Sum rules for baryon form factors of second-class currents

H.-D. Kiehlmann
Institut für Kernphysik

Kernforschungszentrum Karlsruhe

KERNFORSCHUNGSZENTRUM KARLSRUHE
INSTITUT FijR KERNPHYSIK
KfK 2713

```
Sum rules for baryon form factors
    of second-class currents
```

Sum rules for baryon form factors of second-class currents

H. -D. Kieh1mann
Kernforschungszentrum Karlsruhe GmbH, Karlsruhe

ABSTRACT

By means of high energy constraints we relate the second-class current vertices $\left\langle\Delta^{\prime}\right| J_{\mu}^{I I}|\Delta\rangle$ and $\left\langle\Delta^{\prime}\right| J_{\mu}^{I I}|N\rangle$ with the $\left\langle N^{\prime}\right| J_{\mu}^{I I}|N\rangle$ vertex. (N denote the nucleon and Δ the Δ (1232)-resonance.) For this purpose superconvergence sum rules are derived for a second-class vector $\left(J_{\mu}^{I I}=v_{\mu}^{I I}\right)$ and axial vector current $\left(J_{\mu}^{I I}=A_{\mu}^{I I}\right)$. This report extends the previous work (ref. ! $1!$) to second-class form factors.

Summenregeln für Baryon-Formfaktoren der Ströme zweiter Art

Mit Hilfe von Hochenergiebedingungen 1assen sich die Matrixelemente $\left\langle\Delta^{\prime}\right| J_{\mu}^{I I} \mid \Delta>$ und $\left\langle\Delta^{\prime}\right| J_{\mu}^{I I}|N\rangle$ der Ströme zweiter Art mit dem Matrixelement $<N^{\prime}\left|J_{\mu}^{I I}\right| N>$ verknüpfen. (N bezeichnet das Nukleon und Δ die $\Delta(1232)$-Resonanz:) Zu diesem Zweck werden Superkonvergenzsummenregeln für Vektor- $\left(J_{\mu}^{I I}=V_{\mu}^{I I}\right)$ und Axialvektorströme $\left(J_{\mu}^{I I}=A_{\mu}^{I I}\right)$ zweiter Art aufgestel1t. In diesem Bericht wird das Verfahren der vorangegangenen Arbeit (Ref. |1|) auf Formfaktoren zweiter Art erweitert.

I. INTRODUCTION
II. NOTATIONS
III. SUM RULES FOR THE VECTOR CURRENT $V_{\mu}^{I I}$
III. $1 \Delta V_{H}^{I I} \rightarrow \Delta \pi \quad 7$
$\begin{array}{ll}\text { III. } 2 \mathrm{~N} \mathrm{~V}_{\mu}^{\mathrm{II}} \rightarrow \Delta \pi & 12\end{array}$
$\begin{array}{lll}\text { III. } 3 \mathrm{~N} \mathrm{~V}_{\mu}^{\text {II }} \rightarrow \mathrm{N} \pi & 15\end{array}$
IV. SUM RULES FOR THE AXIAL VECTOR CURRENT A ${ }_{\mu}^{\text {II }} 16$
IV. $1 \Delta A_{\mu}^{I I} \rightarrow \Delta \pi \quad 16$
IV. $2 \quad \mathrm{~N} \mathrm{~A}_{\mu}^{\mathrm{II}} \rightarrow \Delta \pi \quad 21$
IV. $3 \mathrm{NA}_{\mu}^{\mathrm{II}} \rightarrow \mathrm{N} \pi \quad 22$

I. INTRODUCTION

This is a technical report in which we quote explicitly sum rules for the form factors of the second-class current vertices $\left.<N^{\prime}\left|J_{\mu}^{I I}\right| N\right\rangle,\left\langle\Delta^{\prime}\right| J_{\mu}^{I I}|N\rangle$ and $\left\langle\Delta^{\prime}\right| J_{\mu}^{I I}|\Delta\rangle$ with N the nucleon and Δ the $\Delta(1232)$ resonance. It completes the appendix C of $|1|$ - furthermore denoted by I - by the corresponding sum rules of second-class currents.

Second-class currents are destinguished from first-class currents in the following way: Assume J_{μ}^{O} represents the neutral member ($\mathrm{I}_{3}=0$) of an , isospin current multiplet ($I=0,1, \ldots$), then

$$
\begin{equation*}
J_{\mu}^{o}=\stackrel{+}{(-)}\left(J_{\mu}^{o}\right)^{+} \tag{I.1}
\end{equation*}
$$

defines afirst- (second)-class current. There is an alternate definition by means of the G-parity operator originally due to S. Weinberg $|2|$ (see also P. Langacker $|3|$).

$$
G J_{\mu}^{o} G^{-1}=\underset{(+)}{-}(-1)^{I} \eta_{p} J_{\mu}^{o}
$$

which is equivalent to (I.1) as long as the TCP theorem holds ($\eta_{p}=+1(-1)$, the parity of the vector (axial vector) current). For example in the usual decomposition of the nucleon $V-A$ current

$$
\begin{align*}
& \bar{u}\left(p^{\prime}\right)\left[\gamma_{\mu} F_{1}{ }_{1}+\frac{i}{2 m} \sigma_{\mu \nu}\left(p^{\prime}-p\right){ }^{\nu} F_{2}^{V}+\frac{1}{m}\left(p^{\prime}-p\right){ }_{\mu} F_{3}^{V}\right. \\
& \left.+\gamma_{\mu} \gamma_{5} F^{A}+\frac{1}{m}\left(p^{\prime}-p\right){ }_{\mu} \gamma_{5} F^{p}+\frac{1}{m}\left(p^{\prime}+p\right)_{\mu} \gamma_{5} F_{3}^{A}\right] u(n), \tag{I.2}\\
& { }_{F}{ }_{1}(0)=1, \quad F^{A}(0)=-1.26,
\end{align*}
$$

the underlined terms represent the second-class contributions.

Second-class currents cannot be excluded a priori in weak interactions. Nevertheless they are mostly disregarded in theoretical quark and gauge models. On the other side the experimental verification of second-class currents in nuclear β-decay is an open question and quite controversial as the recent development has shown $|4|$.

In $|5|$ and $|6|$ (see also I) we have used successfully pole term sum rules to determine the first-class matrix elements $\left\langle\Delta^{\prime}\right| J_{\mu}^{I}|N\rangle$ and $\left\langle\Delta^{\prime}\right| J_{\mu}^{I}|\Delta\rangle$ in terms of the experimentally known form factors of $\left\langle N^{\prime}\right| J_{\mu}^{I}|N\rangle$. In this report we summarize the corresponding sum rules for second-class currents, which are evaluated in $|7|$. There it is shown that in the framework of our approximation second-class contributions do not exist for small momentum transfers.

We now make a few comments on the derivation of the sum rules to give some background information which will facilitate the orientation in the following chapters. More details are found in $|5|,|6|$ or I. Only isoscalar and isovector currents are considered. The sum rules are derived for the superconvergent parity conserving and regularized t-channel helicity amplitudes $G_{\Lambda}^{1,2}(s, t, u)$ of $|8|$ for the peripheral processes

$$
\begin{align*}
& \Delta+J_{\mu}^{I I} \rightarrow \Delta+\pi \tag{I.3}\\
& N+J_{\mu}^{I I} \rightarrow \Delta+\pi \tag{1.4}\\
& N+J_{\mu}^{I I} \rightarrow N+\pi \tag{1.5}
\end{align*}
$$

The reactions (I.3-I.5) are initiated by a vector or axial vector field $J_{\mu}^{I I}=V_{\mu}^{I I}, A_{\mu}^{I I}$.

It is assumed that in forward direction, $t \approx 0$, the high energy behaviour of $G^{1,2}$ is determined by the leading t-channel Regge-trajectory

$$
\begin{equation*}
G_{\Lambda}^{1,2}(s, t, u) \underset{s \rightarrow \infty}{\sim} s^{\alpha}{ }^{\alpha} f^{(t)-m}, t \approx 0, \text { fixed } . \tag{I.6}
\end{equation*}
$$

In (I.6) m denotes the maximal he1icity flip; m is a function of the helicities Λ of all particles. Superconvergence means $\alpha_{\text {eff }}-m<-1$. If $\alpha_{\text {eff }}-m+1$ $<-n$, n integer ≥ 0, the following sum rules are valid:

$$
\begin{equation*}
\int_{s_{o}}^{\infty} d s^{\prime}\left(s^{\prime}\right)^{n} I m_{m} G_{\Lambda}^{1,2}\left(s^{\prime}, t, u^{\prime}\right)-\int_{u_{0}}^{\infty} d u^{\prime}\left(\Sigma-t-u^{\prime}\right)^{n} \operatorname{Im} G_{\Lambda}^{1,2}\left(s^{\prime}, t, u^{\prime}\right)=0 \tag{I.7}
\end{equation*}
$$

with $s+t+u=\sum$. In practice usually $n=0$. If $m=3$ also $n=1$ is possible, in which case we speak of a moment sum rule. The effective Regge-trajectories are specified in table 1.

TABLE 1: Leading trajectories of the t-channel

particles		$I_{t}=0$		$\mathrm{I}_{\mathrm{t}}=1$		$\mathrm{I}_{\mathrm{t}}=2$
a	$\overline{\text { c }}$	nat. unnat. parity		nat. unnat. parity		nat. unnat. parity
$\mathrm{V}_{\mu}^{\mathrm{II}}(\mathrm{I}=1)$	π	$\alpha_{\text {eff }}(0)<1$	η	ρ	B	exotic
$\mathrm{v}_{\mu}^{\mathrm{II}}(\mathrm{I}=0)$	π	-	-	A_{2}	π	-
$A_{\mu}^{I I}(\mathrm{I}=1)$	π	ω	$\alpha_{\text {eff }}(0)<0$	A_{2}	A_{1}	exotic
$A_{\mu}^{I I}(\mathrm{I}=0)$	π	-	-	ρ	B	-
$\alpha_{\mathrm{eff}}^{\mathrm{I}_{\mathrm{t}}=2}(0)$	$<1 \text {, }$	$\alpha_{\rho}(0) \approx$	$\alpha_{A_{2}}(0) \approx$	$\alpha_{\omega}(0)$	≈ 0.5	
$\alpha_{\pi}(0) \approx$	$\alpha_{A_{1}}(0)$	≈ 0.0	$\alpha_{n}(0) \approx$	$\alpha_{B}{ }^{(0)}$	<0	

The sum rules (I.7) are saturated by the N - and Δ-intermediate contributions in the zero width approximation $\Gamma_{\Delta}=0$, so that we obtain the pole term sum rules

$$
\begin{equation*}
\sum_{i=N, \Delta}\left\{\operatorname{Res}_{s^{\prime}=\mathrm{m}_{i}^{2}}\left[\mathrm{~s}^{\mathrm{n}_{\mathrm{i}}} \mathrm{G}_{\Lambda}^{1,2}\left(\mathrm{~s}^{\prime}, \mathrm{t}, \mathrm{u}^{\prime}\right)\right]-\underset{\mathrm{u}^{\prime}=\mathrm{m}_{i}^{2}}{\operatorname{Res}}\left[\left(\Sigma-\mathrm{t}-\mathrm{u}^{\prime}\right)^{\mathrm{n}_{\mathrm{i}}}{ }_{\Lambda}^{1,2}\left(\mathrm{~s}^{\prime}, \mathrm{t}, \mathrm{u}^{\prime}\right)\right]\right\}=0 \tag{I.8}
\end{equation*}
$$

These sum rules and some of their first derivatives with respect to t at $\mathrm{t}=0$ are listed in the sections $I I I$ and IV (we call them t^{0} - and t^{1}-sum rules, respectively). Sum rules for higher derivatives yield no information since with increasing number of derivatives more and more of the low partial amplitudes get truncated. Among the t^{1}-sum rules we consider only those as reliable which converge very fast, i.e.

$$
\begin{equation*}
\left|s^{n} G_{\Lambda}^{1,2}(s, t, u)\right|<|s|^{-2}, \quad n=0,1, \quad s \rightarrow \infty \tag{I.9}
\end{equation*}
$$

Furthermore we restrict ourselves.only to sum rules with helicity flip $m \geq 2$ for the reactions (I.3) and (T.4). For $m<2$ the sum rules are not useful on account of their complicated kinematica1 structure.
II. NOTATIONS

The sum rules in the following sections III and IV are compiled for $G_{\Lambda}^{1,2}$ amplitudes with definite isospin in the t-channel $I_{t}=0,1,2$. The definitions of the vertices, phase conventions and other technicalities are taken from $|5|$. Each sum rule contains the complete N - and Δ-contribution. The abbreviations $L_{N(\Delta)}(N o)$ have been introduced to denote the $N(\Delta)$-contribution of the lefthand side of equation (NO); analogously L (NO) denotes the complete lefthand side of (NO).

For the reaction (I.3) we destinguish three classes of sum rules: (1) sum rules of the helicity $f 1 i p m=3$ amplitudes, (2) moment sum rules ($n=1$) of the $m=3$ amplitudes, (3) sum rules of the $m=2$ amplitudes. Only the crossing antisymmetrical amplitudes lead to non-trivial sum rules in the cases (1) and (3) and the crossing symmetrical amplitudes in the case (2). The amplitudes of the reaction $(I .4), N+J_{\mu}^{I I} \rightarrow \Delta+\pi$, have no definite crossing properties. To separate first-class sum rules from second-class ones, one has to combine the sum rules for (I.4) with the corresponding equations for the reaction $\Delta+J_{\mu}^{I I} \rightarrow N+\pi$. For the reaction (I.5) again only the crossing antisymmetrical amplitudes lead to non-trivial sum rules.

The following abbreviations are used:

$$
\begin{equation*}
I S=-\frac{8}{15}\left(\frac{2}{3}\right) \tag{II.1}
\end{equation*}
$$

for the isospin $I_{t}=O(2)$.

$$
\begin{equation*}
I S_{1}=2(-2), \quad I S_{2}=-\frac{5}{9}\left(\frac{1}{9}\right), \quad \mathrm{IS}_{3}=-\frac{5}{12}\left(-\frac{1}{12}\right) \tag{II.2}
\end{equation*}
$$

for $I_{t}=1(2)$. The masses are denoted by

$$
\begin{align*}
& \text { pion: } m_{\pi}=0.1396 \mathrm{GeV}, \text { nucleon: } m=0.9383 \mathrm{GeV}, \\
& \Delta(1232) \text {-resonance: } M=1.232 \mathrm{GeV} \tag{II.3}
\end{align*}
$$

Finally the following kinematical symbols will be used

$$
\begin{equation*}
M_{+}=M+m, \quad M_{-}=M-m, \quad M D N 2=M^{2}+m^{2}-M m-m_{\pi}^{2} \tag{II.4}
\end{equation*}
$$

$$
\begin{align*}
& y_{N}=-\left[2 M_{+} M_{-}+m_{\pi}^{2}+k^{2}\right], \quad y_{\Delta}=-\left[m_{\pi}^{2}+k^{2}\right], \tag{II.5}\\
& g_{12}=2 M^{2} g_{1}+m_{\pi}^{2} g_{2}, \quad \overline{g_{2}}=\frac{g_{12}}{M^{2}}-3 g_{2}, \tag{II.6}\\
& f\left(G_{i}, G_{j}\right)=4 \overline{g_{2}} G_{i}-\left(\frac{g_{12}}{M^{2}}-\frac{K^{2}}{M^{2}} \overline{g_{2}}\right) G_{j} \tag{II.7}
\end{align*}
$$

In the following we quote explicitly only the sum rules of the isovector current $J_{\mu}^{I I}$. The corresponding sum rules of the isoscalar current are given by the following substitutions: For all three reactions (I.3-I.5) only $I_{t}=1$ sum rules exist. They are obtained for the reaction (I.3) from the $I_{t}=0,2$ isovector sum rules by setting $I S=0$, since the $\left\langle\Delta^{\prime}\right| J_{\mu}^{I I}|N\rangle-$ vertex does not contribute. The form factors of the $\left\langle\Delta^{\prime}\right| J_{\mu}^{I I}|\Delta\rangle-\operatorname{vertex} G_{i}^{V}$ are to be replaced by the isoscalar form factors $G_{i},|5|$. For the second reaction (I.4) one has to put $I S_{1}=$ IS $_{2}=0$, IS $_{3}=-1 / 12$ and to replace the isovector form factors of the $\left\langle N^{\prime}\right| J_{\mu}^{I I}|N\rangle-$ and $\left\langle\Delta^{\prime}\right| J_{\mu}^{I I}|\Delta\rangle$-vertex by the corresponding isoscalar ones. There are no non-trivial sum rules for the last reaction (I.5).

For typographical reasons we denote in the sections III and IV the isospin in the t-channel by I instead of I_{t}.

The parity conserving, regularized helicity amplitudes $G_{\lambda_{d} \lambda_{b}}^{1, \lambda_{\bar{c}} \lambda_{a}}$ corresponds to the t-channel reaction $\bar{\pi}(q, S)+J_{\mu}^{I I}\left(K, \lambda_{a}\right) \rightarrow B_{2}\left(p_{2}, \lambda_{d}\right)+$ $\overline{B_{1}}\left(p_{1}, \lambda \bar{b}\right)$. For further details in particular the definition of the hadronic coupling constants $g, g^{*},\left(g_{1}, g_{2}\right)$ of the $\pi N N, \pi N \Delta, \pi \Delta \Delta$ vertices see the anpendix of I or $|5|$. There one finds also the definition of the nucleon, $N-\Delta$ excitation and Δ form factors: F_{i}, C_{i}, G_{i}.
III. SUM RULES FOR THE VECTOR CURRENT $\mathrm{v}_{\mu}^{\mathrm{II}}$
III. $1 \underset{\mu}{\Delta v_{\mu}^{I I} \rightarrow \Delta \pi}$
III.1.1.1 Sum rules of the $m=3, I=0,2$ amplitudes

$$
\begin{gathered}
\mathrm{G}_{3}^{2 \mathrm{~V} \mathrm{I}} \mathrm{I}=0,2 \\
\frac{3}{2}-\frac{3}{2}, \mathrm{~S} 1
\end{gathered}, \mathrm{G}_{\frac{3}{2}-\frac{3}{2}, \mathrm{SO}, 2}^{2}, \quad \mathrm{G}_{\frac{3}{2}-\frac{3}{2}, \mathrm{SS}}^{\mathrm{I}=0,2} \text { are crossing symmetrical. }
$$

a) t^{0}-sum rules

$$
\begin{equation*}
\mathrm{G}_{\frac{3}{2}-\frac{3}{2}, \mathrm{~S} 1}^{1 \mathrm{~V}=\mathrm{O}, 2}: \quad \mathrm{IS} \cdot \mathrm{Mg}^{*}\left(\frac{\mathrm{~m}}{2 \mathrm{M}} \mathrm{C}_{3}^{\mathrm{V}^{\prime}}+\mathrm{C}_{4}^{\mathrm{V}^{\prime}}\right)+\frac{1}{9} \frac{\mathrm{~m}^{2}}{\mathrm{~m}^{2}} \frac{\mathrm{~g}_{12}}{\mathrm{M}^{2}} \mathrm{G}_{7}^{\mathrm{V}}=0 \tag{III.1}
\end{equation*}
$$

b) t^{1}-sum rules

$$
\begin{align*}
& \mathrm{G}_{\frac{3}{2}}^{1 \mathrm{~V}} \mathrm{I}=0,2 \tag{III.2}\\
& \frac{3}{2}, \mathrm{Sl}
\end{align*} \quad \mathrm{IS} \cdot \mathrm{Mg}^{*} \mathrm{C}_{4}^{\mathrm{V}^{\prime}}+\frac{2}{9} \frac{\mathrm{~m}^{2}}{\mathrm{M}^{2}} \frac{\mathrm{~g}_{12}}{\mathrm{M}^{2}} \mathrm{G}_{7}^{\mathrm{V}}=0
$$

III.1.1.2 Sum rules of the $\mathrm{m}=3, \mathrm{I}=1$ amp1itudes

$$
\begin{aligned}
& \mathrm{G}_{3}^{1 \mathrm{~V} ~} \mathrm{I}=1 \\
& \frac{3}{2}-\frac{3}{2}, \mathrm{~S} 1
\end{aligned} \text { is crossing symmetrical. }
$$

a) t^{0}-sum rules

$$
\begin{align*}
& G_{\frac{3}{2}}^{2 V}-\frac{3}{2}, S 1 \text { has no } t^{\circ} \text {-contribution. } \\
& G_{\frac{3}{2}-\frac{3}{2}, S O}^{2 V=1}: \quad\left\{-\frac{4}{3} M g^{*}\left[K^{2}\left(C_{4}^{V^{\prime}}-C_{5}^{V^{\prime}}\right)-m^{2} C_{6}^{V^{\prime}}\right]+\frac{4}{9} \frac{m^{2}}{M^{2}} g_{12} G_{7}^{V_{7}}\right\}\left(m_{\pi}^{2}-K^{2}\right)=0 \quad \text { (III.3) } \\
& G_{\frac{3}{2}}^{2 V}-\frac{3}{2}, S S=1, \quad-\frac{4}{3} M g^{*} C_{6}^{V^{\prime}}+\frac{1}{9} \frac{K^{2}}{M^{2}} f\left(G_{5}^{V}, G_{6}^{V}\right)-\frac{4}{9}\left(\frac{g_{12}}{M^{2}}-\frac{K^{2}}{M^{2}} \overline{g_{2}}\right) G_{7}^{V}=0 \tag{III.4}
\end{align*}
$$

b) t^{1}-sum rules
$G_{\frac{3}{2}}^{2 V} \quad I=1, S 1: \quad\left[-\frac{4}{3}, M g^{*} C_{4} V^{\prime}+\frac{2}{9} \frac{m^{2}}{M^{2}}\left(\overline{g_{2}}-3 g_{2}\right) G_{7}^{V}\right]\left(m^{2}-K^{2}\right)+\frac{2}{m_{\pi}^{2}-K^{2}} L(I T T, 3)=0$
$G_{\frac{3}{2}-\frac{3}{2}, S 0}^{2 V}=1=\left[-\frac{4}{3} M g^{*} C_{4}^{V^{\prime}}+\frac{2}{9} \frac{m^{2}}{M^{2}}\left(\overline{g_{2}}-3 g_{2}\right) G_{7}^{V}\right] K^{2}-\frac{2}{3} \frac{m^{2}}{M^{2}}\left(m_{\pi}^{2}-K^{2}\right) g_{2} G_{7}^{V}-\frac{1}{2} \frac{1}{m_{\pi}^{2}-K^{2}} L$ (III. 3) $=0$
$G_{\frac{3}{2}-\frac{3}{2}, S S}^{2 V}=1 \quad g_{2}\left(G_{7}^{V}+\frac{K^{2}}{4 M^{2}} G_{6}^{V}\right)=0$
III.1.2.1 Moment sum rules of the $m=3, I=0,2$ crossing symmetrical amplitudes
a) t^{0}-sum rules

$$
\begin{aligned}
& \mathrm{G}_{\frac{3}{2}}^{2 \mathrm{~V}} \mathrm{I}=0,2 \\
& \frac{3}{2}, \mathrm{~S} 1
\end{aligned}
$$

$$
\begin{align*}
& \mathrm{G}_{\frac{3}{2}-\frac{3}{2}, \mathrm{SO}}^{2 \mathrm{~V}=0,2}:-\frac{3}{4} \mathrm{IS} \cdot \mathrm{y}_{\mathrm{N}} \mathrm{~L}_{\mathrm{N}}\left(\text { IIII. 3) }+\mathrm{y}_{\Delta} \mathrm{L}_{\Delta}(\mathrm{III} .3)=0\right. \tag{III.8}\\
& \mathrm{G}_{\frac{3}{2}-\frac{3}{2}, \mathrm{SS}}^{2 \mathrm{~V}, \mathrm{I}=0,2}:-\frac{3}{4} \mathrm{IS} \cdot \mathrm{y}_{\mathrm{N}} \mathrm{~L}_{\mathrm{N}}(\text { IIII. } 4)+\mathrm{y}_{\Delta} \mathrm{L}_{\Delta}(\text { III. } 4)=0 \tag{III.9}
\end{align*}
$$

b) t^{1}-sum rules

$$
\begin{align*}
& G_{\frac{3}{2}-\frac{3}{2}, S 1}^{2 V}=0, \frac{3}{4} I S \cdot y_{N} L_{N}\left(\text { IIII.5) }+y_{\Delta} L_{\Delta}(\text { III. } 5)=0\right. \tag{III.10}
\end{align*}
$$

$$
\begin{align*}
& \mathrm{G}_{\frac{3}{2}-\frac{3}{2}, \mathrm{SS}}^{2 \mathrm{I}=0,2}: \frac{\mathrm{y}_{\Delta}}{\mathrm{M}^{2}} \frac{4}{3} \mathrm{~L}(\text { III. } 7)-\frac{3}{4} \mathrm{IS} \cdot \mathrm{~L}_{\mathrm{N}}(\text { III. } 4)+{ }_{\mathrm{J}_{\Delta}}(\text { III. } 4)=0 \tag{III.12}
\end{align*}
$$

III.1.2.2 Moment sum rules of the $m=3, I=1$ crossing symmetrical amplitudes
a) t^{0}-sum rules
$G^{1 V}{ }_{\frac{3}{2}-\frac{3}{2}, S 1}^{I=1}:-\frac{4}{3} y_{N} M g^{*}\left(\frac{m}{2 M} C_{3}^{V^{\prime}}+C_{4}^{V^{\prime}}\right)+y_{\Delta} \frac{1}{9} \frac{m^{2}}{M^{2}} \frac{g_{12}}{M^{2}} G_{7}^{V}=0$
t^{1}-sum rules are not considered on account of the convergence criterion (I.9).

III.1.3 Sum rules of the $m=2$ amplitudes

We use the linear combinations

$$
\begin{aligned}
& A_{1}^{l V(\pm)}, A_{1}^{2 V(\pm)}, A_{0}^{1 V(\pm)} \text { of } I \text { and } \\
& A_{S}^{1 V(\pm)}:=G_{3}^{1 V}-\frac{1}{2}, S S \quad G_{\frac{1}{2}}^{1 V}-\frac{3}{2}, S S
\end{aligned}
$$

III.1.3.1 Sum rules of the $m=2, I=0,2$ amplitudes

$$
A_{1}^{\operatorname{lV}(+) I=0,2}, A_{1}^{2 V(-) I=0,2}, A_{0}^{I V(+) I=0,2}, A_{S}^{I V(+) I=0,2} \text { are crossing symme- }
$$ trical.

a) t^{0}-sum rules

$$
\begin{aligned}
& A_{1}^{1 V(-) I=0,2}, A_{0}^{1 V(-) I=0,2}, A_{S}^{1 V(-) I=0,2} \text { have no } t^{0} \text {-contributions. } \\
& A_{1}^{2 V(+) I=0,2}: \text { The sum rules are identical with (III. } 1 \text {). }
\end{aligned}
$$

b) t^{1}-sum rules

$$
\begin{align*}
A_{1}^{l V(-) I=0,2}:\{ & \left\{I S \cdot M g^{*}\left[\left(M_{+}-\frac{m_{\pi}^{2}-K^{2}}{4 M}\right) m C_{3}^{V^{\prime}}+M_{+} M-C_{4}^{V^{\prime}}+K^{2} C_{5}^{V^{\prime}}+m^{2} C_{6}^{V^{\prime}}\right]\right. \\
& \left.+\frac{1}{6} \frac{m^{2}}{M^{2}}\left(m_{\pi}^{2}+K^{2}\right)\left(\overline{g_{2}}-g_{2}\right) G_{7}^{V}+\frac{1}{9} \frac{m^{2}}{M^{2}} \frac{4 M^{2}-m_{\pi}^{2}}{M^{2}} g_{12} G_{7}^{V}\right\}\left(m_{\pi}^{2}-K^{2}\right)=0 \tag{III.14}
\end{align*}
$$

$$
\begin{aligned}
& A_{0}^{1 V(-) I=0,2}:\left\{I S \cdot M g^{*}\left[\frac{m}{2 M} K^{2} C_{3}^{V^{\prime}}-\frac{2 M^{2}+2 m^{2}-K^{2}-m_{\pi}^{2}}{4 M^{2}}\left(K^{2}\left(C_{4}^{V^{\prime}}-C_{5}^{V^{\prime}}\right)-m^{2} C_{6}^{V^{\prime}}\right)\right]\right. \\
& \left.+\frac{1}{9} \frac{m^{2}}{m^{2}} \frac{8 m^{2}+m_{\pi}^{2}}{m^{2}} g_{12} G_{7}^{V}-\frac{4}{3} \frac{m^{2}}{m^{2}} m_{\pi}^{2} g_{2} G_{7}^{V}\right\}\left(m_{\pi}^{2}-K^{2}\right)+\frac{2 K^{2}}{m_{\pi}^{2}-K^{2}} \text { L(III. 14) }=0 \\
& A_{S}^{I V(-) I=0,2}: \quad I S \cdot M g^{*} C_{6} V^{\prime}+\frac{2}{9} \frac{K^{2}}{M^{2}}\left[\frac{2 g_{12}}{M^{2}} G_{5}^{V}+\left(\frac{g_{12}}{M^{2}}-\frac{K^{2}}{M^{2}} \frac{3 g_{2}-\overline{g_{2}}}{2}\right) G_{6}^{V}\right] \\
& +\frac{8}{9}\left(\frac{g_{12}}{M^{2}}-\frac{K^{2}}{M^{2}} \frac{3 g_{2}-\overline{g_{2}}}{2}\right) G_{7}^{V}-\frac{4}{3} \frac{m_{\pi}^{2}-K^{2}}{M^{2}} L(\text { III. } 7)+\frac{1}{4 M^{2}} L(\text { III. } 9)=0
\end{aligned}
$$

III.1.3.2 Sum rules of the $m=2, I=1$ amplitudes

$$
A_{1}^{1 V(-) I=1}, A_{1}^{2 V(+) I=1}, A_{0}^{1 V(-) I=1}, A_{S}^{1 V(-) I=1} \text { are crossing symmetrical. }
$$

a) t^{O}-sum rules

$$
\begin{aligned}
& A_{1}^{1 \mathrm{~V}(+) \mathrm{I}=1}, A_{1}^{2 \mathrm{~V}(-) \mathrm{I}=1} \text { have no } t^{\mathrm{o}} \text {-contributions. } \\
& A_{0}^{1 \mathrm{~V}(+) \mathrm{I}=1}, A_{S}^{1 V(+) \mathrm{I}=1} \text { : The sum rules are identical with (III.3, III.4). }
\end{aligned}
$$

b) t^{1}-sum rules

$$
\begin{equation*}
A_{1}^{\operatorname{lV}(+) I=1}:[L(A 13)-2 L(A 5)]\left(m_{\pi}^{2}-K^{2}\right)=0 \tag{III.17}
\end{equation*}
$$

$A_{0}^{1 V(+) I=1}: \quad\left[-\frac{4}{3} M g^{*} K^{2}\left(\frac{m}{2 M} C_{3}^{V^{\prime}}+C_{4}^{V^{\prime}}\right)-\frac{1}{9} \frac{m^{2}}{M^{2}} \frac{2 M M-K^{2}}{M^{2}} g_{12} G_{7}^{V}\right]\left(m_{\pi}^{2}-K^{2}\right)$
$+\left(m_{\pi}^{2}-K^{2}\right) L(I I I .6)-K^{2} L(I I I .3)-\left[\frac{m^{2}+K^{2}}{m_{\pi}^{2}-K^{2}}+\left(\frac{m}{2 M}+\frac{m^{2}-K^{2}}{4 M^{2}}\right)\right] L(I I I .3)=0$
$A_{S}^{I V(+) I=1}: \quad-\frac{4}{3} M g^{*} C_{6}^{\prime}+\frac{1}{9} \frac{K^{2}}{m M}\left\{4\left(3 g_{2}-2 \overline{g_{2}}\right) G_{5}^{V}-\left[\frac{g_{12}}{M^{2}}-\frac{K^{2}}{M^{2}}\left(3 g_{2}-2 \overline{g_{2}}\right)\right] G_{6}^{V}\right\}$
$-\frac{4}{9} \frac{M}{m}\left[\frac{g_{12}}{M^{2}}-\frac{K^{2}}{M^{2}}\left(3 g_{2}-2 \overline{g_{2}}\right)\right] G_{7}^{V}-\frac{4}{3} \frac{M}{m} \frac{m_{\pi}^{2}-K^{2}}{M^{2}} L($ III. 7$)+\frac{1}{2} \frac{m_{\pi}^{2}-K^{2}}{m M} L(I I I .4)=0$
III. $2 \underset{\sim}{\mathrm{NV}_{\mu}^{\mathrm{II}} \rightarrow \Delta \pi}$
III.2.1 Sum rules of the $I=1,2$ amplitudes
a) t°-sum rules
$G^{2 V} \mathrm{I}=1(2)$
$\frac{3}{2}-\frac{1}{2}, S 1$ The sum rules are identical with (III.20).

$\mathrm{G}_{\frac{3}{2}-\frac{1}{2}, \mathrm{SS}}^{\mathrm{IV}=1(2)}: \quad \mathrm{NV}_{3}^{\mathrm{s}}+I S_{1} N V_{3}^{\mathrm{u}}+\mathrm{IS}_{2} D V_{3}^{\mathrm{s}}+\mathrm{IS}_{3} D V_{3}^{\mathrm{u}}=0$
with
$N V_{1}^{s}=0$
$N V_{1}^{u}=g\left(C_{3}^{V^{\prime}}+\frac{M}{m}-C_{4}^{V^{\prime}}\right)$
$D V_{1}^{S}=\left(\frac{m}{M} \frac{g_{12}}{M^{2}}+\frac{K^{2}}{M^{2}} \overline{g_{2}}\right) C_{3}^{V^{\prime}}-\frac{M}{m}\left(\frac{g_{12}}{M^{2}}-\frac{K^{2}}{M^{2}} \bar{g}_{2}\right) C_{4}^{V^{\prime}}+\frac{K^{2}}{M^{2}} \frac{g_{12}}{M^{2}} C_{5}^{V^{\prime}}+\frac{m^{2}}{M^{2}} \frac{g_{12}}{M^{2}} C_{6}^{V^{\prime}}$
$D V_{1}^{u}=m g^{*} 2\left(3+\frac{m}{M} \frac{M D N 2}{M^{2}}\right) G_{7}^{V}$
$\mathrm{NV}_{2}^{\mathrm{S}}=0$
$N V_{2}^{u}=g\left[K^{2}\left(C_{4}^{V^{\prime}}-C_{5}^{V^{\prime}}\right)-m^{2} C_{6}^{T^{\prime}}\right]$
$D V_{2}^{s}=2 \frac{m M_{+}}{M^{2}} \bar{g}_{2} K^{2} C_{3}^{V^{\prime}}+\left(\frac{M_{+}^{2}-M m}{M^{2}} \frac{g_{12}}{M^{2}}+\frac{2 M_{+} M_{-}-K^{2}}{M^{2}} \overline{g_{2}}\right) K^{2} C_{4}^{V^{\prime}}+\left(\frac{M_{+}^{2}-M m}{M^{2}} \frac{g_{12}}{M^{2}}+\frac{K^{2}}{M^{2}} \overline{g_{2}}\right)\left(K^{2} C_{5}^{V^{\prime}}+m^{2} C_{6} V^{\prime}\right)$
$D V_{2}^{\mathrm{u}}=\mathrm{mg}^{*} \frac{\mathrm{~m}}{\mathrm{M}} 4\left(2 \mathrm{M}_{+}^{2}+\mathrm{m}_{\pi}^{2}\right) \mathrm{G}_{7}^{\mathrm{V}}$
$\mathrm{NV}_{3}^{\mathrm{s}}=\mathrm{mg} * \frac{\mathrm{~K}^{2}}{\mathrm{~m}^{2}} \mathrm{~F}_{3}$
$N V_{3}^{u}=g_{C}^{V^{\prime}}$
$D V_{3}^{s}=-\left(\frac{M_{+}^{2}-M m}{M^{2}} \frac{g_{12}}{M^{2}}-\frac{K^{2}}{M^{2}} \overline{g_{2}}\right) C_{6} V^{\prime}$
$D V_{3}^{u}=-M g^{*}\left[4 \frac{M D N 2}{M^{2}} \frac{K^{2}}{M^{2}}\left(G \frac{V}{5}+\frac{K^{2}}{4 M^{2}} G_{6}+G_{7}\right)+4 \frac{2 M_{+}^{2}+m^{2}}{M^{2}}\left(G \frac{V}{7}+\frac{K^{2}}{4 M^{2}} G \frac{V}{6}\right)\right]$
b) t^{1}-sum rules

$$
\begin{align*}
& G_{3}^{\mathrm{IV}} \mathrm{I}=1 \\
& \frac{3}{2}-\frac{1}{2}, S 1\left(\mathrm{NV}_{4}^{\mathrm{s}}+2 \mathrm{NV} V_{4}^{\mathrm{u}}-\frac{5}{9} D V_{4}^{\mathrm{s}}-\frac{5}{12} D V_{4}^{\mathrm{u}}\right)\left(\mathrm{m}_{\pi}^{2}-\mathrm{K}^{2}\right) \tag{III.23}\\
&+\left(\mathrm{NV}_{2}^{\mathrm{s}}+2 \mathrm{NV} V_{2}^{\mathrm{u}}-\frac{5}{9} D V_{2}^{\mathrm{s}}-\frac{5}{12} D V_{2}^{\mathrm{u}}\right) \frac{\mathrm{m}_{\pi}^{2}+\mathrm{K}^{2}}{m^{2}}-\frac{M_{+}}{m} K^{2} L(\text { III. } 20, \mathrm{I}=1)=0
\end{align*}
$$

$\begin{gathered}G_{3}^{\mathrm{IV} \mathrm{I}} \mathrm{I}=1 \\ \frac{3}{2}-\frac{1}{2}, \mathrm{So}\end{gathered} \quad \mathrm{NV} V_{5}^{\mathrm{s}}+2 \mathrm{NV}_{5}^{\mathrm{u}}-\frac{5}{9} D V_{5}^{\mathrm{s}}-\frac{5}{12} D V_{5}^{\mathrm{u}}=0$
$\begin{gathered}G_{3}^{1 V}-\frac{1}{2}, S S\end{gathered}: \quad N V_{6}^{s}+2 N V_{6}^{u}-\frac{5}{9} D V_{6}^{s}-\frac{5}{12} D V_{6}^{u}=0$
with
$\mathrm{N} \cdot \mathrm{V}_{4}^{\mathrm{S}}=0$
$N V_{4}^{u}=g\left(\frac{K^{2}}{m} C_{5}^{V^{\prime}}+C_{6}^{V^{\prime}}\right)$
$D V_{4}^{s}=-\frac{K^{2}}{m^{2}} \frac{m}{M}\left(\frac{g_{12}}{M^{2}}+\frac{M_{+}}{M} \overline{g_{2}}\right) C_{3}^{V^{\prime}}-\frac{K^{2}}{m^{2}} \frac{M_{+} M}{M^{2}}-\overline{g_{2}} C_{4} V^{\prime}-\left(\frac{M^{2}-M m}{M^{2}} \frac{g_{12}}{M^{2}}+\frac{3 K^{2}}{M^{2}} g_{2}\right)\left(\frac{K^{2}}{m^{2}} C_{5}^{V^{\prime}}+C_{6}^{V^{\prime}}\right)$
$D v_{4}^{u}=-M g^{*} 2\left[2 \frac{2 M_{+}^{2}+m_{\pi}^{2}}{M^{2}}+\frac{K^{2}}{M^{2}}\left(3+\frac{M D N 2}{M^{2}}\right)\right] G_{7}^{V}$
$\mathrm{NV}_{5}^{\mathrm{s}}=0$
$N V_{5}^{u}=g\left[\frac{\mathrm{~K}^{2}}{\mathrm{~m}^{2}}\left(\mathrm{C}_{4}^{\mathrm{V}^{\prime}}+\mathrm{C}_{5}^{\mathrm{V}^{\prime}}\right)+\mathrm{C}_{6}^{\mathrm{V}^{\prime}}\right]$
$D V_{5}^{s}=-2 \frac{K^{2}}{m^{2}} \frac{m}{M} \frac{g_{12}^{\prime}}{M^{2}} C_{3}^{V^{\prime}}-6 \frac{K^{2} m^{2}}{m^{2}} \frac{\pi}{M^{2}} g_{2} C_{4}^{V^{\prime}}+\left(\frac{M_{+}^{2}-M m}{M^{2}} \frac{g_{12}}{M^{2}}-\frac{K^{2}}{M^{2}} \overline{g_{2}}+3-\frac{m^{2}+K^{2}}{M^{2}}-g_{2}^{-}\right)\left[\frac{K^{2}}{m}\left(C_{4}^{V^{\prime}}-C_{5}^{V^{\prime}}\right)-C_{6}^{V^{\prime}}\right]$
$D V_{5}^{u}=-4 \mathrm{Mg}^{*}\left(2 \frac{M_{+}^{2}+2 \mathrm{~m}_{\pi}^{2}}{\mathrm{M}^{2}}+\frac{\mathrm{K}^{2}}{\mathrm{M}^{2}} \frac{\mathrm{MDN} 2}{\mathrm{M}^{2}}\right) \mathrm{G}_{7}{ }_{7}$
$N V_{6}^{\mathrm{S}}=N V_{6}^{\mathrm{u}}=0$
$D V_{6}^{s}=-g_{2} C_{6}^{V^{\prime}}$
$D V_{6}^{u}=-4 M g^{*}\left(G_{7}^{V}+\frac{K^{2}}{4 M^{2}} G_{6}^{V}\right)$
III. $3 \xrightarrow{\mathrm{Nv}_{\mu}^{\mathrm{II}} \rightarrow \mathrm{N} \pi}$
III.3.1 t^{0}-sum rules of the $m=1, \mathrm{I}=0$ amplitudes
$\begin{gathered}G^{2 V} I=0 \\ \frac{1}{2}-\frac{1}{2}, S 1\end{gathered} G_{\frac{1}{2}-\frac{1}{2}, S O}^{I=0}, \quad G_{\frac{1}{2}-\frac{1}{2}, S S}^{I=0}$ are crossing symmetrical.

$$
\begin{align*}
& G_{\frac{1}{2}}^{2 V} \frac{1}{2}, S 1 . m g^{*}\left\{\left[K^{2} M D N 2-m M_{+}^{2} M_{-}-m_{\pi}^{2} m(2 M+m)\right] C_{3}^{V^{\prime}}\right. \\
& +\left[\operatorname{MDN} 2\left(M_{+}^{2} \frac{M}{m}-2 K^{2}\right)-M^{2}\left(M_{+}^{2}+2 m_{\pi}^{2}\right)\right] C_{4}^{V^{\prime}} \tag{III.26}\\
& \left.+\left[\operatorname{MDN} 2\left(2+\frac{M}{m}\right)-3 M^{2}\right]\left(K^{2} C_{5} V^{\prime}+m^{2} C_{6} V^{\prime}\right)\right\}\left(m_{\pi}^{2}-K^{2}\right)=0
\end{align*}
$$

III.3.1.2 t^{0}-sum rules of the $m=1, I=1$ amplitudes
$G_{1}^{2 V} \quad \mathrm{I}=1 \quad$ is crossing symmetrical.
$\frac{1}{2} \frac{1}{2}, \mathrm{Sl}$
$\mathrm{G}_{\frac{1}{2}}^{2 \mathrm{~V}}-\frac{1}{2}, \mathrm{~S} 1$ has no t^{o}-contribution.

$G_{\frac{1}{2}-\frac{1}{2}, S 0}^{2 V I=1}: m g^{*}\left\{2 \frac{M_{+}}{m} \frac{M D N 2}{M^{2}} K^{2} C_{3} V^{\prime}+\left[\left(M_{+}^{2}+2 M_{+} M_{-}-K^{2}\right) \frac{M D N 2}{M^{2} m^{2}}-\frac{M_{+}^{2}-m^{2}}{m M}\right] K^{2} c_{4} V^{\prime}\right.$
 $$
\begin{equation*} \left.+\left[\left(M_{+}^{2}+K^{2}\right) \frac{M D N 2}{m^{2} M^{2}}-\frac{M_{+}^{2}-m^{2}}{m M}\right]\left(K^{2} C_{5}^{V^{\prime}}+m^{2} C_{6} V^{\prime}\right)\right\}\left(m_{\pi}^{2}-K^{2}\right)=0 \tag{III.27} \end{equation*}
$$
 $G_{\frac{1}{2}}^{2 V}-\frac{1}{2}, S S: \quad \mathrm{g} \mathrm{K}^{2} \mathrm{~F}_{3} \mathrm{~V}+\frac{1}{9} \mathrm{mg}^{*}\left[\left(\mathrm{M}_{+}^{2}-\mathrm{K}^{2}\right) \frac{M D N 2}{M^{2}}-\frac{\mathrm{m}}{\mathrm{M}}\left(\mathrm{M}_{+}^{2}-\mathrm{m}_{\pi}^{2}\right)\right] \mathrm{C}_{6}^{V^{\prime}}=0$
 t^{1}-sum rules are not considered.

IV. SUM RULES FOR THE AXIAL VECTOR CURRENT A II .
IV. $1 \underset{\mu}{\Delta A_{\mu}^{I I} \rightarrow \Delta \pi}$
IV.1.1.1 Sum rules of the $m=3, I=0,2$ amp1itudes
$G_{\frac{3}{2}-\frac{3}{2}, S 1}^{1 A} \quad, \quad G^{1 A} \frac{3}{2}-\frac{3}{2}, S 0,2, G_{\frac{3}{2}-\frac{3}{2}, S S}^{1 A}=0,2$ are crossing symmetrical.
a) t°-sum rules
$G^{2 A} I=0,2$ has no t^{0}-contribution.
$\frac{3}{2}-\frac{3}{2}, S 1$
b) t^{1}-sum rules
$G_{\frac{3}{2}-\frac{3}{2}, S 1}^{2 A}=0,2 \quad I S \cdot M g{ }^{*} C_{4}^{A^{\prime}}-\frac{2}{9} \frac{m^{2}}{M^{2}} f\left(G_{5}^{A}, G_{6}^{A}\right)+\frac{4}{9} \frac{m^{2}}{M^{2}} \frac{g_{12}}{M^{2}}\left(G_{6}^{A}+G_{7}^{A}\right)=0$
IV.1.1.2 Sum rules of the $\mathrm{m}=3, \mathrm{I}=1$ amplitudes
$\mathrm{G}_{3}^{2 \mathrm{~A}} \mathrm{I}=1$
$\frac{3}{2}-\frac{3}{2}, \mathrm{Sl}$ is crossing symmetrical.
a) t^{0}-sum rules
$G_{\frac{3}{2}-\frac{3}{2}, S 1}^{1 A \operatorname{I}=1}: \quad\left[-\frac{4}{3} M g^{*} C_{3}^{A^{\prime}}+\frac{2}{9} \frac{m}{M} \frac{g_{12}}{M^{2}} G_{7}^{A}\right]\left(m_{\pi}^{2}-K^{2}\right)=0$
$\begin{aligned} & G^{1 A} \quad I=1 \\ & \frac{3}{2}-\frac{3}{2}, \text { SO }\end{aligned} \quad\left\{-\frac{4}{3} M g^{*} C_{5}^{A^{\prime}}+\frac{1}{9} \frac{K^{2}}{M^{2}}\left[f\left(G_{5}^{A} ; G_{6}^{A}\right)-2 \frac{g_{12}}{M^{2}} G_{6}^{A}-4 \bar{g}_{2} G_{7}^{A}\right]\right\}\left(m_{\pi}^{2}-K^{2}\right)-\frac{4 M}{m} \frac{K^{2}}{m_{\pi}^{2}-K^{2}} L(I V .2)=0$
$G_{\frac{3}{2}-\frac{3}{2}, S S}^{1 A T=1}: \quad-\frac{4}{3} M g^{*}\left(C_{5}^{A^{\prime}}+\frac{K^{2}}{m^{2}} C_{6}^{A^{\prime}}\right)=0$
b) t^{1}-sum rules

$$
\begin{align*}
& G^{1 A} I=1 \\
& \frac{3}{2}-\frac{3}{2}, S 1- \tag{IV.5}\\
&-\frac{4}{3} M g^{*} C_{5}^{A} A^{\prime}+\frac{1}{9} \frac{K^{2}}{M^{2}}\left[f\left(G_{5}^{A}, G_{6}^{A}\right)-2 \frac{g_{12}}{M^{2}} G_{6}^{A}-4 \bar{g}_{2} G_{7}^{A}\right]+\frac{M}{m\left(m_{\pi}^{2}-K^{2}\right)} L(I V .2) \\
&+\frac{m_{\pi}^{2}-K^{2}}{M^{2}}\left[\frac{1}{3} M g{ }^{*} \frac{M^{2}}{m^{2}} C_{4}^{A^{\prime}}+\frac{1}{18}\left[f\left(G_{5}^{A}, G_{6}^{A}\right)-2 \frac{\left.\left.g_{12} G^{2} G_{6}^{A}-4 \bar{m}_{2} G_{7}^{A}+2 \frac{g_{12}}{M^{2}} G_{7}^{A}\right]\right\}=0}{}\right.\right.
\end{align*}
$$

$G_{\frac{3}{2}-\frac{3}{2}, S O}^{1 A}: \quad-\frac{4}{3} M g^{*}\left[C_{5}^{A^{\prime}}+\frac{K^{2}}{m^{2}} C_{4}^{A^{\prime}}\right]-\frac{1}{9} \frac{K^{2}}{M^{2}}\left[f\left(G_{5}^{A}, G_{6}^{A}\right)-2 \frac{g_{12}}{M^{2}} G_{6}^{A}-4 \overline{g_{2}} G_{7}^{A}\right]$

$$
\begin{equation*}
-\frac{1}{9} \frac{K^{2}}{M^{2}}\left[4 \frac{g_{12}}{M^{2}} G_{7}^{A}+3 g_{2} \frac{m_{\pi}^{2}-K^{2}}{M^{2}} G_{6}^{A}\right]=0 \tag{IV.6}
\end{equation*}
$$

$G^{1 A} \quad \mathrm{I}=1$
$\frac{3}{2}-\frac{3}{2}, \mathrm{SS}$ The N -exchange does not contribute anymore.
IV.1.2.1 Moment sum rules of the $m=3, I=0,2$ crossing symmetrical amplitudes
a) t^{0}-sum rules
$G_{\frac{3}{2}-\frac{3}{2}, S 1}^{1 \mathrm{~A}=0,2}:-\frac{3}{4}$ IS $\cdot y_{N} L_{N}(I V .2)+y_{\Delta} L_{\Delta}(I V .2)=0$
$G_{\frac{3}{2}-\frac{3}{2}, S O}^{\text {IA }} \mathrm{I}=0,2,-\frac{3}{4}$ IS $\cdot y_{N} L_{N}($ IV. 3$)+y_{\Delta} L_{\Delta}(I V .3)=0$
$G^{1 A} \mathrm{~A}=0,2$
$\frac{3}{2}-\frac{3}{2}, S S$$\quad$ IS $\cdot \mathrm{Mg}^{*} \mathrm{y}_{\mathrm{N}}\left(\mathrm{C}_{5}^{\mathrm{A}^{\prime}}+\frac{\mathrm{K}^{2}}{m^{2}} C_{6}^{\mathrm{A}^{\prime}}\right)=0$
t^{1}-sum rules are not considered.
a) t^{0}-sum ru1es
$G_{3}^{2 A} \mathrm{I}=1$
$\frac{3}{2}-\frac{3}{2}, \mathrm{~S} 1$ has no t^{o}-contribution.
b) t^{1}-sum rules
$G_{\frac{3}{2}-\frac{3}{2}, S 1}^{2 A}: \quad-\frac{4}{3} M g^{*} y_{N} C_{4}^{A^{\prime}}-\frac{2}{9} \frac{m^{2}}{M^{2}} y_{\Delta} f\left(G_{5}^{A}, G_{6}^{A}\right)+\frac{4}{9} \frac{m^{2}}{M^{2}} \frac{g^{12}}{M^{2}} y_{\Delta}\left(G_{6}^{A}+G_{7}^{A}\right)=0$
IV.1.3 Sum rules of the $m=2$ amplitudes

Again we use the linear combinations
$\mathrm{B}_{1}^{1 \mathrm{~A}(\pm)}, \mathrm{B}_{1}^{2 \mathrm{~A}(\pm)}, \mathrm{B}_{0}^{2 \mathrm{~A}(\pm)}, \mathrm{B}_{\mathrm{S}}^{2 \mathrm{~A}(\pm)}$ of I .
IV.1.3.1 Sum rules of the $m=2, I=0,2$ amplitudes
$\mathrm{B}_{1}^{1 \mathrm{~A}(-) \mathrm{I}=0,2}, \mathrm{~B}_{1}^{2 \mathrm{~A}(+) \mathrm{I}=0,2}, \mathrm{~B}_{0}^{2 \mathrm{~A}(+) \mathrm{I}=0,2}, \mathrm{~B}_{\mathrm{S}}^{2 \mathrm{~A}(+) \mathrm{I}=0,2}$ are crossing symmetrical.
a) t°-sum rules
$B_{1}^{1 A(+) I=0,2}$ and $B_{1}^{2 A(-) I=0,2}$ have no t°-contributions.

$$
\begin{align*}
& B_{0}^{2 A(-) I=0,2}: \quad\left\{I S \cdot M^{*}\left[K^{2} C_{3}^{A^{\prime}}-\frac{1}{4} \frac{m}{M}\left(2 M_{+}^{2}-m_{\pi}^{2}-K^{2}\right) C_{5}^{A^{\prime}}\right]\right. \\
&+\frac{1}{36} \frac{m}{M}\left(K^{2}+m_{\pi}^{2}\right) \frac{K^{2}}{M^{2}}\left[f\left(G_{5}^{A}, G_{6}^{A}\right)-2 \frac{g_{12}}{M^{2}} G_{6}^{A}-4 g_{2} G_{7}^{A}\right] \tag{IV.11}\\
&+\frac{4}{9} \frac{m}{M} K^{2} \frac{g_{12}}{M^{2}}\left[G_{5}^{A}+\frac{K^{2}}{4 M^{2}} G_{6}^{A}-\frac{1}{2} G_{7}^{A}\right] f\left(m_{\pi}^{2}-K^{2}\right)=0
\end{align*}
$$

$$
\begin{equation*}
B_{S}^{2 A(-) I=0,2}: \quad I S \cdot M g^{*}\left(2 M_{+}^{2}-m_{\pi}^{2}-K^{2}\right)\left(C_{5}^{A^{\prime}}+\frac{K^{2}}{m^{2}} C_{6}^{A^{\prime}}\right)=0 \tag{IV.12}
\end{equation*}
$$

b) t^{1}-sum rules

$$
\begin{equation*}
B_{1}^{1 A(+) I=0,2}: L(I V .1)\left(m_{\pi}^{2}-K^{2}\right)+\frac{1}{2} \frac{m}{M} \frac{L(I V .7)}{m_{\pi}^{2}-K^{2}}=0 \tag{IV.13}
\end{equation*}
$$

Further t^{1}-sum rules are not considered.
IV.1.3.2 Sum rules of the $\mathrm{m}=2, \mathrm{I}=1$ amplitudes
$\mathrm{B}_{1}^{1 \mathrm{~A}(+) \mathrm{I}=1}, \mathrm{~B}_{1}^{2 \mathrm{~A}(-) \mathrm{I}=1}, \mathrm{~B}_{0}^{2 \mathrm{~A}(-) \mathrm{I}=1}, \mathrm{~B}_{\mathrm{S}}^{2 \mathrm{~A}(-) \mathrm{I}=1}$ are crossing symmetrical.
a) t^{0}-sum rules
$B_{1}^{1 A(-) I=1}$ has no t°-contribution
$\mathrm{B}_{1}^{2 \mathrm{~A}(+) \mathrm{I}=1}$: The sum rule is identical with (IV.2).
$\mathrm{B}_{0}^{2 \mathrm{~A}(+) \mathrm{I}=1}$: The sum rule is identical with (IV.3)
$B_{S}^{2 A(+) I=1}$: The sum rule is identical with (IV.4)
t^{1}-sum rules are not considered.
IV. $2 \underset{\mu}{\mathrm{NA}_{\mu}^{\mathrm{II}} \rightarrow \Delta \pi}$

According to (I.9) only t°-sum rules are considered.
IV.2.1 t°-sum rules of the $I=1,2$ amplitudes
$G_{\frac{3}{2}-\frac{I}{2}, S 1}^{1 A}: \quad N=1,2, \quad N A_{1}^{s}+I S_{1} N A_{1}^{u}+I S_{2} D A_{1}^{s}+I S_{3} D A_{1}^{u}=0$
$\mathrm{G}_{\frac{3}{2}}^{2 \mathrm{~A}} \mathrm{I}=1, \frac{1}{2}, \mathrm{Sl}$: The sum rules are identical with (IV.14).
$\begin{aligned} & G^{2 A} \quad I=1,2 \\ & \frac{3}{2}-\frac{1}{2}, S O\end{aligned} \quad\left(N A_{2}^{s}+I S_{1} N A_{2}^{u}+I S_{2} D A_{2}^{s}+I S_{3} D A_{2}^{u}\right) \frac{m_{\pi}^{2}-K^{2}}{m^{2}}-\frac{2 M_{+} M^{2}}{m^{2}} K^{2} L(I V .14)=0$
$G_{\frac{3}{2}-\frac{1}{2}, S S}^{2 A} \quad I=1,2, \quad N A_{3}^{s}+I S_{1} N A_{3}^{u}+\mathrm{IS}_{2} D A_{3}^{s}+I S_{3} D A_{3}^{u}=0$
with
$N A_{1}^{s}=m g^{*} F_{3}^{A}$,
$N A_{1}^{\mathrm{u}}=\frac{\mathrm{g}}{2}\left(\frac{2 m}{\mathrm{M}_{+}} C_{3}^{A^{\prime}}+C_{4}^{A^{\prime}}\right)$,
$D A_{1}^{s}=\left(\frac{m}{M} \frac{g_{12}}{M^{2}}-\frac{K^{2}}{M^{2}} \overline{g_{2}}\right) \frac{m}{M_{+}} C_{3}^{A^{\prime}}+\frac{1}{2}\left[\left(1+\frac{K^{2}}{M^{2}} \frac{m}{M_{+}}\right) \frac{g_{12}}{M^{2}}-\frac{K^{2}}{M^{2}} \bar{g}_{2}\right] C_{4}^{A^{\prime}}+\frac{m^{2}}{M^{2}} \frac{m}{M_{+}} \frac{g_{12}}{M^{2}} C_{5}^{A^{\prime}}$,
$D A_{1}^{\mathbf{u}}=m g^{*} \frac{m}{M}\left[4 \frac{M D N 2}{M^{2}}\left(G_{5}^{A}+\frac{K^{2}}{4 M^{2}} G_{6}^{A}\right)+3 \frac{m^{2}}{M^{2}} G_{6}^{A}+2\left(\frac{M_{+} M^{2}}{M^{2}}+\frac{\left(2 M^{+m}\right) m_{\pi}^{2}}{M_{+} M^{2}}\right) G_{7}^{A}\right]$,
$N A_{2}^{s}=m g^{*} \quad K^{2} F_{3}^{A}$,
$N A_{2}^{u}=g \quad m^{2} \quad C_{5}^{A^{\prime}}$,
$D A_{2}^{s}=2 \frac{m M^{2}}{M^{2}} \frac{-}{g_{2}} K^{2} C_{3}^{A^{\prime}}+\left[\frac{M^{2}+M m}{M^{2}} \frac{g_{12}}{M^{2}}+\frac{M_{+} M^{2}}{M^{2}} g_{2}\right] K^{2} C_{4}^{A^{\prime}}+m^{2}\left(\frac{M^{2}+m M}{M^{2}} \frac{g_{12}}{M^{2}}+\frac{K^{2}}{M^{2}} \overline{g_{2}}\right) C_{5}^{A^{\prime}}$,
$D A_{2}^{u}=-m g^{*} \frac{m}{M} K^{2}\left[4 \frac{M D N 2}{M^{2}}\left(G_{5}^{A}+\frac{K^{2}}{4 M^{2}} G_{6}^{A}-G_{7}^{A}\right)+\frac{3 m_{m}^{2}}{M^{2}} G_{6}^{A}\right]$,
$N A_{3}^{s}=0$
$N A_{3}^{u}=g\left(C_{5}^{A^{\prime}}+\frac{K^{2}}{m^{2}} C_{6}^{A^{\prime}}\right)$,
$D A_{3}^{s}=\left(\frac{M_{-}^{2}+M m}{M^{2}} \frac{g_{12}}{M^{2}}-\frac{K^{2}}{M^{2}} \overline{g_{2}}\right)\left(C_{5}^{A^{\prime}}+\frac{K^{2}}{m^{2}} C_{6}^{A^{\prime}}\right)$,
$D A_{3}^{u}=0$
IV. $3 \xrightarrow{\mathrm{NA}_{\mu}^{\mathrm{II}} \rightarrow \mathrm{N} \pi}$

Among the four $m=1$ amplitudes belonging to unnatural parity exchange in the t-channel $\frac{G_{1}}{2 A} \frac{1}{2} \frac{1}{2}, S 1$ and $G_{\frac{1}{2}}^{2 A}-\frac{1}{2}, S 1$ are crossing symmetrical and $G^{2 A} \frac{1}{2}-\frac{1}{2}$, S (has no t°-contributions. The remaining $I=1$ amplitude $G_{\frac{1}{2}}^{2 A} \frac{1}{2}, S 1$ although superconvergent at $t=0$ will not be used because the A_{1}-exchange with $\alpha_{A_{1}}(0) \approx 0$ contributes. It is not to be expected that an approximation keeping only the low energy contributions gives a good result because of slow convergence for $t \approx 0$.

REFERENCES

|1| H.-D. Kieh1mann, "Vorhersage von Strukturfunktionen der Baryonen fiir die elektromagnetische und schwache Wechselwirkung", KfK 2636, Mai 1978
|2| S. Weinberg, Phys.Rev. 112, 1375 (1958)
|3| P. Langacker, Phys.Rev. D15, 2386 (1977)
|4| At present their is no experimental evidence for second-class currents. For a summarizing discussion of the experimental situation see:
H. Behrens, H. Genz, M. Conze, H. Feldmeier, W. Stock, and A. Richter, Ann. Phys., to appear
|5| H.-D. Kieh1mann and W. Schmidt, "Superconvergence and the structure of the vector current vertices", to be pub1iśhed
|6| H.-D. Kiehlmann and W. Schmidt, "Superconvergence and the structure of the axial vector current vertices", to be published
$|7|$ H.-D. Kieh1mann and W. Schmidt, "Superconvergence and second-class currents', to be published
|8| G. Cohen Tannoudji, A. More1, and H. Navelet, Ann.Phys. 46, 239 (1968)

