectively,
the nurnber of reactions occurring per unit time and unit volurne is

where o(v) is the effective or Doppler-broadened cross section for incident
particles with speed v. Obviously a l/v cross section is not affected by Doppler
broadening. Let us now assume that the target nuclei have the same velocity
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distribution as the atoms of an ideal p,as, i.e. the Maxwell-Boltzmann distribution,

M' 2 - kT
~'l' = , (100)

where ~ is the nuclear rnass and kT the Gas temperature in energy units. Integrating
over all possible relative velocities ~=v-u and using polar coordinates, d 3u =
d 3w = wZdw d(cos ~d~, with the polar axia parallel to the beam, one finds the
exact free-gas expression for the Doppler-broadened cross section,

co

ä(v) =1.. J
Y1T

o

In terms of lab energies, E = mV Z/2, this is

where

co

a(E) = 1 JtJ{[
o

t1 =V4kTE = 2 uT E
11/m v

( 102)

( 103)

is called the Doppler width. For E»t1, i.e. ~»2uT' which is the case ab~ve a few
eV, one can si~plify by retaining only the flrst two terms of the expanslon

... ,
co co

( 104)

( 105)

by neglecting the second exponential and by replacing J by J ln the first integral.
The result is 0 -co

co -(E'-E)z/t1z
VE ö(E) - ~ J dEI e IE' cr(E')- t1ti 1T

-co

2.4.2 Cubic crystal-------_\:.._---

Lamb (Ref. 23) obtained the same expression for radiative capture by the bound
atoms of a Debye crystal if r+t1 ~ 4 kT

D
, where TD is the Debye temperature. The

only difference is that one must use an effective ("Lamb-corrected") temperature
~~ ~

T = T(1'. )3 1 J dx x 3 coth ~ = T~ 1 + _1 ~ - + ••• ) ( 106)
L TD 2 0 2 20 T2

that is usually only a few percent higher than the actual crystal temperature T.
Using the theory of Quasi-free scatterinp; one can extend these results to
scattering and to cubic crystals in general (Ref. 24). It is common practice
to compute Doppler-broadened cross sections with Eq. 105. For very low energies
it may be bett er to use EQ. 102, i.e. the exact free-p,as kernel. In any case
the Doppler width, Eq. 104, must be calculated with the Lamb-corrected tempera­
ture, EQ. 106, for which a curve is ~iven in Ref. 23 (see also Hef. 56, p.26).

Let us now consider Doppler broadening of resonances. We saw that all resonance
cross sections in SLBW, MLBW and Adler-Adler approximation can be written as sums
of terms of the form c/( 1+x2 ) or cx/( 1+x2 ) \oI'here the coefficients c contain a
factor E-l/2 and otherwise depend only weakly on energy. As a consequence one
needs the convolutions of 1/(1+x2 ) and x/(1+x2 ) with a Gaussian, the so-called
Voigt profiles (Hef. 25),
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00

-(X-x')2/ß 2
ljJ(x,ß) 1 I dx'

1 ( 107)= --=- e 1+x' zßhr
-00

00

- (x-x I ) 2/ ß2
X(x,ß)

1 I dx' x' ( 108)= ß71T' e 1+x· 2
-00

E-E t,
with

0 ( 109) ( 110)x =
r/2 ß = r/2

The quantity ß is called the Doppler par~meter, t"r and possibly a level shirt
(here absorbed in Eo ) are to be calculated at the ener~ for which the broadened
cross section is needed. These functions, which occur also in the theory of
atomic spectra, are weil known (Refs. 25, 26). Fast algorithns are available
for computer calculations (Ref. 27). This explains the popularity of SLBW and
MLBW formulae even in cases of strongly interfering levels where they are quite
inadequate.

The Kapur-Peierls, MLBW and Adler-Adler cross section expressions (Eqs. 68-70,
79-81, 97-98) remain valid also for Doppler-broadened cross sections if the
zero-tenperature Voigt profiles WA,X A are replaced by the broadened profiles,
Eqs. 107-108.

An interesting property of both the exact and the approximate free-gas formulae
(Eqs. 102 and 105) is that if one knows the effective cross section for a tempe­
rature Tl one can get that for a higher temperature T2 by simpl~ broadening with
a Doppler width calculated for the difference T2-Tl' without gOlng back to the
unbroadened cross section (Ref. 28). Likewise one can combine Doppler and
resolution broadening (see below) of a cross section if the resolution function
has the same form as the Doppler kernei, e.g. Gaussian. One simply replaces t,
by vt,2+W2 where W is the resolution width defined analogously to t, (Ref. 28).

Cross sections of the Reich-Moore type must be numerically broadened. Once
enough unbroadened cross section points far linear interpolation with a given
accuracy are calculated the problem is reduced to piece-wise convolution.of a
straight line and a Gaussian which ~esults in error functions and exponentials,
again weil known and rapidly calculated functions (cf. also Ref. 27). Vlith
modern computers these methods can be quite fast, and the Reich-~100re

formalism is so attractive, that the recent decision to strike it from the ENDF
conventions appears ill-considered.

Assessing merits and drawbacks of the various approximate resonance formulae
one should realise that the fastest way to calculate unbroadened cross sections
on a computer is not .by way of explicit cross section expressions such as
Eqs. 68-70, 79-81, 97-98. It is much faster to compute the required collision
matrix elements and then to use Eqs. 14 and 15. Use of the explicit cross section
expressions is necessary only if resonance broadening is to be calculated by
means of the Voigt profiles. In other words, the Voigt profiles re~lire con­
siderable preparatory computations that are not needed for numerical broadenin~.

The convenience of MLBW or Adler-Adler parameters for Doppler broadening should
therefore not be overestimated - in multi-level situations it is at least
partially offset by the need to utilize the explicit cross section expressions
with their tilne-consuming double sums. Furthermore, the approximations involved
lead to cross sections that differ from the exact S-matrix cross sections. The
difference is sometimes added as a "smoothll cross section which is considered
as unaffected by Doppler broadening (e.g. in the ENDF system). This entails
additional preparatory work and, since the "smooth" component is not really
smooth near strongly interfering resonances (cf. Ref. 20b) still does not
remove all discrepancies for Doppler-broadened cross sections.



- 24 -

In the case of Adler-Adler parameters additional problems exist: If they are
derived from Wigner-Eisenbud (e.g. Reich-Moore) parameters one must invert
large level matrices, if they are directly determined in a fit procedure one
has the consistency problems connected with the unitarity of the collision
matrix: There are about twice as many real parameters as in the Wigner-Eisenbud
case, but a closer look shows that the number of really independent parameters
is the same, the remaining ones being fixed by conditions imposed by unitarity.
These conditions, however, are complicated and not easily utilised.

In conclusion it is perhaps fair to say thatthe real, constant R-matrix para­
meters of the Wigner-Eisenbud or Reich-Moore type should be considered as basic,
whereas the complex Kapur-Peierls or Adler-Adler parameters should be considered
as an auxiliary representation for Doppler broadening.

In reactor calculations cross sections are usually not required in the ~orm

of "microscopic" data '"ith the w~ole detailed resonance structure. Instead one
employs group cross sections. These are defined as flux-weighted averages over
certain energy (or rather lethargy) intervals, the ~roup intervals. In the
widely used narrow-resonance approximation, which is based on the assQ~ption
that the Doppler-broadened resonances are narrow compared to the averaße
enerßY loss of a scattered neutron, (~2+r2)1/2 « 2AE/(A+1)2, the flux over
a resonance is proportional to the inverse total crosssection. The group cross
section of a given nuclide (or element) for the (n,x) reaction can then be written
as

<::d)
a = ----'~::..-,--

x <a~d)
( 111)

where a and a=La are the (n,x) and total Doppler-broadened cross sections of thex x
nuclide (or ele~ent), d is the so-called dilution cross section describing the
admixture of other elements, and

{...) J dE N( E) •••
L'lE

( 112)

is an integral over the ßroup interval L'lE with the smooth collision function
N(E) as weißht function. The dilution cross section d is usually taken as
constant in L'lE. The self-shielding factors f are defined by the factorisation
(T denotes the temperature) x

'0 (d,T) _ 0 (oo,T)·f (d,T),
x x x with

( 114)

The group cross section for infinite dilution is just the (collision-function­
weighted) averaße cross section in the usual sense. It is independent of d and,
apart from edge effects at the interval boundaries, also of T. Thus f x contains
all d and almost all T dependence. With the usual definition of the covariance,

·cov(x,y) = «(x- <x> )(Y-(y»)>,

one can write

f (d,t) =x

a
1 + cov(-_x­

<ax >
1/(a+d)

<1/(a+d)
) . ( 116)
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Now Deaks in cr coincide usually with dips 1n 1/(cr+d) and vice versa. The co­
vari~nce is th~n negative and

° < f < 1.x
Growing dilution or growing temperature both tend to reduce the covar1ance so
that normally

3f
x

3d > 0,

3f
x
~ > ° . (118)(119)

Exceptional behaviour may be caused by

- edge effects at the group boundaries, or

- inadequacy of the narrow-resonance approximation near very
broad resonances, or

- pronounced resonance-potential interference dips (" windows")
in the total cross section. These have no counterparts in the
fission or capture cross section and can therefore over­
compensate the influence of the peaks on the covariance.

Ife get more insight with explicit cross section expressions. Neglecting edge
effects, level-level interference and resonance-potential interference we write

cr = L (0 ~), + ° , (120)
" 0 1\ P

r
°x = I (oo~ r

X
),,' (121)

where cr = 4nX(E )2gr Ir is the peak total cross section (unbroadened), ~ the
symnetr~c Voigt ~rofi~e and 0P. the potential scattering cross s~ction. ~f t~e
resonances are very narrow anä weIl separated one can treat the1r contr1but1ons
to ä indeDendently which results in .x ~

with

0x(d,T) ~ ~E L N(E")A,,x f(ß",K,,) ,

"
°x(oo,T) :: ~E I N(E")A,,x '

r r r
A"x = fdE(Oo~ r

X
),,= 2n 2X(E,,)2 (g ~ X)" (peak area) ,

00

2 f ~(x,ß) - ~ ( )f(ß,K) = n K dx ~(X,ß)+K - n KJ ß,K ,
o

( 122)

(123)

( 124)

( 125)

( 126)( 127)

The universal function f(ß,K) can be interpreted as the self-shielding factor of
an isolated, symmetric, narrow resonance which depends on the Doppler parameter ß
and the dilution parameter K. It obeys the inequalities 117-119 as can be seen
from Fig. 3. With Eqs. 122 and 123 one gets

f (d,T) ::::
x

( 128)



0> lji(ß,K)
= E.. K J dx ---­

TI 0
ß =

.----~ K

I

I\)
0\

I

Fig. 3 Dependence of the narrow-resonance self-shielding factor f(ß,K) on

temperature ( ß = 2~/r ) and dilution ( K = (d+o )/0 ).p 0



- 27 -

Thus f is a wei~hted average of the individual narrow-resonance sclf­
shield!nG factors, the weiGhts bein?, pronortional to the areas of the (n,x)
cross section peaks A>.. and to the local collision densities l1(E>..). Eqs. 120­
128 were derived for aXsincle isotope. Tney are also valid for isotopic
mixtures if (J >.. and 11.>.. are taken as containin,., the isotonic abundance as
a factor. 0 x ~

An i:nportant remark concerns the level spins. ~e SLBVI peak area is proportional
to gfnrx/f. For narrow resonances this quantity is, apart from Eo ' usually
the only information one has. For Croad resonances one knows freouently also
gfn and,mostly for s-wave_levels, even G' Now knowledG~_of E and r,f fx/f
enables one to calculate (J (oo,T), cf. Eq. 123, but not a (d,~) or fv~cr,lr).
The reason is that in orde~ to calculate f( ß ,K) one mustXknow r and·'this requires
knowledße of g, 3fn an~ grnfx/f. In other words, the peak ar~a alone does not
tell whether the peak 1S broad or narrow, and even the quant1ty gf does not
help much. For a given peak area it is mainly the spin that determ~nes the
width and thus the contribution to the self-shielded cross section and
especially to its temperature variation: The narrower aresonance, the stroncer
its response to temperature changes.

An illustration is provided by the so-called structural materials (iron, nickel
and other steel components). Their capture cross sections are doninated by very
narrow p-, d- ... wave levels for which ggpture peak a.reas are measured but not
f or ß (excepting very recent data on Fe, Ref. 31). In order to calculate
realistic self-shielded group constants one must resort to Monte Carlo
samplinE of spin and neutron widths based on level statistics (Ref. 32). In
a fast reactor the increase of neutron canture with temnerature (due to in­
creasing f, see Fig. 3 and Eq. 122) expre~sed by the so~called Doppler coefficient,
is the only inherent, automatically functioninr, safety feature. Hence the
practical i~portance of good data on ß (besides Cf and gf r Ir) is obvious.
Experimental spin deternination for p, d, •.. wave l~vels isnat present a widely
open field.

2.4.5 Westcott factors----------------

The energy distribution of the neutrons in a thermal reactor is well described
by the Maxwell-Boltzmann ener~J distribution obtained from Eq. 100 by integration
over all angles,

p(E)dE 2 E 1/"E= -r:==\,1T exn (- -)y' ­.. kT kT
dE
kT'

( 129)

and a l/E tail. The (n,x) reaction rate induced by this snectrum can be written

(130)
as 00

fdE p(E)/E ax(E) :: /kT ä)kT)r:W
o

where a (E) is the Doppler-broadened (n,x) cross section for te~perature T
and v'kTxä (k T) i s the resultone would cet for a l/v eros s section. 'rhe factor

. x .def1ned by Eq. 130, the so-called \{estcott factor, 1S thus seen to correct
the reaction rate for deviations from l/v behaviour of the Doppler-broadened
cross section. Westcott factors are conventient for reaction rate calculations
in thermal fluxes since usually the (Dopnler-broadened) the~al cross sections
a (kT) are well known, and since 10w-ene;GY reaction cross sections show l/v
b~haviour more or less nodificd by nearby positive or negative levels. Westcott
factors are normally tabulated for room temperature, kT = 0.0253 eV.
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2.5 Observables

Cross section measurements, as a rule, do not yield cross sections directly
but Inore or less complicated functions or functionals of the cross sections.

2.5.' Transmission

The simnlest measurement is that of the total cross section o. One measures
that fr;ction of beam particles of a given enerp,y which traverses without inter­
action a sample of given thickness n (atoms/b). 'I'his fraction, the trans­
mission, for a very s~all thickness of material ~n is 1-06n. For finite thick­
ness it is

r~ _
.L -

The cross

li~ (1_a6n)n/6n =
n/6n~

section is thus essentially

-na
e

the locarithm of the observable.

The (n,x) reaction yield Y (x=f,y, ... ), i.e. the fraction of beam particles
that undergoes an (n,x) re~ction in the sample, is composed of contributions
fro~ multiple-collision events with zero, one, tlYO etc: preceding scattering
collisions,

y = y + Yx1 + y ') + •••x xo x,-

where 1-Ty = ax'xo 0

Yx1
1-T \ 1-T 1 ) "= 0 0a n 0

1
x,

y = 1-T <1-T 1 <1-T2
)2 )10 0 °x2-x2 0 n 0 1

n1 O2

etc.

(132)

( 133)

( 134)

The nu..rnerical subscript indicates the nu..-n.ber of preceding collisions so that 1-T 1 '
for instance, is the probability that after the first collision the scattered
neutron interacts again in the sample. The brackets <)J ' <) etc. denote
averages over all first, second etc. scattering collislons, w~ich means over
all possible spatial coordinates and scattering angles. Note that in each elastic
scatterinc collision the energy of a beam particle chan~es from E to E' accordin,~

to A2+2A~ +1
c

:s I = E --:-(-A-+-''''-)""2-

if the tarc;et pllrticle is at rest initially. Here ~ is the COSlne of the C.:r:J..S.
scattering anGle andA the muss ratio (tarGet to be~m particle). In the resonance
reßion this means that the cross sections to be used before and after the collision
can differ dramatically. The multiple-collision yields Y l' Y 2 etc. are there-.. . x x ..
fore very compllcated functlonals of 0 ,0 and o. If lnelastlc scatterlnR lS
ener3etically possible 0 is to be tak~n a~ the SUT! of the elastic and inelastic
scatterinG cross section~, and <>1 etc. include averaeing over all 90ssible
scatterin;:>; modes. 'fhe thin-sample a!)proxi~ationJ

Y '" nox x
for no « 1 ( 135)
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is often accurate enough for fission yields (x=f) where the sample must be so
thin that the fission fragments can get out. In capture data analysis, however,
one must usually include multiple-collision terms and the self-shielding factors
(1-T)/(na) because samples are thicker and the ratios 0x/o are much greater
than in fission data analysis.

Sample thickness effects, i.e. self-shielding and multiple scattering, are also
quite important in scattering measurements. In analogy to Eqs. 132-133 one has

where

(136)

etc.

Here dQ is a solid-angle element covered by the detector.

From our discussion of (n,x) yields it is clear that (except for very thin
samples) extraction of the (n,x) cross section 0x from (n,x) yields requires
also the total cross section o. Quite generally one can state that the
availability of good total cross section data is aprerequisite for good partial
cross section data analysis. Another data type which is valuable especially for
area analysis (see below) is obtained with the self-indication method. One uses
two samples of the same material, a filter sample (thickness n1) and a detector
sample (thickness n2 ). The probability for a beam particle to undergo an (n,x)
reaction in the second sample is

(138)

The result is essentially a measurement of the filter-sample transmission with
a detector system (detector sample plus detector) that has enhanced efficiency
across the transmission dips (at the resonance energies).

An interesting application of the self-indication method is the semi-empirical
determination of self-shielded group cross sections (Ref. 33). Observed data are
always resolution-broadened. Indicating this broadening by average brackets we
can write self-indication data taken with a thin detector sample

(
-n1° ';= e 0 x (139)



- 30 -

Suppose this quantity and also the average transmission was measured with a
sufficient number of different filter sarnples to permit numerical evaluation
of the integrals

CD <e-no) =<;)J dn (140)
0
CD

<e-
no

) =<cr~d)J dn
-nd ( 141 )e

0

CD

<e-ncrcrx) =<::d>J dn -nd (142)e
0

where e-nd with arbitrary d is applied artificially. Comparison with the definition
of group cross sections, Eq. 111, phows that this method yields group cross sections
for zero dilution as weIl as for arbitrary dilution cross section d, forthe
temperature of the sampIes and for a group interval that corresponds to the
resolution width (which can be arbitrarily enlarged by additional numerical
broadening, of course).

Various types of observables are shown in Figs. 10-12, 15-19.

2.6 Experimental complications

We shall now briefly review the main causes for corrections and uncertainties
1n nuclear resonance data measurements.

In time-of-flight measurements there are always two types of background: constant
and time-dependent. Constant background may be due to radioactivity of the
sampIe and its environs, time-dependent backgrounds are produced by the accelerator
pulses and the sampIe. An example is the background caused by resonance-scattered
neutrons in neutron resonance capture measurements (Refa. 34,35) that reflects
the resonance structure of the scattering cross section and is thus violently
energy-dependent. This influence of the sample on backgrounds makes "sample-out"
background determinations often qui te doubtful. Therefore one uses "notch filters",
special sampIes placed in front of the sampIe under study. The ideal notch
filter has a few widely spaced resonances and is so thick that at their peaks
all beam particles are removed. Counts observed at these notch energies are
then pure background. This allows background measurements at a few points during
the actual run. Of course no "true" data can be measured across the notches,
so one uses a few complementary notch filters.

It was already mentioned that observed data are always resolution-broadened.
Strictly speaking the observables are

T(E) = JdE' r(E',E)T(E'), Y(E) = JdE' r(E' ,E)Y (E'), •••x x
(143)(144)

where dE'r(E' ,E) is the probability that an event observed at energy E (or the
corresponding flight time) was actually due to a beam particle with an energy E'
in dE'. The main causes are:
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- finite accelerator pulse width
- finite time channel width
- electronic drifts t jitter
- uncertain starting point (e.g. 1n

moderator slab or booster) and
~nd point (e.g. in sample or

Li glass detector) of flight path
- finite angular resolution in scattering

experiments

(öL)t
(150) •

The resolution function r(E'tE) is normally not well known. Frequently a
Gaussian is assumed in data fitting workt

(E ' E) = 1 (E'-E)2/w2
r t wl!ii' e

with, for instance (cf. Refs. 36-38)

W = 2E[2(ÖL)2 +~ (t 2+t2+t2 )] 1/2 = E/c
1

+C
2

E •
L 3mL b c d

(146)

Often slight variation of c 1t c2 improves the fit but sometimes it is necessary
to use other t asymmetric resolution runctions t e.g. X2 functions (Ref. 38) or
Gaussians with tails (Ref. 39).

In partial cross section measurements the raw data are count rates,

c = ~y E (= ~ncr E for ncr « 1).x x ( 147)

(148)

difficult
to a

Absolute determination of the flux ~ and the detector efficiency E is
and is therefore almost always avoided. One usually measures relative
reference sample (subscript r)t

Y E ncr E
c x ( x- = -- - -=-- for ncr « 1t n cr «1)c Y E - n cr E r r 'r r r r r r

for which Y is known with good accuracy. This eliminates the need to know the
flux but still one may have problems with n/nr and E/E as the thin-sample
expression shows. Frequently used reference cross sections are listedin Table 5
together with the accuracies achieved at present.

Table 5: Reference cross sections and accuracies
(1 standard deviation, indicative only)

Reaction Accuracy Energies Detector systems

1 % plastic and liquid scintillators,H(n,p) ± < 10 MeV
counter telescopes

6Li(n, t) ± 2 % < 100 keV glass scintillators,
semiconductor detectors

10
% slab samples viewedB(n ,ay) ± 2 < 100 keV by

y-detectors
12 % graphite samplesC(n,n) ± 2 < 5 MeV
197 4 % metal foils viewed by y-detectorsAu(n,y) ± < 3.5 MeV
235U(n,f) ± 3 % < 8 MeV fission chambers
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If the energy dependence of E/E is known one can determine the absolute value,
i.e. the calibration, by normallsing to an accurately known cross section value,
for instance the thermal cross section. Ir no suitable known value exists one
can often use the saturated-resonance (black-sample) technique: One uses a
special sampIe which is so thick that at a weIl known resonance the trans­
mission is practically zero (cf. Fig. 11 below). Quite generally one has

a
(1-T) ~ < Y < 1-T. (149)a x

With c=~Y E this gives at the resonance peak, E=E , where the sampIe is black,
x a(E ) 0

c < E4J < C a (~ ) • ( 150)
x 0

If a ~ a (i.e. r ~ r ) one gets, without further calculation, a quite accurate
value fo? E4J. The 4.91 eV resonance of 197Au+n, for example, was frequently used
for black-sample normalisation of capture data. With the resonance parameters in
the "barn book" (Ref. 4) one calculates in SLBW approximation a(E )/Q'y(E ) ~ 1.12,
i.e. a ± 6 %uncertainty of E4J which is easily reduced further byOa mult~ple­
scattering calculation which obviously need not be very accurate. Serious
problems are created if the detector efficiency varies from isotope to isotope
or, even worse, from resonance to resonance. This is a persistent source of
difficulties, for example, with capture measurements. Here the detector response
depends on the gamma spectrum (binding energy, transition strength to low-Iying
levels etc.) and thus fluctuates from level to level in an unpredictable way,
especially for relatively light nuclei. A reliable estimation of E/E is then
impossible without supplementary data on the gamma spectra of indiviaual reso­
nances (Ref. 40).

All partial cross section data are more or less affected by self-shielding and
multiple scattering. The corresponding corrections are practically most important
for neutron capture and scattering data. Fission cross section measurements based
on the observation of fission fragments, on the other hand, require such thin
sampIes that self-shielding and multiple scattering are much less important than
self-absorption of fission fragments in the sampIe. The effect of self-shielding
is described by the beam-attenuation factors (1-T)/(na) in Eqs. 133 and 137
whereas multiple scattering leads to the higher-order terms in the collision
expansions Eqs. 132 and 136. As these equations show the two effects are inter­
related and cannot be treated separately. Both together are referred to as
sample-thickness effects.

As mentioned above the multiple-collision yields are complicated functionals
of the cross sections. This means that they depend not simply on the cross
sections for the primary energy but on all cross sections for the whole range of
energies that a neutron can attain successively during a multiple-collision
event (cf. Eq. 134). The average brackets { ••. >k in Eqs. 133 and 137 denote
averages for the k-th collision over

- the distribution of scattering angles 0,

dank d
~ -1 < ~ E cos e < 1,dn 2'

- the distribution of azimuths 4J (uniform for zero polarisation)

-~
- 21T '

(152)
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- the distribution of the
to the next collision,

-s
p( s )ds = _e"---_

-s '
1-e k

number s of mean free paths

(153)

( 154)t
t1-e

where nk is the material thickness (nuclei/b) that a neutron would have to traverse
after the k-th collision in order to reach the sampIe surface and to escape.
Since nk and ak depend on the particulars (spatial coordinates, angles, corres­
ponding energy losses) of all preceding collisions one sees that the multiple­
collision yields are given by multi-dimensional integrals of rapidly increasing
dimensionality. Already the second-collision yield for the simplest sampIe
geometry, vize infinite slab, looks fairly complicated:

1 da t-t l

Yx1 = (l_e-na ) 47T J d~ --!!. (1 __1-_e~_
a _1 2 dO t-t l

with
na

t - ~
I na,

t - (155)(156)

The simplest way to calculate such complicated integrals on a computer is to
sampIe the multi-dimensional integrands at random and then to average, which ~s

tantamount to simulation of multiple-collision events with the Monte Carlo
technique. For each subsequent collision of such an event one must sampIe the
distributions (151)-(153) and, if inelastic scattering is energetically allowed,
also the relative probabilities for elastic or inelastic scattering.

Practical sampling methods employ a random-number generator. This is a function
subroutine that is usually part of the computer software just as exponentials,
sines, eosines etc. Each time it is called it returns a floating-point number
picked at random (i.e. from a uniform distribution) in the interval 0 ... 1. Two
principal methods exist to sampIe a distribution p(x)dx with the help of a random­
number generator:

generator ance. Equate the random number p to the( 1) Call the random-numb"er
integral distribution,

x
p = p(x) = J p(x I )dx I , (157)

o
and solve for x. The frequency distribution of the x values thus obtained is
just p(x)dx. This method is convenient if x can be expressed in closed form
(examples: Eqs. 152, 153, counter-example: Gaussian distribution).

accept

~---_.-t-_X I

P2

ox'

reject

O&... +-~_

(2) Rejection method (v. Neumann): Rescale, if necessary, so that 0 < Xl < 1,
o < p(x l

) < 1. If the range of the distribution is infinite one can substitute
e.g. x=x l /(1-x l

) (ir O<x<m) or x ' =(1+tanh x)/2 (ir -m<x<m) etc. Get two
numbers P1' P2 from th~ random-number generator. Accept x'=Pl if P2~P(P1)'
reject otherwise and begin again. This works always, even for very complicated
or tabulated p(x).

p(x I)

P 1 1
Fig. 4: Illustration of rejection method
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Usually it is most convenient to sample the c.rn.s. scattering angles and then
to convert to the lab system (cf. Ref. 38). At low energies, for example,(s-wave)
scattering is isotropic in the c.m.s. system so that p(u )duc = du /2 with
U = cos Gc (the subscript c indicates c.m.s. quantities}. From Uccone gets the
egergy of the scattered neutron (Eq. 134) and thus the new cross sections. The
latter must be available in tabulated form for convenient interpolation. The
new total cross section and the distance to the sarnple surface determine the
total interaction probability (1-Tk in Eqs. 133, 137). A flow diagram for multiple­
collision capture yield calculation is shown in Fig. 5.

--'~Start with incident energy E-nacalculate 0, 0 , 0 , T = ey n

I 0

(1-T) n (once-scattered fraction)o

sample s, u, ~ -n 1o,
calculate E1, 01'Oy" an" n1, T1=e

f-- 0 0

. . .....(_1-_T_)_n_(1_-_T_)_Y.:.......'--I. 0 1 0,

00
1(1-T) ~ (1-T ) -n- (twice-scattered fraction)o , 0

1

(third-collision yield)

etc.

Terminate ir survlvlng fraction is negligible (or by
Russian roulette based on relative capture probabilities,
Ref. 46). Repeat, keep collecting and averaging capture
yields until statistics is good enough.
Go to next energy.

Fig. 5: Flow diagram for multiple-collision capture yield calculation
by Monte Carlo simulation
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2.7 Resonance parameter estimation

The ideal resonance parameter analysis is based on data measured with isotopically
pure sampIes and proceeds as folIows.

(1) From transmission data one determines essentially

Eo ' r n , r, g for 1 = 0,

Eo ' grn for 1 > 1.

(2) The transmission results permit calculation of sample-thickness corrections
for yield data from which one gets essentially

i f r , g are known,
n

if grn is known.

(3) If transmission results are not available (p-, d-, ... levels are not easily
observed in transmission experiments) one gets only

E , gr r Iro n x if grn is not known.

The determination of Jn (and thus g) is usually based on transmission or
scattering data. Apart from complications for fissile nuclei or strong level
overlap one can usually use the interference between resonant and potential
scattering to determine 1 or at least to distinguish between 1=0 and 1>1, whereas
the resonance peak height (see Eq. 195 below) and level-level interference
allow determination of J.

The best way to extract resonance parameters from transmission, yield, self­
indication etc. data is by least-squares analysis. Because of its practical
importance and for convenient reference we briefly review the least-squares
formalism with explicit account of statistical and systematic errors.

Let us consider

observables

parameters

and a mathematical model

y.
~

x
\l

(i = 1,2, ••• 1),

(\.1 = 1,2, ••• M<I),

( 158)
.....

Yi =Yi(x1,x2""~) =Yi(x)

that allows us to calculate the observables (e.g. resolution-broadened trans­
missions, yields etc.) from the (resonance) parameters. Let us further assume
that all Yi were measured with the results ni ± ai (ai: standard deviation),
which actually means that the true value Yi lies ~n dyi with the probability

[
1 Yi-ni 2

J
dYi

P(Yi)dYi = exp - 2 (a. ) a.1:2-rr (159)
. ~ ~

if we assume a Gaussian distribution of the errors as is usual in error estimation.
What is the parameter vector x which best explains the observed data ni? It is not
very difficult to see (Ref. 41) that it is determined by the requirement that the
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( 160)

joint probability TI.p(y.)dy. for all the measurements be maximal, or
- ~ ~ ~

2 y·-n· 2lx:= d__ ~ ( ~ ~) = 0,L \.I = 1,2, ••• M.
dX dX. o.\.I \.I ~ ~

This is the least-squares principle. The M Eqs. 160 for the M unknown parameters x
can be solved immediately if the relationship between y. and t is linear. In our \.I
case it is definitely not linear so we must iterate. Let t, be an approximation
to "*- so that

with

-+ -+
y.(x) = y.(x') +
~ ~.

Ly. (~, )( x -x' ) + •••
\.I ~,\.I \.I \.I

( 162)

Truncating the Taylor series (161) after the linear term and introducing the
notation

-+ -+

(B- 1)
I y. (x') y. (x')

(B- 1)L
~,\.I ~," = ( 163)-\.I" i=1 o. er. \1\.1

J. -+ ~
-+I y. (x') n .-y. (x' )

L
~,\.I ~ ~ ( 164)c -\.I i=1 o. o.

~ ~

we get the linear system of "normal equations"
M -1 -+ -+L (B- 1) (x -x') = c or B (x-x') = c (165)

,,=1 \.I" " "
\.I

Its solution,
M
~ -+ -+

x\.l = x~ + "~1 B\.I"c" or x = x' + Bc (166)

can be improved by it~1ation until X2 remains constant. It is seen that in each
step the M~~ matrix B must be inverted and values for allobservables and
their derivatives must be computed.

What uncertainty in the adjusted parameters x follows from the data uncertainties
If we denote the unknown errors of the n. by O~. we have, in linear approximation,

~ 1

dX y .
ox = L----d\.I on· = LL B ~ on· (167)\.I . n . ~ . \.I" O. 1

1 1 1 " 1

(cf. Eq. 166). The uncertainty to be quoted for x lS the square root of
var(x ) = \ ox2 > where the average brackets indigate the expectation value.
Gener~lising s~ightly we calculate

o.?
1

y. y. A
<oX\.l ox" > = L L B ~ <On. on.)~ B, •

v \.IK O. 1 J 0 • 1\"i,j K,A ~ J

If the data uncertainties On. are mutually independent,
1

<OTl;önJ') = var(Tl')ö" = er? 0 .. ,
... 1 1J 1 1J

( 168)

( 169)

one gets simply

<oX\.l öx,,) = (B B- 1 B) = B •
\.I" \.I"

( 170)
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In most cases, however, a~ =var(x ) is a sum of squared statistical and
systematic uncertainties. 1The stat~stical errors are usually uncorrelated but
the systematic errors are not. One has then instead of Eqs. 169, 170

= a~ö.. + T •• ( 1-ö .. ) ,
1 1J 1J 1J

<öx öx ) = B + \ \ B Yj t T •• Yj,A B, ( 172)
\..l \I ll\l. ~,. L llK a. 1J~ 1\\1

1,Jf1 K,A 1 J

where T .. describes the correlation. Let us take, for example, the n· as time­
of-fligfii count rates all affected by the same error öb in backgrouna subtraction.
Then T .. = (öb)2 and a? = (~)2+(öb)2, "1. being the statistical error. If there
is als6J a common normaiisati05 error öc on~ has T .. = (öb)2+n.n.(öc/c)2,
o~ = (!J1. )2+(6b)2+n?(öc/c)2 etc. This illustrates1tiow importa5tJ it is that
e~erineRters state1 clearly and in as much detail as possible the statistical
and systematic error components. One might add that it is similarly important
that those who extract cross section parameters from e~erimental data should
state not just the parameters x and the variances <öx ) or the corresponding
standard deviations but also atllleast the more importan~ elements of the covariance
matrix <öX\..l oX\l>. The uncertainty of a function f of the parameters x , for
instance a calculated cross section or transmission value, is given by\..lthe
square root. of the variance

(Öf2 ) = «( I ~ f ox) 2 ) = I af
\..l aXll II ll,\I aXll

( 173)

so that a good error estimation or sensitivity study is not possible without the
covariance matrix or at least its more important elements.

The minimal X2 obtained provides a means to check the consistency of mathematical
model (Eq. 158) and data and the goodness of·fit. The probability that a measure­
ment of I observables y. results in a x2-value within dX 2 is derived as follows:
The range X2 ••• X2 + d~2 corresponds to a "spherical"shell in the I-dim~nsional
space of the y./a .• Replacing the volume element TI. ldy./a.) in Eq. 159 by the
volume of this

1
infinitesimal shell and normalising1pro~erlyone finds the

probability

( 174)

In practice one does not know the true X2 (relative to the true y.) but only
that relative to the most likely estimate. This can be taken int01account if I
is replaced by I-M, the effective degree of freedom (M: number of estimated
parameters), so that

(177 )

with the expectation values

var X2 = 2( I-M).

Thus X2 can be~ted to be about equal to the effective degree of freedom:
X2

== (I-r.1) ± 12(I-M). If it is much larger the fit must be considered as bad
because either

- the mathematical model is inadequate, or
- the data are faulty, or
- the data errors were underestimated.
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Frequently the last explanation is the correct one: systematic errors are often
underestimated or not recognised at all. One should then rescale all errors as
follows,

o. ..... o.
1 1

IL
I-M '

/Lox ..... OX Y I M •
)J )J -

( 180) ( 181 )

Inadequacy of the mathematical model can mean that an unrecognised resonance is
present or a resonance spin lS wrong.

The simplest method to extract resonance parameters from measured data is area
analysis. The fitted quantities (y. in the least-squares formulae of the preceding
sections) are taken to be the area~ of transmission dips

--"0 -

T

0'----------.;.
E

(n,x) peaks,

r
'" 2

o
x

~ -no $(x,ß)
fdx(l-e 0 ),-

r
A~

r

( 182)

( 183)

(184)
A(n)

A(n+n')-A(n')

o

ox
R ::::: ----------

or ratios of such areas, e.g. the (n,x) self­
indication ratio

- - 0

fdE e-n'o(l_e-no) ~
. C1

E
Fig. 6

where the bars denote Doppler broadening, $ is the Voigt profile, Eq. 75, and

( 185)( 186)
E-Eo

x = r/2
r

o = (4lT?\2 ~)
o r E=E

o
Ideally all these quantities are measured with the same set-up in the same flux.
A capture measurement, for example, is easily extended to yield transmission
and self-indication data, too, by insertion of a filter sample in front of the
capture sample. One can then measure in alternating cycles filter transmission
(capture sample out), self-indication data (both samples in) and capture yield
(filter sample out). In order to optimise the sample thicknesses and choice of
observables one considers (Refs. 42, 43) the SLBW thin- and thick-sample ex­
press ions that follow from the properties of the Voigt profiles if potential and
multiple scattering is neglected (or subtracted out),

A = lTnO r/2,o

A = r/lTno ,
o Ax

= lTno r /2o x

= r IlTnox 0

(ncr «

(ncr »

1),

1).

(187)( 188)

( 189)( 190)
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Fig. 7 Idealised area analysis curVes derived under the assumption
that the samples are either very thin or very thick for transmission
areas (TA), capture areas (CA) and scattering areas (SA), and that self­
indication ratios (SIR) were measured with a thick filter and a thin
detector sample, or vice versa. Abscissae and ordinates are calculated
values r' and r' in units of the true radiation width r , on a log-log
scale. T~ree ca~es are shown: strong, intermediate and *eak scattering
(r :r = 10, 1,0.1, respectively). The curves on the left were derived
wi~h the correct spin factor - they are independent of J. The curves on
the right demonstrate what happens if the spin factor is taken three
times too small - this corresponds to an incorrect compound spin J = 0
and a correct spin J = 1. A realistic example is shown in Fig. 9
(Hef. 43).
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Similarly one gets for thick filter and thin detector sampIe

( 191)(n'ä » 1, nä « 1).Rx
1=---

IlTn ,(]
o

Equating these theoretical expressions to the measured quantities one sees that,
for given level energy Eo and spin factor g, each one defines an equation between
the partial widths of the form n. =y.(r ,r ,rf , ••• ). The most important case
for non-fissile nuclei, r = r +r1 is fep~es~rited by 2-dimensional plots (Ref. 43)
in Fig. 7 . Each equation defrne~ a curve, for the correct g and zero experimental
errors all curves intersect in one point. In practice the intersection is not
perfeet but usually much better than that for an incorrect spin, so that the
correct spin is readily recognised. One wants the curves to intersect at angles
approaching 900 so that the parameter pair is well defined. For which choice of
observables this is achieved depends on the ratio r Ir , see Table 6. Very weak
resonances are difficult to see in transmission dat~, ~ven with thick samples.

Table 6: Best Combinations of Observables for Area Analysis if r = r +rn y

Resonance Type· Best Combinations Uncertainties (%)
cr Ir cSr Irn n y y

r > r y' strong scattering (A ,A), (Ry,A) '" 2 10 - 20
n y

r '" r intermediate " (R ,A), (R ,A ) '" 5 5 - 10n y' y y y
r < r weak " (R ,A), (R ,A ) 5 - 10 10 - 20n y' y y y
r « r very weak " (Ry,Ay ) 5 - 10 > 20n y' '"
The uncertainties cSr for strong resonances are mainly due to those of multiple­
collision calculatiols while those for weak levels are mostly caused by back­
grounds and statistics.

The principal advantage of area analysis is the insensitivity of areas to resolution
broadening, at least as far as the resonance dips or peaks are weIl separated.

If adjacent resonanc~s (doublets, triplets etc.) are incompletely resolved
instrumentally and the resolution function is weIl known shape analysis is superior
to area analysis. The same is true if very many levels must be analysed. In
general shape analysis is more convenient and utilises all the information
contained in the data.

The Yi in our least-squares formulae are now the individual data points. There
is nothing in the formalism that restriets one to a single resonance or a single
set of data points. In a single computer run one can adjust all resonance para­
meters within a given energy range by simultaneously fitting all relevant trans­
mission, capture, fission ••• data points irrespective of experiment, sampIe
thickness, instrumental resolution etc. The only condition is that for all n·
the corresponding theoretical values y. and their derivatives y. with resp~ct
to the adjusted parameters can be calcijlated. Of course this is 1 dgrmally beyond
hand calculation and one relies heavily on computer codes which in turn have their
own limitations as to data types, number of data points, number of cross section
parameters that can be handled etc. As mentioned already it is best to analyse
all trmnsmission data before one starts fitting yield data.
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The initially employed graph methods for area analysis of neutron resonances
(Refs. 37, 44) are no Ionger needed since least-squares computer codes have
been developped. A widely used area analysis code was written by Atta and Harvey
(Ref. 45) for transmission data analysis. The TACASI code (Ref. 46) for combined
transmission area, capture area and self-indication ratio analysis contains the
necessary Monte Carlo subroutines for simulation of multiple-collision events.
Both these codes employ the "many-level" Breit-Wigner formalism (simple sums
over SLBW resonance terms), Doppler broadening by means of Voigt profiles and
resolution broadening with a Gaussian. The Atta-Harvey code, however, uses the
approximation ~ «1 which may cause difficulties with s-wave levels at keV energies.
An area analysi~ code for scattering data is under development at CBNM Geel
(Ref. 47). As an example TACASI handles simultaneously

< 20

< 7

observed transmission areas, capture areas and/or self-indication ratios,

resonances, i.e. one main resonance with adjusted rand r , plus up
to 6 subresonances with fixed parameters for the ca~culati6n of resonance
overlap and sampie impurity corrections.

TACASI versions that also handle a single observed quantity and adjust one
parameter, e.g. r , were developped at KfK (Ref. 48) and CBNM Geel (Ref. 49).

y

The next generation of codes was developped for shape analysis. Some shape analysis
codes require data reduced to cross section form, the more convenient ones handle
transmission and yield data directly. The following codes fit Doppler- and
resolution-broadened cross sections:

the Reich-Moore code for 0T and 0f developped by Derrien, described 1n
Ref. 50;

- the very flexible Reich-Moore program ACSAP (Ref. 51) for 0T,On,Oy,Of;

-the Adler-Adler program CODILLI (Ref. 52) for 0T and 0f' restricted to
heavy nuclei.

Examples for automatie shape analysis codes for transmission data are

- the Atta-Harvey many-level Breit-Wigner shape code, Ref. 45, restricted to
nonfissile nuclei and cases with ~ «1 (below few keV for s-wave levels);

c

- The MLBW code SIOB ("seven in one blow", Le. 7 transmission runs fitted
simultaneously) suited for heavy non-fissile nuclei (Ref. 53);

- the elaborate and ponderous one-channel Reich-Moore code REFIT (Ref. 54) that
fits up to 20 transmission runs simultaneously by adjustment of up to 100
cross section parameters; suited for heavy as weIl as for lißht nuclei;

- the FM~AL code (Ref. 36) that was written for light and medium-mass nuclei
below 400 keV. It employs two-ehannel Reich-Moore formulae without Doppler
broadening for (1 elastic, 1 inelastic) s-wave channels, SLBW formulae for
p-, d- •.• wave channels, fits 5 runs simultaneously by adjustment of up to
50 parameters and is very fast due to the hybrid cross section representation.

All these codes include Doppler-broadening (numerical for Reich-Moore cross
sections, exception: s-wave levels in FANAL) and resolution broadening.
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Automatic shape analysis programs for yield data are not so numerous yet. The
multiple-collision yield, usually calculated by Monte Carlo simulation, presents
difficulties in the least-squares formalism because its derivatives are not
normally available. One operational shape code is

- FANAC (Ref. 38). It is written for light and medium-mass nuclei below 400 keV,
employs the same hybrid cross section formalism as FklAL (see above) but
contains, in addition, Monte Carlo subroutines for multiple-collision
simulation. It fits up to 5 experimental runs by adjustment of up to 20 resonance
parameters.

- The REFIT program (see above) is being extended to include capture shane analysis,
too.

Illustrations for some of these codes are glven in Figs. 9-19.

2.8 Niscellaneous useful resonance-theoretical expreSS10ns

Setting the cross section derivative with respect to energy equal to zero one
finds expressions for the energies where the extrema of the cross section occur.
Neglecting slow energy dependences (of ~ , L , ~ ) one gets in SLBW approximation
f th . c c c
or e maxlmum

o (E+) = 4n~2g ,c c c

and for the minimum (lI windowll ) caused by interference between potential and
resonant scattering

r r
E = E cot 4> , o (E ) = 4n~2g (1- .,E.) (194)(195)0 2 c c - c c r'

a whencec

E = E cos 24> + E sin2~ ) (196)
0 + c c

r = (E+ - E_) sin 2~ , ( 197)c

E E E r
+ = 41TX 2g .....!!. = a (E+)-a (E ). (198)0

Fig. 8 0 c c r c c-

For light and medium-weight nuclei, for which Doppler and resolution broadening
are often negligible, these relationships are quite useful to determine g ,
i.e. J (Eq. 193), as weIl as first guesses for E , rand r (Eqs. 196-198)
directly from the observed extrema. Note that th~ nominal ~esonance energy, E ,
is different from the energy at the peak, E

t
. The interference dip is the dee~er

the less absorption one has. For pure elastlc scattering (r=r ) one gets
ac(~_) = O. In the minima the observed total cross section ma~ therefore be
domlnated by other channels (partial waves), other levels and impurities.
Other relationships that can ~rovide starting values for least-squares analysis
are the SLBW area express ions
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232Th+n with different sample thicknesses. The error ellipse illustrates
the final result of a simultaneous fit with the TACASI code, viz. r , r ,
the uncertainties and the correlation (see Ref. 46). y n



- 44 -

eV

-E

200

--E

L

experimental
with nl .3.51 10-2 nucl~lIb

n2 = 1,-41'10-2

calculated
with ~ ·125 meV

n = 37 "

'"""'-.T' experimental
with n2= 1,41-10-2 nuciei/b

- calculeted
with ~ .125 meV

n = 37 ..

195

Sel!-Indication

CqpJure

194,OeV

l

190

VI
::L

~ ~
1 1

10-

t
185

fj,C

M

10-1 t
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capture and self-indication count rates near the 194 eV resonance
of 9 3Nb+n. The enhancement around 200 eV is due to multiple scattering:
The low-energy maximum of the self-indication curve is higher than
the high-energy one because of the "window" produced by interference
between potential and resonance scattering. The calculated curves
were obtained with the TACASI code which actually fits the areas
under the histograms but for checking purposes also prints the
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Fig. 13 Flow diagram of the shape analysis program
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'computed from initial guess parameters, then
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compared with the input data. After adjusting
the desired parameters the program reiterates
a specified nurnber of time~ before producing
an output listing and plot of the results
(from Ref. 51).
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Figure 15 - A theoretical fit to the 232U cross section using ACSAP .. Initial
guess parameters were deliberately chosen "far from correct" to emphasize power
of ACSAP algorithms (from Hef. 51).
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shape analysis code FANAL (Ref. 36). Note the very severe level-level interference caused by the un­
usually broad s-wave resonances at 191 and 246 keV. As a consequence the resonance shapes above 120 keV
are quite unlike single-level Brei t-\-ligner shapes. Nevertheless they are properly described by the
employed Reich-Moore formalism (from Ref. 90),
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Fig. 18 Two sets of transmission data on 57Fe and a simultaneous fit obtained with the transmission
shape analysis code FANAL (Ref. 36). The interpretation here is complicated by the fact that no less
than three s-wave channels are open, two elastic (J = 0 and J = 1) and one inelastic channel (J = 1).
Additional elastic and especially inelastic scattering data would have been helpful to resolve the
many ambiguities (from Ref. 90).
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!dE(O-O ) = 2n2~2 gr cos 2$ ,
p c n c

r rn x
g -r-'

(199)

(200)

which do not depend on resolution or Doppler broadening.

2.8.2 Distant levels

So far we glossed over the problems associated with the infinite number of e1gen­
values Eh. In practice one knows only a finite number A of them and splits the
R-matrix or reduced R-matrix in a smooth part RO due to the "distant" levels
outside a given energy range and aresonant part R1 due to the levels eX9licitly
considered,

R = RO
cc' cc' = R

O +cc'

A

r
"h=1

(201 )

In SLBW approximation the sum contains one term only, 1n Reich-Moore approximation
Eh is to be replaced by EA+AA -ir1 /2 (see Sect. 2.3.7). In the resonance region
non-resonant, i. e. "direct" ttans1tions between channels can usually be neglected
and so can off-diagonal elements of ~ which represent such transitions. We write
therefore

i~c= qcc' e (202)

with (203)(204 )

and get

( 1_RL°llt
]
cc'

(205)

(206)

Insert"ing this in the expression ( 17 ) for U we see that all R-matrix equations
are preserved if we redefine as follows,

" (208)

11 (209)

(210),
Sc (E' )

dE' E'-E

We can use level statistics to estimate RO
• Qenoting length and midpoint of the

interval of explicitly given levels by I äHd E we have

y 2 A 2 CD (E') E+I/2
RO = r~ - r Yhc '" fdE' ......Sc-:--_

cc A E~-E h=1 EA-E -CD E'-E - E-~/2
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where we replaced sums by integrals and introduced the strength function s , Eq.50.
With the definition of the distant-level parameter R

oo
(Eq. 51) and the as~umption

that neither R
oo

nor s varies significantly over theCinterval I one getsc c

o 00 ( - ( - ) E-ER = R E) - 2s E ar tanh 1/2'cc c c (211)

a result which in practice is only needed for neutron channels (cEn). Usually
derived from a picket fencemodel (e.g. in Refs. 36, 55) it is seen to be quite
general. 1t has the great advantage over expansions in powers of E-E with adjustable
coefficients (e.g. Refs. 54, 56) that only two parameters with a clear physical
meaning are involved, R

oo
(or R', cf. Eq. 53) and s (or StJ' cf. Eq. 54). Both

are tabulated extensively (e.g: in Ref. 4) or can ße estimated with the optical
model. Only slight adjustment (if any) is usually needed for a very satisfactory
reproduction of potential scattering over very wide energy ranges. As an example
Fig.20 shows R' vs. A as calculated from an optical model iRef. 59) and R' values
for medium-mas~ nuclei obtained empirically by adjusting R (tagether witfi s and
the resonance parameters) in shape fits to transmission data in the range 10

C
to

300 keV (Refs. 57, 58), see also Figs.17,1S ). Since Eq. 211 is valid on the
average but not in cases where untypically weak or strong levels are located just
outside the interval I it is good practice to include such "nearby" levels
explicitly in R1 and to use Eq. 211 only for the more distant levels. This means
that the interval I is chosen wider than the interval in which one actually wants
to calculate cross sections.

(212)(cen).
- 2i cf>c

= eUcc

An example of the "nearby" levels just mentioned are levels with E>. < 0 ("negative"
levels) corresponding to compound states just below the neutron binding energy.
Although.low-energy cross sections are mainly determined by the "positive" levels
their exact description frequently requires one or at most two additional levels
with EA < o. Let us assume that for a non-fissile target nucleus (r=r +ry) we
know ttie positive levels up to a certain energy and want to deterrninenthe para­
meters E , r ,r for one negative level so that the thermal cross sections are
reproduc~d. Rt tfiermal energies the Pt for t~1 are so small that only s-wave
interaction need be considered. With the usual choice Bc=O the Reich-Moore
collision function for a given s-wave channel is given by

\ r>.n/2
, 1+i L.

>. E>.-E-ir>.y/2

The resonance parameters for all positive levels and the one negative level are
contained in the SUffi, and in this way they enter into all crQss section expressions.
The explicit relationship between the SUffi and the cross sections is obtained if we
salve Eq. 212 for the sum and elirninate Ucc by means of

Q Y 0 °c 2Re U = 1 - c I U = + cc ( )ce 2n~2g' m cc - nXLg - 2n~2g ,
c c c c c c

(213)(214)

which follows from Eqs. 14 and 15. The resulting expression can then be specialised
to the thermal energy, E =25.3 meV, for which cf> ~ k R' = k a (1-Roo

) « 1
( ~ c c c c . ccf. Eqs. 53, 208, 211). Furthermore we assume tnat no resonance 1S very elose
to E which means 0 «4nX2g, E « IE>.I and rf «E~ for all A. Under these
conditions we get from thecrgal and irnaginary plrt
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2k R'c c

(216)

where 0 = 0 - 0 is the capture cross section for channel c, and where we
placed tEe unRnownc~um terms on the left-hand sides, the known positive-level terms
together with the other known quantities on the right-hand sides. The sign
ambiguity is due to the fact that the cross sections depend on (Im U )2 rather.., .. . ce
than Im U . In most cases the pos1t1ve s1gn can be 1mmed1ately d1scarded because
it would ~ike r /E positive contrary to the assumption E < O. If this criterion
fails one choos~s ~he sign that gives better overall resu~ts 1n the thermal region.

With only two equations for the three unknown quantities E , r , r y we can choose
one of the three and then calculate the other two. The fac~ th~t radiation widths
do not fluctuate much from level to level suggests to take r as the mean radiation
width obtained from the positive resonances. Note that in E~s. 215 and 216 all
neutron widths must be calcul~ted at the (thermal) energy E, by specialisation
of the general relationship

Pt(E) t~!E VR,(E)
rn(E) = rn(IEol) PR,(fEJT= r n r~vR,(jEol) (217)

(with vt = P /p ) to t=O. The energy-independent quantity r t is the reduced
neutron widtfl. ~n many resonance parameter tables it is lis~~d together with, or
instead of, the nominal neutron width rAn(IEAI).

For target spin 1=0 only one elastic s-wave channel (J=1/2) is open, and 0 = 0,

o = 0 ,0 = 0 • Otherwise one has to consider both 'elastic channels (JgI±1/2)cc nl CY. Y • •separate y wn1eh may be problemat1c S1nce the two 0 ,0 ,0 are usually not
k 1 b h . c. ce CY. t'nown separate y ut only t e1r sum 0, 0 , 0 • Only 1n rare cases 1S one nega 1ve
level per channel not enough to fit knowR lo*-energy cross sections. One can then
replace the left-hand sides of Eqs. 215, 216 by appropriate sums over negative
levels and determine the parameters by a regular shape fit.

3. EVALUATION OF RESONANCE DATA

We shall now briefly discuss some of the problems encountered by the evaluator. He
has to construct complete resonance parameter sets from published resonance para­
meter data and to determine the level-statistical parameters needed for inter­
pretation and prediction of average cross section data in the region of unresolved
resonances.

3.1 Intercomparison of resonance parameter sets

The following discussion will be.restricted to the intercomparison of resonance
parameters of the R-matrix type. It is very rare that different authors use the
same potential-scattering parameters (e.g. nuclear radii) in their resonance fits.
One should therefore put all available resonance parameter information on a common
basis before a detailed comparison and evaluation is started.
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Such a corumon basis can be established by means of the expressions for level
shifts and partial widths

/),,, = I
c 11-Ro LOl 2

cc c

2P y 2
c "C

(218)

which follow from Eqs. 64,207,209. With a given author's information on his
treatment of potential scattering, e.g. his choice of R' as a function of E, we
can calculate $n(k R') at each resonance and comnare itCto $n(k a ) where a is

x, c c . -" c c .cthe nuclear rad~us to ~h~ch we want to refer all resonance Darameters, def~ned

e.g. by a = 1.4 fm A1/3 or (ENDF, Ref. 12) ac = 1.23 fm A1/ 3 + 0.8 fm. The
differencg between $9.,(k R') and $9.,(k a ) can be formally ascribed to a certain
value of R~, i.e. RO , Shich in turncc~ be inserted in Eqs. 218, 219. Thus one
gets from the authof~s resonance energies and widths those which correspond to
the adopted a convention, with the influence of distant levels removed. These
effects are u~ually negligible at eV energies but can be important in the higher
keV region.

3.1.2 Q!ff~~~~!_~2~~~_E~~~~!~~~_~c

Less frequent is the choice of different boundary parameters by different authors.
Nevertheless we shall treat this problem in some detail because a very simple
method for conversion between the Wigner-Eisenbud (or Reich-Moore) and the
Kapur-Peierls representation can be derived from it.

We consider two choices of the boundary parameters, Band B', and the corresponding
quantities R, LO and R', LO'. Now the collision matrix does not depend on a
particular choice, so that (cf. Eq. 17)

(1-RLO)-1 R = R(1-LoR)-1 = ( 1-R' LO ' )-1 R' , (220)

whence (1-R'Lo')R = R' ( 1-LOR) (221 )

R' -1 (222)or = (1-öB·R) R

with öB :: B'-B = LO-Lo, . (223)

The poles and residues of Rare the EI.. and y" y"c" those of R' will be denoted by
E~, ylcYXc" Eq. 222 shows that the poles of R' are the solutions of

det [1-ÖB'R(E~)] = O.

The residues can be obtained as follows. From Eq. 222 we get

l-(R,-1) =l-(R- 1-öB)
aE aE '

or, denoting differentiation with respect to E by a dot,

-1. -1 -1· -1 •-R' R'R' = -R RR -öB.

(224)

(225)

(226)
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Multiplying from both sides with R' = (1+R'oB)R, which follows from Eq. 221, and
going so elose to the pole E~ of R' that R' = Y~eY~e,/(E~-E), E = E~, we find

1 = L Y~c oBc Rec,(E~)OBc, Y~CI + L Y~c oBc Y~c
c,c' c

(227)= (
Y~c oBc Y 2 •

\ \ A ~C) +) yi2 oB
L L E -E' ~ AC c
~ c V A

Especially simple expressions are obtained from Eqs. 224 and 227 if the boundary
parameter is changed for one channel only, namely

2

1 = oB L
Yvc

c E -E' ,
V V A

2

= y,2{oB2 L
Yvc + 013 ).AC c (E-E,)2 c

V V A

(228)

(229)

Eq. 228 can easily be solved for E~ by iteration (see below) whereupon Eq. 229
yields Y~ • If oB does not depend on energy,as in the Wigner-Eisenbud representation,
oB vanisfies, of gourse.c

3.2 Conversion from Wigner-Eisenbud to KaBur-Peierls resonance parameters

(230 )

Theresults of the preceding section can be applied to the special case B = S ,
B , = L , i.e. oB = iP , which corresponds to conversion from Wigner-Eisgnbud

c

(c c 1 c oC ) 0 1s-wave or ocally deflned p-, d- ••• wave parameters to Kapur-Peler s parameters
or vice versa (Ref. 48). With the notation introduced in Sect. 2.3 for Kapur­
Peierls parameters (E~=~, Y~C=gAC' 2PCy~~=GAC) we get from Eqs. 228 and 229

irA/2
CA = EA - ----'---­

ir /2
1- L vc

VfA E~-€A

or

iGAC
-2-= (231)

(232 )

w~'2e thl/~quare root is tak~n with the positive sign so that for isolated levels
GA = f A • The term with oB has been omitted since we consider the dependence
ofcoB ascparametric rather tRan functional so that the argument of oB =ip (E)

. cd 11 0 11 0 0 C c 11COlnCl es only accldentally wlth the bombardlng energy. As a consequenee a
widths (r ,GA) are to be calculated at the energy E for which we want to calculate
the Kapur~PeierIs parameters (rather than at EA).

Eq. 230 is convenient for iteration starting from cl ~ EA-ir A /2. Convergence is
rapid even with severe level overlap (Ref. 48 ). Havlng determrned cl with sufficient
accuracy one can caluclate GA as a simple sum over levels (Eq. 231). The method
is formally simpler than the gonversion techniques based on matrix inversion (Ref.17)
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or on partial-fraction expansion of the determinant in Eq. 224 (Refs. 20,22).
In particular large numbers of resonances are easily dealt with. Computation of
determinants and matrix inversion are replaced by a perturbation approach which
clearly exhibits the influence of interfering levels. Their importance is
essentially proportional to r /(E -El ). In SLBW approximation the sums in Eqs.
230 and 231 vartish and one ge~~ imMed1ately, for conversion in all channels,

CA = EA - iIrAC /2 =
c

In the two-channel case iteration
representation of the tangent,

(233)(234)

of Eq. 230 produces the continued-fraction

€.A =
x/2

21-(x/2)
1-(x/2)2

1- .•••

where

r 1/ 2

~c tan a)
r 1/ 2

AC

r 1/ 2r 1/ 2
AC ~csin 2a _ x ;",::;,...-e;",::;,... ,

(E -ir /2)+(E,-ir, /2 )
~ ~c ~ ~c

(A, ~ = 1,2). (236)

This is what one also obtains as solution of17~e17~aracteristicequation (224) in
the diagonalisation of the part (EA-E)OA -i r A r /2 of the inverse level matrix,
Eq. 22. We shall not go further into det~ils.cIt~§houldbe sufficiently clear by
now that our perturbation approach is most usefulfur many levels and few channels,
that is for the Reich.-Moore formalism. With the Kapur-Peierls choice LO = 0 for
all particle channels the essential Reich-Moore formulae assume the sigple form

ucc'

-i(4) +4> ,)
= e c c (0

cc'

iG 1/2G1/2
+ I AC AC'

A c -E-ir /2
A AY

acy = I
c'Ey

a
cc'

(238)

\'" 1/ 2 . 1 t' 1 h 1 (J::' •r /2where c ,GA are the converS10n resu ts far the par 1C e c anne s ~A-1 AY ~

EA-irA/~ forcrelatively isolated levels).

In this way one can convert Reich-Moore to Kapur-Peierls parameters. The corres­
ponding cross sections can be Doppler broadened by means of the Voigt profiles
(see Sect. 2.4.3), but we stress again that the price for this is heavy: One
must convert parameters for each energy grid point and then calculate complicated
coefficients for the Voigt profiles involving double sums over levels (Eqs. 69, 70,
72) which is time-consuming if many levels are involved. Direct numerical broadening
of Reich-Moore cross sections is usually simpler, faster and more accurate.
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3.3 Applied level statistics

It was already mentioned that one of the reasons for parametrisation of resonance
cross section data is the need to determine level-statistical parameters such as
mean level spacings, average 'widths and strength functions which permit extra­
polation of average cross sections and simulation of cross section fluctuations
in the unresolved-resonance region. As in resonance theory we shall need only
very few formulae from the impressive but often still speculative edifice of the
statistical theory of spectra (Refs. 60, 61).

The reduced width amplitudes YA of Wigner-Eisenbud R-matrix theory are essentially
values of the internal wave fungtion taken at the channel radius a , as our
little single-particle exercise (Sect. 2.3.3, Eq. 42) showed. TheyCcan be ex­
pressed by the overlap between the A-th eigenfunction and the channel wave
function at the channel entrance (r =a ). In the multi-channel (A+1)-nucleon
case this is a (3A+2)-dimensional cgnflguration space integral over the surface
of the interaction sphere. The very complicated integrand oscillates rapidly
so that negative and positive contributions nearly cancel. The integral is thus
almost equal to zero and is positive or negative with presumably equal probabili­
ties depending on the particulars of the A-th eigenstate. Under these circum­
stances a Gaussian distribution of the YA' for given c is a reasonable guess.
Omitting the level subscript we write c .

2
p(y )dy = ~ e-x dx,c c y~

This is the Porter-Thomas hypothesis (Ref.
p(y )dy = p(y2)dy2 immediately yields thec c c c

e-y
p(y2)dy2 = J== dyc c y~y

Yc
- ~ < x = 12(y2) < ~ (239)

c

62) which, with dy2 = 2y dy ,
famous Porter-Thomäs distriEution

y2

o < Y - 2<~2> < ~ • (240)
c

It applies to reduced neu~ron1widths whenever the resonances are excitable only
via one channel so that r /<r >= y2/<y2> (e.g. for I=O or 1=0, see Table 1), but
also to partial radiationnwid~hs fgr single radiative transitions,not only in
nuclear but also in atomic and molecular resonance spectroscopy. Many observable
widths, however, are sums of single-channel widths, for instance many reduced
neutron widths for I>O and 1>0, or the total radiation width or fission widths.
If the averages (y2> were the same for all v contributing channels one would
get the generalisedcPorter-Thomas distribution, a X2-distribution with v degrees
of freedom,

2 2 v -1 -y v/2-1
P (y )dy = r(-) e y dy

x x 2 '

where r(v/2) is the gamma function and

o < y < ~,

y2 = \ y2
x L c '

c~

The single-channel Porter-Thomas distribution (v=l) agrees weIl with observed
distributions of single-channel reduced neutron widths (Ref. 63) and partial
radiation widths (Ref. 64). The general X2 distribution is useful for two-channel
reduced neutron widths (v=2, exponential distribution) and, with an effective
number v of channels, also for fission widths (v sroall) and total radiation widths
(v very large). That v is large for total radiation widths could be expected
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because usually there is a huge number of allowed radiative transitions to
lower-Iying compound states, each giving rise to a sum term in Eq. 242. That v
is small for fission widths, however, surprises at first sight. The hundreds of
possible pairs of fission fragments, each with many possible excitations, would
seem to imply equally many reaction channels or partial fission widths, and a
correspondingly large v.

The puzzle was solved by A. Bohr (Ref. 65). He pointed out that before scission
can occur the compound system must cross the saddle point of the potential-energy
surface (in deformation parameter space) beyond which Coulomb repulsion prevails
over nuclear cohesion. At the saddle point most energy is tied up as deformation
energy, only little being available for other modes of excitation whose spectrum
resembles somewhat the low-Iying (collective) states observed for the ground­
state deformation. Energy, angular momentum and parity requirements allow access
to only very few of these transition states. This introduces quite rigid corre­
lations between partial widths for the many different fission fragment channels
in such a way that the fission width can be approximated as a sum of terms, one
for each accessible transition state (or "saddle-point channeI"), each term
being gouverned by a single-channel Porter-Thomas distribution (Ref. 66). For
fission, therefore, v is the number of saddle-point channels rather than reaction
channels in the usual sense.

This illustrates that the level-statistical "laws" are nowhere as rigid as the
formal resonance theory discussed in previous sections. They hold mainly for
typical compound levels where all single-particle, collective or other simplicity
has been lost. Reflecting more our ignorance than truly statistical phenomena
they may fail if the states considered are simple and weIl understood. Thus the
collective transition statesof a fissioning nucleus enabled us to modify and,
in fact, to simplify the reaction channel concept. In the single-particle exercise
with square-weIl complex potential, Sect. 2.3.3, nothing at all was random or
unspecified, and the reduced neutron widths, Eqs. 58, turned out to obey a
eS-distribution instead of the Porter-Thomas "law".

(244)

li'Do < x :: "2<1)< ...

Wigner illustrated the level repulsion by pointing to the spacing D=/(H,,-H'2)2+4H;2
between the eigenvalues of a two-dimensional (real, sYmmetric)Hamiltonian matrix H
which can be visualised as the distance of a point with coordinates H,,-H22 and
2H,2 from the origin. If the H.. are considered as random variables the probability
to:obtain a given D within dD t~ proportional to the two-dimensional area element
2nDdD, at least in a small domain arround the origin in which nonuniformity of
the unknown probability distributions of the HA~ can be neglected. D=O is seen

To find the distribution p(D)dD of nearest-neighbour spacings, DA=EA ,-EA, in
a JIT level sequence turned out to be much more difficult than to find the width
distributions. Very early Wigner tried a bold guess("Wigner's 8urmise" , Ref. 67).
He took issue with the exponential distribution tried by others which is obtained
ir the probability to find a level in a small energy interval dD is just dD/ <D) ,
independent of its distance D from the precedine level. He asserted that because
of "level repulsion" at least for small D this probability should be proportional
to DdD and assumed tentatively thatfuis is true also for large D so that

D -cD2/2
p(D)dD = exp(-c!D'dD')cDdD = e cDdD

o
Expressing the proportionality constant c by the mean level spacing <D) one can
write the Wigner distribution as

-x2
p(D)dD = 2e x dx,
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(Gaudin, Ref. 69). Broken line: 2x2 matrices (Wigner distribution).
From Ref. 69.
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to be infinitely unlikely, which is related to the fact that two conditions,
H11 =H22 end H 2=0, must be fulfilled instead of one as for D+O. This latter
argument is also true for 3-, 4- .•. dimensional Hamiltonian matrices, coincidence
of two characteristic values always requiring two conditions instead o~ one.

A more rigorous theory of statistical ensembles of Hamiltonians was developped
in a brilliant mathematical tour de force qy Wigner, Porter, Mehta, Dyson and
others (Refs. 60, 61) in an attempt to establish a kind of statistical thermo­
dynamics of quantum systems. First the so-called Gaussian orthogonal ensemble
was studied which consists of real symmetrie Hamiltonian matrices H whose elements

. HA are uncorrelated and whose density function p(H) is invariant under rotations
in~Hilbert space (so that all representations including the diagonal form are
put on an equal footing). For 2x2 matrices the Wigner distribution was obtained.
For very large matrices Mehta and Gaudin (Refs. 68, 69) found expressions that
are fairly complicated but,as Fig.21 shows,differ only slightly from the 2x2
curve, i.e. Wigner's surmise.

A major difficulty with the Gaussian ensemble is that it leads to a rather un­
realistic level density formula, viz. Wigner's semi-circle law for NxN matrices
with very large N,

{

4N V,_(E-E) 2' for (E-E)2 < 1/2
~(E) ~ nI 1/2 (N large) (246)

o otherwise

where E and I are midpoint and length of the energy interval in which the e~gen­

values occur. This is quite different from the exponentially rising level densities
obtained for instance from the Fermi gas independent-particle model.

Dyson gave up the hypothesis of statistically independent matrix elements HA and
introduced the circular orthogonal ensembles (Ref. 70). He could show that w~th
these one could reproduce any reasonable energy dependence of the level density p
apparently without changing less global results such as the spacing distribution
obtained with the Gaussian ensembles.

Recently French, Wong and others studied the statistical shell model where not
the elements HA but only those of the residual interaction are considered as
random variableM (cf. Ref. 71). This model, more physical than the Gaussian and
circular orthogonal ensembles, nevertheless confirmed their results for nearest­
neighbor level spacings, whereas p(E) turned out to be Gaussian instead of semi­
circular.

Both the orthogonal ensembles and the statistical shell model indicate that nuclear
(or atomic) level sequences have a nearly "crystalline" regularity in the sense
that the familiar staircase diaßram (number of levels vs. energy) follows very
closely the practically straight line with slope p(E), deviations by more than one
unit being extremely unlikely (Ref. 72). This implies that adjacent nearest­
neighbour spacings are correlated in such a way that a large spacing is followed
by a short spacing more often than not end vice versa. In fact, for orthogonal
ensembles the expected correlation coefficient is

cOV(DA ,D>..+1)
C(D A,DA+ 1) - -:===========

Ivar(DA)var(DA+1)

for large matrices. Tbe exact value (8n-27)/(11n-27)= -0.253 for the simplest case
of 3x3 matrices (Ref. 73) is already a good approximation. Empirical evidence from
long and pure sequences of s-wave neutron resonances supports these theoretical
results (Ref. 74).
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The Porter-Thomas distribution of single-channel widths, the Wigner distribution
of level spacings and the quasi-crystalline long-range regularity of level
sequences is about all the level statistics we need for applications.

3.3.3 ~~i~~:!i~~!i~20d_~~~i~~~i2~_2f_~r~)~g_{2l_fr2~_E~rf~~~_2~~1~2

Suppose we know all level energies EA and reduced neutron widths r~ for a pure
JTI level sequence inta given energy range. What can we infer about ehe true mian
values <D> and <r ) , and about their ratio, the strength function St :: (r ~ / <D)?
This is the typical Rtatistical problem of parameter estimation. It was tacklgd
by Slavinskas and Kennett (Ref. 75) with the maximum-likelihood methode Consider
first the reduced neutron widths which we shall write here simply as r A• The
probability to find r

1
in dr

1
, r

2
in dr , ••• , r

N
in dr

N
is a product of Porter­

Thomas probabilities ~we consider here ~he single-channel case, v=1, e.g. s-wave
resonances),

(248)

N
(21T <r) )-N/2 exp(- 2(\> L

),=1

N
TI p{r).)dr). =

).=1

N dr
r).) JI ).l

lJ= 1 /r
I.J

The value of the true average <r> that leads with greatest probability to the
experimental result obviously maximises the likelihood function L :: JIA p{r).). From
aL/a (r) = 0 or, more conveniently, from 3 ln L/3 <r) =0, one finds the maximum­
li~elihood estimator

(249)

This is just the sample average r. In the language of mathematical statistics r is
a minimal sUfficient statistic, i.e. a quantity that can be calculated from the
sample r l' ••• r N, contains all information about <r > that the sample i tself
contains, and has the smallest variance of &11 possible estimators. It is an
unbiased esti~ator for (r} because for very large samples it tends towards <r) •

In 'order to assign confidence limits we need the probability distribution of the
random variable f. This we know already from the discussion of sums of partial
widths to be a X2-distribution with N degrees of freedom (compare Eq. 241),

o < y :: ~(r) < .... (250)

Confidence limits y_ and y+ can now be assigned for instance at the 68 %confidence
level, in analogy to the standard deviation of a Gaussian distribution. One demands
that y lie with erf{l/l2) = 68 %probability within the interval (y_ •.. y+), and
wi~h equal probability below and above,

y ...
N -1 J- -y N/2-1 - N -1 f -y N/2-1 _ 1 1

r(2) e y dy = r(2) e y dy = 2 erfc 72·
o y

The confidence limits y_, y+ thus defined depend+only on the sample S1ze N and
can be found e.g. in tables of X2-distributions or numerically ~rom Eqs. 251. One
knows now that with 68 %probability y < y < y and thus

- +

...1L r < <r) < ...1L r.
2y+ 2.1_

For very large samples the X2 distribution is nearly Gaussian so that

(252)

for N » 1. (253)
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S~ far we negl~cted ~xperimental errors örA of the r A which cause an uncertainty
öf = I~A(Öf4)2/N of f. They are usually accounted for in sufficient approximation
if the conf~dence limits are extended so that the squares of the statistical and
experimental errors are added,

(254 )

(255)

Slalinskas and Kennett found maximum-likelihood estimators also for <D) and
<f n ) / <D) =. SR but we s~all not follow their derivation because they neglected
the level-spac~n~ correlat1ons, Eq. 247, cf. Hef. 76. Dyson and Mehta (Ref. 72)
showed that due to the regularity of level sequences the number N of levels in
a given energy interval is already a rather good statistic for the estimation of
the average level density, and that the optimum statistic for the orthogonal
ensemble is

1 4 N

p =<D) = 1TI A~ 1

where I and E are length and midpoint of the energy interval from which the
energy sampIe comes. This statistic may be considered as a kind of level count
with semicircle weighting. Its variance is

(256)

3.3.4 ~~i~~:!i~~!i~22~_~~~i~~~i2~_2f_~f~)~~~~__~~L__i~_~~~_~~~~_2f_~!~~~~_1~Y~1~
The estimators for <rR.} and 1/ (D) presented so far are not very useful in
practice because theynare applicable only to perfect sampIes from which no levels
are missing. In practice the smallest, but according to the Porter-Thomas
distribution most frequent, widths are always missing. As a consequence all
observed width and especially spacing distributions are badiy distorted. It is
therefore best to use the width distribution to estimate (r) which then permits
estimation of the number of missing levels and thus of (D) nand SR..

Let us assume that levels with reduced widths rA<r =2x {r) are undetectable and
missing from the sampIe. The distribution of detec~ablg widths is then the
truncated Porter-Thomas distribution

-x
e-- dx,
/,TX

p(rA)drA =--'-­
erfc ~o

properly normalised to unity by the complementary
corresponding likelihood function one gets

-x
0,-

e vx
( r) (1 + ~ erfc fi

o

error function. Maximising the

The term- in brackets is clearly a missing-Ievel correction factor dependinp, on (r) •
The equation is readily solved by iteration starting from <r) =: f. This simple
approach works weIl whenever the detectability threshold r can be considered as

• • • 0
constant and ~s suff~c1ently weIl known.

Often r var1es significantly over the energy range from which the width sample
is takeg. The truncation of the Porter-Thomas distribution is then not sharp
but fUzzy. Fuketa and Harvey (Ref. 77) developped a widely used estimation procedure
for .<r} with an energy dependence of the form r = aEb , where a is an adjustable
constant and b is determined by the experimental getails (b =: 2 in many experiments).
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Of course the observed level density reflects the energy dependence of r , and
in fact one can devise a procedure which utilises the level energies EA,o •.• ER
as well as the reduced widths r 1, ••• r U and obviates the need to know anything
about the detection threshold and exper1mental details. This is especially use­
ful if the latter are not known or if the resonance parameter dnta stem from
many different experiments. Due to the regularity of level sequences ~nd smooth
behaviour of r (E) (at least for single experiments) the typical level density
staircase curvg (number of levels versus energy) fluctuates but little around
a smooth curve which usually can be taken as a parabola,

(259)

(260)

u :: p(E) = (c +2c E)(n) = erfc;;-, (261)
p 1 2 0

whicb is smaller than the true level
density p :: 1/ ~ n) , whose energy dependence
we shall neglect as well as that of (r).
The detectable fraction of levels (on the
average) is then

where t~e complementary error function
has the same mean1ng as in Eq. 255: it is
the integral over the Porter-Thomas
distribution above the detectability
threshold x = r /(2 (r ) ). We have thus
found from ~he o~served level energies
the energy dependence of r , at least in
implicit form and in termsoof (r) and <n).

The coefficients can be determined in a
least-squares fit and will be considered
as known. The energy derivative is the
apparent level density,

E

E

N(E)N

EI
u

u
l

u2

0 E
I

Fig. 22

The parabolic fit to the staircase diagram is seen to be equivalent to a linear
äecrease of the detectable fraction from u 1 = u(E 1) to u2 = u(E2 ). The probability
that at same unspecified energy within the interval (E1 ••• E2 ) the detectable
fraction has the value u is therefore a constant between u 1 and u2 and vanishes
elsewhere. We can thus write the width distribution with fuzzy truncation edge as

(262)

!P1P2drA
o

~here P1dr A is the (a priori) Porter-Thomas probability for a reduced width r A 1n
ärA' ~d P2 the conditional probability that r A, for unspecified EA, exceeds the
detect10n threshold,

1 if erfc ;;;:~ u2

( ul-erfcl~
if erfc ;;c;. (263)p = u2 So ~ u 12 u 1-u2

0 if erfc IX;: ~ u 1



- 65 -

with u. = u(E.) = (c,+2c2E.) <D} (i=' ,2) (264)111

and Xl - r)./(2 <r} ). The denominator in Eq._262 is equal to the average observable
frachon in the interval (E, ••• E2 ), u = u(E) = Cc ,+c2(EtE2>J <D) • The likeli­
hood function L = TI).p(r).) depends on the (known) fit parameters and the unknown
level-statistical parameters <r) and (D). Thus i ts maximum is obtained for
aL/a <r >= 0 and aL/a (D) = 0, whence

= r<r)(,+.!~,2
NA fi

-x
e ).I;Z).

u,-erfct'X).

erfc!;).
=

u,-erfclX').
, .

(266)

The primes indicate that the sums contain only terms from the "fuzzy edge" of the
width distribution, for which u < erfc IX). < u, with u, = (c l +2c 2E,) <D) ,
u2 = (c,+2c2E2 ) <D) , x). = r)./(~ <r} )~ The equations are aga1n convenient for
iteration, starting e.g. from <r> .. r, (D) = (E2-E, )/N. A program based on
this approach (Ref. 78) yielded the results shown in Fig. 23.

So far we restricted the discussion to pure level sequences for a given JIT. Some
of the results remain approximately valid also for mixed sequences. Consider,
for instance, the p-wave levels for target spin I=O. Their spin is either J='/2
or J=3/2, i.e. they belong to two different sequences. It is consistent with
empirical evidence to consider their strength functions as independent of J, so
that SlJ = S!' The spin dependence of the level densities was derived by Bethe
(Ref. '(~, cf. also Ref. 80) from the Fermi-Gas model as

[ J2) ((J+' )2] 'nh(J+'/2) [(J+'/2)2)
PJ a: exp - 202 - exp - 202 a: S1 """2"(1L exp - 202 (267 )

The spin cut-off factor 0 has values around 4 so that for small spins
p a: 2J+'. In this approximation and with StJ = Sone finds that the
ot the combined p-wave sequences have the Porter-~homas distribution,
being

onl has
gr values
thg average

(268)(gr ' > = s, < >= D ,S"
n P'/2+P3/2

~here <D >, is the average spacing of all p-wave levels and S, the strength
function of each separate sequence. We can therefore employ,essentially the same
esti~tion procedure as for pure sequences with v=', with r conveniently replaced
by gr so that the mostly unknown level spins are not neede8.

n

Generalisation to v=2 (exponential distribution) is straightforward.

It was already mentioned that resonance peak areas are sufficient for the calcu­
lation of average cross sections or zero-dilution group constants but not of
Doppler effect or self-shielding. For these one requires spins. Level statistics
can give us a handle to assign unknown spins if the area parameters gr , grnrx/r
are known, at least in the sense that the resulting average spin distr~ution
over many levels is realistic. Let us consider the typical case that enough in­
formation on s-wave resonance parameters is available to permit estimation (in­
cluding missing-level correction) of {D> and S , and that SI' S2' .•• are
known from analysis of average cross sectigns andOoptical-mode calculations. All
required mean level spacings <DJ ) can then be found from the s-wave spacing with
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Fig. 23 Results of statistical resonance analysis for iron isotopes
obtained with the maximum-likelihood code STARA (Ref. 78). The histograms
are observed integr~t width distributions for s-wave levels below 400 keV
(below 200 keV for Fe). The curves are the most likely distributions
and the 68% confidence limits. Note that the curves are no fits to the
histograms but correspond to the solution <r~} of Eqs. 265, 266.
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the help of Eq. 267, and the average neutron widths from (r 1J> =
"1J (DJ >S1/E!1eV V1(E), where "1J is the number of channel R]hns (1 or 2)
co~pat1ble with 1 and J. We can now calcu~ate the probabilities

(269)
"tJ -1 -x "1J /2- 1

= r(~) e x dx,
_ "tJ grno<x--- <CD
- 2 gJ (rn,1J>

with 1 = 0,1,2, ••• for an observed value gr 1n d(gr ). Bayes· theorem (see e.g.
Ref. 41) tells us that we may take the prob~ility fgr a given 1J combination
as proportional to PtJ if all combinations are equally probable apriori. The
probability for a given spin J is then

(270)
~ P1J(grn )

t ,J
where the sum in the denominator is over all 1 that are compatible with J. Often
one sees immediately that a certain spin is probably correct, the others being
too unlikely. In general one must make a probabilistic choice, for example with
the Monte Carlo technique.

If additional types of resonance areas are known one can utilise this information
also. Let us take, for instance, the capture peak areas 2~2~(E )2gr r Ir with
r = r + r (non-fissile target nucleus). From gr and gr r Irowe g~tYgr , for
whichnan elpression similar to Eq. 277 holds. If Oe know €h~ effective d~gree
of freedom and the average width for the (n,y) reaction we can calculate the
probability P1J(gr ) and base the spin selection on the joint probabilities
PiJ(gr )PiJ(gf ). Onfortunately gr is often unknown. One must then consider
ttie pr~aD11itJ (for each allowed ~J)

p(~)d~ = f f d~ dn P1(~) P2(n)
~ in d~ (271 )

CD

=dt f d~ P1(~) P2(~:~)(~:~)2 (271)
~

where we omitted the subscripts 1,J and simplified the notation with ~ = gr ,
n = gry ' ~ = grnry/r, P1 and P2 being the X2-distributions for grn and gry •

n

The effective degree of freedom " for a width distribution can again be estimated
with the maximum-likelihood method from a width.sam~le r 1 , r 2 , .•••. r N if.t~e
average <r) is sufficiently well known. The 11ke11hood funct10n 1S maxJ.mJ.sed
if " is chosen as the solution of

1 r).
ljJ(~) - ln ~ = - ~ ln (r) = lnr - 10 (r) (272)

2 2 N).

where ljJ( ) is the logarithmic derivative of the gamma function r( ) and the bar
denotes the sample average as before (Ref.62). Curves for the function on the
right-hand side and for the asymptotic variance of the maximum-likelihood
estimate " are given in Ref. 56.

There are situations in applied neutron physics where the resonance structure
of the cross sections is important but unobservable due to finite instrumental
resolution. For instance the average transmission in a given energy (group)
interval can be written as
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/ -no) _ -n(o)< -n(o- (0»)) _ -n<o~l+ n2 ()+ )\e - e e - e '{ 2 var 0 ••••

The variance and the higher-order terms are mainly due to the resonances 1n
the interval. The reduction of raw transmission or yield data to average
cross sections requires thus information on the resonance structure, the
corresponding corrections being especially large for thick sampies and for
wildly fluctuating cross sections. Enhanced temperature, i.e. Doppler
broadening, implies less fluctuation, hence less variance, so that average
transmission and self-shielding of yields are reduced, reaction rates in­
creased.

In the region of unresolved resonances (typically above a few keV for heavy,
above a few hundred keV for medium-mass nuclei) these effects must be calcu­
lated from level statistics. One can sampie the Wigner distribution to build
up ladders of resonances, then find their widths from the Porter-Thomas or
other appropriate X2 distributions, and finally obtain Doppler-broadened
cross section values at equidistant or randomly chosen energy points along
the ladder. Sorting the results into cross section bins one gets a histogram
representation or tables of the cross section probability distributions
p(o )da , from which one can calculate the needed cross section functionals,x x .
e.g. the average, the var1ance etc., e.g.

~ -no.
(e-na) = J do p(a)e-no = ?~op(oi)e 1

o 1

This is the principle of the so-called probability table method (Ref. 81).

A more direct but somewhat slower method is the generation of "resonance
environments" or "mini-ladders" (RefL 82, 83) for each energy required in
a Monte Carlo calculation (e.g. simulation of mUltiple-collision events).
One ~amples,) for each relevant JIl level sequence, the distribution of "central"
spac1ngs,

p(D)dD « D p (D)dD,w (275)

where p dD is the Wigner distribution and the extra factor D accounts for thew •• " • •
fact that the probab1l1ty for a randomly selected energy to fall 1n a g1ven
energy interval is proportional to the interval size. Then one sampies the
(uniformly distributed) actual position of E within the central interval D
which fixes the distance to the nearest two levels. Sampling the (bare)
Wigner distribution one 'can generate further resonance energies above and
below. Then the widths are sampled from the appropriate X2-distributions,
and the cross section at E is calculated. With a reasonable level-statistical
representation of distant levels (cf.Sect. 2.8.2) two to three levels below
and above are usually enough to yield adequate cross section distributions.
Addition of more distant levels does not change the results significantly, as
expcrience with the SESH code (Ref. 82). for self-shielding and multiple­
scattering correction of yield data showed (Ref. 83).

It should be noticed that in these Monte Carlo calculations the level spacing
correlations as given by Eq. 247 were always neglected because there seems
to be no simple recipe to produce them. The methods employed in theoretical
studies of level spacings and their correlations, namely diagonalisation of
Hamiltonian matrices belonging to the orthogonal ensemble etc., are by far
too complicated for applied Monte Carlo calculations. The practical importance
of .the correlations is not very clear either, no systematic studies being
available.
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The theory of the orthogonal ensemble predicts that the level-density
staircase curve N(E) of a pure sequence deviates very little from a straight
line with slope p=' / \ D) • The mean-square deviation from a best-fit straight
line N(E)=c +c,E in the interval (E, ••• E2), called the ~3 statistic by Dyson
and Mehta, 0

, E2
~3 =--'-- J [N(E) - N(E)] 2dE ,

E2-E, E,

was shown (Ref. 77) to have the expectation value

, [ lT 2 5} ,
~3 =~ ln(2lTN) + y - s- - 4 =;z(lnN-0.0687)

(y = 0.5772 ••• is Euler's constant) and the variance

(276)

(277 )

(278)

Absence of mixed levels or presence of spurious levels from other sequences
obviously increases ~3. One has therefore tried to use ~3 as a test statistic
for the purity of levels, see Refs. 84, 86.

An optimum statistic for the presence of spur~ous or missing levels is,
according to Dyson (see Refs. 84, 85),

t 1/2F, = l.. ar cosh
A ~tA E~-EA

where ~ runs through all levels between E).-I/2 and E +1/2 and I is
arbitrary fixed interval (for instance 20 times (D) ~. Expectation
vanance are, with n _ lTI/(2 <D) ),

(FA) = n - ln n - y + 2 = n - ln n - 0.656

var(FA) = ln n,

(279)

an
value and

(280)

(28')

if E ~s a true member of the sequence. If EI. ~s the energy of a spurious
leve1 in an otherwise pure sequence one gets

(282)

so that a spur~ous or missing level produces, on the average, a peak or a dip
in FA of magnitude'" ln n. The catch lies in the words "on the average" (see
Ref. 84). It should be stressed that none of these tests permits unambiguous
identification of spurious or missed levels but, as the Columbia group
demonstrated (Refs. 84,86), by combining all available tests one can purify
almost pure level sequences further, to a degree which is wholly satisfactory
for applied purposes.

4. CONCLUD1NG Rm~RKS

We reviewed those aspects of neutron resonance theory, including level
statistics, that are most important for applications in neutron cross section
met!ology and nuclear technology. Among the topics which were not treated
are the double-humped fission barrier and its consequences, and resonance­
averaged cross sections. These are treated by J.E. Lynn and P. Moldauer in
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special parts of this course. For other recent developments in the area of
level statistics or rather limitations of it caused by phenomena such as
doorway states, valence nucleon transitions, precompound reactions we refer
the reader to Refs. 87 and 88. We close by restating a few main points:

1. Multi-level cross sections should be calculated from the collision matrix
rather than from explicit cross section expressions. This avoids double
sums over levels that are very time-consuming when many levels are involved.

2. If explicit cross section expressions must be used the total cross
section is the easiest, the elastic-scattering cross section the most
difficult to calculate. The latter is therefore best obtained as difference.

3. The Reich-Moore formalism requires a minimum of real parameters, is
virtually exact and not slower than the other multi-level approximations.

4. The applicability of the Voigt profiles ~ and X to Doppler broadening of
MLBW or Adler-Adler cross sections should not be overestimated in view
of the necessary preparatory work and the inferior accuracy obtained.
Numerical broadening of Reich-Moore cross sections need not be slower,
on the contrary, and avoids consistency and accuracy problems. Adler­
Adler parametrisation is restricted to relatively small energy intervals,
i.e. to heavy nuclei.

5. Partial cross section (yield) data cannot be analysed properly without
transmission data of comparable enerey resolution and detection power
for narrow levels.

6. Measurers and analysts of resonance data should state the errors as
clearly as possible, with statistical and systematic components separated,
and at least some indication of correlations between deduced resonance
paramete~s.

7. To state resonance parameters without the corresponding channel radii
and other potential-scattering or distant-level parameters i~ a cardinal
S1n.

8. The Porter-Thomas distribution is the most efficient tool for missing­
level corrections. The Wigner distribution is less important for data
analysis than for generation of artificial (mock) cross sections for
the calculation of resonance effects in the unresolved-resonance region.
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