KfK 2588 UF Oktober 1978

Quantitative Beschreibung von Adsorptionsgleichgewichten mit Aluminiumoxid auf Basis einer Überlagerung von zwei Langmuir-Adsorptionsisothermen

S. H. Eberle, R. Klopp, S. Anwar Institut für Radiochemie

Kernforschungszentrum Karlsruhe

KERNFORSCHUNGSZENTRUM KARLSRUHE GMBH

Für diesen Bericht behalten wir uns alle Rechte vor

Als Manuskript vervielfältigt

KERNFORSCHUNGSZENTRUM KARLSRUHE Institut für Radiochemie

KfK 2588 UF

Quantitative Beschreibung von Adsorptionsgleichgewichten mit Aluminiumoxid auf Basis einer Überlagerung von zwei Langmuir-Adsorptionsisothermen

S.H. Eberle, R. Klopp, S. Anwar

Kernforschungszentrum Karlsruhe GmbH, Karlsruhe

.

.

Inhalt

		Seite
<u>0. Zusa</u>	ammenfassung	1
<u>1. Einl</u>	eitung	4
2. Mode von	ellrechnungen für die Kombination zwei Langmuiradsorptionsvorgängen	6
2.1	Zwei unabhängige additive Adsorptions- reaktionen (ZUA-Modell)	6
2.2	Sukzessive bimolekulare Adsorptions- reaktionen (SBA-Modell)	9
2.3	Diskussion zur Modellrechnung	11
3. Anwe Isot	ndung der Modellansätze auf gemessenen hermen	11
3.1	Phosphat	11
3.2	Bernsteinsäure	12
3.3	Essigsäure	13
3.4	Diskussion der Anpassungsrechnung	15
<u>4.</u> Ver	gleichsrechnung mit der BET-Gleichung	17
5. Ein der pun	fache graphisch-rechnerische Berechnung Konstanten nach dem ZUA-Modell (Drei- ktauswertung)	18
5.1	Ableitung der Beziehungen für die graphisch- rechnerische Dreipunktauswertung	18
5.2	Dreipunktauswertung der Phosphatadsorptions- messungen	20
<u>6. Tab</u>	<u>ellen</u>	22
<u>7. Pro</u>	grammlisten	33

Zusammenfassung

Es wird gezeigt, daß das weder der Freundlich- noch der Langmuirgleichung entsprechende Gleichgewicht der Adsorption von Phosphat an Aluminiumoxid sich durch einen mathematischen Ansatz beschreiben läßt, der von einer Linearkombination zweier unabhängiger Adsorptionsvorgänge ausgeht. Die Gleichung für das Adsorptionsgleichgewicht lautet:

 $Q = A1 \cdot \frac{C}{K1 + C} + A2 \cdot \frac{C}{K2 + C}$

- 2 -

Sie liefert insbesondere ein gerades, flaches Mittelstück im lgQ/lgC-Diagramm (Freundlichisotherme in begrenztem Intervall), das vielfach bei Aluminiumoxid beobachtet wurde. Ferner ergibt sie einen sehr guten Angleich an eine stufenförmige Isotherme, wie am Beispiel der Bernsteinsäure und Essigsäure gezeigt wird. Die Konstanten können, wenn die Grenzbeladung QO = Al + A2 experimentell oder graphisch ermittelt wurde, ohne großen Rechenaufwand aus den Messdaten berechnet werden.

QUANTITATIVE DESCRIPTION OF ADSORPTION EQUILIBRIA OF ALUMINIUM OXIDE BY TWO OVERLAPPING LANGMUIR ADSORPTION ISOTHERMES

Summary

The isotherme of the adsorption of phosphate onto aluminium oxide, that meet neither the Langmuir nor the Freundlich isotherme, can be described mathematically on the basis of a linear combination of two independant adsorption prcesses. The equation of the adsorption equilibrium is

$$Q = A1 \cdot \frac{C}{K1 + C} + A2 \cdot \frac{C}{K2 + C}$$

and yields especially a straight center part in the lgQ/lgC-diagramm (Freundlich isotherme in a certain intervall), that is found frequently

with Aluminium \mathbf{a} xide. Further the equation meets very well stepstraped isotherms, as is shown for succinic acid and acetic acid. The constants of the above given two term equation may be calculated easily from the data points, if the limiting load QO = Al+A2 can be determined experimentally or by graphical extrapolation.

Einleitung

Das Gleichgewicht der Adsorption aus wässriger Lösung an Aluminiumoxid ist bisher durch die bekannten einfachen Isothermengleichungen beschrieben worden, z.B. durch die Freundlichgleichung bei organischen Säuren (Eberle et al., 1) und Phosphat (Winkler et al., 2, Gangoli et al., 3) und durch die Langmuirgleichung bei Vanillinsäure (Rohmann, 4; Martin, 5), Azofarbstoffen (Giles et al., 6) und Phosphat (Neufeld et al., 7). Die Adsorption an Aktivkohle wird zumeist mit der Freundlichgleichung beschrieben (Kühn, Sontheimer, 8).

Als Grundlage für die Aufklärung des Mechanismus der Adsorption an Aluminiumoxid haben wir Messungen mit Phosphat, Chromat, Essigsäure und Bernsteinsäure über einen möglichst großen Bereich der Restkonzentration ausgeführt und festgestellt, daß bei jedem dieser Adsorptive die Isothermen auch nicht annähernd der Freundlich- oder Langmuirgleichung entsprechen. Ahnliche Befunde sind von anderen Autoren bei der Adsorption von Sulfonsäuren (Giles et al., 6) und Phosphat (De, 11) an Aluminiumoxid, von Phosphat an Kaolin (Muljadi et al., 12) und von Farbstoffen an Graphit (Galbraith et al., 10) gemacht worden. Das hat uns veranlaßt, zu prüfen, mit welcher Modellvorstellung über das Adsorptionsgleichgewicht, d.h. mit welcher Isothermengleichung die Messwerte übereinstimmen. folgende Die gemessenen Isothermen weisen übereinstimmend/charakteristische Form auf: bei sehr niedriger Restkonzentration "C" steigt die Beladung "Q"⁺⁾ mit C stark an, die rechnerische Auswertung zeigt, daß die Langmuirgleichung gilt (Bereich I), bei mittlerer Restkonzentration ändert sich Q wenig mit C, es gilt die Freundlichgleichung (Bereich II), bei hoher Restkonzentration steigt Q wieder stärker an (Bereich III) und schließlich wird eine Sättigungsbeladung erreicht (Bereich IV). Im lgQ/lgC-Diagramm ergibt der Freundlich-Bereich ein gerades "Mittelstück", dessen Steigung beim System Phosphat/Wasser/Aluminiumoxid 0,2 beträgt (Abbildung 1).

Die Isotherme läßt deutlich die Bereiche I, II und IV erkennen. Bei Bernsteinsäure andererseits schließt sich an ein gerades

⁺⁾ Um im Text und in den Rechenprogrammen die gleichen Symbole benutzen zu können, werden für die Formelzeichen nur Großbuchstaben verwendet, Restkonzentration C, Beladung Q, Grenzbeladung A, Konstanten K.

Mittelstück ein Isothermenabschnitt mit wieder größerer Steigung an (Bereich III), die Sättigungsbeladung wird jedoch nicht erreicht.

Wir haben zunächst versucht, die von uns untersuchten Adsorptionsgleichgewichte durch eine modifizierte Langmuirgleichung

$$Q = A \cdot \frac{C^R}{K + C^R}$$

quantitativ zu beschreiben, konnten allerdings keinen guten Angleich an die Messwerte erreichen.

Im folgenden wird gezeigt, daß sich die von uns festgestellte Isothermenform als eine Überlagerung von zwei Langmuirisothermen quantitativ beschreiben läßt. Das entspricht der Hypothese, daß zwei Adsorptionsreaktionen zum Gesamteffekt beitragen, wofür es folgende Alternativen gibt:

- die Adsorptionsreaktionen sind voneinander unabhängig und additiv, wie es z.B. der Fall ist, wenn zwei verschiedenartige Adsorptionsstellen im Adsorbens vorliegen,
- die Adsorptionsreaktionen sind sukzessiv miteinander gekoppelt, wie es z.B. der Fall ist, wenn eine Adsorptionsstelle alternativ ein oder, mit geringerer Affinität, zwei Adsorptivmoleküle binden kann.

Es wird zunächst geprüft, ob diese Ansätze zu einem annähernd geraden Mittelstück der Beladungskurve (= berechnete Isotherme) im lgQ/lgC-Diagramm führen. Dann wird gezeigt, inwieweit sich die experimentellen Daten der Adsorption von Phosphat, Essigsäure und Bernsteinsäure an Aktivtonerde damit beschreiben lassen. Zum Vergleich sind Auswertungen mit der BET-Gleichung angegeben, welche eine schlechtere und systematisch falsche Anpassung liefert.

2. Modellrechnungen für die Kombination von zwei Langmuiradsorptionsreaktionen

2.1 <u>Zwei unabhängige additive Adsorptionsreaktionen (ZUA-Modell)</u> Für die Beladung gilt die Beziehung:

(1) Q = A1
$$\cdot \frac{C}{K1 + C} + A2 \cdot \frac{C}{K2 + C}$$

Darin sind A1 und A2 die Grenzbeladungen der beiden Reaktionen, K1 und K2 die entsprechenden Langmuirkonstanten. Q ist die Beladung des Adsorbens und C die Konzentration des Adsorptivs in der Lösung im Gleichgewicht.

Die Beladungskurve wurde mit folgenden Zahlenwerten für die Konstanten berechnet:

In dieser Größenordnung liegen die Konstanten für die Adsorption von Phosphat an Aluminiumoxid, wenn C in mMol/l und Q in mMol/kg ausgedrückt werden.

Die den beiden Modellansätzen entsprechenden Gleichungen wurden für die Rechenanlage des KfK in APL programmiert. Die Programme sind in Teil 7 aufgelistet und erläutert (Wertetabelle 1 in Teil 6).

Eine einfache Langmuiradsorption ergibt bekanntlich im lgQ/lgC-Diagramm eine Isotherme mit einem linear ansteigenden Ast (lgQ = lgA/K + lgC) bei niederer Adsorptivkonzentration und einen abszissenparallelen Ast (lgQ = lgA) bei hoher Konzentration.

Das Erscheinungsbild der Beladungskurven für die additive Adsorption mit A1 = A2 (Abbildung 2) ist verschieden je nach dem Verhältnis der Konstanten K1 und K2:

 a) K1 = K2
 Gleiche Form wie bei einer einfachen Langmuiradsorption, da sich Gleichung 1 zu
 Q = (A1+A2)•C/(K1+C) vereinfacht.

b) $K1 = 0, 1 \cdot K2$

Visuell keine grundsätzliche Verschiedenheit vom Fall der einfachen Langmuiradsorption. Trägt man 1/Q gegen 1/C auf, so entstehen nach oben konvexe Kurven, die in eine Gerade auslaufen. Daran kann man diesen Fall von dem der einfachen Langmuiradsorption unterscheiden.

c) $K1 = 0,01 \cdot K2$

ImlgQ/lgC-Diagramm konnen drei Kurvenstücke
unterschieden werden:

lgC <-3.... Gerade, tgα = 1
lgC -1,5 bis +0,5: sehr flaches, nahezu
gerades Mittelstück
lgC > 1..... Abszissenparallele,
0 = A1+A2

d) $K1 = 0,001 \cdot K2$

Stufenkurve, wobei die erste Stufe bei Q≈A1 liegt. Auch hier tritt ein flaches, annähernd gerades Kurvenstück auf, an das sich nach niederer Konzentration hin ein noch flacheres anschließt (die "Stufe").

Bei einem Verhältnis der Langmuirkonstanten von 1:100 tritt also das bei den Phosphatisothermen beobachtete flache, gerade Mittelstück auf. Ein Diagramm größeren Formates läßt allerdings erkennen, daß es sich um eine ganz schwach ausgeprägte Stufenkurve handelt. Die Abweichung vom geraden Verlauf ist jedoch so klein, daß sie experimentell kaum nachzuweisen wäre (maximal 1 %). Eine Ausgleichsrechnung mit den Daten der Tabelle 1 im Konzentrationsbereich C = 0,03 bis C = 3,8 (Tabelle 2) ergab für 8 äquidistante Punkte die Geradenkonstanten ($lgQ = a + b \cdot lgC$):

a = 2,865
$$\pm$$
 0,004
b = 0,171 \pm 0,005 (= tg_{α})
R = 0,996 (Bestimmtheitsmaß)

Die Übereinstimmung mit einer Geraden ist in dem betrachteten Intervall also sehr gut.

Wie Abbildung 3 zeigt, ergeben sich auch mit A1 \neq A2 annähernd gerade Mittelstücke im lgQ/lgC-Diagramm, jedoch mit jeweils verschiedener Steilheit.

Der mathematische Ansatz des ZUA-Modells führt also zu Beladungskurven, die den experimentell erhaltenen Nicht-Langmuirisothermen zumindest optisch gleichen. Sie weisen insbesondere einen annähernd geraden Mittelteil auf, dessen Steigung vom Verhältnis A1:A2 abhängt und zwischen 0 und 1 liegen kann.

2.2 Sukzessive bimolekulare Adsorptionsreaktion (SBA-Modell)

Hierbei wird angenommen, daß jede aktive Stelle auf dem Adsorbens ein oder zwei Adsorptivmoleküle zu binden vermag. Die "Grenzbeladung" für die bimolekulare Belegung ist dann jeweils gleich der aktuellen monomolekularen Beladung, d.h. A2 = Q1:

$$Q1 = A1 \cdot \frac{C}{K1 + C}$$

$$Q2 = Q1 \cdot \frac{C}{K2 + C}$$

$$Q = A1 \cdot \frac{C}{K1 + C} \cdot \left[1 + \frac{C}{K2 + C}\right]$$

Abbildung 4 zeigt Beladungskurven, gerechnet mit der gleichen Konstanten wie beim ZUA-Modellansatz (APL-Programm FL2S, s. Teil 6). Sie bieten visuell das gleiche Bild, es tritt also ebenfalls das flache gerade Mittelstück im lgQ/lgC-Diagramm auf, und zwar bei derselben Kombination von K1 und K2. Der Vergleich der Zahlenwerte für die beiden hier untersuchten Modellansätze (Tabelle 1 und Tabelle 3) ergibt, daß die Beladung im Fall der sukzessiven bimolekularen Adsorptionsreaktion stets niedriger liegt. Die Differenz ist jedoch nur bei K1< Q_1 1·K2 erheblich, die Beladungskurven für K1> 0,01·K2 decken sich bei dem Format der Abbildungen 2 und 4 völlig.

<u>ABBILDUNG 4</u> Adsorptionsreaktion, die der Langmuirgleichung gehorcht.

Daß die beiden Modellansätze gleiche Form der Beladungskurve ergeben, gilt nur für den Spezialfall A1 = A2. Die einer verschieden großen "partiellen Grenzbeladung" (A1/A2) des ZUA-Modells entsprechenden Kurven lassen sich mit Gleichung 2 nicht darstellen. Bei dem SBA-Modellansatz tritt daher das quasi-gerade Mittelstück der 1gQ/1gC-Beladungskurve nur mit einem kleinen Bereich der Steigung auf und Isothermen anderer Steigung können damit nicht ausreichend beschrieben werden.

Wenn man in dem mathematischen Ansatz für die sukzessive bimolekulare Adsorptionsreaktion den zweiten Summanden mit einem Faktor A2 multipliziert, erhält man die Gleichung

$$(3) \quad Q = A1 \cdot \frac{C}{K1 + C} \cdot \left[1 + A2 \cdot \frac{C}{K2 + C}\right]$$

Für diese gilt, wie Abbildung 5 zeigt, die genannte Einschränkung nicht mehr. Man erhält bei entsprechend gewähltem A2 Beladungskurven, die mit denen für die additive Adsorptionsreaktion fast deckungsgleich sind.

Ein derartiger Faktor ist nicht nur als mathematische Hilfskonstruktion anzusehen. Man kann ihn mit der Annahme erklären, daß nur ein Teil der Adsorptionsstellen in der Lage ist, zwei Moleküle zu binden. Das führt dann zu diesem Faktor, der den <u>Anteil</u> der betreffenden Stellen angibt. Für ein A2 > 1, das steile gerade Mittelstücke ergibt, ist allerdings diese Interpretation nicht zutreffend, insoweit fehlt der Gleichung 3 die theoretische Basis.

2.3 Diskussion zur Modellrechnung

Die beiden Modellansätze liefern Beladungskurven, die alle Charakteristika aufweisen, welche im Fall der Phosphatadsorption gefunden wurden:

- Grenzbeladung bei hoher Konzentration in der Lösung
- flaches, annähernd gerades Mittelstück der 1gQ/1gC-Kurve
- starker Abfall der Beladung bei sehr niedriger Konzentration in der Lösung.

Je nach Kombination der Konstanten A1 und A2 (partielle Grenzbeladungen) hat das Mittelstück verschiedene Steigung bzw. verschieden stark ausgeprägte Stufenkurvenform, sodaß auch in dieser Beziehung den experimentellen Befunden entsprochen ist.

Bei den Modellansätzen sind im Prinzip zur mathematischen Beschreibung experimenteller Isothermen gleich gut geeignet. Jedoch deckt das Modell "zwei additive Adsorptionsreaktionen" einen größeren Bereich der experimentell beobachteten Isothermenformen ab, wenn man nur physikalischchemisch plausible Konstanten zuläßt.

3. Anwendung der Modellansätze auf gemessenen Isothermen

Zur Überprüfung der Modellansätze wurde untersucht, wie gut die Kurvenanpassung an drei über einen großen Konzentrationsbereich gemessenen Isothermen ist. Die Ausgleichsrechnung zur Ermittlung der "besten" Konstanten aus den Messwerten erfolgt mit den in Teil 7 beschriebenen Rechenprogrammen FL2A3 und FL2S3. Darin wird das Bibliotheksunterprogramm NONLIN des APL-SV-Systems des KfK-Rechenzentrums verwendet.

3.1 Phosphat

Die Phosphatadsorption ergibt eine Isotherme mit einem scheinbar geraden Mittelstück, also dem Typ, der sich mit den Gleichungen von Freundlich und Langmuir nicht beschreiben läßt.

Je 100 ml Phosphatlösung von pH 4,5 und 0,5 g Aluminiumoxid M90S wurden auf einer Maschine geschüttelt. Nach 48 h wurde mit verdünnter Salzsäure erstmals der pH auf 5,6 nachgestellt. Diese Konditionierung wurde jeweils nach 24 h wiederholt, bis ein konstanter End-pH von 5,6 \pm 0,2 erreicht war. Die Phosphatbestimmung erfolgte nach dem Vanadat-Molybdatverfahren, wobei die Extinktion bei 5 Wellenlängen gemessen wird und die Einzelergebnisse gemittelt werden (15,16).

Als Maß für die Güte der Anpassung an das Modell dienen die Standardfehler der Konstanten und der relative Standfehler $\sigma(QB/Q)$, wobei Q die gemessene und QB die berechnete Beladung ist.

	ZUA-Modell	SBA-Modell
A1	325 ± 7	325 ± 6
K1	0, 0034 ± 0,0003	0,0034 ± 0,0003
A2	127 ± 14	0,39 ± 0,04
K2	3,6 ± 1,4	3,6 ± 1,2
Sigma QB/Q	2,7 %	2,5 %

Die Angleichsrechnung ergab (EDV-Protokoll Tab. 4,5):

(A1,A2,K1,K2 in mMol/kg bzw. mMol/l)

Die Anpassung ist für beide Modellansätze gleich gut, man erhält fast identische Werte für die Konstanten. Dabei ist zu beachten, daß A2 beim SBA-Modell dem Quotienten A2:A1 beim ZUA-Modell entspricht.

Die Güte der Anpassung an die Messwerte ist aus Abbildung 6 zu erkennen. Insbesondere zeigen sich keine systematischen Abweichungen zwischen den Messwerten und der mit den gefundenen Konstanten berechneten Beladungskurve. Wenn aufeinanderfolgende Messpunkte systematisch unter oder über der berechneten Kurve liegen, bedeutet das meistens, daß das Modell nur näherungsweise zutrifft. Das wird häufig nicht beachtet.

Der relative Standardfehler der Beladung $\sigma(QB/Q)$ ist mit 0,025 (= 2,5 %) kleiner als der vermutliche Fehler der Einzelmessung. Auch das beweist, daß beide Modellansätze mit den Messdaten im mathematischen Sinn übereinstimmen.

3.2 Bernsteinsäure

Bernsteinsäure ergibt eine besonders deutlich ausgeprägte Stufenkurve (Abbildung 7) und wurde deshalb in diese Untersuchung einbezogen.

Ansätze von 100 ml Bernsteinsäurelösung in bidestilliertem Wasser + 2,5 g Aluminiumoxid M90N wurden mit einem auf pH 4,5 ± 0,1 eingestellten pH-Statem verbunden und in einem auf 25 ^OC eingestellten Wasserbad 6 h geschüttelt. Messung der Konzentration der Lösung über den DOC mit Beckmann-Gerät. Die Beladung bei hoher Restkonzentration wurde direkt durch Verbrennungsanalyse des getrockneten Oxids im Ströhlein-Coulometer ermittelt.

ABBILDUNG 6 Adsorption von Phosphat an Aluminiumoxid bei pH 5,6, Messwerte und nach dem Modellansatz ZUA berechnete Beladungskurve

Die Ergebnisse der Ausgleichsrechnung (EDV-Ausdruck, Tabelle 6 und 7) sind:

	ZUA-Modell	SBA-Modell	
A1	149 <u>+</u> 3	149 <u>+</u> 3	
К1	0,077 <u>+</u> 0,01	0,077 <u>+</u> 0,01	
A2	222 <u>+</u> 15	1,48 <u>+</u> 0,08	
K2	147 <u>+</u> 24	147 <u>+</u> 21	
Sigma Q	3,2 %	3,2 %	

(A1,A2,K1,K2 in mMol/kg bzw. mMol/l)

Standardfehler und der Vergleich der Messwerte und der berechneten Kurve in Abbildung 7 zeigen, daß beide Modellansätze auch die stufenförmige Isotherme sehr gut beschreiben.

3.3 Essigsäure

Essigsäure gibt eine Isotherme, die bis zu einer Restkonzentration von ca. 25 mMol/l sehr gut der Langmuirgleichung entspricht. Darüber jedoch steigt die Beladung scheinbar linear an, statt sichtbar einem Endwert zuzustreben.

In der Literatur wird verschiedentlich die Ansicht geäußert, daß eine derartige Isotherme auf zwei verschiedenartigen Adsorptionsreaktionen beruht. Wir vermuteten anfänglich, daß die

<u>ABBILDUNG 7</u> Adsorption von Bernsteinsäure an Aluminiumoxid bei pH 4,5, Messwerte und nach dem Modellansatz ZUA berechnete Beladungskurve

zweite Reaktion eine Art Oberflächenfällung eines schwerlöslichen Salzes sein könnte. Dafür wäre die beobachtete Proportionalität zur Restkonzentration verständlich.

Die Messungen erfolgten bei pH 4,6 \pm 0,1, wie bei Bernsteinsäure beschrieben.

Die Ergebnisse der Ausgleichsrechnung (EDV-Ausdruck, Tabelle 8 und 9) sind:

	ZUA-Modell	SBA-Mode11
A1	208 <u>+</u> 2	209 <u>+</u> 2
K1	2,43 <u>+</u> 0,009	2,43 <u>+</u> 0,08
A2	496 <u>+</u> 30	2,36 <u>+</u> 0,11
К2	1110 <u>+</u> 120	1110 <u>+</u> 111
Sigma Q	1,6 %	1,6 %

(A1,A2,K1,K2 in mMol/kg bzw. mMol/l)

Für dieses Beispiel ist mit beiden Modellen die Anpassung besonders gut, nahezu alle Messwerte liegen direkt auf der berechneten Beladungskurve (Abbildung 8). Der Standardfehler der Beladung ist mit 1,6 % weit kleiner als die auf etwa 5 % zu schätzende Messgenauigkeit.

Es ist offenbar nicht erforderlich, zur Erklärung der Isotherme, zwei prinzipiell verschiedenartige Adsorptionsreaktionen anzunehmen. Der konzentrationsproportionale Ast kann als Bereich niederer Konzentration einer zweiten Langmuiradsorptionsstufe interpretiert werden.

- 14 -

<u>ABBILDUNG 8</u> Adsorption von Essigsäure an Aluminiumoxid bei pH 4,6 Messwerte und nach dem Modellansatz ZUA berechnete Beladungskurve

3.4 Diskussion der Anpassungsrechnung

Beide Modellansätze ergeben eine ausgezeichnete Anpassung an die gemessenen Isothermen und die Güte des Angleichs, die sich in der Standardabweichung der Konstanten und der Beladung ausdrückt, ist für beide gleich. Man muß bei der Interpretation dieses Befundes berücksichtigen, daß K1 und K2 bei allen drei Beispielen um Größenordnungen verschieden sind. Dann bestimmt nämlich jeder der beiden Terme in einem gewissen Konzentrationsbereich praktisch allein die Beladung. Es gilt:

	niedere Restkonzentration	hohe Restkonzentration
ZUA-Modell	$Q = A1 \cdot \frac{C}{K1 + C}$	$Q = A1 + A2 \cdot \frac{C}{K2 + C}$
SBA-Modell	$Q = A1 \cdot \frac{C}{K1 + C}$	$Q = A1 + A1 \cdot A2 \cdot \frac{C}{K2 + C}$

d.h., beide Modellansätze ergeben mathematisch gleiche Grenzbeziehungen. Die Güte der Anpassung erlaubt also bei K1<<K2 keinen Entscheid, welche "besser" ist. Er wäre auf dieser rein mathematischen Basis nur möglich im Fall K1=K2, da dann bei niederer Restkonzentration die Isothermen verschiedene Steigungen haben.

In der Literatur ist das Nebeneinanderwirken verschiedener Adsorptionsreaktionen mehrfach erwähnt. Muljadi, Giles et al. (12) haben die Adsorption von Phosphat an Kaolinit untersucht und mit drei verschiedenartigen sukzessiven Adsorptionsreaktionen interpretiert. Sie fanden A1=A2 und schließen daraus, daß es sich um die sukzessive Bindung von zwei Phosphatanionen an dasselbe Gitter-A1-ion handelt. Der dritte Phosphat-bindende Bereich wird als "amorphe Region bezeichnet, für welche die Beladung proportional zur Restkonzentration ist. De Boer et al. (13) haben für die Bindung von Wasser an Aluminiumoxid das Wirken von zwei "Mechanismen" festgestellt: eine sehr starke Chemisorption und eine etwas weniger starke Physisorption. Beide erreichen die gleiche Grenzbeladung von 1,4 mMol/100 m², das entspricht ca. 1.400 mMol/kg bei Oxid M90. Weiteres Wasser kann adsorbiert werden, ist jedoch sehr schwach gebunden.

Connor und Ottewil (17) fanden für die Adsorption von Tetraalkylammoniumkationen an Latexpartikel stufenförmige Isothermen und haben das mit zwei verschiedenen Bindungsformen des Adsorptivs erklärt, nämlich zum einen Chemisorption der kationischen Gruppe an Oberflächenkarboxylgruppen und zum andern Physisorption der Alkylendgruppen an die neutralisierte Oberfläche der Partikel. Die jeweiligen partiellen Grenzbeladungen sind um Zehnerpotenzen verschieden, wobei die Physisorptionskapazität die höhere ist.

Der im ersten und zweiten Zitat angenommene Mechanismus entspricht dem SBA-Modell. Dieser vermag jedoch die Isotherme nicht ganz zu erklären, es muß noch ein Beitrag einer dritten Adsorptionsreaktion postuliert werden, um quantitative Übereinstimmung zwischen Messung und Rechnung zu erreichen. Der Mechanismus der dritten zitierten Arbeit entspricht dem ZUA-Modell.

Die Interpretation basiert in jedem Fall auf dem Vergleich von A1 und A2, wobei aus A1 = A2 auf das Vorliegen zweier sukzessiver Adsorptionsreaktionen geschlossen wurde. Bei Phosphat ist A1 > A2 und bei Bernsteinsäure und Essigsäure A1 < A2, in keinem Fall aber sind die partiellen Grenzbeladungen gleich groß. Da der Fall A2 > A1 beim SBA-Modell mit der Theorie nicht übereinstimmt, wohl aber beim ZUA-Modell, erscheint es gerechtfertigt, dieses als das "richtige" anzusehen, bis weitere Untersuchungen zu einer besseren Einsicht in den Mechanismus verhelfen.

Weitere Aufklärungshilfe ist von Isothermenmessungen bei verschiedenem pH und mit anderen Verbindungen zu erwarten.

4. Vergleichsrechnung mit der BET-Gleichung

Die BET-Gleichung ist für die Adsorption von Gasen abgeleitet worden und geht von der Modellvorstellung aus, daß die erste Schicht durch echte physikalische Adsorption und eine unbegrenzte Anzahl weiterer Schichten durch Kondensation gebildet werden (12). Für die Adsorptionsgleichgewichte im fest/flüssig-System kann man sich statt der Kondensation ein "Ausfallen" des Adsorptivs vorstellen, sodaß anstelle des Sättigungsdampfdruckes die Löslichkeit tritt. Die Gleichung ist dann wie folgt anzuschreiben:

(5) Q =
$$\frac{A \cdot K \cdot C}{CS + (K-2) \cdot C - (K-1) \cdot C^2/CS}$$

Die Bedeutungen sind: "A" = Grenzbeladung, CS = Löslichkeit, K = Konstante, die nach BET mit der Adsorptionsenergie zusammenhängt. (Im Rechenprogramm FBET3 ist A=A, CS=K1 und K=K2 !)

		Phosphat	Essigsäure	Bernsteinsäure
A	mMol/kg	351 <u>+</u> 4	254 <u>+</u> 10	184 <u>+</u> 6
CS	mMol/l	54 <u>+</u> 6	2.220 <u>+</u> 170	665 <u>+</u> 56
К		12.500 <u>+</u> 1.700	534 <u>+</u> 77	3.724 <u>+</u> 1.060
Sign	na Q(BET)	4,3 %	11,4 %	11,8 %
Sign	na Q(ZUA)	2,7 %	1,6 %	3,2 %

Die Auswertung der drei Messreihen (Tabellen 10,11,12) ergab:

Der Angleich ist erheblich schlechter als beim ZUA-Modell. Wie Abbildung 9 zeigt, weicht die berechnete Beladungskurve systematisch von der gemessenen Isotherme ab. Insbesondere sagt die BET-Gleichung eine "unendlich" große Sättigungsbeladung voraus und ergibt daher einen zunehmend steileren Anstieg der Beladung als Funktion der Restkonzentration oberhalb des in der Einleitung definierten Bereiches II. Beobachtet und plausibel ist jedoch gerade das Gegenteil, nämlich das Auftreten einer endlichen Maximalbeladung.

Dieses Argument scheint uns besonders stark gegen die Verwendung der BET-Gleichung für das Gleichgewicht der Adsorption aus Lösung zu sprechen, da es grundsätzlicher Natur ist. Die Anpassung an Messwerte mag im Einzelfall sogar recht gut sein, besonders wenn man in nicht allzu großem Konzentrationsbereich misst. (Die BET-Gleichung enthält drei Konstanten und damit kann man generell S-förmige Kurven ausgleichen.)

<u>ABBILDUNG 9</u> Adsorption von Bernsteinsäure an Aluminiumoxid bei pH 4,5, Messwerte und nach der BET-Gleichung beberechnete Beladungskurve

5. Einfache graphisch-rechnerische Ermittlung der Konstanten nach dem ZUA-Modell (Dreipunktauswertung)

Die Anpassung für 4 Konstanten auf Basis von Gleichung 1 erfordert ein Ausgleichsprogramm für nichtlineare Beziehungen und kann praktisch nur mit Hilfe eines Großrechners ausgeführt werden. Programmierbare Taschenrechner vom Typ des HP67 reichen wegen zu wenig Datenspeicherplatz und vor allem wegen zu geringer Rechengeschwindigkeit nicht aus. Im folgenden wird gezeigt, daß die mathematischen Eigenschaften der dem Modellansatz entsprechenden Funktion eine Berechnung ohne Benutzung eines Ausgleichsprogrammes ermöglichen, wenn QO = A1 + A2 auf anderem Weg ermittelt wird und wenigstens drei Messpunkte des Adsorptionsgleichgewichtes vorhanden sind. Sie läßt sich mit einem einfachen programmierbaren Taschenrechner, im Prinzip sogar mit Papier und Bleistift, ausführen.

5.1 Ableitung der Beziehungen für die graphisch-rechnerische Dreipunktauswertung

Für die vier zu ermittelnden Konstanten werden vier "Gleichungen" d.h. vier Auswertpunkte benötigt. Diese sind

- Die experimentell zugängliche Grenzbeladung QO, welche mit den Konstanten A1 und A2 verknüpft ist
 - (6) Q = A1 + A2
- Ein Punkt im unteren Ende des Messbereiches. Hier wird der Beitrag der zweiten Adsorptionsreaktion als vernachlässigbar angenommen

(7)
$$Q_1 = A1 \cdot \frac{C_1}{K1 + C_1}$$

3. Ein Punkt in der Mitte des Messbereiches.

(7)
$$Q_2 = A1 \cdot \frac{C_2}{K1 + C_2} + A2 \cdot \frac{C_2}{K2 + C_2}$$

 Ein Punkt am oberen Ende des Messbereiches.
 Es wird angenommen, daß der Beitrag der ersten Adsorptionsreaktion gleich A1 ist, diese also ihre Grenzbeladung erreicht hat.

(8)
$$Q_3 = A1 + A2 \cdot \frac{C_3}{K_2 + C_3}$$

Durch wechselseitiges Einsetzen erhält man drei Beziehungen, die K1, A1 und A2 als Funktion von K2 und den Messwerten an den o.g. Auswertpunkten enthalten:

(9)
$$K1 = \frac{Q_3 - Q_1}{Q_1} \cdot C_1 - \frac{Q_0 - Q_3}{Q_1} \cdot C_1 \cdot C_3 \cdot \frac{1}{K_2}$$

(10) $A2 = (Q_0 - Q_3) \cdot (1 + \frac{C_3}{K_2})$

$$(11) A1 = Q0 - A2$$

Man benötigt also neben QO drei Wertepaare Q,C, um die Konstanten zu berechnen. Deswegen wird das Verfahren "Dreipunktauswertung" genannt.

Das Vorgehen zur Ermittlung der Konstanten ist wie folgt:

- A) Ermitteln von QO, z.B. durch graphische Extrapolation im 1/Q 1/C-Diagramm.
- B) Wahl der Auswertpunkte C₁, C₂, C₃ am Anfang, in der Mitte und am Ende des Messbereiches. Zweckmäßig geht man von einer im lgQ-lgC-Diagramm visuell durch die Messpunkte gezogenen Kurve aus und liest bei runden Werten von lgC ab.
- C) Berechnen der Konstanten f
 ür ein plausibles K2 aus Formel 9 bis 11.
- D) Berechnen des Q_2 nach Formel 7 für den Auswertpunkt C_2 .
- E) Vergleich des nach Formel 1 berechneten Q_2 mit dem gemessenen Q_2 .
- F) Wiederholen von Schritt C bis E mit anderen K2 bis genügende Übereinstimmung in Schritt E erreicht ist.

Es ist nicht erforderlich, daß die Isotherme im 1gQ/1gC-Diagramm ein gerades Mittelstück aufweist. Sie muß eine Form haben, die der Formel 1 entspricht und die drei Auswertpunkte müssen den Bedingungen 2, 3 und 4 genügen.

Diese sind am günstigsten so zu legen, daß sie die charakteristischen Merkmale der Isotherme wiederspiegeln. Dabei ist zu beachten, daß der Punkt C₁, Q₁ hauptsächlich die Konstanten A1 und K1 liefern soll, und Punkt C₃, Q₃ die Konstante A2. Daher müssen jeweils die betreffenden Konstanten den Zahlenwert von Q an dieser Stelle wesentlich beeinflussen. So darf C₁ nicht eine Konzentration sein, bei der K1 keinen Einflu**ß** mehr hat, d.h. C₁ >> K₁ ist.

Theoretisch genügen für ganze Verfahren 3 Messpunkte. Es ist aber sehr zu empfehlen, von einem Isothermendiagramm auszugehen, das auf mindestens 6 Messwerten beruht.

5.2 Dreipunktauswertung der Phosphatadsorptionsmessungen

Die graphische Extrapolation im 1/Q-1/C-Diagramm ergibt QO = 450 für neun Messpunkte bei den höchsten erreichten Restkonzentrationen (Abbildung 10).

ABBILDUNG 10 Ermittlung der Grenzbeladung QO der Adsorption von Phosphat an Aluminiumoxid

Anhand Abbildung 11 wurden zwei verschiedene Datensätze zur Auswertung nach dem oben beschriebenen Verfahren ausgewählt. Datensatz 1 ("Messwerte") besteht aus drei direkt gemessenen Werten, Datensatz 2 ("Kurvenwerte") wurde bei geeignet erscheinenden Restkonzentrationen auf der visuell durch die Messpunkte gezogenen Kurve abgelesen.

Die Berechnung nach Schritt C, D, E wurde ausgehend von K2 = 3, 3,1, 3,2...3,7 durchgeführt. Einzelergebnisse siehe Tabelle 13 und 14. Als besten Angleich für die Auswertdaten der Abbildung 10 ergab sich:

ABBILDUNG 11 Wahl der Auswertpunkte für die graphisch-rechnerische Dreipunktauswertung

		Dreipunkta Datensatz 1	uswertung Datensatz 2	Auswertung mit Aus- gleichsprogramm FL2A3
experimentelles	Q2	311,22	334,00	311,22
berechnetes	Q2	311,16	333,64	311,23
A1		328	327	325 + 7
К1		0,00356	0,0039	0,0034 <u>+</u> 0,0003
A2		121	123	127 <u>+</u> 14
К2		3,40	3,30	3,6 <u>+</u> 1,4

Die mit dem beschriebenen vereinfachten Verfahren erhaltenen Konstanten sind innerhalb der Fehlergrenzen gleich den durch Ausgleichsrechnung ermittelten Konstanten. Ob man dabei von Messwerten oder von der durch die Messwerte gezogenen Kurve ausgeht, macht in dem hier untersuchten Fall keinen Unterschied.

- 21 -

TABELLE 1 Unter Annahme von zwei additiven Adsorptionsreaktionen berechnete Beladung (A1=A2=500, K2=1)

No.	lgC		le	ςQ.	····
		K1=1	K1=0,1	K1=0,01	K1=0,001
$\begin{array}{c} 1.00000\\ 2.00000\\ 3.00000\\ 4.00000\\ 5.00000\end{array}$	$ \begin{array}{r} -4.00000 \\ -3.00000 \\ -2.00000 \\ .00000 \\ 1.00000 \end{array} $	1.65805 2.39881 2.66228 2.87477 2.97977	.69901 1.66232 2.40646 2.87219 2.97957	26004 .73640 1.70247 2.84791 2.97754	1.00004 .00043 .99568 2.69897 2.95861

<u>TABELLE 2</u> Wertepaare des linearen Teils der Beladungskurve der additiven Adsorptionsreaktion (A1=A2=500,K1=0,01,K2=1)

lgg	lqQ
1.5229	2.5906
1.2218	2.6598
9208	2.7119
- .6198	2.7610
3188	2.8142
0177	2.8691
.2833	2.9171
.5843	2.9520

<u>TABELLE 3</u> Unter Annahme einer sukzessiven bimolekularen Adsorptionsreaktion berechnete Beladung (A1=500, K2=1)

No.	lgC		lgG)	
		K1=1	K1=0,1	K1=0,01	K1=0,001
$\begin{array}{c} 1.00000\\ 2.00000\\ 3.00000\\ 4.00000\\ 5.00000\end{array}$	$ \begin{array}{r} -4.00000 \\ -3.00000 \\ -2.00000 \\ .00000 \\ 1.00000 \end{array} $	1.65762 2.39837 2.66186 2.87463 2.97975	.69469 1.65801 2.40222 2.87074 2.97936	30142 .69508 1.66186 2.83367 2.97548	-1.30103 .30103 .69893 2.57403 2.93840

TABELLE 4 Berechnung der Konstanten des ZUA-Modells für die Adsorption von Phosphat an Aluminiumoxid bei pH 5,5

	/1	//1 0.0.011/5	A?	<i>К?</i> 2. БОСБО
STANDAPDARWEICPUPG.:	7.14027	.00035	127.05658	1.36233
MESS- UND BECHENVERME	2	0.0	1010	
	()	('H NAO 00400	<u>AC70</u>	
1.00000 10.80645	419.35484	419.93127	.00137	
2,00000 9.52258	418.06452	416.81656	.00299	
3.00000 8.22258	420,00000	412.97130	.01673	
	416.12903	408.29247	- 01283	
5.00000 4.50323	389.67742	395.11769	01390	
6.00000 4.48387	393,54839	394,98153	- 00364	
7.00000 3.40468	379.33484	395 1950	- 02970	
8,00000 3,30000	372,23600	303.10324	- 01265	
9.00000 3.20129	380.00000	379 15560	- 01094	
	3/4.00432	370 37697	- 01968	
	202 11025	360 07407	.01000	
	364 83871	359 54381	01451	
	374 83871	358.58942	.04335	
15 00000 1 08968	362 70968	353 22242	02616	
16 00000 90226	335 67742	348.94174	03952	
17,00000 .77742	360,64516	345.84003	.04105	
18 00000 .33871	319.35484	332.33111	-,04063	
19.00000 .29410	328,29032	330,50594	00675	
20.00000 .05674	311.22581	308,02051	.01030	
21.00000 .01410	255,25806	261.33615	-02381	
22.00000 .00500	192.54839	192,36673	.00094	
23.00000 .00216	128.61290	125.16136	.02684	
REOS. SIGMA Q RELATIV	= .014	16 .025	37	
YMIN, YMAX, XMIN, XM	X FUFR LGO/	LGC-DTAGPAM	11	
ГІНСЕРГИ, ГІНГРЬОТКОРІ	F, PAGENEUEC	ΥΓΛΠΕ		
[:				
2 3 3 1				
2 000001				
3.00209 4				
Ť				
1				
9				
•n]				
1				
L]				
G		- <u>- 1</u> -1		
		_ +		
○ 2.50E00 m				
Empholik+7	A			
	.			
	٠	Messwerte		
	•••	berechnete	Beladungskurre	
1 · ·			0	
н Н				
1 · ·				
2.00E(10)	د میں برواد میں اور		7 میں پر میں پر میں ہ	
	1 00-00	ч Ч	1 00500	
-3.00E00	-1.00E00	m	T.00F00	
-		LMMOLILJ		

TABELLE 5 Be di

Berechnung der Konstanten des SBA-Modells für die Adsorption von Phosphat an Aluminiumoxid bei pH 5,5

(2 1 300 0.005 0.5 10) FL2S3 P158 FL2S3 ANGLEICH AN O = A1×(C+(K1+C))×(1+A2×C+(K2+C))

		/1	<i>!</i> .'1	<u>A 2</u>	ľ.2
<u>ארמציר אידר ארמצווסא ארמצווסא</u>		324.76034	.00345	.39085	3.58636
STAIIPARDABWEIGI	4UNG .:	6.77530	.00034	.03517	1.19355
HESS- UND PROM					
<u>I</u> .	C	Q	OB	$\Delta Q / Q$	
1.00000 10	0.80645	419.35484	419,93089	00137	
2.00000	9,52258	418.06452	416.81626	.00239	
3.00000 8	3.22258	420.00000	412.97110	.01674	
4.00000 €	5.95161	416,12903	408.29236	01883	
5.00000 1	+,50323	389.67742	395.11780	01396	
6.00000 2	48387	343.54839	394,98163	- 00364	
8 00000	3 30000	379.35404	390.02001	- 02070	
9.00000 3	3.26129	380.00000	384,80736	01265	
10.00000	2.64581	374.06452	378,15591	01094	
11.00000	2.05484	363.22581	370.37509	01968	
12.00000 1	1.95387	383.41935	368,87496	.03793	
13.00000 1	L.40161	364.83871	359.54397	.01451	
14.00000 1	1.35161	374.83871	358.58956	.04335	
15.00000 1	L.08968	362,70968	353.22252	02616	
17 00000	,90226 77700	335.67742	348,34177	.03952	
18.00000	.33871	319.35484	332.33087	04103	
19.00000	.29410	328,29032	330,50567	00675	
20.00000	.05674	311.22581	308.02013	.01030	
21.00000	.01410	255.25806	261.33598	02381	
22.00000	.00500	192.54839	192.36681	.00094	
23.00000	,00216	128,61290	125,16155	.02684	
VITI VHAY VI	(IIIIIV) ATH YHAN	ד 14 גענות 14 ערות היוות א	16 .02537 ICC-DIACDAMA		
דיומדיי, בנאג, אי דיומדיי וויניבטונדיי	'I.C., Z.P.A.Z. 76.0577077	. FOAR 1607 VACENRIEC	THUC - DIT GUATIAN TIANF		
[:	<i>no. no. r</i> ,	$PP (10 \mu P 0, 0)$	1.17601		
2 3 3 1					
2 00500					
3.00£00 == 1					
1					
1					
É.					
]					
c í					
(* 1			9.98-9 ⁻⁰⁰	•	
0 2.50E00 -		Ber "****			
Further 1					
Eminocities 1		•			
		• /	Messwerte		
		··· Ł	perechnete Belad	lungskurve	
1				U	
ļ 🖌	•				
2 00000		_			
2.00E00 *********	ر روحیت دو طبقه خد ور دو	د هد خله بزد: توریخ بینون ها ها ها ها به الد []	اد خوان ها بار کا تکرار کا تی ورد پر با [7	
-3.00000	1	-1.00F00	1	0.0 F 0 0	
y - ve v <u>i</u> -vev		→.LOG C /	[mMol/L]		

Berechnung der Konstanten des ZUA-Modells für die Adsorption von Bernsteinsäure an Aluminium-TABELLE 6 oxid bei pH 4,5

(2 1 100 0.05 200 100) FL2/3 BS000

 FL_{2A3} $AllGLP^TOP All = A1 \times C \div (P1+C) + P2 \times C \div (R2+C)$

		/1	£1	12	12
KOUSTANTEN	:	149.32309	.07707	222.43870	147.54404
STANDARDARVE.	rerure.:	3.30007	.01095	14.79577	24.28031
יזה מווש - TSS-	<u>יודיאי ערתון ה</u>				
Ţ	C	Ø	OP	Nº10	
1.00000	.08000	77.00000	76.17342	.01073	
2.00000	.20000	112.00000	108.08724	.03494	
3.00000	.85000	126.00000	138,18313	09669	
4.00000	1,50000	140.00000	144,26420	- .03046	
5.00000	3.13000	155,00000	150.35533	.02997	
6.00000	6,18000	153.00000	156,42623	0223n	
7.00000	10,80000	167,00000	163,43665	.02134	
8,00000	15.60000	175.00000	169.85880	.02938	
9.00000	25.40000	185,00000	181.54056	.01870	
10,00000	35.10000	196.00000	191.74355	.02172	
11.00000	44,90000	206.00000	200,96540	.02444	
12.00000	54.80000	210,00000	209.35553	.00307	
13,00000	64.60000	215,00000	216,87998	0087a	
14.00000	74.50000	221,00000	223,80113	01268	
15.00000	84.50000	233,00000	230,18919	.01200	
16.00000	94.40000	224.00000	235,99082	. 05353	
17.00000	143,50000	259.00000	258,91690	.00032	
18,00000	193.20000	271.00000	275,38507	01618	
19,00000	242.70000	294.00000	287.61444	.02172	
20.00000	282.60000	296.00000	295.42221	.00195	
PEOS, SIGMA	O PTINTTV	= .019	74 .032	24	
Y"TP, Y"AX,	XMIE, XMA.	х гигр Бас/	пле-эталрай	••	

<u>TABELLE 7</u> Berechnung der Konstanten des SBA-Modells für die Adsorption von Bernsteinsäure an Aluminiumoxid bei pH **4,5**

 $\begin{array}{rcrcrc} (2 & 1 & 100 & 0.05 & 2 & 100) & FL2S3 & PG000 \\ FL2S3 & & & & \\ APGLFFCP & AP & O & = & A1 \times (C \div (K1 + O)) \times (1 + A2 \times O \div (K2 + O)) \end{array}$

		/1	ľ.1	A 2	K.2
KOUSTAUTTU.	:	149.43933	.07707	1.48771	147.54444
STANDAPDAPM	::יוושייידי	2.98961	.01066	.05831	16,99135
'IFCS- 1111D BI	יקיייסיקקואידעראי				
J	C	0	OP	A070	
1.00000	.08000	77.00000	76,17339	.01074	
2.00000	,20000	112.00000	108,08724	.03434	
3.00000	.85000	126.00000	138,18315	09663	
4.00000	1.50000	140.0000	144,26422	03046	
5.00000	3.13000	155.00000	150,35535	.02997	
6.00000	6.18000	153.00000	156.42626	-,02239	
7.00000	10,80000	167.00000	163,43667	.02134	
8.00000	15,60000	175.00000	169.85880	.02938	
3,00000	25.40000	185.00000	181,54056	.01870	
10,00000	35,10000	196.00000	191.74354	.02172	
11.00000	44,90000	206.00000	200,96539	.02444	
12.00000	54.80000	210.00000	209.35551	.00307	
13.00000	64,60000	215.00000	210.87996	00874	
14.00000	74,50000	221.00000	223.80117	01267	
15.00000	84,50000	233.00000	230,18916	.01206	
16.00000	94.40000	224.00000	235.99080	05353	
17.00000	143.50000	259.00000	258.91689	.00032	
18,00000	193.20000	271.00000	275.38508	01618	
19,00000	242,70000	294.00000	287.61447	.02172	
20.00000	282.60000	296,00000	295.42225	.00195	
PFOS, SIGMA	O PELATIV	= .019	74 .03224	ł	
ZHIN, YMAX,	XMIP, XMA	X FULP LGO/	LGC-DTAGPAI'''		
TITI GEBEN, FJ	יוקסאיייסגוקיווי	, ארמיירחאיו	ĽLANF		
[:					

<u>TABELLE 8</u> Berechnung der Konstanten des ZUA-Modells für die Adsorption von Essigsäure an Aluminiumoxid bei pH 4,6

> (2 1 200 2.5 500 1000)*PL2A3 PS*091 *PL2A3* AUGLEICH AR 0 = A1×C÷(R1+C) + A2×C÷(R2+C)

		/1	E 1	72	1:2
FOUSTATTEU.		208,27620	2.42655	496.18045	1111.35937
STADAPDABU	rfcrupe.:	2,46424	.09616	29,93112	123.64860
MEES- UND P	RCHERVER				
<u>, r</u>	C	С	OP	VU/O	
1,00000	.54000	38,50000	38.15344	.00900	
2.00000	1.23000	71.00000	70,60908	.00551	
3,00000	1.73000	91.00000	87.45797	.03892	
4.00000	2.40000	104.00000	104.63450	00610	
5.00000	4.63000	135.00000	138.71443	02751	
6.00000	6.20000	152,00000	152.44323	00292	
7,00000	10.70000	173.00000	174.50626	00871	
8,00000	15.30000	190,00000	186.50385	.01840	
9,00000	25,00000	200.00000	200.76509	00383	
10,00000	44.60000	215,00000	216.67321	00778	
11,00000	93,95000	242,00000	241,70794	.00121	
12,00000	192,90000	284.00000	279.07388	.01735	
13,00000	391.70000	332,00000	336,29942	. 01295	
14.00000	590.50000 -	- 380,00000	379,58527	.00109	
15.00000	988.90000	442,00000	441,39127	.00138	
PFCS. SIGHA	O RELATIV	= .003	.015	57	
Y'ITI' Y'IAX	. XMTH. XMA	X FUER LOCK	LGC - DTA GRAP	91	
EINGEPEN. P	TUTPLOTROPF	. WAGEURUEC	YLAUF		
[• • • • • • •			
13 n	5 3 5				
100	. 5 0. 5				
3.00500]					
)•00L00					
ŗ					
1				_ •	
4				A.**** ***** -	
1					
i					

<u>TABELLE 9</u> Berechnung der Konstanten des SBA-Modells für die Adsorption von Essigsäure an Aluminiumoxid bei pH 4,6

(2 1 200 2.5 2.5 1000) FL283 FS091

FL253

 $A \mathbb{I} G \mathbb{L} \mathbb{I} \mathbb{I} \mathbb{I} \mathbb{I} \mathbb{I} = A \mathbb{I} \times (G \div (\mathbb{I} \mathbb{1} + G)) \times (\mathbb{1} + A \mathbb{I} \times G \div (\mathbb{K} \mathbb{2} + \mathbb{2}))$

		Λ1	1.1	12	E2
ארדעייאייצאוטע.		209.35775	2.42649	2.36466	1111.20586
STAPDARDARV	EICHUUG.:	2.13217	.09005	.08356	79.0710#
	ה מ <i>ו</i> ני היו ווה וויה יו				
τ	C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.	0	(17)	1010	
1 00000	54000	20 5000	0.0	Λ^{α}/C	
2.00000	. 34000	38.00000	38.15380	.00899	
2.00000	1 73000	71.00000	70.00352	.00550	
	1.73000	91.00000	87.45837	03892	
5.00000	2.40000	135 00000	104.63480	00610	
6 00000	6 20000	152.00000	158.71438	02751	
7 00000	10 70000	172.00000	152.44300	00291	
8 00000	15 30000	190 00000	196 50320	.00870	
9,00000	25 00000	200.00000	200 76442	- 01840	
10 00000	LU 60000	215 00000	200.70443	- 00382	
11,00000	93 95000	213.00000	210.07278	.00778	
12.00000	192,90000	284 00000	241,70827	.001720	
13,00000	391 70000	332 00000	270.07020	- 01734	
14.00000	590 50000	380 00000	370 50000	.01295	
15,00000	988.90000	442 00000	1111 10006	.00109	
REOS. STGHA	O PELATIV	· = 003	30 0155	.00136	
YMTT YMAY	YHT YHA	y THER LCON		') !	
יין וייזאנורין	יים יייס אייס איי		יייייייייייייייייייייייייייייייייייייי		
[:		• • • • • • • • • • • • • • • • • • •	····/ ···		
1 3 0	5 3.5				
3.00E00 -					
Ŗ					
ņ					
1				•••••	
1				-	
1			4		
L Į		· · · · · · · · · · · · · · · · · · ·			
- O					
G		e .			
		-			
0 2.00E00]	* ***				
[mHullkg]	يە م	•	Massivente		
- · · · · ·			11233 10 2010		
A 1		•••	berechnete R	e la duvestruise	
				era annys kurve	
	.				
	•				
۴. ۱					
" 1					
j k					
1 00000					
1.00E00	یود اود بود افغان الاد بود وی وا ^{رد} الشکار ۱	ان ورزی می است که می اند و به که ا	رد من توجه بواحد برد الله بين الله		
	•		:	;	
;•00L-01		T-20E00	3	•50E00	
		➔.LOG C <i>E</i>	m MOL/LJ		

<u>TABELLE 10</u> Berechnung der Gleichgewichtskonstanten für die Adsorption von Phosphat an Aluminiumoxid aus Wasser bei Auswertung mit der BET-Gleichung

> (2 1 0.00001 0.001 0.00001) FPTT3 P158 ב חיוריו $P^{m}\partial D^{m}\partial T^{m} = P^{m} = -A \times C \left((T + T + C \times (1 - 2 + T + C)) - (C \times 2) \times (1 - 2 + T + C) \right)$ Δ <u>Ľ</u> 1 12 350.7318 54,2816 12505,3059 4.3750 6,0422 1091,5563 יוייייועידינסידא מייט באציייי т C ρ OP $M^{\prime} I O$ <u>-</u>.04332 437.77115 1.00000 10.80645 419.35484 .01705 2.00000 9.52258 418.06452 425.19106 .01622 413.16042 3.00000 8,22258 420.00000 6.95161 416.12903 402.02689 .03389 4,00000 .01939 5.00000 4,50323 389,67742 382.12322 6.00000 4.48387 393,54839 381,97311 .02941 _.00472 377.56534 7.00000 3,90968 379.35484 .00192 372.25806 3.30000 372.97369 8.00000 9.00000 3.26129 380,00000 372.68490 .01925 .01587 2.64581 374.06452 368.12876 10,00000 11.00000 2.05484 363,22581 363,79185 .00156 12.00000 1.95387 383.41935 363.05035 .05312 .01615 13,00000 1,40161 364,83871 358.94526 .04341 374,83871 358.56523 14,00000 1.35161 -.01705 362,70968 15.00000 1.08968 356.52516 .90226 16.00000 335.67742 354.92078 .05751 _.0127(.77742 360.64510 353,28043 17.00000 -.09125 348.49587 .33871 319.35484 18.00000 **-**.05864 .29410 328,29032 347.54070 13.00000 311.22581 _.04803 .05674 326.17312 20,00000 .05008 268.24601 255.25806 21.00000 .01410 .02453 .00500 187.82584 22.00000 192.54839 23.00000 .00216 128.61290 116.59286 PROF, SIAMA O PREAMA .04044 .0428 MARY, MAR, XMAR, XMAR, XMAR FURP FRO/FOC-DAACAA MARY FURPER, FEREPSONE, PARTER FOR THE PROFESSION FOR THE FO .01246 .04287 [: 2 3 3 1 3.00E00 --H E L ň 0 C. 0 2.50E00 ---Emtoliky] A Messwerte 'n ή berechnete Beladungskurve 2.00E00 -1 -3.00E00 -1.00E00 1.00E00 ----->. LOG C EmMoLIL)

<u>TABELLE 11</u> Berechnung der Gleichgewichtskonstanten für die Adsorption von Bernsteinsäure an Aluminiumoxid aus Wasser bei Auswertung mit der BET-Gleichung

(2 1 0	.0005 0.005	0.000001)	FBFT3 BE000	
FBFT3		/		
ANGLEICH AN	$C = A \times C$	$-(?'_{1}+?'_{2}+C)$	(1-2:22) -	(<i>C</i> *2)×(1-1÷ <i>K</i> 2)÷ <i>K</i> 1
N 0 N 0 M 1 N 7 N		A	<i>K</i> 1	¹⁷ 2
КОРВРАЛТИС. БГАПРАЗРАРИ	TICTUNG.	183.7458 5.7172	56.1304	3724.2176 1059.1461
ת תינו הייכה				
I I I I I I	c	0	0p	<u> </u>
1.00000	.08000	77.00000	56.86502	.26149
2.00000	.20000	112.00000	97,12081	13285
4.00000	1,50000	140.00000	164.61084	-,17579
5.00000	3.13000	155.00000	174.69599	12707
6.00000	6.18000	153.00000	180.30839	-17849
8,00000	15,60000	175.00000	186.08010	06331
9,00000	25.40000	185.00000	189,76008	02573
10.00000	35.10000	196.00000	193.05490	.01503
11.00000	44.90000	206.00000	196.32299	.04698
13.00000	54.80000	215.00000	203.01021	.04928
14.00000	74.50000	221.00000	206.48959	.06566
15.00000	84.50000	233,00000	210.10632	.09826
16.00000	94.40000	224.00000	213.79317	.04554
17.00000	143,50000	259.00000	234,08099	.09823
19,00000	242.70000	294.00000	289,21812	.01626
20,00000	282.60000	296,00000	319.43077	7.07916
RFOS, SIGMA	O PFLATIC	= .264	36 .117	ሳ ቦ
<u>אייז אין אין און אין אייז אין אייז א</u> א איז איז איז איז איז איז	, XULL', XU TUTTLOUVOIT	אריהן פקורא X זיתוסתקבצט י	LGC - DLEGPAM	,,,,
[:		•••••	,,,,	
1.7 2.	7 1.5 2.5			
2.70E00 -				
1				
1				•
14 14				*
1				•
				A .
1 1				
D 2.20E00 ↔			• •	
1			•	
		÷ 🔒		
Moling J		-		
· · · ·	• • •	-		
	م. م	-		
Maling	•	•	Messwerte	
	• •	•	Messwerte berechnote 1	Soladuuss kur ve
	• •	•	Messwerte berechnete l	Beladuuys kuvve
	•	•	Messwerte berechnote l	Beladuuys kuvve.
	•	•	Messwerte berechnete l	Beladuuys kuv ve
1.70E00	•	•	Messwertc berechnete (Beladuuys kuvve
1.70E00	• •		Messwerte berechnete l	Beladuuys kurve

 $\begin{array}{l} (2 \ 1 \ 0.01 \ 0.001 \ 0.0000001) \ FB^{-1}T3 \ FB091 \\ FFFT3 \\ FEGLETCT \ AB \ 0 \ = \ A \times C \div (F1 \div K2 \ + \ C \times (1 - 2 \div F2) \ - \ (F \times 2) \times (1 - 1 \div F2) \div F1) \\ \end{array}$

		<i>P</i>	/ 1	F 2
ROBSTNEETH.	:	254.8012	2221.6386	534,9274
STANDARDARI	FICHUNG.:	9.8635	169.6000	76,9575
PPSS- UND R	ייייסיינג <i>ווקיו מיר</i> יי			
T	C.	()	OP	$\Delta C / Q$
1.00000	.54000	38,50000	29,33114	.23815
2.00000	1.23000	71.00000	58,27677	.17920
3.00000	1.73000	91.00000	75.02641	.17553
4.00000	2,40000	104.00000	93.48220	.10113
5,00000	4.63000	135.00000	134,73052	.00200
6.00000	6.20000	152,00000	153,18650	00781
7.00000	10,70000	173,00000	184.69217	OC 758
8.00000	15,30000	190,00000	202.08920	06363
3.00000	25.00000	200,00000	221,34387	-10672
10.00000	44.60000	215,00000	232.27812	10827
11.00000	93,95000	242.00000	255.24597	05474
12.00000	192.90000	284,00000	273.64857	.03045
13,00000	391.70000	332.00000	306.66344	.07631
14.00000	590,50000	380,00000	345,26076	.09142
15.00000	988,90000	442.00000	458.13459	7.03650
PFOS, SIGMA	יידייא מייק יי	= .181	50 ,1138	6
V117 . V117	. 201711. YHA	X FUPP LCOL	$\overline{D} = \overline{D} \overline{D} = \overline{D} \overline{D} \overline{D} = \overline{D} \overline{D} \overline{D} = \overline{D} \overline{D} \overline{D} = \overline{D} \overline{D} \overline{D} \overline{D} = \overline{D} \overline{D} \overline{D} \overline{D} \overline{D} = \overline{D} \overline{D} \overline{D} \overline{D} \overline{D} \overline{D} \overline{D} \overline{D}$	

viii , viax, xiii, xiix Fure Edo/Edo-PT/anari PTUGENED, FIPPEDOPPOPP, VACEDOURCEENDE 1:

<u>TABELLE 13</u> Dreipunktauswertung der Phosphatmessungen auf Basis gemessener Q,C-Daten

FL2A KONSTANTEPBERECHNUNG ZVEI ADDITIVE LGM-ADSORPTIONSVORGAENGE

AUSGANGSDATEN

Q 0	C1	<i>C</i> 2	СЗ	Q 1	Q_2	Q 3
450.00000	.00500	.05670	1,40100	192.00000	311.00000	364.00000
KONSTANTEN	UND BERECHNETE	BELADUN	G			
K 2	A 2	K1	A1	QB 1	QB 2	QB 3
3.00000	126.16200	.00343	323.83800	192.20992	307.68885	363.20834
3.10000	124.86645	.00347	325,13355	192.20107	308.64112	363.19739
3.20000	123.65187	.00350	326.34812	192.19290	309,53411	363.18706
3.30000	122.51091	.00353	327.48909	192.18534	310.37318	363.17730
3.40000	121.43706	.00356	328,56294	192.17832	311.16309	363.16808
3.50000	120.42457	.00358	329,57543	192.17179	311,90803	363.15935
3.60000	119.46833	.00361	330.53167	192,16570	312.61174	363,15106
3.70000	118.56378	.00363	331.43622	192.16001	313.27755	363.14319

<u>TABELLE 14</u> Dreipunktauswertung der Phosphatmessungen auf Basis einer durch die Messdaten gezeichneten Kurve

FL2A KONSTANTENBERECHNUNG ZVEL ADDITIVE LGM-ADSORPTIONSVORGAENGE

TFN					
C1	<i>C</i> 2	<i>C</i> 3	Q 1	<i>Q</i> 2	63
.01410	.31600	3.15000	256.00000	334.00000	387.00000
UND BERECHNETE	BELADUN	G			
A 2	K 1	A 1	QB 1	QB2	QB3
129.15000	.00357	320.85000	256.60417	329.57132	386,63660
127.01613	.00369	322.98387	256.57510	331.00624	386.62216
125.01562	.00380	324.98438	256.54843	332.35901	386.60848
123.13636	.00390	326.86364	256.52389	333.63649	386.59550
121.36765	.00400	328.63235	256.50124	334.84481	386.58317
119.70000	.00409	330.30000	256.48029	335,98946	386.57145
118.12500	.00418	331.87500	256.46085	337.07534	386.56029
116.63514	.00426	333.36486	256.44279	338.10687	386.54966
	$\begin{array}{c} C1 \\ 01410 \\ \\ UND & BERECHNETE \\ A2 \\ 129.15000 \\ 127.01613 \\ 125.01562 \\ \hline 123.13636 \\ 121.36765 \\ 119.70000 \\ 118.12500 \\ 116.63514 \\ \end{array}$	$\begin{array}{cccc} C1 & C2 \\ .01410 & .31600 \\ \\ UND & BERECHNETE & BELADUN \\ A2 & K1 \\ 129.15000 & .00357 \\ 127.01613 & .00369 \\ 125.01562 & .00380 \\ \hline 123.13636 & .00390 \\ 121.36765 & .00400 \\ 119.70000 & .00409 \\ 118.12500 & .00418 \\ 116.63514 & .00426 \\ \end{array}$	C1C2C3.01410.31600 3.15000 UND BERECHNETEBELADUNGA2K1A1129.15000.00357 320.85000 127.01613.00369 322.98387 125.01562.00380 324.98438 123.13636.00390 326.86364 121.36765.00400 328.63235 119.70000.00418 331.87500 116.63514.00426 333.36486	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

7. Programmlisten

Für folgende Isothermengleichungen sind Ausgleichsprogramme aufgelistet:

- Langmuirisotherme

.

ς.

$$Q = \frac{A \cdot C}{K + C}$$

- modifizierte Langmuirisotherme

$$Q = \frac{A \cdot C^{R}}{K + C^{R}}$$

- Brunauer-Emmett-Teller-Isotherme

$$Q = \frac{A \cdot K2 \cdot C}{K1 + C(K2-2) - \frac{K2-1}{K1} \cdot C^2}$$

- Modellansatz "zwei additive Langmuiradsorptionsreaktionen"

$$Q = \frac{A1 \cdot C}{K1 + C} + \frac{A2 \cdot C}{K2 + C}$$

- Modellansatz "zwei sukzessive Langmuiradsorptionsreaktionen"

$$Q = \frac{A1 \cdot C}{K1 + C} \cdot \left[1 + \frac{A2 \cdot C}{K2 + C}\right]$$

 Modellansatz "Konstante Adsorption + Langmuiradsorption"
 Dieser Ansatz ist eine Vereinfachung des Ansatzes "zwei additive..."
 und für Messreihen bestimmt, die nur wenig Messpunkte bei niederen Restkonzentrationen enthalten

$$Q = A1 + \frac{A2 \cdot C}{K2 + C}$$

- Isotherme von Radke + Prausnitz

$$Q = \frac{A \cdot c^{R}}{K + c^{R-1}}$$

Programm FLGM3 Ausgleichsrechnung, Ausdruck und Diagramm für die Langmuirgleichung. Ruft die Funktionen FLGMO, NONLIN1, FTAB2 und GRAF1 auf 1. Eingabeparameter "X"...: Vektor der Komponenten Steuerzahl T, Steuerzahl D, Schätzwerte A, K. Wirkung: T < O Rechnung mit den Schätzwerten ohne Angleich und Ausdruck, T>O Ausgleichsrechnung, T=0 kein Ausdruck, T=1 Ausdruck Konstanten, T=2 Ausdruck Konstanten + Messwerte, D=O kein Diagramm, D=1 Diagramm 2. Eingabeparameter "Y"...: Zweispaltige Matrix der Messwerte. Erste Spalte Gleichgewichtskonzentration, zweite Spalte Gleichgewichtsbeladung. Zum Ausgleich werden die Relativwerte C/C_{max} und $Q/Q(C_{max})$ verwendet. *∇FLGM*3[[]]*∇* ∇ X FLGM3 Y;Z0;Z1;Z2;Z3;Z4;Z5;Z6;P2 $GFN1 \leftarrow 'FD; M0'$ [1] [2] $M \leftarrow \Diamond((5, Z0) \rho((1Z0 \leftarrow \rho Y[;1]), Y[;1], Y[;2]))$ [3] $Z1 \leftarrow (\rho X) - 2$ [4] $P1 \leftarrow X[2 + \iota Z1]$ P2←' RECHNUNG' [5] [6] →N0×1X[1]<0 $RF \leftarrow (Z1)\rho(Y[Z2;2],Y[(Z2 \leftarrow 1 \land \forall Y[;1]);1])$ [7] F 8 7 $Y1 \leftrightarrow Q((2, Z0)\rho(Y[;1] \div RF[2]), (Y[;2] \div RF[1]))$ $P1 \leftarrow (Y1 NONLIN1(3, 100, P1 \div RF)) \times RF$ [9] P2←' ANGLEICH' [10] [11] NO:M[;4]←▲'P1 ',GFN1,' Y[;1]' M[;5] + 1 - M[;4] + M[;3][12] $Z_{2 \leftarrow +}/((1 - M[; 4]; M[; 3]) \times 2)$ [13] $Z3 \leftarrow (Z2 \div (Z0 - 1)) \times 0.5$ [14] [15] A [16] $Z5 \leftarrow Y[;1]$ $Z6 \leftarrow P1[2] + Y[;1]$ [17] **[18]** $Z4 \leftarrow (Z0, 1)\rho(Z5 \div Z6)$ $Z_{4} \leftarrow Z_{4}, ((-P_{1}[1]) \times Z_{5} \div (Z_{6} \times 2))$ [19] Z4+⊕((\QZ4)+.×Z4) [20] Z4++/((1Z1)∘.=(1Z1))×Z4 [21] [22] Z5 + /((M[;3] - M[;4]) + 2)[23] $Z5 \leftarrow ((Z5 \div (Z0 - Z1)) \times Z4) \times 0.5$ [24] A \rightarrow ((|X[1 1])= 1 0)/(N1,N2) [25] ' FLGM3' [26] P2,' FUER Q = $A \times C \div (K + C)$ [27] [28] K 1 [29] A ' KONSTANTEN..... '; 12 5 **P**1 [30] ' STANDARDABWEICHUNG.: '; 12 5 \$Z5 [31] [32] (Z2,Z3) FTAB2 M

' RFQS, SIGMA Q RELATIV = '; 12 5 #Z2,Z3

= '; 12 5 *****P1

= '; 12 5 **v**Z5

) SAVE 11.31.58 07/04/78 ADSORB

' KONSTANTEN A,K

' STANDARDABWEICHUNG

P1 GRAF1 10⊕M[; 2 3]

 $Z \leftarrow (P[1] \times Y) \div (P[2] + Y)$

[33]

[35]

[36]

[37]

[39]

[1]

Ω

*→N*2

[38] N2:→0×1X[2]=0

 $\nabla FLGMO[[]] \nabla$ ∇ Z+P FLGMO Y

[34] N1:P2

Programm FMLM3 Ausgleichsrechnung, Ausdruck und Diagramm für die modifizierte Langmuirgleichung. Ruft die Funktionen FMLMO, NONLIN1, FTAB2 und GRAF1 auf. 1. Eingabeparameter "X"...: Vektor der Komponenten Steuerzahl T, Steuerzahl D, Schätzwerte A, K, R. Wirkung: T<0 Rechnung mit den Schätzwerten ohne Angleich und Ausdruck, T>0 Ausgleichsrechnung, T=0 kein Ausdruck, T=1 Ausdruck Konstanten, T=2 Ausdruck Konstanten + Messwerte, D=0 kein Diagramm, D=1 Diagramm 2. Eingabeparameter "Y"...: Zweispaltige Matrix der Messwerte. Erste Spalte Gleichgewichtskonzentration, zweite Spalte Gleichgewichtsbeladung. Zum Ausgleich werden die Relativwerte C/C_{max} und $Q/Q(C_{max})$ verwendet. *∇FMLM*3[[]]*∇* ∇ X FMLM3 Y;Z0;Z1;Z2;Z3;Z4;Z5;Z6;P2 [1] $GFN1 \leftarrow 'FMLM0'$ [2] $M \leftarrow \Diamond((5, Z0)\rho((1Z0 \leftarrow \rho Y[;1]), Y[;1], Y[;2]))$ [3] $Z1 \leftarrow (\rho X) - 2$ [4] $P1 \leftarrow X[2 + \iota Z1]$ [5] P2←' RECHNUNG' [6] $\rightarrow N0 \times \iota X[1] < 0$ [7] $RF \leftarrow (Z1) \rho (Y[(Z2 \leftarrow 1 \land \forall Y[;1]);2],1,1)$ [8] $Y1 \leftarrow Q((2,Z0)\rho(Y[;1] \div RF[2]), (Y[;2] \div RF[1]))$ [9] $P1 \leftarrow (Y1 \ NONLIN1(3, 100, P1 \div RF)) \times RF$ [10] P2**←'** ANGLEICH' [11] NO:M[;4]+ **↓**'P1 ',GFN1,' Y[;1]' [12] $M[;5] \leftarrow 1 - M[;4] \div M[;3]$ $Z2 \leftrightarrow +/((1 - M[; 4] \div M[; 3]) \star 2)$ [13] $Z3 \leftarrow (Z2 \div (Z0 - 1)) \times 0.5$ [14] [15] A [16] $Z5 \leftarrow Y[;1] + P1[3]$ [17] $Z6 \leftarrow P1[2] + Y[;1] \leftarrow P1[3]$ [18] $Z_{4} \leftarrow (Z_{0,1}) \rho (Z_{5} \div Z_{6})$ [19] $Z4 \leftarrow Z4$, ((-P1[1]) × $Z5 \div (Z6 \times 2)$) $Z4 \leftarrow Z4$, (($P1[1] \times Z5 \div Z6$) ×($P1[3] \div Y[;1]$) ×($1 - Z5 \div Z6$)) [20] [21] $Z4 \leftarrow \blacksquare ((QZ4) + . \times Z4)$ $Z4 \leftarrow +/((1Z1)\circ.=(1Z1))\times Z4$ [22] [23] Z5 + +/((M[;3] - M[;4]) + 2)[24] $Z5 \leftarrow ((Z5 \div (Z0 - Z1)) \times Z4) \times 0.5$ [25] A [26] $\rightarrow((|X[1 1]) = 1 0)/(N1,N2)$ [27] ' *FMLM*3' Q = $A \times (C \star R) \div (K + (C \star R))$ [28] P2,' FUER [29] R ' [30] K Α ' KONSTANTEN.....: '; 12 5 **•**P1 [31] ' STANDARDABWEICHUNG.: '; 12 5 ₹Z5 [32] (Z2,Z3) FTAB2 M [33] [34] *→N*2 [35] *N*1:*P*2 ' KONSTANTEN A,K,R = '; 12 5 **P**1 [36] ' STANDARDABWEICHUNG = '; 12 5 \vec{F}Z5 [37] ' RFQS, SIGMA Q RELATIV = '; 12 5 σ Z2,Z3 [38] $[39] N2: \to 0 \times \iota X[2] = 0$ [40] P1 GRAF1 10⊕M[; 2 3] $\nabla FMLMO[[]]\nabla$ ∇ Z \leftarrow P FMLMO Y [1] $Z \leftarrow (P[1] \times Y \times P[3]) \div (P[2] + Y \times P[3])$ Δ) SAVE 11.35.06 07/04/78 ADSORB

Programm FBET3 Ausgleichsrechnung, Ausdruck und Diagramm für BET-Isotherme. Ruft die Funktionen FBETO, FBET1, FBET2, NONLIN1, FTAB2 und GRAF1 auf. 1. Eingabeparameter "X"...: Vektor der Komponenten Steuerzahl T. Steuerzahl D. Schätzwerte A1,K1,K2. Wirkung: T O Rechnung mit den Schätzwerten ohne Angleich und Ausdruck, T O Ausgleichsrechnung, T=0 kein Ausdruck, T=1 Ausdruck Konstanten, T=2 Ausdruck Konstanten + Messwerte, D=0 kein Diagaramm, D=1 Diagramm 2. Eingabeparameter "Y"...: Zweispaltige Matrix der Messwerte. Erste Spalte Gleichgewichtskonzentration, zweite Spalte Gleichgewichtsbeladung. Zum Ausgleich werden die Relativwerte C/C_{max} und $Q/Q(C_{max})$ verwendet. Die Ausgleichsfunktion lautet Q=C/K1+K2 C-K3 C^2), die erhaltenen K1,K2,K3 werden mit FBET2 in A=Q0, K1=CS und K2=K der BET-Gleichung umgerechnet. $\nabla FBET3[\Box]\nabla$ ∇ X FBET3 Y;Z0;Z1;Z2;Z3;Z4;Z5;Z6;P2 [1] $GFN1 \leftarrow 'FBET1'$ [2] $M \leftarrow \Diamond((5, Z0) \rho((1Z0 \leftarrow \rho Y[; 1]), Y[; 1], Y[; 2]))$ **[3]** $Z1 \leftarrow (\rho X) - 2$ [4] $P1 + X[2 + \iota Z1]$ [5] P2 ← 'RECHNUNG' [6] $\rightarrow N0 \times iX[1] < 0$ [7] $Z2 \leftarrow 1$ FBET2 P1 [8] $RF \leftarrow (Z1)\rho(Y[Z3;2],Y[(Z3 \leftarrow 1 \land \forall Y[;1]);1])$ [9] $Y_1 \leftrightarrow \phi((2, Z_0) \rho(Y_{[;1]} \div RF_{[2]}), (Y_{[;2]} \div RF_{[1]}))$ $RF \leftarrow (RF[1] \div RF[2]), RF[1], (RF[1] \times RF[2])$ [10] $Z6 \leftarrow (Y1 NONLIN1(4, 100, Z2 \times RF)) \div RF$ [11][12]P1←2 FBET2 Z6 [13] $P2 \leftarrow 'ANGLEICH'$ $[14] NO:GFN1 \leftarrow 'FBETO'$ *M*[;4] ← • '*P*1 ',*GFN*1,' *Y*[;1]' [15] [16] $M[;5] \leftarrow 1 - M[;4] \div M[;3]$ [17] Z2 + +/((1 - M[; 4] + M[; 3]) + 2) $Z3 \leftarrow (Z2 \div (Z0 - 1)) \times 0.5$ [18] [19] A [20] $Z4 \leftarrow (Z0,1) \rho M[;4] \div P1[1]$ [21] $Z_{4} \leftarrow Z_{4}, ((-M[;4]*2); (P_{1}[1] \times Y[;1]))$ [22] $Z4 \leftarrow Z4$, (-Z4[;2]) [23] $Z4[;2] \leftarrow Z4[;2] \times ((1 \div P1[3]) + ((Y[;1] \times 2) \div (P1[2] \times 2)) \times (1 - 1 \div P1[3]))$ [24] $Z4[;3] \leftarrow (Z4[;3];P1[3]*2) \times (P1[2]+((Y[;1]*2);P1[2])-2 \times Y[;1])$ [25] $Z4 \leftarrow \exists ((QZ4) + . \times Z4)$ [26] $Z 4 \leftarrow +/((1Z1) \circ . = (1Z1)) \times Z 4$ [27] Z5 + +/((M[;3] - M[;4]) + 2)[28] $Z5 \leftarrow ((Z5 \div (Z0 - Z1)) \times Z4) \times 0.5$ [29] A [30] \rightarrow ((|X[1 1]) = 1 0)/(N1,N2) ' *FBET*3' [31] P2, ' FUER [32] Q = $A \times C \times K2 \div (K1 + C \times (K2 - 2) - (C \star 2) \times (K2 - 1) \div K1)$ [33] [34] Α *K*1 K2 ' [35] ' KONSTANTEN.....: '; 12 4 \$P1 ' STANDARDABWEICHUNG .: '; 12 4 \$25 [36] [37] (Z2,Z3) FTAB2 M [38] *→N*2 [39] N1:P2 ' KONSTANTEN A,K1,K2, [40] = '; 12 4 **v**P1 ' STANDARDABWEICHUNG [41] = '; 12 4 **v**Z5 3 ' RFQS, SIGMA Q RELATIV ='; 12 5 vZ2,Z3 [42] $[43] N2: \rightarrow 0 \times i X[2] = 0$ [44] P1 GRAF1 10⊕M[; 2 3] Δ)SAVE 11.18.58 07/04/78 ADSORB

- 36 -

Die Funktionen XYZO sind die Definitionsgleichungen für die Modellansätze ZUA, SBA und BET. Erster Eingabeparameter: Vektor der Konstanten A1,K1,A2,K2 bzw. A,K1,K2. Zweiter Eingabeparameter: Vektor der Gleichgewichtskonzentrationen.

FBET1 ist die eigentliche Angleichsfunktion für den BET-Modellansatz, es wird mit folgender, durch Umstellen der BET-Gleichung erhaltenen Funktion gerechnet: $Q=C/(K1+K2+C-K3+C^2)$. Eingabeparameter analog FBETO, d.h. 1.EP = K1,K2,K3.

```
Die Funktion FBET2 rechnet die BET-Konstanten und die FBET1-Konstanten ineinander um (A=Q0, K1=CS, K2=K).
```

```
Erster Eingabeparameter = 1 : zweiter Eingabeparameter = A,K1,K2
Ausgabevariable = K1,K2,K3
Erster Eingabeparameter = 2 : zweiter Eingabeparameter = K1,K2,K3
Auagabeparameter = A,K1,K2
```

```
\nabla FL_2AO[[]]\nabla
       \nabla Z+P FL2A0 Y
           Z \leftarrow (P[1] \times Y \div (P[2] + Y)) + (P[3] \times Y \div (P[4] + Y))
[1]
        \nabla
           \nabla FL_2S0[\Pi]\nabla
       \nabla 7+P FL2S0 Y
           Z \leftarrow P[1] \times (Y \div (P[2] + Y)) \times (1 + P[3] \times Y \div (P[4] + Y))
[1]
        Ω
           \nabla FBETO[\Box]\nabla
        \nabla Z+P FBETO Y
           Z \leftarrow (Y \times P[1]) \div ((P[2] \div P[3]) + (Y \times (1 - 2 \div P[3])) - ((Y \times 2) \times (1 - 1 \div P[3]) \div P[2]))
[1]
            \nabla FBET1[\Box]\nabla
        \nabla Z \leftarrow X FBET1 Y
[1]
            Z \leftarrow Y \div (X[1] + (X[2] \times Y) - X[3] \times Y \star 2)
        \nabla
            \nabla FBET2[]]\nabla
        \nabla Z \leftarrow X FBET2 Y
            \rightarrow N 1 \times \iota X = 2
[1]
            Z \leftarrow 3\rho(1:(\times/Y[1 3]))
[2]
            Z[2] \leftarrow Z[2] \times (Y[3] - 2)
[3]
            Z[3] + Z[3] \times (Y[3] - 1) + Y[2]
Γ4]
[5]
            Z[1] \leftarrow Z[1] \times Y[2]
[6]
           \rightarrow 0
[7]
        N1:Z←3ρ0
            Z[3] + 2 + (Y[2] + 2) + (×/Y[1 3], 2)
[8]
            Z[3] \leftarrow Z[3] + (Z[3] \times (Z[3] - 2)) \times 0.5
[9]
            Z[1] \leftarrow ((Z[3]-2) \div (Z[3] \times Y[2]))
[10]
            Z[2] \leftarrow \times / Z[1 \ 3], Y[1]
[11]
        \nabla
            ) SAVE
    11.21.14 07/04/78 ADSORB
```

Programm FL2A3	
Ausgleichsrechnung, Ausdruck ur Ruft die Funktionen FL2AO, NONL	nd Diagramm für den Modellansatz "ZUA". _IN1, FTAB2 und GRAF1 auf.
1. Eingabeparameter "X": Vek Sch Sch gle Kor D=C	ktor der Komponenten Steuerzahl T, Steuerzahl D, hätzwerte A1,K1,A2,K2. Wirkung: T O Rechnung mit den hätzwerten ohne Angleich und Ausdruck, T O Aus- eichsrechnung, T=O kein Ausdruck, T=1 Ausdruck nstanten, T=2 Ausdruck Konstanten + Messwerte, O kein Diagramm, D=1 Diagramm
2. Eingabeparameter "Y": Zwe Gle gew	eispaltige Matrix der Messwerte. Erste Spalte eichgewichtskonzentration, zweite Spalte Gleich- wichtsbeladung.
Zum Ausgleich werden die Relati	ivwerte C/C _{max} und Q/Q(C _{max}) verwendet.
$ \begin{array}{c} \nabla FL2A3[\square] \nabla \\ \nabla X FL2A3 Y; Z0; Z1; Z2; Z3; Z4; J. \\ [1] GFN1+'FL2A0' \\ [2] M+ \& ((5, Z0) \rho ((1 Z0+\rho Y[; 1]), J. \\ [3] Z1+ (\rho X) - 2 \\ [4] P1+X[2+1Z1] \\ [5] P2+' RECHNUNG' \\ [6] + N0 \times 1X[1] < 0 \\ [7] RF+(Z1) \rho$ (Y[Z2; 2], Y[(Z2+1+]] \\ [8] Y1+ $\&$ ((2, Z0) ρ (Y[; 1] $\div RF[2]$) \\ [9] P1+(Y1 NONLIN1(3, 100, P1 $\div R.$ \\ [10] P2+' ANGLEICH' \\ [11] N0: M[; 4] + \bigstar 'P1 ', GFN1, 'Y[; 1] \\ [12] M[; 5] + 1-M[; 4] \div M[; 3] \\ [13] Z2+ / ((1-M[; 4] \div M[; 3]) * 2) \\ [14] Z3+(Z2 \div (Z0-1)) \times 0.5 \\ [15] n \\ [16] Z4+(Z0, 1) \rho Y[; 1] \div (P1[2] + Y[\\ [17] Z4+Z4, Z4[; 1] \times (-P1[1] \div (P1[2] + Y[\\ [18] Z4+Z4, Y[; 1] \div (P1[4] + Y[; 1]) \\ [19] Z4+Z4, Z4[; 3] \times (-P1[3] \div (P1[2] + Y[\\ [20] Z4+ \oplus ((\otimes Z4) + . \times Z4) \\ [21] Z4+ + / ((1 Z1) \circ . = (1 Z1)) \times Z4 \\ [22] Z5+ ((Z5 \div (Z0-Z1)) \times Z4) \times 0.5 \\ [24] n \\ [25] + ((X[1 1]) = 1 0) / (N1, N2) \\ [26] ' FL2A3' \\ [27] P2, ' FUER Q = A1 \times C \div (K1+ \\ [28] ' ' \\ [29] ' \\ [30] ' KONSTANTEN '; \\ [31] ' STANDARDABWEICHUNG. : '; \\ [32] (Z2, Z3) FTAB2 M \\ [33] \rightarrow N2 \\ [34] N1: P2 \\ [35] Y KONSTANTEN A1, K1, A2, K2 \\ [36] ' STANDARDABWEICHUNG \\ [37] ' RFQS, SIGMA Q RELATIV \\ [38] N2: \rightarrow 0 \times 1X[2] = 0 \\ [39] P1 GRAF1 10 @M[; 2 3] \\ \nabla \\) SAVE \\ 113 04 07 (01) 77 (01) 720 \\ ADSOPP \\ \end{array}	$Z5; P2$ $Y[;1],Y[;2]))$ $\frac{\forall Y[;1]);1]}{(Y[;2];RF[1]))}$ $F)) \times RF$ $1]'$ $\frac{(Y)}{2]+Y[;1])}$ $4]+Y[;1]))$ $4]+Y[;1]))$ $\frac{(C) + A2 \times C \div (K2+C)}{(K2+C)} + A2 = K2'$ $A1 = K1 = A2 = K2'$ $= '; 12 5 *P1$ $= '; 12 5 *P1$ $= '; 12 5 *P1$ $= '; 12 5 *P2$ $= '; 12 5 *P2$
11.10.01 07,01770 Mbbollb	

Programm FL2S3 Ausgleichsrechnung, Ausdruck und Diagramm für den Modellansatz "SBA". Ruft die Funktionen FL2SO, NONLIN1, FTAB2 und GRAF1 auf. Eingabeparameter "X"...: Vektor der Komponenten Steuerzahl T, Steuerzahl D, Schätzwerte A1,K1,A2,K2. Wirkung: T O Rechnung mit den Schätzwerten ohne Angleich und Ausdruck, T Ö Ausgleichsrechnung, T=O kein Ausdruck, T=1 Ausdruck Konstanten, T=2 Ausdruck Konstanten + Messwerte, D=O kein Diagramm, D=1 Diagramm 2. Eingabeparameter "Y"...: Zweispaltige Matrix der Messwerte. Erste Spalte Gleichgewichtskonzentration, zweite Spalte Gleichgewichtsbeladung. Zum Ausgleich werden die Relativwerte C/C_{max} und $Q/Q(C_{max})$ verwendet. $\nabla FL2S3[]]\nabla$ ∇ X FL2S3 Y;Z0;Z1;Z2;Z3;Z4;Z5;P2 [1] $GFN1 \leftarrow 'FL2S0'$ [2] $M \leftarrow \Diamond((5, Z0) \rho((1Z0 \leftarrow \rho Y[;1]), Y[;1], Y[;2]))$ [3] $Z1 \leftarrow (\rho X) - 2$ [4] $P1 \leftarrow X[2 + \iota Z1]$ [5] P2 ← ' RECHNUNG' [6] →N0×1X[1]<0 $RF \leftarrow (Z1)\rho(Y[Z2;2],Y[(Z2 \leftarrow 1 \land \forall Y[;1]);1])$ [7] $Y_1 \leftarrow Q((2, Z_0) \rho(Y_{[;1]} \div RF[2]), (Y_{[;2]} \div RF[1]))$ [8] [9] RF[3] + 1 $P1 \leftarrow (Y1 \ NONLIN1(3, 100, P1 \div RF)) \times RF$ [10] P2**←'** ANGLEICH' [11][12] NO:M[;4]←•'P1 ',GFN1,' Y[;1]' [13] $M[;5] \leftarrow 1 - M[;4] \div M[;3]$ $Z_{2 \leftrightarrow +/((1-M[;4];M[;3]) \times 2)}$ [14] [15] $Z_{3} \leftarrow (Z_{2} \div (Z_{0} - 1)) \times 0.5$ [16] A $Z_{4} \leftarrow (Z_{0}, 1) \rho (Y[; 1]; (P_{1}[2] + Y[; 1])) \times (1 + P_{1}[3] \times Y[; 1]; (P_{1}[4] + Y[; 1]))$ [17] $Z + Z + Z + Z + [;1] \times (-P1[1] \div (P1[2] + Y[;1]))$ [18] $Z4 \leftarrow Z4$, $(P1[1] \times Y[;1] \times Z4[;1]) \div (P1[4] + Y[;1])$ [19] $Z4 \leftarrow Z4, Z4[;3] \times (-P1[3] \div (P1[4] + Y[;1]))$ [20] [21] Z4+础((QZ4)+.×Z4) [22] Z4++/((ıZ1)∘.=(ıZ1))×Z4 [23] $Z5 \leftarrow +/((M[;3] - M[;4]) \times 2)$ $Z5 \leftarrow ((Z5 \div (Z0 - Z1)) \times Z4) \times 0.5$ [24] [25] R \rightarrow ((|X[1 1])= 1 0)/(N1,N2) [26] [27] ' FL2S3' P2, ' FUER $A1 \times (C \div (K1 + C)) \times (1 + A2 \times C \div (K2 + C))$ [28] Q =[29] 1 K2 ' 1 K1 A 2 [30] A1[31] ' KONSTANTEN..... '; 12 5 \ \P1 [32] ' STANDARDABWEICHUNG.: '; 12 5 ▼Z5 [33] (Z2,Z3) FTAB2 M [34] *→N*2 [35] N1:P2 ' KONSTANTEN A1,K1,A2,K2 = '; 12 5 •P1 [36] ' STANDARDABWEICHUNG = '; 12 5 \vec{5}Z5 [37] ' RFQS, SIGMA Q RELATIV = '; 12 5 $\overline{v}Z2,Z3$ [38] $[39] N2: \rightarrow 0 \times 1X[2]=0$ P1 GRAF1 10⊕M[; 2 3] [40] ∇) SAVE 11.16.22 07/04/78 ADSORB

- 39 -

Programm FKLM3

- 40 -

Ausgleichsrechnung, Ausdruck und Diagramm für den Modellansatz "Langmuirgleichung+ konstante Grundadsorption". Ruft die Funktionen FKLMO, NONLIN1, FTAB2 und GRAF1 auf. 1. Eingabeparameter "X"...: Vektor der Komponenten Steuerzahl T, Steuerzahl D, Schätzwerte A1,A2,K2. Wirkung: T O Rechnung mit den Schätzwerten ohne Angleich und Ausdruck, T O Ausgleichsrechnung, T=0 kein Ausdruck, T=1 Ausdruck Konstanten, T=2 Ausdruck Konstanten + Messwerte, D=O kein Diagramm, D=1 Diagramm 2. Eingabeparameter "Y"...: Zweispaltige Matrix der Messwerte. Erste Spalte Gleichgewichtskonzentration, zweite Spalte Gleichgewichtsbeladung. Zum Ausgleich werden die Relativwerte C/C_{max} und $Q/Q(C_{max})$ verwendet. $\nabla FKLM3[\Pi]\nabla$ ∇ X FKLM3 Y;Z0;Z1;Z2;Z3;Z4;Z5;Z6;P2 $GFN1 \leftarrow 'FKLM0'$ [1] [2] $M \leftarrow \Diamond((5, Z0)\rho((1Z0 \leftarrow \rho Y[;1]), Y[;1], Y[;2]))$ [3] $Z1 \leftarrow (\rho X) - 2$ [4] $P1 \leftarrow X[2 + \iota Z1]$ [5] P2 ← ' RECHNUNG ' →N0×1X[1]<0 [6] [7] $RF \leftarrow (Z1)\rho(Y[Z2;2],Y[Z2;2],Y[(Z2 \leftarrow 1 \uparrow \forall Y[;1]);1])$ $Y_1 \leftarrow \Diamond((2, Z_0) \rho(Y_{[;1]} \div RF_{[3]}), (Y_{[;2]} \div RF_{[1]}))$ [8] [9] $P1 \leftarrow (Y1 \ NONLIN1(3, 100, P1 \div RF)) \times RF$ P2+' ANGLEICH' [10] $[11] NO:M[;4] \leftarrow *'P1 ', GFN1, 'Y[;1]'$ $M[;5] \leftarrow 1 - M[;4] \div M[;3]$ [12] $Z_{2 \leftarrow +}/((1 - M[; 4]; M[; 3]) \times 2)$ [13] [14] $Z3 \leftarrow (Z2 \div (Z0 - 1)) \times 0.5$ [15] A $Z5 \leftarrow Y[;1]$ [16] [17] $Z6 \leftarrow P1[3] + Y[;1]$ [18] $Z4 \leftarrow (Z0, 1)\rho 1$ [19] $Z4 \leftarrow Z4, Z5 \div Z6$ [20] $Z4 \leftarrow Z4$, $(-P1[2] \times Z5) \div (Z6 \times 2)$ [21] $Z4 \leftarrow \exists ((QZ4) + . \times Z4)$ [22] $Z4 \leftarrow +/((\iota Z1) \circ . = (\iota Z1)) \times Z4$ [23] Z5 + + /((M[;3] - M[;4]) + 2)[24] $Z5 \leftarrow ((Z5 \div (Z0 - Z1)) \times Z4) \times 0.5$ [25] A $\rightarrow((|X[1 1]) = 1 0)/(N1,N2)$ [26] ' FMLM3' [27] Q = $A1 + A2 \times C \div (K2 + C)$ [28] P2,' FUER [29] A 2 K2' [30] A 1 ' KONSTANTEN..... '; 12 5 •P1 [31] ' STANDARDABWEICHUNG.: '; 12 5 ₹Z5 [32] [33] (Z2,Z3) FTAB2 M [34] *→N*2 [35] N1:P2 ' KONSTANTEN A1,A2,K2 = '; 12 5 **v**P1 [36] = '; 12 5 **v**Z5 ' STANDARDABWEICHUNG [37] = '; 12 5 **v**Z2,Z3 [38] ' RFQS, SIGMA Q RELATIV $[39] N2: \to 0 \times \iota X[2] = 0$ [40] P1 GRAF1 10⊕M[; 2 3] ∇ $\nabla FKLMO[[]] \nabla$ $\nabla Z \leftarrow P FKLMO Y$ $Z \leftarrow P[1] + (P[2] \times Y \div (P[3] + Y))$ [1] Δ)SAVE 11.37.43 07/04/78 ADSORB

```
Programm FRAD3
   Ausgleichsrechnung, Ausdruck und Diagramm für die Isotherme von Radke + Praußnitz.
   Ruft die Funktionen FRADO, NONLIN1, FTAB2 und GRAF1 auf.
   1. Eingabeparameter "X"...: Vektor der Komponenten Steuerzahl T, Steuerzahl D,
                                      Schätzwerte A1, A2, K2. Wirkung: T O Rechnung mit den
Schätzwerten ohne Angleich und Ausdruck, T O Aus-
                                       gleichsrechnung, T=O kein Ausdruck, T=1 Ausdruck
                                       Konstanten, T=2 Ausdruck Konstanten + Messwerte,
                                       D=O kein Diagramm, D=1 Diagramm
   2. Eingabeparameter "Y"...: Zweispaltige Matrix der Messwerte. Erste Spalte
                                       Gleichgewichtskonzentration, zweite Spalte Gleich-
                                       gewichtsbeladung.
   Zum Ausgleich werden die Relativwerte C/C_{max} und Q/Q(C_{max}) verwendet.
         \nabla FRAD3[\Box] \nabla
      ∇ X FRAD3 Y;Z0;Z1;Z2;Z3;Z4;Z5;Z6;P2
[1]
        GFN1 \leftarrow 'FRAD0'
[2]
        M \leftarrow \Diamond((5, Z0) \rho((1Z0 \leftarrow \rho Y[; 1]), Y[; 1], Y[; 2]))
[3]
         Z1 \leftarrow (\rho X) - 2
[4]
        P1←X[2+1Z1]
        P2+' RECHNUNG'
[5]
        →N0×1X[1]<0
[6]
[7]
        RF \leftarrow (Z1)\rho(Y[(Z2 \leftarrow 1 \land \forall Y[;1]);2],1,1)
[8]
         Y1 \leftarrow \Diamond((2,Z0)\rho(Y[;1];RF[2]),(Y[;2];RF[1]))
[9]
        P1 \leftarrow (Y1 \ NONLIN1(3, 100, P1 \div RF)) \times RF
        P2←' ANGLEICH'
[10]
[11] NO:M[;4] ← • 'P1 ', GFN1, ' Y[;1]'
        M[;5] \leftarrow 1 - M[;4] \div M[;3]
[12]
         Z_{2 \leftarrow +}/((1 - M[; 4]; M[; 3]) \times 2)
[13]
[14]
        Z3 \leftarrow (Z2 \div (Z0 - 1)) \times 0.5
[15] A
[16]
        Z5 \leftarrow Y[;1] * P1[3]
        Z6 \leftarrow P1[2] + Y[;1] \times (P1[3] - 1)
[17]
[18]
         Z_{4} (Z0,1)\rho (Z5 ÷ Z6)
         Z4 \leftarrow Z4, ((-P1[1])×Z5 \div (Z6 \times 2))
[19]
         Z_{4} \leftarrow Z_{4}, ((P_{1}[1] \times Z_{5} \div Z_{6})×((P_{1}[3] \div Y[;1])-(P_{1}[3] - 1)×Z_{5} \div (Z_{6} \times Y[;1] \times 2)))
[20]
         Z4↔ 🗄 ( ( QZ4 ) + . × Z4 )
L21]
[22]
         Z4 \leftarrow +/((\iota Z1) \circ \cdot = (\iota Z1)) \times Z4
         Z_{5++/((M[;3]-M[;4])*2)}
[23]
         Z5 \leftrightarrow ((Z5 \div (Z0 - Z1)) \times Z4) \times 0.5
[24]
[25] A
         \rightarrow((|X[1 1]) = 1 0)/(N1,N2)
[26]
         ' FRAD3'
[27]
         P2,' FUER
                        Q =
                                 A \times (C \star R) \div
                                                (K + C * (R-1))''
[28]
[29]
                                                                      K
                                                                                        R '
[30]
                                                     Α
         ' KONSTANTEN..... '; 12 5 \vert P1
[31]
         ' STANDARDABWEICHUNG.: '; 12 5 #25
[32]
         (Z2,Z3) FTAB2 M
[33]
[34]
         →N2
[35] №1:P2
                                              = '; 12 5 \[\[\]P1
         ' KONSTANTEN A,K,R
[36]
                                             = '; 12 5 vZ5
        ' STANDARDABWEICHUNG
[37]
        ' RFQS, SIGMA \ Q \ RELATIV = '; 12 5 \ vZ2, Z3
[38]
[39] N2: \rightarrow 0 \times i X[2] = 0
[40]
         P1 GRAF1 10⊕M[; 2 3]
      \nabla
         \nabla FRADo[[]]\nabla
      ∇ Z←P FRADO Y
         Z \leftarrow (P[1] \times Y \times P[3]) \div (P[2] + Y \times (P[3] - 1))
[1]
      Δ
         )SAVE
   16.32.17 07/04/78 ADSORB
```

Programm GRAF

Erstellt eine Zeichnung der Daten in der Eingabematrix auf APL-Terminal. Nach dem Eintasten des Funktionsaufrufs ist <u>vor</u> dem Drücken der Return-Taste der Fine plot-Kopf aufzusetzen.

Erster Eingabeparameter "Y" : Vektor der Diagrammgrenzen unterer Ordinatenendpunkt oberer Ordinatenendpunkt linker Abszissenendpunkt rechter Abszissenendpunkt Zweiter Eingabeparameter "X" : Matrix der Datenpunkte mit den Spalten X, Y₁, Y₂...

		$\nabla GRAF[]] \nabla$	
7	7	Y GRAF X	
[1]		ORDINATE LOW LIMIT Y[1]	
[2]		ORDINATE HIGH LIMIT Y[2]	
[3]		ABSCISSA LOW LIMIT Y[3]	
[4]		ABSCISSA HIGH LIMIT Y[4]	
[5]		SET ORDINATE TOTAL 5 SPACED	6 NUMBERED 2
[6]		SET ABSCISSA TOTAL 5 SPACED	10 NUMBERED 2
[7]		ORDINATE FORMAT 'E9.3'	
[8]		ABSCISSA FORMAT 'E9.3'	
[9]		ORDINATE TEXT 'LOG Q + '	
[10]		ABSCISSA TEXT '> LOG C'	
[11]		PLOT X	
7	7		
) SAVE	
11.	. 2	2.48 07/04/78 ADSORB	

Programm GRAF1

zeichnet in ein Diagramm die Messwerte und die berechnete Beladungskurve mit 100 Punkten (Fineplot) in doppelt logarithmische Darstellung. Verwendet die Funktionen MGRAF, GRAF und den globalen Funktionsnamen GFN1.

Erster Eingabeparameter "X"....: Vektor der Konstanten für die mit GFN1 aktuell gleichgesetzte Funktion Zweiter Eingabeparameter "Y"...: Zweispaltige Matrix der Messwerte. Spalte 1 Gleichgewichtskonzentrationen, Spalte 2 Gleichgewichtsbeladungen

- 42 -

		$\nabla GRAF1[]]$
	∇	X GRAF1 Y;Z1;Z2
[1]		' YMIN, YMAX, XMIN, XMAX FUER LGQ/LGC-DIAGRAMM'
[2]		' EINGEBEN, FINEPLOTKOPF, WAGENRUECKLAUF'
[3]		Z1+[]
[4]		$Z2 \leftarrow 10 \times (100 \ 1 \ \rho(Z1[3] + (1100) \times 0.01 \times (-/Z1[4 \ 3])))$
[5]		Z2←Z2, •'X ', GFN1, ' Z2'
[6]		Z1 GRAF Z2+(10@Z2) MGRAF Y
	Δ	
) SA VE
11	.2	23.54 07/04/78 ADSORB

Funktion MGRAF

Bildet aus zwei zweispaltigen Matrizen (Y) und (X) eine dreispaltige Matrix (M1) der Anordnung

Spalte 1	Spalte 2	Spalte 3
Y(1,1) Y(2,1)	Y(1,2) Y(2,2)	0 0
Y(N,1)	Y(N,2)	0
X(1,1) X(2,1)	0 0	X(1,2) X(2,2)
X(M,1)	0	$\mathbf{X}(M,2)$

Damit kann man eine Matrix erzeugen, die als Eingabeparameter im Programm GRAF Messwertpaare und berechnete Wertepaare in ein Diagramm zeichnet.

Eingabeparameter (Y,X).....: die zu verknüpfenden Matrizen globaler Ausgabeparameter (M1): die verknüpfte Matrix

> VMGRAF[[]]V V Z←Y MGRAF X [1] I1←pY[;1] [2] I2←pX[;1] [3] Z←((I1+I2),3)p0 [4] Z[iI1; 1 2]←Y [5] Z[I1+iI2; 1 3]←X €)SAVE 11.24.29 07/04/78 ADSORB

Funktion FTAB2
Druckt eine Tabelle der Mess- und Rechenwerte aus.
Erster Eingabeparameter "X"...: Vektor der zwei Größen
Quadratsumme der relativen
Fehler, Sigma Q relativ
Zweiter Eingabeparameter "Y"...: Fünfspaltige Matrix mit den
Spalten Messpunktnummer,
Gleichgewichtsbeladung, berechnete Beladung (QB),
relativer Fehler.

 $\nabla FTAB2[]]\nabla$ $\nabla X FTAB2 Y$ Z1← 3 Ο **φ((**ρΥ[;1]),1)ρ(ιρΥ[;1]) [1] [2] AZ1+Z1, 11 4 11 3 11 3 9 4 ΦΥ[; 2 3 4 5] Z1+Z1, 4ΦΥ[; 2 3 4 5] [3] [4] 1 1 [5] ' MESS- UND RECHENWERTE' [6] ' I C QQB $\Delta Q / Q$ [7] Z1' RFQS, SIGMA Q RELATIV ='; 11 5 $\overline{\phi}X$ [8] ∇) SAVE 11.25.33 07/04/78 ADSORB

Funktionen NONLIN1, NONLIN2

Aus dem Bibliotheksprogramm NONLIN entwickelte				
Programme für den nichtlinearen Angleich. NONLIN1				
ist gleich NONLIN bis auf: 1. der Angleichsfunktionsname				
FUNC ist in NONLIN2, 2. der globale Kon	zentrations-			
vektor X in GX" umbenennt. NONLIN2 ruft d	ie Ausgleichs-			
Gleichung unter dem globalen Funktionsnamen GFN1 auf,				
der im Hauptprogramm (z.B. FL2A3) zugeordnet wird.				
Erster Eingabeparameter <u>XX</u> in NONLIN1:	Zweispaltige Matrix der Messwerte, Spalte 1 Gleichgewichtskonzentra- tionen, Spalte 2 Gleich- gewichtsbeladungen.			
Zweiter Eingabeparameter <u>C</u> in NONLIN1:	Vektor der Größen: Zahl der signifikanten Ziffern des Ergebnisses, maximale Schrittzahl, Schätzwerte der zu berechnenden Kon- stanten.			
Eingabeparameter C in NONLIN2:	Vektor der Konstanten.			
$\begin{array}{c} \text{Eingabeparameter C in NONLIN2:} \\ & \forall NONLIN1[[]] \forall \\ & \forall 2 \neq XY \ NONLIN1 \ C; ERE; E; H; ME; ST; GX \\ & \Rightarrow OK1 \times 10 \land . = (0 + 0 p XY), 0 + 0 p C \\ [2] ER: 'INVALID \ DATA' \\ [3] & \Rightarrow 0 \\ [4] OK1: \Rightarrow ER \times 1(2 \neq p p XY) \vee (1 \neq p p C) \vee 2 \geq p, C \\ [5] ST \leftarrow (10 \times - 2 \times C[1]), C[2], 1 \ 1, pZ + 2 + C \\ [6] & \forall ACUOUS \\ [7] C \leftarrow (ST[5], pGX \leftarrow XY[; 1]) p 0.5 \\ [8] ME \leftarrow F / E \leftarrow (NONLIN2 \ Z) - XY[; 2] \\ [9] H \leftarrow ME \ 1E^{-} 9[0, 0.01 \times Z \\ [10] ST \ [3] \neq 1 \\ [11] C[ST[3];] \leftarrow ((NONLIN2 \ Z + H \times ST[3] = 1 ST[5]) - E + XY[; 2] \\ [12] \Rightarrow 11 \times 1 \geq /ST \ [5] 5 \ S] \wedge (ST \ [5] + 0 \ 1 \\ [13] Z \leftarrow Z - (H \ (ST \ [5] 5) \ (ST \ [5] + 1) + ME \times 10 \times 11 + / \times ME - 1 \ 10 \ + \\ [14] \Rightarrow ((2 + ST) \geq (ERR + * ERE), ST \ [4] + ST \ [4] + 1) / 0 \ 8 \\ [15] 'NO \ CONVERGENCE \ AFTER '; ST \ [2]; ' ITERATIONS.' \\ [16] P \notin STSC \\ \end{array}$	Vektor der Konstanten.); <u>H[ST</u> [3]] :1E ⁻ 14)+ <u>C</u> +.×Q <u>C</u>)+.× <u>ERR</u> ← <u>C</u> +.× <u>F</u>			
$\begin{array}{c} \text{Eingabeparameter C in NONLIN2:} \\ & \forall NONLIN1[[] \forall \\ & \forall Z \neq \underline{X} & NONLIN1 & \underline{C}; \underline{ERR}; \underline{F}; \underline{H}; \underline{MF}; \underline{ST}; \underline{GX} \\ & \uparrow OK1 \times 10 \wedge . = (0 + 0 \rho \underline{X} \underline{Y}), 0 + 0 \rho \underline{C} \\ \hline & 1 & \uparrow OK1 : \uparrow OK - 2 \times (0 + 0 \rho \underline{X} \underline{Y}), 0 + 0 \rho \underline{C} \\ \hline & \underline{C} \\ \\ & \underline{C} \\ \\ & \underline{C} \\ & \underline{C} \\ \\ & \underline{C} \\ & \underline$	Vektor der Konstanten.); $\underline{H}[\underline{ST}[3]]$: $\underline{H}[\underline{ST}[3]]$: $\underline{H}[\underline{ST}[3]]$			
<pre> Eingabeparameter C in NONLIN2:</pre>	<pre>Vektor der Konstanten.)÷<u>H[ST[3]]</u> ·1E⁻14)+<u>C</u>+.×QC)+.×<u>ERR</u>←C+.×E</pre>			

Berechnet für eine Reihe von vorgegebenen Konzentrationen die Beladung nach dem Modellansatz "zwei additive Adsorptionsreaktionen". Definitionsgleichung Zeile 11. Es ist möglich, mit der modifizierten Langmuirgleichung, d.h. mit C^R zu rechnen. Verwendet Funktion FL2AO.

Erster Eingabeparameter (Y) :	Steuert den Ergebnisausdruck, O = kein Ausdruck, 1 = Ausdruck
Zweiter Eingabeparameter (X):	Vektor der N-Konzentrationen
Globaler Eingabeparameter P2:	Matrix der Langmuirkonstanten A1 K1 R1 = 1 A2 K2 R2 = 1
	R1 und R2 werden nicht verwendet.
Globaler Ergebnisparameter (M)	:Matrix mit den Spalten N,C,Q1, Q2,Q,1gC,1gQ1,1gQ2,1gQ
Globaler Ergebnisparameter(MQ)	:Matrix mit den Spalten lgC,lgQ kann für Diagrammzeichnen ver- wendet werden.

	$\nabla F L 2 A \Gamma [] V$			
V	Y FL2A X			
۲ <u>1</u>]	$M \leftarrow ((\rho X), 1) \rho (1 \rho X)$			
[2]	11+11,X			
[3]	$M + M$, ($P2[1;1] \times X \div (P2[1;2] + X)$)			
[4]	M+M, (P2[1; 1 2], P2[2; 1 2]) FL2A0 X			
[5]	$M \leftarrow M$, $(10 \otimes M[; 2 3 4])$			
[6]	$M_{0} \leftarrow M_{[}; 5, 7]$			
[7]	$\rightarrow 0 \times 1 \mathbb{Z} = 0$			
[8]	1 1			
[9]	IFL2A SHEL ADDITIVE LGM-ADSOPDTIONSV	ייטיוייאסייט	t	
[10]	$ 0 = A1 \times C \div (L'1+C) + A2 \times C \div (L'2+C) $	t		
[11]	1 1			
[12]	$T \qquad A \qquad K $			
[13]	' 1 '; 11 5 ov ^p 2[1; 1 2]		,	
[14]	' 2 '; 11 5 oTP2[2; 1 2]	r Q1	Q'	
[15]	1 1	L		
[16]	Ч LGC LGC1	LGO		$C \mathbf{J}$
[17]	11 5 on("[;1],"[; 5 6 7],"[[; 2 3 4])			
[18]	→			
V				
)SAVE			
10.4	8.31 02/08/78 ADSOPP			

Programm FL2S

Berechnet für eine Reihe von vorgegebenen Konzentrationen die Beladung nach dem Modellansatz "sukzessive bimolekulare Adsorptionsreaktion". Definitionsgleichung Zeile 15. Es ist möglich, mit der modifizierten Langmuirgleichung, d.h. mit C^R, zu rechnen. Verwendet Funktion FL2SO.

Erster Eingabeparameter (Y) :	Steuert den Ergebnisausdruck, O ergibt keinen Ausdruck, 1 ergibt Ausdruck
Zweiter Eingabeparameter (X):	Vektor der N-Konzentrationen
Globaler Parameter P2:	Matrix der Langmuirkonstanten A1 K1 R1=1 A2 K2 R2=1
	R1,R2 werden nicht verwendet
Globaler Ergebnisparameter(M):	Matrix mit den Spalten N,C,Q1,Q,lgC,lgQ1,lgQ
Globaler Ergebnisparameter(MQ)	Matrix mit den Spalten lgC,lgQ kann für Diagrammzeichnen ver- wendet werden.

^{VF}L2SF []V V Y FL2S X $M \leftarrow ((\rho X), 1) \rho(\iota \rho X)$ [1] [2] 14+11, X [3] //←//,(P2[1;1]×X÷(P2[1;2]+X)) M←M,(P2[1; 1 2],P2[2; 1 2]) FL2SO X M←M,(10@M[; 2 3 4]) [4] [5] [6] MQ+M[; 5 7] [7] $\rightarrow 0 \times 1^{v} = 0$ 1 1 [8] 'FL2S ZUEL SUKEPSSIVE LGM-ADSORPTIONSVORGAENGE' [9] [10] 1 $\mathcal{O} = (A1 \times C \div (K1 + C)) \times (1 + A2 \times C \div (K2 + C))'$ 1 [11] 1 7 Λ [12]K 1 [13] 1 1 '; 11 5 $\circ \sqrt{2}[1; 1 2]$ [14] ' 2 '; 11 5 o₽2[2; 1 2] Q →Q1 ſ15] 1 [16] 1 1! LGCCJ LGO11,00 11 5 or ('f; 1], MF; 5 6 7], MF; 2 3 4]) [17] ∇)SAVT 10.51.28 02/08/78 ADSOPR

)OFF 013 10.51.37 02/08/78 FFF CONVERTE 1.26.25 TO PATE 150.25.49 CPU TIME 0.00.42 TO DATE 3.11.28 Programme FL2A2 und FL2S2

Berechnung mit FL2A bzw. FL2S, wobei eine Reihe vorgegebener Konstanten K2 verwendet wird.

Erster Eingabeparameter (Y) :	Vektor der Größen: Steuerzahl,
	K2 ₁ ,K2 ₂ K2 _N . Bei Steuer-
	zahl = o erscheint kein Aus-
	druck, bei 1 der Ausdruck
	wie in FL2A bzw. FL2S.
Zweiter Eingabeparameter (X) :	Vektor der Konzentrationen, für welche Q berechnet wird.
Globaler Eingabeparameter (P2) :	Matrix der Konstanten A1 K1 R1 A2 K2 R2 die Konstante K2 wird jeweils durch den Wert des Eingabe- parameters Y ersetzt.
Globaler Ergebnisparameter (M1):	Matrix mit den Spalten Nummer, lgC, lgQ (K1), lgQ (K1 ₂) usw.

```
7712A2[ []V
      V Y FL2A2 X
       M_{1+((\rho_{X}),1)\rho(\iota(\rho_{X}))}
 [1]
 [2]
        /1+//1,(10@X)
 [3]
        .7 ←1
 [4] [/1:I←I+1
[5] \rightarrow 0 \times \iota(I > (\rho X))
 [6]
      P2[1;2]+y[J]
[7] (Y[1]) FL2A X
[8] //1+//1,//[;7]
[9]
        →//1×1Y[1]≠0
[10] →//1
     V
        VFL2S2[[]V
     V Y FL2S2 X
[1]
       M_{1} \leftarrow ((\rho X), 1) \rho (\iota(\rho X))
[2]
        "1.←!"1,(10⊕X)
[3]
        ./ ←1
[4]
     ‼1:I←J+1
[5]
       \rightarrow 0 \times i (I > (\rho Y))
[6]
     P2[1;2] + Y[T]
[7]
     (Y[1]) FL2S X
[8]
     M1←M1,M[;7]
[9]
      →#1×12[1]≠0
[10] →71
     17
        )SAVE
  10.50.07 02/08/78 ADSORB
```

Programm FL2A1

Zur Auswertung von nach dem Modellansatz "zwei additive Adsorptionsreaktionen".

Geht von Messwerten für QO und drei Q/C-Datenpunkten sowie einer Reihe vorzugebender K2 aus. Aus QO, C_1 , Q_1 , C_3 , Q_3 werden für jedes K2 die Konstanten K1, A1 und A2 sowie die Beladung QB₂ für die Konzentration C₂ berechnet und ausgedruckt. Man muß dann in der Ergebnistabelle denjenigen Konstantensatz suchen, für den Q_2 und QB₂ übereinstimmen.

```
Erster Eingabeparameter (Po): Vektor der vorgegebenen K2
Zweiter Eingabeparameter (X): Vektor der Auswert-Messda-
ten QO,C<sub>1</sub>,C<sub>2</sub>,C<sub>3</sub>,Q<sub>1</sub>,Q<sub>2</sub>,Q<sub>3</sub>
Globaler Ausgabeparameter(M): Matrix der Ergebnisse mit
den Spalten K2,A2,K1,A1,QB,
QB<sub>2</sub>,QB<sub>3</sub>
```

	$\nabla FL2A1[]\nabla$					
V	PO FL2A1 X; B1; B2	;B3;A1;A2;K1	1;K2			
[1]	K1 + K2 + A1 + A2 + Q0 + (ρΡ0)ρ0				
[2]	K2 ← P0					
[3]	$K_1 \leftarrow (X[7] - X[5]) \times (.$	X[2]÷X[5])				
[4]	$K_1 \leftarrow K_1 - (X[1] - X[7])$) × X [4] × X [2] ÷	•(X[5]×K2)			
[5]	$A2 \leftarrow (X[1] - X[7]) \times ($	1+X[4]÷K2)				
[6]	$A1 \leftarrow X[1] - A2$					
[7]	$U \leftarrow ((oK2), 1) oK2$					
[8]	M+M, A2					
[9]	$M \leftarrow M, K1$					
[10]	$M \leftarrow M$. A1					
[11]	$B2 \leftarrow (A1 \times X[3] \div (K1 + $	X[3]))+(Λ2×X	K[3] ÷(K2+X[3]))		
[12]	$B1 \leftarrow (A1 \times X[2] \div (K1 + .)$	X[2]))+(A2×X	X[2] ÷(X2 + X[2]))		
[13]	$B3 \leftarrow (A1 \times X[4] \div (K1 + $	X[4]))+(A2×X	<pre>%[4] ÷ (K2 + X [</pre>	4]))		
[14]	<i>M</i> ← <i>M</i> , <i>B</i> 1					
[15]	$M \leftarrow M, B2$					
[16]	<i>M</i> ← <i>M</i> , <i>B</i> 3					
[17]	t t					
[18]	' FL2A KONSTANT.	<i>ENBERECHNUN(</i>	? !			
[19]	ZWEI ADD.	ITIVE LGM-AL	DSORPTIONSV	ORGAENGE '		
[20]	1 1					
[21]	• AUSGANGSDATEN	ł				
[22]	· Q0	<i>C</i> 1	C2	СЗ	Q1	Q2 🕇 Q3'
[23]	11 5 • 1 X					*
[24]	T T					
[25]	• KONSTANTEN UND	BERECHNETE	BELADUNG '			
[26]	K2	A 2	K1	A 1	QB 1	QB 2 🕇 🖉 83'
[27]	11 5 °T1					
V						

)SAVE 15.39.31 01/29/78 TEST

8. Literatur

- S.H. Eberle, D. Donnert, H. Stöber
 Untersuchungen über die Adsorption und Abscheidung organischer Verbindungen aus Wasser durch Aluminiumoxid
 Chemie-Ingenieur-Technik 48 (1976) 731
- B.F. Winkler, G. Thodos
 Kinetics of Orthophosphate Removal from Aqueous Solutions by Activated Alumina
 J. Water Poll. Contr. Fed. 43 (1971) 474-482
- (3) N. Gangoli, G. Thodos
 Phosphate Adsorption Studies
 J. Water Poll.Contr. Fed. 45 (1973) 842-849
- (4) U. Rohmann, priv. Mitteilung 1975
- (5) H. Martin Diplomarbeit Universität Karlsruhe 1976
- (6) C.H. Giles, T.H. MacEwan, S.N. Nakhwa, D. Smith Studies in Adsorption Part XI.
 J. Chem. Soc. 1960, 3973-3993
- R.D. Neufeld, G. Thodos
 Removal of Orthophosphates from Aqueous Solutions with Activated Alumina
 Env. Sci. Technol. 3 (1969) 661-667
- W. Kühn, H. Sontheimer
 Einfluß chemischer Umsetzungen auf die Lage der Adsorptionsgleichgewichte an Aktivkohle
 VOM WASSER 40 (1973) 115-123
- (9) H. Spahn

Bestimmung der Adsorptionsgeschwindigkeit von organischen Wasserinhaltsstoffen an Aktivkohlekörnern

Dissertation Universität Karlsruhe 1974

J.W. Galbraith et al.
Adsorption at Inorganic Surfaces III
J. Appl. Chem. 8 (1958) 416-424

(11) S.K. De Adsorption of Phosphate Ion by Hydrous Ferric, Chromic and Aluminium Oxides Kolloid-Zeitschr. 179 (1961) 134-140 (12)D. Muljadi, A.M. Posner, J.P. Quirk The Mechanism of Phosphate Adsorption by Kaolinite, Gibbsite and Pseudobömite J. Soil Science 17 (1966) 213-237 J.H. DeBoer, J.M.H. Fortuin, B.C. Lippeus, W.H. Meijs (13)Study of the Nature of Surfaces with Polar Molecules II J. Catalysis 2 (1963) 1-7 (14) S.J. Gregg The Surface Chemistry of Solids Chapman + Hall London 1961 S. 55 (15) B. Kurmies Colorimetrische Bestimmung kleinster Mengen Phosphorsäure Die Phosphorsäure 15 (1955) 64 (16) R. Klopp Diplomarbeit Universität Karlsruhe 1975 (17) P.Connor, R.H.Ottewil J.Colloid. Interface Sci. 37 (1971) 642