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Abstract

rhe correlation of signal components at different frequencies like higher

harmonics cannot be detected by a normal power spectral density measure­

ment, since this technique correlates only components at the same frequency.

rhis paper describes a special method for measuring the correlation of two

signal components at different frequencies: the CRISS power spectral den­

sity. From this new function in frequency analysis, the correlation of two

components can be determined quantitatively either they stern trom one sig­

nal or from two diverse signals. rhe principle of the method, suitable

for the higher harmonics of a signal as weIl as for any other frequency

combination is shown for the digital frequency analysis technique. Two

examples of C~ISS power spectral densities demonstrate the operation of

the new method.

Spektrale QUER Leistungsdichte -

eine Methode zur Korrelation von Signalkomponenten

aus verschiedenen Frequenzbereichen

Zusammenfassung

Die Messung einer (normalen) Spektraldichte korreliert nur Signalanteile

bei derselben Frequenz, so daß damit die KorrelRtion von Oberwellen nicht

gemessen werden kann.

Hier wird e~ne Methode ceschrieben, die die Korrelation von Signalkompo­

nenten bei verschiedenen Frequenzen mißt: die spektrale QUER Leistungs­

dichte (CRISS power spectral density). Mit dieser Funktion kann die Korre­

lation verschiedener Frequenzanteile von einem oder zTj7e.i Si.gnalen quant i­

tativ erfaßt werden. Das Prinzip erlaubt die Detektion sowohl von Oberwel­

len als auch der Korrelation von Signalanteilen bei beliebiger Frequenz­

kombination. Das Meßverfahren ist für die digitale Frequenzanalyse er­

läutert. Zwei Beispiele zeigen seine Funktionsfähigkeit.
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I. Introduetion

For the surveillanee of a nuelear power plant and investigation of the

system's dyna~icspower speetral density funetions of diverse sig~als are

measured, e.g. neutron flux, temperature, barrel movement, ete. These

power speetral densities ofteri inelude resonanees at frequencies whieh

are harmonie multiples of a fundamental frequeney. These eharaeterist{es

suggest that there maybe harmonie eomponents in the signal. However,

the normal frequeney analysis teehnique ean eorrelate only signal eompo­

nents at the same frequeney. Thus it eannot be deeided whether two reso­

nanees in apower speetral density are eorrelated or not, i.e. whether

they are eaused by the same source. If the resonanees are really sharp

and exaet at harmonie frequeneies (lnteger multiple& of a fundamental

mode) their eorrelation is obvious but eannot be guaranteed. An attempt

to eorrelate harmonies is made by the eepstrum teehnique /e.g. 1/. How­

ever, this also givesonly evidenee öf the presenee of harmonie eompo-

nents.

The method deseribed in this note eorrelates signal eomponents ~oming

from different frequeney ranges. !t is suitable for higher harmonies as

well as for speetral eomponents atanyother frequeney eombination. In

addition, the signal eomponents, either deterministie or stoehastie, may

be superposed by some uneorrelated noise. The CRISS auto power speetral

density (CAPSD) is measured from two eomponents of the same signal, e.g.

two harmonies of a square wave. The CRISS cross power speetral density

(CCPSD) eorrelates eomponents from both, diverse signals and different

frequeneies. See the sketch;

signal

si gn al 2

CPSD

Frequency
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2. The Normql Frequency Analysis

Since nowadays power spectral densities are measured mostly by the digital

frequency analysis using small computers, the principle of the new method

is described for this analizing technique. The digital frequency analysis

for measuring auto and cross power spectral densities (APSD, CPSD) is well

known from the literature /2-4/. To get a PSD five main steps have to be

done:

Select apart of the signal within the time interval k of

length T;

2 Sampling at a constant frequency and digitizing this sig­

nal interval gives a time series;

3 A discrete Fourier transform (e.g. FFT) of this time se­

ries gives the complex Fourier coefficients
'w TJ n n (2. 1)

c (n) = r • e
n

at equidistant frequency points w = n •
n

n • 27T
T

4 Multiplication of each coefficient with its complex con­

jugate gives the PSD values

= r n
2

jw (T -T )n n n• e = r n
2

(2.2)

jWn (T2n-Tl n)
= r 1 • r2 • e •,

5 Averaging these PSD values from many time intervals of

the same length gives the desired power spectral density

The phase of each coefficient c calculated in step 3 is determined by T
n n

and the frequency w of this coefficient. The T value is given by thenn
time position of the signal's component at W with regard to the analyzing

n
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frequency w • Since usually the analyzet runs independently'of the signal
n

the L from each time interval k will have another value and can be con­
n

sidered as a stochastic quantity. Two coefficients cl and c2 of two sig-
n n

nals will have two stochastic values Tl ,and T2 • However, if the two com-n ' n
ponents are correlated their time relation with regard to ea~h other is

fixed. Therefore, the differences Tl - T2 will be constant values inde-
,n ,n

pendent of the actual time interval k. By step 4, in which the phase values

are substracted, the stochastic part of thephase is eliminated. The re­

sulting APSD from one signal is real valued. A measured CPSD from two sig­

nals is a complex function but with a phase independent of the actual time

interval k and determined only by the correlation of the two signals. Thus

step 5 can be applied successfully.

Note: Thestochasdc part of t:he phase is eliminated due to thefact that

step 4 isdone with coefficients at the same frequencyw •
n

The correlation of signal components at different frequenciesby meremu1.;.

tiplication of a coefficient with the complex conjugate of a second coeffi­

cient at another frequency, according to step 4, has to fail.

In the product
(2.3)

the stochastic part of the phase is not eliminated since the T values of

the two components are multiplied by different frequencies wn and w
l
• As

a consequence the average of these products from many time intervals will

be always zero, even if there iS,a correlation between the two chosen com­

ponents.

As a conclusion from this chapter it is ~een that correlating of components

at different frequencies will be su~cessfull if it can be attained that the

T values of equation 2.3 are multiplied by a common frequency value. TDis

can be achieved since the, frequency values wn ofthe two coefficients are

mUltiples of a common fundamental frequency w (seeequation 2.1). There, ' , 0

are three mathematical operations to get the same frequency values in equa-

tion 2.3:
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a) tpe phase of each coefficient is multiplied by a

factor proportional to the frequency of the other

coefficient;

b) each (entire) coefficient is rised to a power pro­

portional to the frequency of the other coefficient;

c) the time signals of the components to be correlated

are rised to apower corresponding to b).

3. How to Measure The CRISS PSD?

Like in anormal PSD measurement the steps I to 3 are performed. Now the

coefficients of the two components to be correlated'are fetched: c(n) and

c(l) . The phase of each coefficient is multiplied by a factor proportio­

nal to the frequency of the other coefficient:

c(n)(l) = r •
1

j.l.n·w •Lo 1
e

(3. I)

Using these new coefficients in step 4 a quantity is calculated, the ave­

rage of which gives the CRISS auto power spectral density

CAPSD(n,l) (3.2)

As to be seen from the formula only the difference (Ll-Ln) appears in the

exponent. Similar to equation 2.2 the phase ofthe CAPSDk is independent

of the actual time interval k. Averaging according to step 5 gives the

CAPSD, the phase of which is determined by the signal's characteristics

only. By the same procedure, but fetehing the two coefficients from diffe­

rent signals, the CRISS cross power spectral density results

(3.3)
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As mentioned in the previous chapter there is a second way to criss-corre­

late. The multiplication of the phase of the Fouriercoefficients may be

replaced by rising each entire coefficient to a power proportional to the

frequency of the other coefficient.

The phase of these new coefficients cl(n) and cn(l) will be the same as in
1 nequation 3.1, their magnitudes, however, will be r n and r l respectively.

Therefore, the resulting CRISS PDSs will be

CAPSD (n,l) (rn
l

•
n j.l·n·w (L - Ln»= r 1 • e 0 1

P
(3.4)

CCPSD (n,l) /rl 1 • r2 n •
j'1'n'Wo ('r2 1 - TIn)>

= e
p '\ n 1

The index p denotes that the powers of the Fourier coefficiients have been

used in step 4 and 5.

Instead of rising the Fourier coefficients to the appropriate power, this

may be done with the time signal itself, too. This third way seems to be

advantageous if a signal component to be correlated contains more than one

Fourier coefficient, i.e. the component is a narrow band signal. However,

in order to achieve a better signal-to-noise ratio it is recommended to

take not the entire signal but only the band which contains the desired

component. Therefore, some band-pass filtering must be done. To avoid

analog filters a band-pass filtered signal can be calculated by the in­

verse Fourier transform applied to the coefficients got in step 3 which

lie within the desired pass-band at center frequencies wn and wl . From the

pass-band filtered time signals x(n) and x(l) the new time signals xl(n)

and xn(l) are computed. The normal cross power spectral density (steps 3

to 5) of these two signals gives the CRISS PSD (time version) of the two

original components

(3.5)

FT(xl(n) ) is the Fourier transform of the time signal xl(n).

Gf course, if there is a common factor p in the frequency values W = n'w
n 0

and W = l'w1 0
the multiplication and rising to apower may be done with
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IIp and n/p, respectively. From the point of view of signal theory, multi­

plying the phase of a coefficient by a factor of n means shifting this com­

ponent to a frequency n times higher. Thus by the procedures described

above the two components are shifted to the same frequency.

The principle of measuring CRISS PDSs was shown for. signals which are free

from uncorrelated noise.

It can be shown that the method works, too, if there is a contribution to

the signals artd hence to the Fourier coefficients by some uncorrelated

noise. However, in the formulae of the CRISS PDSs only the quantities r

and ('1 - , ) of the correlated components will appear. Gf course, the. n
signal-to-noise ratio will be reduced. Well known coherence criteria will

help to decide about correlation if the CRISS PSD is normalized to the

APSDs of the modified components. Using the first way, namely phase multi­

plying, the normalization is done with the normal APSD values.

Some characteristics of the CRISS PSD should be mentioned. Because of the

fact that each frequency point may be correlated with all the other ones

the CRISS PSD is in general a two-dimenßional function. The CRISS APSD -

in contrary to anormal APSD - may have a phase. The phase of a measured

CRISS PSD will reproduce the phase lag of the components; thus the wave

form of the time signal whose harmonic components have been criss-corre­

lated can be reproduced. Usually a signal's wave form is measured by signal

recovery using atrigger signal. But if the signal is a stochastic signal

or a deterministic one hidden by uncorrelated noise no trigger signal is

available and therefore signal recovery cannot beapplied.

4. Two examples

In order to demonstrate the new method an artificial signal was generated

and analyzed. The analysis was done with an on-line system for the digital

frequency analysis based on a small digital computer 17/. The system has

been extended by special programs performing the mathematicaloperations

described here. Fig. 1 shows the result. A squ~re wave at 20 cps, but not

synchronized with the analyzer, was mixed with a band limited white noise

signal. The auto power spectral density APSD was measured bythe well known
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digital frequency analysis technique.In addition from each interval the

Fourier coefficient at 20 cps was picked and its phase was multiplied by

3 in order to look for the harmonie component at three times the funda­

mental frequency. This new coefficient was put to all frequency points of

the Fourier 'transformed interval. Of course, its APSD is a constant equal

to the signal~ APSD value at 20 cps. Multiplying this modified Fourier­

coefficient by the conjugated complex of the signal's Fourier-coefficients

- Le.normal Cross PSD - results in the CRISS PSD. As expected only at

60 = 20 • 3 cps a correlation is to be found. The coherence

q = ICRISS pSDI

~APSD(signal) • APSD(20),

shown in the middle part of Fig. 1 confirms the correlation at 60 cps.

Due to the finite number of 5000 averaged intervals thecoherence function

shows a bias error which is to be seen besides 60 cps, where no correlation

is expected. For a number of 5000 averaged intervals and no correlation the

magnitude coherence q will have a bias error of .012 + 53% /5,6/. This

agrees well with the experimentally found coherenee values in Fig. 1. In

the lower part of the figure the real and imaginary part of the CRISS

(auto) power spectral density is plotted. The CAPSD at 60 cps shows a nega­

tive real part and an imaginary part near zero. The negative sign can be

explained by considering that a square wave is eomposed of sine waves

sin(wt) '+ 1/3 sin '(3wt) + ••• and that the third power of sin (wt) equals

-J /4 sin (3wt) + In normal power spectral density measurements the

Cross PSD equals the geometrie mean of the two auto PSDs. If there exists

uncorrelated noise the Cross PSD equals the geometrie mean of the correlated

parts in the auto PSDs. Unfortunately this is not true for the CRISS PSD if

uncorrelated noise is present: the CRISS PSD is reduced due to the modifi­

cation of the coefficients. This reduction is the greater the higher the

number is which is used as factor in the phase or for rising the coeffi­

eients to apower. Thus for practical use small factors may be used only

if uncorrelated n~ise is present.

For the second example a true reaetor signal was used: the neutron flux

fluctuation from the KNK 11 /8/ a sodium cooled fast Reactor at apower
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level of about 29 MWth (~50% full power). The APSD of the signal up to

4 eps is shown in Fig. 2. The signal was high-pass filtered at .25 eps.

Therefore, the first 5 frequeney points are not used for the eriss eorre­

lation. The signal's APSD shows two big resonanees, the seeond of whieh

at ~3.4 eps is at two times the frequeney value of the first one at

1.7 eps • Therefore, the CRISS PSD for the seeond harmonie was measured:

eaeh Fourier eoeffieient ofthe first half of the frequeney range was

squared and put to the plaee at double the frequeney. In addition two ad­

jaeent eoeffieients are multiplied and put to the frequeney point at the

sum of their frequeneies. Performing step 4,these new eoeffieients are

multiplied by the eomplex eonjugates of the original eoeffieients. The

eoherenee from the resultingCRISS PSD and the APSDs of the modified eo­

effieients and the original eoeffieients, respeetively, is shown in Fig. 2,

too. It eonfirms the seeond harmonie eorrelatior.. for two peaks. Due to

1791 averaged intervals (~16 hours) a bias error of the eoherenee of

.02 .::. 53% is expeeted.

In addition, an attempt was made to find third harmonie eorrelation in the

signal. For this purpose new eöeffieients were ealeulated

3 - k ke (3n + k) = e (n)' e (n + 1)new k=0,1,2

The eoherenee shown in the lower part of Fig. 2 indieates no third harmo­

nie eorrelation.

5. Conelusion

The CRISS power speetral density introdueed here is a useful tool for

measuring the eorrelation of higher harmonies. With this funetion their

eorrelation ean be determined quantitatively. In general the CRISS PSD

eorrelates signal eomponents eoming from different frequeney ranges. The

normal PSD may be eonsidered as a speeial ease of the CRISS PSD: namely

the eorrelation of eomponents at the same frequeney.

The performance of the CRISS PSD measurement is deseribed for the digital

frequeney analysis teehnique. The quintessenee of the signal proeessing
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for a CRISS PSD is the elimination of the stochastic relation between the

signals and the analyzer without disturbing the phase relation between

the signal components themselves. This can be achieved by different ope­

rations applied to the Fourier'coefficients of the two components. As a

common basis all ·effective operations for this purpose must multiply the

phase of one coefficient by a factor proportional to the frequency of the

other coefficient.

A first example shows the measurement of the third harmonic correlation

of a noise contaminated square wave. As another example the second har­

monic correlation of the neutron flux fluctuation of a nuclear power re­

actor was measured. No third harmonic carrelation was found in this sig­

nal. Statements about the correlation between two or more frequency ranges

in apower spectral density functionwill reduce the number of possible

noise sources. On the other hand a statement for no 'correlation between

two resonances of similar shape will be useful, too. Thus the CRISS PSD

will help to understand normal power spectral densities, especially those

from signals with higher harmonics.

From the coherence of the CRISS PSD and the auto PSDs of the components

the degree of correlation can be determined quantitatively. The CRISS PSD

itself is a complex quantity and reproduces the phase lag between the two

components. Thus the waveform of a deterministic signal hidden in uncorre­

lated noise can be determined by the CRISS correlation of the signal's

harmonic components.
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