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Analysis of 7N Charge-Exchange Scattering Data at Intermediate

Energies

Abstract:

Pion-Nucleon charge-exchange scattering data up to 6 GeV/c are analysed, using
Legendre expansions of do/d? and P(do/dQ)/sin © and zero trajectories. In
several cases there are large discrepancies between the Legendre coefficients
derived directly from data and those calculated from phase shifts, The number

of coefficients needed for a good fit is remarkably large already around 1 GeV/c
and does not increase up to 2.2 GeV/c. In AIO(k) a peak is found at 1.0 GeV/c

which is difficult to accept.

Although the data cover a large angular range, extrapolations to cos 6 = * | have
fairly large uncertainties because of strong structures in the near-forward and
near-backward directions, Further progress in phase shift analysis depends on a
determination of these structures by suitable experiments, because they contain
information on higher partial waves and resonances, These experiments would also
help to‘exploit in a better way the knowledge of the absolute phase obtained from

forward and backward dispersion relatioms.

The zero trajectories calculated directly from data have a simple and reasonable
behaviour above 1.1 GeV/c, but they show unexpected complications in the range
0.6 — 1.1 GeV/c., These are possibly due to an unknown systematic experimental
error which could also be responsible for the above mentioned large contri-
butions from high partial waves., Zero trajectories calculated from phase shifts
are also shown. Some local deviations from a smooth behaviour indicate at which

energies the partial wave analysis is not yet satisfactory,



ANALYSE DER mN LADUNGSAUSTAUSCH-DATEN BEI MITTLEREN ENERGIEN

Zusammenfassung

Es werden Pion-Nukleon Ladungsaustausch-Daten bis 6 GeV/c analysiert, wobei
Legendre-Entwicklungen von do/d? und P(do/dR)/sin © und Nullstellen-Trajek-
torien benutzt werden, In verschiedenen Fdllen gibt es groRe Diskrepanzen
zwischen den aus Daten und aus Streuphasen bestimmten Koeffizienten, Die
Zahl der fiir einen guten Fit bendtigten Koeffizienten ist schon bei | CeV/c
bemerkenswert gross und steigt nicht bis 2.2 GeV/c. A]O(k) hat bis 1.0 GeV/c

ein deutliches Maximum, das schwer zu interpretieren ist,

Obwohl die Daten einen weiten Winkelbereich iiberdecken, haben Extrapolationen
nach cos © = #1 ziemlich grosse Unsicherheiten, weil es nahe der Vorwirts-—
und Riickwdrtsrichtung starke Strukturen gibt, Weiterer Fortschritt in der Pha-
senanalyse hingt von der experimentellen Bestimmung dieser Strukturen ab,

weil diese Information iiber hshere Partialwellen und Resonanzen enthalten.
Diese Experimente wiirden auch helfen, die aus Vorwirts=- und Riickwirts-Disper=
sionsrelationen folgende Information iiber die absolute Phase der Amplitude

besser auszunutzen.,

Die aus Daten bestimmten Nullstellen-Trajektorien sind oberhalb von I.1 GeV/c
einfach, aber im Bereich 0.6-1.! GeV/c kompliziert. Vermutlich kommt dies
ebenso wie die oben erwihnten hohen Partialwellen von systematischen experi-
mentellen Fehlern. Lokale Strukturen in den aus Streuphasen berechneten Trajek-

torien weisen auf Mingel der Phasenanalyse hin,
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1. Introduction

Up to now nN phase shift analysis was mainly based on experimental data for

+ *
the elastic reactions m p >+ m p, because data for the charge-exchange cross sec—
tion were scarce and less accurate and polarization data existed in the latter

. 5
case only at a few energies ,

Recently the situation has improved considerably, because the results of high sta-
tistics experiment in the range 0.6 ... 2.7 GeV/c became available where both

doo/dQ and Po have been measuredﬁ.

One could think that phase shift analysis can easily be updated by adding these

data to the input. Unfortunately the situation is more difficult, one of the

reasons being that in some kinematical regions the new input is not quite con-

sistent with isospin constraints7, presumably due to experimental errors but there are

other problems as well,
In order to support the effort made in phase shift analysis, we have performed

a direct analysis of the eharge-exchange data, Legendre fits to the differential
cross sections and polarizations are treated in sects., 2 and 3, Fits of this type
were used as a first step in the Saclay phase shift analysisz. The energy de-
pendence of the expansion coefficients shows whether different data sets are
compatible with each other. The uncertainties of the coefficients can be used

for an estimate of those of the dominant resonant partial waves. The necessary

number of coefficients gives information on the number of relevant partial waves,

. . o
Furthermore Legendre expansions are the usual tool for extraplations to 6 = 0

o] . . . . . .
and 180  which are of interest in connection with evaluations of forward and

backward dispersion relations.

Legendre coefficients are also needed for a comparison of experiments in which the n°

in the final state is determined with others in which only the y-distribution

is measured.8’9

In sect. 4 we discuss the results for Legendre coefficients determined by another
method and from phase shifts. The comparison of the extrapolation of do/dQ to »

6 = 0° with the prediction from the optical theorem and the forward dispersion
relation is treated in sect., 5. This point has already been briefly discussed

by Brown et al, , who came to the disturbing conclusion that, at some energies,

there are large discrepancies between the extrapolation of their data and our
predictionlo. We shall also present results for the forward and backward slopes which

are sensitive to contributions from high partial waves.



Finally, we have used our Legendre fits as well as phase shifts for a deter-

mination of zero trajectories of transversity amplitudes (sect. 6)., Up to now
+ 3

only zero trajectories for elastic 7 p amplitudes have been discussed in the

. I * . . . , ,
literature 1’12. %he trajectories are important for the study of discrete ambi-

13,11,12 and in connection with dual modelsll’l4.

guities of phase shift analysis
Zero trajectories of invariant amplitudes have been treated elsewhere ~. Our

conclusions are summarized in sect., 7.

2, Legendre fits to the differential cross sections

The differential cross section data have been fitted to a Legendre expansion

do

do 1
Q- 2

A P (2), 2.1)
q n=0

N 12

where 6 and q denote the scattering angle and the momentum in the c.m. frame(z=cos 0},

The coefficients An are dimensionless parameters which are related to partial

waves by
= ', ' = =
A =2] a(e,'33,3 Re [T, T 0T (2.2)
2%
J,J'
The determination of the coefficients is discussed in the Appendix,eq., (A.7).The
T;J are the isospin odd combinations of partial wave amplitudes for isospin I=1/2
and 3/2
- 1 ,.1/2 _3/2
Tor =3 Toy ~Tog s (2.3)
I 1 I . I
Ty; = 5T {ngJ exp (216 ;) 1}’ (2.4)

GEJ being the real phase shift and qij the absorption parameter,

%)

The completion of this manuscript has been delayed because we wanted to include
the "1978" version (Ref?s) of the phase shift analysis of Ref.3.‘Zero trajectories
of charge-exchange amplitudes have recently been discussed by D. Chew (Ref.lza).

We are grateful to her for a correspondence.




The data of Brown et al.6 cover a large angular interval. In the forward direction
the center of the first bin lies at z=0.98 or 0.95 at most energies and in the
backward direction it lies at z= -0.94, One could think that the cross sections
in the remaining small intervals are well determined by the fit. But unfortunately

this is not true.

At most energies the cross section has a rapid variation in the range 0.95£ [cos CIE3R
If the structure is a near-forward or near-backward peak, the extrapolation fre-
quently leads to negative forward or backward cross sections. In any case it de-

pends sensitively on the number N of terms in the expansion (2.1).

. 6 .
For these reasons Legendre fits to the new Rutherford data alone are of little
interest, In the following we shall consider fits which take into account our pre-

. . . , . . 10
diction from the forward dispersion relation, assuming our error estimate of Ref. .

17’]8. In the range

Furthermore we have included the existing accurate backward data

from 1,0 to 1.8 GeV/c, where the backward cross section has not yet been measured
. . . 35 . .

we have added the estimate from phase shift analysis, assuming a fairly large

error,

2.1 Choice of the cut—off value N

First we discuss the dependence of X? per degree of freedom (X%F) on the number of
coefficients in eq. (2.1). Fig. 1 shows that the decrease is not monotonic. There
are steps in x%F(N) which follow from the fact that some of the higher coefficients
are small for dynamical reasons. Because of this feature it is not appropriate to
apply a formal determination of N which is based on the difference X%F(N) - X%F(N+1)
(Fisher test, see p. 200 in Ref.l6).

Such a test waé used by Brown et a1.6, who chose N = 6 up to 1027 MeV/c, N = 8 up to
1767 MeV/c and N = 10 at higher momenta., Fig. 1 shows that a significant improve-
ment of X%F can be obtained if one goes up to N = 8 at 618 MeV/c and up to N=10

at and above 675 MeV/c.

It is certainly unexpected that A, should give a significant contribution in the

10
region around | GeV/c, where the resonances D15(1679) and F15(1684) are located.

Therefore one has to check further conditions:

i) The diagonal error of A, . should be small in comparison with AlO' This is true

10
in the range 776-1077 MeV/c, AAIO/AIO being 0,20 or smaller.,

ii) A‘0 should remain approximately unchanged, if N increases., This is fulfilled



in the above momentum range for N=10,11,12, However, a large change occurs at

some momenta for N=13,

iii) AlO should have a reasonable and smooth energy dependence., This is ful-

filled (see Fig. 2).

The discussion will be continued in sects, 2.2 and 4.

It is surprising that the behaviour of x%F(N) does not suggest an increase of N
between 1 and 2 GeV/c. Even at 2.7 GeV/c the fit to the Rutherford data is
satisfactory already for N= 12 (Fig. 1 ).

We have tried to use the same Legendre fit at 6 GeV/c, where data at all angles
are available. However we have not been able to find a reasonable result, It is
necessary to choose a large value of N because of the rapidly varying forward
structure. Even with N=20 the fit in this region is not yet good. But in the cen-
tral region it develops more oscillations than indicated by the data, leading to

negative cross sections at most of the minima,

Since a similar difficulty occurs already at lower momenta, we have used the method

described in sect. 4 for the determination of Legendre coefficients above 2.5 GeV/c.

2.2 Legendre Coefficients of do/dQ

Fig. 2 shows our results for An(k) as derived from the data of Brown et a1.6;N8180n
et al.21 and Feltesse22 together with forward cross sections]0 and backward

17,18

cross sections from Refs. . Up to 2.2 GeV/c we have chosen N=11, but the

lower coefficients are almost the same for N=10 and N=9,

In addition we have plotted An(k) as determined with the method described in

sect. 4 and coefficients obtained from experiments in which only the y-distri-
. 8,9

bution has been measured. ’

Finally we have plotted An(k)—values from phase shift analyses, The points

at diffezent momenta are connected by straight lines.We have used the''1976 CMU-LBL"
solution and the "Karlsruhe-Helsinki 78" solution3’35.

Discussion-

i) The coefficients derived from the data of Brown et 31.6 show a well=defined
momentum dependence up to Alo(k)' The higher coefficients have larger errors
but, surprisingly, Alo(k) has a pronounced peak in the mass region 1860 MeV
(k 2 1.0 GeV/c). The simplest interpretation would be an interference of the

D15 and Fls-resonances with an imaginary J=15/2 background term.




ii) A comparison between the An-values obtained from our fit to the data and the

values calculated from phase shifts shows several discrepancies, which are a con-
35

sequence of the fact that the phase shift solution does not give a good fit to

some of the data of Brown et 31.6. The main difficulties occur around 1,0 GeV/c

in Al’ A&’ AlO and in a larger momentum range in A8’ A9, AlO' If a better fit

35
is enforced, the phase shift solution develops difficulties in other places.

Some of the discrepancies are due to the fact that the input of phase shift
analysis contains also earlier datam-25 which differ considerably from those

6 . . . .
of Brown et al. 1in some kinematic regions.

It is remarkable that our Legendre fit leads to a smooth momentum dependence of

the coefficients An(k) which can easily be interpolated by a spline fit.

The coefficients derived from the CHMU-LBL phase shifts4 show larger fluctuations,
because these authors have not imposed fixed-t analyticity. Large discrepancies

with our result from the data of Brown et a1.6 occur in A0 at 1,84 GeV/e, in Ay
Ays Bg» Ag

sult is not satisfactory because of large fluctuations in the energy dependence.

around 1,0 GeV/c and in Ay, B,, Ay, Ag above 1.5 GeV/c, where the re-

One should notice that the data of Brown et al.6 have not yet been included in

the CMU-LBL phase shift solution,

The fluctuations in the An(k) derived from the CMU-LBL-phase shifts4 indicate that
analyticity along only 4 hyperbolas is not sufficient for a smoothing of the momen-
tum dependence. '

iii) The normalization of different experiments can be compared in Fig. 2a,

since AO is proportional to the total charge-exchange cross section

2
| tot
Ao 47 oex * (2.5)

Fig. 2a shows a good agreement between Brown et al.6 and Nelson et 31.21. Some
deviations from the values of Bulos et a1.8 are probably due to the fact that
the number of Legendre coefficients used by these authors is too small (N=6

up to 1027 MeV/c, cf. ourkFig. 1 ). Except for a few points the agreement with
the values of Kistiakowsky et al.9 is reasonable, since the diagonal errors

should not be taken too seriously.



iv) The transition to the Regge region (6 GeV/c) shows the expected increase of
An for higher n (sect. 4). More accurate data are necessary for a good resolution
of the structures above 2,0 GeV/c which are important for the determination of

the higher resonances,

Table I gives our result for‘An(k) as obtained from the data of Brown et 31.6

combined with backward cross sections and the forward points as discussed above.
Legendre coefficients calculated from phase shifts are given in Table II ("Karls-

ruhe-Helsinki 78"),

3. Legendre Fits to Polarization Data

. . 3 \ . . ,
In phase shift analysis™ and for the discussion of zeros of transversity ampli-

tudes (see sect, 6) the data enter in the combination

do

E (1 + P). (3.1)

One could consider fits to the plus and minus combinations separately, but then
the average would not represent a good fit to do/dQ, which has been measured much

more accurately than P, Therefore we .prefer to fit do/dQ and

, N
P de/dQ - | '
e ;2. nzl Bn(k)Pn(z). (3.2)

The coefficients Bn are related to partial waves, eq. (2.3), by

_ _*
. bn(z,z', J,J')Im(TQ.J.TzJ). (3.3)

B = 22%

2
J
The calculation of the Clebsch-Gordan coefficients is treated in the Appendix,

6 .
In most cases accurate do/dQ~data  are available at momenta very near those of the

6,24

polarization data « Since interpolations in cos 6 are necessary




on the left hand side of eq. (3.2), we have inserted our Legendre fit to

dg/dQ in all cases.

4

At two momenta(Shannon et al.2 : 1245 and 1790 MeV/c) the angular range of the

polarization data is toe small for a reasonable fit,

Fig. 3 shows the coefficients Bn(k)’ eq. (3.2) obtained from polarization data

and also the values calculated from phase shifts35’4. It is seen that the coeffi-
cients have a well-determined momentum dependence up to B8(k). The dependence

of Bn(k) on N is fairly small as long as n lies somewhat below N,

At some energies P do/dQ/sin 6 has a rapid angular dependence near the forward
and backward directions which is not well-determined experimentally because

of the large bin width of the P-data. Therefore it is of interest to check the
smoothness of the extrapolation of P do/dQ/sin @ to 0° and 180° as a function of

momentum. (See below, sect. 5).

In general the agreement between Bn(k) from data and from phase shifts is
reasonable, but there are fairly large discrepancies at some energies. In the case
of the CMU-LBL 76 phase shifts one should remember that the data of Brown et al?
are not part of the input.

The structures of Bn(k) give information only on' the interference between diffe-
rent resonances or between a resonance and the background, since a resonant amplitude

alone does not contribute to the polarization parameter,

4, Legendre coefficients from fits to the data

As mentioned in sect. 2 the usual determination of Legendre coefficients
leads to difficulties at high energies. One needs a large number of coefficients
because of the narrow near-forward structure., But these coefficients cannot be
determined in a reasonable way because the experimental information at larger
angles is rather poor.

Therefore we have used another method. First we determine an interpolation
of the cross section data by a spline fit, introducing no more structures than
indicated by the data. Then we calculate the Legendre coefficients by an integra-

tion
+1
1, 2 | do
A (k) = (n+3) q J'a-_‘f
-1
This method has been applied at several momenta above 2.5 GeV/c, where data

at all angles are available (2.7, 3.7, 4.8, 6 GeV/c, RefSP925’26).

Pn(z) dz . (4.1)
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In order to reproduce the structure of the experimental data at 6 GeV/c one has
to go up to nx30 . The negative slope at t=0 leads to negative values of coeffi-

cients An for n > 14,

It is interesting to consider the k- and n-dependence of An(k) as following from

reggeized p-exchange (see for instance Ref.lg), since the highest resonances

are expected to be seen as structures superimposed on the p—exchange background.

The differential cross section following from a reggeized p-exchange model reads

do _  2a(t)=2

T F(t) 3 o(t) = a(0)+a't, (4.2)

[«¥

One obtains for An (assuming a(0) = 0.5)
0

2
_ 2n+l q 26'4n k-t 2
A (k) = — - Jz e F(t)P_(1+t/2q")dt. (4.3)
-4q

The k-dependence of An is complicated. q2/k has an appreciable increase, because
it reaches its asymptotic value m/2 only slowly, The factor Pn(l+t/2q2) leads to
an increase with increasing k which can have a structure although the Regge term

has no s-channel poles. Finally the logarithmic shrinkage gives a slow decrease.,

The n~deperidence of An(k) at fixed k shows an increase for small n and a decrease
for large n, when the first zero of Pn reaches the forward peak. At least some

higher coefficients must be negative because do/dt has a negative slope at t=0,

Fig., 2 includes our result for the An(k) as determined from eq. (4.1). It is in
reasonable agreement with that of Kistiakowsky et al.18 who measured only the
y-distribution in the final state, Some discrepancies are probably due to the

fact that it is difficult to resolve narrow structures with this method. Others

are caused by discrepancies between different experiments (see for instance Fig., 4).
Further charge~exchange experiments in the 2-6 GeV/c region would be of great

interest for the study of the higher nucleon resonances.

Eq. (4.1) can also be applied for a discussion of the uncertainties of the higher An’
for instance in the 1.0 GeV/c region, where our result shows a peak of AlO (Fig.2).
In Fig., 5 we have plotted Aan(z), n=4 and 10, where Ac is do/dQ from data or from
the fit (N=11) minus the prediction from phase shift analysis35. We notice that a
number of data points at small angles and in the near backward peak do not lie on the
abscissa, i.e. deviate from the phase shift fit at several energies, The area under
the solid line is proportional to the discrepancies in A;O and Aa.There are two
possibilities:

%) Differential cross sections and polarizations at 1.8-3.0 GeV/c are being measured

at the KEK accelerator by K.Miyake et al.
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i) The effect is due to systematic experimental errors and the true value of
A]0 is small. Experimental errors in the near-backward direction are indicated

by the poor connection between the data of Brown et 31.6 and of Debenham et a1.l7

The rapid variation of the acceptance (Fig. 8 or Ref.6) shows that is it diffi-
cult to measure near z =31,

ii) The imaginary part of the J= 15/2 partial waves is larger than expected.

We think that the second possibility will only be considered seriously if the
behaviour of AIO is confirmed by another experiment,since there is no indication for
a similar interference effect with the strong F37 resonance A (1913),

5. Extrapolations to the forward and backward directions

5.1 Extrapolation to 9=0°

In the past the dispersion relation for forward scattering has been tested by com-
paring the prediction for charge-exchange forward scattering with the extrapolation
of differential cross section data to 6=0°. Nowadays the data are much more accu-
rate, but unfortunately, this does not lead to an improved test. The difficulties
are seen if one considers the data of Brown et al.6 at k = 1975 MeV/c, where the
authors concluded from their Fig, 11 that our prediction from the dispersion re-

lation disagrees with the extrapolation of their cross sections.

Table III shows that the extrapolation depends so strongly on the cut-off in the Le-
gendre expansion eq. (2.1) that a reliable test of the dispersion relation is not
possible. (It happens that the agreement is good for the choice N=10 in Table 4

of Ref.6).

Rutherford data6 only Forwardlo and backward]8
points added

N X pp do (0%) /49| X% pp do (0%) /d9
6  3.09 0.64 2.97 0.64

7 2,10 0.43 2.87 0.59

'8 2,15 0.46 2.9 0.57

9 0.89 0.82  0.92 0.70

10 0.80 0.67 0.88 0.68

11 0.81 0.59 | 0.81 0.66

12 0.77 0.39 , 0.84 0.66
13 0.79 0.34 l 0.86 0.65

Table V  Fits to the data at 1975 MeV/c Dispersion relation: 0.67 + 0,05 mb/sr
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The reason for this difficulty is the strong variation of do/dQ at cos 6 > 0.95.
which amounts to a factor of 1.8 in the present case. The situation is similar at

some other energies and also in the backward direction, In the upper part of our
energy range the strong variation is related to properties of the reggeized p-ex-
change amplitudeslgz the invariant amplitude C decreases rapidly towards the "cross —
over zero'" and the flip amplitude B is so large that it causes a characteristic

narrow structure near t=0 at momenta above the resonance region,

We conclude that it is desirable to perform special experiments at cos 6-values

17’20) in order to determine details of the near-

very near *1 (like those of Refs,
forward and near-~backward shapes of do/dQ . The results would be of interest for

the determination of resonance parameters and of higher partial waves in phase shift
analysis, since the uncertainty of the structures leads to large uncertainties

in some of the higher Legendre coefficients which are related to partial waves

by eq. (2.2). Furthermore they could be used for stringent tests of forward and
backward dispersion relations or, assuming analyticity, for consistency checks
between different sets of data including total cross sections, where unresolved
discrepancies existlo.

In Fig. 6 we compare the forward cross section derived from Legendre fits with

the prediction from the forward dispersion relation which is part of the input,

The agreement is good at higher energies, but there is a systematic deviation be-

low 1 GeV/c. This might be related to the fact that the data below and above

1 GeV/c were analysed in a somewhat different way6.

The extrapolation of the data of Nelson et a1.21 is systematically lower than the
dispersion prediction at and above 1590 MeV/c, but one should notice that the
discrepancies are not larger than some discrepancies between the data of Nelson

et al.21 and Brown et a1.6, for instance at 1590 MeV/c.

The old data of Borgeaud et a1.27 are still of interest, because they are con-
centrated in a small t-region near t=0. The agreement with the dispersion predic-
tion is reasonable above 1.2 GeV/c, but there are discrepancies around 1.0 GeV/c

where the prediction comes mainly from the optical theorem.

Above 2.5 GeV/c we have plotted the extrapolation of the charge-exchange data of

25,29

Guisan et al. . There are some discrepancies which need further attention.

Discrepancies with the result of Kistiakowsky et al.9 are not serious, because

it is difficult to resolve the narrow near-forward structure with this method.
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35uses our tablelo as part of the input.

The Karlsruhe-Helsinki phase shift analysis
Therefore it is expected that the predicted forward cross section lies near the
solid line. The forward cross sections calculated from the CMU-LBL analysis4 do
not agree well with the prediction from the dispersion relation. We think that

these authors should give a larger weight to the analyticity constraint at t=0.

5.2 The slope at 0 = 0°

Because of the above mentioned difficulties it is of interest to check whether
the different extrapolations to 8=0° lead to a reasonable momentum dependence of

the slope

=

1
o 2q2 n=0

=

]
ol
Sk

| t~

n(n+l)An, (5.1)

'

At high energies it is more convenient to consider the logarithmic slope as used

in elastic scattering

B B
do. _ 0 _m 0
n Et_ = (5.2)

=0 2q%do /de 24 99 /dt

e}
[ faN
T

The dominant term in the decomposition

wae o L g B3 69
t=0 32mm t=0 =0

4k t
is the flip contribution (a[B (0)|2?) which is strongly reduced by the last term,
the 2nd term being small already at | Gey/c. For instance at 6 GeV/c the 3 terms
in (5.3) give the following contributions to bo according to the phase shift

solution

b= =34.9 = 0.3 + 21,5 = = 13,7 Gev ™2

corresponding to B = 58.5 mb.

According to a single Regge pole model bo is constant in energy.

,flip

Fig., 7 shows that the slope is not yet well determined in the region of the

resonance peak at 1.0 GeV/c,because our extrapolation of the Rutherford data6
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deviates systematically from the direct measurement of the slope by Borgeaud

et al.zo. The discrepancy with the CMU-LBL prediction4 is not serious, because
in this solution the Rutherford data have not yet been taken into account.

At higher energies the method of Kistiakowsky et al.9 is not suitable for the

determination of details of the shape.

The structure of B (k) comes mainly from the rapid momentum dependence of 3C T/t
which has been studled in the dispersion approach by Jakob and Kroll 8. This

quantity is sensitive to contributions from high spin resonances.

Our values for the slope of the Saclay measurements25 have been taken from a

fit by Grein and Kroll who used the method of Ref, 29

5.3 The backward cross section

The charge-exchange backward cross section has been discussed in the literature
because'with old data‘it seemed that it saturates or even violates the lower iso-

spin bound (o, o, = backward cross sections)
V5,- /507 s 20 < ¢35, +/5)° (5.4)

in large energy intervals or possibly everywhere3o. However a more detailed study
led to the result that a "phase degeneracy" of the I= 1/2, 3/2 amplitudes is
excluded and that one cannot draw conclusions on the phase from near-saturation

of the bound31. The present situation is shown in Fig. 8. Our figure differs

from that of Tﬁrnquist3° insofar as we have ignored many old data which have

a poor accuracy or have been extrapolated to 180° over a relatively large distance,
At present there is no indication for a violation of the isospin bound and the

saturation over a large energy range is excluded.

. 1 . . .

Since the data of Debenham et al. 7 are consistent with the bounds even in the
region where both bounds are close together (800 MeV/c) we conclude that a nor-
malization error of these data is not the reason for the discrepancy with the

data of Brown et a1.6, which are lower By about 307.
The 1isospin bounds at all angles will be discussed in Ref.

If backward cross sections are used for accurate tests of isospin bounds one should

keep in mind that there are appreciable radiative corrections, in particular for
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T p scattering at high energies.

At higher energies the CMU-LBL—prediction4 is fluctuating.strongly.

Starting from the backward amplitude reconstructed from phase shifts Pietarinen has
recently used the backward dispersion relation in order to calculate a smoothed

version of this amplitude33.
5.4 The slope of the backward cross section

Fig. 9 shows our results for

d  do P N n
B = o S0 = - — ] (-1) n(n+DA_. (5.5)
180 dcos8 dQ 1800 2q2 n=0 n

The deviation of the phase shift prediction from the result of our fit around
1 GeV/c is due to the above mentioned discrepancy between the data of Brown et al.
and Debenham et al.l7.Around 980 MeV/c the latter ones alone give a slope of

B o~ 18 mb.
o]

At higher momenta the slopes B are fairly small, but this is due to our defi-

180
nition. The data are usually fitted by

ao‘ = -
T A exp-{blso(u umax)} . (5.6)

. ] - ) %Le )
At 6 GeV/c the logarithmic slope bl is 11,3 + 1,2 GeV 2 (Boright et al, ) which

80
corresponds to BISO = = 0.45 mb.
d . do | 3180
b = — 4n —— = - — . 5.7)
180 du du 180° 2q2 do /d9 180°
(BISO <0, b180> 0 for a backward peak).

According to Regge models the flip contribution is small at high energies.

In the range 1.0 - 1.8 GeV/c the slope is not well-determined because accurate

backward data have not yet been measured.
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5.5 Extrapolation of polarization data to 0° and 180°

In sect. 3 we have discussed Legendre fits of polarisation data combined with
differential cross sections, because this combination leads to a simple expres-

. . . . . o
sion in terms of invariant amplitudes. At 0° and 180° we have

Pdafae | %’ Bae1)B (O = & . 87| (5.8)
STo 0 o 2q2 0= n 8n2w 00 I .

P do /d0 - - g (- (+1)B (k) = qz Im (¢"87) (5.9

=T 180° 2q2 nel n 8mlw 180° ' .

At 0° the amplitude C is well-known from total cross sections and the dispersion

relation, Therefore the extrapolation shows to what extent the component Bl

orthogonal to C 1is determined by data alone.

Fig. 10 shows that our fit scatters considerably in regions of rapid variations
beyond the last experimental point., We have indicated by arrows the direction

of the correction expected from an eye-ball fit to the data.

At some momenta the phase shift prediction differs considerably from the data,

the direction of the necessary correction is again indicated by arrows.

The solid line was obtained from the fixed-t solution35be]onging to the new phase

shift set,

If the data are correct.the component B; is considerably too large (by a factor
of the order of 2) in the range 614 - 776 MeV/c and -B: is too large in the

range 974 - 1750MeV/c i.e. the bump-dip structure in Fig. 10 is less pronounced.

Fig, |1 shows the same quantity at 180°, Again the Legendre fit is uncertain and
the phase shift fit deviates systematically from the data in some regions in a

direction indicated by the arrows.

Table VI gives results derived from the''Karlsruhe-Helsinki 78" solution for the
values of the differential cross sections, their slopes and P(do/d)/sin 6 at 0°

and 180°.
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6. Zeros of Transversity and Invariant Amplitudes

6.1 Introduction

Transversity amplitudes are combinations of the usual spin no-flip and flip

amplitudes

F(+) = G * i H. (6.1)

They have the property that their modulus can be determined from data

F®)2 =5 Gt = s, (6.2)

In particular one can determine the zeros of F(f) in the complex z = cos 9 or

. 11
w = exp(if)-plane at each momentum where data are available., Barrelet = has developed

a special method for this purpose.

The zeros at real s and complex z are intersections of the surface Im s=0 with
"zero trajectories" which are two-dimensional surfaces in the 4-dimensional space
of the complex Mandelstam variables s and t = -2q2(l-z). In general the resulting
curves in the Re s, Re t, Im t-space are expected to be smooth except in regions
where two trajectories "intersect'" each other or near resonances which do not
have a sufficient number of Legendre zeros. A general discussion of zero tra-

. , . , , . 34
jectories and their intersection has recently been given in Ref.

In the following we present results for zero trajectories of charge-exchange ampli-

tudes from two calculations
i) from the new phase shift analysis "Karlsruhe-Helsinki 78"

ii) from our fit to the data of Brown et a1.6 which is described above. The quan-
tities I(¢), eq. (6.2) have been taken from our fits to do/dQ and to P(do/dQ)/sin 6
Our fit to do/dQ was used together with the polarization data in the 2nd case.

() is a polynomial in z and its zeros were determined by standard methods.

The second method does not lead to a unique result, Since y5(+) does not change

if a zero z, of F(+) is replaced by i? (or v, by 1/w§3, there remains a discrete

ambiguity if zeros are determined from data alone,

We shall present and discuss 3 kinds of plots!

i) Zeros in the complex wtglanell

Since

w=exp(ie), z = %-(w+ %J; w=1z3* Vz2-1 (6.3)
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The unit circle corresponds to the physical region -1 ¢ z g +!. The upper half

<
of the figure belongs to F(+), the lower half to F(-)., If a trajectory w=wi(k)
crosses the unit circle, we have a zero in the real s,t-plane, i.e, either

P= | or dg/dg = O. See also the "Collection of Pion~Nucleon Scattering Formulas"

p. II.8 in chapter 2 of Ref.35.

2

A zero trajectory can pass a resonance surface s=s M E(Mres-if£es/2)2 only

at a Legendre zero or a double pole, The double poles are rather far away from
the physical region. For instance the NA~double poles lie at w = -10.7-2,61i and

w = ~0,1140,09i, Therefore we are mainly interested in Legendre zeros.

< . . . . 3
The position of these zeros for some important resonances is given in Ref, 5.

Since we calculate the zeros for real k and s, the trajectory is expected to pass
near the position of the Legendre zero at a k-value corresponding to Re S eg*

The "causality condition" Im 8. <0 demands that the Legendre zero must lie on

es
the right hand side if we follow the trajectory in the direction of increasing k.

(Ref.ll). An example is seen in Fig. 12,

1i) Zeros in the complex z-plane

For some applications it is more suitable to consider the zeros in the complex
z-plane (Fig.13), because of the strong distortion caused by the mapping (6.3).
The z-plane has two sheets z¥ which are connected along the cuts from *1 to #*w,
2" is mapped onto the upper half of the w-plane and z onto the lower half. The
upper half of the z-—plane and the lower half of the z+-plane are mapped onto

the interior of the unit circle in the w-plane respectively. (See page II.8 of

chapter 2 in Ref.35.) Fig. 13 shows trajectories A and B in the z-plane.

iii) Projections of the trajectories onto the s,Re t-plame

In our calculation s is real and 3(m+,)2. We calculate the t-values of the zeros

(t=-2q2(l-z), q2 = c,m, momentum) and plot Re t vs.s (Figs. 14 and 15).

The relation between the different figures is not simple because of distortions
caused by the mapping (6.3). In particular zeros which appear near t=0 in the
s,Re t-plot are usually not related to dips of r(#) in the forward direction.
For discussions of this type it is useful to look at the lines Re t = const and

Im t = const in the w-plane (Fig. II.2 in chapter 2 of Ref.35).
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6.2 Discussion of the results

6.2.1 Zeros in the lower half of the w-plane

These zeros correspond to those in the z -plane and to dips in I(-)=(1-P)dc/dQ.
From 0.8 to 2.2 GeV/c the I(-)-plots show a pronounced dip structure and there-
fore the location of the zeros is well-defined (Fig.16a ), The agreement between
the results derived from phase shifts and from Legendre fits is good. However,
L(~) is almost flat in the central angular region at 600-800 MeV/c. This makes
the results for zeros less reliable (Fig.l6 b). In the following we shall des-
cribe the well-established trajectories, in each case starting with the result

derived from phase shift analysis.

Trajectory A starts at infinity in the w-plane. It enters the physical region of

the s,Re~-t-plot for F(~) from the forward direction at k & 125 MeV/c, crosses
the circle |w|=1 at almost the same momentum and passes the A(1232) Legendre
zero in the expected way. Above 0.6 GeV/c it remains near the real z-axis around
z = 0,6, i.e. near the circle, and can be followed up to 2.2 GeV/c. It crosses
the real z-axis at 0.12, 0.54, 0.975 and 1.88 GeV/c.

Above 1.7 GeV/c the I(-)=-values calculated from phase shifts show increasing de-
viations from the data. This is related to a strange behaviour of the trajectory.
We prefer to take the trajectory from the Legendre fit in this region which re-

mains parallel to trajectory C' in the s,Re~t-plane. The agreement with D, Chew's

trajectory A is reasonable.

It is remarkable that the strong P11(1410) resonance, which has no Legendre zero,
is passed by the trajectory without a structure., The Legendre zeros of DI13(1519)
and F37(1913) are passed in the expected way but, in the first case, at a rather

large distance,

. . + . -
Trajectory B starts in sheet z (see Fig., 13 ). It enters sheet z at the deep

minimum of the backward cross section at 0.53 GeV/c and is clearly seen up to 2.5

GeV/c., Above 0.7 GeV/c the trajectory remains near the real z-axis around z= -0.2,

The rapid movement at the energy of the P11(1410) resonance is probably due to
the fact that this resonance has no Legendre zero. It is strange that both tra-
jectories, A and B, pass the D13(1519) resonance without a structure, although
there is only one Legendre zero. Trajectory B passes the Legendre zeros of

F37(1913) in the expected way but at a rather large distance.



According to the phase shift solution trajectory B touches the circle from the
inside at 0.53 GeV/c, goes to the outside at 0.60 GeV/c and enters again at 1.26
GeV/c. The results from our Legendre fits and from D. Chew's calculation (tra-
jectory C) are similar. Small details are different, for instance a zero is
slightly outside the circle instead of slightly inside. We think that small
differences of this kind have no further consequences and are therefore not

of interest,

Trajectory C' is the next trajectory which is clearly seen in the s,Re t-plane
J y J y y ’

belonging to sheet z . It enters this sheet at the deep forward dip at 1.36 GeV/c.
The notation follows from the fact that, according to phase shift analysis, it

. . . . . + . .

is the continuation of trajectory C in sheet z , However the connection is not

certain, because the phase shift solution does not fit well the near-forward data.

The trajectory remains near the forward direction and near the real z-axis, It is
seen up to 3.6 GeV/c and moves along t & =0.5 GeV2. It agrees essentially with
the high energy part of D. Chew's trajectory G.

Trajectory D' is the last well-established trajectory in sheet z . According to

phase shift analysis it is the continuation of trajectory D in sheet z . But

from our Legendre fits the connection is not obvious, although not excluded.

In sheet z trajectory D' is seen from the second dip of the backward cross sec-

tion (0.85 GeV/c) to 3.6 GeV/c. It remains near the real z-axis around z= -0.9.

The result from our Legendre fit does not differ significantly. D. Chew chose

the zero at 1.5 GeV/c inside the circle in order to have it nearer the Legendre
zero of F37(1913). However, the shift is small because the zero is near the cirlce,
and in our opinion, there is no.reason to prefer a slightly smaller distance

to the Legendre zero. One should notice that even in the case of P33(1233), where
the background is small, the trajectory at s=Re S as has anappreciable distance

from the Legendre zero in the z-Plane (Fig. 13 ).

Finally we discuss further nearby zeros which follow from phase shift analysis

or from our Legendre fits.

i) Trajectory Z is seen from 0.614 to 2.0 GeV. It remains near the line from

z=1 to z=1-i, Therefore it does not lead to a dip but follows essentially from
the shape of the near-forward peak. As mentioned above it has not been possible
to adjust the phase shift solution accurately to the experimental shape and

to fulfill all the other conditions simultaneously. For this reason trajectory
Z is doubtful.
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Some of the zeros of trajectory Z follow also from our Legendre fit. Again there
is a difficulty because at momenta below | GeV/c, the fit has the tendency to
remain below the prediction from the forward dispersion relation although this
prediction was used as part of the input, We conclude that at present trajec-
tory Z is not yet established. There is a chance that improved near-forward
data lead to a modification of trajectory Z which connects it with trajectory

C'. It could be a trajectory which comes from theAg-double pole.

ii) Trajectory J(?) 1is a string of zeros which enters at the dip at 2.15 GeV/c

and can be followed up to 3.6 GeV/c, where its imaginary part is fairly small.

In addition to the above mentioned zeros the phase shift solution shows pieces
of zero trajectories in the vicinity of the backward point z= -1, Some of the

zeros follow also from our Legendre fits.

We think that the complicated zero structure in this region is related to the
fact that we have used backward data from Debenham et a1.17 together with the
data of Brown et al.6, although these two sets of data do not join smoothly,
Furthermore near backward zeros are doubtful in the region 1.0 to 1.8 GeV/c be-

cause there are not data within the rapidly varying backward peaks or dips.

The Legendre fits show additional zeros around 90° which are essentially a doubling
of the above mentioned trajectories in the limited range 616 to 825 MeV/c. If
one looks at IL(~) in this region it is seen to be almost flat and small, the
structures being comparable with the errors (Fig. 17 ). In this situation all

methods for the determination of zeros are not reliable,

Some of our doubtful zeros correspond to trajectory I and to the low energy parts

of trajectories E and G of D. Chew.

D, Chew: A C E G I

our notation:t A B D'+? C%? 2

6.22 Zeros in the upper half of the w-plane

. + . .
These zeros correspond to those in the z -plane and to dips in IZ(+). In general
the structure is less pronounced than in Z(-) and this makes the study of zeros

more difficult,

Trajectory B starts at threshold at the center of the circle and moves towards

the vicinity of the P33(1233) Legendre zero, leaving it on the right hand side
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as expected. It passes at a rather large distance and runs towards the backward
point which is almost reached at the deep minimum of the backward cross section
at 530 MeV/c. Then the trajectory enters sheet z as described above. The path

in the z-plane is shown in Fig, 13 .

. . . . + . . . -
Trajectory C is the only trajectory in sheet z which is seen in addition to

B at momenta below those of the data of Brown et 31.6. It comes from outside of
the circle and enters the physical region from the backward direction. Im z' re-
mains fairly large, presumably because of difficulties in passing the P11(1410)
resonance. It remains at a large distance from the real z-plane, because it aims

towards the Legendre zero of D13 (1519).

According to phase shift anélysis this trajectory reaches Re z=0 at 850 MeV/c
and moves towards the forward hemisphere. The connection between 1.l11 and 1.15
GeV/c is disturbed by a nearby disconnected piece of another trajectory which
is probably related to the difficulties with the near-forward data mentioned
above. At the deep dip of the forward cross section at 1.36 GeV/c the trajectory
almost reaches z=+l and passes into sheet z where it is denoted as C', because
the connection at l.l1 GeV/c is not well-established and the fit to the data at
1.17 and 1.27 GeV/c is bad.

Because of appreciable deviations of the phase shift fit from the data the zero
structure derived from our Legendre fit is considerably different., Instead of

trajectory C we have 2 pieces of trajectories C,and C,, which are fairly close

1
together in the range 0.614 - 1,171 GeV/c and describe the broad dip of I (+)

in the region -0,5 < z <0. At k = 1,17 GeV/c the two trajectories separate .,
C, moves to the backward direction and goes over into trajectory F which is
known from the phase shift solution (see below). C, moves to the forward direc-

2
tion and goes over into trajectory E of the phase shift solution.

Trajectory D comes from the inside of the circle and aims towards the backward

point which is almost reached at the minimum of the backward cross section

at 0.85 GeV/e, In the w-plane the backward point is passed at the outside of

the cir_cle and the trajectory goes to the lower half-plane, corresponding

to sheet z . According to our Legendre fit the connection is not well established.

Therefore the continuation is called D',

Our trajectory D corresponds to the low energy part of D. Chew's trajectory J
(k < 0.9 GeV/c), but in our case the trajectory moves across the circle at

0.75 GeV/c.
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+ . .
Trajectory F starts inside the circle, In the lower half of the z -plane it is

first seen at 614 GeV/c and z = 1-0.7i. It moves rapidly towards the origin of
the z+-p1ane and makes a loop in the upper half-plane (i.e. to the outside of
the unit circle) between 1.0 and 1.2 GeV/c. Then it remains in the lower half

z+-p1ane at z# -0.8 - 0,2i, near one of the F37(1913) Legendre zeros,

As mentioned above this trajectory is confirmed from our Legendre fits above
1.0 GeV/c but the continuation to lower momenta is not well-established, one

reason being the large gap in the I (%) data between 824 and 974 MeV/c.

Below 1.0 GeV/c in the region of the F-dip in X (+) our Legendre fits give two
trajectories which are called 24 and F2' They approach each other at 1,17 GeV/c

and then separate, F, moving to larger angles, whereas F2 seems to jump towards

1
the forward point z = +1 which is almost reached at the deep dip of the forward

cross section at 1.36 GeV/c.

At larger momenta F, and Fl go over into trajectories C' and G respectively,

2

D. Chew's trajectory F is similar to ours, if trajectory C, is chosen for the

low-energy part.

Trajectory E is clearly seen in the phase shift solution above 1.0 GeV/c up to

at least 2,5 GeV/c. It comes from large positive imaginary parts and Re z = O
in the z -plane. Since it starts at an intersection with trajectory F, the con-
tinuation to lower momenta is not clear. The Legendre fit suggests that it has

the continuation C, or C,- A similar behaviour was obtained by D. Chew (trajec-

2
tory B).

Trajectory E is the candidate for the Legendre zero of F37(1913) at 900, but it

is still rather far from it at s = Re S es? coming nearer at higher momenta.

Trajectory G is the last well-established trajectory. In phase shift analysis

it starts inside the cirecle, the first indication being seen at 923 MeV/c at

z=1-0,8i, It remains in the forward hemisphere (Re z R 0.5) andlabove 1.5 GeV/c,
+ . . . .

near the real z -axis, It crosses the circle at 1,60 GeV/c, going to the outside.

At the momentum of the F37(1913) resonance it is near one of the Legendre zeros.

As mentioned above our Legendre fit suggests that trajectory G corresponds to
F, below 1.1 GeV/c. This essentially agrees with D, Chew's trajectory H. However

our G-trajectory starts inside the unit circle,

Trajectory H (?) denotes a string of zeros which is first seen at 1,5 GeV/c from

phase shifts and also from our Legendre fits. It enters from the backward



direction and produces only a small structure in Z(+).

Trajectory I (?) is an indication for a trajectory which is seen above 1.4 GeV/c

in the unphysical region beyond z= -1, It is not well determined. because
accurate data for the shape of the backward peak or dip are not available. It
comes from the inside of the circle and reaches the neighborhood of z= -1 at
2.0 GeV/c. The high energy part of D, Chew's trajectory J corresponds to this

trajectory.
. . . . . +
Further pieces of zero trajectories from phase shifts in sheet z :

i) Zeros around z = -0.,5 - 0.6i are in the range 0.6 - 0.9 GeV/c just

reflections of trajectory C.

ii) A string of zeros around z = 1+0.4i is essentially a reflection of trajec-
tory F. As mentioned above it is not reliable because of uncertainties in the

shape of the forward peak.
A comparison with the trajectories of D. Chew shows the following correspondence:

D. Chew B . D F H J

our notation 'c2+E F,#H C +F F +G D+I

The strange behaviour of Chew's trajectory D is hard to accept.

6.3 Zeros of invariant amplitudes

The zero structure of the transversity amplitudes is complicated and not yet
well resolved. One could think that this is an indication for rather bad pro-
perties of the "Karlsruhe-Helsinki 78" phase shift solution. However the zero
structure of the isospin odd invariant amplitudes A and B~ looks much better,
(Fig. 18 ) and represents a beautiful example for the simplicity of zero tra-

jectories in the presence of a large number of resonances.

Trajectory A (1) comes from the P33(1233) Legendre zero and trajectory A (2)
from the Ag-double pole, It is remarkable that the B-—amplitude has almost the
14

same zero trajectories although this is quite unexpected from Odorico's work .

B (1) comes from the NA-double pole.

The zero structure of C is more complicated, because there exists a trajectory
C (1) which starts in the unphysical low-energy region where the Adler-Weis-

berger predictions from current algebra and PCAC is valid. Together with the
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nucleon Born term it determines trajectory C (1) which enters the physical
region at the dip of the forward cross section at 120 MeV/c and aims towards

the P33(1233) Legendre zero.

In addition we have trajectories C (2), C (3) which come from the NA and by
double poles respectively. Furthermore C (4) enters at the deep dip of the

forward cross section at 1.36 GeV/c. It comes probably from the combined ¢D15(1679)
g F15(1882) double poles.

This figure shows two bad features: a short piece of a zero trajectory between
614 and 851 MeV/c and a splitting of trajectory C (1) above 1.68 GeV/c. We think
that both difficulties are due to systematic experimental errors. The first one

is clearly connected with our problem with the zeros of F(t) in this region.

We learn from the invariant amplitudes that one can expected the following

trajectories in F(%):

i) Two trajectories come from threshold, where the flip term is suppressed and

F(x) ~ C. These trajectories have been found: A and B.

ii) Two trajectories come from the NA double pole, The situation is compli-
cated by the fact that trajectory B (as well as C (1)) moves to the backward
point at 530 MeV/c, where the two trajectories are expected to enter. We con-
clude that 3 F(*)-trajectories should emerge from this unusual intersection.
According to phase shift analysis two of them are B and D, both being also seen

in our Legendre fits. The third one is not clear, C being a candidate.

iii) Two trajectories come from the A¢-double pole. They enter around 850 MeV/c

where the forward cross section has a dip.

The phase shift solution suggests trajectory F and possibly Z, whereas the Legendre

F, and Z.

fit has 3 candidates: Fi» Fy

Further points where new trajectories can be expected to enter are 1.36 GeV/c

in the forward direction and 2,15 GeV/c in the backward direction,.
We add a table of the dips of forward and backward amplitudes as derived from

phase shifts

0°| 110 822 1360 2460 k MeV/c
1111 1570 1862 2350 W MeV

180°l 532 851 2150 k MeV/c
1390 1587 2223 W MeV

Table VII. Dips of the forward and backward charge exchange amplitudelC_t.
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7. Summary and Conclusion$

i) Since a phase shift analysis based on analyticity constraints had difficul-
ties with the charge-exchange data of the Rutherford group6, we have analysed
these and other charge-exchange data up to 6 GeV/c directly, using Legendre

expansions and studying zero trajectories,

ii) The Legendre coefficients An of do/dQ are fairly well determined up to

n=10, but a good fit requires a remarkably large number of coefficients already
around 1 GeV/c. Ao
tion of the DI5(1679) and F15(1684) (at about 1.0 GeV/c) which is difficult to

accept. Legendre coefficients of P(do/dQ)/sin & show large uncertainties already

is apparently well determined and has a peak at the posi-

for n > 6,

iii) As expected from the above mentioned difficulty there are some large discre-
pancies between Legendre coefficients determined from data and from phase shifts, for
instance in A,, where the peaksat 1.0 GeV/c differ by a factor of two, and

in By, at 0.7 - 0.8 GeV/c.

The "CMU-LBL 76" phase shifts (which were determined without the Rutherford charge-
exchange data) show larger deviations., Furthermore, they lead to coefficients

which do not have a smooth momentum dependence above 1.5 GeV/c,

iv) Although data are available in a large angular interval (-0.95 S cos 6 s 0.95),
the extrapolations to 0° and 180° have considerable uncertainties because of

strong variations of the data beyond this region ., The situation is improved by
adding the prediction from the forward dispersion relation and backward cross
sections from other experiments. But this introduces an unknown error in our

fit because of a fairly large discrepancy between the data of Brown et 31.6

17
and of Debenham et al, .
Since the structures at [cos 6| z 0.90 contain an important information on higher
partial waves and therefore also on resonances, it will be important to carry
out new accurate experiments especially designed for these intervals. The re-
sults will also help to exploit the information on the absolute phases which

follows from the forward and backward dispersion relations,

. . 6 . .
v) It was pointed out in Ref,  that, at some energies, the extrapolation to o°
disagrees strongly from the prediction derived from the forward dispersion rela-
tion, However, there is no serious problem, since reasonable fits are obtained

if the prediction is added to the input., A systematic deviation below 1.0 GeV/c
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deserves further attention. The CMU-LBL 76-prediction for the forward cross

section shows large fluctuations above 1.5 GeV/c.

At some energies there are fairly large discrepancies between the slopes at 0°
and 180° derived from phase shifts and those determined directly from our fit.
Even larger discrepancies exist for the extrapolations of P(ds¢/do)/sin@ to 0°
and 180° which are proportional to Im(C—B_S. This quantity is not yet well
determined from the data, because accurate polarization data are not available
in the near—-forward and near-backward directions. As a consequence the B ampli-

tudes at 0° and 180° have appreciable uncertainties,

vi) Contrary to earlier statements in the literature we find no evidence for
a violation of the isospin bound at 180° or for a near-saturation of this bound

in a large energy interval (see Fig. 8).

vii) The zeros of transversity amplitudes show a simple behaviour above 1.1 GeV/c
(Figs. 14,15). Unexpected complications in the range 0.6 - 1,1 GeV/c are possibly
due to experimental errors. At some energies fluctuations of the numbers of

nearby zeros indicate that the phase shift solution should be improved.

The results for the zero trajectories are the basis for further studies of
discrete ambiguities and for a representation of the amplitudes in terms of zeros

and poles as it is suggested by dual models.

Acknowledgment: We are grateful to R. Koch and I. Sabba-Stefanescu for

discussions.
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ABEendix A

+)

Calculation of Clebsch-Gordan Coefficients

In order to calculate the coefficients An and Bn of the Legendre expansions

eqs. (2.1), (3.2) from phase shifts, one needs the values of the Clebsch-

Gordan coefficients a and bn in eqs. (2.2) and (3.3). For small & they have

been given in tables™

but the recent phase shift analyses go to

much higher angular momenta and furthermore it is more convenient to calculate

the coefficients instead of using tables,

We start from the partial wave expansion

1 T
qG = z a P (z2); gqd = B, sin 6P'(2)
=0 272 o=1 L 2

where 2% belongs to J = 2+1/2 and

a, = (R+1)T, #2T,  , B, =T, ~T, .

(A1)

(A2)

The cross sections and P do/dQ? can be expanded in terms of Legendre functionms,

eqs. (2.1), (3.2) and also in terms of partial waves, using (Al) and (A2),.

= l = 2 2 = .]_. * * l l
30 = 7 L AP (2) = |G]2+]H] 7 L {oy P (2)P (2)+B.8 P/ (2)P (2)} (A3)
q n q 2,m
dg 1 ] % 1 % 1 .
P =-— [ BP (2) = 2Im(CH) — 2Im ) ap P,(2) P (D), (A4)
Q9 n q £,m
where P;(z) = - sin 6 P;(z). We solve for A, B » using the orthogonality proper-
ties
i
2n+1] 2 do
An 5 J q En-Pn(z)dz, (A5)
-1 |
2n+l 2 _ do 1
Bn m J q P m I’n(z)dz. (A6)

Inserting formulas (A3) and (A4) gives

¥%) After the completion of this work we received a preprint in which a different

3
method was proposed by Oyanagi.
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A, = Re Z [nJLm * %em B Bz-—] (A7)
By = 2 z Tntm 'Im(aléﬁ) (A8)
where

2n+1

Prtm 2+ { P (Z)?l(z) Pm(z) dz \ (A9)
2n+1 1 1

Ongm 2 _{ Pn(z)?z(z) Pm(z) dz, (A10)

1

2n+l 1 1

“ntm ~ Zn(n+l _! P (2)P) (2) P (z) dz, (A1D)

From the recurrence-relations of Legendre Polynomials it is possible to derive re-

lations for the integrals Prgm® “nem® T . For fixed n they read

nLm nLm

20+1 2
Pn,a+l,m g+l 2m+l [(m Doe n,%,m+l tm pn,l,m-l‘] 2+ pn,!l,—l,m (a12)
_ 241 ] g+l
On,g+l,m g 2m*] [ m %n,p,m+1 * (m+l)°n,2,m-l [) 0n,R,—l,m (a13)
- 20+1 1 L
Tn,9,+l,m g+l 2m+l [ m Tn,g,m+l * (m+l)rn,1,m—{] L+1 Tm,R,-l,m , (a14)
where starting-values (2=0 and g=1) are
= _ D+l n
pn,O,m - 6nm pn,l,m 2n+3 Gn,m-l Y T 6n,m+l (A13)
= = (n+1) (n+2) n(n-1)
0n,O,m 0 on,l,m 2n+3 6n,m-l 2n-1 n,m+l (A16)
_ _ n+2 n-1
Tn,O,m - Gnm Tn,l,m 2n+3 Gn,m-l * 2n-1 6n,m+1 (A17)

Furthermore one obtains from the symmetries of the Legendre functions and the

coefficients Phom? anm and Tam :
= = = 1 + 1
Pnom onlm Tnlm 0 1if n+e4m is oddI
p =09 = T =0 for m > nt? and for m < |n-2|.
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Figure Captions

Fig. 1

X%F as a function of N, eq. (2.1), for different momenta (MeV/c).

Fig. 2 Legendre coefficients An for differential cross sections.

i) Phase shift solutions: =—— Karlsruhe-Helsinki 78, =—+— CMU-LBL 76

At some peaks we have given the most important intereference terms.

ii) Legendre fits: 4} Nelson et al. (from Ref.Zl). ¢ Brown et al.6
and 'Y Feltesse22: our fit with N=11, including the prediction at 0°
(Ref.lo) and backward data.”’18

8 . 9
iii - i i i : 1. K t 1.
111)An (k) from 4~ ~-distributions 4 Bulos et al, , <> istiakowsky et a

iv)An(k) from spline fits and eq. (4.1), data of Réfs.6’25’26: Q. Abscissa:

k=lab.momentum in GeV/c, W=total energy in GeV.

Fig. 3 Legendre coefficients Bn(k) for P(do/dQYsin 8 . Notation: the same as

in Fig. 2

Fig. 4 Experimental discrepancies at 2.7 GeV/c.

$ Brown et a1.6, 4 Saclay group25, — & — Kistiakowsky et a1.9,

Kistiakowsky et al.18, O : prediction from Ref.lo. solid line:
" " ) .
from Karlsruhe-Helsinki 78 phase shifts.Notice the region near cos 6 = 0.6,

. ‘ n
Fig.5a,b Discrepancies between the data of Brown et al.6 and the Karlsruhe-Hel-

sinki 78“phase shift fit,

Ac = do/dQ from data (%0 or from the fit.(N=ll) minus the prediction
from the phase shift analysis. The area under the curve is propor-
tional to the discrepancies in A4 and AlO respectively, The deviation

of the experimental points from the abscissa shows that the difficulty
comes from the region of the near-backward peak of do/d2 and from

the first point at small angles, Our fit (solid line) tries to follow the

data and this leads to the peak in AlO'
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Fig. 6 Forward charge—exchange cross sections.

Dispersion predictionsloz for two high energy assumptions. HJK 1 was
adjusted to the NAL total cross sections and HJK 2 to the NAL charge-
exchange forward cross sections,

{ calculated from CMU-LBL 76 phase shifts, We have not yet evaluated
the errors.

4 from our Legendre fit to the data of Brown et al.6, including the
dispersion prediction (HJK 1) with the error estimated in Ref.lo.

¢ Saclay data25, (extrapolation of Grein and Kroll)’ ‘+ Nelson et al.

* Borgeaud et al.zo, 4 Kistiakowsky et al.g.

21

Fig. 7 Slope B_ at 0°, eq. (5.1). B = (d/d cos 8)da/dQ
From "Karlsruhe-Helsinki 78" phase shifts: solid line, from CMU-LBL 76
phase shifts: B |, from our Legendre fit: from Legendre fit of
Kistiakowsky et a1.9: ¢ , from a fit to the Saclay datazs(Grein and
Kroll): X , from data of Borgeaud et a1.2°: X . W=total c.m. energy.
Fig. 8 1Isospin bounds for the charge-exchange backward cross section. Solid lines:
bounds and charge-exchange cross section from "Karlsruhe-Helsinki 78"
phase shifts,
Charge exchange cross sections: the dashed line connects the prediction
from CMU-LBL 76 phase shifts, 4 from our Legendre fit, 4 Debenham .

et al.”, E:'-‘ Kistiakowsky et a1.9, + De Marzo et al.26 .

Fig. 9 Slope B180 ax.9=180°, eq. (5.5). B = (d/d cos 8)do/dQ

Notation: see Fig. 7, @ Boright et al."26

Fig., 10 P(do/d?)/sin 6 at @ =0°.
From the '"Karlsruhe-Helsinki 78" solution: < from phase shifts, solid-
line: from the fixed-t solution., &  from CMU-LBL 76 phase shifts,

3% from our Legendre fit.

Fig. 11 P(do/d2)/sin o at @ =180°.
Notation: the same as in Fig. 10, but there is no result from the fixed-

t amplitude.The line connects the points calculated from phase shifts.
Fig. 12 Zero trajectories A and B in the w-plane,
Fig. 13a,b,c Zero trajectories in the z=-plane.

Fig. l4a,b Projection of zero trajectories at real s onto the physical s,t-plane.
The arrows indicate the location of dips of forward and backward
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cross sections, The zeros have been calculated from our Legendre

fit.

Fig. 15a,b The same as Fig. 14, but the zeros have been calculated from

"Karlsruhe-Helsinki 78" phase shifts.

Fig. 16a,b Plots of (1*P)do/dQ2 . At the dips we have written the name of

the nearby zero trajectory.

Fig., 17a,b,c Projection of zero trajectories of invariant amplitudes at real s

onto the physical s,t-plane.

Table Caption

Table I Legendre coefficients An(k), eq.(2.1)'and X%F from our fit to the data
of Brown et a1.6, including the prediction from the forward dispersion
17,18

relationlo and backward data The diagonal error is also listed.

Table II Legendre coefficients An(k) calculated from'"Karlsruhe-Helsinki 78" phase
shifts. Only coefficients up to A]2 have been listed.
Table III Legendre coefficients Bn(k), eq.(3.2) and X%F from our fit to the data

of Brown et 31_6 The diagonal error is also listed.
Table IV Legendre coefficients Bn(k) from '"Karlsruhe-Helsinki 78" phase shifts
Table V see page 9
Table VI Values of differential cross sections, their slopes and of P(do/dQ)/sin 6
at 0° and 180° as calculated from "Karlsruhe-Helsinki 78" phase shifts.

Table VII see page 23.




A O
0.249
*0.003
0.320
0.002
0,295
0.003
0.253
0.9001
0.2326
0.002
0.472
0.003
0.471
0,005
0.455
0.005
0.314
0.004

oD

e

0.003
0.218
0.003
0,253
0.004
0.254
0.003
0.243
0,003
0,243
0.004
0.199
0.003
0.195
0.003
0.180
0.003
0.170
0.004
0.134
0.003
0.137
0.003
0.105
0.003

Al
0.433
0.00%
0.511
0,003
0.387
0.005
0.126
0.002

"O + 045
0,004
-0.131
0.007
-0.111
0.012
-0.082
0.012
~0.053
0.010
-0,024
0.006
0.004
0.007
0,014
0.009
0,022
0.006
0.048
0.007
0.119
0.008
0.131
0.008
0.148
0.008
0.1457
0.008
0.164
0.008
0.160
0.008
0.131
0.0046
0.139
0.007

A Z
0.364
0.006
0,494
0.004
0,433
0.006
0.271
0.003
0.269
0.004
0.777
0.008
0.751
0.016
0.4640
0.018
0.328
0.013
0.164
0.008
0.182
0.009
0,217
0.012
0.180
0.009

0.127-

0.010
0.130
0.012
0,105
0.011
0.100
0.011
0.125
0.011
0.138
0.012
0.131
0.011
0.124
0.009
0.1%0
0.009

A3
0.171
0.007
0.154
0.00%5
0.084
0.007
0,024
0.004
0.138
0.00%5
0.382
0.C08
0.364
0.019
0.268
0.021
0.025
0.017

-0.,082
0.010
-0.078
0.011
-0.017
0.014
0.027
0.010
0.092
0.011
0.188
0.013
0.1%96
0.012
0,210
0.013
0.189
0.013
0.179
0.014
0.150
0,013
0.072
0.010
0.085
0.011

A 4
0.102 O,
0.008 O,
0.116 O,
0.006 0.
0.0%5 0.
0.008 0.

-0.044 0.
0.005 0.
-0.082 0,
0.006 0.
0.042 0.
0.010 0.
0.069 O,
0.021 0.
0.087 0.
0.023 0.
0.088 0.
0.019 0.
0.026 .
0.011 0.
0.008 0.
0.012 0.
00042 ""Oo
0.014 0.
00106 "00
0.012 0.
00162 00
0.011 0.

22335 0.
0.013 0.
0.254 0.
0.013 0,
0.292 0.
0.014 O.
0.312 0.
0.014 0.
0.293 0.
0.015 0.
0.282 0.
0.014 0.
0.169 0.
0.010 0.
0.106 0.
0.011 D,

Table 1

AU A 6
o5l 0,071
009 0.010
037 0.0432
00868 0D.007
0?1 ©D.051
00?2 0.010
193 0.023
005 0.0056
272 -0.019
007 (©.007
893 -0.109

012 0.013
890 ~Uu.062
023 0.023
862 -0.032
025 0.028
544 0.133
020 0.020

200 0.15%
o111 0.012
028  0.131
013 0.013

034 0.052

014 0.015
008 -0.025
011 0.011
020 -0.9049
011 0.011
090 -0.0394
011 0.011
125 -0,005
012 0.011
184 0.003
013 0.013

202 0.040
014 0.014
204 0.053

015 0.014
193 0.070
014 0.014

105 0.056
010 0.010
131 0,152
0D DLy

i 7
O.00e
0.010
a1 4
0.007
0.031
0.010
0.004
0.006
0.007
0.007
0.0%4
0.011

-0.023
0,022
-G.018
0,022
~-0.,075
0.019
~04+141
0.01%
-0.212
0.014
-0.270
0.0156
“0~247
0.012
“0v208
0.011
-0.,161
0.012
-0,097
0.011
-0.092
0.013
“00049
0.014
-0,010
0,015
0.001
0.014
~0.023
0.010
0.021
Nt H

B

0,044
0.011
0.034
0.008
0.045

00

011

0.091
0.006
0.057
0.008
0.086
0.012
0.091
0.021
0.056
0.021
0.037
0.019
“00005
0.013
“0'05&)
0.016
—00068
0.018
-0.071
0.013
-0.034
0.013
~-0.007
0.014
0.040
0.013
0.061
0.014
0.043
0.014
0.056
0.016
0.042
0.014
_00018

0.

011

"00040

AN

N1

a9

"'O 0010
0.011
-0.021
0.008
"O 0046
G.011
-0,019
0.006
~0.021
0.007
-0.Q50
0.011
-0.051
0.019?
—00052
0.019
~0.056
0.018
“00038
0.012
-0.077
0.014
-0.0%97
0.017
-0.,080
0.013
~0.037
0.014
_00 047
0.015
0.014
0.014
0.014
0.014
0.035
0.014
0.056
0.016
0.075
0.014
0.026
0.013
-0.095
0,014

A10
0.002
0.012
0.022
0.008
0.037
0.012
0.044
0.007
0.036
0.008
0.113
0.011
0.136
0.018
0.158
0.018
0.123
0.018
0.049
0.012
0.029
0.014

-0.010
- 0,017
—00014
0.013
0.002
0.014
-0.049
0.015
"0 ¢ 017
0.014
-0.013
0.014
0.007
0.015
"00032
0.014
-0.053
0.014
-0.066
0.013
_'O' 077
0,013

All
0.009
0.011
0.015
0.007
0.063
0.012
0.025
0.007
0.027
0.008

-0.007
0.012
0.063
0.018
0.007
0.019
0.038
0.019
0.010
0.013

-0.012
0.016

-0.020
0.018
0.010
0.013
0.014
0.013
0.009
0.014
0.006
0.012

-0.000
0.012
0.011
0.012

-0.022
0.013

-0.018
0.011

-0.,033
0.011

-0.060
0.010

1.831

_EE -



0.750
0.777
0,800
0.022
0,851
0. 875
0.895
0,523
0,954
0.975
1,000
1.¢30
1,055
1,080
1.113
1.154
1,174
1,210
1.235
1.280
1,324
1.3&0
14460
1,430
1.473
1.505
1,350
1.890
14440
1.460
1,729
1760
1.800
1.840
1.830
1.920
1.980
2,030

FLAR

&00D0
104000

o
G,
LN
[V
0,3
0,3
0.
0.204 0.3i11
0,265 0,148
¢ 248 0,084
0,233 0,007
0237 -0,034
0,250 -0,035
0.293 ~0.072
0,253 ~-0,075
0,420 -0,068
0.+457 -0,079
0475 -0,046
0,448 -0,052
0.403 -0.049
0,347 -0,04%9
0.291 ~0,05
0,238 -0.,049
0,222 -0,0346
0.2i0 ~0.026
0,210 -0,017
0,216 ~0,007
D,223 -0.,012
0,232 -0,014
G232 ~0,021
0,234 -0.014
0.241 0,003
0,240 0,031
0.233 0,055
0,22 0.069
0,209 0.10C0
0.205 0,117
0,195 0,124
0.191 0.143
0,182 0,145
0.181 0,198
0,176 04164
N,14% 0,189
0,183 0,182

0,147 C.14%

A0 Al

0.143 0,144
0.13¢ 0.120
0,124 06.11%
Golaa
0,110
0,120
04147
0,104 0,147
0,087 0.172
0071 0,150
0,044 04,148
Q. 062 0,159
0.6546 0,147
0,053 0,143
0.049 0.135

0,412
0,208
0,270
0.274
0,230
0.4114
0.+492
0.614
0,735
0.773
04814
0.703
0,605
0,461
0,234
0.229
0.178
0.195
0.199
0.209
0.228
0.212
0,206
0.187
0,173
0.175
0,154
0,131
0.127
0,122
0.121
0,124
0,135
0,152
0,164

161
0,153
0154

b2
01145
0.143
0,130
0,142
¢ 146
0,185
0,157
0,224
0,228
0,227
0,224
0.225
0,228
0.028

0,215

4 X
0413
G 19T
V. 233
C.187%
040179
0,131
G115
0,107
3.123
0144
0,122
0,244
0,202
0,377
0.411
0.374
0,370
0.256
0140
0,050
~0.037
-0,087
~-0.,086
~-0.0%6
~0.100
-0,087
-0.,080
~0.033
-0,035
~0.,007
0,038
0.086
0,116
0,152
0.184
0,205
0.21i8
0,222
0,233
0,233
0,224
0,225
0.200
0,182

A3

0.157
N, 126
0,107
0,087
0,083
0,077
0,121
0.161
0.212
0,211
0,222
0240
0.260
0,271
O, 288

A 4 ]
9,044 (,.005
0.11: 0,038
04181 0,042
G137 0,045
0,144 0,090
0,109 1,103
G.082 0,127
0. G0N 0,174
~0,003 0,190
~0.044 0.244
-0,021 0.291
€.002 0,374
0.028 0,450
0.081 0,597
0,149 0.744
0,149 0,842
0.232 0,863
0,208 0.773
0.211 0.645
0.171 0,522
0,137 0.348
0,096 0,184
0,075 0.144
0,071 0,054
0,066 0,012
0,05% ~0,057
0,066 -0,123
0,059 -0,125
0,101 ~0,136
0.113 -0,099
0,173 -0.,084
0,208 -0.035
0,242 -0.,001
0,233 0,028
0.278 0.070
0,298 ¢.110
0,303 0,122
0,313 0,151
0,328 0,152
0,349 0,175
0.341 0.185
0.344 0,189
0,308 0,181
0.285 0,179

A 4 G S

0.259 04172
0,206 0.141
0,187 0.127
0.164 0,108
0,156 0,106
0,134 0.106
0,150 0.145
0.191 0.199
0.230 0.231
0,229 0.213
0,238 0.224
0,252 0,237
0,235 0.284
Q0,309 0.314
0.352 0.388

Table II

A b
-0.002
0.035
0.05
N.047
0,041
0,024
0.013
0,026
0.004
0,001
-0.014
~0.,038
~0,046
-0,0%0
~0.065
—-0.064
~0.020
0,004
0.041
0,086
0.103
0,134
0,141
0.152
04159
0.130
0,087
0,056
0,030
0.003
-0.,007
-0.017
-0,037
-0.048
-0.031
~0.,036
-0.,030
-0.,010
-0.001
0.010
0,029
0,039
0,047
0,064

A b

0.074
0.083
0.078
0.078
0,092
0,138
0,158
0,202
0,223
0,210
0,229
0,229
04285
0.317
04414

0,036
5,021
OD3S
0.023
0.032
0,030
0,030
0,034
0,054
0.076
0,053
0,014
Q.002
-0.,038
-0.,0569
-0.105
-0,124
-0.146
-0.171
~0,2272

-0, 250
04249
-0.,258
~0.+261
-0.249
~0.223
-0,221

-0.197
-0.151
~0,127
-0,103
-0.097
~0.,076
~0,035
~-0,056
-0.027
-0.026

0,002

a7
-0.00%
0.006
~0.,008
~-0.010
~0.033
-0.,021
-0.003
0,045
0.103
0,150
0,179
0.196
0,264
0.300
0,434

(23S ]
0.C¢L0
0.007
0.521
0.021
C.014
0.01%9
0.010
0,020
0.00%
0.047
0.025
0.033
0,031
0.048
C.043
04,042
0.021
0.007
-0.017
-0.,025
~-0.,014
~0,01%
-0.,017
-0.,0%3
-0.044
-0.047
-G.,057
-0.043
-0.,038
-0.,031
-0.027
-0.017
-0.,026
~0,014
-0.014
0012
0,023
0,019
0.013
0,025
0.009
0.024
0.014
0.011

A8
-0.,004
~-0.019
-0,034
—~0.,0051
~D.064
-0.088
~0.072
-0.,048

0.01%9

0,098

0137

0.160

0.241

0.281

0.448

h 9
CGeDGO
0.000
0.,0C3
0,003
¢, 005
0,007
0,013
0,011
0.018
0.007
0,010
0.006
0,012
0,018
0,024
0,017
0,011
0.016
0.009
-0,01&
-0.018
~0.013
-0.,009
-0.,011
-0.018
-0.028
-0.,028
-0.,039
-0.,027
-0,031
-0.015
~0.,032
-0.017
-0,028
-0.,0046
0,012
0,004
0,012
0.010
0,022
0,022
0.01%
0,023
0.01€&

A9
0.CZ21
0,004
-0.005
~0,034
~0,061
~0y114
-0.153
-0.133
-0,071%
0,010
0.044
0.07%
0.185
0.238
0,430

ALC
Q.00
G001
0,301
0,001
0.003
04008
0004
0,004
0.003
0.004
¢.008
0,005
0,009
0,020
0,034
0,078
0,021
0,048
0,023
0,027
0,009
-0.,002
¢.010
-0.00%5
-0.005
-0,003
0,005
0,013
0,009
0,009
0,005
0,004
-0.003
-0,015
-0,018
-0,023
~-0,030
—0,.02Z
-0.033
-0,033
-0,038
-0.042
-0.,052
-0.050

AlO
~-0.0537
-0.057
-0.,0%9
~-0.G37
~-0.097
~C.138
~0.145
-0,142
-0.,084
~0.047
-0,015

G019

0,131

0,197

0,404

ALl
G000
G000
0,201
0,001
0002
Coont
0,602
0.0C4
D.003
0.013
0,004
0,005
0,004
0,008
0,012
0,007
0.013
0029
0,034
0,031
0.018
0.014
~0.,001
0.005
0,005
-0.008
0.000
0,005
0.012
0,020
0,017
0,005
0,011
0.012
0,019
0,009
0,020
0,011
0,006
0,007
~0.,003
0.007
0,004
0.008

All
~0.,0GC0
0.008
. 004
~0.0092
-0.,02%
~0,082
~0.0%93
-0.,120
~0,107
~-C.082
~0.067
-0.047
0.054
0.128
0.377

Haiz
GD0o
G OCS
L 001
0,001
Q.001
0.002
0.001
G.002
0.002
0,003
2.003
0,002
0,062
0. 00
0,003
¢.002
-0.00¢
=-0.001
~-0.004
-0.006
~0.005
-0.003
-0.003
=-0.,003
-0.003
0.002
0.005
0.007
0,005
0,007
-0.006
-0.008
-0.011
-0.,012
-0.003
-0.004
-0.004
~0.,012
-0.018
-0.00%
~-0.016
-0.008
-0.011
~0,001

a12
-0.003
-0.00%
—C+003
-0,005
~0,015
~0.041
-0.,053
-¢.048
~0.08%
~0.CT7
~G. 087
~0.075
-0.+000
0,073
0.344
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FLAB
617.

~1
Y |
o

1076.

1170.

B 1

.139
.007
161
.005
.130
.005
.047
L0035
.052
.00e
.019
.00%
.057
.00%
.0595
.004
.054
.qo4
.07
.004
.0e5
.ans
.053
.00%
.051
.00s
.041
.oo7
.021
.00e
.017
.004
.a1v
.00e¢
.012
.004
.002
.005
.004
.00%3

B 2

101
.o08
115
. 005
-131
.00%
. 140
.003
.087
.005
L0351
. 005
. 059
.004
.00¢
.003
.034
.003
.00z
.004
.02e
.004
.033
.004
.039
.404
.024
. 003
.011
.005
.004
.003
.006
.004
.001
.a03
.018
. 803
.013
.004

B 3

.02¢
.008
.053
. 005
.018
.004
.034
.004
.Q24
. 004
.080
. 003
.0pe
.004
.023
.go2
. 001
.an2
.031
.004
.037
.004
.010
.004
.022
.004
. 041
.00%
.042
L0035
.044
.003
. 045
.. 0035

.034

.003

.041

.no4

.0z20

.004

B 4

-.004 -
.po9

-. 007 -
.gg4
.03 -
.004
.027 -
.003

.004
.031 -
.0ns

. 004
-.008
.gaz
~.034
.an2
-. 039
.004
-.05% -
.004
-.006
.004
.024
.a04
.a57
. 005
.056
.006
.058
.003
.049
.aas
. 038
.003
.033
.04
.010 -
.004

Table III

BE 5

.008
.nos
ooy
.004
.024
.003
.014
.003
.044¢ -~

a17

.303
.g10
.004
.01 -
.003
. 0403
.goz
.gz21
.go2
.00¢9
.004
.000
.004
niz
.004
.014
.0904
.030
.00%
.028
L0059
.023
.003
.02e
.005
.013
.003
.014
.no4
.004
.003

015

B ®

.004
.009
.001
.004
.no3
.0063
.007
.003
.04
.Q03
.01z
.004
N4
.003
.033
.ngoz2
D48
.00z
.06n
.004
.ngz2
.go4
L0353
.004
040
.004
012
.0N5
.004
LB03
.0Q7?
L0032
013
.004
.008
.003
012
.004
.004
.003

B 7
-.001
.007
.gna
.004
.00z
. 003
.013
a2z
.0t
.003
.004
.Q03
-.000
.003
.00n4
.gn2
. 009
.gn2
L0140
.00n3
.0o9
004
27
.Q03
030
.ao3
. 040
. 004
.032e
.004
D33
.g0z2
.034
.004
.D23
.o002
.29
.003
L1l
.003

B &

.000
.no8g
.00
.004
.063
. 003
.D03
121
.004
.003
.goeg
.0n3
Ty
.No3
.0ao0
.nnz
.003
.noz2
.oav
. 003
.013
. D03
.004
.003
.014
.003
.22
.004
.022
.003
.n20
.go2
.023
.n02
.014
.02
.022
. D03
.003
.003

B 9
-.004
. 004
003
.03
.00t
002
-.002
.00z
. 004
.002
0083
003
010
.an2
.005
.np2
007
.0n2
. D06
.002
-. 002
002
.noz
. 003
-.001

.002

.03
.03
. 003
.003
.004
.oa0z
.009
.03
-.003
.o02
.003
.0g2
-.010
.0902

E10

.003
.04
.R04
002
.001
.002
.001
.g02
.0ad
.g02
.00t4
.0023
.00t
.002
.604
.00t
.a03
.0n2
.000
.002
.05
.gn2
.003
.003
.00z2
.anz
.000
.003
.000
.002
.0an
.00l
.oon
.02
.004
.901
.gn2
.on2
.807?
.oo2

o]

XDF

.80

.869

.21n

.8335

.951

.607

. 439

.5193

.903

.04y

.D8s

.295

.803

043

091

.109

_gs_



FLink
0,573
0.612
0,553
0672
0.705
¢, 725
0,750
0,277
0,800
0.822
0.851
0,875
0,895
0,223
0,954
0.975
1,000
1,030
1,055
1.080
1.113
1,154
1.174
1.210

1,225

1,280
1,224
1,340
1,400
1,430
1,473
1.505
1,850
1,590
1.640
1,680
1,730
1,750
1,800
1.840
1.880
1.920
1.980
2.030

FLAR
2,070
2,150
24200
2,280
2,340
24,460
2.540
2,750
3,900
2,400
KR At

4,030

5.000

&L GO
10,000

ot
o217
0,203
0,192
0.184
G, 1585
0,143
0,108
G091
0,081
0.071
0,064
0,056
0,045
0,027
0.001
-D.014
-0.,043
-0,061
-0.074
-0,077
~0,081
-0.074
~0.06%
~0,063
~0,063
~0.,057
~0,04%9
-0.,046
-0, 035
~0.,037
0,026
-0,021
~0.,020
0,017
-0.,007
-0,00%
=0, 000
-0,000
0,005
0,003
0,000
0,003
~0.,001
0,003

B o1
0.003
G.004
0.005
-G.001
~2.,008
-0.007
~0.,007
0.C01
C.CO1
0,006
QN0G
0. G4
C.003
2. 201
0,004

R

04141
0,124
0,158
2,168

0,149
0.111
0,085
0,057
0,025
0,004
=0.0185
-0,041
~-0.057
-0, 058
"O 005:’
-0,039
-0.,018
-0.006
0,011
0,01¢&
0,015
0,005
-0,003
-0.,012
~0.,026
0,033
-0.,037
-0.037
-0,039
-0.034
-Q.029
~-0,020
-0.010
-0.0064
-0,000
0,004
0,008
0,009
0.007?
0,008
0,007
0.004

| Cpes
0,002
=0.002
~0.,004
-0.007
-0. 208
~0.,310
-0,002
0,000
0.010
0.009
0,009
0,008
0,005
0,003
0,002

n 2
0. 05T
04060
0,072
D045
0,042
00218
0,004
~0,000
04008
0,012
0,032
0,045
0,053
0,080
0,089
0.084
0.081
0.0462
0.048
0.030
0,008
-0.,013
-0.016
-0,021
-0.,020
~0.01¢
-0.008
-0,001
¢.014
0,023
0.035
0,042
0,044
6,041
0,041
0.041
0,038
0.03%
0.03&
0,036
0.039
0,023
0,033
0,029

U S iR 1a]

OO SO0 OO O

<
—
-

P XN SR

PO O

[eXvRoNoRaloNoloNel ]

0.010
0,010
0,008
0,005
0,003
G, 002

& o9
0,005
C00%
0017
0,020
0.027
0,030
0037
0.030
0. 036
N.G29
0.029
¢.031
0.030
0.028
0.016
0.012
~0.,007
-0.,018
~-0.033
~0.038
_00041
-0.043
-0.044
-0,045
~0.,045
-0.044
-0.0324
~0.,023
-0.004
0.01¢
0,030
0,042
0,033
0,098
0,061
0.06461
0.060
0,058
0.056
0.0350
G.047
0.041
0036
0,024

oom

4
021
1010
0,006
-0.001
G.001
0,000
0.007
€. 007
0.011
0,011
0,011
0009
0,007
0,005
0004

Table V: see page 9.

k3 AN
—0.001 0,000
=0.004 0,001
-0.004 0,004
=0.007 0,005
-0,015 0.006
~C.020 0,004
~0.023 0,604
-0.020 03
~0.,014  £,004
-0.,009 0.003
-0.002 0,002
-0.000 0,002
0,003 0,004
-0,000 -0.012
~0.,0046 -0.0246
-0.013 -0.037
-0.007 -0.050
~0.011 -0.059%
0,000 -0.,048
0,005 -0.,048
0.007 -0,048
0.011 -0,066
0,012 —-0.CH4
0,010 ~0,082
0:010 -0.,041
0.010 —-0.057
0.013 —G,054
0.014 -0,050
0,027 -0.040
0,031 ~-0,037
0,039 ~0.022
0.045 -0,013
0,043 -0.,00¢&
0.CA1 -0.,0C0
0.038 0.008
0,037 0,012
0,033 0,013
0.032 0,013
0.030 0.014
0,027 0.013
G.025 0.012
0,022 0.,00%
0,015 0,003
0.014 -0,004

ES  E6
0,009 -0.,007
0,008 -0.015
¢.,008 -0.,017
0,007 -0.017
0,00% -0.017
0.01& -0,011
0.01% 0,000
0,019 0,008
0,016 0,014
0.010 0,010
0,911 G.011
0.010 G.009
04007 0,007
G, 005 04,005
0.005 0,004
Table IV

R 7
9.00C
0,001
0.004
0.004
0.004
G004
0,003
Q005
0.002
~0.000
-C0.001
-0,002
“0 + 003
~0,003
~0.007
-0.009
-0,009
~0.008
-0,005
-0,003
-0.003
"‘O ‘ 002
-0.,003
-0.,002
~-0.,002
0.001
0,004
0.00%
0.015
0.020
0,025
0,031
0,032
0,035
0.033
0,035
0,032
0.034
0,032
0,029
0.029
0.025
0,020
0.014

kR 7
C.012
G.003
0.001
~0.000
-0.002
0,003
0.003
0.011
0.013
0,009
0,010
0 00y
0.007
0.00G
0.003

BG
—0, GO
7.000

04002 -

O, 002
G.004
2,304
0. 00NG
4.00%
D O0G
0,009
C.C0&
0,004
¢.004
0,003
0,001
0.000
~0.001
~-0.,004
-0.004
-0,003
-0.002
-0,001
~0,001
-0.,000
0,001
0,005
0,010
0,015
0,019
0,020
0,029
0,032
0,032
0,030
0,032
0,033
0,032
0,029
0.029
0.028
0,023
c.024
0.018
0,014

B 8
0.00%?
0,002
~0,001
~-0,008
-0,008
-0,010
-0.,003
0.004
0.009
0,004
0,009
0,006
0,007
0,005
0,003

0.001
0.000
~0.,1000
0.000
-0,002
-0.002
-0.,002
-0.000
-0.,000
0.001
-0,002
0.001
-0.002
-0,001
-0.,001
~-0.,001
-0.001
-0,001
0,000
0,002
0,004
0.005
0,005
0,006
0,007
0.009
0,008
0,006
0.007
0.007
0.006
0,006
0,003
0.0CS
0,008
0.0C4
0,002
0,000

kv
~0.002
-0,004
-0.006
-0.007
-0.,008
-0.003
-0,002
0,005
0.00%
0,007
0,007
0.007
0.006
0,004
0.004

10
2.000
0 0G0
0,000
0,000
0,000
0000
0.000
-0.0600
04000
2,001
0,001
0.000
~0.+000
-0.001
-0.001
0,000
-0+001
-G.+002
~0.Q01
-0,001
-0.G00
04000
0.001
~0.001
-0.00t1
-0.,0C2
0.000
0.001
0,001
0,001
0,001
0.003
0.003
0.003
0.004
0,004
0,003
0,003
0003
0.002
0.001
0.002
04000
-0.001

K10
-0.002
=0.,004
-0.006
-0.007
~0.007
~0.00%
-0.,001

0,004

0,067

0,003

0007

0,005

0,003

0,004

0,002

K11
0,006
0.000
0.000
0,000
0.C00
0.000
0.000
0.000
~0.330
C.001
-0,000
0,000
0.000
0,001
0,001
-0.,002
~0,002
-0,004
-0.,005
~-0,005
-0.003
~0.001
~0,001
-0.001
-0.002
-0.001
~-0.001
~Q0.,000
-0,001
-0,000
~-0.,001
-0.,000
-0.,000
0,001
0.000
-0.000
-C.+000
-¢.000
~0.,001
-0,000
-0.002
-0,001
-0,002
-0.002

K11
~0.003
-0.,003
0,003
~0,002
-0.002
-0.001

0,002

0,005

0,008

0,003

0,005

0,006

0,004

0.C04

0.001

Ei2

0.000
-0600
0,050
0,009
0.000
G+ 000
0.000
9. 0CC
0,000
0.0¢O
0.000
~-0.000
~0.,0C0
~0.000
-0.000
-0.G00
~-0,000
~0.,000
0,060
-0.000
-0.000
-0.,000
-0.000
~0,000
~0.,000
0.000
0,000
0,000
-0.000
~0.000
~0.001
-0.002
-0.001
~-0.002
-0,000
04,000
~0+000
-0.,001
-0.001
-0.000
-0.002
-0.001
~-0.002
-0.,001

Biz2
-0.,001
~-0.,001
~0.0¢2
-0.002
-G.002
~0.0G1

0.,C00

0.004

0.009

0.003

0,005

Q.004

0.004

0,004

0,001
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k (GeV/c) do/dQ (mb/sr) B (mb) P+ (do/dQ)/sin8 (mb)
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k (GeV/c) do/dQ (mb/sr) B (mb) P+ (do/dQ) /sin® (mb)

o° 180° 0 180° 0° 180°

Table VI (continued)
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