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Abstract

The correlation of signal components at different frequencies like higher
harmonics cannot be detected by a normal power spectral density measure-

ment, since this technique correlates only components at the same frequency.

This paper describes a special method for measuring the correlation of two
signal components at different frequencies: the CRISS power spectral den-
sity. From this new function in frequency analysis, the correlation of two
components can be determined quantitatively either they stem trom one sig-
nal or from two diverse signals. The principle of the method, suitable
for the higher harmonics of a signal as well as for any other frequency
combination is shown for the digital frequency analysis technique. Two
examples of CRISS power spectral densities demonstrate the operation of

the new method.

Spektrale QUER Leistungsdichte -
eine Methode zur Korrelation von Signalkomponenten

aus verschiedenen Frequenzbereichen

Zusammenfassung

Die Messung einer (normalen) Spektraldichte korreliert nur Signalanteile
bei derselben Frequenz, so daB damit die Korrelation von Cberwellen nicht

gemessen werden kann.

Hier wird eine Methode teschrieben, die die Korrelation von Signalkompo-
nenten bei verschiedenen Frequenzen miBt: die spektrale QUER Leistungs-—
dichte (CRISS power spectral density). Mit dieser Funktion kann die Korre-
lation verschiedener Frequenzanteile von einem oder zwei Signalen quanti-
tativ erfaBt werden. Das Prinzip erlaubt die Detektion sowohl von Oberwel-
len als auch der Korrelation von Signalanteilen bei beliebiger Frequenz-
kombination. Das MeBverfahren ist fiir die digitale Frequenzanalyse er-—

liutert., Zwel Beispiele zeigen seine Funktionsfihigkeit.
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1. Introduction

Forzthe‘surveillance of a nuclear power olant and investigation‘of the
system's dynamicsbower spectral density‘functions of diverse signals are
measured e.g. neutron flux, temperature, barrel movement etc. These
power spectral den31t1es often includé resonances at frequenc1es whlch
are harmonlc multlples of a fundamental frequency. These characteristics
suggest that ‘there may be harmonlc components in the s1gna1 However,
the normal frequency analysis technlque can correlate only s1gna1 compo=
nents at the same frequency. Thus it cannot be decided whether two reso-
nances in a power spectral density are correlated or not, i.e, whether
they are caused by the same source. If the resonances are really sharp
and exact at harmonic frequenc1es (1nteger multlples of a fundamental
mode) their correlation is obvious but cannot be guaranteed. An attempt
to correlate harmonics is made by the cepstrum technique /e.g. 1/. How-
ever, this also gives only evidence of the presence of harmonic compo-

nents,

The method described in this note correlates signal components coming
from different frequency ranges. It is suitable for higher harmonics as
well as for spectral components at any other frequency combination. In
addition, the signal components, either deterministic or stochastic, may
be superposed by some uncorrelated noise, The CRISS auto power spectral
density (CAPSD) is measured from two components of the same signal, e.g.
two harmonics of a square wave. The CRISS cross power spectral density
(CCPSD) correlates components from both, diverse signals and different

frequencies. See the sketch.
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2. The Normal Frequency Analysis

Since nowadays power spectral densities afe measured mostly by the digital
frequency analysis using small computers, the principle of the new method
is described for this analizing technique, The digital frequency analysis
for measuring auto and cross powér spectral densities (APSD, CPSD) is well
known from the literature /2-4/. To get a PSD five main steps have to be
done:
1 Select a part of the siénal within the time interval k of
iength T; |
2 Sampling at a constant frequency and digitizing this sig-
nal intervalygives é time series;
3 A discrete Fourier transform (e.g. FFT) of this time se-
ries gives the complex Fourier coefficients

c(n) = ¢_ ernTn (2.1)
n

at equidistant frequency points w, =n-:w =n-

4 Multiplication of each coefficient with its complex con-

jugate gives the PSD values

jw_(t_-1._)
'c(n)‘z - rn2 e oot 2

APSDk(n) 0

(2.2)

an(TZH—Tln)

CPSDk(n) cl+(n) . cz(n) =r] « r2 + e

;
5 Averaging these PSD values from many time intervals of
the same length gives the desired power spectral density

PSD(n) = <PSDk(n)>

The phase of each coefficient c, calculated in step 3 is determined by T
and the frequency w, of this coefficient. The T, value 'is given by the

time position of the signal's component at W, with regard to the analyzing



frequency w . Since usually the analyzer runs independently of the signal
the T, from each time interval k will have another value and can be con-
sidered as a stochastic quantity. Two coefficients cln and c2n of two sig-
nals will have two stochastic values T]n‘?“d T2n. However, if the two com-
ponents are correlated their time relation with regard to each other is
fixed. Therefore, the differences T]ﬁ - Tzn will be constant values inde-
pendent of the actual time interval k., By step 4, in which the phase values
are substracted, the stochastic part of the phase is eliminated. The re-
sulting APSD from one signal is real valued. A measured CPSD from two sig-
nals is a complex function but with a phase independent of the actual time
interval k and determined only by the correlation of the two signals. Thus

step 5 can be applied successfully,

Note: The ‘stochastic part of the phase is eliminated due to the fact that
step 4 is done with coefficients at the same frequency‘wn¢r

The correlation of signal components at different frequencies by mere mul-

tiplication of a coefficient with the complex conjugate of a second coeffi-

cient at another frequency, according to step 4, has to fail.

Jlw, o1 —w ¢ oT,) (2.3)
In the product L n n 1 1

the stochastic part of the phase is not eliminated since the T values of

the two components are multiplied by different frequencies W, and W As
a consequence the average of these products from many time intervals will
be always zero, even if there is a correlation between the two chosen com-

ponents.

As a conclusion from this chapter it is seep that correlating of components
at different frequencies will be successfull if it can be attained that the
T values of equation 2,3 afe‘multiplied by a common frequency value. This
can be echieved since the frequency values w, of the two coefficients are
multiples of a common fundamental frequency W, (see equation 2.1). There .
are three mathema;ieal operetions to get the same frequency values in equa-

tion 2.3:



a) the phase of each coefficient is multiplied by a
. factor proportional to the frequency of the other

coefficient;

b) each (entire) coefficient is rised to a power pro-

portional to the frequency of the other coefficient;

c) the time signals of the components to be correlated

are rised to a power corresponding to b).

3. How to Measure The CRISS PSD?

Like in a normal PSD measurement the steps | to 3 are performed. Now the
coefficients of the two components to be correlated-are fetched: c(n) and
c(l) . The phase of each coefficient is multiplied by a factor proportio-
nal to the frequency of the other coefficient:

e, ¢ 1 | Jemeleg o
c(l)(n) =r e ntn -y e o Tn

(3.1)

le . Tl e n iy eJol.nowo-Tl
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Using these new coefficients in step 4 a quantity is calculated, the ave-

rage of which gives the CRISS auto power spectral density

Jrleneg (T = 70 N\
CAPSD(n,1) = <f}n cr e ot A (3.2)
\ e

As to be seen from the formula only the difference (Tl—Tn) appears in the
exponent. Similar to equation 2.2 the phase of the CAPSDk is independent
of the actual time interval k., Averaging according to step 5 gives the
CAPSD, the phase of which is determined by the signal's characteristics
only. By the same procedure, but fetching the two coefficients from diffe-

rent signals, the CRISS cross power spectral dénsity results

jelenew (12, - Tl1)
CCPSD(n,1) =f//rl cr2, e or "1 n ’:> (3.3)

\\) n 1



As mentioned in the previous chapter there is a second way to criss-corre-
late, The multiplication of the phase of the Fourier coefficients may be
replaced by rising each entire coefficient to a power proportional to the
frequency of the other coefficient,

The phase of these new coefficients cl(n) and ¢™(1) will be the same as in
equation 3.1, their magnitudes, however, will be rn1 and rln respectively.,

Therefore, the resulting CRISS PDSs will be

<:rn1 . r1n . eJ-l-n‘wo(Tl - Tn):>>

J-l‘n-wo(rzl - Tln):>

1]

CAPSDp(n,l)
(3.4)

L
3
=
2]
N
=}

CCPSDp(n,l) =

\\\ n 1 ¢

The index p denotes that the powers of the Fourier coefficiients have been

used in step 4 and 5.

Instead of rising the Fourier coefficients to the appropriate power, this
may be done with the time signal itself, too. This third way seems to be
advantageous if a signal component to be correlatéd contains more than one
Fourier coeffiéient, i.e. the component is a narrow band signal. However,
in order to achieve a better signai—to—noise ratio it is recommended_to
take not the entire signal but only the band which contains the desired
component, Therefore, some band-pass filtering must be done. To avoid
analog filters a band-pass filtered signal can be calculated by the in-
verse Fourier transform applied to the coefficients got in step 3 which
lie within the desired pass—band at center frequencies W, and Wy . From the
pass—band filtered time signals x(n) and x(1) the new time signals xl(n)
and x"(1) are computed. The normal cross power spectral density (steps 3
to 5) of these two signals gives the CRISS PSD (time version) of the two

original components

Criss PSD, (n,1) =<[FT(xl(n))j T I:FT(xn(l))] > (3.5)

FT(xl(n) ) is the Fourier transform of the time signal xl(n).

Of course, if there is a common factor p in the frequency values Wy = new

and w, = l‘wo the multiplication and rising to a power may be done with



1/p and n/p, respectively., From the point of view of signal theory, multi-
plying the phase of a coefficient by a factor of n means shifting this com-
ponent to a frequency n times higher. Thus by the procedures described

above the two components are shifted to the same frequency.

The principle of measuring CRISS PDSs was shown for signals which are free

from uncorrelated noise.

It can be shown that the method works, too, if there is a contribution to
the signals and hence to the Fourier coefficients by some uncorrelated
noise, However, in the formulae of the CRISS PDSs only the quantities r
and (jl - 1,) of the correlated components will appear. Of course, the
signal-to—noise ratio will be reduced. Well known coherence criteria will
help to decide about correlation if the CRISS PSD is normalized to the
APSDs of the modified components. Using the first way, namely phase multi-

plying, the normalization is done with the normal APSD values.

Some characteristics of the CRISS PSD should be mentioned., Because of the
fact that each frequehcy point may be correlated with all the other dnes
the CRISS PSD is in general a two—-dimensional function, The CRISS APSD -

in contrary to a normal APSD - may’have a phase. The phase of a measured
CRISS PSD will reproduce the phase lag of the components; thus the wave

form of the time signal whose harmonic components have been criss—corre-
lated can be reproduced. Usually a signal's wave form is measured by signal
recovefy using a trigger signal. But if the signal is a stochastic signal
or a deterministic one hidden by uncorrelated noise no trigger signal is

available and therefore signal recovery cannot be applied.

4. Two examples

In order to demonstrate the new method an artificial signal was generated
and analyzed. The analysis was done with an on~line system for the digital
frequency analysis based on a small digital computer /7/. The system has
been extended by special programs performing the mathematical operations
described here. Fig. | shows the result. A square wave at 20 cps, but not
synchronized with the analyzer, was mixed with a band limited white noise

signal. The auto power spectral density APSD was measured by the well known



digital frequency analysis technique. In addition from each interval the
Fourier coefficient at 20 cps was picked and its phase was multiplied by

3 in order to look for the harmonic component at three times the funda-
mental frequency. This new coefficient was put to all frequency points of
the Fourier ‘transformed interval. Of course, its APSD is a constant equal
to the signal's APSD value at 20 cps. Multiplying this modified Fourier-
coefficient by the conjugated complex of the signal's Fourier-coefficients
- i,e. normal Cross PSD - results in the CRISS PSD, As expected only at

60 = 20 * 3 cps a correlation is to be found. The coherence

o = JCRISS PSD |
'VAPSD(signal) . APSD(Zo)’

shown in the middle part of Fig. 1 confirms the correlation at 6o cps.

Due to the finite number of 5000 averaged intervals the coherence function
shows a bias error which is to be seen beéides 60 cps, where no correlation
is expected. For a number of 5000 averaged intervals and no correlation the
magnitude coherence q will have a bias error of .0l2 + 537% /5,6/. This
agrees well with the experimentally found coherence values in Fig, 1. In
the lower part of the figure the real and imaginary part of the CRISS
(auto) power spectral density is plotted. The CAPSD at 60 cps shows a nega-
tive real part and an imaginary part near zero. The negative sign can be
explained by considering that a square wave is composed of sine waves

sin (wt) '+ 1/3 sin "(3wt) + ... and that the third power of sin (wt) equals
-1/4 sin (3wt) + ... In normal power spectral density measurements the
Cross PSD equals the geometric mean of the two auto PSDs, If there exists
uncorrelated n&ise the Cross PSD equals the geometric mean of the correlated
parts in the auto PSDs, Unfortunately this is not true for the CRISS PSD if
uncorrelated noise is present: the CRISS PSD is reduced due to the modifi-
cation of the coefficients. This reduction is the greater the higher the
number is which is used as factor in the phase or for rising the coeffi-
cients to a power. Thus for practical use small factors may be used only

if uncorrelated noise is present.

For the second example a true reactor signal was used: the neutron flux

fluctuation from the KNK II /8/ a sodium cooled fast Reactor at a power



level of about 29 thh
4 cps is shown in Fig. 2. The signal was high-pass filtered at .25 cps.

( % 50% full power). The APSD of the signal up to

Therefore, the first 5 frequency points are not used for the criss corre-
lation. The signal's APSD shows two big resonances, the second of which
at %2 3.4 cps 1is at two times the frequency value of the first one at
1.7 cps . Therefore, the CRISS PSD for the second harmonic was measured:
each Fourier coefficient of the first half of the frequency range was
squared and put to the place at double the frequency. In addition two ad-
jacent coefficients are multiplied and put to the freqﬁency point at the
sum of their frequencies. Performing step 4,these new coefficients are
multiplied by the complex conjugates of the original coefficients. The
coherence from the resulting CRISS PSD and the APSDs of the modified co-
efficients and the original coefficients, respectively, is shown in Fig. 2,
too. It confirms the second harmonic correlation for two peaks., Due to
1791 averaged intervals (= 16 hours) a bias error of the coherence of

.02 + 53% is expected.

In addition, an attempt was made to find third harmonic correlation in the
signal. For this purpose new coefficients were calculated
3 -k k
cneW(Bn + k) =c (n) + c(n+1) k=o0,1, 2
The coherence shown in the lower part of Fig. 2 indicates no third harmo-

nic correlation.

5. Conclusion

The CRISS power spectral density introduced here is a useful tool for
measuring thercorrelation of higher harmonics. With this function their
correlation can be determined quantitatively. In general the CRISS PSD
correlates signal components coming from different frequency ranges. The
normal PSD may be considered as a special case of the CRISS PSD: namely

the correlation of components at the same frequency.

The performance of the CRISS PSD measurement is described for the digital

frequency analysis technique., The quintessence of the signal processing



for a CRISS PSD is the elimination of the stochastic relation between the
signals and the analyzer without disturbing the phase relation between
the signal components themselves. This can be achieved by different ope-
rations applied to the Fourier coefficients of the two components. As a
common basis all effective operations for this purpose must multiply the
phase of one coefficient by a factor proportional to the frequency of the

other coefficient.

A first example shows the measurement of the third harmonic correlation
of a noise contaminated square wave. As  another example the second har-
monic correlation of the neutron flux fluctuation of a nuclear power re-
actor was measured. No third harmonic correlation was found in this sig-
nal. Statements about the correlation between two or more frequency ranges
in a power spectral density function will reduce the number of possible
noise sources, On the other hand a statement for no correlation between
two resonances of similar shape will be useful, too. Thus the CRISS PSD
will help to understand normal power spectral densities, especially those

from signals with higher harmonics.

From the coherence of the CRISS PSD and the auto PSDs of the components

the degree of correlation can be determined quantitatively, The CRISS PSD
itself is a complex quantity and reproduces the phase lag between the two
components. Thus the wave form of a deterministic signal hidden in uncorre-
lated noise can be determined by the CRISS correlation of the signal's

harmonic components.

Acknowledgement

The auther thanks Dr. P. Hoppé for providing the signal from the KNK II.



References

J.W.R. Griffiths, P.L., Stocklin, C. van Schooneveld
Signal Processing

Academic Press, London (1973).

L.R. Rabiner, B. Gold
Theory and Application of Digital Signal Processing

Prentice Hall, Inc. Englewood Cliffs, New Jersey (1975).

J.S. Bendat, A.G. Piersol
Random Data: Analysis and Measurement Procedures

Wiley~Interscience, New York (1971).
S.D. Stearns
Digital Signal Analysis

Hayden Book Comp., Rochelle Park, New Jersey (1975).

J. Ehrhardt

Nachweis bandbegrenzter Komponenten in verrauschten Signalen
durch Uberwachung der spektralen Auto=- und Kreuzleistungsdichten
KfK, 2559 (M#rz 1978)

G.C. Carter, C.H. Knapp, A.H. Nuttal
Statistics of the Estimate of the Magnitude-Coherence Function

IEEE Trans. on Audio and El. ac. (Aug. 1973), p. 388 - 389,

H, Massier
NOASYS, ein System zur on-line Analyse von Rauschsignalen
KEK, 2585 (Juli 1978),

Kernforschungszentrum Karlsruhe.

KfK Nachrichten, 3/4, 1977 -

Kernforschungszentrum Karlsruhe,



- 11 -

B .
] e .
e APS D 20 ) )
51 i
;_.__..ﬁ\,LAP_S;D A ]
15+ | ]
11 q- |CAPSD]| -
.05+ VAPSD -APSD(20) |
0.: “'\/M
[ i
017

5 — Re(CAPSD) ]
o5+ Im(CAPSD) ]
-1+ 4
. " 1 ' l\ 1 : | ! 1 l ] | ‘l )| { ]

0 20 40 60 80 100  120cps

Fig.1

Frequency

Third Harmonic Correlation of a square wave



- 12 =

1..ll]llTlll[llTllllll'lllllllllllllllllll

APSD

rel. units

01

R coherence of the

2. Harmonic

coherence of the

3. Harmonic . 1
0 1 2 3 becps
Frequency

=

Fig.2 Second Harmonic Correlation in the neutron flux of a
nuclear power reactor





