
KfK 2761
EUR 5756e

Februar 1979

Fault Tree Analysis with
Multistate Components

L. Caldarola
Institut für Reaktorentwicklung

Projekt Nukleare Sicherheit

Kernforschungszentrum Karlsruhe

KERNFORSCHUNGSZENTR~1 KARLSRUHE

Institut für Reaktorentwicklung

Projekt Nukleare Sicherheit

KfK 2761

EUR 5756e

Fault Tree Analysis with Multistate Components

L. Caldarola

Kernforschungszentrum Karlsruhe GmbH, Karlsruhe

Als Manuskript vervielfältigt
Für diesen Bericht behalten wir uns alle Rechte vor

Kernforschungszentrum Karlsruhe GmbH

ISSN 0303-4003

FAULT TREE ANALYSIS WITH MULTISTATE COMPONENTS

ABSTRACT

A general analytical theory has been developed which allows
one to calculate the occurrence probability of the top event of a
fault tree with multistate (more than two states) components.

Tt 1S shown that, in order to correctly describe a system \.;rith
multistate components, a special type of Boolean algebra is required.
This 1S ca lIed "Boolean algebra with restrietions on variables" and
its basic rules are the same as those of the traditional Boolean
algebra with some additional restrietions on the variables. These
restrietions are extensively discussed in the paper.

Important features of the method are the identification of the
complete base and of the smallest irredundant base of a Boolean
function which does not necessarily need to be coherent. It is shown
that the identification of the complete base of a Roolean function
requires the application of some algorithms which are not used in
todayls computer programmes for fault tree analysis.

The problem of statistical dependence among primary components
is discussed. The paper includes a small demonstrative example to
illustrate the method. The example includes also statistical depend­
ent cOffi!lonents.

Zusarmnenfassung

Fehlerbaumanalyse mit Komponenten mit mehreren Zuständen

Es wurde eine allgemeine analytische Theorie entwickelt, mit der die

Eintrittswahrscheinlichkeit des TOP-Ereignisses eines Fehlerbaumes mit

Komponenten mit mehreren Zuständen (mehr als zwei) berechnet werden

kann.

Es wird gezeigt, daß eine spezielle Boolesche Algebra benötigt wird, um

ein System mit Komponenten mit mehreren Zuständen richtig zu beschrei­

ben. Es ist die sogenannte "Boolesche Algebra mit Einschränkungen be­

züglich der Variablen". Ihre Grundregeln sind die gleichen wie bei der

traditionellen Booleschen Algebra mit einigen zusätzlichen Einschrän­

kungen bezüglich der Variablen. Diese Einschränkungen werden ausführ­

lich diskutiert.

IVichtige Herkmale der Hethode sind die Identifizierung der vollständi­

gen Basis sOl,ie der kleinsten nicht redundanten Basis einer Booleschen

Funktion, die nicht unbedingt kohärent sein muß. Es wird gezeigt, daß

zur Identifizierung der vollständigen Basis einer Booleschen Funktion

einige Algorithmen angewandt werden müssen, die in den derzeitigen

Rechenprogrammen für die Fehlerbaumanalyse noch nicht benutzt werden.

Das Problem der statistischen Abhängigkeit primärer Komponenten von­

einander wird diskutiert.

Im Bericht wird auch ein Beispiel mit statistisch abhängigen primären

Komponenten angegeben.

-1-

INTRODUCTION

The evaluation of the occurrence probability cf the top event
cf a fault tree can be carried out by means of simulation methods
(Honte Carlo-type methods) or by means of analytical methods.
Numerical simulation al10ws reliability information to be obtained
for systems cf almost aoy degree cf complexity. However, this
method provides ooly estimates aud 00 parametrie relation can be
obtained. In addition, since the failure probability cf a system
is usual1y very low, precise results can be achieved ooly at the
expense of very 10ng computational times.

Analytical methods give more insight aud understanding because
explicit relationships are obtainable. Results are also more precise
because these methods usually give the exact solution of the problem.
In 1970 Veselyl gave the foundations of the analytical method for
fault tree analysis. However, Vesely's method can be applied only
to coherent systems with binary (two states) components. Another
important limitation of the method is that the boolean function
which describes the top variable of the fault tree must not contain
negated variables. Since there are components (like a switch}which
have more than two states, and since the technique of multistate
super-components ca~ be used to remove statistical dependencies
from the fault tree , a theory has been developed at the nuclear
research center of Karlsruhe 2 ,3 to handle systems with multistate
components. One interesting feature of the method is that the
boolean function which describes the top variable of the fault tree
does not necessarily need to be coherent. In addition boolean
functions containing nega~ed variables can be treated.

In this paper a formalization of the theory by means of the
so called "boolean algebra with restrietion on variables" has been
developed. In addition the basic and important boolean operations
of this special type of boolean algebra are described. The paper
also includes a small demonstrative example to illustrate the
method.

1. BOOLEAN ALGEBRA WITH RESTRICTIONS ON VARIABLES. DEFINITION
OF FAULT TREE

Let us consider a variable which can take discrete values
(states) only. The set of all possible values, which the variable
can take, constitute the state space associated to that variable.
Each value of the variable is called member or element of the state
space. The variable can take only one value of its state space at a
time. The value taken by the variable at a given time is called event.

-2-

Variables can be classified in two large categories: primary
variables and non-primary variables.

A variable i8 called primary variable if and ooly if the
occurrence probabilities uf all members of its state space are as
such already available. A primary variable can be the variable
associated to a primary component of a cornplex system, such as a
pump, a relay etc. Probability da ta associated to the occurrence of
the states (failed, not failed etc.) of these components are in
fact in general available fram data banks. The values which a
primary variable can take are cal1ed primary events. A non-primary
variable can be, for instance, the variable associated to a complex
system such as the emergency core eDoling system of a nuclear power
plant. Probability data related to the events "system failed",
"system intact", are in fact as such in general not available.

We consider a system at a fixed moment in time. The state of
the system at a given time obviously depends upon the state at that
time of each individual component belonging to the system. We now
select a special set of states of the system (i.e. the set of all
failed states) and call it " top ll (with small letters). We associate
to it a boolean variable which we call TOP (with capital letters).
The variable TOP will take the value 1 (true) if the system occupies
one of the states belonging to the selected set and the value 0
(falsel otherwise.

Any non-primary variable can be chosen as TOP variable. The
chosen set of states " top " is called partition of the state space
of the system. If we want now to calculate the occurrence probabil­
ity of the event

top

we must first dissect the TOP variable into combinations of primary
variables) that is to express the TOP variable as a proper function
of the primary variables. The occurrence probability of the event
{TOP = l} can then be calculated as a function of the occurrence

probabilities of the primary events.

Due to the complexity of the systems) the operation of dissec­
tion of the TOP variable ioto combinations of primary variables is
in general carried out in steps. The TOP variable is first dissected
into combinations of simpler non-primary variables (intermediate
variables). These intermediate variables are in turn dissected into
combinations of even simpler intermediate variables and so on. The
process of dissection comes to an end when all combinations are
combinations of primary variables only.

The proeess of dissection can be carried out in a graphie form
by constructing a fault tree of the chosen TOP variable.

-3-

A fault tree is a logic model which shows in diagrammatic form
the connections between the TOP variable and the primary variables.

A more precise definition of a fault tree can be given by mak­
ing use of the graph theory.

"A fault tree is a finite directed graph without loops.
Each ver tex may be in one of several states. For each
vertex a function is given which specifies its states
in terms of the states of its predecessors. Those ver­
tices without predecessors are considered the independ­
ent variables of the fault tree." 4

We are following the graphical terminology of BergeS here. In
the technical literature a vertex with predecessors is currently
called gate. The output variable of a gate is called (improperly)
output .event of the gate. An input variable to a gate is called
predecessor of (again improperly) input event to the gate. In the
technical literature the improper terms TOP event, primary event
are also current1y used. One should instead use the more correct
terms TOP variable and primary variable. In fact the word event is
used (in the set theory and in the propositiona1 ca1cu1us) to indi­
Cate a value or a set of values of a variable. We shal1 use the
correct mathematica1 terminology here.

Note that in the ahove definition of fault tree the term
"independent variable" is used and not "pr imary variable". The
ward independent in this context means "1ogical1y independent",
that is each input variable to the tree can take any va1ue of its
sampie space independently from the va1ues taken by the other input
variables. The truth table of the fault tree containes all possible
combinations among the values of the input variables. Each row of
the truth table represents astate of the system. If all primary
components of the system are characterized by only two states
(inact and failed), we assign to each primary cornponent a boolean
variable which takes the value 1 if the component is failed and the
value 0 if the component is intact. These are the primary variables
which are pairwise mutually logically independent. The primary varia­
bles in this case are also independent variables.

If the fault tree has m binary primary components, that is m
input variables, the truth table of the fault tree has 2m rows.

The function which links the output to the inputs of a gate
are boolean functions. The basic gates are the AND (conjunction),
OR (disjunction) and the NOT (negative) gates.

Let us first consider an AND gate with two inputs, namely
A and B (Fig. 1-1)

-4-

AND Gate

A B

Truth Table

Inputs Output

A B 3

0 0 0

0 1 0

1 0 0

1 1 1

Fig. 1-1. AND Gate (3 = A 1\ B)

The truth table of Fig. 1-1 gives the value of the output 3
for each pair of values of the two predecessors A and B. This truth
table can be expressed in words as follows

1I0utput takes the value 1 if and ooIy if all predecessors
take the value 1, and the value 0 if at least one of its
predecessors takes the value 0. 11

lve now order the values 1 and 0 in that we say, for instance
the 1 is larger than 0

1 > 0

He can synthetize the AND operation as follows

3 min (A; B)

which means that Stakes the smallest between the values of A and B.

Fig. 1-2 shows the OR gate with associated truth table.

OR Gate Truth Table

A B

s

Fig. 1-2. OR Gate (3 A V B)

Inputs Output

A B 3

0 0 0

0 1 1

1 0 1

1 1 1

-5-

Also in this ease the truth table of Fig. 1-2 can be expressed
in words as follows

11 Output takes the value 1 if at least one of the
predecessors takes the value 1 and the value 0 if and
ooly if all predecessors take the value 0. 11

Tf we put 1 > 0, we can write in the eBse of the OR gate

8 = max (A; B)

which me ans that Stakes the largest between the values of A and B.

Fig. 1-3 shows the NOT gate with associated truth tab1e.

NOT Gate
s

Truth Table

A

Inputs Output

A 8

0 1

1 0

Fig. 1-3.

In words

NOT Gate (8 A)

"Output takes the value 1 if predecessor takes the
value 0 and viceversa. 1l

In a fault tree the truth tables of each gate are properly
combined to get the truth table of the TOP. We show this by means
of an example.

We consider the simple fault tree of Fig. 1-4 (Example No.l).
Each one of the two OR gates will be characterized by a truth table
of the type of Fig. 1-2. The outputs of the two OR gates will be
the inputs to the AND gate, which has a truth table of the type
shown in Fig. 1-1. By properly combining the three truth tables one
fina1ly gets the overall truth tab1e of the fault tree. This truth
tab1e has 16 rows (Fig. 1-5).

-6-

Fig. 1-4. Fault Tree - TOP (CVD)Ä(AVB)

+

+

+

+

Row Inputs Output
Number

A B C D TOP

1 0 0 0 0 0

2 0 0 0 1 0

3 0 0 1 0 0

4 0 0 1 1 0

5 0 1 0 0 0

6 0 1 0 1 1

7 0 1 1 0 1

8 0 1 1 1 1

9 1 0 0 0 0

10 1 0 0 1 1

11 1 0 1 0 1

12 1 0 1 1 1

13 1 1 0 0 0

14 1 1 0 1 1

15 1 1 1 0 1

16 1 1 1 1 1

Fig. 1-5.
Comp1ete truth table of the fault tree of Fig. 1-4 (Examp1e
No.l)

-7-

In the previous example we have assumed that all primary com­
ponents are binary. There are however primary components which are
characterized by more than two states. För instance an electrical
switch ia characterized by at least three states, namely (1) intact,
(2) failed in closed position and (3) failed in open position.

One could in this eBse aasign to each prirnary component a mul­
tivalued variable characterized by a number of values equalto the
number of states of the primary component. Each value of the vari­
able corresponds to a specific state of the primary component.
These multivalued variables are the primary variables. They are
pairwise mutually logically independent. Primary variables and
independent variables are also in this ease identical. The function
which links the output to the input of a gate is a logic function
which is in general not boolean. This way of thinking is consistent
with the definition of fault tree given above. There is however,
a considerable drawback, namely that a more complicated multivalued
logic must be developed. The basic gates are not any more simply
the AND, OR and NOT gates as in the- case of the boolean algebra.
New basic gates must be found. Same authors6 are following this way
of thinking. He want to follow another path instead. We want to
have primary variables which are binary.

Let us consider the state space of a primary component. A
state belonging to the state space of a primary component is called
primary state. The event of the primary component occupying a given
state of its state space at a given time is called primary event.

A primary component will be indicated by the small letter c
followed by an integer positive number (cl; c2; c3 etc.). In
general we shall have cj with j=1;2 ... ; m, where "m': is the total
number of primary components contained in the system.

Astate af a primary component will be indicated by the same
notation of the primary component to which it belongs followed by
a positive integer number as an index. (cjl; cj2; cj3 etc.) In
general we shall have cjq with q=1;2; ... nj, where nj is the total
number of states belonging to primary component cj. We can now
associate to each state cjq a boolean variable Cjq which takes the
value 1 (true) if primary component cj occupies state cj and the
value 0 (false) if cj does not occupY cj . q

q
The event

{Cjq =l} cj
q

indicates that primary component cj occupies state Cj q .

Conversely,

{Cjq=O}
the event

nj
U
k=l

k;!q

-8-

indicates that primary component cj does not occupy state cjq and
therefore occupies one of its other possible states.

Note the oue ta one correspondance between state cjq <small c)
and boolean variable Cjq (capital C) associated ta it. We obviously
have

cj =
q

and cj
q

We shall say that
cj (cjq6.cj). The word
intended as the set of
occupy.

the primary state cjq belangs ta component
llprimary component ll twith small c) is here
all possible states which the component can

We shall also say that the variable Cj belongs to Component
Cj (CjqeCj). The ward " pr imary Component" (with capital C) means
here tne complete set of variables associated ta its states.

The binary variables Cjq are the primary variables. They are
however not aoy more pairwise mutually independent.

Since a primary component must occupy one of its states and
can occupy only one state at a time, the variables Cjq must obvious­
ly satisfy the following two types of restrietions.

Restrietion Type 1 The disjunction of all binary variables associ­
ated to the same primary Component is always
equal to 1

nj

V
q=l

1 (1-1)

The notation "1" in Eq. 1-1 means II true". Eq.l must be read as
foliows. The proposition "at least one of the variables Cjq (q=l;
; ... nj) takes the value 111 is true.

Restrietions Type 2 The conjunction of two different binary varia­
bles associated to the same primary Component
is always equal to O.

q !' k (1-2)

The notation "Oll in Eq. 1-2 means "false'·. Eq. 2 must be read
as follows. The proposition "both variables Cjq and Cjk (q!'k) take
the value I" is false.

Note that there is only oue restrietion type land
restrietions type 2.

nj (nj -1)
2

-9-

Note also that Eqs. 1-1 and 1-2 can be translated straight­
forward in the equivalent equations among states. We have obviously

Restrietion Type 1

nj

U cj 1
q

q=l

(1-1a)

and

Restrietions Type 2

q 'I k (1-2a)

Eqs. I-la aud 1-2a have been obtained respectively from
Eqs. 1-1 and 1-2 by carrying out the following simple operations.

is rep1aced by
11 11 11

Capita1 C
Disjunction operator
Conjunction operator

V
A " " "

8mall c
Union operator U
Intersection operatorO

Note that the notation "1" aud "0" in Eqs. I-la aud 1-2a have
a different meaning. They indicate respectively the "universal set"
aud the "empty set", Eq. I-la means therefore that the unionof all
states of a primary component constitutes an universal set, that is
its complete state space. Eq. I-lb means that the intersection of
two different states of a primary component constitutes an empty
set.

Since we have introduced primary variables which are not any
more pairwise mutually independent, we have to slightly modify the
definition of a fault tree.

"A fault tree is a finite directed graph without loops.
Each vertex may be in one of several states. For each
vertex a function is given which specifies its states
in terms of the states of its predecessors. Those
vertices without predecessors are the primary variables
of the fault tree. The primary variables may satisfy some
conditions (calied restrietions) which are associated to
the fault tree. 11

Since a fault tree does not contain loops, it fellows that
the restrietions contain primary variables only. We shall limit
ourselves to consider fault trees characterized by a boolean TOP
variabis and boelean primary variables which satisfy restrietions
of the types given respective1y by the Eqs. 1-1 and 1-2.

We consider now the truth table ef the TOP variable.

-10-

Restrietion type 1 means that the primary events

tCjnj = 0 }

cannot co-exist all together at the same time. TIlis is equivalent
saying that all the rows of the truth table in which the variables
Cjl; Cj2; Cj3'" take simultaneously the value 0 are prohibited
and must be deleted.

The restrietions type 2 meao that the prirnary events

and q r k

cannot co-exist at the same time. This is equivalent saying that
all the rows of the truth table in which hath the two input varia­
bles Cjq and Cjk take the value 1 are prohibited and~ be
deleted. The fol1owing two examples will make this point clearer.

Let us consider the fault tree of Fig. 1-4 sud let us assurne
that the primary variables A aud D belang hath to the same primary
Component which is characterized by two states (Example No. 2).
Eqs. 1-1 and 1-2 become respectively

A V D

A " D

1
o

(1- 3)
(1-4)

Eq. 1-3 tells us that the events LA = 0] and SD = oJ
cannot co-exist. If we now look at the complete truth \able of
the fault tree (Fig. 1-5) we notice that the rows 1; 3; 5 and 7
are prohibited because in these rows A and D have hath the value Q.
These rows must therefore be deleted.

Eq. 1-4 tells us that the events {A = lJ and iD = 1 ,
cannot co-exist. This is equivalent saYlng tHat the rows No. (0;
12; 14 and 16 (Fig. 1-5) are also prohibited and~ be deleted.
The truth table of the fault tree of Fig. 1-4 with the additional
conditions 1-3 and 1-4 will be reduced to that of Fig. 1-6 which
contains eight rows ooiy.

The input (primary) variables of the truth table of Fig. 1-6
are not all pairwise mutually independent. In fact the eight rows
containing the combinations of values (0;0) or (1;1) for the
variables A and D do not appear in the truth table of Fig. 1-6.

-11-

Row
Inputs Output

Number
A B C D TOP

1 0 0 0 1 0

2 0 0 1 1 0

3 0 1 0 1 1

4 0 1 1 1 1

5 1 0 0 0 0

6 1 0 1 0 1

7 1 1 0 0 0

8 1 1 1 0 1

Fig. 1-6. Truth Table of Example No.2

It is sometimes possible however to reduce the number of
the primary variables and to get the independent variables only.
In the ease of example No. 2 this is possible.

He notice that Eqs. 1-3 and 1-4 can be reduced to the follow­
ing equation.

D = A (1-5)

Eq. 1-5 means that, anee a value has been assigned to the
variable AJ the variable D takes a defined value according to the
truth table of Fig. 1-3 (NOT Gate). For this reason the co1umn
corresponding to the variable D in the truth table of Fig. 1-6
is redundant and can be deleted. The value of the TOP is in fact
completely determined if the values of the primary variables A; B;
C have been previously chosen. The truth table of Fig. 1-6 can be
further reduced by deleting the colurnn of the primary variable D
(Fig. 1-]).

Row Inputs Output
Number

A B C TOP'

1 0 0 0 0
2 0 0 1 0
3 0 1 0 1
4 0 1 1 1
5 1 0 0 0
6 1 0 1 1
7 1 1 0 0
8 1 1 1 1

Fig. 1-7. Truth Tab1e of Example No. 2 (Final)

-12-

Conversely oue could keep the variable D as independent varia­
ble and delete in Fig. 1-6 the column corresponding to the variable
A which would now he redundant.

Le t us cons ider again the faul t tree of Fig. 1-4 and le t us
assurne that the primary variables A and D belang bath to the same
primary Component (aB in example No. 2) hut that this component is
characterized now hy three states aud that the primary variable
associated to the third state (call it E) is not present in the
fault tree (examp1e No. 3). In this ease Eqs. 1-1 and 1-2 beeome
respectively

and

A V D VE 1 (I-6)

A A D = 0 (1-7a) All E = 0 (I-7b) DA E = 0 (I-7e)

Tbe rows 10; 12; 14; 16 of the truth tab1e of Fig. 1-5 are
E.rohibited hecause the events {A=lJ aud {D=IJ cannot co-exist
at the same time (Eq. 1-7a). By deleting these rows one obtains
the truth table of Fig. 1-8 which contains 12 rows only.

Row Inputs Output
Number

A B C D TOP

1 0 0 0 0 0
2 0 0 0 1 0
3 0 0 1 0 0
4 0 0 1 1 0
5 0 1 0 0 0
6 0 1 0 1 1
7 0 1 1 0 1
8 0 1 1 1 1
9 1 0 0 0 0

10 1 0 1 0 1
11 1 1 0 0 0
12 1 1 1 0 1

Fig. 1-8. Truth Tab1e of Examp1e No. 3.

Note that in this ease we don't make any use of the restrie­
tions given by Eqs. 1-6; 1-7a and l-7e beeause the primary vari­
able E is not explicitly contained in the fault tree.

The input variables of the truth table of Fig. 1-8 are not all
pairwise mutually independent. In fact the four rows whieh eontain
the eombination of va1ues (1; 1) for the variables A and D do not

~13-

appear in the truth table of Fig. 1-8. In this ease however it is
not possible to reduce the number of primary variables as in the
ease of Example No. 2. In fact 00 column in the truth table cf
Fig. 1-8 is redundant.

In conclusion the following rule can be stated (Rule No. 1)

llThe truth table of the TOP variable of a fault tree can
be obtained fram the campIere truth table (in which all
primary variables present in the fault tree are assumed
to be pairwise mutually independent) by deleting the
prohibited rows and the redundant columns. The restric­
tiens allow one to identify these prohibited rows and
redundant columns. Each survived row corresponds to a
specific state of the system. The survived primary
variables may or may not be pairwise mutually independent."

We notice that we have defined primary variables which are
binary as in the classical boolean algebra, but not necessarily
pairwise mutually independent. We shall therefore introduce the
term I'boolean algebra with restrietions on variables ll to indicate
an algebra in which the basic (primary) variables are boolean but
not necessarily pairwise mutually independent. The classical boolean
algebra can be considered as a particular case of this boolean
algebra with restrietions on variables in that the basic variables
are all pairwise mutually independent.

We now consider the states of the partition top. Each state of
the partition top can be expressed by the smallest cartesian product
of primary states. This expression of the state is called smallest
form of the state. Consider, for instance, the row 7 of the truth
tab1e of Fig. 1-8 (Examp1e No. 3).

System event No. 7 = {B=l} x {C=lJ x ftA=o}n {o=o}] (1-8)

Note that Equation 1-8 is obtained (1) by grouping all events
which belong to the same component and linking them with the inter­
section operator () and (2) by linking all groups with the cartesian
product operator x. In fact the events {A=QJ and {D=OJ belong to
the same component and must therefore be grouped together.

We now want to eliminate the groups.

From Eq. 1-6 we get

E = AVO AA° (1-9)

From Eq. 1-9 we get

{E=lJ - {AA D=d (1-10)

-14-

He have the fol1owing identities

{ 1\=1J - {A=O } (1-11)

and

[D=l) [D=O} (1-12)

Taking iota account Eqs. 1-11 and 1-12, Eq. 1-10 becomes

(1-13)

(1-14)

Taking ioto account Eq. 1-13, Eq. 1-8 becomes

System event No. 7 = {B=lJ x {e=l} x {E=lJ

Note that Eq. 1-14 does not contain aoy more the intersection
operator () and all events contain the symbol 1.

We now introduce the notation for the states of primary com­
ponents (small 1etters). We have

{B=d - b (1-15)

[e=lj - c (1-16)

{ E=lJ - e (1-17)

Taking into account Eqs. 1-15, 1-16, 1-17, Eq. 1-14 becomes

System event No. 7 bxcxe (1-18)

The expression on the right side of Eq. 1-18 is the smallest
form of system state No. 7.

We can now state the following definition

11 The smallest form of astate of a system is defined by
the cartesian product of the states occupied by each
single primary component belonging to the system,lI

He now go back to Eq. 1-14 which we can now write in a more
compact form.

System event No. 7 {B=l] x { e=lJ x fE=l}

{ B " E = 1}
(1-19)

e"

From Eqs. 1-18 and 1-19, we get

bxcxe {BAe"E=l} (1-20)

-15-

Before discussing Eq.1-20, we want to introduce some new terms.
A variable which results fram the conjunction of primary variables
is called monomial. A monomial containing two or more primary variables
be longing to the same primary Component is obvious Iy equal to zero
(restrietions type 2). A non-zero monomial containing a number of
primary variables equal to the number of primary components present
in the system is called "complete monomial". Für instance, the vari­
able BA C A.E of Example 3 is a complete monomiai ll

• Far a given
system the numher of complete monomials is equal to the number of
its states.

Eq. 1-20 tel1s us that, given the comp1ete monomia1 Bl\cAE,
one obtains the minimal form of the corresponding state bxcxe by
carrying out the fo11owing operations

B is rep1aced by b
C " " " c
E " " " e

conjunction
operator A " " " cartesian product operator x

He can now state the following ru1e (Ru1e No. 2) .

tlThe sma11est form of astate of a system is obtained
from its corresponding comp1ete monomial by rep1acing
each primary variable by its associated primary state
and each conjunction operator (A) by the cartesian
product operator (x).

Converse1y we have

"A comp1ete monomia1 of a system is obtained from the
minimal form of its corresponding system state by
rep1acing each primary state by its associated primary
variable and each cartesian product operator (x) by the
conjunction operator (A).11

Going back to the truth tab1e of Fig. 1-18 (Examp1e No. 3),
we select the rows for which TOP = 1. These are the rows No. 6,
7, 8) 10 and 12. Each selected row respresents astate of the
system for which the equation TOP = 1 is satisfied. He now find
the smallest form of each row. In order to do that we must intro­
duce the states t and ~ which satisfy the restrietions respectively
with band c.

b U"b 1 (l-21a) b() b 0 (l-21b)

and
cU-;: 1 (l-22a) cf) c = 0 (l-22b)

The smallest forms of the rows 6, 7, 8, 10 and 12 are given in the

following tab1e (Fig. 1. 9).

-16-

System state Smallest form

6 b - clx c x
7 b x c x e
8 b x c x cl

10 a xb x c
12 a x b x c

Fig. 1. 9 Smal1est form of system states (from the truth
table of Fig. 1.8).

By making use of the above table we can now write

top (bxcxcl) U (bxcxe) U (bxcxcl) U (axbxc) U (axbxcl (1-23)

1-23 can

{TOP =

Eq. be 'written as fol1ows

13 = [BACAD=lJ U{BAC/WJU{BAC!lD=lJU

U[AAiiAc=lJ U {AI\BI\C=l} (1-24)

Eq. 1-24 can be written in a more compact form

fTOP=l} = [(BACAD) V(BACAE) V (BAcAD)V (A!I'BAC) V (AI\BAC) = 1}
(1-25)

From Eq. 1-25 we also get

TOP = (BACAD) V(BACAE) V(BACI\D) V(AAiiAC) V (AABAC) (1- 26)

Eqs. 1-23 ancl 1-26 tell us that given the variable TOP as a
disjunction of complete monomials (Eq. 1-26) one obtains the
expression of the partition top (Eq. 1-23) by carrying out the
following operations

TOP is replaced by top
A " " " a
B

,.
" " b

B " " " b
C " " " c
C " " " C
D " " " cl
E " " " e

conjunction operator A " " " cartesian product operator x
disjunction operator V " " " union operator U

-17-

The disjunction of complete monomials of a boolean function is
called "disjunctive canonical form" of the function.

Now we can state the fo11owing ru1e (Ru1e No. 3)

IIrf the variable TOP is given in its disjunctive canonical
form, the corresponding partition top is obtained by
replacing each complete mononomial by the corresponding
smallest form of system state aud each disjunction operator
(V) by the union operator (U)."

Converserly we have

"lf the partition top is given in the form of union of
smal1est forms of states the corresponding disjunctive
canonical form of the variable TOP is obtained by replacing
each srnallest form of state by the corresponding complete
monomial sud each union operator (U) by the disjunction
operator (V)."

\.J'e nütice that the disjunetion operator V is alsway replaced
by the union operatorU. The eonjunction operatorÄinstead is re­
placed by the interseetion operatorlJ in the ease of the restrie­
tions type 2 (Eqs. 1-2 and 1-2a) and by the cartesian product opera­
tor x in the ease of the complete monomials. This fact however does
not eause any problem. In fact any eomplete monomial is a non-zero
monomial wllich corresponds to a specifie state of the system. A
state is for definition a non-empty set. Since the restrietions are
only used to identify the zero monomials of a boolean funetion that
is the prohibited rows of the corresponding truth table and both
are ~lways deleted, it is impossible to get smallest forms of system
states eontaining the intersection operator, and/or eompiete mono­
nomials whieh eontain two or more primary variables beionging to
the same component.

In eonelusion the boolean algebra with restrietions on varia­
bles allows us to operate on boolean variables in a way similar to
the classieal boolean algebra, but with the additional complication
of the restrietions. Once that the boolean expression of the TOP
variable has been found, the rules No. 2 and 3 allow one to easily
identify the smallest form of the states of the partition top.

The advantage of using boolean variables instead of states is
obviously that of having a more flexible instrument ot operate.
We show this point by deve10ping Eq. 1-26. We notice that

and
(BAcAD) V (Bt\cllO>

(AII'Bllc) V (AIIBAc) (AA C)

0-27)

0- 28)

-18-

Taking into account Eqs. 1-27 and 1-28, Eq. 1-26 becomes

We also notice that

E = At.. D

(1-29)

(1- 30)

and therefore

(BI\D)V(BACAE) = BAGV(CAAAD0 = (BAD)I/(BACAA) (1-31)

Taking into account Eq. 1-31, Eq. 1-29 becomes

TOP = (Bi\ D) V (AA C) V(B 1\ CA A)

He have

(AA C) V (BA CA A)=CA[A V(BI\AJ= (Ci\A)V(CI\B)

Taking into account Eq. 1-33, Eq. 1-32 becomes finally

The partition top is simply given by

top = t(B'\D)V(At\C)V(CAB) = 1J

(1-32)

(1- 33)

(1-34)

(1-35)

Note that the expression of the p,artition top given by Eq.
1-35 (i.e. by using the boolean variables) is much simpler and much
more compact than the equivalent expression given by Eq. 1-23 (i.e.
by using the set theory).

2. FAULT TREE SYMBOLOGY

The graphical symbology of a fault tree which is beiog used
here is derived fram that proposed by Fussel1 7 with sorne modifica­
tioos and sorne additional symbols.

The symbols have been organized in two tables, namely

A. Tab1e of Variables (Fig. 2-1)
B. Tab1e of Basic Gates (Fig. 2-2)

The two tables are selfexplanatory so that only few additional
cornments are needed for a correct use of the symbols contained in
them.

1. The House (Tab1e of Variables) is used to modify the structure
of the fault tree. If the Hause is given the value 0, the
whole branch of the fault tree under the AND gate (ta which
the House is input) is cancelled out. If the House is given

-19-

No. Symbol Denomination Heaning

1 I I Rectangle Variable Description

2 0
Circle A primary variable belonging

to an independent componen t.

3

I 0 Octagon A primary variable belonging
to a. dependent cornponent.

4 Diamond A non-prlmary variable which

<> would require dissection in
more basic variables, but that
for some reasons has not been
further dissected.

5 Hause A variable whose sampie space
contains only one member, that

0
~s a variable which is constant
and ahJays takes either the
value 1 or O. Note: this symbol
is used on Iy as input to an
AND gate.

6 A Transfer IN A connecting or transfer symbol
indicating a variable entering
the fault tree.

7 -6 ls- Transfer A connecting or transfer symbol
OUT indicating a variable going out

Lf
from the fault tree.

Fig. 2-1. Table of variables

No. Symbol Denomination
Boolean Output/Inputs Rules for the Generation of the
Notation Relationship Truth Table

--

1 9 NOT B=A B=l-A Output takes the value 1 if
predecessor takes the value 0 and
vice versa.

Z @ AND n Output takes the value I if and

B=!\A_ B=min(AI;AZ·· ;An)
only if all predecessors take the

i=l ~
. value 1, and the value 0 if at least

one of the predecessors takes the
value O.

-- -

3

ß
OR Output takes the value 1 if at

n
least oue of the predecessors takes

B= V A. B=max(Al ;AZ·· ;An) the value 1, and the value 0 if and
i=l 1

only if all predecessors take the

J value O.

Note: A marked point at the input of the input of a gate means that the input variable ~s

negated be fore entering the gate.

(3

I

Fig. 2-Z. Table of Basic Gates.

-21-

the value 1 00 modification of the structure of the fault tree
occurs.

2. Transfer IN and Transfer OUT (Table of Variables) are used in
the ease in which a variable is at the same time an output
(Transfer OUT) from a gate and input (Transfer IN) to some
other gates which are located (in the drawing of the fault tree)
far away one from the ether.

3. If an input to a gate (Tables of Basic Gates) is marked with
a point) it me ans that the input variable is complemented
(negated) be fore entering the gate.

Für instance we have

B

3. CONSTRUCTION OF A FAULT TREE. AN EXA}WLE

Fig. 3-1 shows a very sirnplified electric power supply system
(EPSS) consisting of the bus bars C which are supplied either by the
external network B or by the electric generator A. Network and elec­
tric generator are connected in parallel to the bus bars respective­
Iy through the electrically operated circuit breakers Fand L. The
dotted lines (with arrows) indicate that the position (open or
closed) of each circuit breaker depends upon the state {failed er
intact} of the component to which the circuit breaker is associated.

The circuit breakers in Fig. 3-1 are shown in the position
open (coil deenergized). In normal operating conditions both
circuit breakers Fand L are closed (coil energized)and the genera­
tor A supplies electric power to the bus bars C as weIl as to the
external network B. If the generator A fails the circuit breaker L
opens and the external network feeds the bus bars C. If the network
B fails the circuit breaker F opens and the generator A feeds the
bus bars C only. The function of each circuit breaker is that of
disconnecting its associated component (conditioning component)
when this fails. If the circuit breaker fails to open, no electric
voltage will be available at the bus bars C. In addition B may
cause by failing the failure of A and vice versa (a failure of A
may cause B to fail). Components A and Bare said to be correlated.

Fig. 3-1.

-22-

I I B

I

~..lF

~1
c

L

I
I
I

J

Schematic diagram of a simplified electric
p01,er suppiy system (EPSS)

The primary components with associated states are shown in the
table of Fig. 3-2. Here für each primary component the conditioning
components are listed in the homonymous column. The correlated
cornponents,which are each other statistically dependent (in Dur
example A aud B), are also shown.

Note that in our example the conditioning components of F aud
L are also primary components. However, in general the conditioning
components may be not primary (i.e. the variables belonging to
them are not primary). In this ease additional information must be
given to identify these conditioning components.

He can now proceed to define the TOP variab ie. The EPPS is
faiied if no eiectric voitage is avaiiabie at the bus bars C. He
have there fore

TOP No voitage at bus bars C

l~e observe that the absence of voltage at the bus bars C is caused
either by the failure of the bus bars C or by the fact that no
voltage arrives at C. In this way we have dissected the TOP variable
inta the disjunction of two other variables namely "bus bars C
failed" and "no voltage at the input of bus bars eil, This dissection
is graphically shO\;n in Fig. 3-3, "here the OR gate GOi has the TOP
as output and the other two above defined variables as input.

-23-

Primary State
Component

Conditioning Corre lated

Denomination Symbol Components Components Symbolof
Denomination associate

primary
variable

Generator A B Failed Al

lntaet A2

Failed BI
Network B A

lntaet B
2

Failed ClBus bars C

lntaet C
2

Fai led open Fl
Circuit -
Breaker F B Failed F

2
F closed

lntaet F
3

Fai led open LI
Ci rcui t

Breaker L A Failed L
2

L closed

lntaet L3

Fig. 3-2. Table of the prlmary components of the EPSS.

He point out that the probability data associated to the
variable "bus bars C failed" are available fram reliability data
banks. This variable is therefore a primary variable. He call it
Cl and we draw a eirele in Fig. 3-3 because C is statistically in­
dependent (see table of Fig. 3-2). \,e nOl< dissect the variable "No
voltage at the input of bus bars Cll

,

-24-

TOP
No vollage 0 I
bus bars C

Bus bars C
lailed

No vollage al
Ihe Inpul 01
bas bars C

Fig. 3-3. Porti.l fault tree of the EPPS (1st step)

TOP
No vollage 01
bus bars C

Bus bars C
lailed

No vollage al
Ihe inpul 01
bus bars C

Non disconnec.
lai lure

Circuil
inlerrupled

Fig. 3-4. Partial fault tree oE the EPPS (2nd step)

-25-

TOP
No \loltage at
bus bars C

Non
disconnected
failure of
network 8

Non
disconnected
tailure of

enerateT A

~ircuit
tnterrupted in
the network
sectioo

Circuit
interrupted in
the generalor
secllon

Generator A Circuil
failed breoker l

intact

Network B Circuit
falled brtakfl' F

intacl

frcUlt
Neaker l
failed
closed

GeoeralorA
foHd

Circuit
breo.kef F
failed
closed

Network 8
failed

Fig. 3-5. Fault Tree of the EPSS.

-~-

·Fig. 3-6. Fault tree of the EPPS (without variable descriptions)

Fig. 3-7. Fault tree oE the EPPS (Alternative)

-27-

He notice that the absence of voltage at the bus bars C can be
caused either by a llnon-disconnected failure" or by an "interruption
of the continuity of the electric circuit". This dissection is whm·,n
graphieally in Fig. 3-4.

The process of dissection can be carried further on until all
variables are primary variables. The complete fault tree is shown
in Fig. 3-5. Note that the variables Al; BI; LI; L ; L

3
; F l ; F

2
and

F3 are all represented by actagons beeause they betong to dependent
components.

The fault tree of Fig. 3-5 has been redrBlm in simplified form
in Fig. 3-6 without rectangles (i.e. variable deseriptions).

Since there are in general, different possible ways of dissect­
ing the variables, different fault trees of the same TOP can be
drawn. The fault tree of Fig. 3-7 has exaetly the same TOP variable
of that of Fig. 3-6. In general different people generate different
fault trees for the same TOP variable.

4. HODIFIED FAULT TREE. OCCURRENCE PROBABILITY OF THE PRIHARY
EVENTS

Given a boolean variable A, we define as expectation of A
(E {A}) the oeeurrenee probability of the event {A=IJ ' that is

E lAJ P { A=l} (4-1)

where Pt ...} means occurrence probability of the event under
brackets.

The probability data related to the primary variables of the
system described in the previous section are given in the tab1e of
Fig. 4-1. Here we assurne that all failure rates of the primary
cornponents are constant. The transition rates are identified as
fo1lows. The primary variable of the rmv refers to the state be fore
the transition (state of departure). The number of the eolumn
identifies the state after the transition (state of arrival).

TIle components A and B have transitions which are correlated.
If B fails (transition B~~ BI) there is a eonstant probability
KA that A fails tao (transition A2 ~ Al)' In this ease the trans­
ition B2 ~BI is the conditioning transition and the transition
A2 Al is the conditioned transition. This is shmvn in the table
of Fig. 4-1. The table shows also that if A fails (eonditioning
transition A2 ~Al) there is a eonstant probability KB that B
fails tao (eonditioned transition B2 ~ BI)'

ill
I

I

. . eh -1) Correlated transitions
Primary Condi- Primary Trans~t~on rates ours

t ioning
Component Variable Variable

1 Z 3 Conditioning Conditioned Canditional
Transition Transition Probability

A Al ~
AZ ~ BZ-7 Bl AZ~ Al KA

B
Bl fB
BZ AB AZ-? Al BZ~ Bl K

B

C Cl rc
Cz A~
F

l gl
B

l
F

Z W,

F
F

3 YI r>,
Fl 9z.

BZ
F

Z "'.l
F

3 »'- Gi
Ll ~,

. Al LZ "',

L
L

3 EI ~I
Ll 1,,-

A
Z

LZ oll.
L

3 t2. :52..

.I"­,
~

0­

"'"'"
o
'":;.
'"
"'",..;3

"'"'<

"',..
I)Q

" >-l
" "'" 0­,...~

" '"0-
~o

'" '"~

'"'~ ".

Cfl '"'<
~ ,..
'"' ""''';3 c

'"'o
"''''""' 0,... 0-

I)Q "0­,...
W ~, ,...
~ '"'
~'<

-29-

He introduce the fo llo"ing symbol

~A transition rate of A
2

........ Al

fA " " " Al -- A2

AB " " " B -- Bl2

fB = " " " B-- B
21

He can no", drmol the state diagram of the super-component G
characterized by the four states which one obtains by intersecting
the state of A snd B in all possible ways. The state diagram of
super-component G is shown in Fig. 4-2.

Hith reference to the state diagram of Fig. 4-2, we can nQW
express the primary variables of components A and B as functions
of the primary variables of G. We have

Al = G
l

VG
3

A
2

G
2

VG
4

B
l

G
1

VG 2

B2
G

3
VG

4

(4-2)

(4- 3)

(4-4)

(4- 5)

\ve um.; replace in fault tree of Fig. 3-6 the primary vari­
ables Al and Bl "ith the ne" primary variables Gl ; G2 ; G3 and G4
by making use of Eqs. 4-2 and 4-4. The ne" fault tree is sho"n in
Fig. 4-3.

In the fault tree of Fig. 4-3 the primary variables Al and Bl
have been replaced respectively by the OR Gates G07 (inputs Gl and
G3) and G06 (inputs Gl and G2). Note that the primary variables
GI; Cz and G3 are represented by circles because they belang to an
independent super-component. In fact their expectations can be
calculated by solving the state diagram of Fig. 4-2. The ne"
primary veriables have been introduced also in the fault tree of
Fig. 3-7 (See Fig. 4-4).

The expectations of the primary variables Gl ; G2 ; G3 and G4
can easily be calculated by means of the very weIl known methods
of state analysis.

-30-

K'A + K ,).
A ß ß A

Fig. 4-2. Statee diagram of super-component G

He go back to the table of Fig. 4-1 aod He consider the circuit
breaker F. The circuit breaker F is abipolar switch with condition­
ing '-variables Bi aod B2' The theory oE the bipolar s\vitch has been
fully developed by the author in lI , Here ooly some important points
of the model are recalled. Since abipolar switch has three states,
there will be three primary variables, namely (in the ease of F)

F1 associated to state h (fai led open)

F2 " " " f 2 (failed closed)

F) " " " f) (intact)

He sha11 assume that the tHO failed states of the s\oJitch danlt

communicate directly ,.,ith each other. This means that the switch
must be repaired before failing again. This is exactly what happens
in practice. Failure and repair rates (i.e. transitions rates) of

-31-

GA2

Fig. 4-3. Modified fault tree of the EPPS

-32-

Fig. 4 - 4. Modilied fault tree 01 the EPPS (Alternativel

-33-

the switch will be in general depenclent upan its position i.e. upan
the state of the netlwrk B Cintact or failed). They are conditional
transition rates.

In the ease of abipolar switch a procedure has been used 11

which is quite different fram that used in the ease of supercompo­
nent G.

In this ease in fact it is possible to identify a conditioning
component Band adependent component F. Für this reason we define
first the conditional expectation of adependent variable (say Fk)
given a conditioning variable (say Bq) as the occurrence probability
of the event {Fk = l} given the event [Bq = l}

E f Fk I Bq] = P [Fk = 1 I Bq = lJ (4-12)

One can easily calculate the conditional expectations of the primary
variables Fl ; F

2
; and F

3
by means of the analysis developed in ll

In
ll

it has been demonstrated that the following relationships
hold under some conditions which are always satisfied in the practi­
cal cases (for instance, repair rates must be order of magnitudes
larger than failure rates). The relationships are

E {Fk I BqAY] ~ E [Fkl Bq} (4-13)

(k=l; 2;3) (q=l; 2) where Y is an arbitrary

boolean funetion which does not eontain any literal of F.

E i Fk I Gd
E { Fk I G3 J
(k=l; 2; 3)

E { Fk IG2 } N E {Fk IBl J
E { F

k
I G

4
] N E { F

k
I B

2
}

(4-14)

(4-15)

In the ease of eireuit breaker L) one ean also write expres­
sions similar to (4-13) to (4-15). We have

E f Lk IA AY1~ E f Lkl A] (k=l; 2;3? (q=l; 2? (4-16)
1 q q where Y 1S an arbltrary

boolean function which does not"contain any literal of L.

E { L
k
I G

l
} ~ E [Lk I G

3
} '"

E {Lk IG
2
l ~ E [L

k
I G

4
J '"

E [Lk I All

E { LJ A2]

(4-17)

(4-18)

-34-

5. BOOLEAN OPERATIONS

5.1 Generalities

The reader must become acquainted with some terms ~"hich are
currently used throughout this paper.

In the follm"ing prirnary variables HilI be also called
literals. A boolean function can be expressed in the form of a
disjunction of conjunctions of literals (disjunctive form). A
conjunction of literals belonging to a disjunctive form of a boolean
function ~vil1 be called shortly "monomiaill. A monomial X of the
disjunctive form of a boolean function (TOP) is said to be an
implicant of the TOP. It must satisfy the follO\.ing boolean identy.

TOP 1\ X ~ X

Let Xj and Xk be two monomials. He say
literal of Xj is contained in Xk. This
Xk is an implicant of Xj,that is

(5-1)

that Xk subsurnes Xj if every
is the same as saYlng that

(5-1)

A disjunctive form of a boolean funetion will be called "normal
disjunetive forml! if its monomials satisfy the following four.
properties.

1. Each monomial (X) must be a non-zero monomial (X f 0, l.e. no
palr of mutually exclusive literals must be contained in it)

2. Each monomia1 must not eontain any literal (prirnary variable)
more than onee (no repeated literals).

3. Nonomials must not subsume pairwise each other.
(Xj i Xj 1\~ i ~)

4. Nonomials must not contain negated literals .

Each negated literal must have been previously replaced by the
corresponding disjunction of all remaining literals belonging to the
same primary component, that is

A.
1

k i i (i=l; 2; ... ;n) (5-2)

A boolean function can have in general many normal disjunctive
forms. For a given fault tree, there is a particular normal disjune-

-35-

tive form of its TOP variable which is associated to that fault tree.
We shall cal1 it lIassociated normal disjunctive form".

We say that a monomial X· is allprime implicant!l (minimal cut
set) of the boolean function top if (1) Xj implies the TOP
(Xj ATOP = Xj) and (2) any other monomial Y subsumed by Xj (i.e.
obtained from Xj be deleting one of its literals) does not imply
the TOP (y 11 TOP f Y).

We shall call any disjunction of prime implicants, which is
equivalent to the function TOP) a"base of the function, TOP". The
disjunction of a11 prime implicants has this property. He shall call
it the "campiete base", \ve sha11 describe as an lIirredundant base"
a base which ceases to be a base if oue of the prime implicants
occuring in it is removed (deleted). Boolean functions may have
many irredundant bases. He shall call "smallest irredundant base"
the. irredundant base having the smallest number of prime implicants.
There may be more than one base with the smallest nurnber af prime
implicants.

Tf a boole.an function has only Olle base) ,.,hich is at the same
time complete and irredulldant, the boolean function is said to be
coherent. The identification of an irredundant base (ar one of the
smallest irredundant bases) of the boolean function TOP of a fault
tree is carried out in three steps:

Ster No. 1 Identification of the associated normal disjunctive form.

Ster No. 2 Identification of the complete base starting fram the
associated normal disjunctive form.

Step No. 3 Extraction of an irredundant base (ar one of the
smallest irredundant bases) fram the complete base.

After having identified an irredundant base of the TOP variable,
some other transformations are carried out to get the boolean func­
tion in a form suitable for probability calculations. We have

Ster No. 4 Expression of the TOP as a disjunction of pairwise
mutually exclusive boolean functions (keystone functions).

Ster No. 5 Identification of the conditioning variables to be
associated to each keystone function.

The purpose of step No. 4 is that of getting an expression of
the TOP which facilitates the operation of expectation. This will
become clear in section 6 of this paper.

-36-

5.2 Step No. 1 - Identification of the Associated Normal
DisjunctiveForm

The Variables cf the fault tree are first ordered in a list
(table of variables). The literals are first listed. The acceptance
criterion of a variable (gate) in thc list is thc following: thc
variable is accepted only aod ooly if thc input variables to thc
gate have already been accepted. If thc gate satisfies thc acceptance
criterion is written in thc list. Thc ordering process comes to an
end when all variables have been written in thc list.

By simple inspection of the fault tree of Fig. 3-6 "e get the
table of variables of Fig. 5-1.

Thc algorithm to identify thc monomials of thc associated normal
disjunctive form is thc so called !ldmvnward algorithm ll 'oJhich is based
on the principle already described in 7 by Fussell and in8 . Some
additional features have been incorporated in thc original dO\olnward
algorithm so that thc NOT gate aod multistate components ean be
handled. The algorithm begins "ith the TOP and systematically goes
dmvn through the tree from the highest to the lowest variable, that
if from the bottom to the top of the ordered list of variables. The
fault tree is developed in a table (table of monomials). The elements
of the table are variables. Eaeh row of the table is a monomial. The
numbers of the elements contained in a row is called length of the
rmv. Each time an OR gate is encountered ne\v rows lviIi be produced
(so many as the number of input variables to the gate). Each time
an AND gate l'lili be encountered the length of the rm'ls (in which
the gate appears) will be increased. Each time a NOT gate is en­
counterecl the input variable to the gate receives a negation mark.
If a negated non primary variable will be dissected, the gate type
"ill be replaced by its dual type (AND ,·,ill be changed into OR and
viceversa) and the negation mark is transmitted to all input varia­
bles oE the gate. If a primary variable is negated, it is replaced
by an OR gate which has as input variables all the remaining primary
variables belonging to the same primary eomponent.

The proeess oE dissection comes to an end when all the elements
of the table of monomials are primary variables (literals).

In addition the three following simplifieation rules are applied:

1. Delete zero monomials, that is rows whieh contain at least one
pair of mutually exclusive literals.
Cjq I\C\ = 0 for q i k (exclusion la,,).

2. Delete the
Cj I\Cj =

q q

repeated literals oE
Cj (idempo"er la,,).

q

a monomial (row).

-37-

I

Ordering
Variable Boolean

PredecesnorsNumbers Relationship Successors

1 Cl - - GOI
Z GI - - G06 ;G07
3 GZ - - G06
4 G3 - - G07
5 LI - - G05
6 LZ - - GA3
7 L3 - - GA5
8 Fl - - G04
9 FZ - - GAZ

10 F3 - - GM
11 G06 OR GI ;GZ GAZ;GA4
lZ G07 OR Gl;G3 GA3 ;GA5
13 GA5 AND G07;L3 G05
14 GA4 AND G06;F3 G04
15 GA3 AND LZ;G07 G03
16 GAZ AND G06;FZ G03
17 G04 OR Fl ;GA4 GAl
18 G05 OR LI; GA5 GAl
19 GAl AND G04;G05 GOZ
ZO G03 OR GAZ ;GA3 GOZ
Zl GOZ OR G 03;GAl GOI
zz GOl(TOP) OR Cl ;'GOZ -

Fig. 5-1. Table of variables of the fault tree of Fig. 4-3.

3. Delete aoy subsuming monomial, that is aoy row which contains
all elements 01' another row.
Xa V Xb = Xa if X/I, Xb = Xb (absorption law).

-38-

At the end of the process each rot" oE the table of monomials
is a monomial and the disjunction of all monomials is the normal
disjunctive form of the TOP associated to the fault tree under
considerations.

He nm, apply the above described procedure to the table of
variables of Fig. 5-1. The example is self explanatory. He have

Ordering
Number

22

21

20

19

18

and so on.

Boolean Identity

TOP GOI

GOI = C
I

VG02

G02 G03 VGAl

G03 = GA2 VGA3

GAl G04!\ G05

Table of
Nonomials

§]
!SI
~

fiElG03
GAl

Cl

GA2
GA3
GAl

Cl

GA2
GA3
G04 G05 I

..l

GA2
GA3
G04 LI
G04 GA5

At the end of the process the table of monomials will look
as follows (Fig. 5-2).

He can therefore write thc follmving boolean
thc TOP (He indicate from umv on the conjunction
simpler multiplication symbol 11.").

identi ty for
by mcans of the

-39-

(5-3)

IE we nm., apply the same above procedure to the fault tree oE
Fig. 4-4, we get

F
Z GI

I

!
F

Z
G

Z i,
LZ GI ;

LZ I G3
,
!

GI F
3 I LI,

G? F LI3
F

l GI L
3

F
l

G
3

L
3

F
l LI

GI F
3 L31

(5-4)

Fig. 5-Z. Table of monomials of the fault tree of Fig. 3-6.

The tHO expressions 5-3 and 5-4 look very different. Hmolever
they are thc same boolean function. This \"ill be shmvn in the next
section. Here we ean say that it is not possible to prove whether
or not twa boolean functions are equal by making use only of
algorithms which calculate normal disjunctive forms of boolean
functions.

5.3 Step No. Z - Identification of the complete base

Various algorithms for thc identification of the complete base
of a boolean function (step No. 2) are available from the litera­
ture9 . An algorithm duc to Nelson 10 is particularly convenient.
This algorithm consists simply in complementing (negating) anormal
disjunctive form of a boolean function TOP (\vhich from nmv on \'Je

also cal14n and then in complementing its complement<p. After each
of the two complement operations,the three simplification rules
(section 5.Z) are applied to the result.

-40-

Nelson's algorithm can be described as follows

1. Complement~) expand ~ inta disjunc!ive form, apply simpli­
fication rules snd call the result F.

2. Complement F, expand F into disjunctive form, apply simpli­
fication rules and call the result K.

The disjunction of the monomials of K 15 the complete base
of the boolean function 4> .

We Dow apply the Nelson algorithm to QUr ease, that 15 to
Eg. 5-3. By complementing Eq. 5-3, we can write

TOP = C'(F VG HF VG HL VG HL V G).
2 1 2 2 2 1 2 3

. (C
1
V F

3
VL

1
)' (G/ F

3
VL

1
)' (F

1
V G

1
VL

3
)'

'(F
1
VG

3
VL

3
) '(G

1
V L

1
)' (G

1
VF

3
V L

3
) (5-5)

NOH we have

Cl
C2

Gk
= -!:; Gq

q=l

3

F
k

V Fq=l q

and
3

L
k V Lq

q=l

k;1q

k;1q

k;1q

(k=l; 2; 3; 4)

(k=l; 2; 3)

(k= 1; 2; 3)

(5-6)

(5-7)

(5-8)

(/;,-Q)

By taking into account Eqs. 5-6 to 5-9, Eq. 5-5 becomes

TOP = C2'(F1VF3VG2"G3VG4)'(F1YF3YG1VG3VG4)'

. (L
1
V L

3
V G

2
V G

3
VG

4
)' (L

1
V L

3
V G

1
VG

2
" G

4
)'

'(G2V G3V G4 VF
1VF2VL2 VL3)' (G 1VG 3VG4 VF1VF2VL2VL3)'

. (F 2V F 3VG 2Y G3" G4Y L1Y L2)' (F 2" F3"G 1VG/G4VL 1VL2)·

'(F
2
YF

3
V L2V L

3
)·(G{ G3YG4YF1VF2VL1VL2) (5-10)

-41-

He exeeute the operations of Eq, 5-10 and <;e apply the three
simplification ·..·U1(8. He get

TOP = C2'G2'Fl'L2VC2,G2'Fl'L3VC2,G2'F3,L2VC2'G2'F3,L3 V

YC2 'G 3 'F2 'L1V C2'G3'F2,L3V C2 ,G
3

'F
3

'Ll VC 2 'G
3

'F
2

'L
3

V

V C2'G4'F2VC2'G4'F3VC2'G4'L2VC2,G4'L3 (5-11)

\ve now complement TOP and we execute all operations including the
applieation of the three simplifieation rules, He get finally

TOP = C1V Ll'F1VF1'G3VG3,L2VL1,G2VGlyF2,G2

Eq, 5-12 is the eomplete base of the TOP,

(5-12)

He notiee that Eq, 5-12 and 5-4 (that is the fault trees of
Figs, 3-6 adn 3-7) have the same TOP, The knmdedge of the eomple te
base of a boolean function is important also because offers the
possibility to find out if two or more fault trees have the same
TOP,

He can state the following criterion

"lf two boolean functions have the same complete base they
are identical".

Nelson's algorithm <;as improved by Hulme and Horreli ll to
reduce the computing time. A modified Nelson1s algorithm has been
developed at Karlsruhe 3 , The execution times of the three
algorithms are eompared in the table of Fig, 5-3, The examples
have been taken fromll ,

5,4 Step No, 3 - Extraetion of an Irredundant Base (or One of the
Smallest Irredundant Bases) from the Complete Base,

Various algorithms for the extraction of the smallest irre­
dundant base of a boolean function frorn its complete base are
available from the literature 9 ,

He eonsider a method, <;hieh may be ealled the method of the
expansion coefficients. The basic principles of this method have
been described in 3 ,

A fast algorithm based on this prineiple has been developed
at Karlsruhe 3 which alloW"s one to identify the smallest irredundant
base of a boolean funetion, The table of Fig, 5-4 gives the re­
quired execution times for the examples 3 to 7 of the table 5-3.

-42-

Number of cru time (sec)

Examp1e
prime irnpli-
cants in Nelson Saudia Karlsruhe
complete base a1gorithm a1gorithm a1gorithm

(CDC6600) (CDC 6600) (IBH370/168)

1 4 0.158 0.156 0.11

2 3 0.367 0.182 not perfonned

3 15 221.418 0.391 0.26

4 15 1413.580 0.388 0.26

5 32 5300 (1) 3.868 0.42

6 61 4600(1) 303.657 1. 03

7 87 6000 (1) 417.371 1. 12

(1)
These entries iodieate times at which execution \v8s

terminated without completing the a1gorithm.

Fig. 5-3. Computationa1 times of different types of
Nelson A1gorithms.

Number of Number of prime CPU time needed
Examp1e prime impli- implicants in to identify

cants in smallest irredun-
j

smallest irredun-
camp le te base I

dant base i dant base (sees)
i

.~,
I3 15 I 7 0.24

I

t4 15 8 , 0.23

5 32 12 0.49

6 61 17 6.07

7 87 19 19.51

Fig. 5-4. Cornputational times of the algorithm for the
extraction of the smallest irredundant base.

An even faster algorithm for the extraction of an irredundant
base (which is not necessarily the srnallest) has been developed
at Karlsruhe. This algorithm will be described elsewhere.

since the boolean function of Dur example is coherent, the
campiete base is already irredundant and the algorithm for the
extraction of an irredundant base does not need to be applied.

-43-

5.5 Step No. 4 - Expression of the TOP as a Disjunction of
Pairwise Nutually Exclusive Boolean Functions

\oJe have the TOP as disjunction of the prime implicants "X. 11

(irredundant base). J

where

TOP X.
J

(5-13)

N total number of prime implicants belonging to the
irredundant base.

He nmoJ lvan t to trans form Eq. 5-13 1n an expression of the
type

TOP V Y. (5-14)
i=l 1

where Yi are boolean functions (calied keystone functions) which
are pairwise mutually exclusive, that is satisfy the conditions

o i;tk (i; k 1; 2 ... ;Q) (5-15)

In addition each Y. results to be of the form
1

Y.
1

H.
1 V

S=l

P.
lS

(i = 1; 2 ... ;Q) (5-16)

Hhere the Ni and the Pis are non-zero boolean monomials satisfy­
ing the follmving conditions

N.· N = 0
1 k

(i; k = 1; 2 ... ;Q) (5-17)

H. = 1
1

(5-18)

the monomials Pis are pairwise logically
if a literal Aq Appears ina monomial Pis, UD

ing to the same component will appear in any
(r;ts r;s = 1;2 ... ;n.).

1

independent, that is

other 1itera1 be1ong­
other monomial P.1r

eych monomia1 P. lS logically independent "ith N..
lS 1

-44-

The last t~'lO conditions can be expressed in the following l,vay

If A P. = P.
q lS lS

then 0 f A ·H. f H. and
q 1 1

o f A ·P. f P. r f s
q 1r H

AND

If A H. H.
q 1 1

then 0 f A ·P. f P.
q lS lS

In other ,yards a component A ean appear on1y anee in a key­
staue function Y.: either in the monomial M. or in oue cf the
monomials p. 1 ~

lS

A fast algorithm has been developed at Karlsruhe to identify
the keystone functions Y. (keystone algorithm). By applying the
keystone algorithm to ou} example (Eq. 5-12) we get

4

TOP V Y.
i=l

1

~vhere

Yl GI

Y
2 G2·(CqVLlVF2)

Y3
= G3 ' (ClV Fl V L

2)

Y4 G4 '(C l V Ll'F l)

(5-19)

(5-20)

(5-21)

(5-22)

(5-23)

5.6 Step No. 5 - ldentification of the Conditioning Variables to
be associated to each Keystone Function.

Each keystone function receives marks for the identification
cf the conditioning variables associated to the statistically
dependent variables \Vhich appear in it.

A fast algorithm (called "marking algorithm") has been developed
at Karlsruhe for the identification of these conditioning variables.
By applying this algorithm to our example we get the following

-45-

table (Hg. 5-5)

I I I,
, Keystone

I
Statistieally Conditioning

I Function Dependent Primary Variable
I

Variable
i

Y
l

I - -,

i
,

I LI A2 = G2 VG
4Y2 ,

I
I F2 BI = GI V G

2

F
l

B2 = G
3

VG
4Y

3
L2 Al = GI VG 3

LI A
2

= G
2

VG
4Y

4 F
l

B2 = G3 VG4

Fig. 5-5. Table of the eonditioning variables to be
associated to each keystone function

6. CALCULATION OF THE OCCURRENCE PROBABILITY OF THE TOP EVENT

He now want to calculate the expectation of
that is the occurrence probability of the event

E {TOPJ = P {TOP = I}

the TOP variable,
{TOP = I} .

(6-1)

Tat<ing in to aeeoun t Eq s. 5 -13 and 5-15 "e ean "ri te
Q

E {Tod L E {yJ
i=l

In our exarnple (Eqs. 5-20 to 5-23 and table of Fig. 5-5) "e ean
write

(6-3)

-46-

E{Y2} =E {G2 '(C
l

L
l

F2)} =

= E [G2 'C l } + E {G2 'Ll } +E iG2 'FJ -

- E fGiCl'Ld +E ~G2'Cl'F2J+ E [G 2 'L l 'F 2 } +

+ E rG
2

,C
l

,L
l

'F
2

} (6-4)

Taking into account Eqs, 4-13; 4-14; 4-16 and 4-18 and the
table of Fig. 5-5, we can write

E fG2 'C l } = E {G2] , E f Cl} (6-5)

E {G2 ,L l } =E {G
2

}, E rL11G2} =E f G2 } 'E [Llh] (6-6)

E {G2 'F 2 } =E tG2 }E f F2/ G
21 =E {G21'EfF2/B 11 (6-7)

E {G2 'C l,Ll }=E {Cl} 'Et G2'L11=E{c11'E{G21'EfLJGJ =

=E f Cl} , E {G2 } ,E {Ll hl (6-8)

EfG2 'C l 'F l } =E {cl l'E{G21 EtF1IB1} (6-9)

E { G2 'L l 'F2 } = E tG2 'LJ 'E {F2!G2Ll~ =

= E f G2 J 'E i Ll !G2) ,E i F21G21

= E f G2 } ,E { L11 A2) 'E {F2IBJ (6-10)

E {G2'C1L1F21=E 1G2 } ,E !Cl} 'E fLlhJ 'E tF)B l } (6-11)

Taking into account Eqs, 6-5 to 6-11, Eq, 6-4 becomes finally

E {Y 2 } =E t G2}-G [Cl} + (l-E{C1J)oE{L1IA2] +

+ (l-E{C l })Ü-E{LlIAJ >-E{F2IBJJ (6-12)

In a similar way one gets

E {Y 3 3 = E {G 3),G {C13+(l-E {c l l)'E {F 1 1B21 +

+ (l-E [Cl}){l-E lF l)B2 J }EL L2 1A11 J (6-13)

and

E t Y4} =ELG4 1{E{Cl } + (l-E1CJ)E{Llh)'E[Fl!B2D

(6-14)

-47-

By replacing Eqs. 6-3; 6-12; 6-13 and 6-14 into Eq. 6-2 (l1üh Q=4)
one finally gets the occurrence probability of the TOP event.

7. CONCLUSIONS

Following conclusions ean be drawn:

1. The theory described in this paper is a powerful tool for the
analysis of fault trees containing multistate (more than two
states) primary components as weIl as statistically dependent
primary components. Ihis means that a very wide spectrum of
problems which are met in practice ean now be solved analyti~

cally by applying this theory.

2. A special type of boolean algebra has been developet to allol1
one to handle multistate primary components. This is the
boolean algebra with restrietions on variables. Its basic
rules have been described in this paper.

3. The problem of statistical dependence has been solved either
(1) by rernoving it, that is by replacing in the fault tree
the statistically dependent primary variables by means of ad
hoc new defined primary variables or (2) by defining some con­
ditioning variables and evaluating separately the associated
necessary conditional probabilities.

General criteria to establish ,,,hich one of the two methods
should be chosen have not been given in the paper. They are
illustrated in Reference ll .

4. General criteria for the identification of the most convenient
conditioning variables are given also in Reference ll . The
choice depends upon the type of statistical dependence and
upon the way in which this statistical dependence enters in
the fault tree.

5. The eoneept of expectation of a boolean variable and of
eonditional expeetation of a boolean variable have been intro­
dueed in this paper in a rather intuitive way just pointiog
out the elose relationship bet\Veen conditional expectation aod
conditional probability. In Reference l1 a formalization of
the concept is developed.

6. A computer programme based on the above theory has been devel­
oped at Karlsruhe and is no\V being tested. Two sample problems
have been solved by using this programme.

A system was given to three different people. Three differ­
ent fault trees \Vere generated for the same TOP variable.

-48-

The three associated disjunctive forms (output fram the dm"n­
"ard algorithm) "ere calculated and they looked each other
remarkably different (large differences in the total number
of monomials as weIl as in their composition), However, it
was possible to verify that the three functions \vere identical
by calculating the complete base (output of the Nelson algorithm),
which resulted to be exactly the same for all three fault trees.

The second problem ,...a8 chosen because it contained three dif­
ferent types of dependecies which are commonly met in practice,
namely (1) common mode failure, (2) components characterized
by failure rates which depend upan the occurrence of some non­
primary events and (3) the ease of a component ,,,hose re pair
affects the operation of another component. The computer
programme solved the problem successfully.

7. A ne,,, definition of coherency has been given in this paper.
We recall it again

lIA boolean function ~s said to be coherent if it is
characterized by ooly one base which is at the same
time complete and irredundant. 1l

The question arises whether or not all technical systems are
coherent. Same authors are convinced that there are examples
of systems which they believe to be non-coherent. We have not
yet deeply analysed this question also because we had no chance
until now to study a non-coherent technical system. We can
however not exclude at this stage that some non-coherent systems
mayexist.

Non-coherent boolean functions may instead be generated, ,,,hen
one analyses the problem of a transition from one partition of
a system to another. These boolean functions are rather special
because they describe the space at the boundary bet,,,een the
t,,,o partitions. The computer programme developed at Karlsruhe
can handle coherent as weIl as non-coherent boolean functions.

8. ACKNOI,LEDGENENTS

The author "ishes to thank Dr. Wenzelburger (IRE, Karlsruhe)
for the fruitful discussions on the theory developed in this paper.

9. REFERENCES

1. W.E. Vesely, 1970, "A time dependent methodology for fault tree
evaluation", Nuc1. Eng. Des. 13, 337-360.

-49-

2. L. Caldarola, A. Hickenhäuser, 1977," Recent Advancements in
fault tree methodology at Karlsruhe", International Conf. on
Nucl. Systems Reliability Engineering and Risk Assessment,
Gatlinburg, SIAM, 518-542.

3. L. Caldarola, 1978, "Fault tree analysis of multistate systems
\'lith multistate components", ANS Tapieal r-teeting on ProbabiListic
Analysis of Nuclear Reactor Safety, Los Angeles, California,
Paper VIII. 1.

4. J.D. Hurchland, G. loJeber, 1972, "A moment method for the
calculation of a confidence interval for the failure probability
of a system", IEEE Proceedings Anoual Symposium on Reliability.

5. C. Berge, 1962, "Tbe theory of graphs", Hethuen and John loJiley

6. P. Mussio, S. Garriba, S. Fumagalli,1979,
logic in system representation", NATO AST,

"Hultiple valued
Rel.Conf., Urbino, ltaly

7. J.B. Fussell, 1973;IFault tree analysis: Concept aod techniqued~

NATO Conference on Reliability, Liverpool, England.

8. L. Ca1darola, A. Hickenhäuser, 1977, "The Kar1sruhe computer
prügram für the evaluation of the availabi1ity and re1iabi1ity
of complex repairable systems", Nucl. Eng. Des. 43, 463-470.

9. J. Kuntzrnann, 1967, "Fundamental Boo1ean Algebra," Blackie and
Sons Ltd.

10. R.J. Nelson, 1954,"Simp1est normal truth functions~l the
Journal of Symbolic Logic, vol. 20, Nr. 2, 105-108.

11. B.L. Hulme, R.B. loJorre11 , 1975,"A prime implicant algorithm
wi th factoring ,11 IEEE Transaction on computers, va 1. C- 24,
Nr. 11, 1129-1131.

12. L. Ca1daro1a, 1979, "Generalized fault tree analysis combined
with state analysis", (being published).

