KK 2761
EUR 5756e

Februar 1679

Fault Tree Analysis with
omponents

L. Caldarota

Institut fiir Reaktorentwicklung
Projekt Nukleare Sicherheit

Kernforschungszentrum Karlsruhe







KERNFORSCHUNGSZENTRUM KARLSRUHE
Institut fir Reaktorentwicklung

Projekt Nukleare Sicherheit

KfR 2761
EUR 5756e

Fault Tree Analysis with Multistate Components

L. Caldarola

Kernforschungszentrum Karlsruhe GmbH, Karlsruhe



Als Manuskript vervielfaltigt
Fir diesen Bericht behalten wir uns afle Rechte vor

Kernforschungszentrum Karisruhe GmbH
{SSN 0303-4003



FAULT TREE ANALYSTS WITH MULTISTATE COMPONENTS

ABSTRACT

A general analytical theory has been developed which allows
one to calculate the occurrence probability of the top event of a
fault tree with multistate (more than two states)} components.

It is shown that, in order to correctly describe a system with
multistate components, a special type of Booclean algebra is required.
This is called "Boolean algebra with restrictions on variables'" and
its basic rules are the same as those of the traditional Boolean
algebra with some additional restrictions on the variables. These
restrictions are extensively discussed in the paper.

Important features of the method are the identification of the
complete base and of the smallest irredundant base of a Boolean
function which does not necessarily need to be coherent. It is shown
that the identification of the complete base of a Boolean function
requires the application of some algorithms which are not used in
today's computer programmes for fault tree analysis.

The problem of statistical dependence among primary components
is discussed. The paper includes a small demonstrative example to

illustrate the method. The example includes also statistical depend-
ent components,



Zusammenfassung

Fehlerbaumanalyse mit Komponenten mit mehreren Zustdnden

Es wurde eine allgemeine analytische Theorie entwickelt, mit der die
Eintrittswahrscheinlichkeit des TOP-Ereignisses eines Fehlerbaumes mit
Komponenten mit mehreren Zustinden (mehr als zwei) berechnet werden

kann.

Es wird gezeigt, daB eine spezielle Boolesche Algebra bendtigt wird, um
ein System mit Komponenten mit mehreren Zustiinden richtig zu beschrei~
ben. Eg ist die sogenannte "Boolesche Algebra mit Einschrinkungen be-
ziiglich der Variablen''. Thre Grundregeln sind die gleichen wie bei der
traditionellen Booleschen Algebra mit einigen zusdtzlichen Einschrin-
kungen beziiglich der Variablen. Diese Einschrinkungen werden ausfithr-

lich diskutiert,

Wichtige Merkmale der Methode sind die Identifizierung der vollstindi-~
gen Basis sowie der kleinsten nicht redundanten Basis einer Booleschen
Funktion, die nicht unbedingt kohdrent sein muB. Es wird gezeigt, daB

zur Identifizierung der vollstdndigen Basis einer Booleschen Funktion

einige Algorithmen angewandt werden miissen, die in den derzeitigen

Rechenprogrammen fiir die Fehlerbaumanalyse noch nicht benutzt werden.

Das Problem der statistischen Abhingigkeit primirer Komponenten von-

einander wird diskutiert,

Im Bericht wird auch ein Beispiel mit statistisch abhiingigen primiren

Komponenten angegeben,



INTRODUCTION

The evaluation of the occurrence probability of the top event
of a fault tree can be carried out by means of simulation methods
{Monte Carlo-type methods) or by means of analytical methods.
Numerical simulation allows reliability information to be obtained
for systems of almost any degree of complexity. However, this
method provides only estimates and no parametric relation can be
obtained. In addition, since the failure probability of a system
is usually very low, precise results can be achieved only at the
expense of very long computational times.

Analytical methods give more insight and understanding because
explicit relationships are obtainable. Results are also more precise
because these methods usually give the exact solution of the probiem.
In 1970 Vesely1 gave the foundations of the analytical method for
fault tree analysis. However, Vesely's method can be applied only
to coherent systems with binary (two states) compenents. Another
important limitation of the method is that the boolean function
which describes the top variable of the fault tree must not contain
negated variables. Since there are components (like a switch) which
have more than two states, and since the technique of multistate
super-components cay be used to remove statistical dependencies
from the fault tree”, a theory_has been developed at the nuclear
research center of Karlsruhe??> to handle systems with multistate
components. One interesting feature of the method is that the
boolean function which deseribes the top variable of the fault tree
does not necessarily need to be coherent. In addition boolean
functions containing negated variables can be treated.

In this paper a formalization of the theory by means of the
so called "boolean algebra with restriction on variables" has been
developed. In addition the basic and important boolean operations
of this special type of boclean algebra are described. The paper
also includes a small demonstrative example to illustrate the
method.

1. BOOLEAN ALGEBRA WITH RESTRICTIONS ON VARIABLES. DEFINITION
OF FAULT TREE

Let us consider a variable which can take discrete values
(states) only. The set of all possible values, which the variable
can take, constitute the state space associated to that variable.
Each value of the variable is called member or element of the state
space. The variable can take only one value of its state space at a
time, The value taken by the variable at a given time is called event.



Variables can be classified in two large categories: primary
variables and non-primary variables.

A variable is called primary variable if and only if the
occurrence probabilities of all members of its state space are as
such already available. A primary variable can be the variable
associated to a primary component of a complex system, such as a
pump, a relay ete. Probability data associated to the ocecurrence of
the states (failed, not failed etc.) of these components are in
fact in general available from data banks. The values which a
primary variable can take are called primary events. A non-primary
variable can be, for instance, the variable associated to a complex
system such as the emergency core cooling system of a nuclear power
plant. Probability data related to the events "system failed",
"system intact", are in fact as such in general not available.

We consider a system at a fixed moment in time. The state of
the system at a given time obviously depends upon the state at that
time of each individual component belonging to the system. We now
select a special set of states of the system (i.e. the set of all
failed states) and call it "top" (with small letters). We associate
to it a boolean variable which we call TOP (with capital letters),
The variable TOP will take the value 1 (true) if the system occupies
one of the states belonging to the selected set and the value O
(false) otherwise.

Any non-primary variable can be chosen as TOP variable. The
chosen set of states "top" is called partition of the state space
of the system. If we want now to calculate the occurrence probabil-

ity of the event
top = {TOP = {}

we must first dissect the TOP variable into combinations of primary
variables, that is to express the TOP variable as a proper function
of the primary variables. The occurrence probability of the event

TOP =1 can then be calculated as a function of the occurrence
probabilities of the primary events.

Due to the complexity of the systems, the operation of dissec~
tion of the TOP variable into combinations of primary variables is
in general carried out in steps. The TOP variable is first dissected
into combinations of simpler non-primary variables {intermediate
variables). These intermediate variables are in turn dissected into
combinations of even simpler intermediate variables and so on. The
process of dissection comes to an end when all combinations are
combinations of primary variables only.

The process of dissection can be carried out in a graphic form
by constructing a fault tree of the chosen TOP variable,



A fault tree is a logic model which shows in diagrammatic form
the connections between the TOP variable and the primary variables.

A more precise definition of a fault tree can be given by mak-
ing use of the graph theory.

"A fault tree is a finite directed graph without loops.
Each vertex may be in one of several states, For each
vertex a function is given which specifies its states
in terms of the states of its predecessors. Those ver-
tices without predecessors are considered the independ-
ent variables of the fault tree," %

We are following the graphical terminology of Berge5 here. In
the technical literature a vertex with predecessors is currently
called gate. The output variable of a gate is called (improperly)
output .event of the gate. An input variable to a gate is called
predecessor of (again improperly) input event to the gate. In the
technical literature the improper terms TOP event, primary event
are also currently used. One should instead use the more correct
terms TOP variable and primary variable. In fact the word event is
used {in the set theory and in the propositional calculus) to indi-
cate a value or a set of values of a variable. We shall use the
correct mathematical terminology here.

Note that in the above definition of fault tree the term
"independent variable'" is used and not "primary variable". The
word independent in this context means "logically independent",
that is each input variable to the tree can take. any value of its
sample space independently from the values taken by the other input
variables. The truth table of the fault tree containes all possible
combinations among the values of the imput variables. Each row of
the truth table represents a state of the system. If all primary
components of the system are characterized by only two states
(inact and failed), we assign to each primary component a boelean
variable which takes the value 1 if the component is failed and the
value O if the component is intact. These are the primary variables
which are pairwise mutually logically independent. The primary varia-
bles in this case are also independent variables.

I1f the fault tree has m binary primary components, that is m
input variables, the truth table of the fault tree has 2™ rows.

The function which links the output to the inputs of a gate
are boolean functions. The basic gates are the AND (conjunction},
OR (disjunction) and the NOT (negative) gates.

Let us first consider an AND gate with two inputs, namely
A and B (Fig. 1-1)



AND Gate Truth Table
S Inputs | OQutput
Ay B S
01 0 0
0 1 o
A B 1| o 0
i i 1
Fig. 1-1, AND Gate (S = AA B)

The truth table of Fig. 1-1 gives the value of the output S
for each pair of values of the two predecessors A and B. This truth
table can be expressed in words as follows

"Output takes the value 1 if and only if all predecessors

take the value 1, and the value 0 if at least one of its

predecessors takes the value §."

We now order the values 1 and O in that we say, for instance
the 1 is larger than O

1 > 0
We can synthetize the AND operation as follows
8 = min (A; B)
which means that $§ takes the smallest between the values of A and B.

Fig. 1-2 shows the OR gate with associated truth table.

OR Gate Truth Table
S
Inputs Output
A B 5
01 O 0
O 1 1
A B
, 1 0 1
Fig. 1-2. OR Gate (8 = AV B)
1 1 1




Also in this case the truth table of Fig. 1-2 can be expressed
in words as follows

" Qutput takes the value 1 if at least one of the
predecessors takes the value 1 and the value O if and
only if all predecessors take the value 0."
If we put 1 » 0, we can write in the case of the OR gate
S = max (A; B)
which means that 8§ takes the largest between the values of A and B.

Fig. 1-3 shows the NOT gate with associated truth table.

NOT Gate S Truth Table

Inputs QOutput

A S
0 1
A 1 0
Fig. 1-3. NOT Gate (S = A)
In words

"Output takes the value 1 if predecessor takes the
value 0 and viceversa."

In a fault tree the truth tables of each gate are properly
combined to get the truth table of the TOP. We show this by means
of an example.

We consider the simple fault tree of Fig. 1-4 (Example No.1l).
Each one of the twe OR gates will be characterized by a truth table
of the type of Fig. 1-2. The outputs of the two OR gates will be
the inputs to the AND gate, which has a truth table of the type
shown in Fig, 1-1. By properly combining the three truth tables one
finally gets the overall truth table of the fault tree. This truth
table has 16 rows (Fig. 1-5).



TOP

A P
O © O ©

Fig. 1-4. Fault Tree - TOP = (CVD)A(AVB)

Row Inﬁuts Output
Number A B c D TOP

+ B 0 0 0 0 0
2 0 0 0 1 0
3 0 0 1 ) 0
4 0 0 1 1 0

+ 5 0 1 0 0 0
6 0 1 0 1 1
7 0 1 1 0 1
8 0 1 1 1 1
9 1 0 0 0 0

— 10 1 0 0 1 1
11 1 0 1 0 1

— 12 1 0 1 1 1
13 1 1 0 0 0

— 14 1 1 0 1 1
15 1 1 1 0 1

— 16 1 i 1 1 1

L
Fig. 1-5.

Complete truth table of the fault tree of Fig. 1-4 (Example
No.1)



In the previocus example we have assumed that all primary com-
ponents are binary, There are however primary components which are
characterized by more than two states. For instance an electrical
switch is characterized by at least three states, namely (1) intact,
(2) failed in closed position and (3) failed in open position.

One could in this case assign to each primary component a mul-
tivalued variable characterized by a number of values equal to the
number of states of the primary component. Each value of the vari-
able corresponds to a specific state of the primary component.
These multivalued variables are the primary variables. They are
pairwise mutually logically independent. Primary variables and
independent variables are also in this case identical. The function
vhich links the output to the input of a gate is a logic function
which is in general not boolean. This way of thinking is consistent
with the definition of fault tree given above. There is however,

a considerable drawback, namely that a more complicated multivalued
logic must be developed. The basic gates are not any more simply
the AND, OR and NOT gates as in the case of the boolean algebra,
New basic gates must be found. Some authors® are following this way
of thinking. We want to follow another path instead. We want to
have primary variables which are binary.

Let us consider the state space of a primary component. A
state belonging to the state space of a primary compenent is called
primary state. The event of the primary component occupying a given
state of its state space at a given time is called primary event.

A primary component will be indicated by the small letter c
followed by an integer positive number (cl; c2; ¢3 etec.). In
general we shall have c¢j with j=1;2...; m, where "m"” is the total
number of primary components contained in the system.

A state of a primary component will be indicated by the same
notation of the primary component to which it belongs followed by
a positive integer number as an index. (cjy; ejo; cjy ete.) In
general we shall have ¢j, with q=1;2;...n}, where nj is the total
number of states belonging to primary component cj. We can now
assoclate to each state cj. a boolean variable Cj_ which takes the
value ! (true) if primary component cj occupies state cj and the
value O (false) if ¢j does not occupy ch. q

The event

cj =1 = ¢j
{Jq } iy

indicates that primary component ¢j occupies state ch.

Conversely, the event

10]
cj =0 e i Kk
{Jq } o Sy #q



indicates that primary compenent cj does not occupy state ch and
therefore occupies one of its other possible states.

Note the one to one correspondance between state c¢j, {(small c¢)
and boolean variable Cjy (capital C) associated to it. We obviously

have
cj = Cj =1 ;- and c) = i Cj = 0 f

We shall say that the primary state cj, belongs to component
cj {cj,&c}i). The word "primary component" ?with small c¢) is here
intended as the set of all possible states which the compenent can
occupy.

We shall also say that the variable Cj,; belongs to Component
Cj (qué(ﬁ). The word "primary Component' (with capital C) means
here the complete set of variables associated to its states.

The binary variables Cj_ are the primary variables. They are
however not any more pairwise mutually independent.

Since a primary component must occupy one of its states and
can occupy only one state at a time, the variables qu must obvious-
ly satisfy the following two types of restrictions.

Restriction Type 1 The disjunction of all binary variables associ-
ated to the same primary Component is always
equal to 1

nj

cj =1 (1-1)
V Tq
q=1

The notation "1" in Eq. 1-1 means "true'. Eq.l must be read as
follows. The proposition "at least one of the variables qu (g=1;
:...nj) takes the walue 1" is true.

Restrictions Type 2 The conjunction of two different binary varia-
bles associated to the same primary Component
is always equal to 0.

ch/\ Cj =0 q # k (1-2)

The notation "0'" in Eq. 1-2 means '"false'. Eq. 2 must be read
as follows. The proposition "both variables qu and Cj, (q#k) take
the value 1" is false.

Mote that there is only one restriction type 1 and Eligllkl
restrictions type 2.



Note also that Egqs. 1-1 and 1-2 can be translated straight-
forward in the equivalent equations among states. We have obviously

Restriction Type 1

=

3
j =1 1-1
CJq ( a)
=1

]

and

Restrictions Type 2

c3q r) ej =0 q#k (1-2a)

Eqs. 1-la and 1-2a have been obtained respectively from
Eqs. 1-1 and 1-2 by carrying out the following simple operations,

Capital C
Disjunction operator \/
Conjunction operator A

is replaced by small ¢
" " " Union operator U
" " " Intersection operator{}
Note that the notation "1" and "O" in Eqs. l-la and 1-2a have
a different meaning. They indicate respectively the "universal set"
and the "empty set". Eq, l1-la means therefore that the union of all
states of a primary component constitutes an universal set, that is
its complete state space. Eq. l-1b means that the intersection of
two different states of a primary component comstitutes an empty
set.

Since we have introduced primary variables which are not any
more pairwise mutually independent, we have to slightly modify the
definition of a fault tree.

"A fault tree is a finite directed graph without loops.
Each vertex may be in one of several states. For each
vertex a function is given which specifies its states
in terms of the states of its predecessors. Those
vertices without predecessors are the primary variables
of the fault tree. The primary variables may satisfy some
conditions (called restrictions) which are associated to
the fault tree.”

Since a fault tree does not contain loops, it follows that
the restrictions contain primary variables only. We shall limit
ourselves to consider fault trees characterized by a boolean TOP
variabls and boolean primary variables which satisfy restrictions
of the types given respectively by the Eqs., 1-1 and 1-2.

We consider now the truth table of the TOP variable.



Restriction type 1 means that the primary events

(0] (om0} Long-o}

cannot co-exist all together at the same time. This is equivalent
saying that all the rows of the truth table in which the variables
Ciys Cig; Cj3... take simultaneously the value O are prohibited
and must be deleted.

The restrictions type 2 mean that the primary events
{CJq=1} and {C_]k=1} s, 47Kk

cannot co-exist at the same time. This is equivalent saying that
alt the rows of the truth table in which both the twe input varia-
bles qu and Cj, take the value 1 are prohibited and must be
deleted. The following two examples will make this point clearer.

Let us coensider the fault tree of Fig. 1-4 and let us assume
that the primary variables A and D belong both to the same primary
Component which is characterized by two states {Example No. 2),
Eqs. 1-1 and 1-2 become respectively

AV D=1 (1-3)
AAND=0 (1-4)

Eq. 1-3 tells us that the events {A = 0} and {tD = OJ
cannot co-exist. If we now look at the complefe truth table of
the fault tree (Fig. 1-5) we notice that the rows 1; 3; 5 and 7
are prohibited because in these rows A and D have both the value O.
These rows must therefore be deleted.

Eq. 1-4 tells us that the events {A = 1} and {D = 1}
cannot co-exist. This is equivalent saying tHat the rows No. 10;

12; 14 and 16 (Fig. 1-5) are also prohibited and must be deleted.
The truth table of the fault tree of Fig. 1-4 with the additicnal
conditions 1-3 and 1-4 will be reduced to that of Fig. 1-6 which

contains eight rows only.

The input (primary) variables of the truth table of Fig. 1-6
are not all pairwise mutually independent. In fact the eight rows
containing the combinations of values (0;0) or (1;1 ) for the
variables A and D do not appear in the truth table of Fig. 1-6.



Row Inputs Output
Number | B c D TOP
1 0 4] 0 1 0
2 0 0 1 1 )
3 0 1 0 1 1
4 0 1 1 1 1
5 1 0 0 0 0
6 1 0 1 0 1
7 1 1 0 0 0
8 1 1 1 0 1

Fig. 1-6. Truth Table of Example No.2

It is sometimes possible however to reduce the number of
the primary variables and to get the independent variables only.
In the case of example No. 2 this is possible.

We notice that Eqs., 1-3 and 1-4 can be reduced to the follow-
ing equation.

D=4 (1-5)

Eq. 1-5 means that, once a value has been assigned to the
variable A, the variable D takes a defined value according to the
truth table of Fig. 1-3 (NOT Gate). For this reason the column
corresponding to the varigble D in the truth table of Fig. 1-6
is redundant and can be deleted. The value of the TOP is in fact
completely determined if the values of the primary variables A; B;
C have been previously chosen. The truth table of Fig. 1-6 can be
further reduced by deleting the column of the primary variable D
{Fig. 1-7).

Row Inputs Output
Number A B C ToP -
1 0 0 0 o
2 o 0 1 o
3 0 1 0 1
4 0 1 1 1
5 1 ] 0 0
6 1 0 1 1
7 1 1 8] o
8 1 1 1 1

Fig. 1-7. Truth Table of Example No. 2 (Final)



Conversely one could keep the variable D as independent varia-
ble and delete in Fig. 1-6 the column corresponding to the variable
A which would now be redundant.

Let us consider again the fault tree of Fig., 1-4 and let us
assume that the primary variables A and D belong both to the same
primary Component {as in example No. 2) but that this component is
characterized now by three states and that the primary variable
associated to the third state (call it E) is not present in the
fault tree (example No. 3). In this case Eqs. 1-1 and 1-2 become
respectively

AVDVYE =1 (1-6)
and

AAD=01(1-7a) AAE=01(-70) DAE=0 (1-7¢)

The rows 10; 12; 14; 16 of the truth table of Fig. 1-5 are
prohibited because the events A=1] and D=1} cannot co-exist

at the same time (Eq. 1-7a). By deleting thése Tows one obtains
the truth table of Fig. 1-8 which contains 12 rows only.

Row Inputs Output
Numbex A B c D TOP
1 O 0 0 o 0
2 0 0 0 1 0
3 0 0 1 e 0
4 O 0 1 1 0
5 0 1 0 0 o
6 o 1 G 1 1
7 0 1 1 0 1
8 0 1 1 1 1
g 1 o 0 0 0
10 1 8] 1 0 1
i1 1 1 0 0 ¢]
12 1 1 1 0 1
Fig. 1-8. Truth Table of Example No. 3.

Note that in this case we don't make any use of the restric-
tions given by Egqs. 1-6; 1-7a and 1-7c¢ because the primary vari-
able E is not explicitly contained in the fault tree.

The input variables of the truth table of Fig. 1-8 are not all
pairwise mutually independent. In fact the four rows which contain
the combination of values (1l; 1) for the variables A and D do not



— 13 —

appear in the truth table of Fig. 1-8. In this case however it is
not possible to reduce the number of primary variables as in the
case of Example No. 2. In fact no column in the truth table of
Fig., 1-8 is redundant.

In conclusion the following rule can be stated {Rule No. 1)

"The truth table of the TOP variable of a fault tree can
be obtained from the complete truth table (in which all
primary variables present in the fault tree are assumed
to be pairwise mutually independent) by deleting the
prohibited rows and the redundant columns., The restriec-
tions allow one to identify these prohibited rows and
redundant columns. Each survived row corresponds to a
specific state of the system. The survived primary
variables may or may not be pairwise mutually independent.

We notice that we have defined primary variables which are
binary as in the classical boolean algebra, but not necessarily
pairwise mutually independent. We shall therefore introduce the
term "boolean algebra with restrictions on variables" to indicate
an algebra in which the basic (primary) variables are boolean but
not necessarily pairwise mutually independent, The classical boolean
algebra can be considered as a particular case of this boolean
algebra with restrictions on variables in that the basic variables
are all pairwise mutually independent.

We now consider the states of the partition top. Each state of
the partition top can be expressed by the smallest cartesian product
of primary states. This expression of the state is called smallest
form of the state. Consider, for instance, the row 7 of the truth
table of Fig., 1-8 (Example No. 3).

System event No. 7 = {B=1} X {C*I} x[{A=0}n {D=o_}] (1-8)

Note that Equation 1-8 is obtained (1) by grouping all events
which belong to the same compenent and linking them with the inter-
section operator f) and (2) by linking all groups with the cartesian
product operator x. In fact the events A=O} and {D=Q}'belong to
the same component and must therefore be grouped together.

We now want to eliminate the groups.
From Eq. 1-6 we get

E=AYD = AAD (1-9)

{E=l} = {KA 5=1_} = {K=1}(]{5=1} (1-10)



— {4 —

We have the following identities

{X=1} {A=0} (1-11)
{3=1} {D=O_} (1-12)

Taking into account Egs. 1-11 and 1-i12, Eq. 1-10 becomes

{ A=Oj M {D=o} = {E=1} (1-13)

Taking into account Eq. 1-13, Eq. 1-8 becomes

System event No, 7 = {B=1} ® {C=1} X {E=1} (1-14)

Note that Eq. 1-14 does not contain any more the intersection
operator f} and all events contain the symbol 1.

i

We now introduce the notation for the states of prlmary com-
ponents {(small letters). We have

fon]

= b (1-15)
{021} = ¢ (1-16)
{E=1} : e (1-17)

Taking into account Eqs, 1-15, 1-16, 1-17, Eq. 1-14 becomes
System event No, 7 = bxcxe (1-18)

The expression on the right side of Eq. 1-18 is the smaliest
form of system state No. 7.

We can now state the following definition
"* The smallest form of a state of a system is defined by
the cartesian product of the states occupied by each

single primary component belonging to the system,'

We now go back to Eq. 1-14 which we can now write in a more

compact form.
{B=I} X {C=1} X {E=l}

{B/\C/\E = 1} (-9

From Eqs. 1-18 and 1-19, we get

bxcxe = { BACAE = 1} (1-20)

System event No. 7



Before discussing Eq.1-20, we want to intreoduce some new terms.
A variable which results from the conjunction of primary variables
is called monomial. A monomial containing two or more primary variables
belonging to the same primary Component is obviously equal to zero
{restrictions type 2). A non-zero monomial containing a number of
primary variables equal to the number of primary components present
in the system is called "complete monomial®. For instance, the vari-
able BACAE of Example 3 is a complete monomial”. For a given
system the number of complete monomials is equal to the number of
its states.

Eq. 1-20 tells us that, given the complete monomial BACAE,
one obtains the minimal form of the corresponding state bxcxe by
carrying out the following operations

B is replaced by b

C n 1" L1 c

E "t M 11} e
conjunction

operator A " M "

cartesian product operator x
We can now state the following rule (Rule No. 2)}.

"The smallest form of a state of a system is obtained
from its corresponding complete monomial by replacing
each primary variable by its associlated primary state
and each conjunction operator (A ) by the cartesian
product operator {(x).

Conversely we have

"A complete monomial of a system is obtained from the
minimal form of its corresponding system state by
replacing each primary state by its associated primary
variable and each cartesian product operator (x) by the
conjunction operator (A )."

Going back to the truth table of Fig. 1-18 (Example No. 3),
we select the rows for which TOP = 1. These are the rows No. 6,
7, 8, 10 and 12. Each selected row respresents a state of the
system for which the equation TOP = 1 is satisfied. We now find
the smallest form of each row. In order to do that we must intro-
duce the states b and ¢ which satisfy the restrictions respectively
with b and c.

bUb
and

cUe

1t

o} (1-21b)

o |
[

1 (1-21a) ; bHH

0 (1-22b)

o
i

1 {1-22a) c

The smallest forms of the rows 6, 7, 8, 10 and 12 are given in the
following table (Fig., 1.9).



System state Smallest form
6 bxecxd
7 bxcxe
8 bxcxd
10 axbxe
12 axbxe
Fig. 1.9 Smallest form of system states (from the truth

table of Fig. 1.8),
By making use of the above table we can now write
top = {bxexd) U (bxexe) U (bxexd) U (axbxe) U (axbxe) (1-23)
Eg. 1-23 can be written as follows
{TOP = 1} = {BAEA D'—'l} v {BACAE“—-I}U{BA chp=1 ¢ U
U{A/@Acq} v {AAB/\C=1_} (1-24)
Eq. 1-24 can be written in a more compact form
{TOP=1} = {(BAEAD)V(BAcAE)V(BAcAD)V(AAEAc)V(AABAC)=1}
(1-25)
From Eq. 1-25 we also get
TOP = (BACAD) V (BACAE) V (BAGAD) V (AABAC) V (AABAC) (1-26)
Eqs. 1-23 and 1-26 tell us that given the variable TOP as a
disjunction of complete monomials (Eq. 1-26) one obtains the

expression of the partition top (Eq. 1-23) by carrying out the
following operations

TOP is replaced by top
A M " oo,
B ] 11} " b
B 1t " " b
C " n n o
—C " n " E
D (11 n n d
E " L1} n e

conjunction operator A
disjunction operator VY

cartesian product operator x
union operator



The disjunction of complete monomials of a boolean function is
called "disjunctive canonical form" of the function.

Now we can state the following rule (Rule No. 3)

"1f the variable TOP is given in its disjunctive canonical
form, the corresponding partition top is obtained by
replacing each complete mononomial by the corresponding
smallest form of system state and each disjunction operator
(V) by the union operator (\J)."

Converserly we have

"If the partition top is given in the form of union of
smallest forms of states the corresponding disjunctive
canonical form of the variable TOP is obtained by replacing
each smallest form of state by the corresponding complete
monomial and each union operator (V) by the disjunction
operator (V)."

We notice that the disjunction operator V is alsway replaced
by the union operatorl/. The conjunction operatorAinstead is re-
placed by the intersection operatorl}in the case of the restric-
tions type 2 (Eqs. 1-2 and 1-2a) and by the cartesian product opera-
tor x in the case of the complete monomials. This fact however does
not cause any problem. In fact any complete monomial is & non-zero
monomial which corresponds to a specific state of the system. A
state is for defipition a non-empty set. Since the restrictions are
only used to identify the zero monomials of a boolean function that
is the prohibited rows of the corresponding truth table and both
are always deleted, it is impossible to get smallest forms of system
states containing the intersection operator, and/or complete mono-
nomials which contain two or more primary variables belonging to
the same component.

In conclusion the boolean algebra with restrictions on varia-
bles allows us to operate on boolean variables in a way similar to
the classical boolean algebra, but with the additional complication
of the restrictions. Once that the boolean expression of the TOP
variable has been found, the rules No. 2 and 3 allow one to easily
identify the smallest form of the states of the partition top.

The advantage of using boolean variables instead of states is
obviously that of having a more flexible instrument ot operate.
We show this point by developing Egq. 1-26. We notice that

(BACAD) V (BACAD) = (BAD) (1-27)

(AABAC) V (AABAC)

and

(AAC) (1-28)



Taking into account Eqs. 1-27 and 1-28, Eq. 1-26 becomes

TOP = (BAD)V(AACYV(BACAE) (1-29)
We also notice that

E = AAD (1-30)
and therefore

(BAD)V (BACAE) = BA DV(CAEAB)] = (BAD)V(BACARX) (1-31)

Taking into account Eq. 1-31, Eq. 1-29 becomes

TOP = (BAD)V (AAC)YV(BACAARA) (1-32)
We have _
(AAC)V (BACA A)=CA AV(BAK)J= (CAMV(CAB) (1-33)

Taking into account Eq. 1-33, Eq. 1-32 becomes finally

TOP = (BAD)V(AAC)V(CAB) (1-34)
The partition top is simply given by

top = {_(BA D) V(AAC)V(CABR) = 1} {1-35)

Note that the expression of the partition top given by Eq.
1-35 (i.e. by using the boolean variables) is much simpler and much
more compact than the equivalent expression given by Eq. 1-23 {i.e,
by using the set theory).

2. FAULT TREE SYMBOLOGY

The graphical symbelogy of a fault tree which is being used
here is derived from that proposed by Fussell? with some modifica-
tions and some additional symbols.

The symbols have been organized in two tables, namely

A. Table of Variables (Fig. 2-1)
B. Table of Basic Gates (Fig. 2-2)

The two tables are selfexplanatory so that only few additional
comments are needed for a correct use of the symbols contained in
them.

1, The House (Table of Variables) is used to modify the structure
of the fault tree. If the House is given the value 0, the
whole branch of the fault tree under the AND gate (to which
the House is input) is cancelled out. If the House is given



— 19 —

Symbol

Denomination

Meaning

Rectangle

Variable Description

Circle

A primary vartiable belonging
to an independent component.

Octagon

A primary variable belonging
to a. dependent component,

Diamond

A non-primary variable which
would require dissection in
more basic variables, but that
for some reasons has not been
further dissected.

House

A variable whose sample space
contains only one member, that
is a variable which is constant
and always takes either the
value 1 or 0. Note: this symbol
is used only as input to an

AND gate,

O
O
<>
)
A

Transfer IN

A connecting or transfer symbol
indicating a variable entering
the fault tree,.

Ay

0

>

Transfer
QuT

A connecting or transfer symbol
indicating a variable going out
from the fault tree.

Fig.

2-1. Table of variables




No. Symbol

Dencmination

Boolean
Notation

Output/Inputs
Relationship

Rules for the Generation of the
Truth Table

NOT

B=4

B=1~A

Output takes the value 1 if
predecessor takes the value 0 and
vice versa.

AND

B=min(A1;A

2

LA )
el

Output takes the value 1 if and

only 1f all predecessors take the
value 1, and the value 0 if at least
one of the predecessors takes the
value 0.

OR

B=max(Al;A

2

L.3A )
n

Cutput takes the value 1 if at
least one of the predecessors takes
the value 1, and the wvalue 0 if and
only if all predecessers take the
value O.

Note: A marked point at the input of the input of a gate means that the input variable 1is
negated before entering the gate.

Fig. 2-2.

Table of Basic Gates.




the value 1 no modification of the structure of the fault tree
occurs,

2. Transfer IN and Transfer OUT (Table of Variables) are used in
the case in which a variable is at the same time an output
{Transfer OUT) from a gate and input (Transfer IN) to some
other gates which are located (in the drawing of the fault tree)
far away one from the other.

3. If an input to a gate (Tables of Basic Gates) is marked with
a point, it means that the input variable is complemented
{negated) before entering the gate,

For instance we have

B

B = Al/\ AZI\AB

A Ao Ag

3. CONSTRUCTION OF A FAULT TREE. AN EXAMPLE

Fig. 3-1 shows a very simplified electric power supply system
(EPSS) consisting of the bus bars C which are supplied either by the
external network B or by the electric generator A. Network and elec-
tric generator are connected in parallel to the bus bars respective-
ly through the electrically operated circuit breaskers F and L. The
dotted lines (with arrows) indicate that the position (open or
closed) of each circuit breaker depends upon the state (failed or
intact) of the component to which the circuit breaker is associated,

The circuit breakers in Fig. 3-1 are shown in the position
open (coil deenergized). In normal operating conditions both
circuit breakers F and L are closed (coil energized)and the genera-
tor A supplies electric power to the bus bars C as well as to the
external network B, If the generator A fails the circuit breaker L
opens and the external network feeds the bus bars C. If the network
B fails the circuit breaker F opens and the generator A feeds the
bus bars C only. The function of each circuit breaker is that of
disconnecting its associated component (conditioning component)
when this fails. If the circuit breaker fails to open, no electric
voltage will be available at the bus bars C. In addition B may
cause by failing the failure of A and vice versa (a failure of A
may cause B to fail). Components A and B are said to be correlated.



— oo

I B
%1
F -l

— e
L §§-1
I
|
|
Fig. 3-1. Schematic diagram of a simplified electric

power supply system (EPSS)

The primary components with associated states are shown in the
table of Fig. 3-2. Here for each primary component the conditioning
components are listed in the homonymous column. The correlated
components,which are each other statistically dependent (in our
example A and B), are also shown.

Note that in our example the conditioning components of F and
L are alsc primary components. However, in general the conditioning
components may be not primary (i.e. the variables belonging to
them are not primary)}. In this case additional information must be
given to identify these conditioning components.

We can now proceed to define the TOP variable. The EPPS is
failed if no electric voltage is available at the bus bars C. We
have therefore

TOP = No veoltage at bus bars C

We observe that the absence of voltage at the bus bars C is caused
either by the failure of the bus bars C or by the fact that no
voltage arrives at €. In this way we have dissected the TOP variable
into the disjunction of two other variables namely "bus bars C
failed" and "no voltage at the input of bus bars C". This dissection
is graphically shown in Fig. 3-3, where the OR gate GOl has the TOP
as output and the other two above defined variables as input.



Primary State
Component
Conditioning| Correlated

Denomination | Symbol Components | Components . ' Symbo?of

Denomination| associated
primary
variable

Generator A B Failed Al
Intact __52
Failed Bl

Network B A

' Intact B
ntac )

Failed 61

Bus bars C
Intact C

ntac 5

Failed open Fl

Circuit :

F

Breaker F B Failed 2

closed
F

Intact F3
Failed open Ll

Circuit .

Breaker L A Failed I"2
closed

L

Intact L3

Fig. 3-2. Table of the primary components of the EPSS,

We point out that the probability data associated to the
variable "bus bars C failed" are available from reliability data
banks. This variable is therefore a primary variable. We call it
C, and we draw a circle in Fig. 3-3 because C is statistically in-
dépendent (see table of Fig. 3-2). We now dissect the variable 'No
voltage at the input of bus bars C".



— 24 —

TOP
Mo voltage at
bus bars C

A2N

Bus bars C
failed

No voltage at
the input of
bas bars C

Partial fault tree of the EPPS {(1st step)

TOP
No voltage at
bus bars C

TN

Bus bars C
failed

No voltage at

the input of

bus bars C

AN

l

Non disconnec.
failure

l

Circuit
inferrupted

Partial fault tree of the EPPS (2nd step)




ToP
No voltage at
bus bars C

]

Bus bars C M8 vollage at
faited the input of
bus bars €
I 1
Mon Circuit
disconnected ntersupled
failure
I 1
Hon Non ircuit . Circuit .
disconnected disconnected interruptedin interrupted in
failure of failure of the network the generatfor
network 8 generator A section seclion
Network 8 CbifCU}it g | [eneratora Cb("“;('t L Failed Circuit Failed Circuit
failed reaker faitd eaker network B| fhreaker £ | |generator A | breaker L
failed failed - A A
closed closed disconnecled| [faited open{ {disconnected] | failed open

® ®

® 0 4 0 &M O

Network B
failed

Circuil
breaker F
intact

Generator A
faited

Circuit
breaker L
intact

Fig. 3-5. Fault Tree of the EPSS.

®

®




TOP

Fig. 3-6. Fault tree of the EPPS (without variable descriptions)

TOP

Fig. 3-7. Fault tree of the EPPS (Alternative)



We notice that the absence of voltage at the bus bars C can be
caused either by a '"nou-disconnected failure" or by an "interruption
of the continuity of the electric circuit', This dissection is whown
graphically in Fig. 3-4.

The process of dissection can be carried further on until all
variables are primary variables. The complete fault tree is shown
in Fig. 3-5. Note that the variables A B_; L L 3 Fy; F, and

% 2
F3 are all represented by octagons because they be ong to dependent.
components,

The fault tree of Fig. 3-5 has been redrawn in simplified form
in Fig. 3-6 without rectangles (i.e. variable descriptions).

Sinece there are in general, different possible ways of dissect-
ing the variables, different fault trees of the same TOP can be
drawn. The fault tree of Fig. 3-7 has exactly the same TOP variable
of that of Fig. 3-6, In general different people generate different
fault trees for the same TOP variable.

4, MODIFIED FAULT TREE. OCCURRENCE PROBABILITY OF THE PRIMARY
EVENTS

Given a boolean variable A, we define as expectation of A
(E A} ) the occurrence probability of the event {A=1J , that 1is

Efa} - P{A=1} (4-1)

where P{...} means occurrence probability of the event under
brackets.

The probability data related to the primary variables of the
system described in the previous section are given in the table of
Fig, 4-1. Here we assume that all failure rates of the primary
components are constant. The transition rates are identified as
follows. The primary variable of the row refers to the state before
the transition (state of departure). The number of the column
identifies the state after the transition (state of arrival).

The components A and B have transitions which are correlated.
If B fails (tramsition Bl—*-Bl) there is a constant probability
Kp that A fails too (transition A, -»A;). In this case the trans-
ition By —= By is the conditioning transition and the transition
Ay —* A is the conditioned transition. This is shown in the table
of Fig. 4-1. The table shows also that if A fails {conditioning
transition A, — Ay) there is a constant probability Ky that B

fails too (condltloned transition B, =B )



& . .. : -1 Correlated transitions
ta ] Condi- . Transition rates (hours 7)
- | Primary cioning Primary
#| Component Variable Variable 1 2 3 Conditioning | Conditioned | Conditional
. Transition | Transition | Probability
g E? A Al PA
E% A, Ay B,—> B, A,=> A K,
g o B Bl ,"B
rh
@ B, )\B Ay A B,—> B, KB
@B C
<0 c 1 Fe
S-Q CZ J\c
22 F
o 1 L
T F
23 g 2 .
0o % . Fa v, G,
e ! A
Z& B F
2 2 £y
Y F
N 3 Y, 7
o Ll /?1
™ L
- A 5 o,
-: L L3 E, S:
. L, 12
E A L
o 2 2 oly




— 29 —

We introduce the following symbol

AA = transition rate of Az—a- Al
O
Ay = ' T By By

We can now draw the state diagram of the super-component G
characterized by the four states which one obtains by intersecting
the state of A and B in all possible ways. The state diagram of
super-component G is shown in Fig. 4-2.

With reference to the state diagram of Fig. 4-2, we can now
express the primary variables of components A and B as functions
of the primary variables of G. We have

A1 = G,VG, (4-2)
AZ = GZVG4 (4-3)
B, = GV, (4-4)
B, = G3VG4 (4-5)

We now replace in fault tree of Fig. 3-6 the primary vari-
ables Ay and By with the new primary variables Gj; Gy Gg and Gy
by making use of Egs. #~2 and 4-4. The new fault tree is shown in
Fig. 4-3.

In the fault tree of Fig. 4-3 the primary variables Ay and By
have been replaced respectively by the OR Gates GO7 (inputs G; and
G4) and GO6 (inputs Gy and G,). Note that the primary variables
Gy; Gy and Gq are represented by circles because they belong to an
independent super-component. In fact their expectations can be
calculated by solving the state diagram of Fig. 4~2. The new
primary veriables have been introduced also in the fault tree of
Fig. 3-7 {(See Fig. &-4).

The expectations of the primary variables Gj; G,; Gg and Gy
can easily be calculated by means of the very well known methods
of state analysis.



— 30 —

Fig. 4-2. Statee diagram of super-component G

We go back to the table of Fig. 4-1 and we consider the cilrcuit
breaker ¥. The circuit breaker F is a bipolar switch with condition-
ing variables By and By. The theory of the bipolar switch has been
fully developed by the author inll. Here only some important points
of the model are recalled. Since a bipolar switch has three states,
there will be three primary variables, namely {in the case of F)

F, associated to state f; (failed open)
F, " " " f, (failed closed)
L " " " £q (intact)

We shall assume that the two failed states of the switch don't
communticate dirvectly with each other. This means that the switch
must be repaired before failing again. This is exactly what happens
in practice. Failure and repair rates (i.e. transitions rates) of




TOP

GA1

GA4

%9

GAS

&
S @

Fig. 4-3. Modified fault tree of the EPPS




) e

N

OHOIOFEN
O 2

Fig. 4 - 4. Modified fauit tree of the EPPS (Alternative)




— 3 —

the switch will be in general dependent upon its position i.e. upon
the state of the network B (intact or failed). They are conditional
transition rates.

In the case of a bipolar switch a procedure has been usedll
which is quite different from that used in the case of supercompo-
nent G,

In this case in fact it is possible to identify a conditioning
component B and a dependent component F. For this reason we define
first the conditional expectation of a dependent variable (say Fy)
given a conditioning variable {say B,) as_ the occurrence probability

of the event '{Fk = 1} given the event { B =1

E{FkIBq} =P{Fk=1qu=l} (4-12)

One can easily calculate the conditional expectations of the primary
variables F,; F_; and F3 by means of the analysis developed inil,

1 72
11, . . .

In 1 it has been demonstrated that the following relationships
hold under some conditions which are always satisfied in the practi-
cal cases {(for instance, repair rates must be order of magnitudes
larger than failure rates). The relationships are

E {Fkl BqAY} ¥g {Fkl Bq} (4-13)
(k=1; 2;3) (g=1; 2) where Y is an arbitrary

boolean function which does not contain any literal of F.

E{Flez} E {Fklsl} (4-14)
E {Fk‘ Ga} E { Fkl Bz} (4-15)

ne

=
e
3
=
!
-t
| S ]
12

[

<ol
"
L]
P
o]
L
YD
1

In the case of circuit breaker L, one can also write expres-
sions similar to (4-13) to (4-15). We have

E {Lk]A /\Y} = E {Lk’ A } (k=1; 2;3) (q=1; 2) (4-16)
4 4 where Y is an arbitrary
boolean function which does not contain any literal of L.

E{Lklcl] E{Lkic3} E{LklAl} (4~17)
E{Lklczg E{Lklca} E{Lk“z} (4-18)

e

e




— 34—

5. BOOLEAN OQPERATIONS
5.1 Generalities

The reader must become acquainted with some terms which are
currently used throughout this paper.

In the following primary variables will be also called
literals. A boolean function can be expressed in the form of a
disjunction of conjunctions of literals {disjunctive form}. A
conjunction of literals belonging to a disjunctive form of a boolean
function will be called shortly "monomial'. A monomral X of the
disjunctive form of a boolean functiom (TOP) is said to be an
implicant of the TOP. It must satisfy the following boolean identy.

TOP A X =X (5-1)

Let X; and X be two monomials. We say that X, subsumes X; if every
. . : . S J
literal of X; is contained in Xy. This is the same as saying that
X is an impiicant of Xy, that is
xj/\xk =X (5-1)

A disjunctive form of a boolean function will be called "normal
disjunctive form" 1if its monomials satisfy the following four.
properties.

1. Each monomial (X) wmust be a non-zero monomial (X # 0, i.e. no
pair of mutually exclusive literals must be contained in it)

2. Fach monomial must not contain any literal (primary variable)
more than once (no repeated literals).

3. Monomials must not subsume pairwise each other.
X. x.
(x; # X, AN # %)

4. Monomials must not contain negated literals

Each negated literal must have been previously replaced by the
corresponding disjunction of all remaining literals belonging to the
same primary compenent, that is

1

n
A =V kK #1i  (i=1; 2; ...;n) (5-2)
k=1 i

A boolean function can have in general many normal disjunctive
forms. For a given fault tree, there is a particular normal disjunc-




tive form of its TOP variable which is associated to that fault tree.
We shall call it "associated normal disjunctive form".

We say that a monomial X; is a "prime implicant” {(minimal cut
set) of the boolean function %OP if (1) X: implies the TOP
(le\TOP = Xj) and (2) any other monomial Y subsumed by X3 (i.e,
obtained from X; be deleting one of its literals) does not imply
the TOP (YA TOP # Y).

We shall call any disjunction of prime implicants, which is
equivalent to the function TOP , a '“base of the function TOP". The
disjunction of all prime implicants has this property. We shall call
it the "complete base". We shall describe as an "irredundant base"

a base which ceases to be a base if one of the prime implicants
occuring in it is removed (deleted). Boolean functions may have
many irredundant bases. We shall call "smallest irredundant base"
the irredundant base having the smallest number of prime implicants.
There may be more than one base with the smallest number of prime
implicants.

If a boolean function has only one base,which is at the same
time complete and irredundant, the boolean function is said to be
coherent. The identification of an irredundant base (or one of the
smallest irredundant bases) of the boolean function TOP of a fault
tree is carried out in three steps:

Step No. 1 Identification of the associated normal disjunctive form,

Step No. 2 Identification of the complete base starting from the
associated normal disjunctive form.

Step No. 3 Extraction of an irredundant base (or one of the
smallest irredundant bases) from the complete base.

After having identified an irredundant base of the TOP wvariable,
some other transformations are carried out to get the boolean func-
tion in a form suitable for probability calculations. We have

Step No. 4 Expression of the TOP as a disjunction of pairwise
mutually exclusive boolean functions {keystone functions).

Step No. 5 1Identification of the conditioning variables to be
assoclated to each keystone function.

The purpose of step No. & is that of getting an expression of
the TOP which facilitates the operation of expectation. This will
become clear in section & of this paper.




5.2 Step No. 1 - Identification of the Associated Normal
Disjunctive Form

The Variables of the fault tree are first ordered in a list
(table of variables). The literals are first listed. The acceptance
eriterion of a variable (gate) in the list is the following: the
variable is accepted only and only if the input variables to the
gate have already been accepted. 1f the gate satisfies the acceptance
eriterion is written in the list. The ordering process comes to an
end when all variables have been written in the list.

By simple inspection of the fault tree of Fig. 3-6 we get the
table of variables of Fig. 5-1.

The algorithm to identify the monomials of the associated normal
disjunctive form is the so called "downward algorithm'" which is based
on the principle already described in’ by Fussell and in8. Some
additional features have been incorporated in the original downward
algorithm so that the NOT gate and multistate components can be
handled. The algorithm begins with the TOP and systematically goes
down through the tree from the highest to the lowest variable, that
if from the bottom to the top of the ordered list of variables. The
fault tree is developed in a table (table of monomials). The elements
of the table are variables. Each row of the table is a monomial. The
numbers of the elements contained in a row is called length of the
row. Fach time an OR gate is encountered new rows will be produced
(so many as the number of input variables to the gate). Each time
an AND gate will be encountered the length of the rows (in which
the gate appears) will be increased. Fach time a NOT gate is en-
countered the input variable to the gate receives a negation mark.

If a negated non primary variable will be dissected, the gate type
will be replaced by its dual type (AND will be changed into OR and
viceversa) and the negation mark is transmitted to all input varia-
bles of the gate. If a primary variable is negated, it is replaced
by an OR gate which has as input variables all the remaining primary
variables belonging to the same primary component.

The process of dissection comes to an end when all the elements
of the table of monomials are primary variables (literals}.

In addition the three following simplification rules are applied:
1. Delete zero monomials, that is rows which contain at least one

pair of mutually exclusive literals.
qu/\Cjk =0 for q # k (exclusion law).

2. Delete the repeated literals of a monomial (row).
qu/\ch = qu (idempower law).




— 37

gz;g:;zg Variable Re?ggizighip Predecessors | Successors

1 C, - - GOl

2 G1 - - G06;G07
3 G, - - GO6

4 G, - - GO7

5 L - - GOS

6 L, - - GA3

7 L, - - GAS

8 Fy - - GO4

9 F, - - GA2
10 N - - GA4
11 GO6 OR G1;Go GA2;GA4
12 GO7 OR G1;G3 GA3;GAS
13 GAS AND GO7;L4 GO5
14 GAL AND GO6;F 4 GO4
15 GA3 AND Ly ;GO7 GO3
16 GA2 AND GO6;F, GO3
17 Go4 OR Fy;GA4 GAl
18 GO5 OR L, ;GAS GAl
19 Gal AND GO4 ;GO5 GO2
20 GO3 OR GA2;GA3 GO2
21 GO2 OR G 03;GA1 Go1
22 GO1(TCP) OR C;;602 -
Fig. 5-1. Table of variables of the fault tree of Fig. 4-3.

Delete any subsuming monomial, that is any row which contains
all elements or another row.

Xa\/ X, =X if XaA X, =X, {absorption law).



— 88 —

At the end of the process each row of the table of monomials
is a monomial and the disjunction of all monomials is the normal
disjunctive form of the TOP associated to the fault tree under
considerations.

We now apply the above described procedure to the table of
variables of Fig., 5-1. The example is self explanatory. We have

Ordering Boolean Identity Table of
Number Monomials

TOP = GOl GO1

22 GOl CIVGOZ C1

G02

21 GO? = GO3 VGAL | c,

GO3
GAl

GA2 VGA3 c

GAZ
GA3
GAl

i}

20 GO3

cos Acos C

GA2
GA3
GO4 GOS

19 GAl

|13

18 GO5 L_VGAS C

1 1

GA2
GA3
Go4 | L

GO4 GAD

and so on.

At the end of the process the table of monomials will look
as follows {(Fig. 5-2)}.

We can therefore write the following boolean identity for
the TOP {we indicate from now on the conjunction by means of the
simpler multiplication symbol ".™).




TOP = C1V F2'GIVFZ-GZ\/LZ'GI\/LZ-G3VG1‘F3°L1\/G2-F3'L1\/
VFl'Gl-LBVFl-G -L3\/ Fl'Ll\/Gl-F ‘L (5-3)

3 373

If we now apply the same above procedure to the fault tree of
Fig. 4-4, we get

T = + . . . .
op =C VL, FVF, G,V Gy L,V Gz\/cl\/F2 G, (5-4)

Gy

Fo ] G

Fa ] G

Ly | 61

Lyl Cs

1 el

Sl e Iy

1] %] Iy

11 %] s

Fll

S | Fa| b3
Fig. 5-2. Table of monomials of the fault tree of Fig. 3-6.

The two expressions 5-3 and 5-4 look very different. However
they are the same boolean function. This will be shown in the next
section. Here we can say that it is not possible to prove whether
or not two boolean functions are equal by making use only of
algorithms which calculate normal disjunctive forms of boolean
functions.

5.3 Step No. 2 - Identification of the complete base

Various algorithms for the identification of the complete base
of a boolean function (step No. 2) are available from the litera-
ture?. An algorithm due to NelsonlO is particularly convenient.
This algorithm consists simply in complementing (negating) a normal
disjunctive form of a boolean function TOP (which from now on we
also call ¢l) and then in complementing its complement&. After each
of the two complement operations,the three simplification rules
(section 5.2) are applied to the result.



Nelson

— 40 —

's algorithm can be described as follows

1. Complement dL expand $ into disjunctive form, apply simpli-
fication rules and call the result F.

2. Complement F, expand F into disjunctive form, apply simpli-
fication rules and call the result K.

The di
of the bootl

sjunction of the monomials of K is the complete base
ean function ¢

We now apply the Nelson algorithm to our case, that is to

Eq. 5-3. By

TOP =

complementing Eq. 5-3, we can write

c (FZVGI)' (FZV Gz) '(LZV Gl) '(LZV G3)-

' (le F3V Ll)' (sz F3\/ Ll)' (Fl\/ le L3)'

~(F1v 83\/ L3) '(Gl\/ Ll)'(Gl\/ F3V L3) (5-5)
Now we have
——c— = C2 (5"'6)
1
_ &
G = \ Gq k#q  (k=1; 2; 3; &) (5-7)
k q=1
\3‘/
F = e=1 Fq kg (k=1; 2; 3) (5-8)
and
B 3
- =1~ . {5-0%
Ly q\=/1 Lq k#q  (k=1; 2; 3)

By taking into account Egs. 5-6 to 5-9, Eq. 5-5 becomes

TOP =

Cz'(Flv FBVGZVGBV Gl})'(Fl\/ F3V G1VG3\/ Ga)-

. (Ll\/ L3V GZVG?,\/G&) . (le L3V Gl\/ sz 04)-

-(GZV c3v G4VF1VF2\/L2\/L3) - (G1VG3VG!+V F1VF2VL2VL3)-

. (sz F3\/ G,V c3v G4V le L2) . (sz F3\/Gl\/ G2VG4vL1VL2)-

. ] Vv -
(FZVF3\/ L,V L3) (czv GB\/GA\/ PV ng Ly L2) (5-10)




— 41—

We execute the operations of Eq. 5-10 and we apply the three
simplification wules. We get

TOP = C_*C 'F -szcz-c FoOL \/CZ-G F.-L \/C Ne -F3-L3 174

2 7271 2 1 273" 2
\/c G3F2LVC "Gy ¥y LaV €, Gy F L VE, G3F2L\/
Vc G, F ch G, F3VC ‘G, L, \/c G, "L, (5-11)

We now complement TOP and we execute all operations including the
application of the three simplification rules. We get finally
(5-12)

0P = ¢V L F Y Fl-GB\/GB-Lz\/LI-GZVGI\/ F,-G,

Eq. 5-12 is the complete base of the TOP.

We notice that Eq. 5-12 and 5-4 (that is the fault trees of
Figg. 3-6 adn 3-7) have the same TOP. The knowledge of the complete
base of a boolean function is important also because offers the
possibility to find out if two or more fault trees have the same
TOP.

We can state the following ecriterion

"If two boolean functions have the same complete base they
are identical”.

Nelson's algorithm was improved by Hulme and Worrell11 to
reduce the computing time. A modified Nelson's algorithm has been
developed at Karlsruhe?, The execution times of the three
algorithms are compared in the table of Fig. 5-3. The examples
have been taken from!!

5.4 Step No. 3 - Extraction of an Irredundant Base {or One of the
Smallest Irredundant Bases) from the Complete Base.

Various algorithms for the extraction of the smallest irre-
dundant base of a boolean function from its complete base are
available from the literature?

We consider a method, which may be called the method of the
expansion coefficients. The basic principles of this method have
been described in

A fast algorithm based on this principle has been developed
at Karlsruhe3 which allows one to identify the smallest irredundant
base of a boolean function. The table of Fig. 5-4 gives the re-
quired execution times for the examples 3 to 7 of the table 5-3.



— 40 —

Number of CPU time (sec)
prime impli- —
Example cants 1in Nelson Sandia Karlsruhe
complete base algorithm | algorithm | algorithm
(CDC6600) | (CDC 6600) | (IBM370/168)
1 4 0.158 0,156 0.11
2 0.367 0.182 not performed
3 15 221.418 0.391 0.26
4 15 1413.580 0. 388 0.26
5 32 53001 3.868 0.42
6 61 46001 303. 657 1.03
7 87 60001’ 417.371 1.12
(1) These entries indicate times at which execution was
terminated without completing the algorithm.

Fig. 5-3. Computational times of different types of

Nelson Algorithms,

Number of Number of prime CPU time needed
Example prime impli- implicants in to identify

cants in smallest irredun-! smallest irredun-
complete base dant base dant base (secs)

3 15 7 ! 0.24
& 15 8 i 0.23
5 32 12 0. 49
6 61 17 6.07
7 87 19 19.51
Fig. 5-4, Computational times of the algorithm for the

extraction of the smallest irredundant base.

An even faster algorithm for the extraction of an irredundant
base (which is not necessarily the smallest) has been developed
at Karlsruhe. This algorithm will be described elsewhere.

Since the boolean function of our example is coherent, the
complete base is already irredundant and the algorithm for the
extraction of an irredundant base does not need to be applied.




— 45—

5.5 Step No. 4 - Expression of the TOP as a Disjunction of
Pairwise Mutually Exclusive Boolean Functions

We have the TOP as disjunction of the prime implicants “X."
(irredundant base).
N

TOP = \/ X, (5-13)
j=1
where

N = total number of prime implicants belonging to the
irredundant base.

We now want to transform Eq. 5-13 in an expression of the
type

o0 = V¥, (5-14)
where Y; are boolean functions (called keystone functions) which
are pairwise mutually exclusive, that is satisfy the conditions

Y. -y =0 ik (i; k =1; 2...:;Q) {(5-15)

In addition each Yi results to be of the form

B
= . 1 ) = N N -
Yoo= \\// P, (i =1; 2...;Q0) (5-16)
8=1

where the M; and the P,  are non-zero boolean monomials satisfy-
ing the following ceonditions

MooM =0 iR (i; k =1; 2...;Q) (5-17)
0

Vo, =1 (5-18)
. 1

i=1

- the monomials P;, are pairwise logically independent, that is

if a literal Ag Appears ina monomial Pjg no other literal belong-

ing to the same component will appear in any other monomial Pir
{r#s 138 = 1;2...;ni).

- eych monomial P.o is logically independent with M.



—— A4 —

The last two conditions can be expressed in the following way

If A - P, =P,

q is is
then O # A M, # M. and

q i i
0 # Aq-Pir # Pir r#s

AND
If A - M, = M,

q i i
then 0 # Aq'Pis # PiS

In other words a component A can appear only once in a key-
stone function Y,: either in the monomial M, or in one of the
monomials P, N

is

A fast algorithm has been developed at Karlsruhe to identify
the keystone funections Y, (keystone algorithm). By applying the
keystone algorithm to out example (Eq. 5-12) we get

4
TOP = \/ Y. (5-19)
i=1
where
7, = 6 (5-20)
Y, = Gz'(CqVleFz) (5-21)
v, = G3‘(Cl\/ F, VL)) (5-22)
Y, = Ga-(CIV LyF)) (5-23)

5.6 Step No. 5 - ldentification of the Conditioning Variables to
be associated to each Keystone Function,

Each keystone function receives marks for the identification
of the conditioning variables associated to the statistically
dependent variables which appear in it.

A fast algorithm (called 'marking algorithm’) has been developed
at Karlsruhe for the identification of these conditioning variables.

By applying this algorithm to our example we get the following




table (Fig. 5-5)

1 N
; Keystone : Statistically ! Conditioning
Function Dependent Primary Variable
Variable
Y1 . - -
Y, L, A, =G, \/G4
Fy By = 6VE,
v, " By = 63V,
L, Ay = GIVG3
. L A, =G, VG,
4 Fl B2 = G3 lel»
Fig. 5-5. Table of the conditioning variables to be

associated to each keystone function
6. CALCULATION OF THE OCCURRENCE PROBABILITY OF THE TOP EVENT

We now want to calculate the expectation of the TOP variable,
that is the occurrence probability of the event {TOP =1

E {TOP} =P {TOP = 1} {(6-1)

Taking into account Egs. 5-13 and 5-15 we can write
Q
F {Top} = ¥ E {Yig (6-2)
i

=1

In our example (Egs. 5-20 to 5-23 and table of Fig. 5-5) we can
write

E{Yl} =E{Gl} (6-3)



— 46 —

B {Yz} =k {Gz'(cl Ly Fz)} B
=K {G2-01}+ E{G ~L1} +E { ] -
- E {G’Cl'Ll} +E {G:z o T} { L Fz}
+E {Gz C, Ly Fz} (6-4)

Taking into account Eqs. 4-13; 4-14; 4-16 and 4-18 and the
table of Fig. 5-5, we can write
{c } (6-5)

{ } - {G } B
, { } { } { 1]A] (6-6)
2 { -z { ¢,} ¥, 131} (6-7)
E{Gz'cl'hl}zE{CJ E{ o 1} -5 {c 1} £{c,] 1'G2}
- E { Gz} ‘B {L1|A2} (6-8)
cl} 'E {62} E {FllBl} (6-9)

1 =
}-E{ 6, Einle,] -
GQ} -E LIA} E{ 2] } (6-10)
E {Gz'cz']‘f["z} =B Gz} B icl} { 1IA2} E{ 251}(6—11)
Taking into account Eqs. 6-5 to 6-11, Eq. 6-4 becomes finally
s {v,} s fo, Lo o] v amm e, Prefufa,]
+(1E{ )(1E{Lll } {QIBI}] (6-12)
In a similar way one gets
P {1} - fodle {od e fobefe]s) o
+ (11:{ 1}){1'5{ 1JB2})-E{L2|A1}J (6-13)

Y - efed e s o tade{a) sl

(6-14)

}
{
R {Gz'Ll'Fz} - E {_
{
{
{

and




By replacing Eqs. 6-3; 6-12; 6-13 and 6-14 into Eq. 6-2 {(with Q=4)
one finally gets the occurrence probability of the TOP event.

7.

CONCLUSIONS
TFollowing conclusions can be drawn:

The theory described in this paper is a powerful tool for the
analysis of fault trees containing multistate (more than fwo
states) primary components as well as statistically dependent
primary components. This means that a very wide spectrum of
problems which are met in practice can now be solved analyti-
cally by applying this theory,

A special type of boolean algebra has been developet to allow
one to handle multistate primary components. This is the
boolean algebra with restrictions on variables. Its basic
rules have been described in this paper.

The problem of statistical dependence has been solved either
(1) by removing it, that is by replacing in the fault tree

the statistically dependent primary variables by means of ad
hoc new defined primary variables or (2) by defining some con-
ditioning variables and evaluating separately the associated
necessary conditional probabilities.

General criteria to establish which one of the two methods
should be chosen have not been given in the paper. They are
illustrated in Referencell,

General criteria for the identifiecation of the mest convenient
conditioning variables are given also in Reference’®. The
choice depends upon the type of statistical dependence and
upon the way in which this statistical dependence enters in
the fault tree.

The concept of expectation of a boolean variable and of
conditional expectation of a boolean variable have been intro-
duced in this paper in a rather intuitive way just pointing
out the close relationship between conditional expectation and
conditional probability. In Referencell a formalization of

the concept 1is developed.

A computer programme based on the above theory has been devel-
oped at Karlsruhe and is now being tested. Two sample problems
have been solved by using this programme.

A system was given to three different people. Three differ-
ent fault trees were generated for the same TOP variable.



The three associated disjunctive forms (output from the down-
ward algorithm) were calculated and they looked each other
remarkably different (large differences in the total number

of monomials as well as in their compeosition)}. However, it

was possible to verify that the three functions were identical

by calculating the complete base (output of the Nelson algorithm},
which resulted to be exactly the same for all three fault trees,

The second problem was chosen because it contained three dif-
ferent types of dependecies which are commonly met in practice,
namely (1) common mode failure, (2) components characterized

by failure rates which depend upon the occurrence of some non-
primary events and (3) the case of a component whose repair
affects the operation of another component. The computer
programme solved the problem successfully.

7. A new definition of coherency has been given in this paper.
We recall it again

"A boolean function is said to be coherent if it is
characterized by only one base which is at the same
time complete and irredundant."

The question arises whether or not all technical systems are
coherent. Some authors are convinced that there are examples

of systems which they believe to be non-coherent. We have not
yet deeply analysed this question also because we had no chance
until now to study a non-coherent technical system. We can
however not exclude at this stage that some non-coherent systems
may exist.

Non-coherent boolean functions may instead be generated, when
one analyses the problem of a transition from one partition of
a system to another. These boolean functions are rather special
because they describe the space at the boundary between the

two partitions. The computer programme developed at Karlsruhe
can handle coherent as well as non-coherent boolean functions.

8. ACKNOWLEDGEMENTS

The author wishes to thank Dr. Wenzelburger (IRE, Karlsruhe)
for the fruitful discussions on the theory developed in this paper.

9. REFERENCES

1. W.E. Vesely, 1970, "A time dependent methodology for fault tree
evaluation”', Nucl. Eng. Des. 13, 337-360.




10.

11.

12.

— 49 —

L. Caldarola, A. Wickenhduser, 1977,"Recent Advancements in
fault tree methodology at Karlsruhe', International Conf. on
Nucl. Systems Reliability Engineering and Risk Assessment,
Gatlinburg, SIAM, 518-542,

L. Caldarola, 1978, "Fault tree analysis of multistate systems
with multistate components', ANS Topical Meeting on Probabilistic
Analysis of Nuclear Reactor Safety, Los Angeles, California,
Paper VIII.1l. ‘

J.D. Murchland, G. Weber, 1972, "A moment method for the
calculation of a confidence interval for the failure probability
of a system", IEEE Proceedings Annual Symposium on Reliability.

C. Berge, 1962, "The theory of graphs', Methuen and John Wiley

P, Mussio, S. Garriba, 8. Fumagalli,1979, "Multiple valued

logic in system representation', NATO AST, Rel,Conf., Urbino, Italy

J.B. Fussell, 1973, Fault tree analysis: Concept and techniqueg’
NATO Conference on Reliability, Liverpool, England.

L. Caldarola, A, Wickenhduser, 1977, "The Karlsruhe computer
program for the evaluation of the availability and reliability
of complex repairable systems'", Nucl. Eng. Des. 43, 463-470.

J. Kuntzmann, 1967,"Fundamental Boolean Algebra,' Blackie and
Sons Ltd.

R.J. Nelson, 1954,"Simplest normal truth functions) the
Journal of Symbolic Logic, vol. 20, Nr. 2, 105-108.

B.L. Hulme, R.B. Worrell, 1975,"A prime implicant algorithm
with factoring," IEEE Transaction on computers, vol. (-24,
Nr. 11, 1129-1131.

L. GCaldarola, 1979, "Generalized fault tree analysis combined
with state analysis", (being published),



