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Abstract

Assuming the validity of the life fraction rule (LFR) the time

to rupture as well as the respective stress and temperature at
failure have been calculated for several ramp loading conditions.
The results of ramp rupture tests can be predicted solely from
iso-stress rupture experiments without any fitting procedure.

The calculations are compared with results from tube burst expe-
riments as well as with those from tensile tests on Zircaloy-4.
For this material the LFR is obeyed in the temperature range exa-
mined (873K #+ 1110K). The agreement between the calculations and
the experimental results is surprisingly good. As compared to
iso-rupture tests the yreproducibility of the results of ramp-rup-
ture tests is substantially improved. From a model of RAJ and
ASHBY developed for ductile intercrystalline failure it can be
shown that the LFR is obeyed as far as the appropriate damage
function behaves as a function of state.

Das Zeitstandverhalten bei nicht stationdren Spannungs-

und Temperaturbelastungen

Unter der Anahme- der Gililtigkeit der Summenregel der Lebensanteile
(SRL) wurde die Standzeit und die entsprechende Bruchspannung so-
wie Bruchtemperatur fiir verschiedene Rampen-Beanspruchungen be-
rechnet. Die Ergebnisse solcher Versuche k&nnen allein an Hand
von iso-Standzeitversuchen ohne jegliche Anpassungsverfahren vor-
hergesagt werden. Die Berechnungen werden mit experimentellen Er-
gebnissen verglichen, die sowohl an Zircaloy-4 Hiillrohren als

auch an Zugproben gewonnen wurden,., Fiir diesen Werkstoff ist die
SRL im untersuchten Temperaturintervall (873K+1110K) .erfiillt, Die
Ubereinstimmung zwischen Rechnungen und Experiment ist {iberraschend
gut. Die Reproduzierbarkeit der Ergebnisse aus Rampenversuchen ist
wesentlich besser als die von iso-Standzeitversuchen. Dynamische
Rekristallisation bewirkt Abweichungen von der SRL. Argumente fiir
die den Rechnungen zugrundeliegenden Annahmen k&énnen dem Modell
von RAJ und ASHBY entnommen werden. Es wird gezeigt, das die SRL
befolgt wird, wenn die entsprechende Schadensfunktion die Eigen-
schaft einer Zustandsfunktion aufweist.
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1. Introduction

In designing structures which are to be subjected to varying
loads and temperatures it is important to know what is the life

time of materials crept under non-steady loading conditions.

This problem has been treated in the past especially with regard
to cyclic stress and temperature variations. For a review of the
elder literature as well as for a general formulation of the pro-

blem the reader is refered to the paper of TAIRA [1] .

The impetus to this invéstigation was given by the problem of

the prediction of the inelastic behavior of fuel rods in light wa-
ter reactors (LWR's) subjected to off- normal loading conditions.
For information on this field the reader is refered to special

publications e.g. [2] .

" The actuai problem with which this paper is concerned is to pre-
dict the life time of structures subjected to superimposed stress-
temperature ramps. The calculations will be compared with results
from tube burst experiments as well as with those from tensile

tests on Zirkaloy-4.



2. Theoretical

2.1 Simple Ramps

2.1.1 The Temperature Ramp

The attempts to predict the life in creep rupture under varying
temperatures (transient tests) from the data of creep rupture
under constant temperature (iso-tests) are rather old. For this
purpose ROBINSON [3] in the late thirtees first used the con-
cept of the 1 i f e fractions . On the basis of this
idea nowadays stress ramps and stress rupture at cycling tempe-

rature has been repeatedly treated (see e.g.[5]and [6] ).

The so-called life fraction rule (LFR) will be shortly explained
by the following example. For an experiment in which at constant
load the temperature is step-wise increased Ty+T;+ Ty+... it is

assumed that

At At At (2.1.1a)
At E: 1] =1 | (2.1.1b)
‘Ci o .

Ti=T0

Where Ty is the iso-life time at the température Ti,A t is the

time, the sample spent at Ti (assumed to be egual for all Ti)'

iB is the unknown temperature of failure which for a given stress
depends on at.

The terms in Eq (2.1.1) are the life fractions which are con-

sidered as being mutually independent. As will be shown in

chapter 4.1 the individual terms in Eq (2.1.1a) are considered

as being representative for the material damage. In the proba-

bilistic interpretation each term of Eq (2.1.1a) is the fractio-
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nal probability for failure to occur in the i-th step at a stress
0o and temperature Ti in At seconds.

With increasing step number the total probability for fracture
increases and equals one at fracture. This is the content of the
life fraction rule.

Rewriting Eq (2.1.1b) in the infinitesimal form, it is

=)

dt

— =1 . ‘ (2.1.2)
tT(t)]

To

As mentioned -above the LFR can be substantiated by micro-models
(see chapter 4.1), however its validity for a particular case
has to be checked experimentally. ‘

To solve Eg (2.1.2) for TB we substitute for

_dr -
at = 2 ‘ (2.1.3)

and insert for t(T)o the results from iso-creep tests which ge-
nerally are of the form (see e.g. [4] )

T In t0/T='P(To) =2 5o (2.1.4)
T-Tg RTy

For Zircaloy-4 this relation is derived from Fig.1. 1<ty are the
life times at the temperatures T>Ty respectively; P is the Larson-

Miller parameter depending on Tp; Q is the apparent activation
energy for the high temperature creep; R has the usual meaning.

Assuming the heating rate c=const.#f (T) we obtain

Ts

.[ P (1-To /p) gp = T c (2.1.5)

To




The integral in this form divergates. Using the modified function,

however
T _ 1n %0/ -1n|®—+1fe P for TopT (2.1.6)
T-T, PTy

the solution of the integral in Eq (2.1.5) remains finite
for K=2. Comparing both the functions Eq (2.1.4) and Eq (2.1.6),

it is because KT __, (for Zircaloy see chapter 4.2).
PT ' ’ '
0
t#(T) = (T). : (2.1.7)

Inserting Eq (2.1.6) instead of Eq (2.1.4) into Eq (2.1.5) we
obtain for

c = const. # £(T) (2.1.8)
Pc 7. \? p(1-T )
T “Lo/m -
v =|[-B)e /T for T #T, (2.1.9)
Ty Ty
0y sC

The ramp-life time ;0 follows then from

T = . (2.1.10)

TB or t_ are calculated as functions of ¢ only by the use of

iso-test data.

From the functions fB(c)do (Fig.4) and ;(cho (Fig.3) the func-
tions TB(oo)c and ;(oo)c are obtained. These are shown in Fig.2
and Fig.5 respectively.

Because the initial values of the ramp T; and To determine the
stress ao(see Fig.1) in the temperature ramp test, it follows

from Eq(8) that TB or T, respectively are functions of Oq too.



In praxis the T-ramps are seldom linear. For this case the solu-
tion given by Eq (2.1.9) can be used only as an approximation.

However, Eq (2.1.2) can be integrated analytically also for e.gq.
c=yT. ' (2.1.11)

Using Eq (2.1.6) with K=1 one obtains inserting Eq (2.1.6) together

with dt=%% into Eq (2.1.2)

'i\ P(1_T0/~ . S
B ,
Pyt +1 = [T‘ e "B ] i To#Ty (2.1.12)
go,Y e

It can be realized comparing Eq (2.1.9) with Eq (2.1.12) that
even for very small y-values the non-linearity of the T-ramp in-

fluences the TB-values very sensitively.

2.1.1.1 The Equivalent Temperature at Failure Ts Eq’
. 14

Ahequivalent temperature at failure

Ty eq °30 be introduced by the relations
14

T =T (2.1.13a)

B,eq oo B a0

and

1‘ - T,-
Thus TB eq is defined as the temperature in the iso-stress rup-

’

ture test which at the same stress op leads to the same life time

T as the observed one in the temperature ramp test io.

From Eq (2.1.9)
Pct N
P=(1—T0/TB)=ln T + 1| - 21n TB/To
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together with Egs.(2.1.4) and (2.1.13b)
P(1-To/ = 1n%0/ = 1nT0,.

< TB ’eq> T /-;

it follows due to Eq (2.1.13a) that

T Pcg
21n 2294 = 1n 2
0 Ty

+ 1] - lnTO/t

and therefrom we obtain

[ [PeT,
TBeq = TO\/ T\ TT, T 1) for TofTp g (2.1.14)

As far as Tq , it is
C > »——
Pty
-

Thus choosing t=T the value for the temperature at failure

-~

Tp=Tg eq for this life time can be calculated using iso-test
14

data only.

2.1.1.2 The Ty~-sensitivity of the Temperature at Failure iB'

It follows from Eq (2.1.9) that

2

-~ . P
= dT, (2.1.16)

J 1n-To

P Pct0

which to a good approximation gives

independent upon heating rate.

The change of ;o due to a change in EB is according to Eq (2.1.10)
aty
dto = — (2.1.18)




From Eq (2.1.17) we obtain

~ . _1_ ' '

Thus the influence of an change in T, upon EO decreases

with 4increasin g heating rate .

2.1.1.3 The o -Sensitivity of T,

According to Eq (2.1.9) f is not explicitly dependent upon ¢

B 0°

However 9, enters the Eq (2.1.9) through T, and T,. For Tgy=con-

stant it follows from iso-stress rupture experiments [4]

9y \ 10“
n ln{—= = 1ln|——— (2.1.20)
%" To
Ty To

Where cog,to” are considered as fixed values and 1/n is the

slope in the stress rupture diagram.

Therefrom it follows that

%/, °/1,
where 1,79, stays instead of 10“ and dox respectively.

From Eq (2.1.9) we obtain

N ! - 2 .
dr 1 |2/T P(1-To/T.) -
—0 = —|_|.B B
T, Cto[?<To) e f 1] dTB . (2.1.22)
To T,
Inserting Eq (2.1.21) it is
P(1-To/F ) [2 T
=49y - 1 o""s’|_ B T
o = oot e [P T, + 1]dTB (2.1.23a)



°F 4o 1 P(1-To/Tp)

e -de ‘ (2.1.23b)

Ci'l‘l’o

respectively.

Inserting for T. and diB from Eq (2.1.10) into Eq (2.1.23b)

B

one obtains

T
e ]
-0 . otet] a3 (2.1.23¢)

As will be shown later in chapter 4.2.2 experimental (oo-io)-
diagrams can be analysed by means of Eq (2.1.23c).

Several consequences follow from Egs.(2.1.23):

1. For a deviation de from the calculated temperature f it

B
is
doy<0 for dT,>0 (2.1.24a)
and
d0y>0 for dT <0 (2.1.24b)

2. For a given value of de

+ do, ~ gy
« do, increases with increasing Ty

« do, decreases with increasing c.

Egs. (2.1.23) are of considerable practical importance. In T-ramp
experiments the determination of the true burst temperature iB

is a difficult problem depending on the heating modus as well

as on the temperature measurement itself. Thus Eq(2.1.23b) may be a
useful tool for compariné experimental results from T-ramp

tests with calculations (see chapter 3.1).
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2.1.1.4 The c-Sensitivity of in and ;a'

PTo
2

For %B<< it follows from Eqg(2.1.9)

- . -P(1—TO/§B) )
dTB = 1,€ -dc (2.1.25)

Thus diB is independent upon ¢, but for given dc, diB decreases

as %B increases. Inserting for T_ from Eq(2.1.10) into Eg(2.1.9)

B

we obtain

-~ T ¢ .
dy PT,1 P[-—Q—..— —1] | |
—] = —=L e Lo, g (2.1.26)
2
o etz
From Eq(2.1.26) it follows that for a given gg
for {o=constr gl rapidly decreases as ¢ increases
0 .
and
for c=const. %l decreases rapidly with increasing Ty e

c .

2.1.2 The Stress Ramp

In analogy to the temperature ramp test as far as the LFR is
obeyed it should hold for a stress ramp test at constant tempe-

rature that

-~

9B
dt _ '
O 1 (2.1.27)
99

where g, GB are the initial stress and the stress at failure
respectively. Inserting for -r(o)T the result of iso-stress

rupture tests [4]
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T=const.

substituting for dt

Q

dt =

U‘IQJ

(2.1.28)

(2.1.29)

and inserting Eg(2.1.28) into Eqg(2.1.27) we obtain for

b = const.#f (o)

1

Tosb

SB=§con[bro(n+1)+oo]

In the case that

%

Py

it is in dimensionless form

o N n+1
’B + bty (n+1)
% JT,b 99

Recalculating to the life time ;T
T b

we obtain from Eq(2.1.27)
n

N L n+1 %h+1] o
= —_— 1) - —
TT,B 5 Ty (n+ ] 5

(2.1.30)

(2.1.31)

(2.1.32)

(2.1.33)

(2.1.34)

(2.1.35)

The second term on the right hand side of Eq(2.1.35) can be

neglected against the first one, thus in dimensionless form

it is
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T . o 1 |
T’b .

The dependence of JB/OO upon the stress rate b is shown in

Fig.6.

In contrast to TB for non-linear T-ramps the o,-values for

B
non-linear o-ramps are easily obtained analytically from the

Egs.(2.1.27) and (2.1.28). For e.qg.

b(c) = Bo ‘ (2.1.37)
it follows for B=const. together with dt = g%
. Yn
og = oo[(n+1)810+1 , (2.1.38)
To IB

An analysis of the corresponding equations shows, that contra-

ry to TB-values, o, is less influenced by the non-linearity of

B

the ramp.

2.1.2.1 The Equivalent Stress at Failure gp eq’
14

°H,eq is defined as the stress in the iso-stress rupture test
[4

which at the same temperature T, leads to the same life time <
as the: observed one in the stress ramp test ;T' This is ex-

pressed by the conditions

g g .

and .
T . T |~ (2.1.39b)
%8,eq’ "0 °B,T,
According to Eg(2.1.28) it is
GB e
logt/t,= -n log -—Er—ﬂ ; (2.1.40)
0
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combining Egs.(2.1.40) and (2.1.36) it is due to Eqg(2.1.39Db)
1 1

n+1 “n(n+l)
= ¢} 10_ .
OB,eq °<bro> (n+1) (2.1.41)

Also UB eq can be calculated from the results of iso-stress

, .

‘ g c

rupture tests. The dependence of _gégg upon E%— is shown in

0 0

Fig.8..

2.1.2.2 The g,-Sensitivity of the Stress at Failure 4.

From Eg(2.1.33) follows for b=const.

do do
- RS « e (2.1.42a)
oB n+1 00
T T
or 3
~ - _.n__B
g = o - do, (2.1.42b)

For the life time change it foilows from Eqg(2.1.34) and
Eg(2.1.42b)

daB

- _ n
dig = &= = = (2.1.43)

According to Eq(2.1.42a) the relativ change of &B is practi-

do
cally independent upon n and is proportional to -

%o
The change in- life time caused by a change in goiS, for a giwven
relative change in %4 directly proportional to EB and indirect-

- 1y proportional to b.

2,1.2.3. The b-Sensitivity of &B and the _Correction of EB_jsu;_

Constant Loading Rate b, .

From Eq(2.1.33) it follows
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N 1 -_n_ A
do n+1 n+1 n+1
—B| =p . dmtD T omoy 9% (2.1.44)
O'B UB 0 "o
T
Recalculation to dTT gives
__n_ ~_n_ B
~ 1 n+1 n+1
4 1 (n+1) b
— - b . [ enku L A [ e 2.1 .45

An analysis of Egs.(2.1.44) and (2.1.45) leads to the follo-

wing conclusions:

da

at given —0
90
d&B
—_— slightly increases with increasing b
Og . _ _
and
Q% ' decreases very rapidly with increasing b.
: T

Due to the change of sample geometry during plastic flow nor-
mally in a stress ramp experiment a constant load

rate is maintained
F = Sgby (2.1.46a)

where S, is the crossectional area of the sample and b, the
stress rate at the start of the ramp. Because S is a function
of the plastic strain e for a constant stress ramp, Eg(2.1.46a)

modifies to

F'= S(e)b, (2.1.46Db)

Assuming un i form strain and the preser -
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vation of volume it is

S(e) = S (1+e) (2.1.47)

Inserting this into Eq(2.1.46b) and comparing with Eq(2.1.46a)

we have

13
g; = bo(1+e) = b (2.1.48)

Eq(2.1.48) into Eg(2.1.33) gives

~ n+l _ n
op = 0, to(n+1)b°(1+eB) (2.1.49)

where eg is the nominal plastic strain at failure. Because

the true strain ¢ is definded as
&€ = . 1In(1+e) , , (2.1.50)

the combination of Egqs(2.1.50) and (2.1.49) yields for ¢, in

B
a stress ramp test at constant temperature
6B bgt
EB = (n+1)1n;;-- 1n o, - ln(n+1) (2.1.51)

A comparison with experimental results on g-tensile ramped
Zircaloy-4 [11] has shown, that the calculated eg-values are

as six times as large as the experimental ones. This discrepan-
cy is explained by the abundant necking of the failed specimens,
in the way that Eg(2.1.47) is not obeyed for strains larger
than the uniform strain.

2.1.2.4 The Connection Between:oB’eq and TB

eq’

Considering a o-ramp for which the life times

Tp=1,=1 (2.1.52)
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where io is the life time of the "corresponding" T-ramp. It
follows from the Egs.(2.1.4) and (2.1.28) for the equivalént

’

stress and temperature

g
nln 2229 = p(1-T /T, ) (2.1.53)

00 Bveq

inserting from the Egs.(2.1.41) and (2.1.13) respectively and

recalling the definition equation

t=nr (2.1.39Db)

it is
dg .
n ln b: = -(n+1)|:§<1-\/§2T >+ n%n+1) 1n(n+1q (2.1.54)

what approximately yields

-EiéfP{1—VT0/Pcr }

g, = brge (2.1.55a)

or

2 (2.1.55b)

1 + —

. 1
To = Per n+1 P

The Egs(2.1.55) describe the condition of an iso-stres§ rup-
ture test with the same life time as that corresponding to a
pair of ¢g- and T-ramp tests for which Eq(2.1.52) is obeyed. The
iso~-stress qo'is connected to the corresponding To-vélue by
the ramp test conditions(b,c,n,P,to). Because 9 is determined
by Ty, and 7, (see Fig.1) and P is determined by T,, there is

only one pair of ¢,-, T,-values for one pair of o- and T-

0
ramp tests which satisfy the condition of Eq(2.1.52).
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2.2 Superimposed Ramps.

To treat this problem again the validity of the life fraction
rule is assumed. We further suppose that the ramps can be su-
perimposed independently. For a ductile failure machanism there
are theoretical arguments (see chapter 4.1) which support this

assumption.

The basic equation is now

St 55,
1 dg _
§1[T(t)] bjr[o(t) I (2.2.1)
T oo
The unknown is STB or sEBvrespectively. Knowing one, the

other is determined from (see Fig.8)

SEB = o, ¢+ %(STB-T(,) (2.2.2a)
S'i'rB. = Ty+ %(S&B—ao> (2.2.2b)

The solutions of the integrals in Eg(2.2.1) are given by Egs.
(2.1.9) and (2.1.31) respectively. Substituting for SGB

(Eq.2.2.2a) we obtain

b s~

P
Too B (n+1)

n+1 [SiB P(1-T0/siB)
+ e
T

ola

(2.2.3)

Pxoc + & Pog
Ty b Ty (n+1)

1 +
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Therefrom SﬁB is obtained by computing. the ratio.c/b as a
function of SEB for fixed c-values and for given Ty, P,
n(To), P,0, (see Fig.9). Eq(2.2.3) reduces for

's‘—oo >> B (2.2.4)
Tg-Tg c )
to
sf. \2 P(1-T0/Si ) -
PT,cC B B , s
_.n_ =] c—

which is identical with Eg(2.1.9) for

Sz _ & :
TB - TB L] (2.2.6)

Thus the condition given by Eg(2.2.4) specifies by means of
. b
the ratio c two cases.

In the first case when Eq(2.2.4) 1is satisfied, the influence
of the stress ramp on S'i‘B’and thus on life time 51 can be
neglected, the T-ramp is dominating.

In the second case siB is determined by both contributions.

We approximate the brackett term in Eq(2.2.3)

. 8- N+1 ST STo-T . 1%
142 B0 =142 2Bl Ub TTBTR0 L (2.2.7)
c gp c 9y 2ic Oy

Inserting Eq(2.2.7) into Eq(2.2.3) and for E%%g>>1 it is
finally

= 2
Pog STB—TQ
To(n+1) dp

Z[P'rnc p Stg-T) _(s'fB)zePn-To/sTB)]

(2.2.8)

D‘*O

Ty - TO (n+1) To

In Fig.9 the results are shown for the case of relatively

high b-values.
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2.3 Ramp-Hold Procedures

The material loading procedures schematically shown in Figu-
res 10 and 11 respectively, could be -practically important
e.g. in the heat-up phase of a LOCA. The aim of the present
task is to calculate the total life times ;xoﬁr°f ramp hold
tests.

2.3.1. The T-Ramp-Hold Procedure

For a T-ramp-hold loading schema shown in Fig.11 the condition
following from the LFR is

-~

t

, G
dt txl 10 .

.[ TIT(E) ] + T =1 (2.3.1a)
' ag ,0 .

to

where the meaning of the symbols is explained in Fig.11. Sub-
stituting for dt Eq(2.1.3) into Eg(2.3.1a) we obtain

T,
' t::
T,%T—=c[1 ——M] . (2.3.1b)
o Y ,q
To

T, Ty

ar ar
J T(T)q = C J—T(T)o (2.3.2)
Ty T,

The solution of the integral on the right hand side of Eg(2.3.2)
is given by Eq(2.1.9). The combination of Egs.(2.1.9) (2.3.2)
and (2.3.1b) leads to

i} ™ fg) P(T1) (1-T1/Tp)
0 = e | () @ il SRR CIETEY
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where t“1 g turns out to be independent upon t,. According to
’

1
Fig.11 it is

~ as

® _ 3 . ® _ T1-T ®
Te=ti,ott 0" “E‘l +th,o (2.3.4)

inserting Eq(2.3.3) into Eg(2.3.4) we obtain finally

-x T T 1 Tg)2 P(T;) (1-T;/Tp)

= L -0, L _[138 - -

e = A T1+P(Tl)[<To e T, 239
4

For life time predictions in the case of a ramp-hold-test we
need as compared to a simple ramé test in addition the holding

temperature T; and instead of the P(T;) the value P(T,).

2.3.2_ The Double T-Ramp

On the basis of the LFR it holds for T-Ramps shown in Fig.12

L aT 1 ar_ _
G j.T(T)°,+ c, j.'r(T)0 1 (2.3.6)

where DiB is the life time of the material subjected to the
double T-ramp and T, the temperature at which c¢ is changed.

It holds further for PT_ # T, (see Eq(2.1.9))

T, T
_1_ —dT = 1 - .!_ dT =
c, | T, c, \T(Mm,
Ty Tl

r §5\2 By {1- T,/75 ]
=1 = —1___||_B - 2.3.7
1 TCNEICT [<T1> e | 1 0,c1' ( )

The solution (for T1#D§B) follows from inserting Eq(2.3.7) into

Eq(2.3.6) together with
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D=
Ts

DF,\2 P(Ty) [1-T,/PF
1 ar_ _ T1 B} e ! B]-1 (2.3.8)
c, T(T)o  P(T1)T;cy 0/Cy

T

Two cases can be considered:

- Th > (2.3.9a)
and
« P> omy (2.3.9b)
For the first case the solution is
D- 2 _ Dn
_B eP(Tl)[1 TRl g E(T, ,Tg) + 1 (2.3.10)
T cj 1/*B 3.
where
2 -
| <‘1‘B> P(Ty)[1-T, /Tg]
E =\7]e .
T
From Eg(2.3.10) D&B follows as
.D~ ~ - El— D~
FOTg)g oy =5, (for "TA Tp) (2.3.11)

g |

In this case for a given ratio o and a fixed &B—value ( for the

simple T-ramp test)

DTB = f(Tl).TB,Cl /Cz

For the case that

. D-:.PB >>T1

it results recalling Eg(2.1.4)

T Dy

B - B
Di_ \2 —_——
cq_ T Q/R D= =
—l=l——1le TB TB
c 2 Tgp

2

(2.3.12)

(2.3.13)

for Prp >> T (2.3.14)
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Thus in this case

D’l:B # £(T)) (2.3.15)

-~

the life time Dtc for the double T-ramp follows from the equations

D"' }
D- Tp-T ‘
TO = tl + _C—z-l (2.3.16a)
and , ‘
T:-T
£ = o0 (2.3.16b)
therefrom
Dy T
b . B 1__ 1\ a

An analysis of Eqg(2.3.17) shows that

c
is —1 5 1

Dl - % =41 >0 (2.3.18)

and therefore

At < o . (2.3.19)

Analogical results hold for the double g-ramp when ;o-values are
replaced by the corresponding.;i-values and ¢ is replaced by b

(see chapter 2.3.4).
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2.3.3 The o-Ramp-Hold-Procedure

In analogy to the procedure above in combination with Eq(2.1.31)

we obtain

)

~ \n+1 | n+1
¥ - EE 71 ] - b |
1,T \o; b(n+1)

| .

(2.3.20)

which again is independent upon t;. The total life time is

)l

given by

~x 91 %0 1 )
tp=p ) ! ;*m[(;

2,3.4 The Double g-Ramp.

(2.3.21)

The problem is treated in the same way as for the double T-ramp.

Again two cases are to be considered

D~

b) UB >> g1

The general solution is

n+1
%)
- n+t+t = 1 - =—
B b OB
53; = S; n+1
o1
1 DGB

For the case a) it is for ;B >> gy

n
|Pog - 2L [ 21 2
n+1 \D=
oB

(2.3.22a)

(2.3.22b)

(2.3.23)

(2.3.24)
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B
o, is the stress at which the rate b has been changed.

where D is the stress at failure for the double g-ramp'and

Thus for this case

D~ _ - D~ s
oy = f(ol)UBrbl/bz for o ~ O7° (2.3.25)

FPor the case b) it is
- 1

o n+1
& . <%1> (2.3.26)
2
g
B
and thus
Poy # (o)) for %oy >> 0. | (2.3.27)

[

For the calculation of the life time DTT the reader is refered

to chapter 2.3.2 .

3. Experimental

In the following a comparison between calculations and experi-
meéntal data ié given. It should be emphasized that most of the
experimental results were collected froh literature refering to
burst tests on Zircaloy tubing. In many cases the informations
about the experimental procedure are incomplet. To verify the
results of the calculations by systematic experiments, only few
results are available at present. Thesé investigations are still

going on.
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3.1 The Temperature Ramp

In Fig.2 calculated TB(c)oo-curves are compared with results from

burst tests on Zircaloy tubing. For this purpose assuming iso-

tropy the initial pressures.pi 0 or the hoop stresses respective-
’

ly have been recalculated to effective tensile stresses using

L Ve

90,eff = Py 77 Th

the formula

= p,a ‘ (3.1.1)

where RM is the mean radius and h is the wall thickness.

Results from three laboratories have been considered: BNL(UK) [7],
ANL (Usa) [8] and KWU (GERMANY) [9]. g

In all these cases the tubes were ohmically heated. Except the
ANL-Qalues there is a rather good agreement for higher heating
rates. The KWU-values are mean values for c from‘an interval of

100 to 150 deg/sec.

According to the results from 2.1.1.3 the discrepancy between

e.g. the BNL-results and the calculated ones would indicate, that -
under otherwise unchanged conditions - for c=50 deg/sec the

actual tubing temperature at burst is lower (d§B<O) and for

c=1 deg/sec this temperature is higher (diB>O) as that predicted

by the calculations.

In Fig.5 the experimental life times of blown Zircaloy tubes are
compared to calculated ones. Again vaiues from three labs have
been used: KWU[9] (ohmically heated), IRB[10](internal heater) and
IMF[11] (radiation heated) . The agreement is better for low oé-

values and high heating rates.
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3.2. The Stress Ramp

In Fig.13 results of o-ramp for tensile tests at bg=constant are
compared to calculations according to Eq(2.1.31): Excellent agree-
ment is observed for the test temperature T =1073K. At the other
temperatures examined there are for bR1MPa/sec deviations ffom

the predicted results. The influence, recrystallization has upon
E‘,B
ceived samples with those from recrystallized Qhes. However there

is clearly demonstrated by comparing the results from as-re-

is still a deviation for the recrystallized specimens which mani-
fests the occurrence of dynamic recrystallization during the o-
ramp test. This is not observed for Ty=1073K which is above the
region of recrystallization; We will return to thié point in

chapter 4.2,

4 Discussion

4.1 Model Consgiderations

From the comparison of ramp calculations with experiments (chap-
ter 3 ) it is obvious, neglecting the explanable influence of re-
crystallizatibn, that the LFR is obeyed for Zircaloy in the tem-
perature range between 600°C and 800°C. In this range Zircaloy
fails in ductile manner[12]. Metallographic investigations on
specimens deformed at the above conditions gave evidence about
abundant cavitation[13] which in the present case is to be con-
sidered as the specific damage type leading to fracture. Previous
examinations habe shown{14] that grain boundary sliding becomes
the dominant deformation mechanism at the a/a+g phase boundary.
This mechanism is known as being mainly responsible for cavity

nucleation[15].
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RAJ and ASHBY [16] developed a model which allows to calcula.e
the time to intercrystalline fracture on the basis of considera-
tions about nucleation and growth of voids in grain boundaries.
From the model it follows that the life time t under otherwise
unchanged conditions is a function of stress and temperature
only. Due to the model fracture occurs as the consequence of the

reduction of the internal cross section at a critical damage
A, =|= | (4.1.1)
where RB'is the projection of the void radius into the grain

boundary and 2L is the distance of the voids in a square array.

Using this model for the présent case we assume that for the

damage rate A= %% at iso-conditions the proportionality holds
A=21aw (4.1.2)
T o,T,¢ '

where the "structure" parameter ¢ can include e.g. also the

void distance L. From the above it follows that

(4.1.3)

Considering non-steady loading conditions we obtain from Eg(4.1.3)

and by comparison with Eqs.(i.1.2) and (2.1.27) respectively

- -~

T T

da _ dt _

A(o,T,t), S. (o, T, 8, 1. (4.1.4)
tO to

Eq(4.1.4) says, that at constant "structure" failure under va-

riable stress and temperature will occur at the time t when at
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that time the "damage integral"

~

T

dA - -
J.mm;— =M ((J:T)¢ =1 (4.1.5)
to

Eq(4.1.5) can thus be considered as a definition of the life
time of materials subjected to general loading conditions. When
failure would occur by the growth of voids at constant void den-

sity, it follows from Egs.(4.1.1) and (4.1.3) for-AA

5 dRp
1 = AA(U,T)¢'L = .y RB(U'T)¢’L . (4.1.6)
Ry ()

For the case considered the experimental determination of RB(t)

would principally allow to check the model.

The parameter ¢ plaYs an important role. ¢ is specified by ma-
terial properties which are important for the nucleation and
growth of voids in the grain boundaries. Therefore one can ex-
pect that processes which involve grain boundaries will influ-
ence the life time sensitively.

This can be illustrated by the following consideration, Suppose
that for a material which is o-ramped the damage at the time t
is A;(t,¢). The damage will change by time.

For ¢=const. this change will be at t+dt dA,(dt)¢. This corres-
ponds to the shift of point O in fhe A-A diagram (see Fig.14)

along the curve
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i\i= T—le (4.1.7a)

to position 1. If now the structure will
change by time in a way that dAl(dt% and dA'l(d(b)dt
simply superimpose, the damage is characterized in Fig.14 by‘
dﬁi(dt,d¢). The damage K1=A1+dﬂl may be represented in Fig. 14
by'1'. The change in damage now occurs along another AI(A) curve
e.qg.

* 1 -
A’ = = A 4. -
1 I 1 ( 1.7b)
According to Eq(4.1.2) it follows from Fig.14 that

LR T (4.1.8)

due to Eg(4.1.3) it is

~ -
: d_:_;= dat (4.1.9a)
J A1 Jn
and
~ r
9.%1 = Qﬂt— (4.1.9b)

Applying the LFR to the Egs.(4.1.9a) and (4.1.9b) respectively,

we obtain

~

T1 g ;'1 -

I.d_t=j at - 4 (4.1.10)
T1 1

to to

Because according to Eq(4.1.8) the infinitesimal contributions
are smaller for the integral on the right hand side of Eg(4.1.10),

it necessarily follows from Eq(4.1.10) that

o> 1 (4.1.11)
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Suppose that A = A(RB,L)¢ SO that

Q

3%§ dr, (4.1.12)
Rp

A = ;BA

B gr_ +
A ar,

applying this to the case considered,d¢=0 would mean that A;
has changed by increasing the void radius RB at L=constant.

In this case

(4.1.13)

On the other hand, if dAﬁ is caused by a change in RB as well

as in the void concentration, we have

aaj = ;%ﬁl—g drR_ + iﬁi-§ dL (4.1.14)
RB L B aL RB
From'Eq(4.1.1) it follows that
2R
A B .
a (o= 2 (4.1.15a)
-l -
and
3Aal. _ _ 2R?
;aLg = =57 (4.1.15b)
Rp
From Fig.14 it is
da}’ - da; > 0 | (4.1.16)

Combining the Eq(4.1.13)(4.1.14)(4.1.15) and (4.1.16) we obtain

dA‘l-' - dA; = - .ZAI% >0 (4.1.17)

consequently

dL < O . (4.1.18)
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Thus according to the model the change in ¢ considered would be
due to an increase in void concentration. However, for a given
value dA& -dA; the change dL<O could be very small providing the

damage A; and the concentrations of voids are high enough.

It has been already emphasized that, before using the results

bof calculations for predictions the validity of the LFR for each
particular case should be checked experimentally. In the follo-
wing we consider’ some very general aspects for the design of such

experiments.

from the consideration above about the influence of ¢ in the ex--
periments proposed,test conditions should be rejected which would
lead to a change‘of those "structure"-factors influencing sensi-
tively the life time, as in the present case e.g. recrystalliza-
tion, grain growth, precipitation on grain boundaries as well as

sclution of precipitates, generation of radiation defects et cet.

Also the influence of the duration of the test is easily realized.
One of the assumptions of the LFR is based qun the mutual depen-
dency of the life time fractions. Using the concept of damage
fractions (see Eq(4.1.3)) this independency means that e.g.the
damage A(T;) the sample had at T; has not been influenced by the
deformation at the higher temperetures T1>T1' This could happen
e.g. by annealing. Consequently for checking the validity of the

LFR fast ramp tests seem more appropriate than a test procedure

using finite stress or temperature steps.

Treating the case of superimposed ramps (chapter 2.2) the indi-
vidual contributions of the T- and ¢-ramp habe been considered
as mutually independent. In the following we will try to get

arguments for this assumption from the model.



From the Eg(4.1.12) it is

g

_ 1 <3A> a ! ( A)
) B g e — 1 (32 . dT
RO, \9n,e e Ay, \ oty

(4.1.19)

which, assuming the validity of the LFR leads by using Eg(4.1.2)

to - ~

T T
A(UITIt)¢ T(UrTrt)¢
to to

and therefrom

d {da _da_,
da | "a A .
ty

Combining Egs.(4.1.19) (4.1.20) and (2.2.1) one obtains

ALT(E) ]

o

¢

T{T(E) ]

and

Alo(t) 1y

t[o(t) ] =
T, ¢ b{ﬁé
0

b, s

comparing Egs.(4.1.22) with Eq(4.1.2) it is

1 = A
A(T)°’¢ © <3T>o,¢

- _p (22
A(o)T’¢ = b <30>T,¢

and

(4.1.20)

(4.1.21)

(4.1.22a)

(4.1.22b)

(4.1.23a)

(4.1.23Db)
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where <%%> and <%ﬂ> are properties of a given damage

: o
osd T,¢

structure.

Thus from the model the validity of Eg(2.2.1) depends on whether

Eq(4.1.2) and the LFR are obeyed. Or equivalently, if the validi-

ty of the Eq(2.2.1) should be confirmed by experiments, this

would confirm the validity of Eg(4.1.2) and that of the LFR. In

this case the damage A(o,T)¢ would behave as a function of state

(see Eq(4.1.21)).

4,2, Applications to Zircaloy

As already mentioned the stimulus td this work was given by the
problem to predict the failure of fuel pins in LWR's subjected
to the conditions of a hypothetical‘LOCA; Therefore at present
the application of some of the results of the preceding calcula-
tions to Zircaloy will be briefly discussed. In the foliowing we
restrict the coénsiderations to the a-phase region to preclude
the difficulties appearing in cases with non constant structure
parameter ¢ (see chapter 4.1). The lower boundary of the tempe-
rature range under consideration is given by the temperature

at which the contribution of life time fractions is practically
notable. For the stress range of interest this temperature turneé
out to be approximately 873K. In the following a brief list of

data 1s given which were used for the present calculations [11].

Temperature [ K ] n
873 7,1
973 6,3

1073 ' 5,2
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2 - 3,75 x 10%1K]
R
-2
P = RT; (2.1.4)
MPa ., .
a oy in Eq(3.1.1) Cladding type:
1.51 CANDU (CANADA)
0.95 SGHWR (UK)
0.70 ANL (USA)
0.59 KWU (F.R.GERMANY)
0.49 BETTIS (USA)

The T, -values which correspond to given Q)- and 0g ~values are
obtained from the stress rupture diagram in Fig.1. All the data

were determined from vacuum tensile tests on Zircaloy-4.

4.2.1 Failure Prediction

The occurence of failure has to be predicted for known loading
conditions. As an example we consider cladding which, starting
from normal in-pile operating conditions, is subjected to very

fast superimposed ramps.

Ramp condi¢tions

o *(723K) = 2bar 2 1,2MPa UNIAXIAL
o, initial conditions
Duration of the ramp t_. = 5sec

D

g

max 60bar £ 35,4MPa UNIAXIAL

T
max

c,b = const. # f(t).

From these conditions it follows that

1113K final conditions

c = 48 deg/sec and
b = 6,8Mpa/sec .
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Consider the situation at the lowest relevant temperature T0%873K.
09(873K) = og + bt
To = 873K = Ty + ct_

thus

- as

’: .
00(873K) = og + 2(T,~T,") = 22,2MPa

From Fig.1 it is for Ty=873K and ¢,=22,2MPa

T0= 7x106sec

For orientation we check the condition given by Eq(2.2.4) and
compare the ratio

o} -
_ 0 _9.25 x 1072
B
TB - To
to : - o
b _ 1.4 x 10 1 2 _T_hﬂ___
C s
TB - To

It follows from the calculations in chapter 2.2 that in this case
the o-ramp can not be neglected in the superimposed ramp. The
present case therefore has to be treated by means of Eq(2.2.8).

Inserting the above values together with P=43 and n=7,1 in

Eq(2.2.8) and putting siB=Tmax (assumption, that failure occurs

at Tmax)’ one obtains

21,3 x 1078

cal,

ola

This result compared to the actual ramp condition

= 7,1

lox o]

exp.

means that under the given conditions failure will not occur. To
obtain fracture at Tmax the stress rate b has to be increased,
assuming ¢ as fixed, at least by seven orders of magnitude.

This would correspond to an extrem impact loading.
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On the basis of Eg(2.2.4) a line is shown in Fig.15 which,for a
given og~value and given temperature difference, divides the (b,c)-
plane so that points above this line represent the situation

when in the superimposed ramp the o¢-ramp is important, the points
below the line when the o—-ramp does not influence the result of

the T-ramp.

4.2.2 Comparison to Experiments

In modelling the inelastic behavior of fuel rods in LWR's under
off-normal conditions it is important to know the rupture stress

-~

g In the past a lot of data were collected [2] to allow for the

B.
prediction of burst behavior of Zircaloy cladding on an empirical
basis. These results, usually represented in the form of Fig.2,

exhibit considerable scatter which in turn increases the conser-

vatism of the predictions.

In the calculated curves in Fig.2 which correlate the initial
stress oo wWith iB in a T;ramp test the stress o, can be replaced
by the burst stress ScB so far as for a superimposed ramp the con-
dition given by Eg(2.2.4) is obeyed. If this condition is not
obevyed, thg S;B-values can be calculated by means of Eg(2.2.8)

from the STB-values using (2.2.2a). All the stresses considered

in the paper up to now are n om i n a 1 stresses. The prediction

~

of the true burst stress soB T is due to the wellknown difficul-
14

ties generally not possible.

It is the advantage of the calculations that they allow to under-
stand the cd@B)—dependence and to explain the influence of the
ramp conditions on that dependence. As was already emphasized in
chapter 2.1.1.3 the deviations of the experimental values from
the predicted ones could be due to the difference between the
measured temperature %B(M) and the temperature &B for
which the location of the particular point (oO,TB)c in Fig.16

was calculated.

To confirm this T-ramp tests have been conducted on Zircaloy-4
tensile specimens in vacuum{-10]. The material was crept under
constant load in an INSTRON machine and radiation heated at con-

stant rates c. The temperature measurement was performed by a
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thermocouple located close to the surface of the specimen. The
results of these experiments together with the calculated curves

are shown in Figs.16 and 17.

There is very good agreement between experiments and calculations,
for low heating rates the deviation increases with increasing
heating rate. As explained in chapter 2.1.1.3 for the deviation
temperature differences may be responsible. This can be easily
understood by means of Fig.16.

Each point on the calculated oo(iB)c—curves is for a given g,-
and c-value determined by the corresponding iB-value. It is
acceptable to assume that accurate ¢y~ and c-values are main-
tained experimentally easier than it 1is possible to determine the
actual temperature of failurel'i‘B of the samples. Thus in

the present case demonstrated in Fig.16 one can expect that for
samples heated by radiation the a ¢ t u a 1 temperature will be
generally lower as that measured by the thermocouple. Further,
this difference should increase with increasing heating rate.

On the basis of the Egs.(2.1.23) the experimental values can be

corrected for this temperature difference.

The correction in Fig.16 and 17 respectively was performed in
the following way. For given g and c-experimental values the

temperature change 4T, was determined as the difference

B

TB,exp. - TB,cal. between the measured and calculated TB-values.

-~

Together with TB,cal.and Obthe value dTB was inserted into
Eg(2.1.23b) and therefrom do, was calculated. As one can realize
from Fig.16 and 17 this correction in general improves the fit

between the experiments and calculations.
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The experimental values in Fig.2 have been obtained on ohmically
heated cladding. Contrary to the case mentioned above no large
temperature differences are expected in this case especially
when the temperature wasrmeasured pyrometrically (see KWU-re-
sults). Note that the deviations of iB,exp. from the calculated

iB—values behave in a way as predicted by Eg(2.1.25). However,

the ANL-results deviate heavily from the predictions.

Finally the excellent reproducibility of the results of the pre-
liminary ¢— and T-ramp tensile tests should be emphasized. The
reproducibility turned out to be substantially better than that

well known from iso-stress rupture tests.

4.3 General Conclusions

From this comparison the substantial conclusion follows that for
Zircaloy in the particular range of conditions examined the LFR

is obeyed.

Complications appear when recrystallization comes into the play.
On the basis of a quite general consideration in chapter 4.1 this

is unterstood principally.

According to the model of RAJ and ASHBY [16] -which forms the
basis of these considerations the ductile inter~
crystalline failure is governed by mechanism
which in general is different from those responsible for the
plastic strain. Consequently a causal link between time to rup-

ture.and strain at failure €_ is not expected to exist in this

B

case.
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5. Summary

1. On the basis of the life fraction rule the rupture time and
the correlated failure stress and failure temperature respective-
ly for several monotoneous ramp loading conditions have been
calculated. The results are expressed by iso-stress rupture data
and by the particular loading conditions.

Thus the results of ramp rupture test can be prediéted from
rupture tests conducted at constant_load and temperature respec-

tively, without any fitting procedure.

The sensitivity of the results to variations of test parameters
are examined. This enables a profound analysis of the experi-

mental data.

For the sﬁecial and practical important case where o¢- and T-
ramps are superimposed-depending on the rate ratio % - between
two cases can be distinguished. For low stress rates b the T-
ramp is dominating whereas for high b-values both the ramps in-

fluence the result.

2. The life fraction rule has been checked for Zircaloy-4 com-
paring the results of ramp-rupture tests with calculations.
Excluding conditions when dynamic recrystallization interferes,
the LFR is obeyed for the temperature range 600-840°C. These

deviations can be understood by means of a damage model.

3. The discussion of the LFR is based on the model developed by
RAJ and ASHBY for ductile intercrystalline failure. It is shown
that the LFR is obeyed as far as the appropriate damage function

A(T,c)¢ behaves as a functionof state.
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Superimposed ramps (graphical representation of the
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