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ABSTRACT

Utilisation of resonance theory in basic and applications-oriented neutron
cross section work is reviewed. The technically important resonance formalisms,
principal concepts and methods as well as representative computer programs
for resonance parameter extraction from measured data, evaluation of resonance
data, calculation of Doppler-broadened cross sections and estimation of level-

statistical quantities from resonance parameters are described.

Angewandte Neutronenresonanztheorie

ZUSAMMENFASSUNG

Eine Ubersicht iiber die Benutzung der Resonanztheorie bei grundlagen- und
anwvendungsorientierten Neutronenquerschnittsarbeiten wird gegeben. Die
praktisch wichtigen Resonanzformalismen, grundlegenden Begriffe und Methoden
sowie typische Rechenprogramme fiir Resonanzparameter-Analyse von MeBdaten,
Generierung Doppler-verbreiterter Querschnitte und statistische Schétzung

niveaustatistischer GrdBen aus Resonanzparametern wird beschrieben.

This review paper was prepared for the Winter Courses on Nuclear Physics
and Reactors, Part I: Nuclear Theory for Applications, held at the Inter-
national Centre for Theoretical Physics, Trieste, 16 January - 10 February 1978
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1. INTRODUCTION

This review on the practical applications of resonance theory originated
from lecture notes distributed at a course organised by IAEA (Ref. 1).

The basic reaction formalism, in particular R-matrix theory, will be assumed
to be known but we shall not hesitate to retrace the practically important
parts of the theory. Althoush the basic principles of resonance theory are
rather simple the general expressions can look quite formidable. A certain
amount of repetition may help the reader to overcome this initial barrier
and to realize that for practical work only few but thoroughly understood
key formulae are needed.

We shall be concerned mainly with compound resonances, those prominent
features of particle- and phonon-induced nuclear reactions which are due to
excitation of relatively long-lived (quasi-stationary) states of the compound
‘system. At low bombarding energies they appear fairly well separated, but

as the energy increases their spacings decrease and their widths increase.
Finally the overlap washes out all compound resonance structure and only
broader structures like the single-particle or size resonances described by
the optical model survive.

The more nucleons belong to the compound system the finer is the compound
resonance structure. Typical level spacings observed in neutron reactions
are of the order

- MeV for the lightest,
- keV for medium-mass and
- eV for the heaviest nuclei.

2. ANALYSIS OF RESONANCE DATA

The importance of resonance reactions for nuclear technology is obvious.
Interpretation and prediction of reactor properties such as

- resonance absorption,

- resonance escape probability,

- resonance self-shielding ,

- temperature-dependent reactivity (Doppler coefficient)

require both a detailed understanding of resonance cross sections and
comprehensive, machine-readable resonance data files.

2.1 The various steps in the preparation of resonance data for applications

The resonance data for reactor calculations and other applications (e.g. as
cross section standards) are usually produced in several steps.

(1) Measurement: Experimenters take data at pulsed accelerators or with the
help of nuclear explosions. The time-of-flight technique is employed to
cover broad energy ranges with high resolution and under exactly the same
experimental conditions for all energies, isotopically pure or highly
enriched samples to get reliable isotopic assignments and, in the most
advanced experiments, polarized neutrons and targets to get reliable spin
assignments for the observed resonances.

Zum Druck eingereicht am: Juli 1978



(2) Reduction of raw data: Constant and time-dependent backgrounds are
subtracted, sample impurities are corrected for, and, in the case of
partial cross section (yield) data, flux and detector efficiency are
factorised out.

(3) Analysis of clean data: Resonance parameters (E,, Iy, Ty, rey,...Jl) and
potential-scattering parameters (R',...) are extracted. At the same time
instrumental resolution and (except for transmission data) multiple
scattering are accounted for.

(4) Data evaluation: Resonance parameters from all available sources are
collected by evaluators who try to understand and to reconcile the
discrepancies. Gaps are filled with the help of level statistics,
nuclear models and systematics. The complete sets of recommended cross
section parameters (Eg, Ty, Tys Tey...dl; R',...) and the deduced level
statistical parameters (Dy, S,, Ry, PY o Tp Jn,...) are put into a
machine-readable (card, tape or disk) file. ’

(5) Generation of group constants: Doppler-broadened point cross sections
for various temperatures and all energetically possible reactions can
now be calculated from the evaluated cross section parameters and
averaged in a special way over relatively large energy intervals. The
result is a set of group cross sections and self-shielding factors
suitable as input for reactor codes.

International coordination

All these steps require time and years may pass before resonance data needed
for technological applications become available in the reguired form of
machine-readable evaluated data files. The great effort to speed up this
process and to coordinate the work on an international scale 18 described
for instance in Ref. 2. It may suffice here to mention that regional
and international nuclear data committees (INDC, NEANDC,...) collect and
screen formal requests for data which are periodically published by IAEA/NDS
in WRENDA, the World Request List for Nuclear Data. Measured data are
collected by data centres, neutron data in particular by the four-centre
network consisting of

NNDC  (National Nuclear Data Centre)
at Brookhaven, serviecing the US and Canada,

CCDN  (Centre de Compilation de Données Neutroniques,
NEA Data Bank)
at Saclay, France, servicing the non-American OECD
countries,

- CJD (Centr po Jadernym Dannym)
at Obninsk, servicing the Soviet Union, and

NDS (Nuclear Data Section, IAEA)
in Vienna,servicing all other countries.

. Regular data exchange ensures that the data base is essentially the same at
all four centres. Evaluated data are also collected, the most important
evaluated files being




ENDF, the US Evaluated Nuclear Data File,
UKNDL, the UK Nuclear Data Library,

KEDAK, the German file Kerndaten Karlsruhe,
SOKRATOR, the USSR file.

Moreover, the Four Centres produce periocdically such widely used handbooks
as the Computer Index of Neutron Data (CINDA) (Ref. 3) or the '"barn book"
BNL 325 (Ref. 4) which contains resonance parameters and cross section plots.

Associated computer programs, for instance resonance analysis programs or
codes generating cross sections from resonance parameters, are collected
and distributed to requestors by the

~ US Code Center at ANL, USA;

- CPL, the Computer Program Library, NEA Data Bank at Saclay
(formerly at Ispra)

- RSIC, the Radiation Shielding Information Center at
Oak Ridge, USA.

Information as to where other types of data and programs are available can
be obtained from NDS/IAEA, Vienna.

2.2 Why parametrise?

Practically all resonance cross section data that go into reactor calculations
(in group constant form or directly, e.g. in Monte Carlo calculations) are
generated from resonance parameters. It might be asked why one cannot use

the best measured high-resolution cross sections directly and thus eliminate
the need for resonance parameter extraction. There are several reasons:

(1) Resonance parameters along with consequent utilisation of resonance
theory enable us to represent the often staggering detail of cross
section structure by relatively few numbers.

Example: The 400 presently known resonances of the compound system 238U+n
are specified by 1600 parameters (E,, Tp, Iy, JI for each level) whereas
a reasonably accurate point-wise representatﬁon of the capture and the
scattering cross section requires about 210" data points, i.e. 4+10
numbers. If one considers also angular distributions and different
temperatures one gets easily several 10° cross section points that would
be needed to describe the behaviour of 238U in a fast reactor.

(2) Temperature broadening of resonances is often more easily calculated in
terms of resonance parameters than from point data.

(3) Resonance parameters and an inherently unitary cross section formalism
such as R-matrix theory guarantee consistency with physical limits such
as the unitarity limits for the total cross section in each reaction
channel (O<g,<knx2g, where gc is the spin factor, see below) or Wick's
limit for scattering in the forward direction (do,.(0)/dQ, 2 03/ (hnx,)2).

Another consistency is more subtle but practically at least equally
important, especially for the calculation of self-shielded group cross
sections. Theory tells us that there is a very rigid relationship between
the line shape in one reaction channel and the line shape corresponding



to the same compound level in other channels. This relationship is
guaranteed if cross sections are generated from a coherent set of resonance
parameters, but not with measured data.

(4) At least equally important is the fact that even the best measured
resonance data are affected by resolution and Doppler broadening and
(except transmission data) by multiple scattering. The most reliable
way to correct for these effects is full-scale resonance parameter
analysis of the data.

(5) Extrapolation into the region of non-measured or unresolved resonances
by level-statistical (Hauser-Feshbach) cross section calculations
require statistical parameters such as average level spacings and
strength functions. These in turn must be estimated from resonance
parameters.

2.3 Practical resonance formalisms

In applications—-oriented neutron resonance work and especially in evaluated
neutron data files the following formalisms are used almost exclusively.

- BB (Blatt- Biedenharn formalism),

SLBW (single-level Breit-Wigner formulae)
MLBW (multi- " " " " )
- RM ¢ " " Reich-Moore " )
- AA (" " Adler-Adler " )

.

[V

The first one is guite general. It shows how cross sections can be expressed
in terms of the unitary, symmetric collision matrix with special emphasis- on
angular distributions and the influence of particle spins. It can be combined
with any of the other four which provide different approximations to the
collision matrix.

In the following sections the notation of the comprehensive review written
by Lane and Thomas (Ref. 5) will be used.

2.3.1 The Blatt- Biedenharn formalism

We remember that in reaction theory one employs the concept of reaction
channels which are fully specified by

o, the partition into reaction partners, e.g. 235U+n or 236U+Y,
J, the total angular momentum in units of %4,
£, the orbital " " " "o,
s, the channel spin " "M on,
. > > > . I
with J = f+s, i.e. jo-s| < J < 245 (1)
s =141, i.e. |I-i] < s < I+, (2)

where I and i are the spins of the (two) collision partners. Total energy,
total angular momentum and parity are conserved quantities in nuclear
reactions, therefore the Hamilton operator can be taken as real, symmetric
and invariant under rotations and spatial reflections.




We further remember that for spinless, neutral particles one can solve the
Schrédinger equation for the boundary condition "ingoing plane wave + out-
going spherical wave'" with the result that the differential cross section’
for elastic scattering is given by

8 2dq
- 32 _ d2
do, nxalﬂz (2e+1)(1-U, )P, (coso)| - (3)
9=
where P, is the 2-th order Legendre polynomial (angular-momentum eigenfunction).
The sum” terms with £=0,1,2,3,... are said to belong to the s-, p-, d-, f—,

wave, a nomenclature taken over from atomic spectroscopy. The collision
function U, describes the modification of the %£-th outgoing partial wave
relative t0 the case without interaction, its absolute value giyins the re=,
duction in amplitude, its argument the phase shift. With P _P gL(ll'OO,LO) P
where (22'00,L0) is a Clegiib GordaE coefficient (vanishin? unlcss

[2=2'] < L < 2+2' and (-) )"), one can write this as a simple expansion
in Legendre poljnomlals,

do . = XZ z B P cose)dQ with (L)
L O

5. =L ' R

B, =73 222'(22+1)(22 +1)(22'00,L0)°(1-U%) (1-U,,) (5)

Blatt and Biedenharn (Ref. 6) worked out the generalisation for particles
with spins and for partition-changing (rearrangement) collisions. For zero
Coulomb interaction they obtained

x2 o
A5 = » I 1 3 (as,a's')P (cos8)an (6)
(21+1)<2I+1) S,S' L=0
(_)s—s'
' = — 7 7 | ] 1
BL(as,a s') \ JXJ . 22 'zg' Z(21J122J25L)z( J1g J2,s L)
192 Ao R9505
J . 3,
© (8 8 §_ .U § & 8§ .U
( o! 21li ss' a21S,u'2;s') ( o' legé ag! alzs,u'lés')’ (1)
2(84T,8,7,,8L) = /(20 +1)(22,+1) (2T (F1) (2T ,+1)
v (2,2,00,L0)W(2,J 2,,,5L), (8)

where w(z J 2, J,,sL) is a Racah coefficient (see e.g. Ref. 7). Our phase
conventlon }or %he Z is that of Ref. 5, a slightly different convention is
used in the Z-coefficient tabulation Ref. 8. The Z coefficients vanish unless
the triangle conditions for the vector sums

.+ 0, =0=0!+7Q! (9)
1 2 1 27’

> -+ > - > .

byt s =dp =g st (1 = 1,2) (10)



are fulfilled. Paripy conservation in nuclear reactions demands that

(-)*2n =mn, = (-)*_,, where I_, T _, are the eigen-parities of the in-
and outgoinz particles (positive for neutrons, protons and alpha-particles)
and H% is the parity of the compound system with total angular momentum Ji
(i =1,2).

If there is Coulomb interaction between the collision partners additional
terms nmust be included (see Ref. 5).

Let us now integrate Eq. 6 over all angles. Because all terms with L > O
vanish due to the orthogonality of the PL and because of

_ J1+s o
Z(21J122J2,SO) = (-) v2J 1 85 o 52 . (11)
12 172
(cf. Ref. T) one finds
2 J 2
“aat nka E Z Z . gJ ldaa'GZR'dss' - Uals,a'l's'l (12)
J 2,2' s,s
where
2J+1
gy = (13)

(2i+1)(21+1)
is the so-called spin factor.

We shall not go into the details of angular distributions but point out that
they show interference between different partial waves, e.g. s— and p-wave
interference, whereas angle—integrated cross sections do not. The latter are
simple sums over terms with given £ and s without mixed terms. Nevertheless,
a certain connexion exists between different partial waves provided they can
excite the same compound states. As mentioned already the compound system
and its quasi-stationary states are characterised, apart from energy, by

the total angular momentum J and the parity N. Table 1 shows, for given
target spin I and positive target parity, the possible combinations of £, s
and J if the incident particles have spini = 1/2. (If the target parity is
negative all signs in the table must be reversed.)

We see that certain JII values can be formed through more than one channel

if 2>0 and I>0. If IHO=1/2+, for instance, resonances with JII=1- can be excited
by the two p-waves (£=1) with s=0 and s=1, and the 2+ levels can be excited

by the two d-waves (£=2) with s=0 and s=1. The SLBW neutron widths (see below)
of 1- and 2+ levels are therefore sums of two partial widths, for s=0 and s=1.
For IN_=1+ the 1/2+ levels can even be excited by two partial waves with
different & (s~wave with s=1/2, d-wave with s=3/2), while the 3/2+ levels are
accessible to three partial waves, the s—-wave with s=3/2 and the two d-waves
with s=1/2 and s=3/2, etc,

This means that the same resonances (with the same total widths) may show

up in channels with different £ and s if the spin and parity selection rules
allow this. In this context it should ‘be understood that the term s— or p-wave
resonance actually means that the resonance can be excited by the s- or p-wave
but possibly also by the next higher partial wave with the same parity. As an




example the 3/2+ s-wave resonance peaks of a target nucleus

with INg=1+

contain also a d-wave component. The fact that certain d-, f- etc. resonance
sequences are masked by s—, p- etc. sequences, respectively, must be kept in
nind if the J-dependence of level densities is discussed and compared to '
resonance data. Finally we note that the sum of allspin factors for a given

£ is always equal to 22+1 as shown in the table.

etc.

Table 1: Possible combinations of target spin I, orbital angular momentum £
and channel spin s resultinsg in total spin and parity JN and spin
factor g for positive target varity Il and incident particles with
spin 1/2:
spectroscopic
IHO 2 s JI g Zg symbol
o+ . 0 1/2 1/2+ 1 1 s
1 1/2 1/2_, 3/2- 13 2 3 D
2 1/2 3/2+, 5/2+ 2, 3 5 d
etc.
1/2+ | O 0 0+ 1/4 }1 s
1 1+ 3/h
0 1-
1 | 3/4 }3 b -
1 0- 1- 2- 1/4, 3/4, 5/4
P 0 2+ 5/4 zs 1
1 1+ 2+ 3+ 3/4, 5/h, T/4
etc.
1+ 0 1/2 1/2+ 1/3 }1 .
3/2 3/2+ 2/3
i 1/2 1/2_’ 3/2— 1/3, 2/3 }3 p
3/2 1/2_, 3/2_7 5/2_ 1/3, 2/3’ 3/3
2 1/2 3/2+, 5/2+ 2/3, 3/3 %5 4
3/2 1/2+, 3/2+, 5/2+, 7/2+ | 1/3, 2/3, 3/3, L4/3
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2.3.2 'The practically important R-matrix formulae

The angle-integrated cross section ¢ ,, Eq. 12, is a sum over partial cross
sections Ogc!, summed over all those entrance channels ¢ = {aJfs} and exit
channels ct = {a'J%'s'} which lead from partition a to partition a'. In slightly
simplified notation we can write

= nx%g |
o} nxcgc|6

- 2
ce! Ugerl? (14)

ce'!

The collision matrix U is symmetric (because the Hamiltonian is invariant. .
under time reversal) and unitary (because the total probability for transitions
into exit channels is equal to unity).

Due to the unitarity of U one gets for the total cross section
= = 2 -
7, E,ccc' 2wkcgc(1 Re Ucc) , | (15)

while the symmetry of U ylelds the reciprocity relation for the cross section

Oorg describing the inverse reaction,
Iere Iee!
32, gl (16)
gc| c' gc c

These equations are quite general. The wave length 2mX, is that corresponding
to the total kinetic energy in the centre-of-mass system, X, = X =M/(ucvrel)
where 4 is the reduced mass and Vv the relative speed. It should be noted

that g, being a linear function of §7is easier to calculate and to average etc.
than Oot

Next we invoke R-matrix theory. It teaches us that one can express the collision
matrix either in terms of the channel matrix (resonance parameter matrix) R,

o - e_i(¢C+¢c')Pl/g{[1—R(L—B)]_1[1‘R(IF‘B)J}CC|P;1/2
= e_i(¢°+¢°'){ccc, + 21l 2L0-R)TR] BB, )
L:c, = (L-B) gy = LSy r = (L=B)8, ., = (S+iP =B )6  , (19)

or, alternatively, in terms of the level matrix A,

~i(s )

U ,=¢e (8

iy viln)Ba 1l (20)

1] 1
cc Ay Ac AU e
I,1/2 =

Ac Yxe c? (21)

wh, = (E,~E)8 (22)

o

Ap z Y)\chYuc )
e

Here ¢ 1s the potential-scattering phase, Sc and Pc are level shift factor and

centrifugal-barrier penetrability, Bc is the arbitrary boundary constant at

the channel radius, E, an energy eigenvalue (resonance energy), Y o 8 reduced

width amplitude and ry. the corresponding partial width. Roman su%scripts refer

to reaction channels, Ereek subscripts to compound levels. We mention here that

in applied work all energies, resonance widths etc. are given in the laboratory

system, i. e. in the reference frame in which the target nucleus is at rest.
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It is useful to remember that ¢c and Lc depend only on the values of the
precisely known in- or outgoing radial wave functions Ic and Oc at the channel
radius a,s

Im Oc(ac)
¢, = arg 0 (a ) = arc tan ﬁg—6;(;;7 s (23)
0'(a_)

- c_ ¢ _ . 9

LC - ac O (a ) - a.c(ar ln OC) (2)4)
e e c r =3
¢ e
For neutral particles one has, with k, = 1/Xc,

- TH = @ (1) - i ikere —_—

0, = I = ik r_ h, (kcrc) (=1 e for kcrc>>y2(2+1)), (25)

where h(1) is a spherical Hankel function of the first kind. With the recursion
relations for spherical cylinder functions (cf. e.g. Ref. 5) one gets Table 2.

Table 2: Channel wave functions and related quantities for neutral particles

(p = kcrc, a = kcac)

2 0 o) S P
(o4 o] (o] C
0 elp a 0 o
ip,1 _. _ 1 ad
1 ]e (p i) a-arc tan a ey 257
ip3 _ 31 _ - 3a 3(a2+46) oS
2 (02 o " ararc tan 37 7 o +302+9 a*+3aZ+9

ete.

Note that SC=O for 2=0, so that one can choose BC=S =0 which simplifies all
s—wave formulae. Sc and Pc for photon and fission cﬁannels are usually taken
as constant.

The basic resonance parameters EA’ Y o depend on the very complicated nuclear
interaction and can therefore normaliy not be calculated. In most technological
applications they are just fit parameters of the theory. Depending on the choice
of Bcthey can be real and constant or complex and energy-dependent.

The Wigner-Eisenbud version of R-matrix theory (Ref. 9) is obtained if the
boundary quantities BC are chosen as real constants. Then the resonance para-
meters EA and vy are also real and constant, and the energy dependence of U
is exclusively éﬁe to ¢, and L9, i.e. it is explicitly specified. This renders
the Wigner-Eisenbud version thé most suitable formalism for most purposes. A
major problem, however, is the required,inversion of either a channel matrix
(1-RL° in Eq. 17) or a level matrix (A ' in Eq. 22). In practice it is overcome

by various approximations to the level matrix A = as we shall see below.
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The Kaopur-Peierls version of R-matrix theory (Ref. 10) is obtained with the
choice B =L , 1.e. LO=0, This removes the matrix inversion problem completely
(1-RI°=1J but leads fo complex E., vy, which implicitly depend on energy in
a rather obscure way. sNevertheless fo%mulae of the Kapur-Peierls type are
convenient in narrow energy ranges, for instance for Doppler broadening.

The R-matrix equations reviewed so far are practically all that is needed in
applied work from the whole apparatus of resonance theory. They should be
thoroughly understood, however, and experience shows that this is not easy
for the beginner. He might therefore wish to look at a simple illustration
which shows the essential steps in the development of R-matrix theory and
exhibits the meaning of the various quantities without the complexities of
spin algebra and matrix notation. The more experienced reader can immediately
go to Sect. 2.3.h,

2.3.3 Illustration: R-matrix formulation of single-particle interaction with

(1) Schrédinger equation and boundary conditions:

Consider the interaction of a spinless, neutral particle with a spherical complex
potential V+iW. From the Schrddinger equation

v * (%;‘—2- V24V+1W)w=Ey (26)
_ one finds with the usual partial-wave
0. a 4"? expansion in Legendre polynomials,
2 ' Y = zz uz(r)PE(cose)/r, the radial wave
equation
uy + [k2- T%?—(Wiw)— M321—)_;]11 =0. (27)
WA r L
(E=n2k2/(2m)). The boundary conditions
0 } -

___.n-..-//’§£ r u2(0)=o, ul(r)=Iz-U202 for rza, (28}(29)

follow from the requirements that probabilities,
i.e. |$|?%, remain finite and that outside the
range of the potential (which is assumed to
vanish for radial separations rza;) one has in-
Fig. 1 going and outgoing spherical waves I , Oy, where

the outgoing wave 0. is modified, reiative to
the case without interaction, by a complex factor U, the collision function.
The channel wave functions Il’ 0, are given by Eq. &5. Note that in our example
a channel is completely spe01fie& by the orbital (or, since #=J, the total)
angular momentum.

(2) Orthozonal base in the internal rerion (rsa

)

2'._.
ext we introduce, for each £, a base of real, orthogonal functions uxg by de-
manding
2r 2(2+1)
o lk2- L -
T s e L (rea) (30)
= ' = 2
ull(o) o, amu Al(al) Bluxg(al), (31) (32)
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where B,, the boundary parameter, is seen to be essentially the logarithmic
derivative of the internal eigenfunctions u at the channel radius a, .

Compare the similar definition of L, in terms of external wave functions,

Eq. 24, Since we omitted the imaginary part of the potential in the differential
equation (30) everything becomes real, including the eigenfunctions, if we

choose B, real.(Similarly the self-adjoint Hamiltonian in the general theory

leads to real eigenfunctions for real Bc') The orthogonality of the eigenfunctions
is checked as follows. The wave equation (30) yields

1]
g dr (uy,u o-u)u )

)
212
(ku kx) £ dr Uy Uiy

=u‘(

e ag)uul(az) - uxz(az)uﬁl(az) . (33)

The integration by parts leading to the last line corresponds to the application
of Green's theorem in the general R-matrix case. The whole expression vanishes
because of the boundary condition (32). This proves the orthoesonality, i.e.

%2
i dr ukluul =a, 5Au’ (3k)

where the normalisation constant al ensures the correct dimensions.

(3) Surface equation

‘

We can now expand the true wave function inside the interaction sphere as follows

u, = ; Sy %y (rgal) (35)
18
with = ;—- £ dr Uy Uy (36)

Specific information about the last integral, i.e. about the expansion coefficients
VE must come from the wave equations and boundary conditions. We employ the

same procedure that we just used to study the quite similar orthogonality integral.
From the wave equations (27), (30) we get

a£ a
.2m = '3
1" - " = 2.2 Y
g dr(uguxl uzuxl) (kA k iz Jx)i dr u Uy, (37)
a
_ £ dr uzuxzw
where W, = —mm————— (38)
A a
f dr uEuAQ
o)

is a volume average over the absorptive potential. Integrating by varts ("Green's
theorem") and using the boundary conditions (Egqs. 28, 31, 32) one finds

[alul a )- Blul(a )Jukl(al) = %7-(Ex E-iW )al g (39)

where EA=ﬁ2k§/(2m). Inserting ¢, from this equation in the expansion (35) one

obtains .

u, = R (a. u

. . Z_Blu ) for r=a_, (40)

2

2

AL

where R = 2-—;jr————— (41)
% X EXE 1Fka/2
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_ ‘}‘12 _ —
V 25 r, =-2W . (k2)(43)

Yag © 2maZ agl8g)s ra A

The "surface equation" (40) is the analogue of the matrix equation V=R(D-BV) of
the general theory which connects the "value" and "derivative quantities" V and
D at the surface by means of the R matrix. Eq. (42) shows that the reduced
width amplitudes Yy, 8Fre essentially the values of the eigenfunctions at the
channel radius.

with

(4) R-function expression for the collision function

Our ultimate goal is an expression of the collision function U, (from which

the cross sections can be calculated) free of the unknown quantities u! and u,.

In general this requires matching of the external and internal wave furnictions

at r=a,. With the surface equation this is surprisingly easy. We simply replace

the internal quantities in Eq. 40 by the channel quantities I_, and Oy with the
. ., . L

help of the matching conditions,

r=a, . u

. = I, - U0 (4k)

L 27r°

1 = -y otY = 1.¥1 —
a,up ag(Ig Ulol) LgI,-U,L,0,, ‘ (45)

and solve for Ul' The final result,

- *_ _ . .
R Ll g (46)
2 1 RR(LZ—BQ ng

with Rl given by Eq. 41, is the analogue of the general Egs. 17, 18.

In contrast to the Wigner-Eisenbud R-matrix, Eq. 18, our R-function, Eq. 41, is
complex. It looks, in fact, exactly like the reduced R-matrix of the Reich-Moore
approximation (see below) where T is the radiation width and originates from
elimination of all photon channelsaby means of the Teichmann-Wigner prescription
(Ref. 11) if the width amplitudes y, of the eliminated channels are relatively
small and have random signs. The absSOrotive potential W is thus equivalent to
reactions leading from the entrance channel to other eliminated channels.

A more rigorous connexion with the theory of compound resonances is established -
as follows. One averages the collision matrix element UC over an energy interval
that is so wide that it contains many compound levels but small enough that weak
energy dependences (of X, ¢,, L and of level statistics) can be neglected.

With a Lorentzian weight fuliction centered at E and having the width I (FWHM)

one finds, because Ucc has no poles above the real axis,

U,o(E) = U (E) with R (E) = R, (E+iI). (b7)(L8)
Thus U o is given by the optical~model expression (46), with R, replaced by R_,
evaluafed at the complex energy E+iI. This means that the average total cross
section can be calculated from the optical model. If in R__ the summation over

levels is replaced by an integration, and I is treated as®a small quantity, one
gets

R (E+iI)

ce R: +ins_ (49)
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;T
with s, = 52 (pole strength function), (50)
c
(El) .
[+1) c .
RC(E) = f dE'—ET:E— - (distant-level parameter), (51)

where Dc is the average level spacing and f denotes Cauchy's principal value. At
low energies (E+0) the effective potential-scattering radius that follows from
Eqs. 33 and 36 is

- N
R! = a (1-R_). (53)
The strength function SzJ normally used in applied work is related to s, by
———
= V/F
SQ'J 2k @50 VieV/E, (5k4)

The important fact for us is that level-statistical gquantities such as ~2-/D can
be used to adjust the parameters of the optical potential.

(5) Square-well optical potential

For a little numerical exercise let us specialise to a three-dimensional
complex square-well potential as in

VA Fig. 2, with the same well radius a
for the real and the imaginary part.
a r The natural choice for the channel radii
0 - is a,=a for all &.
_v ]
o
WA
a r
O T
_w '
o)
Fig. 2

The eigenfunctions for r<a can now be expressed in terms of the spherical Bessel
functions jl:

om

_ . . 2 -
uxz(r) = K,r Jl(er) with Ly Rz (E Vo ). (55)
(uxo(r)=51n er, uk1(r)=s1n er/(KAr)—cos er, etc.)

For the eigenvalues KX or EA one has, from Eq. 32,

for 2=0 Bo sin K. a K,a cos K, a (56)

A A A
for 821  BiK,a j,(Ka) = (Ka)? §,_ (K a)-2K, 2 i, (Kya) (57)

g A
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The last equation follows from the recursion relations for spherical Bessel
functions. With B,=-%, the choice suggested by Egs. 42 and 43, one finds

2
- _ . _ 2A+1 2 72 _ 2 +2 )
for 2=0 cos Kka =0, i.e. E = ( 5 m) a2 Voo Y30~ ZmaZ (58)
: 2 2
Q= 1 ¥ = 1 = 2 ‘ﬁ - 2 = gil .
for 2=1 sin K,a 0, i.e. E,\ (A7) Smal Vo, Y31~ SmaZ >
for =2 tan KAa = KAa etc.

As could be expected from an optical, i.e. wave-mechanical, model the eigenvalues
correspond to certain simple ratios between the internal wave length A = 2n/X
and the diameter of the potential:

2a = AJ2, 302, 5A/2, ... for 2=0,
2a = A, 2A, 3A, ... for 2=1.
The Y and vy for the square well are the same for all A and devend only on

the ranve (a) of the real potential. Furthermore, Eqs. 43 and 38 show that
Aa/Z-Wofor all X and 2.

Inserting numbers that are compatible with average neutron cross sections,
_ 1/3 _ . -

a= 1.4 fm-A VO = 50 MeV, Wo = 3 MeV
one zZets for a heavy nucleus with A = 238 the resonance parameters of Table 3.
The scattering widths given in Table 3 are defined as usual by

J = 2 =

Iy (E) = 2P (B)vf, =1, (B[P (B)/P (|E, ), (59)
the absolute values ensuring the validity of this definition for subthreshold
("negative") single particle states (E,<0) as well as for continuum states with
E,>0. The levels are rather broad, w1tﬁ total widths rAa+FA2 of about 10 MeV
and spacings of about 30 MeV near threshold (E=0).
One can also compare with the neutron strength functions and effective radii

observed in the region of resolved resonances (E < 1 MeV) as a function of A
(or a). For E=0 our model yields

Y2 E /2
Ro+ins, = ] A4 z —é&—éé—— : (60)
2 8§ Ef4TS /h EZ+TY /h
The maxima ('size resonances'") of s, are seen to occur where Ex(a)=0, i.e. at
a = 22;1 L ;ﬁ_ﬂ for 2=0,
v
emv, (61)
_ “h
a = Am —— for &=1, etc.
(2mVo

With a = 1.4 fm A1/3, VO = 50 MeV one finds the size resonance positions that
are listed in Table 4 together with the observed positions.
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Table 3: Resonance parameters for a three-dimensional complex square-well

T . - )M
potential with a = 1.4 fm A'/3, A = 238, veiw = { ~(50+31)MeV for rsa,

0 for r>a.
% spectroscopic Ey Yil 2P2(|EA}) Fxl(iEA!) Tya
symbol (MeV) (MeV) (MeV) (MeV)

0 1s -49.32 0.275 26.77 T7.37 6

2s -43.89 " 25.26 6.95 "

3s -33.02 " 21.91 6.03 "

Ls -16.73 " 15.59 k.29 "

5s 5.00 " 8.52 2.34 "

6s 32.17 " 21.62 5.95 "

ete. "

1 1p -47.28 0.275 13.03 3.59 6
2p -39. 1k " 11.84 3.26 "
3p -25.55 " 9.53 2.62 "
hp - 6.54 " L.68 1.29 "
5p 17.91 " 7.9k 2.19 "
6p 47.78 " 13.10 3.61 "

etc.
Table U: Size resonance peak positions

% spectroscopic nucleon number at peak

symbol calculated?® observed

0 3s b7 ~55

hs 129 ~150
1 2p 2l ~ 25
3p 81 ~90
kp 193 ~210

a) 1/3

Eqs. 61 with a = 1.4 fm A /°, V = - 50 MeV for r<a.
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This should suffice to show the use of level-statistical data in the adjustment
of optical-model parameters. Let us now return to the discussion of the various
resonance approximations.

A convenient starting point for the various practically important approximations
is the inverse level matrix:

Wigner—Eisenbud representation (exact)

with B, real and constant,

Y (20)

1 _ o - o}
(a7) - (EA L)dku 2 YAc Lc ue

Al o

Kapur-Peierls representation (exact)

. = = A O=
with Jc Lc’ l.e. Lc o,

(). = (E-E)s (62)

A Ad

%igenvalues EA complex, E-dependent).

SLBW approximation

Only one level is retained,

Au

(A: level shift, I = )T
c

-1 '1__ __02: s
(A ), » A = E-E ZLCYAC = E_+A-E-il'/2 (63)

¢ total width, both E-dependent, real).

MLBW approximation

All off-diagonal elements are neglected,

-1 _ __02 - s )-l

(A )Au = (EA E ZLCYXC)GAu = (EA+AA E 11\/2)6MJ (64)

(8,: level shift, I, = erc: total width, both E-dependent, real).
¢

Reich-Moore approximation
Off-diagonal contributions from photon channels (cey) are neglected,

(A1), = (E,+A,_-E-il,_/2)6, - Ty, Ly (65)

Au AT Ay AY Au cEy Ac e ue

(AAY: level shift caused by photon channels, FAY= X FAC: radiation width).

cey

Adler-Adler approximation

The energy dependence of LZ is neglected:

(A'1))‘u = (EA—E)GXU—Z yxcvrig(EA)LZ(Eu)Yuc s (66)
o]
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It should be remembered that for 2=0 everywhere, for 2>1 locally at a given

energy, 4, and AA can be made to vanish in all these expressions, and that

the P contain (a% least) a factor vE for elastic channels (cf. Table 1) but
c . ..

are practically constant for fission and capture channels.

2.3.5 Kapur-Peierls cross section formulae

e Wi i e e i . e . e e e S e

The Kapur-Peierls collision matrix is

. 1/2.1/2
-i(o t,,) N N
U= ¢ fe (Gcc' ) _)\C_A.C_) (67)
A €x—E

where we write €., GX =2ch2 to distinguish the complex eigenvalues and partial
widths from theif real Wigner-Eisenbud counterparts E,, I', = 2P y2 . The
corresponding cross section expressions are, in a not&tion that is Gonvenient
for the discussion of Doppler broadening,

1
16y, |
2 . 2 c o : 1
g, = hnxcgc[31n o, * ¥ T, (wx cos 2¢,+x, sin 2¢A)J
) Re GAc
= . 2 .
hnxcgc[51n o, * ; r (wx cos 2¢_+x, sin 2¢c)
Im ch ) '
+ 2——F__— (wk sin 2¢c-xx cos 2¢c)], (68)
A A
)-} 2 r ticlz
9ee ~© Trxcchg P§ (wk Re Cree ¥ X Im Ckcc)
2 Re ch Im G>\C ]
+ ) (-—=—— Y, + —=x,)] +0_, (69)
) Fx A PA A c
)4 2 I Ac G)\C'I
Ocet ~ Trxcgc F§~——__ (wk Re Ckc vt X Im Ckcc')’ (70)
1 Re Oye
with ¢A = ¢, ~ arg g,, = ¢~ arc tan E;TE;: s (71)
ch glc‘ irk
C)\CC' =1+ E‘*TE— s (72)

— 2 - 2
€, = B 1rx/2, G, = 2P 85> (73)(Th4)
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ra/b 1
and Yy =
A (E-E,)24T2/h 14x2
A A zero—tenperature
Voigt profiles
(E—EA)FA/2 x

= . (76)
- 2,12
(E EA) +rk/h 14x2

In the derivation of Eqs. 69 and 70 we used the partial-fraction decomposition

1 1 1 1
£ -p &%.3 - TE_g (p IE = F*?E)' (77)
A o oA T Y

It is thus seen that apart from the potential-scattering term hnxggc sin? ¢C all
cross sections can be expressed by the symmetric (Lorentzian) and asymmetric
Breit-Wigner line shape functions w and Xy *75 coefficients that contain a
factor P (which in turn contains a factor E and are otherwise weakly
energj—dependent The line shape functions themselves are also sllﬂhtly distorted
because E, and T', are weakly energy-dependent. Note that T x Z Nel [ in contrast
. . . : AU bkeiThe
to the Wigner-Eisenbud relationship PA = ZCFAC.

2.3.6 SLBW and MLBW cross section formulae

Rather than writing down the well-known SLBW formulae we go immediately to the
MLBW case. The collision matrix obtained with Eq. 64 is

. ek
Ueer = © (5cc' +i] ) - (78)
A EA+AA—E—1PA/2
Comparison with the Kapur-Peierls collision matrix (67) shows that we can take
over the Kapur-Peierls cross section formulae with the change E,~E +AA’ r +ZF

ATA A Ac?
gkc YA The result is c
2 M y

o, = hnxcgc[31n g ?r—- cos 2¢ +x, sin 2cj>c)_l (79)

Fic rkc

= 2 - —— ’
e h"xcgc § ['Ff_ (wk Re CAcc+XA Inm CAcc) FA wA] * 9% (80)
2 FXCFAC'

O ot = hnxcgcyg ——Fg——— (4 Re Cy v + Xy Im Cy_y), (81)

Y ir Y at

. _ “uc A ue
with Croe! =1 z (82)

r Vic EA+AA—EU—AU+1(FA+FU)/2 Yie!

The SLBW formulae are obtained by specialisation to a single level, w1th CA c=1.
(The sum in Eq. 82 describes level-level interference.)

In contrast to the Kapur-Peierls and the SLBW collision matrices the MLBW collision
matrix is not unitary. Therefore non-physical cross sections (cc<0 or oc>hnX§gc)




_19-.

can occur, but for mild level overlap the MLBW approximation is quite good. In
any case 1t is better than the very popular but often very bad approximation,
sometimes termed "many-level Breit-Wigner approximation", that results from
omission of the level-level interference sum in Eq. 82 and amounts to simply
adding SLBW resonance terms (plus the potential-scattering term in o, and o ).

¢
The MLBW definition used in the US file ENDF (Ref. 12) is such that Eq. 80

is used for o __ but level-level interference is neglected by putting C =1 for
0 ,. This is often justified because level-level interference is usuaii§ quite
weéak for capture (if not for fission or inelastic-scattering) cross sections.
The total cross section must then be computed as the sum of all partial cross
sections rather than from Eq. T9.

The MLBW approximation corresponds to the first term of the expansion

1 1 1 1 1

A= =+ o ! 4L (83)

of the level matrix in powers of the nondiagonal part -N of its inverse,

't 3 -— o
“Au (1 6Au)§YAchYuc , (84)
D, = (E -E-1i . 8
Au ( A+h, <E 11‘)\/2)5Mj (85)
Retaining also the second term (Ref. 13) one gets an improved collision matrix,
» 1/2 1/2
o ee et iy e Nee et (86)
1 t =1
cc ce 5 Ey+A,-E 1FA/2
3 o}
) L
Yuc Yuc' zn Txe" C"YUC"
with Wygor = 1% ( + ) (87)

uir Tie Tie! Eu+Au—EA—AA—1(Fu—FA)/2
Again one canztake over the Kapur-Peierls cro%s section expressions with
E.+E +A,, I'y>) T G, °T. W G, G W r . The partial widths are

A 3 H 9 1] . 1 t . " N

now éom%lexxbu% %ﬁe cé%pléx %gfes é% %ﬁe 1A%roved é8111s1on matrix, Eq. 85, are
still the same as those of the MLBW collision matrix, Eq. 78. This is no
longer true if higher-order terms of the von Neumann series Eq. 83 are re-
tained as in Ref. 1k,

2.3.7 The Reich-Moore cross section formulae

The inverse level matrix in Reich-Moore approximation, Eq. 65, is exactly what
one would derive from a "reduced" R-matrix for particle channels only, with

E, replaced by EX+A _iFA /2. In fact, exactly such a reduced R-matrix results
i} one eliminates téz pho%on channels by means of the Teichmann-Wigner channel
elimination method which is the usual way to derive the Reich-ioore formulae
(Ref. 15). One can thus calculate all cross sections except that for radiative
capture from Egs. 14, 15 and 17 where R is to te taken as the reduced R—matrix

Yy Y

, _ Ac ' Ac' .

Roe' =)0 & (c,e'd v) (87)
A Ay

with eAY = EX+AAY—1rxy/2. (88)



_20-

The capture cross section can be either calculated as difference,

o =0 - ) g, » (89)
c

TS ey ?

or, according to Harris (Ref. 15) as
o,\~1 1/2 12
cvé [(1_RL ) Jcc‘rxc'
= wxle, L Ty, s . (90)
EAY—E

o]
cy

The calculation is quite fast since doulie sums over levels as in MLBW apnrox1—
mation (cf. Eq. 81) are not needed. The inversicn of the reduced matrix 1—RL
is unproblematic since it is usually of rank 1, 2 or 3.

In the most frequent case the only open particle channel is the elastic channel
and all matrices reduce to scalar functions. With the definitions

ro/2
. -i )
-iR_P E _-E
0 - cec ¢ _ A Ay (91)
- - 5)
a1 e ) Me/?
Pox &y E
In P lpocl?
- ce 2 _ 'Pec
X 2R o Y " TReo (92) (93)
cc cce

one gets then expressions which have the formal (and in single-level situations
the factual) SLBW form, viz.
cos2¢ +x sin2q>c

o, = hnxz (51n2¢ +y 2 e ), (94)

= 2 2 2
OCY = hnxcgc vé(1-y?) Tz (95)

For pure elastic scattering, y2=1, one gets, of course, the exact single-channel
R-function with

. T '
-1 -1 A/2
PULIED S RLE VA (96)
A E-E
A A A

The Reich-Moore formalism is thus exact in the limit of one level or one channel
and otherwise very accurate. It is fast. Its (nonreduced) collision matrix is
unitary (as long as the number of levels does not exceed the number of photon
channels which can always be assumed without loss of generality) so that non-
physical cross sections are not produced.

2.3.8 The_Adler-Adler cross_section formulae

The approximation Eq. 66 to the inverse level matrix means essentially that the
energy dependence of level shifts (if any) and total widths is ignored. This
works very well for fissile nuclei in restricted energy ranges where

FA = Fx + FA = const but not for llpht or medium-mass nuclei for which

PA = PAn= 2P fE with P given in Table 1. Diagonalising the inverse

level matrlx Eq. é by ortﬁogonal transformation one finds a collision matrix

of the Kapur-Peierls form, Eq. 67. Its poles EA and reduced width amplitudes gAc
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are energy—-independent as in the S-matrix formalism developped by Siegert,
Humblet and Rosenfeld (Refs. 18, 19), but unitarity is not automatically
guaranteed.

The Adler-Adler cross section formulae (Refs. 17, 20, 21) are usually written
not for specific channels (c, c') but for specific reaction types (total, n,
f, Yy, ...) and restricted to 2=0:

' = 1 1 a(T) (1)
°F cén 9% = % *VE LG T ) (97)
g = z ZGCC'=-}E§-\{—(G£X)¢A—H§X)X)\) . (x:Y,f,n) . (98)

c€n c'Ex

vhere o_ is the potential-scattering cross section, the Gix)/(/ﬁvk), Hix)/(/ﬁbx)
are sumS over all coefficients of Yyo X in Egs. 68-70, respectively, with

vy =T /2 and vE stemming from P _(E). The A-sums extend over all contributing
l?X?is %ﬁsespective of JlI, the spin factors 8, being absorbed in the coefficients
GA , H;"’. In principle one could even definé Adler-Adler parameters for iso-
t?p%c m?XSures by similarly absorbing the relative abundances also in the
G\X HM\X,

A

Inversion of the usually quite high-dimensional matrix A ! is possible by

brute force on modern computers (Refs. 17, 20, 21) but the orthogonal trans-—
formation involved is so complicated that simple conversion formulae giving the
&, &) e (or G§x), H(x)) in terms of the E,, ¥y are not available except for

the case of a single level (see Sect. 3.2 below). As a consequence the statisti-
cal laws for Adler-Adler or, generally, Kapur-Peierls parameters could not be
derived from the known statistics of the Wigner-Eisenbud parameters. An im-
provement of the conversion with respect to energy-dependent partial widths

was recently discussed by Segev (Ref. 22).

Further discussion of the advantages and weaknesses of the various approximate
resonance formalisms will be deferred until Doppler broadening has been treated.

2.4, Theory of Doppler broadening

In most practical applications of resonance cross sections these are needed in
Doppler~-broadened form. It is sometimes argued that for light nuclei Doppler
broadening can be neglected. This, however, is true only for the broad s-wave
levels but certainly not for the very narrow p—, d- ...wave levels of these
nuclei which in the case of structural materials contribute significantly to
resonance absorption and Doppler coefficient in fast reactors.

2.4.1 Free-gas_approximation

Doppler broadening is caused by thermal motion of the target nuclei. Consider

a parallel beam of monoenergetic particles with lab velocity v collidigg with

target nuclei whose velocities u are distributed in such a way that p(u)a3u

is the fraction with velocities in a small three-dimensional region d3u around
u. If p, and p, are the densities of beam and target particles, respectively,

the number of reactions occurring per unit time and unit volume is

> > > > > - :

pp, fa3u p(w) |v-ul o(|v=ul) = p o v a(v) (99)
where o(v) is the effective or Doppler-broadened cross section for incident
particles with speed v. Obviously a 1/v cross section is not affected by Doppler
broadening. Let us now assume that the target nuclei have the same velocity
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distribution as the atoms of an ideal gas, i.e. the Maxwell-Boltzmann distribution,

> 1 2 g3 M
p(w)adu = —7= exp(- 3y )=, Su? = kT, (100)
1T3/2 up ‘ug 27T

where M is the nuclear mass and kT the sas temperature in energy units. Integrating
over all possible relative velocities W=V-u and using polar coordinates, a3y =

d3w = w2dw d(cos ©)d$, with the polar axis parallel to the beam, one finds the

exact free-gas expression for the Doppler-broadened cross section,

o ~(v-w)2/u2  -(v+w)2/u2
R - SO o) (101)
(o]

-

T
In terms of lab energies, E = mv?/2, this is

-4(E-vEE')2/A2 -4 (E+/EE')2/A2 ,
) VE o(m)

o(E) = Z%?’f dE' (e - e
(o]

) u
where A= v KTE 2-—2 E (103)
M/m v .

is called the Doppler width. For E>>A, i.e. v>>2u,,, which is the case above a few
eV, one can simplify by retaining only the first gwo terms of the expansion

(102)

At
VEE' = E + Lz s, (104)
. . -] =]
by neglecting the second exponential and by replacing f by f in the first integral.
The result is 0 -=
1 P _(EI_E)Z/AZ
VEG(E) = 57= [ aE' e VE' o(E') . (105)

2.4,2 Cubic erystal

———— ——— — . - ——

Lamb (Ref. 23) obtained the same expression for radiative capture by the bound
atoms of a Debye crystal if I'+A > L4 kT_, where T  is the Debye temperature. The
only difference is that one must use an effective ("Lamb-corrected") temperature

3 "/t 1 T%
=Xy 3 3 X 1.2_ (106)
T=T(5) 5 [ dxx’ cothi =M1+ 55 2 +...)

that is usually only a few percent higher than the actual crystal temperature T,
Using the theory of quasi-free scattering one can extend these results to
scattering and to cubic crystals in general (Ref. 24). It is common practice

to compute Doppler-broadened cross sections with Eq. 105. For very low energies
it may be better to use Eq. 102, i.e. the exact free-gas kernel. In any case
the Doppler width, Eq. 104, must be calculated with the Lamb-corrected tempera-
ture, Eq. 106, for which a curve is given in Ref. 23 (see also Ref. 56, p.26).

Let us now consider Doopler broadening of resonances. We saw that all resonance
cross sections in SLBW, MLBW and Adler-Adler approximation can be written as sums
of terms of the form c¢/(1+x2) or cx/(1+x2) where the coefficients ¢ contain a
factor E"1/2 and otherwise depend only weakly on energy. As a consequence onée
needs the convolutions of 1/(1+x%) and x/(1+x2) with a Gaussian, the so-called
Voigt profiles (Ref. 25),
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P(x,B) = B f dx' e T2 (107)
® (e 2702 1
x{x,B) = E%? f dx' e (x=x")%/8 T:iTy (108)
E—Eo A
with X = T2 g = T/ (109)(110)

The quantity B is called the Doppler vparameter, A, and possibly a level shift
(nere absorbed in Eo) are to be calculated at the energy for which the broadened
cross section is needed. These functions, which occur also in the theory of
atomic spectra, are well known (Refs. 25, 26). Fast algorithms are available

for computer calculations (Ref. 27). This explains the popularity of SLBW and
MLBW formulae even in cases of strongly interfering levels where they are quite
inadequate.

The Kapur-Peierls, MLBW and Adler-Adler cross section expressions (Fqs. 68-T0,

79-81, 97-98) remain valid also for Doppler-broadened cross sections if the

zero-temperature Voigt profiles ¥, ,x, are replaced by the broadened profiles,
A2AN

Egs. 107-108.

An interesting property of both the exact and the approximate free-gas formulae
(Egs. 102 and 105) is that if one knows the effective cross section for a tempe-
rature T, one can get that for a higher temperature T, by simply broadening with
a Doppler width calculated for the difference Tp-T4, without going back to the
unbroadened cross section (Ref. 28). Likewise one can combine Doppler and
resolution broadening (see below) of a cross section if the resolution function
has the same form as the Doppler kernel, e.g. Gaussian. One simply replaces A
by vA2+W? where W is the resolution width defined analogously to A (Ref. 28).

Cross sections of the Reich-Moore type must be numerically broadened. Once
enough unbroadened cross section points for linear interpolation with a given
accuracy are calculated the problem is reduced to piece-wise convolution of a
straight line and a Gaussian which results in error functions and exponentials,
again well known and rapidly calculated functions (ecf. also Ref. 27). With
modern computers these methods can be quite fast, and the Reich-Moore

formalism is so attractive, that the recent decision to strike it from the ENDF
conventions appears ill-considered.

Assessing merits and drawbacks of the various approximate resonance formulae
one should realise that the fastest way to calculate unbroadened cross sections
on a computer is not .by way of explicit cross section expressions such as

Eqs. 68-T70, 79-81, 97-98. It is much faster to compute the required collision
matrix elements and then to use Eqs. 14 and 15. Use of the explicit cross section
expressions is necessary only if resonance broadening is to be calculated by
means of the Voigt profiles. In other words, the Voigt profiles require con-
siderable preparatory computations that are not needed for numerical broadening.
The convenience of MLBW or Adler—Adler parameters for Doppler broadening should
therefore not be overestimated - in multi-level situations it is at least
partially offset by the need to utilize the explicit cross section expressions
with their time-consuming double sums. Furthermore, the approximations involved
lead to cross sections that differ from the exact R-matrix cross sections. The
difference is sometimes added as a ''smooth'" cross section which is considered
as unaffected by Doppler broadening (e.g. in the ENDF system). This entails
additional preparatory work and, since the 'smooth" component is not really
smooth near strongly interfering resonances (cf. Ref. 20b) still does not
remove all discrepancies for Doppler-broadened cross sections.
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In the case of Adler—-Adler parameters additional problems exist: If they are
derived from Wigner-Eisenbud (e.g. Reich-Moore) parameters one must invert
large level matrices, if they are directly determined in a fit procedure one
has the consistency problems connected with the unitarity of the collision
matrix: There are about twice as many real parameters as in the Wigner-Eisenbud
case, but a closer look shows that the number of really independent parameters
is the same, the remaining ones being fixed by conditions imposed by unitarity.
These conditions, however, are complicated and not easily utilised.

In conclusion it is perhaps fair to say that the real, constant R-matrix para-
meters of the Wigner-Eisenbud or Reich-Moore type should be considered as basic,
whereas the complex Kapur-Peierls or Adler—Adler parameters should be considered
as an auxiliary representation for Doppler broadening.

——— ., ————— e e L LD e e e e e e v e e

In reactor calculations cross sections are usually not required in the form

of "microscopic'" data with the whole detailed resonance structure. Instead one
employs grouv cross sections. These are defined as flux-weighted averages over
certain energy (or rather lethargy) intervals, the group intervals., In the

widely used narrow-resonance approximation, which is based on the assumption

that the Doppler-broadened resonances are narrow compared to the average

energy loss of a scattered neutron, (A2+l"2)1/2 << 2AE/(A+1)2, the flux over

a resonance is proportional to the inverse total cross section. The group cross
section of a given nuclide (or element) for the (n,x) reaction can then be written

as
{2

c_jx - gfa ?

T )

where o and 0=Zox are the (n,x) and total Doppler-broadened cross sections of the

(111)

; X } . . . .y
nuc%lde (or element), d is the so-called dilution cross section describing the
admixture of other elements, and

(. = [ aEuE ... (112)
AE

is an integral over the group interval AE with the smooth collision function
N(E) as weight function. The dilution cross section d is usually taken as
constant in AE. The self-shielding factors f_ are defined by the factorisation
(T denotes the temperature) x

o (2,7)ef (d,T), with (113)

X
o (=,1) = {0} . (114)

X

'Ex(d,T)

0

The group cross section for infinite dilution is just the (collision-function-
weighted) average cross section in the usual sense. It is independent of d and,
apart from edge effects at the interval boundaries, also of T. Thus fy contains
all d and almost all T dependence. With the usual definition of the covariance,

cov(x,y) = <(x— {x) ) (y= <Ly 2 ‘ (115)

one can write
o, 1/(0+a)

ox) > £1/(o+d))

fx(d,t) = 1 + cov{ < ). (116)
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Now peaks in o coincide usually with dips in 1/(o+d) and vice versa. The co-
variance is then negative and

0<f <1. (117)

Growing dilution or zrowing temperature both tend to reduce the covariance so
that normally

afx fo

Exceptional behaviour may be caused by

- edge effects at the group boundaries, or

- inadequacy of the narrow-resonance approximation near very
broad resonances, or

- pronounced resonance-potential interference dips ('windows")
in the total cross section. These have no counterparts in the
fission or capture cross section and can therefore over-—
compensate the influence of the peaks on the covariance.

We get more insight with explicit cross section expressions. Neglecting edge
effects, level-level interference and resonance-potential interference we write

o= (o ¥), + o (120)
A -
= X
o = ; (6 ¥ )y (121)
where g = hnx(Eo)ng /T is the peak total cross section (unbroadened), v the

symmetric Voigt profile and o_ the potential scattering cross section. If the
resonances are very narrow and well separated one can treat their contributions
to g, independently which results in

- 1
o (d,1) KE'; N(E) A, £(8),5,) (122)
—_ ] .
ox(m,T) x Kﬁ‘z N(E\ A, s (123)
FX Tan
with A, = faE (o 7)) 2n2x(E>‘)2(g—F——)A (peak area), (12k)
2 7o w(x,8) _2
£(B,x) = =« £ dx ET§:§71E = = xJ(B,x) , (125)
A(EA) d+o
By = T 72 » Ky = —E_R . (126)(127)
A oA

The universal function f(B,x) can be interpreted as the self-shielding factor of
an isolated, symmetric, narrow resonance which depends on the Dovppler parameter 8
and the dilution parameter k. It obeys the inequalities 117-119 as can be seen
from Fig. 3. With Egs. 122 and 123 one gets

;N(EX)AAX £(8y ,x,)

fx(d,T) = AXE(EA)AAX (128)
A
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Fig. 3 - Dependence of the narrow-resonance self-shielding factor f(B,k) on

temperature ( 8 = 24/T ) and dilution ( k = (d+op)/cO ).
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Thus fx is a weighted average of the individual narrow-resonance self-
shielding factors, the weights beinz pronortional to the areas of the (n,x)
cross section peaks A, and to the local collision densities ¥(E,). Eqs. 120-
128 were derived for a'single isotope. They are also valid for isotopic

mixtures if I and Axx are taken as containins the isotopic abundance as
a Tactor. :

An important remark concerns the level spins. The SLBW peak area is vroportional
to gI' T _/T. For narrow resonances this quantity is, apart from E_, usually

the only information one has. For troad resonances one knows freauently also

gl'  and,mostly for s-wave levels, even g. Now knowledze of F_ and gl T /T
enables one to calculate o (,T), ef. Eq. 123, but not a (d,%) or fdefT).

The reason is that in ordefr to calculate f(B,k) one must know I' and this requires
knowledge of g, gl and anFX/F. In other words, the peak area alone does not
tell whether the peak is broad or narrow, and even the quantity gl does not
help much. For a given veak area it is mainly the spin that determines the

width and thus the contribution to the self-shielded cross section and
especially to its temperature variation: The narrower a resonance, the stronger
its response to temperature changes.

An illustration is provided by the so-called structural materials (iron, nickel
and other steel components). Their capture cross sections are dominated by very
narrow p—, d-...wave levels for which %%pture peak areas are measured but not

I' or g (excepting very recent data on “°Fe, Ref. 31). In order to calculate
realistic self-shielded group constants one must resort to Monte Carlo

sampling of spin and neutron widths based on level statistics (Ref. 32). In

a fast reactor the increase of neutron capture with temperature (due to in-
creasing f, see Fiz. 3 and Eq. 122) expressed by the so-called Doppler coefficient,
is the only inherent, automatically functioning safety feature. lence the
practical importance of good data on g (besides g and gl T_/T) is obvious.
Experimental spin determination for p, d,...wave levels is"at present a widely
open field.

2.L.5 Westcott_factors

The energy distribution of the neutrons in a thermal reactor is well described
by the Maxwell-Boltzmann energy distribution obtained from Eq. 100 by integration
over all angles,

/E_ 4B
kT kT’

p(E)AE = % exp(- T)V (129)

and a 1/E tail. The (n,x) reaction rate induced by this spectrum can be written
as

[dE p(E)vE s_(E)
o
where_gxsE) is the Doppler-broadened (n,x) cross section for temperature T
and VKT o_(kT) is the result one would get for a 1/v cross section. The factor gy
defined by Eq. 130, the so-called Westcott factor, is thus seen to correct
the reaction rate for deviations from 1/v behaviour of the Doppler-broadened
cross section. Westcott factors are conventient for reaction rate calculations
in thermal fluxes since usually the (Doppler-broadened) thermal cross sections
o_(kT) are well known, and since low~enerry reaction cross sections show 1/v
behaviour more or less modified by nearby positive or negative levels. Westcott
factors are normally tabulated for room temperature, kT = 0.0253 eV.

VKT ox(kT)gw (130)
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2.5 Observables

Cross section measurements, as a rule, do not yield cross sections directly
but more or less complicated functions or functionals of the cross sections.

2.5.1 Transmission
The simplest measurement is that of the total cross section ¢. One measures
that fraction of beam particles of a pgiven energy which traverses without inter-
action a samvle of given thickness n (atoms/b). This fraction, the trans-
mission, for a very small thickness of material An is 1-0An. For finite thick-
ness it is

? = 1lim (1-0an)?/20 = 7N (131)

n/An>e

The cross section is thus essentially the logarithm of the observable.

2.5.2 Reaction yield

The (n,x) reaction yield Y_ (x=f,y,...), i.e. the fraction of beam particles
that undergoes an (n,x) reaction in the sample, is composed of contributions
from multiple-collision events with zero, one, two etc. preceding scattering
collisions,

Y oS Y Y H X (132)
where 1-T
Y = —0_,
X0 g X
1-T
- =T 1

Y i 5 Gn< e S >1, (133)

, oo /T -

“x2 o] n o nl o x2 2 1

1 2
ete.

The numerical subscript indicates the number of vpreceding collisions so that 1-T,,
for instance, is the probabllltj that after the first collision the scattered
neutron interacts again in the sample. The brackets <) <> etc. denote
averages over all first, second etec. scattering COlllSlonS, wﬁlch means over

all possible spatial coordinates and scattering angles. Note that in each elastic
scattering collision the energy of a beam particle chanses from E to E' according
to A2+2Ap _+1

5= B (134)

if the target particle is at rest initially. Here u_ is the cosine of the c.m.s.
scattering anzle and A the mass ratio (target to beam particle). In the resonance
region this means that the cross sections to be used before and after the collision
can differ dramatically. The multiple-collision yields Y_,, Y ., etc. are there-
fore very complicated functionals of o_, d_ and o. If inelastilc scattering is
enerretically possible o is to be taken as the sum of the elastic and inelastic
scattering cross sections, and () etc. include averaglnv over all nossible
scattering modes. The thin-sample annroxvqatlonJ

YX * no for no << 1, (135)
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is often accurate enough for fission yields (x=f) where the sample must be so
thin that the fission fragments can get out. In capture data analysis, however,
one must usually include multiple-collision terms and the self-shielding factors
(1-T)/(no) because samples are thicker and the ratios 0./0 are much greater
than in fission data analysis.

2.5.3 Differential scattering yield

Sample thickness effects, i.e. self—shielding and multiple scattering, are slso
quite important in scattering measurements. In analogy to Eqs. 132-133 one has

ay, = qy , +ay , + dYnB + ... (136)
do
_1-T n
where dYn1 = Eﬁ— T1 >1 an

(137)
1

o1 >1 da
1-7 1-T. do
1-T7 1 2 2
3= CJn< a, c7n1< o, a9, <T3>3 >2>1dQ

etce.

= s s YR
n2 o n an 2 /2
n

Here dQ is a solid-angle element covered by the detector.

From our discussion of (n,x) yields it is clear that (except for very thin
samples) extraction of the (n,x) cross section oy from {(n,x) yields requires
also the total cross section 0. Quite generally one can state that the
availability of good total cross section data is a prerequisite for good partial
cross section data analysis. Another data type which is valuable especially for
area analysis (see below) is obtained with the self-indication method. One uses
two samples of the same material, a filter sample (thickness n,) and a detector
sample (thickness n,). The probability for a beam particle to undergo an (n,x)
reaction in the second sample is

Sx(n1,n2) = T(n1)Yx(n2). (138)
The result is essentially a measurement of the filter-sample transmission with

a detector system (detector sample plus detector) that has enhanced efficiency
across the transmission dips (at the resonance energies).

An interesting application of the self-indication method is the semi-empirical
determination of self-shielded group cross sections (Ref. 33). Observed data are
always resolution-broadened. Indicating this broadening by average brackets we
can write self-indication data taken with a thin detector sample

1 —n1c
—n—2 <T(n1)Yx(n2)> = <e ox> for nyo << 1. (139)
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Suppose this quantity and also the average transmission was measured with a
sufficient number of different filter samples to permit numerical evaluation
of the integrals

Z dn <e—n°> = < %> (1%0)
i o4 <e—no> - <a‘l&> (141)

GO NED (142)

where e_nd with arbitrary d is applied artificially. Comparison with the definition
of group cross sections, Eq. 111, shows that this method yields group cross sections
for zero dilution as well as for arbitrary dilution cross section d, for the
temperature of the samples and for a group interval that corresponds to the
resolution width (which can be arbitrarily enlarged by additional numerical
broadening, of course).

O*“~—8 O~— 8

Various types of observables are shown in Figs. 10-12, 15-19.

2.6 Experimental complications

We shall now briefly review the main causes for corrections and uncertainties
in nuclear resonance data measurements.

In time-of-flight measurements there are always two types of background: constant
and time-dependent. Constant background may be due to radiocactivity of the

sample and its environs, time-dependent backgrounds are produced by the accelerator
pulses and the sample. An example is the background caused by resonance-scattered
neutrons in neutron resonance capture measurements (Refs. 34,35) that reflects

the resonance structure of the scattering cross section and is thus violently
energy-dependent. This influence of the sample on backgrounds makes "sample-out"
background determinations often quite doubtful. Therefore one uses "notch filters",
special samples placed in front of the sample under study. The ideal notch

filter has a few widely spaced resonances and is so thick that at their peaks

all beam particles are removed. Counts observed at these notch energies are

then pure background. This allows background measurements at a few points during
the actual run. Of course no "true" data can be measured across the notches,

so one uses a few complementary notch filters.

It was already mentioned that observed data are always resolution-broadened.
Strictly speaking the observables are

T(E) = f&E' r{E',E)T(E'), YX(E) = [aE' r(E',E)Y _(E'), ... (143)(1hk)

x
where dE'r(E',E) is the probability that an event observed at energy E (or the
corresponding flight time) was actually due to a beam particle with an energy E'
in dE'. The main causes are:
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- finite accelerator pulse width

(tb) ’
- finite time channel width (ta)s
- electronic drifts, jitter (ta)>
- uncertain starting point (e.g. in
moderator slab or booster) and
gnd point (e.g. in sample or
Li glass detector) of flight path (8L),
- finite angular resolution in scattering (80).

experiments

The resolution function r(E',E) is normally not well known. Frequently a
Gaussian is assumed in data fitting work,

o2
r(E',E) = = (BB (145)
with, for instance (cf. Refs. 36-38)
2 _
W= 2E[2(%% + 3%57 (t%+t§+t§)]1/2 = Bfc +c E . (146)

Often slight variation of ¢,, ¢, improves the fit but sometimes it is necessary
to use other, asymmetric resolufion functions, e.g. x? functions (Ref. 38) or
Gaussians with tails (Ref. 39).

In partial cross section measurements the raw data are count rates,
¢ = ¢Y e (= ¢noge for no << 1). (147)

Absolute determination of the flux ¢ and the detector efficiency € is difficult
and is therefore almost always avoided. One usually measures relative to a
reference sample (subscript r),

o Yxe no_e

Pl (= — ¢ for mno << 1, n.o, << 1), (148)
r rr rrr

for which Y _ is known with good accuracy. This eliminates the need to know the
flux but still one may have problems with n/nr and e€/e_ as the thin-sample
expression shows. Frequently used reference cross sections are listed in Table 5
together with the accuracies achieved at present.

Table 5: Reference cross sections and accuracies
(1 standard deviation, indicative only)

Reaction Accuracy Energies Detector systems

1H(n,p) + 1% < 10 MeV plastic and liquid scintillators,
counter telescopes

6Li(n,t) +2 % < 100 keV glass scintillators,
semiconductor detectors

1oB(n,ay) + 2% < 100 keV slab samples viewed by
yY-detectors

12C(n,n) t 2% < 5 MeV graphite samples

197Au(n,y) + 4 9 < 3,5 MeV metal foils viewed by y-detectors

235U(n,f) + 3% < 8 MeV fission chambers
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If the energy dependence of e€/e_ is known one can determine the absolute value,
i.e., the calibration, by normalgsing to an accurately known cross section value,
for instance the thermal cross section. If no suitable known value exists one
can often use the saturated-resonance (black—sample) technique: One uses a
special sample which is so thick that at a well known resonance the trans-

mission is practically zero (cf. Fig. 11 below). Quite generally one has
g

X .
(1-1) == <Y < 1-T. (149)
With c=¢Y € this gives at the resonance peak, E=E_, where the sample is black,
o(E_)
o
c < ep < CTTEY " (150)
0x(Eo

If 0 * o_ (i.e. T = I'_) one gets, without further calculation, a quite accurate
value for e¢. The h.9§ eV resonance of 197Au+n, for example, was frequently used
for black-sample normalisation of capture data. With the resonance parameters in
the "barn book" (Ref. U4) one calculates in SLBW approximation o(E )/¢ (E ) = 1.12,
i.e. a = 6 % uncertainty of €¢ which is easily reduced further byoa m&ltgple-
scattering calculation which obviously need not be very accurate. Serious
problems are created if the detector efficiency varies from isotope to isotope
or, even worse, from resonance to resonance. This is a persistent source of
difficulties, for example, with capture measurements. Here the detector response
depends on the gamma spectrum (binding energy, transition strength to low-lying
levels etc.) and thus fluctuates from level to level in an unpredictable way,
especially for relatively light nuclei. A reliable estimation of e/e_ is then

impossible without supplementary data on the gamma spectra of individual reso-
nances (Ref. 40).

2.6.4 gelf-shielding and multiple scattering

All partial cross section data are more or less affected by self-shielding and
multiple scattering. The corresponding corrections are practically most important
for neutron capture and scattering data. Fission cross section measurements based
on the observation of fission fragments, on the other hand, require such thin
samples that self-shielding and multiple scattering are much less important than
self-absorption of fission fragments in the sample. The effect of self-shielding
is described by the beam—attenuation factors (1-T)/(no) in Egs. 133 and 137
whereas multiple scattering leads to the higher-order terms in the collision
expansions Egs. 132 and 136. As these equations show the two effects are inter-
related and cannot be treated separately. Both together are referred to as
sample-thickness effects.

As mentioned above the multiple-collision yields are complicated functionals

of the cross sections. This means that they depend not simply on the cross
sections for the primary energy but on all cross sections for the whole range of
energies that a neutron can attain successively during a multiple-collision
event (cf. Eq. 13l4). The average brackets (... >k in Eqs. 133 and 137 denote
averages for the k-th collision over

- the distribution of scattering angles 0,

do
_ bg nk du
p(u)du = ;;; an 5 s

_1<u

i

cos O < 1, (151)

- the distribution of azimuths ¢ (uniform for zero polarisation)

plo)ag =58, o< com (152)




_33_

~ the distribution of the number s of mean free paths
to the next collision,
-3
p(s)ds = —= , 0<s<s,_=ngo (153)
-s - "k
k
1-e -
where n_ is the material thickness (nuclei/b) that a neutron would have to traverse
after tﬁe k-th collision in order to reach the sample surface and to escape.
Since n, and Oy depend on the particulars (spatial coordinates, angles, corres-—
ponding energy losses) of all preceding collisions one sees that the multiple-
collision yields are given by multi-dimensional integrals of rapidly increasing
dimensionality. Already the second-collision yield for the simplest sample
geometry, viz. infinite slab, looks fairly complicated:

1 do t=t !
_ -noy bm ' du n _1-e t
La=0-=) = 55 @ - %% o (154)
-1 1-e
with t =2, g zRA (155)(156)
] lu

The simplest way to calculate such complicated integrals on a computer is to
sample the multi-dimensional integrands at random and then to average, which is
tantamount to simulation of multiple-collision events with the Monte Carlo
technique. For each subsequent collision of such an event one must sample the
distributions (151)-(153) and, if inelastic scattering is energetically allowed,
also the relative probabilities for elastic or inelastic scattering.

Practical sampling methods employ a random-number generator. This is a function
subroutine that is usually part of the computer software just as exponentials,
sines, cosines ete. Each time it is called it returns a floating-point number
picked at random (i.e. from a uniform distribution) in the interval 0...1. Two
principal methods exist to sample a distribution p(x)dx with the help of a random-
number generator:

(1) Call the random-number generator once. Equate the random number p to the
integral distribution,

X
p = P(x) = [ p(x")ax', (157)
o
and solve for x. The frequency distribution of the x values thus obtained is
just p(x)dx. This method is convenient if x can be expressed in closed form
(examples: Eqs. 152, 153, counter-example: Gaussian distribution).

(2) Rejection method (v. Neumann): Rescale, if necessary, so that 0 < x' < 1,
0 < p(x') < 1. If the range of the distribution is infinite one can substitute
e.g. x=x"/(1-x") (if 0<x<=) or x'=(1+tanh x)/2 (if -w<x<») etc. Get two
numbers p 4, Pp from the random-number generator. Accept x'=p1 if 02§P(p1),
reject otherwise and begin again. This. works always, even for very complicated
or tabulated p(x).

11 p(x') 11 p(x")
F-% iy Al vl {
I reject on T —— 9 accept
0 i " x! 0 } x'
o, 1 5 1

Fig. b Illustragion of rejection method
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Usually it is most convenient to sample the c.m.s. scattering angles and then
to convert to the lab system (cf. Ref. 38). At low energies, for example,(s-wave)
scattering is isotropic in the c.m.s. system so that p(u )duc = duc/2 with

M, = cos O (the subscript ¢ indicates c.m.s. quantitiess. From u. one gets the
energy of the scattered neutron (Eq. 134) and thus the new cross sections. The
latter must be available in tabulated form for convenient interpolation. The

new total cross section and the distance to the sample surface determine the

total interaction probability (1-T, in Eqs. 133, 137). A flow diagram for multiple-
collision capture yield calculation is shown in Fig. 5.

—=d~Start with incident energy E_
calculate o, oy, L T=e "

, o
n
(1-T)';‘ (once-scattered fraction)

sample s, u, ¢ —n1o

1
calculate E1, 01,071, 0.3 Dy, T1—e

o o
1 .. .
(1-7) ;E (1—T1) ;I— (second-collision yield)

1

o
(1-T) ;E (1—T1) Eﬂl (twice-scattered fraction)
1
igigtia:g’Eu1’c¢1 o} T = -n202
2* 922 y2> Tp2s Ny 157

g g o
1 . . . .
(1—T)EE(1—T1)—E—(1-T )—lg (third-collision yield)
a, 2’0

etc.

'

Terminate if surviving fraction is negligible (or by
Russian roulette based on relative capture probabilities,
Ref. 46). Repeat, keep collecting and averaging capture
ylelds until statistiecs is good enough.

Go to next energy.

Fig. 5: Flow diagram for multiple-collision capture yield calculation
by Monte Carlo simulation
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2.7 Resonance parameter estimation

The ideal resonance parameter analysis is based on data measured with isotopically
pure samples and proceeds as follows.

(1) Prom transmission data one determines essentially

Eo’ Pn, ', g for &

Eo’ grn for 2

1]

0,

v

(2) The transmission results permit calculation of sample-thickness corrections
for yield data from which one gets essentially

Eo’ X

Eo’ ng 1f an 1s known.

r if Fn, g are known,

(3) If transmission results are not available (p-, d-, ... levels are not easily
observed in transmission experiments) one gets only

Eo’ anPx/P if gl is not known.
The determination of JNI (and thus g) is usually based on transmission or
scattering data. Apart from complications for fissile nuclei or strong level
overlap one can usually use the interference between resonant and potential
scattering to determine % or at least to distinguish between 2=0 and 2>1, whereas
the resonance peak neight (see Eq. 195 below) and level-level interference

allow determination of J.

The best way to extract resonance parameters from transmission, yield, self-
indication etc. data is by least—-squares analysis. Because of its practical

importance and for convenient reference we briefly review the least-squares

formalism with explicit account of statistical and systematic errors.

2.7.1 The least-squares method

Let us consider

1,2,...1),
1,2,...M<I),

observables y. (i

parameters xu (u

and a mathematical model
=
y; = yi(x1,x2,...xM) = yi(x) (158)

that allows us to calculate the observables (e.g. resolution-broadened trans-
missions, yields etc.) from the (resonance) parameters. Let us further assume
that all y; were measured with the results nj # a3 (0;: standard deviation),
which actually means that the true value y; lies in dy; with the probability

2 dy .
) ] ;;73% (159)

i3
g.

p(}’i)dyi = exp[— —;— (
' i

if we assume a Gaussian distrjbution of the errors as is usual in error estimation.
What is the parameter vector x which best explains the observed data n;? It is not
very difficult to see (Ref. 41) that it is determined by the requirement that the
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joint probability Hip(yi)dyi for all the measurements be maximal, or

y.-n.
3 2
%;(L-E X Z ( ; l) = O, = 1,2""M' (160)
B poi i

This is the least-squares principle. The M Egs. 160 for the M unknown paremeters x
can be solved immediately if the relationship between y., and ¥ is linear. In our
case it is definitely not linear so we must iterate. Let %' be an approximation

to X so that

y; (%) =y (k) + Eyi,u(i'nxu-x‘; )+ (161)
with 3y
Yi o c a—xu . (162)

Truncating the Taylor series (141) after the linear term and introducing the
notation

> >
- I y: (x') y. (x _
(8, = § 2 LY - (37) (163)
- a; i
I oy, (") n.-y.(%")
c. = ) l;“ = ol (16k4)
L =1 i
we get the linear system of '"mormal equations”
M
J 7Y, (xox) =e, o BER) = (165)
v=1 V. v :
Its solution,
M
x =x'+ ) B c or Xx=Xx'+ Be (166)
T T P L A T

can be improved by iteration until x2 remains constant. It is seen that in each
step the MxM matrix B ' must be inverted and values for all observables and
their derivatives must be computed.

2.7.2 Error_propagation_in least-squares fits

What uncertainty in the adjusted parameters x_ follows from the data uncertainties oi?
If we denote the unknown errors of the n, by GHi we have, in linear approximation,
axu Yv,i
ox, =Ly oy = 1 I B, —3 ong (167)
i1 iv i

(ef. Eq. 166). The uncertainty to be quoted for x_ is the square root of
var(x ) = { 6x2) where the average brackets indiCate the expectation value.
Generalising sEightly we calculate

Y. Y
_ i,k A
( Gxu va> - .z. ) Bur _;é_-(dnidnj>.—%$_ By’ (168)
1, K,A i J
If the data uncertainties 5ni are mutually independent,
én.6n.) = . )6.. = 0% §..
( ng nJ} va.r(nl)(SlJ of 613’ (169)

one gets simply
(8x, 6x) B, = B, (170)

1]
o<]
oo}
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In most cases, however, o2 = var(x ) is a sum of squared statistical and

systematic uncertainties.’The statistical errors are usually uncorrelated but
the systematic errors are not. One has then instead of Eqs. 169, 170

= g2¢ -
(anianj) o8y + rij(1 sij), (171)
Y. Y.
1,K JEA
<6xu6xv> - Buv +, ZL. z BuK oi Tij L E BAv (172)
1,JT1 K,A 1 J

where tT.. describes the correlation. Let us take, for example, the n. as time-
of-fligﬁ% count rates all affected by the same error éb in backgroun& subtraction.
Then 1., = (6b)2% and 02 = (Vn,)2+(6b)2, /n, being the statistical error. If there
is alsd’a common normalisation error 6c oné has ., = (6v)2+n.n.(8c/c)?,

oi = (/H;)2+(6b)2+n§(5c/c)2 etc. This illustrates How importaﬁtJit is that
eXperinmenters state” clearly and in as much detail as possible the statistical
and systematic error components. One might add that it is similarly important
that those who extract cross section parameters from experimental data should
state not just the parameters x and the variances {§x° ) or the corresponding
standard deviations but also at'least the more importan% elements of the covariance
matrix {éx dxv) . The uncertainty of a function f of the parameters X, for
instance a calculated cross section or transmission value, is given by the

square root, of the variance

af J
Ger2) = (D E-ex)?> = ] L Loxpx,d L, (i13)
H u H,V H v

so that a good error estimation or sensitivity study is not possible without the
covariance matrix or at least its more important elements.

2.7.3 Goodness_of fit

The minimal x? obtained provides a means to check the consistency of mathematical
model (Eq. 158) and data and the goodness of fit. The probability that a measure-
ment of I observables y. results in a x2-value within dx2 is derived as follows:
The range X2 ... x2 + dx2 corresponds to a "spherical'shell in the I-dimensional
space of the yi/o.. Replacing the volume element Hiidyi/o-)in Eq. 159 by the
volume of this'intinitesimal shell and normalising properiy one finds the
probability

I,-1,x2,I/2-1 2, dyx?
plxax? = 1) E AT ep(- £ B, (171)
In practice one does not know the true x2 (relative to the true y.) but only
that relative to the most likely estimate. This can be taken into account if I
is replaced by I-M, the effective degree of freedom (M: number of estimated
parameters), so that

-My=1,x2,\ (I-M)/2-1 2, dx?
p(x2)ax? = r(h TS (IM/2-1 0 X0y & (177)
2 2 2 2
with the expectation values
(x?> = 1-M, var x% = 2(I-M). (178)(179)
Thus x2 can be expected to be about equal to the effective degree of freedom:

x% = (I-M) + v2(I-M). If it is much larger the fit must be considered as bad
because either

- the mathematical model is inadequate, or
- the data are faulty, or
- the data errors were underestimated.
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Frequently the last explanation is the correct one: systematic errors are often
underestimated or not recognised at all. One should then rescale all errors as
follows,

2

2
V X X
o, *a; Vig 8x, + 8% V/I—M . (180)(181)

Inadequacy of the mathematical model can mean that an unrecognised resonance is
present or a resonance spin is wrong. ‘

The simplest method to extract resonance parameters from measured data is area
analysis. The fitted quantities (y. in the least-squares formulae of the preceding
sections) are taken to be the areas of transmission dips

- ® -no_y(x,B)
-ng r o]
A= faE(1-eT) = 3 -idx(1—e ),  (182)
(n,x) peaks,
o, %% Tx
Ax‘-‘de(1—e ) z== AT, (183)
Y or ratios of such areas, e.g. the (n,x) self-
A indication ratio _
X ~ - a
-n'c -no, X
JaE e ™ "(1me ) 5 p(nant)-a(n")
o \ - R — = (18L4)
5 [aE(1-779) X Aln)
Fig. 6 o

where the bars denote Doppler broadening, ¥ is the Voigt profile, Eq. 75, and

, T E-E,
o, = (bmx gF—) . I (185)(186)

E=E
o

Ideally all these quantities are measured with the same set-up in the same flux.
A capture measurement, for example, is easily extended to yield transmission

and self-indication data, too, by insertion of a filter sample in front of the
capture sample. One can then measure in alternating cycles filter transmission
(capture sample out), self-indication data (both samples in) and capture yield
(filter sample out). In order to optimise the sample thicknesses and choice of
observables one considers (Refs. 42, 43) the SLBW thin- and thick-sample ex-
pressions that follow from the properties of the Voigt profiles if potential and
multiple scattering is neglected (or subtracted out),

A = mo T/2, A, = nnooFx/2 (no << 1), (187)(188)
A= F/nnco, A = rx/hnco (ng >> 1). (189)(190)
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Fig. 7 - 1Idealised area analysis curves derived under the assumption
that the samples are either very thin or very thick for transmission
areas (TA), capture areas (CA) and scattering areas (SA), and that self-
indication ratios (SIR) were measured with a thick filter and a thin
detector sample, or vice versa. Abscissae and ordinates are calculated
values T'! and T'' in units of the true radiation width T_, on a log-log
scale. Three caSes are shown: strong, intermediate and weak scattering
(r_:r_ =10, 1, 0.1, respectively). The curves on the left were derived
wilh {he correct spin factor - they are indevendent of J. The curves on
the right demonstrate what happens if the spin factor is taken three
times too small - this corresponds to an incorrect compound spin J = 0O

and a correct spin J = 1. A realistic example is shown in Fig. 9
(Ref. k43).
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Similarly one gets for thick filter and thin detector sample

! (n'o >> 1, no << 1). (191)

R_=
x Vnn'co

Equating these theoretical expressions to the measured quantities one sees that,
for given level energy E, and spin factor g, each one defines an equation between
the partial widths of the form n. = yi(rn,P ,Pf,...). The most important case

for non-fissile nuclei, T = rn+r is represgnted by 2-dimensional plots (Ref. 43)
in Fig. 7 . Each equation definel a curve, for the correct g and zero experimental
errors all curves intersect in one point. In practice the intersection is not
perfect but usually much better than that for an incorrect spin, so that the
correct spin is readily recognised. One wants the curves to intersect at angles
approaching 90° so that the parameter pair is well defined. For which choice of
observables this is achieved depends on the ratio Fn/P , see Table 6. Very weak
resonances are difficult to see in transmission data, dven with thick samples.

Table 6: Best Combinations of Observables for Area Analysis if T = I‘n+l"Y

Resonance Type Best Combinations Uncertainties (%)
Grn/rn 6FY/PY
Pn > Py, strong scattering (AY’A)’ (Ry’A) N2 10 - 20
r ~ I‘Y, intermediate " (RY ,A), (Ry,Ay) "5 5 - 10
r. < I'Y, weak " _ (RY,A), (RY,AY) 5-10 10 - 20
r, << ry, very weak " (RY,AY) 5 - 10 2 20

The uncertainties 6I'_ for strong resonances are mainly due to those of multiple-
collision calculatiols while those for weak levels are mostly caused by back-
grounds and statistiecs.

The principal advantage of area analysis is the insensitivity of areas to resolution
broadening, at least as far as the resonance dips or peaks are well separated.

2.7.5 Shape analysis

If adjacent resonances (doublets, triplets etec.) are incompletely resolved
instrumentally and the resolution function is well known shape analysis is superior
to area analysis. The same is true if very many levels must be analysed. In

general shape analysis is more convenient and utilises all the information
contained in the data.

The y; in our least-squares formulae are now the individual data points. There
is nothing in the formalism that restricts one to a single resonance or a single
set of data points. In a single computer run one can adjust all resonance para-
meters within a given energy range by simultaneously fitting all relevant trans-
mission, capture, fission ... data points irrespective of experiment, sample
thickness, instrumental resolution etc. The only condition is that for all n.
the corresponding theoretical values y. and their derivatives y. _ with respect
to the adjusted parameters can be calculated. Of course this islﬁgrmally beyond
hand calculation and one relies heavily on computer codes which in turn have their
own limitations as to data types, number of data points, number of cross section
parameters that can be handled etc. As mentioned already it is best to analyse
all transmission data before one starts fitting yield data.
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The initially employed graph methods for area analysis of neutron resonances
(Refs. 37, 4h) are no longer needed since least-squares computer codes have -
been developped. A widely used area analysis code was written by Atta and Harvey
(Ref. 45) for transmission data analysis. The TACASI code (Ref. 46) for combined
transmission area, capture area and self-indication ratio analysis contains the
necessary Monte Carlo subroutines for simulation of multiple-collision events.
Both these codes employ the "many-level" Breit-Wigner formalism (simple sums
over SLBW resonance terms), Doppler broadening by means of Voigt profiles and
resolution broadening with a Gaussian. The Atta-Harvey code, however, uses the
approximation ¢ <<1 which may cause difficulties with s-wave levels at keV energies.
An area analysis code for scattering data is under development at CBNM Geel
(Ref. 47). As an example TACASI handles simultaneously

< 20 observed transmission areas, capture areas and/or self-indication ratios,

< T resonances, i.e. one main resonance with adjusted I'_ and T'_, plus up
to 6 subresonances with fixed parameters for the caleulatidn of resonance
overlap and sample impurity corrections.

TACASI versions that also handle a single observed quantity and adjust one
parameter, e.g. PY, were developped at KfK (Ref. 48) and CBNM Geel (Ref. L9).

The next generation of codes was developped for shape analysis. Some shape analysis
codes require data reduced to cross section form, the more convenient ones handle
transmission and yield data directly. The following codes fit Doppler—- and
resolution-broadened cross sections:

~ the Reich-Moore code for I and Og developped by Derrien, described in
Ref. 50;

- the very flexible Reich-Moore program ACSAP (Ref. 51) for o ,0

T’cn Y,cf;
- the Adler-Adler program CODILLI (Ref. 52) for o

and Oos restricted to
heavy nucleil.

T

Examples for automatic shape analysis codes for transmission data are

- the Atta-Harvey many-level Breit-Wigner shape code, Ref. 45, restricted to
nonfissile nuclei and cases with ¢c<<1 (below few keV for s—-wave levels);

- The MLBW code SIOB ("seven in one blow", i.e. T transmission runs fitted
simultaneously) suited for heavy non-fissile nuclei (Ref. 53);

- the elaborate and ponderous one-channel Reich-Moore code REFIT (Ref. 54) that
fits up to 20 transmission runs simultaneously by adjustment of up to 100
cross section parameters; suited for heavy as well as for light nuclei;

- the FANAL code (Ref. 36) that was written for light and medium-mass nuclei
below 40O keV. It employs two-channel Reich-Moore formulae without Doppler
broadening for (1 elastic, 1 inelastic) s-wave channels, SLBW formulae for
p-, d-... wave channels, fits 5 runs simultaneously by adjustment of up to
50 parameters and is very fast due to the hybrid cross section representation.

All these codes include Doppler-broadening (numerical for Reich-Moore cross
sections, exception: s-wave levels in FANAL) and resolution broadening.
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Automatic shape analysis programs for yield data are not so numerous yet. The
multiple~-collision yield, usually calculated by Monte Carlo simulation, presents
difficulties in the least-squares formalism because its derivatives are not
normally available. One operational shape code is

- FANAC (Ref. 38). It is written for light and medium-mass nuclei below LOO keV,
employs the same hybrid cross section formalism as FANAL (see above) but
contains, in addition, Monte Carlo subroutines for multiple-collision

simulation. It fits up to 5 experimental runs by adjustment of up to 20 resonance
parameters.,

- The REFIT program (see above) is being extended to include capture shape analysis,
too.

Illustrations for some of these codes are given in Figs. 9-19,

2.8 Miscellaneous useful resonance-theoretical expressions

Setting the cross section derivative with respect to energy equal to zero one
finds expressions for the energies where the extrema of the cross section occur.

Neglecting slow energy dependences (of Xc, Lc’ ¢c) one gets in SLBW approximation
for the maximum

= Ir = 2
E, = E_  + 7 tan ¢, o (E,) = bnxig , (192)(193)
and for the minimum ("window") caused by interference between potential and
resonant scattering

E.=E, --% cot ¢, o (E) = hnkggc(1— Fﬂ), (194)(195)
whence
E, = E, cosz¢c + E_ sin% (196)
I = (E, -~ E_) sin 24> (197)
2 Tn
Fig. 8 % = IHTxcgc T - oc(E+)—°c(E—)' (198)

For light and medium-weight nuclei, for which Doppler and resolution broadening
are often negligible, these relationships are quite useful to determine g _,

i.e. J (Eq. 193), as well as first guesses for E , I' and T_ (Egs. 196-1983
directly from the observed extrema. Note that thé nominal Fesonance energy, E_,
is different from the energy at the peak, E,. The interference dip is the deever
the less absorption one has. For pure elastic scattering (I'=I'_) one gets

o (E_) = 0. In the minima the observed total cross section may therefore be
dominated by other channels (partial waves), other levels and impurities.

Other relationships that can provide starting values for least-squares analysis
are the SLBW area expressions
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Fig. 9 - Area analysis curves from transmission areas, capture areas

and self-indication ratios (TA, CA, SIR) measured for a resonance of

2327h4n with different sample thicknesses. The error ellipse illustrates
the final result of a simultaneous fit with the TACASI code, viz. I'_, T ,
the uncertainties and the correlation (see Ref. L46). yon
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of 93Nb+n. The enhancement around 200 eV is due to multiple scattering:
The low~energy maximum of the self-indication curve is higher than

the high-energy one because of the "window" produced by interference
between potential and resonance scattering. The calculated curves

were obtained with the TACASI code which actually fits the areas

under the histograms but for checking purposes also prints the

shapes in tabular form (Ref. 46).
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Flow diagram of the shape analysis program
ACSAP., Theoretical cross section data are
‘computed from initial guess parameters, then
Doppler and resolution broadened, finally
compared with the input data. After adjusting
the desired parameters the program reiterates
a specified number of times before producing
an output listing and plot of the results
(from Ref. 51),
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Figure 14 - Input function cards for a short ACSAP run. Key words at the first
of each card provide programmability. (from Ref. 51)
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Fig. 17T - Two sets of transmission data on 5uFe and a simultaneous fit obtained with the transmission

shape analysis code FANAL (Ref. 36). Note the very severe level-level interference caused by the un-
usually broad s-wave resonances at 191 and 246 keV. As a consequence the resonance shapes above 120 keV
are quite unlike single-level Breit-Wigner shapes. Nevertheless they are properly described by the
employed Reich-Moore formalism (from Ref. 90).
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Fig. 18 - Two sets of transmission data on 57Fe and a simultaneous fit obtained with the transmission
shape analysis code FANAL (Ref. 36). The interpretation here is complicated by the fact that no less
than three s-wave channels are open, two elastic (J = 0 and J = 1) and one inelastic channel (J = 1).
Additional elastic and especially inelastic scattering data would have been helpful to resolve the

many ambiguities (from Ref. 90).
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levels. The two curves for the low-energy data on
different resolution. (From Ref. LOc)

Most of the resonances seen here are p- and d-wave

Fe correspond to the two data sets taken with slightly
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[aE(o-0 ) = 2n?x2 gr cos 2, (199)

rr
n x

r ’

which do not depend on resolution or Doppler broadening.

252
JeE o on?x2 g (200)

2.8.2 Distant levels

So far we glossed over the problems associated with the infinite number of eigen-
values E.. In practice one knows only a finite number A of them and splits the
R-matrix” or reduced R-matrix in a smooth part R® due to the "distant" levels

outside a given energy range and a resonant part R! due to the levels explicitly
considered,

Ay Y
=R, + R! V=R, + ) “Ae Ael (201)
ce cc cc ce . E,-E
A=1 A
In SLBW approximation the sum contains one term only, in Reich-Moore approximation
EA is to be replaced by E,+4, -iI‘z /2 (see Sect. 2.3.7). In the resonance region
non-resonant, i.e. "direct" t¥ansifions between channels can usually be neglected

and so can off-diagonal elements of R° which represent such transitions. We write
therefore

R

[1—R°L°]CC, = (1—RZCLZ )8 0 = 9 elEc (202).
with Qor = [ -B 106, 05 £, = arg (1-R) 1D) (203) (20k)
r o\-1 —1E, -1.1-1 0, 0%, 0,—1 1
and get [(1-RL°) ]cc, =e C°[(1-q 'Rq '(1-R°L°")L°) ]cc. Torer (205)
g, |
[1-RL°*]CC, = qcc[1-q“'§h"1(1—R°L°)L°’]cc, e °© (206)

Inserting this in the expression ( 17 ) for U we see that all R-matrix equations
are preserved if we redefine as follows,

Y
Ac = . ~1
Yae * o =, affecting R (s Ty s 4y, (A )Au (207)
cc ¢
_nQ 10 "
¢, ¢, +arg(1-R_ L), L (208)
o 0_n0 .02 " -1
YAchYuc > ch(Lc RccchI )auc Al’ (A )Au‘ (209)

We can use level statisties to estimate R° . Denoting length and midpoint of the
interval of explicitly given levels by I and E we have

2 2 T
¥y Ay @ s (E') E+1/2 s (E')
le) A e c ¢
R, =)—=- 7 — = §aB' ———— - _ ¢ aE' —/— , (210)
ce X Ek B A=1 EA E . E'-E E-1/2 E'-E
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where we replaced sums by integrals and introduced the strength function s _, Eq.50.
With the definjtion of the distant-level parameter R (Eq. 51) and the asgumption
that neither Rc nor s, varies significantly over the interval I one gets

o o, = = E-E

Rye = Rc( ) - 2sC(E) ar tanh 172’ (211)
a result which in practice is only needed for neutron channels (cen). Usually
derived from a picket fencemodel (e.g. in Refs. 36, 55) it is seen to be quite
general. It has the great advantage over expansions in powers of E-E with adjustable
coefficients (e.g. Refs, 54, 56) that only two parameters with a clear physical
meaning are involved, R (or R', cf. Eq. 53) and s_ (or S,., c¢f. Eq. 54). Both
are tabulated extensiveiy (e.g? in Ref. 4) or can Se estimated with the optical
model. Only slight adjustment (if any) is usually needed for a very satisfactory
reproduction of potential scattering over very wide energy ranges. As an example
Fig.20 shows R' vs. A as calculated from an optical model iRef. 59) and R' wvalues
for medium-mass nuclei obtained empirically by adjusting R_ (together witfh s_ and
the resonance parameters) in shape fits to transmission dafa in the range 10 to
300 keV (Refs. 57, 58), see also Figs.17,18 ). Since Eq. 211 is valid on the
average but not in cases where untypically weak or strong levels are located just
outside the interval I it is good practice to include such "nearby" levels
explicitly in R! and to use Eq. 211 only for the more distant levels. This means
that the interval I is chosen wider than the interval in which one actually wants
to calculate cross sections.

An example of the "nearby" levels just mentioned are levels with E; < O ("negative"
levels) corresponding to compound states just below the neutron binding energy.
Although .low-energy cross sections are mainly determined by the "positive" levels
their exact description frequently requires one or at most two additional levels
with E; < 0. Let us assume that for a non-fissile target nucleus (I=T_+T_) we
know tﬁe positive levels up to a certain energy and want to determine the para-
meters Eo’ I' , T, for one negative level so that the thermal cross sections are
reproduced., Rt t%ermal energies the P, for &>1 are so small that only s-wave
interaction need be considered. With the usual choice B,=0 the Reich-Moore
collision function for a given s-wave channel is given by
rkn/z
4 ) ——

-2i¢, X Ey-E-il, /2
Uee = € r, /2

An

1-1 ) =73
X EA E erY/Q

(cen). (212)

The resonance parameters for all positive levels and the one negative level are
contained in the sum, and in this way they enter into all cr¢ss section expressions.
The explicit relationship between the sum and the cross sections is obtained if we
solve Eq. 212 for the sum and eliminate U,, by means of

°’C V Occ UC 2
Re Uy = 1-53z; s Im U =t f oo~ GGpz) s (213) (214)
c-¢C c-¢C c-¢C

which follows from Eqs. 14 and 15. The resulting expression can then be specialised
to the thermal energy, E = 25.3 meV, for which ¢ = k R!' = kcac(1—R:) << 1
(cf. Eqs. 53, 208, 211). Furthermore we assume that no resonance is very close
to E which means o _ << LnX%g , E << |E | and I'2_ << E2 for all A. Under these
.y cSc LA, A b\
conditions we get from the real and imaginary part
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where o =g _-a is the capture cross section for channel c¢, and where we
placed fie unﬁnown sum terms on the left-hand sides, the known positive-level terms
together with the other known quantities on the right-hand sides. The sign
ambiguity is due to the fact that the cross sections depend on (Im U__ )2 rather
than Im Uc . In most cases the positive sign can be immediately discarded because
it would make I' /E positive contrary to the assumption E_ < O, If this criterion
fails one choos8s the sign that gives better overall results in the thermal region.

With only two equations for the three unknown quantities E_, I' , T, we can choose
one of the three and then calculate the other two. The fact that radiation widths
do not fluctuate much from level to level suggests to take I'_ as the mean radiation
width obtained from the positive resonances. Note that in Eas. 215 and 216 all
neutron widths must be calculated at the (thermal) energy E, by specialisation

of the general relationship

P, (E) o/ B ValE)
r,(E) = I‘n(lEoi) P,([E )~ TV Tev v (1E_|) (217)
L o L o
(with v, = P,/P_) to 2=0. The energy-independent quantity Fln is the reduced
neutron widtﬁ. ®n many resonance parameter tables it is lis%ed together with, or

instead of, the nominal neutron width rkn(lEA|)'

For target spin I=0 only one elastic s-wave channel (J=1/2) is open, and g, =0,

=g , 0 _ = g_. Otherwise one has to consider both ‘elastic channels (J=I+1/2)

cc o, SX; % . .
separately whieh may be problematic since the twoo , 0 , @ are usually not
. : e . .

known separately but only their sum o, o_, o_. Only in rare ches 1s one negative
level per channel not enough to fit known low-energy cross sections. One can then
replace the left-hand sides of Eqs. 215, 216 by appropriate sums over negative
levels and determine the parameters by a regular shape fit.

3. EVALUATION OF RESONANCE DATA

We shall now briefly discuss some of the problems encountered by the evaluator. He
has to construct complete resonance parameter sets from published resonance para-
meter data and to determine the level-statistical parameters needed for inter-
pretation and prediction of average cross section data in the region of unresolved
resonances,

3.1 Intercomparison of resonance parameter sets

. The following discussion will be restricted to the intercomparison of resonance
parameters of the R-matrix type. It is very rare that different authors use the
same potential-scattering parameters (e.g. nuclear radii) in their resonance fits.
One should therefore put all available resonance parameter information on a common
basis before a detailed comparison and evaluation is started.
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Such a common basis can be established by means of the expressions for level
shifts and partial widths

= . - 0O 02
A Y 5 o) (Bc SC+RCC|LCI ), (218)

r, = ———— (219)
Ac |1_RO Lolz

ce ¢
which follow from Eqs. 64, 207, 209. With a given author's information on his
treatment of potential scattering, e.g. his choice of R' as a function of E, we
can calculate ¢ (ché) at each resonance and compare it%to ¢£(k a ) where a_1is
the nuclear radius to yhich we want to refer all resonance paramefers, defined
e.g. by a_ = 1.k fm A'/3 or (ENDF, Ref. 12) a, = 1.23 tm A'/3 + 0.8 fm. The
difference_between ¢ (ché) and ¢ (kcac) can be formally ascribed to a certain
value of R, i.e. RO, which in turn can be inserted in Eqs. 218, 219. Thus one
gets from %he author 's resonance energies and widths those which correspond to
the adopted a, convention, with the influence of distant levels removed. These
effects are usually negligible at eV energies but can be important in the higher
keV region. :

————————— c

Less frequent is the choice of different boundary parameters by different authors.
Nevertheless we shall treat this problem in some detail because a very simple
method for conversion between the Wigner-Eisenbud (or Reich-Moore) and the
Kapur-Peierls representation can be derived from it.

We consider two choices of the boundary parameters, B and B', and the corresponding
quantities R, L° and R', LO'. Now the collision matrix does not depend on a
particular choice, so that (cf. Eq. 17)

(1-RL°)" 'R = R(1-1°R)”' = (1-r'1e') 'm, (220)
whence (1-R'L°')R = R'(1-1°R) (221)
or R' = (1-8B-R)” R (222)
with §B = B'-B = 1L°-1°' . (223)

The poles and residues of R are the E, and YaeYae!? those of R' will be denoted by
Ei, Yichc" Eq. 222 shows that the poles of f1*&re the solutions of

det [1-6B-R(E})] = o. (224)

The residues can be obtained as follows. From Eq. 222 we get

9 -1

3=(R"-B), (225)

d (n— Ny -
g(R' ) =
or, denoting differentiation with respect to E by a dot,

1 1e

RRRTY = SR RR =63, (226)



Multiplying from both sides with R' = (1+R'$B)R, which follows from Eq. 221, and

y 1 1 t o ] L [ - ~ ] 3
going so close to the pole E; of R' that R' = chch'/(EA E), E = E), we find
= ' = ' ' ' T '
! z . Txe 6Bc Rcc'(EA)GBc' ae! * 2 Ve GBc Tie
c,c c
Yy! 6B
Ac c uc ,2
E(Z e ) ] vi2 6B, (227)

Especially simple expressions are obtained from Eqs. 224 and 227 if the boundary
parameter is changed for one channel only, namely

y2 ,
= uc
1 =68, ] =FT (228)
BT A
Y2
1= v 2(sB2 Z—~—“°—— + 6B ). (229)
c . c
u (E u—EA)

Eq. 228 can easily be solved for E! by iteration (see below) whereupon Eq. 229
yields v, . If GBC does not depend’on energy,as in the Wigner-Eisenbud representation,
6Bc vanishes, of course.

3.2 Conversion from Wigner-Eisenbud to Kanur—Peierls resonance parameters

The results of the precedlng section can be applied to the special case B = S s
B,=L, i.e. 8B = iP , which corresponds to conversion from ngner—Elsenbud
(s-wave or locally defined p-, d-...wave) parameters to Kapur-Peierls parameters
or vice versa (Ref. 48). With the notation introduced in Sect. 2.3 for Kapur-
Peierls parameters (E 8) YA =8y o» 2P Y'Z—G ) we get from Egs. 228 and 229

Ac e
ir, /2
& =E - Ac \ (230)
ir /e
1- _uc__
ix EE)
16, _ ir /2 _,
5 = (Z"—JLf—; ) (231)
u (Eu-EA)
/ r1/2
1/2 _ .
or ch = ‘/rk / )2 chr c/h (232)
1_ _J'L___z.

wq?ﬁe th?/aquare root is taken with the positive 51gn so that for isolated levels

. The term with 6B_ has been omitted since we consider the dependence
o} GBC as parametrlc rather tﬁan functional so that the argument of GBc-ch(E)
coilncides only acc1dentally with the bombarding energy. As a conseguence all
widths (T, are to be calculated at the energy E for which we want to calculate
the Kapur—ﬁeleris parameters (rather than at E ).

Eq. 230 is convenient for iteration starting from €, = E,-il', /2. Convergence is
rapid even with severe level overlap (Ref.48.). Having determined £, with sufficient
accuracy one can caluclate G as a simple sum over levels (Eq. 231). The method
is formally simpler than the Sonversion techniques based on matrix inversion (Ref.1T)
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or on partial-fraction expansion of the determinant in Eq. 224 (Refs. 20,22).
In particular large numbers of resonances are easily dealt with. Computation of
determinants and matrix inversion are replaced by a perturbation approach which
clearly exhibits the influence of interfering levels. Their importance is
essentially proportional to I /(E -E,). In SLBW approximation the sums in Egs.
230 and 231 vanish and one ge%g imﬁedlately, for conversion in all channels,

_ o _ . 1/2 _ ,1/2
€, =E, 1§rxc/2 = E, - il /2, Ge = Mg *

In the two-channel case iteration of Eq. 230 produces the continued-fraction
representation of the tangent,

(233)(23h)

irkc F;éa x/2
& =E -3 U+—5 7 )
Te 1-(x/2)
1-(x/2)°
1_ s 00
ir, r:éz
EA -3 (1 - 172 tan a) (235)
r
Ac
I.)1‘é2r,1/2
where sin 2a = x = He , (A,u = 1,2). (236)

(Eu—iruc/2)+(Ek-iFAc/2 )

This is what one also obtains as solution of175e1yaaracteristic equation (224) in
the diagonalisation of the part (E _E)GA -in, T /2 of the inverse level matrix,
Eq. 22. We shall not go further into dethils °Tt"Should be sufficiently clear by
now that our perturbation approach is most useful for many levels and few channels,
that is for the Reich-Moore formalism. With the Kapur-Peierls choice Lg = 0 for
all particle channels the essential Reich-Moore formulae assume the simple form

) . 1/2.1/2
-i(¢ +o _,) ic.’“c

Uyor = © c ‘e (Gcc' + 7 __Ac Ac' ) (C,C'4EY)9 (237)

A SA—E-erY/z

lG, IT

oy = L Oor = milg, he A ; (238)

oley A IEA—E_iFAY/le

where € G‘l/2

» Gy, are the conversion results for the particle channels (EA-iPAY/E =
EA—iPA/é for relatively isolated levels). '

In this way one can convert Reich-Moore to Kapur-Peierls parameters. The corres-
ponding cross sections can be Doppler broadened by means of the Voigt profiles

(see Sect. 2.4.3), but we stress again that the price for this is heavy: One

must convert parameters for each energy grid point and then calculate complicated
coefficients for the Voigt profiles involving double sums over levels (Egs. 69, 70,
72) which is time-consuming if many levels are involved. Direct numerical broadening
of Reich-Moore cross sections is usually simpler, faster and more accurate.
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3.3 Applied level statistics

It was already mentioned that one of the reasons for parametrisation of resonance
cross section data is the need to determine level-statistical parameters such as
mean level spacings, average widths and strength functions which permit extra-
polation of average cross sections and simulation of cross section fluctuations
in the unresolved-resonance region. As in resonance theory we shall need only
very few formulae from the impressive but often still speculative edifice of the
statistical theory of spectra (Refs. 60, 61).

The reduced width amplitudes ¥y o of Wigner-Eisenbud R-matrix theory are essentially
values of the internal wave function taken at the channel radius a_, as our
little single-particle exercise (Sect. 2.3.3, Eq. 42) showed. They can be ex-
pressed by the overlap between the A-th eigenfunction and the channel wave
function at the channel entrance (r =a_). In the multi-channel (A+1)-nucleon

case this is a (3A+2)-dimensional configuration space integral over the surface
of the interaction sphere. The very complicated integrand oscillates rapidly

so that negative and positive contributions nearly cancel. The integral is thus
almost equal to zero and is positive or negative with presumably equal probabili-
ties depending on the particulars of the A-th eigenstate. Under these circum-—
stances a Gaussian distribution of the e for given ¢ is a reasonable guess.
Omitting the level subscript we write

-x2 Y

p(y,)dy, ='£§ e dx, -® < x = 7;7%7§=< o, (239)
(]

This is the Porter-Thomas hypothesis (Ref. 62) which, with dy? = 2y dy

b
P(Yc)ch = P(Yg)dYg immediately yields the famous Porter-Thomas distribution

- C2
(y2)ay2 = 5 4 a " 0<y = Yo < @ (240)
plyg)dyg = 75 &y Y 2D .
(o4

It applies to reduced neuEronlwidths whenever the resonances are excitable only
via one channel so that [ /<I >= 72/<y§> (e.g. for I=0 or =0, see Table 1), but
also to partial radiation widths for single radiative transitions,not only in
nuclear but also in atomic and molecular resonance spectroscopy. Many observable
widths, however, are sums of single-channel widths, for instance many reduced
neutron widths for I>0 and 2>0, or the total radiation width or fission widths.
If the averages (72) were the same for all v contributing channels one would
get the generalised Porter-Thomas distribution, a y2-distribution with v degrees
of freedom,

(v2)ay2 = 1271 &V y¥/27y 0<ys o < @ (241)
pr YX 2 e Yy Y y_‘é'Gi—)— s
where T'(v/2) is the gamma function and
2 - 2 2y = 2
Yy = chYc ; By = vy (242)(243)

The single-channel Porter-Thomas distribution (v=1) agrees well with observed
distributions of single-channel reduced neutron widths (Ref. 63) and partial
radiation widths (Ref. 64). The general x? distribution is useful for two-channel
reduced neutron widths (v=2, exponential distribution) and, with an effective
number v of channels, also for fission widths (v small) and total radiation widths
(v very large). That v is large for total radiation widths could be expected
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because usually there is a huge number of allowed radiative transitions to
lower-lying compound states, each giving rise to a sum term in Eq. 242. That v
is small for fission widths, however, surprises at first sight. The hundreds of
possible pairs of fission fragments, each with many possible excitations, would
seem to 1mpPly equally many reaction channels or partial fission widths, and a
correspondingly large v.

The puzzle was solved by A, Bohr (Ref. 65). He pointed out that before scission
can occur the compound system must cross the saddle point of the potential-energy
surface (in deformation parameter space) beyond which Coulomb repulsion prevails
over nudlear cohesion. At the saddle point most energy is tied up as deformation
energy, only little being available for other modes of excitation whose spectrum
resembles somewhat the low-lying (collective) states observed for the ground-
state deformation., Energy, angular momentum and parity requirements allow access
to only very few of these transition states. This introduces quite rigid corre-
lations between partial widths for the many different fission fragment channels
in such a way that the fission width can be approximated as a sum of terms, one
for each accessible transition state (or "saddle-point channel"), each term
being gouverned by a single-channel Porter-Thomas distribution (Ref. 66). For
fission, therefore, v is the number of saddle-point channels rather than reaction
channels in the usual sense.

This illustrates that the level-statistical "laws" are nowhere as rigid as the
formal resonance theory discussed in previous sections. They hold mainly for
typical compound levels where all single-particle, collective or other simplicity
has been lost. Reflecting more our ignorance than truly statistical phenomena

they may fail if the states considered are simple and well understood. Thus the
collective transition states of a fissioning nucleus enabled us to modify and,

in fact, to simplify the reaction channel concept. In the single-particle exercise
with square-well complex potential, Sect. 2.3.3, nothing at all was random or
unspecified, and the reduced neutron widths, Egs. 58, turned out to obey &
d-distribution instead of the Porter-Thomas "law".

3.3.2 Vigner's_surmise and Hamiltonian ensemble theory

To find the distribution p(D)dD of nearest-neighbour spacings, D,=E,,,7E,, in
a JII level sequence turned out to be much more difficult than to £ind 'thé width
distributions. Very early Wigner tried a bold guess("Wigner's surmise" , Ref. 67).
He took issue with the exponential distribution tried by others which is obtained
if the probability to find a level in a small energy interval dD is just dD/ {D) ,
independent of its distance D from the preceding level. He asserted that because
of "level repulsion" at least for small D this probability should be proportional
to DAD and assumed tentatively that this is true also for large D so that
D —cD2/2
p(D)dD = exp(—ch'dD')chD = e c
o
Expressing the proportionality constant c by the mean level spacing <D> one can
write the Wigner distribution as

2
p(D)aD = 2¢ * x dx, 0 <x = /D ®, (245)

DdD (2Lk)

Wigner illustrated the level repulsion by pointing to the spacing D=VYH11-H1 )2+hH%
between the eigenvalues of a two-dimensional (real, symmetric)Hamiltonian matrix H
which can be visualised as the distance of a point with coordinates H,,-H,, and

2H,, from the origin. If the H.. are considered as random variables the probability
to:obtain a given D within dD 1% proportional to the two-dimensiocnal area element
2rDAD, at least in a small domain arround the origin in which nonuniformity of

the unknown probability distributions of the qu can be neglected. D=0 is seen

2



- 60 -

10

fm //’—\\"

g
/‘
4

=
Lo
a-tr T

2
|
0 50 100 150 200 250
— A
Fig, 20 - Effective radii obtained for Cr, Fe and Ni isotopes by shape

Tits to transmission data below 300 keV (see Figs. 17 and 18) with the
FANAL code (Ref 36, 57, 58). The broken curve was calculated by Moldauer
(Ref. 91) for a complex spherical potential, the solid curve by Jain

(Ref. 59) for a complex potential with vibrational and rotational coupling.
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(Gaudin, Ref. 69). Broken line: 2x2 matrices (Wigner distribution).
From Ref. 69,
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to be infinitely unlikely, which is related to the fact that two conditions,
H,,=H,, and H12=0, must be fulfilled instead of one as for D#0. This latter
argument is also true for 3-, 4- ... dimensional Hamiltonian matrices, coincidence
of two characteristic values always requiring two conditions instead of one.

A more rigorous theory of statistical ensembles of Hamiltonians was developped
in a brilliant mathematical tour de force by Wigner, Porter, Mehta, Dyson and
others (Refs. 60, 61) in an attempt to establish a kind of statistical thermo-
dynamics of quantum systems. First the so-called Gaussian orthogonal ensemble

was studied which consists of real symmetric Hamiltonian matrices H whose elements
H are uncorrelated and whose density function p(H) is invariant under rotations
in"Hilvert space (so that all representations including the diagonal form are
put on an equal footing). For 2x2 matrices the Wigner distribution was obtained.
For very large matrices Mehta and Gaudin (Refs. 68, 69) found expressions that
are fairly complicated but, as Fig.21 shows,differ only slightly from the 2x2
curve, i.e. Wigner's surmise.

A major difficulty with the Gaussian ensemble is that it leads to a rather un-
realistic level density formula, viz. Wigner's semi-circle law for NxN matrices
with very large N,

_F. 2 -
%% 1—(%7%) for (E-E)2 < I/2
o(E) = (N large) (246)
o otherwise

where E and I are midpoint and length of the energy interval in which the eigen-
values occur. This is quite different from the exponentially rising level densities
obtained for instance from the Fermi gas independent-particle model.

Dyson gave up the hypothesis of statistically independent matrix elements H, and
introduced the circular orthogonal ensembles (Ref. 70). He could show that whitn
these one could reproduce any reasonable energy dependence of the level density p
apparently without changing less global results such as the spacing distribution
obtained with the Gaussian ensembles.

Recently French, Wong and others studied the statistical shell model where not
the elements H, but only those of the residual interaction are considered as
random variableh (cf. Ref. T1). This model, more physical than the Gaussian and
circular orthogonal ensembles, nevertheless confirmed their results for nearest-
neighbor level spacings, whereas p(E) turned out to be Gaussian instead of semi-
ecircular,

Both the orthogonal ensembles and the statistical shell model indicate that nuclear
(or atomic) level sequences have a nearly "crystalline" regularity in the sense
that the familiar staircase diagram (number of levels vs. energy) follows very
closely the practically straight line with slope p(E), deviations by more than one
unit being extremely unlikely (Ref. T72). This implies that adjacent nearest-
neighbour spacings are correlated in such a way that a large spacing is followed
by a short spacing more often than not and vice versa. In fact, for orthogonal
ensembles the expected correlation coefficient is

cov(Dx,Dx+1)

= - 0.27 (2L47)

c(D,,D,..)
ATIA /Var(DA)var(DA+1)

' for large matrices. The exact value (8n-27)/(1171-27)= -0.253 for the simplest case
of 3x3 matrices (Ref. 73) is already a good approximation. Empirical evidence from
long and pure sequences of s-wave neutron resonances supports these theoretical
results (Ref. Th4).
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The Porter-Thomas distribution of single-channel widths, the Wigner distribution
of level spacings and the quasi-crystalline long-range regularity of level
sequences is about all the level statistics we need for applications.

3.3.3 Maximum-likelihood estimation_of ﬁFi)and (D) from perfect samples

Suppose we know all level energies E, and reduced neutron widths I‘2 for a pure

JI level sequence in_a given energy range. What can we infer about Ehe true mean
values {D) and (P ) , and about their ratio, the strength function S (P Y / {D)?
This is the typical Statistical problem of parameter estimation. It was tackled

by Slavinskas and Kennett (Ref. 75) with the maximum-likelihood method. Consider

first the reduced neutron widths which we shall write here simply as T',. The
probability to find T', in dI‘1 I, in 4T eeey I' in dl' . is a product of Porter-
Thomas probabilities Ewe consider here %he single-channel case, v=1, e.g. s—wave
resonances),

N - N N 4r

I p(r,)ar =(2n<r))N/2 exp(-1—- Yy r,) mo_u_

=g DA 2T 321 Mot (248)
u

The value of the true average (I') that leads with greatest probability to the
experimental result obviously maximises the likelihood function L = N, p(rl,). From
dL/3 {TI')> = 0 or, more conveniently, from 3 ln L/3 {I') =0, one finds the maXimum-
likelihood estimator

1 N
(ry =g Iy (249)

This is just the sample average I'. In the language of mathematical statistics T is
a minimal sufficient statistic, i.e. a quantity that can be calculated from the
sample Tys oee Ty contains all information about {I' ) that the sample itself
contains, and has the smallest variance of all possible estimators. It is an
unbiased estimator for {I') because for very large samples it tends towards {TI) .

In order to assign confidence limits we need the probability distribution of the
random variable F This we know already from the discussion of sums of partial
widths to be a x2-distribution with N degrees of freedom (compare Eq. 241),

N\-1 - N/2-1
5) e Y y /

dy, O0<ys= g%?>< o, (250)

p(T)al = r(
Confidence limits y_ and ¥y, can now be assigned for instance at the 68 % confidence
level, in analogy to the standard deviation of a Gaussian distribution. One demands
that y lie with erf(1//2) = 68 % probability within the intervel (y_ ... y+), and

with equal probability below and above

-1 Y- - -

o
N,-1 -y N/2-1 -1 -1
! dy P(2) £ e’y dy = 5 erfc 5. (251)
+
The confidence limits y_, Y, thus defined depend only on the sample size N and
can be found e.g. in tables of x 2-distributions or numerically from Eqs. 251. One
knows now that with 68 % probability y_ < y < y,  and thus

N = N =
EF<<F><§y——I‘. (252)

For very large samples the x? distribution is nearly Gaussian so that

v, ={y) t fvar(y) = g(u =) for N >> 1. (253)



So far_we neglected experimental errors I, of the I', which cause an uncertainty
6T = /L (8T, )%/N of T. They are usually accounted for in sufficient approximation
if the confidence limits are extended so that the squares of the statistical and
experimental errors are added,

Yy TV, t [/var(y) + (8T)2 - Vvar(y)]. (25k)

Slaxinskas and Kennett found maximum-likelihood estimators also for {D) and
{r2)/{D) = S, but we shall not follow their derivation because they neglected
the level~spacing correlations, Eq. 247, cf. Ref. T6. Dyson and Mehta (Ref. T2)
showed that due to the regularity of level sequences the number N of levels in

a given energy interval is already a rather good statistic for the estimation of
the average level density, and that the optimum statistic for the orthogonal
ensemble is

n

I A s (255)

p=—=— ——
(DY I A= 1/2

where I and E are length and midpoint of the energy interval from which the
energy sample comes., This statistic may be considered as a kind of level count
with semicircle weighting. Its variance is

var p =-%(%T)2. (256)

The estimators for (Pz) and 1/ <D> presented so far are not very useful in
practice because they are applicable only to perfect samples from which no levels
are missing. In practice the smallest, but according to the Porter-Thomas
distribution most frequent, widths are always missing. As a consequence all
observed width and especially spacing distributions are badly distorted. It is
therefore best to use the width distribution to estimate (F ) which then permits
estimation of the number of missing levels and thus of (D) Pand S, -

Let us assume that levels with reduced widths T', < =2x (F) are undetectable and
missing from the sample. The distribution of detecfablé widths is then the
truncated Porter-Thomas distribution

-X r
1 e A
p(r,)dr, = dx X <X Z 57y < °,. (257)
A A erfe on 414 ’ ° 2<r>

properly normalised to unity by the complementary error function. Maximising the
corresponding likelihood fung&ion one gets

r, =T. (258)

| 12
|

2 & VX 1
DO mamn ) v L

The term in brackets is clearly a missing-level correction factor §epending‘on (T) .
The equation is readily solved by iteration starting from (I') = I'. This simple
approach works well whenever the detectability threshold Fo can be considered as

constant and is sufficiently well known.

Often Fo varies significantly over the energy range from which the width sample

is taken. The truncation of the Porter-Thomas distribution is then not sharp

but fuzzy. Fuketa and Harvey (Ref. T7) developped a widely used estimation procedure
for ,{I') with an energy dependence of the form I' = aE°, where a is an adjustable
constant and b is determined by the experimental details (b = 2 in many experiments).
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Of course the observed level density reflects the energy dependence of T , and
in fact one can devise a procedure which utilises the level energies E,, ... EN
as well as the reduced widths I',, ... ' and obviates the need to know anything
about the detection threshold and experimental details. This is especially use-
ful if the latter are not known or if the resonance parameter data stem from
many different experiments. Due to the regularity of level sequences and smooth
behaviour of FO(E) (at least for single experiments) the typical level density
staircase curve (number of levels versus energy) fluctuates but little around
a smooth curve which usually can be taken as a parabolsa,

2

N(E) = c, * ¢ E + ¢ B, ‘ (259)

N A N(E) The coefficient§ can be_determined-in a

least-squares fit and will be considered
,l>’ as known. The energy derivative is the
apparent level density,

p(E) = c; + 2¢,E, (260)

which is smaller than the true level
density p = 1/ <D> , whose energy dependence
we shall neglect as well as that of (r),

, — The detectable fraction of levels (on the
) A E| E, £ average) is then
1T )/ u = "D—E) = (c1+2c2E)<D> = erfc/x‘o, (261)
u P

vhere the complementary error function

has the same meaning as in Eq. 255: it is
the integral over the Porter-Thomas
distribution above the detectability

0 E E E threshold x =T /(2 (I‘) ). Ve have.thus
found from ghe ogserved level energies

the energy dependence of Po, at least in

Fig. 22 implicit form and in terms of <F> and (D).

The parabolic fit to the staircese diagram is seen to be equivalent to a linear
decreese of the detectable fraction from u, = u(E,) to u, = u(E2). The probability
that at some unspecified energy within the interval (E, ... E2) the detectable
fraction has the value u is therefore a constant between u, and u, and vanishes
elsewhere. We can thus write the width distribution with fuzzy truncation edge as
P p~dl , '
p(rar, = 22| (262)

[pyp,ar,
(o]

wvhere p.dl'y is the (a priori) Porter-Thomas probability for a reduced width I', in

dr,, and p, the conditional probability that Iy, for unspecified EA’ exceeds %he
de%ection hreshold,

1 if erfe /E; < u,
u1—erfc/;; o
P, = -E;:E;—___ if u, < erfe /x, < u, (263)

0 if erfe /2; 2 u

—t
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with u; = u(E;) = (c +2c,E,) (D) (i=1,2) (26k)
and x, = T / 2{r) ). The denominator in Eq. 262 is equal to the average observable
fraction iR the interval (E; ... By), u=u(E) = [c1+c (E,+E,)] (D) . The likeli-
hood function L = nkp(r ) depends on the (known) fit parameters and the unknown
level-statistical parameters (P) and (D) . Thus its maximum is obtained for

9L/3 {(T') = 0 and 3L/3 (D) = 0, whence

-x
M
(ry (1+dp 2 2% (265)
N X %3 u1—erfcfix ’
1 erfc/;;
_EI______=1
N ) ul—erfcfik * (266)

The primes indicate that the sums contain only terms from the "fuzzy edge" of the

width distribution, for which u, < erfec vX, < u, with u, = (c +2c oF ) (I))
c1+2c2E ) (D) » X, =T /(g {r) ). The equatlons are agaln convenlent for

i%eratlon, startlng e. g. from (T =T,{D)= 1)/N A program based on

this approach (Ref. T8) yielded the results shown in Fig. 23,

So far we restricted the discussion to pure level sequences for a given JII. Some
of the results remain approximately valid also for mixed sequences. Consider,
for instance, the p-wave levels for target spin I=0. Their spin is either J=1/2
or J=3/2, i.e. they belong to two different sequences. It is consistent with
empirical evidence to consider their strength functions as independent of J, so
that S e The spin dependence of the level densities was derived by Bethe
(Ref. %g, cf. also Ref. 80) from the Fermi-Gas model as

Je (7+1)2 J+1/2 (J+1/2)2y
oy = (- 5] - ew(- gz = simn(TGe) em(- M) (26D)
The spin cut-~off factor ¢ has values around 4 so that for small spins one has
« 2J+1. In this approximation and with S = 8, one finds that the gI' values

o% the combined p-wave sequences have the Porter—%homas distribution, the average
being

S
,
'y =————=(p (268)
e 1/2“’3/2

where (D)1 is the average spacing of all p-wave levels and S, the strength
function of each separate sequence, We can therefore employ.essentially the same
estimation procedure as for pure sequences with v=1, with T'_ conveniently replaced
by grn so that the mostly unknown level spins are not needed.

Generalisation to v=2 (exponential distribution) is straightforward.

It was already mentioned that resonance peak areas are sufficient for the calcu-
lation of average cross sections or zero-dilution group constants but not of
Doppler effect or self-shielding. For these one requires spins. Level statisties
can give us a handle to assign unknown spins if the area parameters gl' , gl T /T
are known, at least in the sense that the resulting average spin distr?butlon
over many levels is realistic. Let us consider the typical case that enough in-
formation on s-wave resonance parameters is available to permlt estimation (in-
cluding missing-level correction) of <1D> and S_, and that S S, ... are

.0 o . .
known from analysis of average cross sections and optical-mode c culations. All
required mean level spacings (DJ> can then be found from the s-wave spacing with
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Fig. 23 - Results of statistical resonance analysis for iron isotopes

obtained with the maximum-likelihood code STARA (Ref. T8). The histograms
are observed integr%} width distributions for s-wave levels below LOO keV
{below 200 keV for Fe). The curves are the most likely distributions
and the 68% confidence limits. Note that the curves are no fits to the
histograms but correspond to the solution (Fz) of Egs. 265, 266.
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the help of Eq. 267, and the average neutron widths from (Pn J> =
Vog {D.) 82VE71eV vl(E), where v, _ is the number of channel spins (1 or 2)
compatible with £ and J. We can now calculate the probabilities

Veg,-1 -x_ a3/ _ ey 8
) e “x

Py der ) = T dx, o< x 1 <= (269)

2 gy &l o

with & = 0,1,2,... for an observed value gl_ in d(an). Bayes' theorem (see e.g.
Ref. 41) tells us that we may take the probgbility for a given &J combination
as proportional to p,. if all combinations are equally probable a priori. The

. q s 0] . .
probability for a given spin J is then

; p,s{er,)

T L gtary) e
%,J

where the sum in the denominator is over all & that are compatible with J. Often

one sees immediately that a certain spin is probably correct, the others being

too unlikely. In general one must make a probabilistic choice, for example with

the Monte Carlo technique.

If additional types of resonance areas are known one can utilise this information
also. Let us take, for instance, the capture peak areas 2m2X(E_)%gl' I' /T with

I =T + TI_ (non-fissile target nucleus). From gl and gl T /Fowe ggthF , for
which"an e%pression similar to Eq. 27T holds. If Be kxnow Ind effective ngree
of freedom and the average width for the (n,Y) reaction we can calculate the
probability p J(gI‘ ) and base the spin selection on the joint probabilities

P J(gr )p J(g% ). ﬁnfortunately gl  is often unknown. One must then consider
the probability (for each allowed RJ)

p(tdaz = [ [ ag an p(€) py(n)

¢ in dg (271)

I EL y(_E )2
d d =) (== 271
4 { £ p,(8) pplgp) (2 (271)
where we omitted the subscripts £,J and simplified the notation with £ = el >
n s gFY, g = anFY/F, Py and Py being the y2-distributions for an and gry.

The effective degree of freedom v for a width distribution can again be estimated
with the maximum-likelihood method from a width semple 'y, I',, ... I' if the
average {TI') is sufficiently well known. The likelihood function is maximised

if v is chosen as the solution of

r
v v 1 A
>y - Y=L —L = - 272
¥(3) - 1n 3 =g ; 1n 773 = 1ol - 1n {r) (272)
where y( ) is the logarithmic derivative of the gamma function T'( ) and the bar
denotes the sample average as before (Ref. 62). Curves for the function on the
right-hand side and for the asymptotic variance of the maximum-likelihood

estimate v are given in Ref. 56.

There are situations in applied neutron physics where the resonance structure
of the cross sections is important but unobservable due to finite instrumental
resolution. For instance the average transmission in a given energy (group)
interval can be written as
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() = o) lo={od)y o nlopy, %E-var(o)+ ). (213)

The variance and the higher—order terms are mainly due to the resonances in
the interval. The reduction of raw transmission or yield data to average
cross sections requires thus information on the resonance structure, the
corresponding corrections being especially large for thick samples and for
wildly fluctuating cross sections. Enhanced temperature, i.e. Doppler
broadening, implies less fluctuation, hence less variance, so that average
transmission and self-shielding of yields are reduced, reaction rates in-
creased.

In the region of unresolved resonances (typically above a few keV for heavy,
above a few hundred keV for medium-mass nuclei) these effects must be calcu-
lated from level statistics. One can sample the Wigner distribution to build
up ladders of resonances, then find their widths from the Porter—-Thomas or
other approoriate x? distributions, and finally obtain Doppler-broadened
cross section values at equidistant or randomly chosen energy points along
the ladder. Sorting the results into cross section bins one gets a histogram
representation or tables of the cross section probability distributions
p(cx)dcx, from which one can calculate the needed cross section functionals,
e.g. the average, the variance etc., e.g.

; o -no.
(™) = [ a0 p(0)e™ = Jaop(o;)e i3 (274)
o 1

This is the principle of the so-called probability table method (Ref. 81).

A more direct but somewhat slower method is the generation of "resonance
environments" or "mini-ladders" (Ref. 82, 83) for each energy required in
a Monte Carlo calculation (e.g. simulation of multiple-collision events).

One samples, for each relevant JN level sequence, the distribution of "central
spacings,

p(D)aD = D p_(D)dD, (275)

where p _dD is the Wigner distribution and the extra factor D accounts for the
fact that the probability for a randomly selected energy to fall in a given
energy interval is proportional to the interval size. Then one samples the
(uniformly distributed) actual position of E within the central interval D
which fixes the distance to the nearest two levels. Sampling the (bare)
Wigner distribution one can generate further resonance energies above and
below. Then the widths are sampled from the appropriate x2-distributions,

and the cross section at E is calculated. With a reasonable level-statistical
representation of distant levels {cf. Sect. 2.8.2) two to three levels below
and above are usually enough to yield adequate cross section distributions.
Addition of more distant levels does not change the results significantly, as
experience with the SESH code (Ref. 82). for self-shielding and multiple-
scattering correction of yield data showed (Ref. 83).

It should be noticed that in these Monte Carlo calculations the level spacing
correlations as given by Eq. 247 were always neglected because there seems

to be no simple recipe to produce them. The methods employed in theoretical
studies of level spacings and their correlations, namely diagonalisation of
Hamiltonian matrices belonging to the orthogonal ensemble etc., are by far

too complicated for applied Monte Carlo calculations. The practical importance

of .the correlations is not very clear either, no systematic studies being
available.
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3.3.7 Test statistics for purity of level sequences

The theory of the orthogonal ensemble predicts that the level~density

staircase curve N(E) of a pure sequence deviates very little from a straight
line with slope p=1/ {D) . The mean-square deviation from a best-fit straight
line N(E)=c *+c E in the interval (E1...E2), called the A3 statistic by Dyson
and Mehta, ' '

E
172 -
by =5 | (N(E) - N(E)]?2aE, (276)
21 E1
was shown (Ref. T7) to have the expectation value
b, =1y [1n(emn) + v - 1= - 2] = 1p(10n-0.0687) (277)
3 77 L B TR AL

(y = 0.57T72 ... is Euler's constant) and the variance

1 (kw2 7 1.1690
var(A3) = F [‘E%_ + -2—,:] = —_n_[r—' . (278)

Absence of mixed levels or presence of spurious levels from other sequences
obviously increases A,. One has therefore tried to use A3 as a test statistic
for the purity of levels, see Refs. 84, 86.

An optimum statistic for the presence of spurious or missing levels is,
according to Dyson (see Refs. 84, 85), ’

F, = ) ar cosh EIZE (279)

uFA kA

where p runs through all levels between E.-I/2 and E.+I/2 and I is an
arbitrary fixed interval (for instance 20"times {D) ). Expectation value and
variance are, with n = nI/(2<¢D) ),

<FA> =n-lnn-y+2=n-1nn- 0.65 (280)
var(F,) = 1n n, (281)

if E, is a true member of the sequence. If E, is the energy of a spurious
levei in an otherwise pure sequence one gets

<FA) =n, (282)

so that a spurious or missing level produces, on the average, a peak or a dip
in F, of magnitude v ln n. The catch lies in the words "on the average' (see
Ref.”8k4). It should be stressed that none of these tests permits unambiguous
identification of spurious or missed levels but, as the Columbia group
demonstrated (Refs. 84, 86), by combining all available tests one can purify
almost pure level sequences further, to a degree which is wholly satisfactory
for applied purposes.

4. CONCLUDING REMARKS

We reviewed those aspects of neutron resonance theory, including level
statistics, that are most important for applications in neutron cross section
metrology and nuclear technology. Among the topics which were not treated

are the double-humped fission barrier and its consequences, and resonance-
averaged cross sections. These are treated by J.E. Lynn and P. Moldauer in



_70_

special parts of this course. For other recent developments in the area of

level statistics or rather limitations of it caused by phenomena such as
doorway states, valence nucleon transitions, precompound reactions we refer
the reader to Refs. 87 and 88, We close by restating a few main points:

1. Multi-level cross sections should be calculated from the collision matrix
rather than from explicit cross section expressions. This avoids double
sums over levels that are very time-consuming when many levels are involved.

2. If explicit cross section expressions must be used the total cross
section is the easiest, the elastic-scattering cross section the most
difficult to calculate. The latter is therefore best obtained as difference.

3. The Reich-Moore formalism requires a minimum of real parameters, is
virtually exact and not slower than the other multi-level approximations.

4. The applicability of the Voigt profiles ¢ and x to Doppler broadening of
MLBW or Adler-Adler cross sections should not be overestimated in view
of the necessary preparatory work and the inferior accuracy obtained.
Numerical broadening of Reich-Moore cross sections need not be slower,
on the contrary, and avoids consistency and accuracy problems. Adler-
Adler parametrisation is restricted to relatively small energy intervals,
i.e. to heavy nuclei.

5. Partial cross section (yield) data cannot be snalysed properly without
transmission data of comparable energy resolution and detection power
for narrow levels.

6. Measurers and analysts of resonance data should state the errors as
clearly as possible, with statistical and systematic components separated,
and at least some indication of correlations between deduced resonance
parameters.

7. To state resonance parameters without the corresponding channel radii

and other potential-scattering or distant-level parameters is a cardinal
sin.

8. The Porter-Thomas distribution is the most efficient tool for missing-
level corrections. The Wigner distribution is less important for data
analysis than for generation of artificial (mock) cross sections for
the calculation of resonance effects in the unresolved-resonance region.



- 71 -

References

1. Winter Courses on Nuclear Physics and Reactors, Part I: Nuclear Theory

10.

11.
12.
13.
1k,

15.
16.

17.

18.
19.
20.

21.

22.
23.
2k,
25.

for Applications, Trieste, 16 January - 10 February 1978, to be published

J.J. Schmidt, contribution to Ref. 7t

. CINDA T6/7T, An Index to the Literature on Microscopic Neutron Data,

IAEA Vienna, 1977

S.F. Mughabghadb and D.I. Garber, BNL 325, 3rd ed., vol.I (1973),
vol. II (1976)

. A.M. Lane and R.G. Thomas, Rev. Mod. Phys. 30 (1958) 257
. J.M. Blatt and L.C. Biedenharn, Rev. Mod. Phys. 24 (1952) 258
. U. Fano and G. Racah, Irreducible Tensorial Sets, New York, 1959;

cf., also A de-Shalit and I. Talmi, Nuclear Shell Theory, New York-London,
1963, ch. 15 and Appendix

. L.C. Biedenharn, Report ORNL-1501 (1953)

Wigner and L. Eisenbud, Phys. Rev. 72 (1947) 29,
. Wigner, J. Am, Phys. Soc. 17 (1949) 99

Kapur and R.E. Peierls, Proc. Roy. Soc. (London) A166 (1938) 27T;

Peierls, Proc. Cambridge Phil. Soc. 44 (1947) 2k2
T. Teichmann and E.P. Wigner, Phys. Rev. 87 (1952) 123
M.K. Drake (ed.), Report ENDF 102 (1970)

D.R. Harris, Report LA-4327 (1970)

J. Krebs, G. le Coq, J.P., 1'Hériteau, P. Ribon, Nuclear Data for Reactors,
IAEA Vienna, 1970, p. T89

C.W. Reich and M.S. Moore, Phys. Rev. 111 (1958) 929

Wy HEH
=HEe 9

D.R. Harris, Neutron Cross Sections and Technology, Washington D.C., 1966
(CONF 660303), p. 833

D.B. Adler and F.T. Adler, Proc. Conf. Breeding Economics and Safety

in Large Fast Power Reactors, Argonne, 1963, p. 695;

F.T, Adler and D.B. Adler, Neutron Cross Section Technology, Washlngton D.C.,
1966, vol. II, p. 873;

F.T. Adler and D.B. Adler, Nucl. Data for Reactors, IAEA Vienna, 1970,

p. TTT

A.J.F. Siegert, Phys. Rev. 56 (1939) T50
J. Humblet and L. Rosenfeld, Nucl. Phys. 26 (1961) 529

G. de Saussure and R.B. Perez, Renort ORNL—TM—2599 (1969);
Nucl. Sec. Eng. 52 (1973) k12

G.de Saussure, R.B. Perez, H. Derrien, Nucl. Data for Reactors,
IAEA Vienna, 1970, vol. II, p. 757

M. Segev, Report TNSD-R/462 (1977)

W.E. Lamb, Phys. Rev. 55 (1939) 190

F.H. Frdhner, unpublished

W. Voigt, Sitz-Ber. Bayer. Akad. Wiss. (1912) p. 603



26.
27.
28.
29.

30.
31,

32,
33.
3k,

35.

36.
37.
38.
39.

Lo,

b1,
k2,
L3,
Ly,

b5,
46.
b7,
L8,
k9.
50.

51.

52.
53.

-T2 -

M. Born, Optik, Berlin 1933
D.E. Cullen, C.R. Weisbin, Nucl. Sc. Eng. 60 (1976) 199
F.H. Fréhner, Nucl. Instr. Meth. 49 (1967) 89

L.P. Abagjan, N.O. Bazazjanc, I.I. Bondarenko, M.N. leolaev,
Group Constants, KFK-tr-1k4 (German translatlon)

E.Kiefhaber et al., Report KFK 1572 (1972)

F.G. Perey, Specialist Meeting on Neutron Data of Struetural Materials
for Fast Reactors, Geel, 5-8 Dec. 1977

F.H. Frdhner, Specialist Meeting on Neutron Data of Structural Materials
for Fast Reactors, Geel, 5-8 Dec. 1977

A. Arnaud, C. le Rigoleur, J.P. Marquette, Nuclear Cross Sections and
Technology, NBS Spec. Publ. 425 (1975) vol. II, p». 961

M.C. Moxon, D.B. Gayther, M.G. Sowerby, KFK 2046 (1975) p. 73

B.J. Allen, A.R. de L. Musgrove, R. Taylor, R.L. Macklin,
Specialist Meeting on Neutron Data of Structural Materials for Fast
Reactors, Geel, 5-8 Dec. 1977, to be published

F.H. Fréhner, Report KFK 2129 (1976)
F.H. Frohner and E. Haddad, Nucl. Phys. 71 (1965) 129
F.H. Fréhner, Report KFK 2145 (1978)

M.R. Bhat, R.E., Chrien, I.W. Cole, Neutron Cross Sections and
Technology, Washington D.C. 1966, vol. 1, p. 522

A. Ernst, F.H. Frohner and D. Kompe, Nuclear Data for Reactors,

IAEA Vienna, 1970, vol. I, p. 633;

F.H. Frdhner, Report KFK 2046 (1975) p. 1;

F.H. Frdhner, Nuclear Cross Sections and Technology ,NBS Spec. Publ. k425
(1975), vol. II, p. 929

J. Mathews and R.L. Walker , Mathematical Methods of Physics, New York-
Amsterdam, 1965, p. 365

J.A. Harvey, Neutron Cross Sections and Technology, Washington D.C., 1966,
vol. I, p. 31

F.H. Froéhner, E. Haddad, W.M. Lopez and S.J. Friesenhahn, Neutron Cross
Sections and Technology, Washington D.C., 1966, vol. I, p. 55

D.J. Hughes, J. Nucl. Energy 1 (1955) 237; Progress in Nucl. Energy,
Series I (1959) 1

S.E. Atta and J.A. Harvey, Report ORNL-3205 (1961)
F.H. Frdhner, Report GA-6909 (1966)

E.M. Cornelis, private communication

F.H. Frohner, to be published

G. Rohr, private communication

H. Derrien, J. Blons, A. Michaudon, Nucl. Data for Reactors,
IAEA Vienna, 1970, vol. I, p. U481

N.H. Marshall, J.W. Codding , 0.D. Simpson, J.R. Smith, Neutron Cross
Sections and Technology, Knoxville, 1971, vol. I, p. 35k

D.B. Adler and F.T. Adler, Report CO00-1546-3 (1966)

G. de Saussure, private communication



5k,

55.
56.

57.

58.

59.
60.

61.
62.
63.
4.

65.
66.
67.

68.
69.
0.
1.

T2,
T3.
Th.

75.
76.

1T.
78.
79.
80.
81.
82.
83.

_73_

M.C. Moxon, Proc.SPecialist Meeting on Neutron Data of Structural
Materials for Fast Reactors, Geel, Dec. 1977 (to ve published)

G. de Saussure, D.K. Olsen, R.B. Perez, Nucl. Sci. Eng. 61 (1976) 496
J.E. Lynn, Neutron Resonance Reactions, Oxford, 1968, p. 278

H. Beer and R.R. Spencer, Nucl. Phys. A240 (1975) 29

H. Beer, Li Dy Hong, F. Kdppeler, Report KFK 2337 (1976)

A.P, Jain, Nucl. Phys. 50 (196k4) 157

C.E. Porter (ed.), Statistical Theories of Spectra: Fluctuations,
New York-London, 1965 (contains all important papers on level statistics

up to 196k4)

J.B. Garg (ed.), Statistical Properties of Nuclei, New York-London, 1972
C.E. Porter and R.G. Thomas, Phys. Rev. 104 (1956) 483 (reprinted in Ref.
J.D. Garrison, Ann. Phys. 30 (1964) 269

H.E. Jackson, J. Julien, C. Samour, A. Block, C. Lopata, J. Morgenstern,
Phys. Rev. Letters 17 (1966) 656

A. Bohr, Proc. Conf. on Peaceful Uses of Atomic Energy, Geneva, 1955,
vol. 2, p. 151

J.E. Lynn, Neutron Resonance Reactions, Oxford, 1968, p. 377, see also
contribution to this course :

E.P. Wigner, Conf. on Neutron Physics by Time-of-Flight, Gatlinburg,
Tennessee, 1956, Report ORNL-2309 (1957) p. 59 (reprinted in Ref. 60)

M.L. Mehta, Nucl. Phys. 18 (1960) 395 (reprinted in Ref. 60)
M. Gaudin, Nucl. Phys. 25 (1961) LU47 (reprinted in Ref. 60)
F.J. Dyson, J. Math. Phys. 3 (1962) 140 (reprinted in Ref. 60)

P.A. Mello, J. Flores, T.A. Brody, J.B. French, 5.5.M. Wong,
Proc. Int. Conf. Interactions of Neutrons with Nuclei, Lowell, 1976,
vol. I, p. 496

F.J. Dyson and M.L. Mehta, J. Math. Phys. 4 (1963) 701 (reprinted in Ref.
C.E. Porter, Nucl. Phys. 40 (1963) 167 (reprinted in Ref. 60)

H.I. Liou, H,S. Camarda, S. Wynchank, M. Slagowitz, G. Hacken, F. Rahn,
J. Rainwater, Phys. Rev. C5 (1972) 9Tk

D.D. Slavinskas and Kennett, Nucl. Phys. 85 (1966) 6h1

Kh, Maletski, L.B. Pikelner, I.M. Salamatin, E.I. Sharapov,
Report JINR-P3-Lu84 (1969)

T. Fuketa and J.A. Harvey, Nucl. Instr. Meth. 33 (1965) 107
F.H. Frdhner, program STARA, to be published

H.A. Bethe, Rev. Mod. Phys. 9 (1937) 69

A. Gilbert and A. G. W. Cameron, Can. J. Physics 43 (1965) 14ké
L.B. Levitt, Nucl. Sci. Eng. 49 (1972) k50

F.H. Frdhner, Report GA-8380 (1968)

F.H. Frohner, Report GA-8072 (1967) and
F.H. Fréhner, Nucl. Data for Reactors, IAEA Vienna, 1970, vol. I., p. 197

60)

60)



8L,
85.
86.

87.

88.
89.

90.
91.

- Th -

H.I. Liou, H.S. Camarda, F. Rahn, Phys. Rev, C5 (1972) 1002
M.L. Mehta, Statistical Properties of Nuclei, New York-London, 1972, p. 179

H. Camarda, H.I. Liou, F. Rahn, G. Hacken, M. Slagowitz, W.¥W. Havens, Jr.,
J. Rainwater, Statistical Properties of Nuclei, New- York-London, 1972, p. 205

J.A. Bird, J.W. Boldeman, B.J. Allen, A.R. de L. Musgrove, M.J. Kenny,
Interaction of Neutrons with Nuclei, Lowell, 1976, vol. I, p. T6

A.M, Lane, Interaction of Neutrons with Nuclei, Lowell, 1976, vol. I. p. 525

E.G. Silver, G. de Saussure, R.B. Perez, R.W. Ingle,
Neutron Cross Sections and Technology, Knoxville, 1971, vol. 2, p. 728

H. Beer and R.R. Spencer, Report KFK 2063 (197kL)
P.A. Moldauer, Kucl. Phys. L7(1963)65






