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PREFACE

The Discussion Meeting "What Do We Know about the
Radial Shape of Nuclei in the Ca-Region?", held in the Kern-
forschungszentrum Karlsruhe, May 2-4, 1979 was arranged on an
international level in order to discuss the present status of
our knowledge about shapes of nuclei in the Ca-region. For
this, in a series of introductory lectures and short contri-

butions following topics have been covered:

- Electron scattering

- Muonic atoms

- Intermediate and high energy a-particle and
proton scattering

- ﬂi—scattering

- Total cross sections

- Pionic atoms

- Optical isotope shifts

- Coulomb displacement energies

- Subcoulomb scattering

- Magnetic electron scattering and transfer reactions.

The nuclei of the Ca-region served as representative
examples for which the information from various kinds of ‘
experiments could be critically compared and the concepts could
be illustrated. It was in the spirit of the meeting that the
discussions took often more time than the lectures themselves.
Therefore we may regret that these proceedings do not include
many valuable and clarifying comments. In fact, the main
success of the meeting has been the lively and stimulating
discussion between nuclear physicists coming from quite
different methods and experimental tools, but attacking the

same prcblems.



II
On this occasion we would like to thank Mrs. E. Maa8 and
Mr. P. Emmerich for their help in organizing the discussion

meeting. The meeting has been supported by the Kernforschungs-

zentrum Karlsruhe.

Kernforschungszentrum Karlsruhe, May 1979

H. Rebel



IIT

Table of Contents

NUCLEAR RADII

Daphne F. JacCKSON: ..t e it teeeieeeensososesensesessensenassasss 1
THE CHARGE DISTRIBUTION OF THE Ca-ISOTOPES
FROM ELASTIC ELECTRON-SCATTERING

J. Friedrich oo ei ittt eiietieeeensoessoasesseesasonnessens 22
NUCLEAR CHARGE RADII OF THE 1f SHELL NUCLETX

7/2
FROM MUONIC ATOMS
H.D. Wohlfahrt ...eieiiieniiieennieeennecnnnnns Ceee et 56
OPTICAL SPECTROSCOPY OF CALCIUM ATOMS
Fo TIrEgEOY «veoeeseesoceeasasnsosesascsssnsssessaasssnsscscssassnass 72

ELECTRON SCATTERING FROM 40Ca

I. Sick, J. Bellicard, J.M. Cavedon, B. Frois,

M. Huet, P. Leconte, P.X. Ho, and S. Platchkov ...¢cceve... 96
PROTON SCATTERING AT 1 GeV AND NEUTRON DISTRIBUTION IN NUCLEI

R. SChaeffer .. iiiietenneseeeessscnanotsosensssnnassosnnssssas 98
ALPHA-PARTICLE SCATTERING FROM CA-NUCLEI '

HeJ. GilsS cveeueenesreecnosnsassossessosnsasssssnssassansssss 123

COULOMB DISPLACEMENT ENERGIES AND NEUTRON
DENSITY DISTRIBUTIONS

S. ShlOMO et tsceeuesscsannsscnosassoaosssassosssssssssassseccasces 170
NEUTRON DENSITIES OF CALCIUM ISOTOPES
J. Brissaud and X. Campi «cccccceeererocenercoscnoscnaensnas 195

DETERMINATION OF MATTER RADII IN THE Ca REGION
THROUGH LOW-ENERGY o-PARTICLE SCATTERING
N 8 o o Y = 200
"MODEL INDEPENDENT" POTENTIALS FOR ELASTIC a—40Ca
SCATTERING AND THE PROBLEM OF DEDUCING NUCLEAR MATTER DENSITIES
H.P. Gubler, G.R. Plattner, I. SiCK ceececrctrerecncococecs 209
ALPHA OPTICAL POTENTIAL AND NUCLEAR RADII OF Ni ISOTOPES
A. Budzanowski, C. Alderliesten, J. Bojowald,
W. Oelert, P. Turek, H. Dabrowski, and S. Wiktor .......... 218



Iv

SATURATION EFFECT AND DETERMINATION OF NUCLEAR
MATTER DENSITY DISTRIBUTION FROM OPTICAL POTENTIAL
Z. Majka, H.J. Gils, H. Rebel ......ccccu.. ceseesacan ee.0232
NUCLEAR SHAPES AND THE IMAGINARY PART OF THE
LIGHT ION NUCLEAR OPTICAL POTENTIAL

SCATTERING OF STRONGLY ABSORBED PARTICLES NEAR
THE COULOMB BARRIER
B, FErnandeZ ......eeeeeeeeeesasosossescsasnasoasosasssansass 254
COMPARISON OF n' and n  ELASTIC SCATTERING
OFF Ca NUCLEI IN THE 7N (3,3) RESONANCE REGION

JeP. EJQer, i vieeeeeeeenonoaasosesasasssssnsossasassssssans 270
NUCLEAR RADII FROM PIONIC ATOMS

E. Friedman ......eeeeeeecesaesccecscesssocnsssassssssssns 285
TOTAL CROSS SECTIONS AND THE NUCLEAR MATTER
DISTRIBUTION

H.O. MEYEeT .. eeeeeesosooasasossssssosnscsssnsscccssasasns 300

RADIAL DISTRIBUTION OF SINGLE PARTICLES IN NUCLET
FROM TRANSFER DATA
A. MoAlem .......0cteeetveccecccnsossssannsssssssssssenococs 318
THE MEASUREMENT OF NUCLEON ORBIT SIZES IN THE
Ca REGION BY SUB-COULOMB TRANSFER REACTIONS

J.L. DUrell | .. ittt ereneonenceancanonnns et es e n e 329
NEUTRON RADIAL DISTRIBUTION FROM ELECTRON SCATTERING
T SiCK v ieeeeeeeeeooeseooasssssensesenasssensennsnnonasss 336

BACKWARD-ANGLE ELASTIC ELECTRON SCATTERING FROM K

C.W. de Jager, P. Keizer, L. Lapikas,

H. de Vries, and S. Kowalskil .....ce0e-s eteecsecrssnenanas 348
EFFECT OF THE FREQUENCY DEPENDENCE OF THE NUCLEAR MEAN
FIELD ON THE RADIUS OF A VALENCE ORBIT

A. Lejeuﬁe and C. MahaUX .....ccveeesscccosncssoscsscacsnsocscs 352
SELF CONSISTENT CALCULATIONS OF NUCLEAR DENSITIES
OF NUCLEI OF THE Ca REGION




v

Page
THE NEUTRON AND PROTON DISTRIBUTIONS OF THE
CALCIUM ISOTOPES
B.A. Brown, S.E. Massen, and P.E. Hodgson ......seccesue 377
REVIEW OF THEORETICAL RESULTS
R.C. Barrett .. iieiiineieeteeeesecsneeccoanssasonnsnsoees 425

SUMMARY TALK



Vi

PARTICIPANTS

Barrett, R.C. University of Surrey,
Guildford, England
Boschitz, E. University of Karlsruhe,
Federal Republic of Germany
Brissaud, I. Institute of Nuclear Physics,
Orsay, France
Brix, P. MPI Heidelbergq,
Federal Republic of Germany
Budzanowski, A. Institute of Nuclear Physics,
Cracow, Poland / KFA Jilich
Campi, X. Institute of Nuclear Physics,

Orsay, France

Chiang, H.C. University of Peking, China/
MPI Heidelberg, Federal Republic of Germany
De Jager, C.W. IKO Amsterdam, The Netherlands
Duggan, F. Institute of Nuclear Physics,
Orsay, France
Durell, J. University of Manchester, England
Egger, J.-P. University of Neuchitel,
Switzerland
Fernandez, B. CEN Saclay, France
Fricke, G. University of Mainz,

Federal Republic of Germany

Friedman, E. The Hebrew University, Jerusalem,
Israel
Friedrich, J. University of Mainz,

Federal Republic of Germany

Frois, B. CEN Saclay, France
Gils, H.J. KfK Karlsruhe, Federal Republic of Germany
Grange, P. MPI Heidelberg, Federal Republic

of Germany
Grotowski, K. Institute of Nuclear Physics,
Cracow, Poland

Gubler, H. University of Basel, Switzerland



VII

Heilig, K. University of Hannover,
Federal Republic of Germany

Hifner, J. University of Heidelberg,
Federal Republic of Germany

Jackson, D.F. University of Surrey,

Guildford, England
Klewe-Nebenius, H. KfK Karlsruhe, Federal Republic of Germany
Klose, W. KfK Karlsruhe, Federal Republic of Germany
Kluge, H.J. University of Mainz,

Federal Republic of Germany

Kowalski, J. University of Heidelbergq,
Federal Republic of Germany
Lejeune, A. University of Liége, Belgium
Mahaux, C. University of Liége, Belgium
Majka, Z. Institute of Nuclear Physics,

Cracow, Poland
Meyer, H.O. Indiana University,
Bloomington, U.S.A.
Michel, F. University of Mons, Belgium
Miska, H. University of Mainz,
Federal Republic of Germany
Moalem, A. Ben Gurion University,

Beer Sheva, Israel

Nowicki, G. KfK Karlsruhe, Federal Republic of Germany
Palmér, C. University of Oxford, England

zu Putlitz, G. GSI Darmstadt, Federal Republic of Germany
Rebel, H. KfK Karlsruhe, Federal Republic of Germany
Schaeffer, R. CEN Saclay, France

Schatz, G. KfK Karlsruhe, Federal Republic of Germany
Schellenberg, L. University of Fribourg, Switzerland
Shlomo, S. CEN Saclay, France

sick, I. _ University of Basel, Switzerland

Steudel, A. University of Hannover,

Federal Republic of Germany

Trager, F. University of Heidelberg,
Federal Republic of Germany
Wagner, G. MPI Heidelberqg,

Federal Republic of Germany



VITI

Wiegemann, H. University of Heidelberg,
Federal Republic of Germany
Wohlfahrt, H.D. Los Alamos, U.S.A.




NUCLEAR RADIT

Daphne F. Jackson
University of Surrey,
Guildford, England



NUCLEAR RADII

Daphne F. Jackson

Department of Physics
University of Surrey, Guildford, UK

1. Introduction

In a summary of proton and neutron radii presented at the EPS conference
in 1976, I concluded that [1] ... "It is evident that the problem of
determining the proton and charge distributions is well understood and that
some moments of these distributions are quite well determined. In contrast,
the situation for neutron distributions is rather confused. There are too
many methods and each one suffers from deficiencies; for proton and a-particle
scattering the effective interaction is not precisely known while for pion and
kaon interactions the experimental uncertainties are often large and the
resonant nature of the meson-nucleon interaction complicates the theory". At
about the same time, R.C. Barrett and I used the quotation [2]... "Fact is
theory and fiction is experiment" to introduce a review of the nuclear matter
distribution [3].

The work carried out in many groups during the past 2-3 years has very
largely resolved the confusion over the matter and neutron distributions,
particularly in the region of the Periodic Table to be discussed at this
conference, and has probably reversed the relationship between theory and
experiment. I anticipate that many of the following papers will indicate a
new sense of confidence in our understanding of nuclear radii and distributions.
In this talk, I will indicate where some of the remaining points of weakness or
uncertainty may lie, in the hope that other speakers may be able to deal with
them. I have selected a few topics to illustrate these points but will leave

detailed discussion of new results to later speakers.

2. Special Features of the Calcium Region

Calcium itself provides the first long sequence of stable isotopes,
conveniently stretching between the magic numbers at N=20 and N=28, while the

stable isotopes of potassium, argon, titanium provide useful comparisons.



Thus we expect to be able to study the following basic nuclear properties -
(i) the effects of shell closure at Z=20, N=20 and N=28, (ii) the change in
the distribution of a fixed number of protons as the neutron number increases,
and (iii) the change in the neutron and the matter distributions as the neutron
number increases. The emphasis is very definitely on changes in distributions
and hence we are particularly interested in those phenomena which depend on
differences between these quantities. Experiments which measure directly
differences or ratios will be especially useful.

The stability and abunéance of most of the relevant nuclides means that
a wide variety of measurements are possible and hence we have the possibility
of comparison of methods and conclusions. Further, the availability of a
nucleus with z=N, i.e. *0Ca, makes it possible to perform calibration measure-

ments and to determine parameters of a theory.

3. Definitions
If the ground state of a nucleus with Z protons and N=A-Z neutrons is

represented by |0>, the one-particle proton and neutron distributions are given

by 7
Zo,(r) = <oliz1 8 (r-r;) 0> (1)
N
Ny (1) = <0] ] 8(z-ry)o> (2)

where each sum runs over like particles only and the normalization is

3. — 3. =
Jon({)d r = J pp({)d r=1. (3)
The matter distribution is
Aoy (1) = Zp (x) + N p (x). )

These are all distributions of point nucleons in the nucleus. The two-

particle density distribution is defined as

A(A-D)p(r,r") = <0 ; 6(r—ri)6(r—rj)|0> (5)
N i1~ - .

and in a single-particle model is given by

AA-Do(x,x") = A2 p(x)p(x') - A p (T,T") (6)



Aoy (rr') =T ] of (x') ¢5(x) o, (x") ¢ (r) (7
A Do :
Ae(r) =1l (0]? , (8)
H

This model includes only Pauli correlations and excludes short-range dynamical
correlations and medium range correlations arising from configuration mixing
and deformations.

It is possible to define various distribution differences, such as the

neutron excess distribution

Pre(®) =N pn(f) - Z onc(f) (9

where P is the distribution of a core of Z neutrons. The difference between

two proton distributions may be written as

and so on.

For a distribution of the form

p(r) = oy £(1) (11
where £(0) = 1 and f(~) = 0, Sussmann [4] has defined the volume moments
F, = J £(r) r’dr (12)
0

and the radius parameters -

central radius C = F, (13)
. . .
uniform radius U = (3F,) 3 (14)
1
quadratic radius Q = (5F4/3F2)2. (15)
The volume integral is given by
J=41rpF=4—1Tp E (16)
0 2 3 0

and hence U has the physical significance of the radius of the uniform sphere

which contains the same amount of matter as the real distribution. Thus U



s

B-stability, but C and Q have more complicated dependence on A[4,5]. The

may be expected to depend on A’°, at least along the line of maximum
disadvantage of this approach is that it implies a precise knowledge of o
but the matter distribution is not well-determined at r=0 and the uncertainty
in the proton distribution at this point is still quite large. Also, if the

distribution is not approximately monotonic, pg must be defined as some

average value in the interior of the nucleus. For these reasons, the moments
defined by Friedrich and Lenz [6]
1/
M(k) =<r> K (17

or the moments defined by Ford and Wills [7]

1/k 1/k

(kr3)<r’>] = BT < M@ (18)

=

R =1

have been widely used. For studies of muonic atoms, the generalized moments
defined by Ford and Rinker [8] as

<u(r)rk> = J p(r) u(r) rk+2 dr (19)

0

are used, where rk times the weighting function wu(r) is frequently taken to be

"% jntroduced by Barrett [9] to describe the

related to the function a + b rke
spherically averaged potential due to the muon cloud.
- The charge distribution of a closed-shell nucleus is given by the

folding integral
Z oy, (1) = ZJp (r') gy(|z-r'[hds' + NJon(g') g, (Jr-r' [)d’r’ (20)

where gp, g, are, respectively the internal charge distribution of the proton
and of the neutron. It is necessary to remember that for other nuclei there
may also be a contribution [10] arising from the spin-orbit interaction of the
lepton with valence nucleons and hence the rms charge radius is given by
2 = <r2s 4 <p2 N .2 + <yp2

“Tch <r >p v >proton * 7 T neutron T ¥ Tes” (21)
The change in the r.m.s. charge radius of “8Ca due to the neutron charge form
factor has been calculated to be -0.007 fm and that due to the neutron spin-

orbit term to be -0.014 fm[10].



4. High Energy Proton Scattering

The very good quality of the proton scattering data now available in the
energy region 600 MeV - 1 GeV makes the analysis of these data a popular
method for the study of nuclear radii. This choice of energy has much to
commend it; in particular, it seems very reasonable to use the impulse
approximation and relate the scattering to the amplitudes for free nucleon-
nucleon scattering. In this approximation, the first-order nuclear optical
potential is given by

. -iq.r
Upa () mJ[z Fo(@ (@ + NF (@ £ (@] e 7 "d% (22)

where q is the momentum transfer, Fp and Fn are the nuclear form factors, i.e.
iq.r

iq.r
Fp(q) = Je ~ ~op(f)d3r, F (q) = Je N ~pn(f)d3r, (23)

and fpp’ fpn are the amplitudes for p-p and p-n scattering. The latter may
be approximated as [11,12]

£op (@ = App(@) + € (@) G.n (24)
Aop (@) = Fo o [1-3 o (@) exp(-62,a%/2) (25)
ap(@ = 0g * oy q? (26)
¢ @ =y L8 ] exp(-82 q2/2) (27)
PP ir ‘pp 2M s s

and similarly for f'n'

p

The total cross-sections ¢ for pp and pn scattering may be related to the

cross-sections in the pure isospin T=1 and T=0 states, i.e.

Opp = o(T=1) , Opn = {[o(T=1) + o(T=0]. (28)
Examination of the behaviour of these total cross-sections, shown in Figure 1,
indicates that opp goes through a maximum at 1 GeV. This means that the
absorption of protons on protons steadily increases from about 250 MeV up to a
maximum at 1 GeV and hence the penetration of the proton into the interior of
the nucleus steadily falls. The absorption of protons on neutrons rises

steeply below 300 MeV, but is ~ 25% below that on protons at 1 GeV. The
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Figure 1: The total cross-sections for the nucleson-nucleon interaction

in the pure isospin states T=0 and T=1 [13]

discrimination between neutrons and protons is not large and therefore proton
scattering may be expected to be sensitive to the behaviour of the matter
distribution in the surface of the nucleus.

The nuclear scattering may be calculated using the first-order potential
in a Schrodinger equation with relativistic kinematics or using the Glauber
formalism. In the optical limit, the scattering amplitude can be written in

the form

ig.b
£alD) = Je > {l-exp[-Z Jrgtg-f)ppq)d% - NJrncy-g)pn(g)df‘r]}dzb (29)

. ix () ix (b)
I (b) = [1-e ] +e r_(b) (30)
P p.
1 -iq.b , 1 -iq.b ,
N f e T E (@, T (b) = gy [e SR (31)
J
where Xe is the phase shift function for the Coulomb interac+ion. Slightly

different formulations are possible and all seem to yield quite good agreement
with the data provided that Coulomb and spin-orbit effects are taken into
account, at least approximately. Figure 2 shows the effect of neglecting
these parts of the interaction for 1 GeV proton scattering o1 “9Ca and “8Ca[14].
The parameters of the spin-orbit terms can be checked by fitting polarization
data [11] and it is therefore very welcome to see good measurements of

analysing powers at 800 MeV[15]. Data for calcium isotopes are shown in
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Figure 2. Elastic scattering of 1 GeV protons from “0C and “8Ca [14]

Equation (27) describes single scattering only. Double and higher
multiple scattering can be included and are quite important for light nuclei[l16].
Harrington and Varma [17] have given an estimate of the effect of Pauli

correlations in an oscillator model and find that they are more important than

corrections to the Glauber formalism, For “0Ca, the cross-section is
increased by ~ 10%, 13% and 20% at the second, third and forth maxima,

respectively. Some authors [11,12,18] alse include a centr= of mass correction
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Figure 3. Angular distributions and analysing powers for elastic
scattering of 800 MeV polarized protons from calcium isotopes.
The curves are calculated from the first order optical

potential [15].

factor derived from oscillator functions, but it seems rather doubtful
whether this factor should be included if comparison is to be made with
realistic forms for pp and °, which have been fitted directly to experiment.

The introduction of model-independent representations of the density
distributions appearing in equations (22) or (27) have confirmed [11,18] that
the central region of the matter distribution is not well-determined, although
some moments of the distribution are quite well-defined. Figures 4 and 5
show the results of one of the earliest studies of “0Ca, but more recent work

does not seem to change this general conclusion. Thus it is reasonable to
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express the results of these analyses in terms of differences of moments of the
matter distributions and particularly in terms of r.m.s. radii. When
conclusions are drawn about the neutron radii it must always be remembered that
they depend critically on the results for the proton radii derived from
electron scattering or other electromagnetic data.

I do not know of any model-independent method of calculating the multiple-
scattering correction to the Glauber scattering formalism or the second-order
optical potential, although it is possible to construct Pauli correlation
functions from realistic single-particle wavefunctions [19] and to make a
realistic single-particle estimate of the second-order potential [20]. It is

also important to estimate the effect of medium-range correlatioms.

5. Pion-nucleus Interactions

It has long been hoped that differences between the np and the mn
interactions could be used to obtain direct information about the neutron
distribution. From charge symmetry, the total cross-sections are related in

the following manner

o(n'p) = o(nn) = o(T=3/). (32)
o(1p) = (') = Z0(T=}) + 3 o(T=3/5). (33)

where the ¢(T) are the cross-sections in the state with pure isospin T = 3/,

and T = } which are plotted in Figure 6. Although averaging over the fermi
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Figure 6. The total cross-section for the pion-nucleon interaction in

the pure isospin states T = 3/, and T = $[13]



momentum of the nucleons in the nucleus suppresses the resonance structure in
the T = § cross-section in the energy region 0.5-1.0 GeV [21], the m p
cross-section still exceeds the ﬂ+p cross-section by a factor of ~ 2 in this
region. In contrast, in the region of the (3, 3) resonance o(T=3) is
negligible and hence 0(ﬂ+p) ~ 3 o(m p). Hence, in the upper energy region,
the penetration of pions into the nucleus is comparable with that for 1 GeV
protons but at the (3,3) resonance the nucleus is very black for pions.

The earliest attempts to exploit these differences involved measurements
of ratios of ' and 7 reaction cross-sections on various nuclei [21,22]. The
data can be analysed using an optical potential constructed in a similar
manner to the proton optical potential defined in equation (22), which in a
forward scattering approximation yields the imaginary part

v

In U¥(x) = ${o(n'p) + o(n P)IA p (1)

£ Ho(np) - o(w PRI o (x)-Z o (1)]. (34)
It is essential to include the Coulomb interaction accurately because this
affects the m' and m_ scattering differently, but use of ratios of cross-
sections reduces the importance of other corrections. Differences of total
cross-sections for isotopes such as 162180 and “0°%8Ca have been measured[23]
for both m° and 7 in the region of the (3,3) resonance where the results are

rather insensitive to the details of the optical potential.
Differential cross-sections for pion scattering have been studied at

1 GeV [24] and in the energy range 50-300 MeV [25]. It is found that the
depths and separation of the minima are sensitive to changes in the nuclear
distribution but these features are also sensitive to the magnitude and sign
of the real part of the pion-nucleon amplitude. Sternheim and Yoo [26] have
studied differential cross-sections for m and " scattering from *8Ca at

130 MeV and have shown that a fit to a single angular distribution does not
determine the neutron radius uniquely unless the potential parameters are
known, because changes in the neutron distribution can be compensated by
changes in the coefficient of the p-wave isovector term in the potential. In
order to avoid some of these difficulties Rost et al [27] have proposed that
the ratios of angular distributions of m scattering from neighbouring nuq}ei
should be studied at low energy. This method exploits the large s-wave
isovector part of the 7N interaction. They use a potential based on that

derived from studies of pionic atoms with the form



(35)

U(r) = U, +U_+ U
(r) bt

0 sa * Y coul

where U0 is the Ericson potential [28] without the Lorentz-Lorenz effect and
with the parameters taken from free N scattering, Up is a Pauli blocking term

of the form
U = <> p (1) (36)
P T m

where <%> is the Pauli correlation length, and USA is an s-wave annihilation

term

Uga = Bolo, ()12 (37)

which represents the effect of annihilation of pions by absorption on two
nucleons, Figure 7 shows the sensitivity of ratios of cross-sections of
29 MeV pion scattering from 180 and 160; in the latter case it is assumed

that the proton and neutron distributions are identical.

T
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_ 16
T~ on O
18 .
Figure 7. The ratio R of
U differential cross-sections of
R'ﬁ’ 29 MeV negative pions scattered
15 \\\\_//// , from 180 and 60, The curves show
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An alternative approach is to obtain the parameters of the potential by
fitting data on pionic atoms. This has recently been done by Batty et al [29]
using the Ericson potential with the Lorentz-Lorenz correction. They take a
complex annihilation term in both s-wave and p-wave and write the density
dependence of this term to be 4 pp(r)pn(r), instead of the customary [pm(r)]z,

on the grounds that the absorption of pions occurs preferentially on n-p pairs.
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Their analysis of 2p shifts and widths in a range of nuclei showed a strong
link between the coefficient of the s-wave isovector term and the values of
<rﬁ>% - <r§>%. The same group has studied the 2p states in pionic *0’%%Ca
and obtain [30] a value for the difference in the neutron rms radii which
~disagrees sharply with the much larger values obtained [31] using less accurate
data and different parameters in the potential. They obtain good results for
ls states, except in “He and 7Li, and for 3d and 4f states in heavier elements.
Nevertheless, it is not possible to give a unique set of parameters for an
effective pion-nucleus potential valid throughout the Periodic Table.

A number of questions are prompted by these studies. (i) Are as many as
9 parameters really necessary? (ii) Should any of the parameters be tied to the
free 7N values and, if so, which ones? (iii) Should the Lorentz-Lorenz
correction influence the absorptive term? (iv) Is there any theory to define

the form of the absorptive term?

6. Radii of Valence Nucleons

There are three methods which have been widely used for the study of the
radii of the distributions of valence nucleons. One of these is the comparison
of elastic electron scattering on neighbouring nuclei [32, 33, 341]. The now
familiar model-independent analyses of electron scattering data make it
possible to present the error band for the density difference, as shown in

Figure 8. It is attractive to associate the density difference between

Aptr)

40, 39

By Ca- K
~0.001]
---DDHF G-0
Figure 8. Charge density difference for “0Ca-39K derived from elastic
electron scattering and muonic atom data. The dashed curve

is the contribution from the d3/2 proton plus core

polarization [32].
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%0Ca-39¢, and similar pairs, with the density distribution of the added protons,
but there is strong evidence for core polarization which may give rise to an
increase in size of the core and a change in its deformation parameters. These
effects are also very important for comparison of isotones, where another very
interesting effect is seen, namely evidence for a change in the occupation
numbers of the valence protons.

Another method which may be used for nuclei of non-zero spin is the study
of the transverse magnetic component of elastic electron scattering which is
dominant at large angles [35]. In this method, the model-independent technique
of analysis is not used; instead the magnetic operator is represented as a sum
of single-particle operators and the nuclear wavefunction is expanded in a
single-particle basis. Thus both the occupation probabilities of the single-

particle states and the radial forms of the single-particle wavefunctions are

needed. The sensitivity of the data to the radial function is shown in
Figure 9. In the calculations with the Saxon-Woods wavefunctions the
10-2 ‘ 10-2
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Figure 9. Magnetic form factors of %°Ti and 5!V [35].
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separation energies of the single-particle states are also needed. In this
method, core polarization produces a very large change in the magnitude of the
cross-section, but does not significantly change the shape of the contribution
to the form factor from the maximum magnetic multipole, as can be seen from

Figure 10. The change in the rms radius of the 1g9/2 neutron is <0,3%. An

SERBER

qCtm™")

Figure 10. M9 form factor and sum of lower multipole form factors in

the single-particle model and including core polarization [35].

apparently more significant correction is that due to meson exchange currents.
Calculations in an oscillator basis, discussed by Rothaas [33], suggest a
change of ~ 2.5% in the radius of a single neutron outside a closed shell and
of v~ 1.5% for an extra-core proton are necessary to allow for the effects of
meson exchange currents.

The third method is the study of sub-Coulomb single-nucleon transfer
reactions with light [36] and heavy ions [37,38]. This method depends on the
assumption that the reaction is localized in the extreme surface of the nucleus
where the radial shape of the wavefunction is determined by the separation energy
and that the spectroscopic factors and normalization factors can be determined
by calibration experiments. Recent siudies [38] with Carbon and Oxygen ions
have given the values for the radii of neutron states in 2082209ph shown in

Figure 11.
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Figure 11. Rms radii of neutron states in 208:209pp [38].

Information on occupation probabilities and separation energies also
comes from single-nucleon transfer and knock-out reactions. The essential
feature of the DWBA analysis is the assumption that the overlap of the
wavefunctions of the initial nucleus A in state J, and the final nucleus B in

A
state JB can be written as

j _ . ., M
OJAJB@E) = JZm(JBMBJmIJAMA).7JAJB(J) v5 () (38)

where the ¢? is a normalized single-particle wavefunction with separation energy
Ja J

&5 = -[E," - EBB] (39)
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and J (j) is the fractional parentage coefficient which is related to the

spectroscopic factor by
S (3) = N| 1z . (40)
JAJB J 5JAJB

where Nj is the number of nucleons in the shell j. Using sum rules for the
spectroscopic factors for pick-up and stripping [39] it is possible to derive
the occupation probabilities of shells and sub-shells.

It is well known [40,41] that the procedure of generating the radial part
of wj in a spherically symmetric Saxon-Woods potential with separation energy
€; is unlikely to give the correct interior behaviour unless some additional
conditions are imposed, In many cases [42,43], agreement with experimentally-
determined charge distributions or radii is required. The relation between

the proton distribution and the overlap integral is given by [40,42]

Z .
- J. 2
Ap (1) = ) ) |€@y ;. @D (41)
R 5 Ipdp -
B
T = A:l-r' (42)
J J
Cc _ A _ 2 . B
ej - _[EA § JJAJ (J) EB ] (43)
B B
where the sum is over all the possible states JB in the parent nucleus. The

correct separation energy is now the centroid energy which can be determined
only if the location and strength of the components of the single-particle
state are known.

Some of the difficulties arising in the comparison of these three methods
are now evident. (i) The single-particle wavefunctions used in the DWBA
formalism are not quite the same quantities as the single-particle contributions
to the density distribution; the change in the radial coordinate is probably
not important but the difference in the separation energies is significant.
(ii) It is not clear whether experiments with low energy projectiles determine
fully the fragmentation of the single-particle strength, particularly for deep
hole states, and higher energy experiments may not yet have achieved the
required resolution. (iii) If occupation probabilities are taken from, or

compared with, shell model calculations there is uncertainty due to the use in



the calculations of oscillator basis states and of a truncated space.

7. Conclusions

Despite the substantial progress made in the past 2-3 years there are
still some problems needing further attention. A number of corrections need
to be estimated although their effects may prove to be small. The connection
between Hartree-Fock mean field calculations, shell model calculations and the
nuclear structure component of direct reaction theories needs further

exploration.

I am indebted to many colleagues who have kept me informed about their

work.
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Among all experimentalists present at this meeting I am one of the very
few who never did an experiment on the Ca-isotopes. Perhaps this was

Just the reason for the organisers of this workshop to invite me for this
talk on the results from electron scattering, hoping that in this way
they might get an independent description of the particular field which
they themselves are not so familiar with. - I had to choose whether to

to give a report on what has already been published or to look into the
data again myself. Since the methods of data analysis have improved sub-
stantially since most of the publications about electron scattering from
the Ca-isotopes, I have chosen the second way. Thus I spent much more time
for analysing the available data than for rewiewing all other information

and presenting it here too - I must apologise for that in advance.

The field will be covered in three sections. In the first I'11 give a
brief -survey on the method of data analysis in electron scattering; it is
meant particularly for those who are not so familiar with this field. In

the second section I'11 deal with the charge distribution of a single

40Ca. The third section is devoted to charge

distribution differences, mainly to that between 48Ca and 40Ca.

nucleus, namely that of

I. The determination of the nuclear charge density distribution from

electron scattering cross sections

An electron incident on a nucleus experiences the electromagnetic inter-

action. In this talk I restrict myself to charge scattering only, for
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which the cross section for scattering from spin zero nuclei is given by

do do 2
(1) (@) = (go) * F(a)
da’ — Tdelyo
where (do/dQ)Mott is the cross section for scattering of spin-1/2-particles
from a point-nucleus, and the formfactor F(q) contains all information
about the structure of the nucleus. If the process were correctly described

by the Born approximation, then F(q) is related to the charge distribution

according to

>
1qer d?

this means: in an electron scattering experiment we measure the Fourier-
transform of the structure function pif(r) = w?(r) ¢1(r)’ that contains
the nuclear wave function in the initial and in the final state. I'11
restrict myself further to elastic scattering only, thus Pig = p(r), that
means: we measure the static ground state charge distribution, or I better

say: that is the quantity which we want to deduce from the measured data.

Although the Born apprbximation does not describe the cross section correctly
the principle problem in determining p(r) can be recognised best - and
correct]y! - in this approximation: we find p(r) by the Fourier-transform

of F(q) given by

(3) o(r) = 2—12 f F(a) Jolar) ¢° da.

Well, nobody knows the quantity F(q) from a measurement with mathematical
accuracy, there are errors,and the range of the argument for which the

form factor is measured is limited to a certain qmax'



The story that has been written on this problem is known as "model-
independent analysis of electron scattering cross sections". The first
chapter - or better: the introduction has been written in the fifties
and sixties: particular functional forms had been chosen for o(r),
possibly with some free parameters in it, which then were fitted to
the measured cross sections. A particular form that seemed to be well

suited to describe heavier nuclei was the Fermi—distr{bution eq. (4 a)

(a) o1
(4) (b) o(r) = —————i%:E— * (1+wr2/c2)
1+exp(—z—)
(c) ¥ (1+wr2/c2) +

+ Aj(ar) exp (- 52 r2/4)

with the half density radius c and the skin thickness t = 4.4 z. When

more data became available more parameters had to be added in order to
make the model-distribution flexibel enough, e.g. a parabolic modification
with a parameter w (eq. (4 b)). - Later it became necessary to add some

more flexibility to allow for oscillations on p(r) (eq. (4 c)).

I1'17 not tell thewhole story of model-independent analysis here, but the
current status should be reported briefly, since representatives of the
two existing methods are present and results achieved with both of them

will certainly be presented.

Method one is a direct further development of Lenz' proposal to represent

the charge distribution by a sum of s§-functions 1).



They give the same cross section as®model distribution where actually
data have been taken, but beyond Imax everything can happen to the
Fourier-transform of p6 (fig. 1). Nobody felt really happy with this
caricature of a nucleus, from which only integral quantities could be
deduced reasonably. In order to get back to reasonable charge distribu-
tions one had to introduce some means to cut down the unreasonable
Fourier transform of p‘S at high q. This could be done either in r-space
or in g-space. The first possibility was chosen by Sick 2) who smeared

out the §-functions to Gaussians, thus bringing his SO0G-model into being:

) S n s T
i=l 1+ 2 Ri/Y
T-Ri 2 Y‘+R_i 2
e (- () +exp (- (—) ]

Y Y

The damping of the unphysically large high Fourier components from the
s-functions is achieved by an appropriate choice of the width vy, which is
chosen with regard to the extension of the proton or to structures expected

from shell model calculations.

The second method has been developped at several places independently,
one of these having been Mainz 3). Therefore I have a certain tendency of
favorizing this one. The basic idea is to cling as close as possible to
eq.(3). The very weak assumption, that p(r) = 0 for r beyond some cut-off
radius R allows to convert the integral into a series which we can Took

at as the Fourier-Bessel expansion of o(r) :

2 2 .
g(r‘) ) { REI Q, F(qv) Jo(q\)r) for r <R

0 for r > R

= Loa, Jolar)



The great advantage of this expansion as compared to other ones lies
in the fact that here the expansion'coefficients are given very directly
by the measured quantity itself, namely the formfactor at certain

values q, of the momentum transfer :

2
(7) s = i F(q,)
v 2m R v
- ™
(8) Vot

And this is one of the advantages of this model-independent model: one
can see very directly which Taboratory contributes with its data to the
determination of which of the coefficients. The dominant contributions
are those at Tow q - whether they are also the important ones, that

depends on what we are looking for.

From the measurement alone only part of the series is determined, the

remainder must be estimated by some reasonable assumption :

N
(9) o(r) = U a dola,r) + el a,dola,r) .
\_,.Y—_.__/
from measurement from estimate in g-space

For large q the Fourier-transform of the distribution of pointlike par-
ticles must decrease at least as q_4, the extension of the protons

gives an additional decreasing factor Fp(q) :

4

(10) IF(Q)Ih-igh.qi Cq Fp(q)
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(the constant ¢ is matched to the last measured maximum of F(q)).

The coefficients a are determined by a fit to the measured data. This
fit is not done in Born approximation but with a correct phase-shift
calculation. This makes only correct the whole procedure - it does not
change basically what we have learned from looking at the Born approxima-
tion, namely that we measure a certain part of the Fourier-expansion of

the charge distribution - and that we have to estimate the other part.

The measured data give information on o(r) with a certain uncertainty,
which we call the statistical error of p(r); the estimate yields another
contribution to Ap(r) which we formerly called model error, other people
have invented another name which might better describe where it comes

from: copleteness error.

If only very little information is available from the measurement, then
the completeness error prevails - may be to such an extent that the
whole procedure is no longer meaningful. Once the measurement is extended

to Targe g than this source of error might be negligeable.

40

II. The charge distribution of "“Ca determined from elastic electron

scattering cross sections

I have reanalysed the existing data for 40Ca, more precisely: the published
data 4’5’6). The Tatest news from this field will be presented in the
contribution by Bernard Frois, who has actually done new measurements at

Scalay 7), and that allways means: better data at higher momentum transfers. -
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Somewhat artificially I have omitted the information about the Ca-nuclei
from the other electromagnetic probe, namely from the transition energies
of muonic atoms, which yield extremely precise values of the Barrett
momen ts 8). The results of these measurements will be presented in the

next talk by Dieter Wohlfahrt.

I have restricted myself to analysing the cross sections from the papers
given in table 1. I need not mention the Taboratories since only one was
involved, namely Stanford, although people from many places took part.

The older the data the more difficult it is to incorporate them into an
analysis - I'11 point out what I mean by that in a minute with respect

to the Frosch-data. At any rate, I have omitted older data from the Stan-
ford group.-In the same table are given the uncertainties of the different
data sets. Where no numbers are given it is assumed, that the older data

are not measured more accurately than the more recent ones.

The charge distribution of 4OCa is well known from the Frosch paper 6)
(in Mainz we are used to call it the Noldeke~measurement), it looks Tlike
curve (1) in figure 2, a very clean description of the nuclear charge
distribution. However, looking into the paper by Heisenberg et al. ?) we
find a set of different parameters for the same type of distribution

4) more data are collected, they

(curve (2)). In the paper by Sinha et al.
also give the values for the older Bellicard-measurement which cover the
highest g-region - and it is just this part of the data that requires some
modification of an oscillating character, which cannot be extracted uni-
quely from the data as is demonstrated by curves (3) and (4) (this problem

has been investigated in some detail by Sick 10)).— We are already left
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with four different distributions and we must ask ourselves: how does

the nucleus really Tlooks Tike.

In the meantime, the methods of analysing electron scattering cross
sections have been improved considerably, I talked about it in some
detail. I have reanalysed the data with the Fourier-Bessel-expansion,

which is flexible enough to allow for all possible density fluctuations.

In a first step one must chose an appropriate value for the cut-off
radius R. As one recognises from fig. 3 the data cannot be fitted under
the restriction that the charge density be zero already beyond 6.0 fm
or even 6.5 fm. But there appears a saturation in x2 from 7.0 fm on. -
In order bo be sure that there is enough flexibility for the charge

distribution I have chosen a cut-off radius of 8 fm.

Entering all data into the fitting program gives the dashed uncertainty
band in figure 2. The qualitative agreement with the model distribution
(3) is not so bad in particular the smooth oscillation appears in this
analysis too. The error band I have plotted here corresponds just to

one standard deviation, this means: whenever the density is shifted from
the center to this 1imit at one point r, one can fihd a curve within this
band for which the increase in x2 is just unity. The error band originates
from a pure statistical treatment of the data. There are,howeven other
sources of error such as normalisation of the data as a whole or energy
calibration etc. We must Took at these uncertainties too (in particular

I must envisage the fact that the better determination of p(r) due to the

new Saclay data does not reproduce the curve with the bump in the centre



of the nucleus but that with lower g(r = 0) corresponding to a change

in the sign of F(q) at q = 3.1 fn~ 1 10)).

Fig. 4 shows a plot of the best fit cross section curve calculated for
750 MeV, the measured data are normalised to the same energy. The fit

to the data is excellent - at least at the level of accuracy which such
a logarithmic scale can provide; we get a better feeling for the quali-
ty of the data - or the fit - when looking at the percentage deviation

of the data from the fit.

Fig. 5 a shows the older Stanford data by Frosch et al.,which deviate
systematically from the fit, which is dominated by the majority of the

later measurement with smaller error bars. A possible source for this
discrepancy might be recognised by comparing the deviation from the fit

with thevariation of the cross section due to a systematic error in the
scattering angleo (or the energy). The curve in fig. 5 a corresponds to
Ac(Are = + 0.10) at 750 MeV. - An uncertainty of 0.1 degree and of 0.5 %

in E has been estimated by the authors. When © is changed by - 0.1°% and

E by - 0.5 %, the deviation from the common fit is reduced considerably.
Although the data might be interpreted correctly by such a measure, I

have preferred to omit them in the further analysis, and henceforth I am only
talking about the data from refs. 4) and 5) (set 1-7 in table 1).
However, here too there exist obvious s ys tematic deviations

from the fit (fig. 5 b). By adding 3 % to the statistical errors

(cf. table 2) one gets reasonable values for x?, but this measure has

also some influence on the best-fit distribution itself, and one must doubt,

whether or not the obvious systematic uncertainties are taken into account

appropriately in this way.



According to the different sources of uncertainty the data have been

analysed

a) just as they are published;

b) after shifting the absolute normalisation (cf. table 1);
c) the same for the energy;
d) the same for the scattering angle;

e) fitting the normalisation of each set separately;

e')same as e) but including the additional error of 3 %.
In order to check the assumptions of the "model-independent" model

f) same as.e') but with different cut-off radii;
g) same as e') but taking the data only up to a certain momentum

transfer,

A selection of resulting numbers are compiled in table 2, the fit, that
should be taken as the most reasonable one being that in column 3. -

Some interpreting remarks may be valuable:

1. The quality of the different evaluations may be recognised from the
value of x2. The great break-down in x? occurs when one allows the
different sets of data to float independently and when one adds the

additional uncertainty of 3 4 to the statistical errors.

2. In general the normalisation comes out within the margin given by
the experimentalists, although it may not be justified to shift

the different sets individually. The normalisation of the old
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750 MeV-data is quite undetermined and the individual deviations from
the fit scatter to such an extent that there is an urgent need for

better data.

Those who are not so familiar with electron scattering might ask the
question: how can it be that measured data normalise themselves. This
can be understood most readily by looking at the form factor at q=0 :

which must be unity on the one hand side - that is just what normalisa-
tion means; on the other hand, inserting the expansion for p(r), one
finds something like a sum rule for the coefficients a, or - what is
the same - for the formfactors at the positions q,,- Therefore, if the
relative strength of these Fourier-components is determined, the abso-
lute value is fixed by eq.(11). The problem with electron scattering
generally is that the information for the first coefficient (corre-
sponding to very low momentum transfer) is poor. It is exactly at

this point where the data from muonic atom data help.

Column 10 again demonstrates the incompatibility of the data with too
small a cut-off radius: for R = 6.5 fm the x? is too large and also

the normalisation of the data acquires unreasonable values.

. The quantity that is certainly discussed most in the literature for
the Ca-isotopes is the rms-radius, which was found to deviate sub-

40 48ca. This

stantially from an A_1/3-increase when going from "“Ca to
quantity is determined from electron scattering in a completely

model-independent way by measurements at sufficiently low momentum
transfer, a requirement which is very difficult to meet with suffi-

cient accuracy. The problem in determining this quantity in a general



experiment may be recognised by looking at it in terms of the Fourier-

Bessel coefficients 3)

2

(12)  «BV2 L 2y ()1 - S)F(a,)-

(mv)
Due to the additional factor V-Z and to the generally decreasing beha-
vior of F(q) only the first few formfactor values contribute, in parti-
cular the first one at g; = 0.39 fm L (R = 8 fm), which is only deter-
mined indirectly via the normalisation; correspondingly it is subject to
the uncertainty in the normalisation,which therefore contributes most

to the error.

Table 3 summarises the results for the rms-radius. It is clearly seen
that the determination of the rms-radius is the domain of muonic atoms. -
Although the value from this analysis is compatible with that from

Sinha et al., the difference between the two values should be taken
serious, since both values result from essentially the same set of data.

1/2

Fig. 6 b shows the values of <r2> determined from the data taken up

to different q Up to 2 fm'1 this model-independent analysis gives

max’
the same value as that from Sinha et al.: therefore the final difference
must originate from a different description of the high-g data. At the
level of this talk one should just state the situation as it is - it
will be clearified by taking into account the Barrett-moment from muonic

atoms 8) and the new high-q data from Saclay 7).

. A striking feature of the charge distribution is the bump in the centre
of the nucleus, which comes out in several evaluations of the data and

which would fit nicely into a shell-model picture, where it is due to the



two 2s-protons. However, the latest results from Saclay sustain the
solutions without bump, they lead to a density distribution which is

essentially flat in the inner part of the nucleus.

In order to understand the problem with the determination of p(r =0)
let us look at the inverse of eq. (11) which gives a corresponding sum
rule (11), now for the charge density at the centre of the nucleus

2

> J F(d4) 9~ dq.

This relationis most convenient for discussing how accurate the charge
density is determined at the centre. Let us assume that the measurement
spans the g-range up to a certain Imax? then the corresponding part of
the integral (or the series expansion) is determined by the data. The
integral is plotted as a function of its upper limit Imax in fig. 6 a. -

In order to dermine p(r = 0) with good accuracy one must do thiree things :

a) good absolute normalisation;
b) good data for a1l 1 q in order to determine the integral with
the correct integrand;
¢) measuring up to momentum transfers such that contributions from possible

further oscillations are negligeable.

After these preliminaries let's Tlook on the accuracy with which p(r = 0)
is determined from the measured data. In fig. 6 b the values found for
this quantity in different fits is plotted as a function of the maximum

momentum transfer up to which the data have been incorporated into the



analysis. The inner error bars indicate the'statistica1 error, the
outer bars (dashed) also take into account the completeness error,
which is getting smaller and smaller when data to higher g are taken
into account; finally it is getting negligeable as compared to the
other contributions. One should doubt however about this result here
since the quality of the 750 MeV-data is poor. - Contributions to the

error from the systematic uncertainties may be recognised from fig. 7 b.

Finally let us look at p(r) again. Fig. 7 a shows the best-fit curve

to the data sets 1-7 (fit 3, table 2) together with several theoretical
descriptions and the Saclay result 7). The statistical uncertainty is
plotted in fig. 7 b, the systematics in fig. 7 c¢. The error from normali-
sation and from the variation of the cut-off radius dominate the uncer-
tainty. It is shown in fig. 6 b that the latter is related to the problem

1, which is settled now by the new

with the sign of F(q) at 3.5 fm
Saclay data. Therefore, the charge density can be given with much better
accuracy now, taking together all information, as is demonstrated in

the contribution to this conference by B. Frois. - One has certainly
reached a level of accuracy, that effects which are omitted so far, must
be considered before the measured formfactor can be interpreted as the

Fourier transform of the proton distribution (dispersion corrections

11), 12), contributions from neutrons 13) and meson exchange currents 14)).

III. The charge-distributfon?diffefénées'of‘the Ca-isotopes

In the third and last part of my talk I am going to discuss the differences

in the charge density of the Ca-isotopes as registered in the electron



40,42 44,48

scattering experiment by Frosch et al. for Ca. There have also

40,42 ;44 9)

been taken data for Ca by Heisenberg et al.”’/ in a measurement
dedicated to inelastic scattering in particular on Ca- and Ti-isotopes.
Since these data are not published explicitly I restrict the analysis to
the Frosch-data. These data had revealed the striking fact that - when
looking at the rms-radius - 48Ca is not Targer than 4OCa though it contains
8 nucleons more. This phenomenon has attracted much attention in the past

15-21) as from additional

decade as well from the theoretical point of view
experimental efforts based on other methods (cf. the proceedings of this

conference).

Frosch et al. have analysed the cross sections in terms of 3-parameter-

Fermi-diétributions. The resulting charge density differences are shown

48

in fig. 8. The obvious surprise is that the 8 additional neutrons in " Ca

do not only pull charge outwards by just expanding the nucleus - but they

40Ca-nuc1eus to the inner region.

also pull charge from the tail of the
This phenomenon is expressed most simply by saying that the skin thickness
decreases due to the additional neutrons. Actually the parameter t is

48 40Ca.

smaller for "~~Ca than for

In figure 9 the contributions from Ac, At and Aw are plotted separately.

The big change in Aw compensates partly that from At, therefore the change
directly given

in the skin-thickness is nofvby At. - One thus sees that it is difficult

to attribute specific features of Ap(r) to a change in a particular para-

meter. Beyond this, one must ask again, whether or not Ap(r) is appropriately

.parametrised by c, t and w, since we know that this is not the case for

the individual nuclei. It is certainly necessary to analyse the data with

more general functional forms for o(r).
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The analysis of a relative measurement is done as follows (emphasis is

put on 48Ca/40Ca) :

1. fit to the 40Ca crosé sections;

48

2. calculate "measured" cross sections for "~Ca from the best-fit charge

density for 40

Ca and from phe cross section ratios, which are measured
with an accuracy of up to 2 % (compared to 6 %-errors for the individual
data);

3. analyse these 48Ca cross sections with the small error bars with the
Fourier-Bessel-expansion;

4. the difference between the resulting best-fit distribution and the
reference distribution of 40Ca gives 8(48Ca) - g(40Ca) with errors, that

only contain the small statistical errors from the measurement of the

ratio; all systematic errors essentially cancel.

Here again the data have been handled in a variety of ways (cf. table 4).
In particular, reference is made to three different evaluations of the

40Ca charge distribution.

Although the resuiting rms-radius depends strongly on how the data are handled,
the difference in the values for 40Ca/48Ca is always the same; taking fits
2, 5 and 10 as reasonable ones we find

acrsY2 L 0.004(9) fm

48/40

in excellent agreement with the value given by Frosch et a1.6) and also

with the muonic result 8).



In figure 10 1 have plotted the envelope of the charge distribution difference
(fits 1 tol0 in table 4, fits 2 and 10 with error bars). The result from

the 3-parameter-Fermi distribution lies well within the band, although the
region with the negative difference between 5 and 6 fm does not come out

so clean in the model-independent analysis.

There have been different attempts to explain the shrinking (or unexpected
slow increase) of the charge distribution in the Ca-isotopes, in particular

a change in deformation and in zero-point-oscillations have been considered

40

to be responsible for the drastic change in the skin-thickness between "~Ca

48Ca. Rothhaas has developed a method of analysing electron-scattering

22)

and
data along these Tines In a first step the cross sections from nucleus
Al are fitted with the Fourier-Bessel expansion for p(Al), in a next step
one tries to fit the cross sections for nucleus A2 by a certain modification

of the same charge density, namely an extension and a change in the surface

thickness; this is achieved by parametrising p(A2) in the form

(14) ppplr) = T/ de av(Al)jo(qu')dQ
with
(15) r' = re(l+a+s Yzo(e))_1 .

o describes the expansion of nucleus A2 as compared to nucleus Al, g8 describes
the change in skin thickness (which is parametrised as if it originates

from a change in deformation). The difference between two isotopes is given
by

(16) pMo(a,B) = p(a\);a,B) - p(a\)).



Table 5 summarises the resulting values for the three isotope pairs

42’44’48Ca/40Ca.

The cross section difference for 42Ca/40Ca can be described within this

model, there is even no need for a change in the skin thickness.

A<r2>1/2 comes out in excellent agreement with the Frosch analysis and

also with the muonic result.

e 44Ca/40Ca difference demands for a change in skin thickness (8 > 0

means: 40Ca is more "deformed", it has a larger skin-thickness than 44

Th
Ca).
However x2 is quite large due to a big contribution from one data point

in the first diffraction minimum; one must therefore be careful in accepting
this result. Here, the value for A<r-2>1/2 does not agree with that from
muonic atoms. This might be due to aninadequacy of the model or to some
problem with the data. I do not persue this problem here.

48Ca/40Ca data, which span a larger g-range (in particular they contain

The
one more diffraction pattern), are clearly incompatible with the present
model. Therefore in a next step we add a further physically motivated
modification to the charge density difference, as first introduced into
the analysis by Rothhaas 22) for the Zr-isotopes: the neutrons added in

a shell outside a closed core might weaken that core and cause protons to
move into another she11; in particular into that where the neutrons have
gone. The interaction of these neutrons should be particularly large with
those protons with which there exists an important overlap. Up to now,

in the present analysis I have only tried a change from 2s to 1f, corre-

sponding to a charge distribution difference
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(17) Ap =y (le(r) - st(r)).

For R(r) I take harmonic oscillator wave functions with oscillator para-

23)

meters taken from Negele (b25 = 2.050 fm, b1f = 1,953 fm).

48

The result for the Ca/40Ca difference is the following:

o B Y x2
- 0.0158(4) 0.316(2) 0.0 874
- 0.0188(4) 0.317(3) - 0.24(1) 126

One observes a substantil decrease in x? when a change in the "proton

occupation number" is taken into account according to the value of .

However three things remain to be ciscussed :

48Ca there are less protons in the 2s shell and

more in the 1f-shell than in 4OCa. From stripping and pick-up reactions

24

1. vy < 0 means, that in

one knows that this is very unlikely. Therefore one should be careful
in interpreting eq. (17) as a change in proton occupation numbers. In
electron scattering one basically measures the momentum components of
the protons and the following may be a reasonable interpretation of

eq. (17) :

The added neutrons bring in momentum components corresponding to their
probability distribution in r-space. These components are compensated
partly among the added neutrons themselves, partly by the nucleons of the
core. In this way the protons take over a certain amount of momentum

components corresponding to the 1f-distribution. Because of normalisation
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other components must disappear, here (somewhat arbitrarily) these

have been taken only from the 2s-shell.

. The fraction of momentum transferred from the neutrons to the protons
certainly depends on the wave functions used, and - for harmonic os-

cillator functions - on the oscillator parameter b.

. If one wants to interprete the charge-distribution difference, one must

13)

also take into account the effective charge of the neutrons which

contribute via two effects :

a) The neutron formfactor

(18) pere() = F(F (opsing) * Fnl@)

n

point the distribution of

Here, F  denotes the Fourier-transform, o
the (pointlike) neutrons and Fn(q) the formfactor of the neutron. This
effect contributes via the change of the neutron-distribution in the

core (I have omitted this one here) and through the added 1f-neutrons.

b) The spin-orbit-contribution

N is the number neutrons in the unsaturated shell, u - the magnetic

moment, m the mass and £ the angular momentum.

Figure 11 shows the different contributions to Ap(r) and it is seen that

the contribution from the neutrons is not negligeable. Since this analysis
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has only been performed straightforward up to now without carefully
rechecking 1it, I quote the result only qualitatively: x? decreases
considerably when the neutrons are taken into account and the values

of the model-parameters are also influenced (cf. caption of figure 11).

I have outlined here, how the information available from electromag-
netic probes cah be interpreted. The results must not yet be looked at

as being definite, since E_l_l existing data should be taken into account
simultaneously, i.e. the Barrett-moment from muonic atoms and the hig-q
datafrom electron scattering. In addition .there are still to be done

some checks of consitstency between the model-independent and the model

analysis.

Many helpful discussions and advice in using their computer programs
with Drs. H. Rothhaas and K. Merle are gratefully acknowledged.
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effective

the

data; date | energy authors ref. uncertainties in data
set MeV ?22ﬁ2?2? ‘ __systematic statistic
ey | normalisation energy .. | angle add. stat.error
target reference stat.error
thickness | cross sect.
1 1973 | 249.3 [0.90-1.89.| Sinha et a1.4) 2% -3% 0.1% 0.05° 3% 2> 1.1%
2 <1973 " 10.55-1.86 | Heisenberg et o 2.8%
3| ! lo.59-2.01 a]_' , 1.4%
4| 1973 | 496.8 |1.50-2.90 | Sinha et a1.") | 1.5%
5 |€1973 f 0.90-2.56 | Heisenberg et . 2.8%
6 | 1967 | 757.5 [1.02-2.91 g;i]?c):ard et 7.0%
2 TN IR PSR R 26.0%
8 | 1968 |249.5 {0.73-2.33 | Frosch et a1§) 0.5% 0.10° 7.0%
9 | = |499.5 |1.42-2.02 | 7.1%
10 " " "12.02-2.69 " . 8.6%

Table 1: Sets of e” scattering

taken into account in this

cross sections which are available from the ]iteréture and which have been

analysis.



1 2 3 4 ) 6 7 8 9 10 11 12 13
R fm 8.0 8.0 8.0 8.0 8.0 8.0 9.0 7.5 7.0 6.5 8.0 8.0 .8.0
normal. 1.000 1.000 free 1.000 1.000 0.950 free free free free free free free
energy E0 Eo E0 E°-1.001 E0 . Eo Eo E0 Eo Eo Eo Eo Eo
ggg]e 90 90 90 90 9°+0.05 9o 90 90 90 90 90 90 90
error Z 0. 3. 3. 0. 0. 0. 3. 3. 3. 3. 3. 3. 3.
Umax ~all all all all all all all all all all 3.0 2.5 2.0
X'/point 2.98 1.19. 0.70 2.84 3.24 ©3.10 0.72 0.71 |- 0.71 1.21 0.74 0.74 0.70
¢ (r=0) | 893(10) |901(11) |902(12) (897(10) {898(10) |886(10) |868(10) [869(9) {907(12) [938(10) [886(16) | 881(23) |790(46)
<r2>}/2 3.471(3)] 3.463(5) |3.448(11)3.463(2){3.463(2)|3.505(3) 3.445(10)3.446(10)3.426(6) |3.368(3) 3.451(1813.458(19) 3.480(21)
normalisations & :
set 1 fixed fixed 1.029(23)| fixed fixed fixed 1.040(2391.035(22%1.066(1811.187(16ﬂ1.027(29)1.019(31) .993(31)
2 " " .997(20) " * " 1.006(19)1.002(1831.029(15'1.137(12) .995(25) .988(26)| .964(27)
" L 1.056(21) W " " 1.065(20)1;061(19 1.092(1511.207(13)1.054(27)1.046(28) 1.022(29)
4 " " .990(29) " " " 1.002(29) .999(28)1.025(26)1.158(27) .991(321 .977(33)| .972(37)
5 " " .982(21) " " " .992(21) .987(20)1.016(16)1.126(15) .979(27) .972(29)| .952(30)
6 " " .927(28) " " " .936(28) .932(26) .959(25)1.068(25); .929(31) .924(32)| .894(34)
7 " " .834(273) " " " fixed fixed fixed fixed fixed fixed fixed

Table 2: Typical numbers resulting frém different evaluations of the data

(%%/point, glr=0)10" e fn3, <rH!/2

fm, and the normalisation of the different sets)
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<r2>1/2- A <r2>1/2
fm fm
this analysis 3.448 0.011 statisctical
0.034 normalisation (5%)
0.017 additional statistical error
0.002 AR = 0.5 fm
. 4) '
Sinha et al. 3.482 0.025
6)
Frosch et al. 3.487
u - atoms 8) 3.480 5-10'4 (assumed same accuracy as for

Barrett-moment, statistics only)

Table 3: rms - radius of

40Ca deduced with different methods from electron

scattering cross sections and also from muonic atoms




40

Ca reference charge density from fits A, B, C:
e -data | Barrett- | energy 'angle normalisation | cut-off <r2>1/2
sets moment 8) “radius-
~1-10 | yes E, 18, free 8.0 fm 3.4793(2) fm
8-10 no E,--5% |6 -.1°% | free 8.0 fm | 3.4172(641) fm
] 8-10 | no E,--5% | 6,-.1° | free 7.5 fm 3.4605(104) fm
Evaluation of 48Ca - data:
. - , . a
0ca | WO of energy | angle cut-off | normalisation af) CK/point <r >}/2 43<(r 1/2
ref. | fit - radius | 250 MeV 500 MeV [correction fm (48 _ 40Ca)
fm ' applied s
S : I LU
A 1 E 8 . .8.0 1.000 1.000 no 2.90 3.481(3) .002(3)
" 2 " "o - 1.013(21){1.043(26)} " 2.79 3.473(13) .006(13)
" 3 -0.5% | 8 -0.1° " 1.071(18)] 1.124(25) " 2.76 3.474(9) .005(9)
B 4 " " 1.000 1.000 _f - 1.50 3.417(3) .000(3)
" 5 " " 1.005(17)}1.054(24) " 1.23 3.414(9) .003(9)
" 6 " o 0.982(18)| 1.010(24)] " 1.08 | 3.414(10) .003(10)
" 7 " 6,%0. 101 0.959(19)| 0.968(24) " 0.99 3.414(11) .003(11)
" 8 " 9 -0. 1o " 1.002(17)| 1.049(24) yes- - 1.29 3.414(9) .003(5)
c 9 " 7.5 " |1.000 1.000 " 1.23° | 3.447(3) -0.014(3)
" 10 " " 0.982(21)}1.011(26) “ 1.07 3.459(14) | -0.002(14)

Table 4: Different evg]uatibné of the cross section ratios for 48

Ca/ 40Ca'




Isotope ol .{g x?/point <r2)}/2 fm g-range fm 1
1. | %Oca - - 0.08 [3.483(8) 0.73-1.76
2. | %ca | 0.0103(8) | -0.006(224) | 0.74 |3.519 "
1. | %ca - : 1.57 |3.528(6) 0.73-1.86
2. ®ca [-0.0171¢6) | 0.191(7) 2.73 3.503 o
48
1. Ca - - 2.90 |3.483(5) 0.73-2.58
2. | *Oca |-o.0158(4) [ 0.316(2) | 15.00 [3.528 "

Table 5: Parameter values from fitting the measured cross section ratios for
the pairs of Ca-isotopes with the model given by eqs. (14) and (15).
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Figure 1: (a) Model distribution and Lenz' Q
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Figure 2: Charge distribution of "~Ca deduced by different
authors from different sets of e~ scattering cross
sections with different parametrisations for g(r)
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Figure 3: The goodness of the fit as a function of the Eigure 4: Fit to e1ectronﬂscattgring cross sections sets 1 - 10
cut-off radius. The fit curve is calculated for 750 MeV, the data
Resulting rms-radius and g(r=0)_ for different are normalised to the same energy

cut-off radii.
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Figure 6: (a) ITlustration of the determination of g(r&O) from

data coVering different q-ranges. The splitting into
the two solutions due to the different sign in F(q) is

demonstrated.

(b) Resulting values for (r2>1/2

and g(r=0)
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Figure 7: (a) Charge distribution of "“Ca from this analysis : . . ; . -
compared to the result with the new high-q data 2.0 4.0 . 6.0 7 fm

from Saclay and to two calculated distributions
(a1l from B. Frois 7) ).

(b) Uncertainty in g(r) from the measured data (relative and absolute scale)

(c) Uncertainty in %(r) from systematic errors ( (1) normalisation = 1.00, fixed , (2) 00+0.05°, (3) E0-1.001,
(4) without additional stat. error, {5) R from 8.0 to 7.5 am, (6) normalisation = 0.95, fixed )
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Figure 8: Charge distribution difrerences as measured and Figure 9: Contributions to the charge distribution difference
determined by Frosch et al 7) for the indicated between 48Ca and_40Ca resulting from the difference

Ca-isotopes from electron scattering cross sections in the single parameters
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a 3-parameter Fermi distribution (continuous line)
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Figure 11: Different contrributions to the charge distribution
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neutrons egs. (18,19), (5) sum of (1) - (4) ).
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I. Introduction

The experimental accuracy obtained in recent measurements of charge
radii shows clearly that the usual empirical mass-radius formulae [e.g. 1,2]
are only approximate. The variations of actual charge radii are strongly
modified by nuclear shell structure and deformation effects [3,4]. The
deviations of the measured charge radii from the mass-radius formulae seem

to follow regular trends as indicated by Fig. 1.

2.0—
s . , Ce\s,\.
- e r
— - T In ‘ Pb?
E‘i -U'I.O_. Cr— n/NIC . ./ s Nd
8l v | ox-CU I [ «Sn Dy Aye ® g
ol [ k40 | z” Mo Ag 5 E/Yb W
g ig R ° . r
O_ " Ce
B C) Sr~
- ' DEFORMED REGION
-1.ol— | ! ! 1 L1 L
20 28 50 82 126
NEUTRONS

Fig. 1. AN = 2 isotope shifts from muonic x-ray measurements

prior to 1974.

The figure represents a compilation of muonic isotope shift data [5] taken

prior to 1974. It shows AN = 2 charge radii differences for even nuclei
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as a function of the neutron number. To emphasize the departure of the data
from the mass-radius formulae, the experimental shift values have been divided
by "standard'" shift values, calculated with a mass-radius formula. The data
available in 1974 [5] indicate that the isotope shifts are largest at the
beginning of a neutron shell and become quite small just before the major
shell closures N = 28, 50, 82 and 126, This trend is especially pronounced

in the lf.]/2 shell (20 < N < 28), where large negative isotope shifts occur
at the end of the shell.

To investigate these trends in detail, muonic x-ray studies of medium-
weight nuclei have been performed in recent years by the Los Alamos muonic
x-ray group, using the high intensity muon beam available at the LAMPF 800 MeV
proton accelerator. Fig. 2 shows the 1f7/2 shell nuclei investigated [3,6,7].

These studies, which together include all stable 1f neutron shell nuclei,

provide information about the proton core polarizatZéi due to the successive
addition of neutrons for the proton cores Z = 20(Ca), 22(Ti), 24(Cr), 26(Fe)
and 28(Ni). In addition, these studies, which represent the first systematic
investigations of isotone shifts, provide the opportunity to compare the core

polarization caused by protons with core polarization caused by neutrons in

h .
the same (1f7/2) shell
1 T i t 1 1 1 i T
Dlhi! experimant Shero of ol
- _ iy Eyllgs foa— NI — Fig. 2
| E “ Investigated nu-
26~ m Fs —
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e | E] «
“r —ity 2pyg o Wgyy— 7
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II. Nuclear Charge Distribution Parameters from Muonic Atoms

Fig. 3 illustrates 2p and 1ls muonic energy levels for Ca. The muon
which has 1lost nearly all of its kinetic energy is captured in a high orbital
and forms a muonic atom. The excited muonic atom decéys mainly via electric
dipole transitions andmay reach states, where the overlap between the muon
wave function and the nuclear charge distribution causes a measureable energy

shift AEFS of the binding energy from the binding energy calculated for a

point nucleus EEN- In the 1f7/2 shell nuclei, only in the ls state is the
2P3/2 Fig. 3.
2p 1,485 keV Muonic (2p-1s)
Ve transitions. For
exact scaling
40
E(2p,,;-1s,,,) ("“ca) see
E2pyz=1sy2) Table I.
is AE .. = 0.015 keV
i/2 FS
AE
AE -4
PN —%’ = 2x10

finite size effect AEFS large compared with the experimental error for deter-
mining muonic binding energies (15 eV). Table 1 lists AEFS and EEN for the
1s and 2p states. Note that-~the finite size effect in the ls state (69.117

keV) is very large compared with the experimental error (15 eV), so the finite

State E:N/kcv 8T S/kev aEE v sENP/kev
15, 1128.157 -69.117 6.810(20) 0.170(50)
2, 5 282.418 -0.087 0.929 0.001
2p3/2 280.904 -0.033 0.904 0.001

. c s . . F
Table I. Point nucleus binding energy EEN, finite size effect AE S, quan-
tum electrodynamical corrections AP and nuclear plozarization correction

AENP for the muonic 40Ca atom in(keV).
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3 , . -4
size effect can be determined with a relative accuracy of about 2 x 10 . In

the 2p states, which are separated by about 1.5 keV due to the fine-structure
splitting, the finite size effect is about 3 orders of magnitude smaller than
in the 1s state and AE;S is comparable to the experimental error. Therefore
the experimentally obsegved 2p-1s transitions contain only information about
the finite size effect in the 1s state. To deduce the finite size effect

from the measured transition energies, theoretical corrections have to be in-
cluded. The quantum electrodynamical corrections AEQED (mainly vacuum polar-
ization -and Lamb-shift) of about 7 keV in the 1ls state of 40Ca are known with
an accuracy of about 20 eV [8]. Nuclear polarization corrections AENp,which
consider the polarizibility of the nucleus in the presence of the muon, are
known much less accurately. An uncertainty of 30% is commonly attributed to
these corrections, which results in an uncertainty of about 50 eV (see Table I).
The uncertainty of the derived nuclear charge distribution parameters is
therefore mainly determined by the uncertainty of the theoretical corrections,
which is about 5 times larger than the experimental errors in the case of the
1f7/2 shell nuclei. Howevér in the differences of the nuclear charge distri-

bution parameters for neighboring isotopes, these uncertainties cancel to a

high degree.

First order perturbation theory can tell us what information we may
obtain from a muonic atom. In this context the finite size energy shift in

a muonic transition is given by:

[}

. f .
Agiff =/p(r)[v;(r)-vu(r)]4nr2d;~-z[v;(0)-vf(0)] , 1)

0

where Vi and Vi are the potentials produced by the bound muon in the initial
and final states. As Barrett [9] has shown, these differences in the poten-
tials can be approximated by an analytical expression of the form A + Brke-mr
In principal all 4 parameters A, B, k and a depend on p(r), Z, n and 1. The

measured quantity in a muonic atom experiment can therefore be written as

<rke—ar> = %T/ p(r)rke_arrzdr ’ (2)
0




the Barrett moment of the charge distribution.

In the actual analysis of the muonic data we adjust the parameters of

a Fermi charge distribution

PF(T) =p, (1 + exp(r - c)/a)—1 (3)

to the measured transition energies by solving the Dirac equation including
all higher order corrections. In the case of the 1f7/2 shell nuclei only

the half density radius ¢ was adusted; the parameter a was fixed at 0.55 fm,
which corresponds to a surface thickness parameter t = 2.42 fm. From the muon
wave function, determined by solving the Dirac equation, the potential pro-
duced by the bound muon V (r) can be deduced and the potent1al parameters

A, B, k and o can be adJusted to fit the difference V Vf For the 1f7/2
shell nuclei (20 < Z < 28) we obtain a range of values of 2.114 <k <€ 2.121
and 0.064fm-1 S a<0.074 fm—1 for the 2p-1s transitions. With thesevalues of

k and a, we can calculate the appropriate Barrett moments using equation 2,

These Barrett moments deduced using Fermi charge distributions are model-
independent (at least to the level of accuracy set by the experimental errors).
That is, a realistic charge distribution (for example, from electron scattering)
with the same Barrett moment <rke_ar> as the adjusted Fermi charge distribu-
tion gives a transition energy equal to the observed transition energy with-
in the experimental error. From the Barrett moments one can obtain model-

indepéndent equivalent radii Rk defined by:

Ry o

3R]_<3 / rke—arrzdr = -‘;l/pp(r)rke_arrzdr 4)

0 0

For the comparison of the results from muonic x-ray experiments

with those of other experiments and with theory, it is very convenient to have

1/2

instead of equivalent radii-Rk. From muonic data alone

rms-radii cannot be determined model-independently, since the radial shape of

.. 2
rms-radii <r™>

the charge distribution is not known. This fact can be easily shown by



changing the surface thickness parameter of the Fermi charge distribution by
10% and readjusting the half density radius to maintain the same transition

energy. The resulting R, changes by only 0.1 x 10—3fm, whereas, the rms-radius

k
changes by 5 x 10_3fm. This change is large compared with the experimental

error of 0.4 x 10_3fm.

To obtain model-independent rms-radii we performed a combined analysis
of our muonic data and electron scattering data from Stanford [10] (Ca and Ti)
and Mainz [11] (Fe and Ni). The analysis used was based on the Fourier-Bessel
expansion [12] of the charge distribution. With the radial shape of the charge
distribution obtained from electron scattering, an extrapolation from the
precise muonic Barrett moments to the rms-radii can be performed in this com-
bined analysis without substantial loss of accuracy. In the following, I

will present the results of such combined analyses.
I1I. Experimental Arrangement and Measurements

Before I present the experimental results, let me briefly discuss the
experimental arrangement and the analysis of the measured spectra. At the

time of the 1f shell experiment, LAMPF was running at a proton beam current

7/2
of 150uA; the muon rates used in our measurements were about 105/sec. Fig. 4

. .. i
shows our experimental target arrangement. The scintillators Sl’SZ and 83

Fig. 4. Arrangement of

calibration
yorays scintillation counter tele-
S, S, scope (Si)’ muon moderator
' .
T n 1 M), targets (Tl), and Ge(Li)
2
T j2§§7 _ detector.
3
v wo |||
YA !
)

t
S4 3

Ge(LiY/{E] Polyethylene
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in anti-coincidence to S: signal a stopped muon in one of the three simulta-
neously measgreq targets T'. An x-ray event in the Ge(Li) in coincidence
with S1 82 S; 52 is identified as a muonic i—ray. Simultaneously with the
X-rays, we measure y-rays from various calibration sources, using a beam gat-
ing technique to insure that the calibration spectra are stored at an average
rate which is proportional to the intensity of the muonic x-rays. A sophis-
ticated interface in connection with an on-line computer insures that.the
different events are stored in their respective spectra, and that ambiguous
events are discarded. Eleven calibration lines, known with an individual
accuracy of 5 eV, covered the energy region of interest (650-1600 keV) for the
experiment. These lines provided both the energy calibration for the muonic
x-ray lines and spectral line shape parameters used in the fitting of the
muonic lines.

Fig. 5 shows the muonic 2p-1s x-ray doublets for Ti and Cr isotopes.

The isotope shifts of the x-ray energies have opposite signs for 50Ti548Ti and

54 . 52 . . .
Cr-""Cr. The curves are ''best fits" to the measured spectra considering

the known isotopic impurities,

300~ Fig. 5.
Muonic x-ray
200 (- spectra for Ti
and Cr isotopes.
100
o 0
Zz
2
[*]
()
300+
400~
300
200}~
100}~
i i J A
924 928 932 936 940 944 1080 1064 1088 1092 1096 100

ENERGY (keV)
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Iv. Experimental Results and Interpretation
A. Discussion of the observed systematics

A graphical summary of our results for the 1f7/2 shell nuclei is shown

in Fig. 6. The display shows rms-charge radii obtained from the combined
analysis of the muonic data [3,6,7] and elastic electron scattering data
[10,11], as a function of the neutron and proton number respectively. The Ca

isotopes, which cover the whole 1f neutron shell, show increasing radii in

7/2
the first half of the shell from 40Ca to 44Ca and decreasing radii in the

second half of the shell from 44Ca to 48Ca. The increase in the first half of

Fig. 6.
3.80r 3.80 Rms-charge radii for
p—— 220 hell nuclei
I the 1f7/2 shell nu
=370 - -Zx24 370 from a combined anal-
ot o ysis of the muonic
< i 4 data and (e,e) data.
<N 4~
N 3601 Seag 360
N ‘\‘
¢
350} ./'/ T~ 350
¢
)| g 1 1 J

20 22 24 26 28
NEUTRONS PROTONS

the shell is totally compensated by the decrease in the second half of the
shell resulting in a net rms-charge radius change of zero for 40Ca—48Ca

{(within the experimental error of about 1 x 10—3fml The Ti and Cr isotopes,
which are situated in the second half of the shell, show decreasing radii with
increasing neutron number like the heavier Ca's. In the right part of Fig. 6
isotone shifts for the different isotone sequences involving the neutron numbers
24 < N < 32 are displayed. Two features are apparent: 1. The curves for the
various isotones are parallel. 2. A-gaturation effect exists; the magnitude
of the increase in the rms-radii becomes smaller with increasing proton

number.

To emphasize the observed effects, Fig. 7 displays the changes in the

rms-radii between even neighboring isotones and isotopes. Both the isotone



. 2.1/2 . . . -
and isotope 6<r > / shifts show an almost linear decrease in the radii

differences with increasing proton and neutron number, respectively. Both

the isotone and isotope shifts

'E T 7 T T T T T Y
n 100 é{ ‘4— are independent of tlie neutron
O ~

NC 80 \\\?. // -1 or proton configuration of the

SN ~ . . .

O 6ol ¢ S // | particular nuclei. That 1is,
v ° Ti—Ca LN / the Z = 20 proton core of the
lN 404 e Cr—Ti \\ AA/ -

9 o Fe-—Cr Ca isotopes shows the same

A - 4 Ni— Fe - s eyeqs

o 20 =
> A Zn— NI polarizibility as the Z = 22

olo— é% L 2; L ;6 1 TR and Z = 24 proton cores of the
y4 Ti and Cr isotopes. Similar
£ T I — T T — Tesults had been obtained

m %a | earlier from our studies of
o 40 /
= °< / nuclei in the Ni region [3].

g z 20p- + >~ / n

N o l Thus, the Z = 28 proton core
- N~ _/ P
v O “<_ ; of the Ni isotopes shows the

~N ~ e sy e s

ot —20F +' ‘\.\#9/ - same polarizibility as the

= 4+ K o Cr

«ﬂ; a0l ] o ca & Fe | Z =26 and Z = 30 proton cores

L l | , of the Fe and Zn isotopes.
_60 1 ] 4 1 1 .
20 22 24 26 28 These experimental results
N
suggest that the added neutrons

Fig. 7. 0A=2 isotonic and isotopic rms- interact with the whole proton

charge radii differences. core rather then with the
valence protons. The dashed
lines in the figures above
indicate that the slopes of the isotone and isotope shifts are almost the same.
Both sets of data show a strong shell structure effect when crossing the shell

closure at Z or N equal 28,
B. Interpretation and comparison with theory

In the following, I will try to compare the polarization of the charge
distribution due to the added protons, which is reflected in the measured
isotone shifts, with the polarization of the charge distribution due to the
added neutrons, which we observe in the measured isotope shifts directly.

The charge distribution densities of two nuclei that differ by two neutrons



(neglecting the neutron form factor) are related by:

_ core
Puso = P+ BPy (5)
core . . . .
Here 6pN describes the change of pN due to the interaction with the 2 added
neutrons. This change of PN is directly measured as mean-square radius dif-

2_core

ference é<r >N The charge distribution densities of two nuclei that

differ by two protons are related by:

_ core
Pren = Py * 20p + 8o, , (6)

where pp is the spatial distribution of the added protons and 6p§0re

describes
the polarization of the p, core due to the added protons. Including the

. . . 2 . . .
normalization we obtain the change of <r”>, that is caused by the interaction

yA
with the two added valence protons:
6<r2><Z:ore - 222 [<r?>z+2 _ <r2>z]+ %_[<r2>z _ <r2>p] ' )
2_core . . 2
6<r > can be deduced from the experimentally determined values <r >Z+2 and

<r2>Z by making a model assumption for <r2> , the spatial distribution of the

two added valence protons. We determined <r2>p by a shell model calculation,

T T T T T T . using 1f7/2 harmonic oscil-
i A¢ A ISOTONE SHIFTS - lator wave functions for
06 NN HARM. 0SC. the two added valence pro-
§§§§§\ tons. The lower shadowed band
N
- W - of Fig. 8
\\\\\\
04"' ++ \\\\\\ -

ozl ® ISOTOPE SHIFTS _|
’ 8 (rz):ora Fig. 8.
2 o
- 7, N Proton core polarization
7/ y 2 core
“ By due to protons §<r2>S0Te
2 _core
° and neutrons 6<r >N .
_0.2'—' 1 —
1
20 22 28
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. . 2 _core
shows the core polarization due to the added protons &<r > calculated

with formula (7). The upper shadowed curve shows the result of the shell
model calculation. The comparison of the shell model calculation and the
measured isotone shifts indicates the presence of polarization. 6<r2>;ore
is positive in the first half of the shell and negative in the second half

of the shell, showing the same trend as the directly measured core polariza-

tion due to the added neutrons 6<r2>§ore

interesting to note that the core polarization due to the added protons,

, also displayed in Fig. 8. It is

obtained in this way, is about 50% smaller than the core polarization due to

Lla

added neutrons.

Note that the isotone core polarization effect shows the same feature we
observed for isotopes in the Ca nuclei, namely increase of the rms-radii in
the first half of the shell and decrease of the rms-radii in the second half of
the shell. Again increase and decrease cancel almost totally over the whole
shell. Quadrupole deformation parameters 82 deduced from measured B(E2)-
values [13], displayed in Fig. 9, show a systematic behavior that is remi-
niscent of that observed in‘the isotope shifts and in the core polarization
due to the protons. The deformation for both the isotopes and isotones
increases in the first half of the 1f shell and decreases in the second

7/2
half of the 1f7/7 shell. The increase and decrease cancel almost totally

T i 1 1 T T T 1 T T
asl — 220 Ca _ 05} - —-N=24 o
-=-=-2=22 Tl ——.cN= 26
o4l
~ 03
«Q
0.2
0.1+
: Co Ti Cr Fe Ni
(o) | 1 1 1 (v} 1 1 1 1 1
20 22 24 26 28 20 22 24 26 28
HEUTRONS PROTONS

Fig. 9. Quadrupole deformation parameters 82 for the 1f7/2 shell

nuclei, deduced from measured B(E2)-values.
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over the whole shell. The curves for the different elements and isotones

are almost parallel. Qualitatively this is in agreement with the observed
behavior of the rms-charge radii, éuggesting thut the observed increase in

the rms-radii in the first half of the shell is due to an increase in deforma-
tion and the observed decrease in the second half of the shell is caused by

a decrease in deformation. At the end of my talk I will come back to this,

investigating this point quantitatively.

Fig. 10 displays some of our results for charge distribution differences
from our combined analyses of the present muonic data and electron scattering
data from Stanford [10]. These figures illustrate the results for the changes
in the rms-charge radii differences. The charge distribution difference
44Ca - 40Ca shows that by adding the first four neutrons in the 1f7/2 shell,
the Z=20 proton core is polarized in such a way that charge from the inner
part of the nucleus is transferred to the outer part of the nucleus. The

opposite effect is observed when the last four neutrons are added into the

., TN 1f7/2 orbital, as c:g be seen

02 0.2 Iml in the examples of "Ca - 44Ca
'Wl | and 50Ti - 46Ti. The charge

== —

1. \ | distribution difference 48Ca -
AR an (o] - $ 4.
‘" ! L | W 40Ca illustrates that the

observed 6<r2>1/2 = 0 is the

polarization effect. By add-

T

E

© -02 -0.2 result of a rather complicated
a

o
Nl-

. 4
*ca-*%a oTi-*en ing 8 neutrons to 0Ca to form

0.2 L4 0.2 f' 48

Ca, charge from both the

7 L1 inner and the outer part of the

ol ! l 1 . N Z = 20 proton core is trans-

““ " i ferred into the surface region
! i 48
' | of Ca.

Fig. 11 shows results of

6 2 4 6 8. 0 2 4 6 B density dependent Hartree-Fock

v (tm) (DDHF) calculations of Negele

Fig. 10. Charge distribution differences [14] for the 40Ca charge

from the combined analyses of distribution and for the charge

the muonic data and (e,e) data.
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Fig. 11. Comparison of experiment ((e,e) + muonic atom) and theory.
. . . . 48 40 . .
distribution difference Ca - Ca. Also shown in Fig. 11 are the results
of the combined analysis of the present muonic data and electron scattering
data. The calculations are in satisfactory agrecement with the experiment.

The rms-radii and their differences are also in good agreement.

1/2
4OCa : <r2>é§§ = 3,481 * 0.005 fm <r2>Té = 3.502 fm
48Ca - 40Ca: 6<r2>é§§ = (-0.7 % O.9):x10-3 fm 6<r2>%é2 =-3 x 10_3 fm

The success of these calculations in the double closed shell nuclei
7/2 shell
nuclei can be equally well described by DDHF. This is illustrated in Fig. 12,

40Ca and 48Ca, however, does not necessarily imply that the other 1f

where our AN=2 experimental isotope shifts for the Ca nuclei are compared with
spherical Hartree-Fock calculations [15]. The calculation does not reproduce
the observed almost linear decrease in the shifts for the Ca nuclei. Even

Hartree-Fock calculations including nuclear deformation [15] are not in satis-

factory agreement with experiment.



Reinhard and Drechsel [15] have shown recently that ground state cor-
relations, neglected in H. F. calculations, are important in isotope shifts.
In their calculations the bulk properties of nuclei, varying smoothly and

slowly with the nucleon

40 + l ' ‘ number A, are obtained
from spherical Hartree-
E [~ -1 Fock calculations. 1In
"
'o 20l N addition they consider not
o~ i § only the influence of
>z I P -
< A- — T 7 \ -? static deformations but
~ 0 | also the contribution due
S(: | to zero-point oscillations
./_\z 0 EXPERIMENT . . .
N 20 A HF (SKIIN) of the nuclear excitation
~ ® HF.+GS.C. B modes. These contribu-
~ - tions come mainly from the
1 | 1 +
20 22 24 26 28 isoscalar 2 giant res-
NEUTRONS onance, which varies slowly

with A, and from the low

Fig. 12, Experimental and calculated AN=2 lying collective 2t states,

isotope shifts for the Ca isotopes. which vary characteris-
tically over the 1f7/2
shell (see Fig. 9). Both the contribution of the zero point oscillations

and the influence of the static deformation are related to experimental B(E2)-
values. Including the experimental B(E2)-values [13, see Fig. 9] in their
calculations, Reinhard and Drechsel calculated AN=2 isotope shifts for the Ca
isotopes which are in satisfactory agreement with experiment (see Fig., 12
(H.F+G.S.C.)). This indicates that changes in deformation and zero-point
oscillations are important in the Ca isotope shifts. Calculations for other
1f7/2 shell nuclei have not yet been performed. From the systematics of the
82 quadrupole deformation parameters shown in Fig. 9, it seems very probable
that this kind of calculations, which were very successfull for the Fe, Ni

and Zn isotope shiftsalso, can give satisfactory agreement with experiment

for the other 1f7/2 shell nuclei.
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The Ca~-nuclei, which are the topic of this conference, nave atc-

tracted the interest of many experimentalists and theorists for

more fThan ftwenty years. The main reaign for that is, that Ca has
. 40, . s

two doubly magic nuclei, zo”azo and 200a28, and peculiar things

occur for the nuclei in between, for example with the charge ra-

40

dii. Incorporation of neutrons or neutron pairs to Ca into the

7/2 shell up to the closed configuration of doubly magic 48Ca
opens the way for a study of changes 1in the radii if the mass num-
ber is changed by 20% and the neutron number by as much as 40%.

In this respect, the long chain of Ca-1sotopes can be regarded as
a unique testing ground for é study of the distribution of nuclear

matter, in particular for light nuclei.

Among all the methods to determine nuclear charge radii, optical
isotope shifts have long been a valuable tool for precise and de-
tailed investigations. During the last few years however, a rather
rapid further development of more and more refined experimental
technigues has taken place. So the advent of narrow-band tunable
dye-lasers has opened new dimensions for the measurement of opti-
cal isotope shifts. The application of lasers instead of hollow-
cathode lamps, as available in former experiments, and the possi-~
bility of using Doppler-free techniques like saturation or two-
photon-spectroscopy has made possible an unprecedented high
resolution. At the same time the lasers as intense light-sources
have lead to a very high sensitivity, which is necessary in many
cases for the study of very rare abundant, e.g. short-lived
isotopes.
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Optical svecbra and nucilear caarge distribution

The ghif'tc in an optical line "a" between two isotopes of the

zane element with mass numbers Ai and Ai—l is a very tiny effect.
For a A:Ai—Ai_l
107 4z. Compared to the optical transition frecuency of ~5.10

=2, for example, 1t is tCypically of the order of
14

Hz
the isctope shift only amounts to some 10_7. Nevertheless, due to
high resolution technigques, 1t provides accurate information on

the nuclear charge distribution.

The isotope shift in an optical line is composed of two parts
due to different effects: the so-called mass shift and the field
shift.

The mass shift originates from the fact that the nucleus is not
at rest as assumed in a very simplified model of the atom, but
that 1t carries out a motion which may be caused by

1) the motion of the valence electron around the nucleus. This
makes them both move around their common center of gravity,

which leads to the "normal mass shift"

2) correlations in the movement of the core electrons, an effect

called '"specific mass shift'.

The normal mass shift Av can be easily calculated

NMS

Movws © m. B.E,. . 0V

where Mg s mp stand for the electron and proton mass, respectively,

and v for the cptical transition freguency.
Unfortunately an exact calculation of the specific mass shift

I8

. _ 1
Mape = 1 PiPx

with Pi’ Pk momenta of the core electrons

M mass of the nucleus



N total number of core electrons

is not possible at present because the wavefunctions of all core
electrons are generally not known and Hartree-Fock calculations
only lead to rather unsatisfactory results. However, the normal
as well as the specific mass shift depend in the same way oin Lhe

masshumbers Ai and Ai 1 of the isctopes uncer svuby. oG As,. .
- el
and AVQNS can be summarized as follows:
e LY
A.-A,
W am " . .
MMS SMS Al Al-l

This relation can be used to calculate the total mass shift for
any palr of isotopes if it is known for one pair of the element
under study.

The field shift Avp is the contribution wnich nas tc be measured
in order Gto determine nuclear charge radii. AVF is the result of
an overlap between the nuclear charge distribution and the charge
distribution of the electrons. The overlap changes, il csne nucdic-
ar charge radius increases ci decreases. Thus AVF reflects vari-

ations in the mean scuare charge radii 6 <r2>. On the other hand
the field shift also depends on the electron density at the nu-

cleus. Therefore Av, can be described as the product of two fac-

: F
tors C., and E
i a

Ci is a function of nuclear properties only, predominantly of

5 <r2> between the isotopes with mass numbers A, and Ly . E_
only depengs on electronic properties of tne line a, namely on

A" (o) ! S, which is the change of the total electron-charge

density at the nucleus in the transition a.

The total 1sotope shifft can then be written as the sum of the

normal and the specific mass shift as well as of the fleld shifte:

AVIS AVNMS + AVSGS + AVF



Because *v ., cannoc be calculaced withh reasonable precision, che
LRI N

[
evslus.icin of the field shift and consequently cf & <r°> from the

imeceured value of Av. is not straightforward. In many cases this

-
seriously alfects bhépinterpretation of optical isotope shifts in
terms c¢f nuclear physics. For heavy nuclei the problem is not too
aggravating because AvF exceeds the total mass shift considerably.
Therefore the specific mass shift is only a small correction and
can be neglected. In light elements, however, like calcium for
example, 1t is Jjust the other way round: the field shift 1is only
ol the oider of <10% of the total shift. This makes two things in-
dispensable, when investigating optical isotope shifts of light
elements in order to determine changes of nuclear charge radii:

1) The field shift must be exactly separated from the mass shift,
in other words, the specific mass shift must be determined.

2) The experimental accuracy of AVIS has to be very high in order
to obtain the small value of AvF and hence 6 <r2> with reason-
able precision.

The separation of mass and field shift in an optical line is pos-
sible by means of a so-called King-plot, if measurements in muonic
atoms of cthe same element for at least two pailrs of isotopes
have been made. Fortunately this is the case for calcium, so that
a relatively precise determination of the different contributions
tec Awv o can be accomplished. This procedure, however, which is de-
scribed in detail below,makes the results on the radii obtained
from optical isotopeshifts partly dependant on those from muonic
atoms. The precise measurement of AVIS, as required and mentioned

in 2), is possible by high resolution spectroscopic techniques.

Detailed discussions of optical isotope shifts have been given
in [1-37.

Experimental situation

The stable Ca-isotopes (see Table 1) have been investigated by

optical isotope shift measurements since 1953. Although six stable
isotopes are present in the natural mixture, the experiments have
proved to be rather complicated because the isotopes - apart from



4OCa with ~97% -~ have a very small natural abundancy, so that

enriched samples had to be used.

Ca41 Caq2" Ca45s Ca46 I Cea
1,3:10%a 0,65 163 d 0,003 - po8c
§ 0. O
noy 00,65 ) .- ; s LT

a0
S

Table 1 Calcium isotopes with mass number A = 40-48.
The stable isotopes are marked in black.

Energy level scheme of Cal

4s 5s 33,
T =10.0ns

61034 61224 61624
Fig. 1 Ener level
wiplh —— Fig 8y
T=45ns 3p 3p 3p scheme of calcium

42274
f=37105
421 __/
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Fig. 1 shows the CalI-spectrum with the most important lines. The
strong transitions with A = 6103 R,61228, 61628 and 4227 have been
used for isotope shift measurements, the blue resonance line with
A = L4227 R even repeatedly. In the experiments, which are summa-
rized in Table 2, a hollow-cathode lamp combined with a Fabry-
Perot-Interférometer for the investigation of the spectral dis-
tribution of the emitted light was used. In the recently pub-
lished investigationl;91 a collimated atomic beam of enriched

isotopes served for improving the resolution by reducing the Dopp-
ler-width (see Fig. 2). In this experiment results for the charge
radii of all stable Ca-1isotopes could be obtained. It should be

mentioned, that it was not until 1968, when muonic isotope shifts
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Authors vear of isotopes lines
publication studied examined
Arne Pery 1954 (4] 10,48 Cuo27 R us? 13 ~Lslp Pl
Ca 6103 R A4slp 3P -4s5s 3Sl
6122 R Ushp 5P -l4s5s 5S
| 6162 R L4skp 3P -4s5s 3Sl
T 24
cat | 2934 R 4s 1/2 -4p P5/2
L3968 R 4S /2 -4p Pl/“
K. Hdeilig 1968 [5] [uo,42 s227 R 4s° 's_-kskp 'P;
- . 7 2 2
Bruch et al. 1969  [6] [44,48 5934 R 4s 78y p-kp P
Epstein,Davis 1971 [7] 40,42 yo27 R 4s® 's_-hsip 'y
| 44, L8
Brandt et al. 1977 [8] [ho,42,43 ko7 R 4s® ‘g _-asip 1p)
1978 [9] 44,486,248
Table 2 Compilation of optical isotope shift measure-

ments in calcium by "conventional'spectroscopy

were avallable, thal the mass- and field shift could be separated
and rirst results for the Ca-charge radii vere derived from opti-
cal specoroscopy. However, dlsadvantages of all fthese measure-
menbs are cinat the resolution is seriously limited by Doppler-
broadeuing and, even if a ccllimated acomic beam is used, by the
large natural widch of the investigaced lines., Moreover, the sen-
sitivivy 1s not as high as it would be desirable. So rare isotopes
can only be studied with difficulties and if enriched samples are

accessible,

Isotope shifts in Ca by laser spectroscopy

In 1976 first investigation for all the stable Ca-isotopes were
carried out[ldl. In these experiments isotope shifts in the ex-
tremely weak intercombination line 4s2 lSo—4s4p 3Pl have been
measured. At a first glance the intercombination transition seems

to be a bad choice for spectroscopic studies, because - due to
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Fig. 2 Set-up for "conventional" isotope shift measurements
- using hollow-cathode lamps and Fabry-Perot-interfero-
meters. (from Ref.9Q)

nearly pure Russell-Saunders-coupling in Ca - its oscillator-
strength is exceedingly small and only amounts to [ = 3.7-10_5.
However, by using a narrow-band tunable dye laser it has proved
possible to perform spectroscopy even in this line, which has
considerable advantages compared to the transitions studied be-

fore [4—§] :

1.) The natural linewidth of the intercombination transition is
rather small, it amounts to 410 Hz. Therefore this line in
connection with Doppler-free experimental technigues, like
saturation spectroscopy, opens the possibility to produce

ultra-narrow signals and to obtain a very high resolution.

In this respect the intercombination line is particularly well

suited compared to all other transitions studied before, which

have natural linewidths of the order of Avnat = 30 MHz.

2.) The experimental technique is extremely sensitive, so that

very small quantities (several pg) of the isotope under study

are sufficient for measurements. This even holds, if large



amounts of other isotopes are present, 1.e. one can combine a
low concentration with a small guantity of the isotope under

study.

N
~—

Apart from the charge radii as obtained from optical isotope
shiits, it 1s possible to get additional information on the
nuclear charge distribution of odd isotopes by measuring the
hyperline structure splittting (hfs) of the excited 4sidp 3Pl
state. It can be used to calculate the nuclear guadrupole mo-
ment from the B-factor of the hfs, It should be mentioned that
these parameters cannot be extracted from other states like
the 4sip lPl level because their hfs is too small compared to
the natural widths of the respective lines.

The experimental technique applied here [il,l@ (see Fig. 3) makes
use of a collimated atomic beam and a stabilized dye laser. With-

out going into detalls, it is sufficient to regard the laser as a

conerent lightsource having the following properties:

linewidth: Av, = 500 kHz ~1072 A&
power: I =50 mW
beam divergence: < 2 mrad
tunability: range max. 70 GHz ~1 A

I( light pipe

photomultiplier
Fig. 5: Scheme o the experi- mirror e
mental set-up for la- /.
g -— dye laser
ser spectroscopy in the

Ca-intercombination line.

atomic beamn

L]




The laser beam intersects the collimated atomic beam of natural
calcium at right angles, The isotope shift in the intercombinatién
transition being of the order of a few hundred MHz, which is large
compared to the reduced Doppler-width of the beam as well as com-
pared to the width of the laser line, the different Ca-isotopes

can be excited selectively by tuning the laser. Due to the vefy
long lifetime (@*= 0.4 ms) of the excited 4sip 5Pl level this makes
the whole beam emit resonance fluorescence radiation along the path
of flight of the atoms. The fluorescence is monitored about 12 cm
downstream by a photomultiplier. Inserting appropriately shaped
diaphragms any disturbing laser light or other background can be
virtually eliminated, so that a high sensitivity is achieved. A

curve measured with the set-up (Fig. 4)

<< | iiock-in Hidc ]_‘I?ntgl';'cztgn '———l plotter 1

RF. Clock ]*—— A
control spectrum analyzer
<< unit
pa Z \ % dye laser
<l N
— — \ L\I Art
Laser
atomic beam
W | |
a dye laser
1 stabiization
_F — EIV > 4 L}I L
 ———.
T i
He-Ne-Laser stabilization r__
stabilization interferometer
129, L
W m——— —— ; Interface
ya o Y - ] oo Ilasr diode
[

R | ot —{e J—{om (]

I

Fig, 4 Experimental set-up for laser spectroscopy in the Ca-inter-
combination line.



which follows the prin-
Resonance fluorescence ciple described above (Fig.3)
e is shown in PFig. 5. It was re-
corded with a very low wvapour
density in the atomic beam,
the time for the total scan

was only about one minute,.

Nevertheless, the recording
exhibits well separated sig-

nals of five Ca-isotopes pre-

csent in the natural mixture.

— -

Laser frequency

However, curves of this type
still permit only a rather

limited resolution. This is
™gs, 5 Recording with signals

oo 2 due to the residual Doppler-

0i' stable Ca-isotopes . . ; .
“ “ P broadening in the atomic beam.

resonance )
fluorescence ; Much narrower signals can be

intensity produced by simply reflecting
the laser beam back onto it-
4oca self (see Fig.3). In this case,
| so calledg Lamb dips(see Fig.6),
which are free of Doppler-
broadening, can be observed
in tne Doppler profile at
: center frecuency, provided
5§MHz that the optical transition
is saturated. This technigue
i is called saturation spectrosco-
Py [15}. Dips as narrow as
900 kHz have been observed in

the present experiment. Their

width is determined by the fol-

J

laser frequency

Fig. & ZLamb-dip in the Doppler- The atoms cross the laser

profile of 4OCa, beam within about lus. Due

lowing effects:

y

1.) Transit-time broadening.

to the uncertainty-relation
this corresponds to a homo-

geneousz ~~1dth of ~500 kHz.



2.) The width of the laser-line ol also ~500 kiiz.

3.) The netursl width of the line. Lecsuse AvnaL ol Lrne regarded
transition is only 410 Hz this contribution to the width of

[,

the Doppler-free dip is completely negligible here,
Fh I o [ea) [sn]

) . D) ) L3 . L] o) T (97 7t PR
TF'ig. 7 shows a scan with €ignals originating Irom Ca, the

4 Ie .
F=5/2 hfs-component of '“Ca and Ca. It demonstrates that the
experimental technigue is sufiilcilently censitive ¢

observe z00d

. 4y
igotore Ca.

o O

signals (including/Lamb—dips) even of tne very rar
The abundancy or OCa in tne natural mixture as used f{or tihe beam
is only 3-10_5. S0 the experimental technique leads to a very high
resolution. At the same time it permits measurements of extremely

rare abundant 1sotopes.

l Resonance
fluorescence intensity

Fig, 7 Scan with signals of 480&, 450a and 46Ca. The arrows

indicate, where a reduction of the amplification of

the recording system has been made.

A second method carries the resolution in hfs measurements even
further: it is saturation-combined rf-spectroscopy, which is simi-
lar to the well-known classical double resonance method [liﬁ.

Fig. 8 shows the hfs-splitting of 4lCa and 45Ca which allows the
determination of the nuclear quadrupole moment Q.An accurate mea-
surement of ¢ can be performed by inducing radiofrequency
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F=5/2

3 F=%2
4sép °R
T - 0.‘ mS F=W2
A=6573 A
452@L

Hyperfine structure splitting of the 4slp 3Pl state in
The nuclear spin of the isotopes is

transitions between the different hfs levels. Fig. 9 shows a scheme

of the experimental arrangement applied for this purpose. The

—

light pipe

/

D
> rf-coil |

dye

- triple
prism

laser

atomic
beam

1]

Scheme of experi-
mental set-up as
used to detect rf-
transitions by sa-
turated absorption
of the Ca-inter-
combination line.

atoms travel across the laser beam 1, which saturates the op-
tical transition from the ground state to e.g. the F = 5/2 hfs




level. In the rf-coil the population of the F = 5/2 and 7/2 hfs
levels is equalized, so that the F = 5/2 state can be refilled
from the ground state when the atoms cross the laser beam 2, re-
sulting in an increase of absorption or emitted resonance fluo-
rescence radiation,respectively. This method which is in some
sense similar to experiments recently performed in atomic ground
states [i5,l@ has been tried out for one hfs transition in 45Ca
using the natural isotopic mixture with an abundancy of 0.14% of
thls isotope.

A curve is shown in Fig. 10. The intensity of the resonance fluo-
rescence was observed as a function of the frequency of the rf-
field. The width of the signal of 200 kHz is determined by

} resonance 4% 3
fluorescence Ca: 4sip Py
intensity F=5/2— 7/2
Fig. 10: Signal obtained
when inducing an rf-
transition between
hfs-levels in 43Ca.
The averaging time
was about 4 minutes.
. | "7 .
6987 699.01 699.3 \)HF/MHZ

transit-time broadening (~50 kHz) and the Zeeman-splitting of the

hfs states, caused by the residual earth magnetic field of
<50 mGauss.



Results and Discussion

Table » compromises the experimental results obtained in the

Ca-intercombination line.

Lo-42 4o-143 4O~ 44 40-46 4o-48
Avig  399(5) 782(4) 988(6)  1448(18) 1917(9) MHz

45Ca: A= -198.5(1.1) MHz B= 2(9) MHz Q= -0.09(16) b

Table 3 Results of experiments ﬁo,lﬂ in the Ca-inter-
combination line for all stable isotopes.

These values of AVIS must be separated for mass and field shift,

to get information on the changes of the mean square nuclear charge
radii. This can be accomplished by means of a King-plot [;8] which
works as follows: The 1sotope shift in two lines, a and b can be
described by the relations (see above):

Avia = Ci Ea + mi Sa

Avi = Ci E

b + my S

b b

where i1 stands for the pair of isotopes considered. Dividing by
my and introducing the new variables A63a and AGib one obtains:

C,
= = 2+
AVia/mi - Aé{a h my By * Sa
4
Avib/mi = Agi.b = m—l Eb + Sb
After eliminating Ci/mi’ it is possible to write A&aa as a func-
tion A61b:
Ea Ea
Aé"ia = AG]:.b-E—b-FSa*—SbﬁE—b

Therefore a King-plot of A&ia against A6&b should give a straight
line. This can be used for two purposes:

l;) As a check if the measurements in the two lines in question
are consistent. Otherwilise no straight line is obtained.



) eparation of the mass from the field effect.
E E
a a
(Sa + 8 E;) and Eg can be taken from the plot. Therefore S

can be calculated provided S, 1is known.

b
In other words, the principle of the separation is: if the mass
shift in one line for some isotopes is known, it can be calculated
for all other lines by means of a King-dlagram. So, if an optical
line is under study and the mass effect has to be determined, an-
other line has to be found for which the mass shift is already
known or easy to calculate. This is possible for the Ka -line of
muonic atoms because the specific mass shift,which usually hampers

exact calculations of Av 1s completely negligible here due to

s
the large mass of the mu%ﬁ. Fortunately measurements in muonic Ca-
atoms have been made so that a King-plot can be drawn. An example
is shown in Fig. 11 with the muonic data against the values in the
intercombination line. The straight line obtained indicates that

the measurements are consistent. For comparison the Fig. 12 shows a

/ 14046

- 120

440

430

420 -11.0
40,42
700 <500 300 00 0 K00 ya , "
-700 -500 =300 =00 0 10
8%k, (keV] by, (kev]
Fig. 11: King-plot of the mu- Fig. 12: Xing-ploC of The mu-
onic data [19] against onic data against
The values measured the wvalues from the
in the Ca~intercombi- Ca-resonance line

nation line



{ing-plov of the muonic data against those from the blue resonance
line [9]. it should be mentioned thafb for a more detailed interpre-
taticn of optical isotope shifts somewhal more refined King-plots
mustl be used [?,jl, which are for instance notv directly based on
che values 1in che Kd—line of muonic atoms but on the mean sguare

charge readil extracted from these measurements.

Table 4 contains the field shifts of the intercombination transi-
vion derived from a King-plot and the specific mass shift for the

4o-42  L4o-43 3O- 4 40-46 40-48

Avg -48(8) -20(13) -56(8) -50(19) +3(15) MHz
40-42AVSMS = 251 MHz from.experiment [10]
ho-42
MNoyg = 60 MHz from theory, Hartree-Fock calculations [é@]
Table 4 FPield shifts and the specific mass shift for

) ~
+OCa-4¢Ca in the Ca-intercombination transition.

isctope pair 40,42. The experimental value is 251 MHz compared to

060 MHz as obtained from Hartree-Fock calculations [?d]. This again
demonstrates that the specific mass shift is at present inaccessi-
ble to a theoretical treatment. The values for the field shifts

8<r?s,y <r2yl2
[tm]
B ectroscapy Fig. 13: Changes of mean
o-muonic Ca <rHA?3 square nuclear
20 254 charge radii for
the stable Ca-
15 isotopes obtained
from the inter-
10 251 comblnation line
' ' [10,17],from the
. resonance line[9]
05} + and from muonic
Ca~atoms [19] .
01-0x0 - -{ ———————————————— % o 13148




directly lead to changes of mean square nuclear charge radii for
the stable Ca-isotopes. Fig. 13 shows the radii as a function of

the mass number relative to 4OCa and for 40’426<r2>

= 1. The mean
square charge radius increases from'4o to 42, stays about constant
to 46 and rapidly falls off at 48, which has the same charge radius
as 4OCa. The agreement of the different measurements is quite sa-
tisfactory, also some deviations for 46Ca eXist, which are also
partly reflected in the King-plots (see Fig. 11,12) andé which

snould be reexamined.

Usually only statistical errors enter tne result of the experimen-
tal isotope shift. In the uncertainty of the charge radii the er-
rors of the muonic data must also be taken into account. The laser
spectroscopic results with the high resolution of the experimental
technigue make it necessary to consider very carefully systematic
errors too. The errors in the isotope shifts of the intercombina-
tion line are mainly due to uncertainties in measuring how far
the dye laser has been tuned from one signal to the next one. Non-
linearities in the scans also contribute to the final error. There-
fore the experimental uncertainty of several MHz as given in the
Tables 3 and 4 does not reflect the ultimate resolution which can be
achieved by the methods described above. In principle the intercom-
bination line and the 3Pl state permit a much higher accuracy.
Therefore new improved measurements by means of a so-called fre-
quency offset-locking spectrometer have been started. This system
makes it possible to tune the dye laser with an rf-synthesizer,
which shortly will lead to results which are improved in accuracy
by a factor of more than 10.These results can also be used for a
test if the King-plot of our measurements against the muonic data
is indeed a straight line. It.1is also interesting to measure an-
other optical line with higher resolution than achieved so far.
Moreover it would be a great improvement for the understanding of
optical isotope shifts 1if the specific mass shift could be calcu-
lated. Therefore it is worth stimulating theorists, to try more
accurate calculations than available at present. This problem is
also of great interest for atomic physics.
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Nuclear charge distribution cof 41Ca [2i]

Althougt the stable Ca-nuclei have been studied rather extensively
Ly usilyg optical isctope shilfts and many other mecvhods, no infcr-
mecicn o Jhe nuclear cnarge distribucion of the radiocactive Ca-
isotopes was avallable so far. Therefore 41Ca was investigated
irecently in this laboratory by the laser spectroscopic technigue

. : 41 A . : , .
described ahove. Ca 1s of special interest because it offers

2 cnance ©o study tiie influenc: of a single neutron on the doubly

o
1

. . - ho , , C , .
nogle, closed shell “7a core. lioreover this isotope together
h
41

withe 1o wilrror nucleus 5S¢ plays an imperiant role in Coulonb

displaceman. energy calculations.
&lCa nas been produced by neutron capture of 21lOCa. I¢ decays with
a half life of U = l.}'loby.fhe cross section for neutron cap-
ture (6 = 0.4b) being rather small, a 41Ca concentration of only
one part in a thousand could be obtained after a year of irradia-
tion. As described above, the experimental technique makes use of
a frequency controlled cw dye laser and a collimated atomic beam.
The resonance fluorescence is again monitored by a photomultiplier
installed 12 cm downstream along the beam.

In the preparation of an atomic beam which contains 4lCa two dif-

4lCa is available in small quantities only, and

ficulties arise:
in addition in the chemical form of CaCO,. Therefore a sample of
100 mg CaC0, containing 1’10_3 4;Ca was reduced forming a deposit
of about EO/mg metallie Ca on a disk of tantalum. This disk served
as the 4l.Ca gsource in the atomic beam. So not more than about

20ug AlCa for the atomic beam were available.

I'ig. 14 shows the experimental set-up with the apparatus for re-
ducing the sample, the atomic beam containing lCa and the dye
laser. A second beam of natural Ca served for adjusting the laser
to the intercombination line and for an easy identification of the
recorded signals.

41Ca. For the production of

Fig. 15 shows a curve with signals of
1 . . .
Ca isotopically enriched 4OCa had been used. Therefore no sig-

nals originating from the isotopes in the natural mixture appear,
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Fig. 14: Scheme of experimental set-up for laser

spectroscopy in 41Ca.

except for 4OCa and a small 44Ca—impurity. 20ug in the beam were

sufficient to produce signals of 4lCa with a signal-to-noise ratio
as shown in Fig. 15 for about one hour. The curves yield the iso-

tope shift in the intercombinaticn line as well as the nyperfine

Resonance
fluorescence intensity 40c,
dlcy
F=9/2
i 9 . . 4 l )'I' O and a l l
Fig. 15: Recording with signals of "Ca, Ca a sm

il

Ca-impurity. The curve was recorded within two
minutes, no signal-to-noise improving techniques
have been applied.



structure splitting of the excited 3Pl state [21].
From B(jPl) = 5(7) MHz
Q3 = =C.09(13) b is obtained.

The isotope shift
Mye = 280(8) MHz

is the distance of the 4OCa signal and the center of gravity of
the three hfs components. Taking the mass shift from the King-

plot one finds

Mye = 280(4) MHz
Therefore the field shift 1s consistent with zero:

Avp = 0(9) MHz
this indicates that the mean square nuclear charge radii of 4lCa
and 4OCa are equal. If the absolute radii of 4OCa and 42Ca are

used for calibration, the absolute error of the 41Ca radius can

be computed from the error in the fileld shift:

N
M2, /2 ko 2012 1 4 606 .

Obviously the additional f7/?-neutron in 41Ca cutside the closed

proton- anc neutron shells does not lead to a larger charge radius
(see Fig. 16) compared to l‘LOCa, whereas two paired neutrons in
2Ca cause a marked increase of about 1%. Simply speaking, the

additional f7/2 neutron does not penetrate veiy much into the

§<rispy r2yV2
[tm]

154
Fig. 16: Ca nuclear char-

ge radii obtain-
ed from optical
isctope shifts
L3.51 in the intercom-
bination line

148

40 42 44 @ P



4OCa core and does not polarize the core significantly either.

l/ﬁ of
Ca too. Unfortunately, because of the very small guantities of
isotopically pure 4l,Ca available, there is not much hope that

it is also interesting to know the neutron radius <r2>
1

scattering experiments can be performed in the immedliate future

o measure <r2>g/2. However, Coulomb displacement energles can be
used to get information on the neutron radius. Nolen and Scaiffer

have calculated the neutron excess radius of 41Ca about 10 yesrs

ago £22,2§],_making the assumption of equal charge radii in 40Ca
and lCa which is indeed confirmed by this experiment. They find
for the neutron excess radius:

41,2, 172

exe = 3,60 fm.

A measurement of this quantity results in 4 fm [?{], which is in
agreement with a recently performed calculation [éél. These

values indicete that in 4lCa the root mean square (rms) neutron
radius extends beyond the rms procon racdius if the assumption of

U Xy .
ecual neutron and proton radii in Ca is made.

The very peculiar behaviour of the nuclear charge radii (see iig.

16) of the odd and eveﬂ Ca-isotopes challenge a study of the
5

preparation in this laboratory.

shorter llved isotope Ca. An experiment on 5Ca is now under
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ELECTRON SCATTERING FROM 40Ca
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J.B.Bellicard, J.M.Cavedon, B.Frois. M.Huet, P.Leconte, P.X.Ho,
S.Platchkov, CEN Saclay, Gif-sur-Yvette, France

While the average charge density
of the Ca-nuclei as determined by 1
electron scatteringl) agrees quite B “ca
well with theoretical predictions, 0° L
this is not the case for the detai- 40 . o STanrorD
led structure of p(r). The experi- '
mental density shows less shell 2
structure (a less pronounced cent- \
ral peak) than predicted by Hartree- P?
Fock calculations. A number of at- N\
temptsz)to explain this discrepancy 10
have been published, but a conclusi- ]
ve answer is still lacking; this is i

mainly due to a discrete ambiguity Wt PN
discovered3) in the experimental B
40ca density. Fio?

In order to resolve these prob- A
lems, a high-g experiment has been 1
carried out at the Saclay linear ac- -8 b

celerator. Data have been extended %ﬁm

to 3.6fm'1, hereby reducing the pe- 6 ,
riously too large completeness error .

to <1%. The cross sections (fig.1) 10 .
have been analyzed using the S0G- ) 1 2  quah 3 II

method4) . The resulting density is
shown in fig.2, where we also dis-
play a number of DDHF-densities.
(X.Campi dash-dot, J.Negele dashed,
M.Pearson dotted). They show too
strong an oscillatory structure of ©fni® 4904
p(r); this is reduced only upon in- oo
troducing RPA-correlations as done "
by D.Gogny (solid curve).

l1)R.F.Frosch et al,PR174,509 (74),
J.B.Bellicard et al,PRL19, 527
B.B.Sinha et al,PRC7,1930 (73).

2)L.R.B.Elton et al,PRL24, 145(70),
F.C.Khanna PRL16,871 (68), R.B.
Raphael et al,PRC2, 1040 (70)

3)I.Sick PL52B, 15 (74)

4) I.Sick NP218,509 (74)
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The interest in neutron densities has not faded out for many years.
One of the salient features of this subject is that it is highly contro-
versial mainly because of the disagreement between neutron radii as obtained

1) 2-4)

from Coulomb energy differences and the Hartree-Fock predictions
Moreover other means of getting the same information such as low energy

proton and alpha particle scattering agree sometimes with the Coulomb

energy results), and sometimes with the Hartree-Fock results6’7), which
indicates their degree of accuracy may not be as high as hoped - and claimed -
by the authors. Indeed all the probes for measuring neutron densities use the
strong intéraction, and this makes very accurate calculations difficult, This
is of course also the case for high energy protons, but the reaction mecha-

nism is much better knowns_g)

at these energies and the calculation of the
optical potential that mediates the scattering much easier : £) it can be
written as a term proportional to the ground-state density, plus a hierarchy
of corrective terms that can be written explicitely and calculated, and 4A)
with a few additional approximations that can be checked experimentally,

the coefficient of proportionnality is the free nucleon-nucleon scattering

amplitude which can be measured independently. This was one of the strougest

0) 11)

. . . , . .
motivations to undertake experiments in the GeV region at Gatchina

2)

and Los Alamos] .

, Saclay

Let us thus examine in some detail the approximations made for descri-
bing high energy proton scattering. We plan especially to discuss how these
approximations can be checked. When possible we shall emphasize the difference
with low energy proton or, alpha particle and also pion scattering., The elastic
scattering amplitude for a proton of energy E can be obtaineds) by solving
the Schrsdinger equation including the properIA) relativistic corrections

with the potential

U(q) = t(q) p(q) + corr. (n

written in momentum space, q being the momentum transfer. The factorisation
of the scattering amplitude t and the ground state density p can be obtained
by assuming t is a function of momentum transfer only, and in particular
independent of the energy in an interval E + 50 MeV. Provided E is large
enough (E >> 200 MeV), t can be taken as the free nucleon-nucleon scattering
amplitude. It can then be checked that in the 700 MeV-1.5 GeV region, the

total cross-section is nearly constant as a function of energy, (fig.l) and



that the differential cross—section is a function of q only (fig.2), which
justifies the factorization in (1). The same scaling properties are displayed
by the polarization, as well as by the proton-neutron amplitude. The correc-

8)

tion terms in (1) can be written ’ as an expansion involving the two-body,

the three-body, etc... correlation function, the successive terms being
expected to be smaller and smaller since nucleons are not strongly correlated
in nuclei. Indeed, the effect of the two-body correlations is sizeable (fig.
3,4) but sufficiently small as compared to the first term so that higher

order corrections are expected to be negligible. The last approximation to

be checked' is the replacement of the effective nucleon-nucleon interaction

in the nuclear medium by the free interaction t. At high energies (E >> 200 MeV)
the error can be shown to be proportional to the two~body correlation correc-
tion, with a reduction factor of 1/A where A is the target mass. The correla-
tion correction is seen to be small enough in figs. 3,4 so one can neglect

a term which is A times smaller. These three features —~ factorization, use

of free interaction, smallness of corrective terms - are sufficient in order

to assess the validity of (1). High energy protons are rather unique in this
respect since all these approximations can be explicitely checked the facto-
rization is valid only for interactions that are constant in a 100 MeV range.
This is not the case neither for low energy hadrons nor for the pions. Moreover

15)

for nucleons because of exchange effects , t is not a function of q and E
only : it depends also on the momentum of the incoming nucleon. At low energies,
one cannot relate t to the free interaction, with calculable but vanishing

o . 15,1
corrections. One has to use a rather involved theory >,16)

, with all the
uncertainties this implies, in order to get the effective interaction t.
Also, the higher order effects are much more difficult to calculate. There
is no simple expansion to contrast with the high energy case where the
correlation length is the naturally small expansion parameter. A low energy,
these corrections depend explicitely on the excited states wave function
since the closure approximation cannot be used below a few hundred MeV.
Moreover, the standard low energy technique to include dispersive corrections
(long range correlations) which is the coupled channel technique leads to a

3)

.1 . . . .
severe overcounting when the same effective interaction as for the first
order term is used and a large number of intermediate channels included. So,
high energy protons provide a much cleaner probe, provided the calculation

includes a well known, rather standard now, set of correction58’17’13).

Several other approximations are sometimes used, mainly for convenience,
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although they are not really necessary. Often, one uses the Glauber appro-

2 which can be derived from the KMTS)

ximation theory with the additional
assumption of eikonal propagation in the intermediate states (as discussed

in ref.13). Also, in some cases, the spin-orbit interaction is neglected.
These two approximations, which are of a quite different nature, are aséo-
ciated here since they compensate each other to some extent, which makes

the simplest theory (Glauber approximation without spin-orbit) quite attrac-
tive. This can be seen in fig.5 where the difference between the full and
dashed curves gives the spin-orbit contribution to the cross-section. The
difference’'in fig.5 is somewhat emphazied since the spin-orbit interaction

is slightly too strong, (by about 30 %) in this case. When it is reduced

by this amount, the KMT calculation with spin-orbit (full curve) and the
Glauber calculation without spin-orbit (dash~dotted curve) are nearly
identical. Correlations also have often been neglected. Although small, their
effect is however not negligible (fig.3). Long range correlations are omitted
in the latter calculation. They have been considered in detail in ref.18 and
are important for deformed nuclei. For spherical nuclei they are negligible
(fig.4) for small momentum transfer q but cannot be omitted for q > 2 fm_l.
Finally, in order to obtain the neutron densities from high energy proton
scattering which merely determines matter densities, the proton density has
to be obtained from esewhere. Usually, it is deduced from the charge density
measured by electron scattering and the proper proton and neutron form

9) 20)

1 .
factors have to be used. More recent fits of the proton form factor

give larger values for the proton radius, but have recently been revisedZI)
and agree now with those of ref.19. All these corrections have to be made
carefully. They can, however, be made with little uncertainty for high energy
protons. This explains why errors are rather small for these probes, as can
be seen from fig.6 which presents the results when neutron densities are

>]/2— r2>1/2 . The
n p
errors are considerably smaller for the high energy protons.

fitted to the data, in terms of the difference A = <r2 <

Before presenting the fits of the neutron densities to the data that
have been done by various people, let us discuss what can actually by measured
by high energy proton scattering. The absorption is rather strong in the
interior of the nucleus. The mean free path of the proton is nevertheless
large enough so as to allow some flux to cross the entire nucleus (fig.7).

Even for masses up to 60, the inner part contributes by about 10 %. So, one
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is sensitive to the nuclear interior. Let us argue that one can also measure
rather high momentum components of the nuclear density. Electron scattering
cross-section, are directly proportional to the proton density (squared)

to be measured. So, high momentum measurements lead to the high momentum
components of the density. This is not the case for proton scattering. It
would be only true if the Born approximation (single scattering term) could
be used. But there is of course multiple scattering, the nth scattering

3

term 1eadingl to a contribution proportional to pn(%) (as compared to p(q)

for the single scattering term). For Gaussian densities (i.e. nuclei like
. - 2 2
_Ag

C), one has pn(%) ~ e

2 2
>> p(q) ~ e Aa at large transferts, so the

12 n

multiple scattering terms hide the high momentum tail of the density. For

. . . . -a
medium weight nuclei, on the other hand, the density behaves as e 4

at large
q, and so pn(%) s~ p(q) even at high momentum, and the density tail is noft
hidden by the multiple scattering terms. This is illustrated in fig.8 where
the proton cross-section is compared to its Born approximation. Note first
the exponential slope of the Born approximation, which indeed shows p(q)

-aq

behaves like e . Note then that the slope of the full calculation is the

-a .
q. For this reason,

same: all the multiple scattering terms behave like e
. . . -1
the Born term is non-negligible even at 3 fm = momentum transfer. Momenta up
-1 . . . .
to q = 2 fm  are already sufficient so as to get the most relevant information

on the neutron density shape.

Let us now discuss the results. The procedure used by the various
authors is nearly the same : the proton density is obtained from electron
scattering, and then the 1 GeV proton scattering cross-section is calculated
using some parametrized neutron density, the parameters of the latter being

11-13) use a three

fitted to the data. The first generation calculations
parameter Fermi form for the neutron density, do not include the correlations
and do not worry about the neutron contributions when deducing the proton
density from the charge form factor. A typical fit obtained with these (model
dependent) analysis is shown in fig.9. This fit was done at low momentum

(q < 2.5 fm_l, that is © <.16°) only, and the X2 is nearly | per point which
means the calculated curve goes nearly through every data point. The results
for the neutron radii obtained this way are given in Table 1 and are all

13,22,23)

consistent. The second generation calculations include correlations

(which increases rn—rp by an amount of 0.02 to 0.03 fm,constant for all isotopes)
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. , -2/
and also extract the proton density from the charge density more accurately22 24)

(this decreases rn-rp,_the effect being more pronounced for nuclei with a

large neutron excess). The net effect of both corrections is to leave r -r
. . 40 .

invariant for Ca, but to decrease it by a rather large amount (0.07 fm)

for 48Ca. The final resultzz)

is given in fig.6 and in the last column of
Table 1. Within the 3 parameter Fermi model for the aeutron density, this
last result represents the more involved calculation that can be done, inclu-
ding all known corrections. The difference between the neutron and proton
radii is seen to be rather small even for 48Ca (0.09 + 0.05 fm). It is
barely consistent (Table 2) with the Hartree-Fock (Bogoliubov) calculation

of Gogny4), ind agrees with the neutron radii obtained ' from Coulomb energy

1

differences It disagrees with the earlier Hartree-Fock calculations of

Negelez) or Vautherin and Brink3).

Finally, let us present some results for the neutron density, using

3)

the 3 parameter Fermi form1 . Proton and neutron densities are nearly
identical for 40Ca (fig.10). When two neutrons are added, they merely increase
the bulk density, but at the surface, the densities are nearly the same. A
neutron skin appears gradually at the surface when 4, but especially 8 neutrons

are added to 40Ca.

23,25) which use

A third generation set of calculations is under way
the so called model independent fittering procedure. Without any doubt, they
will one day overseed the model dependent results. Let us however point out

that the available calculations may still be refined. The analysi523)

of the
800 MeV data (fig.l0) contains practically all needed corrections, except
for the long range correlations that cannot be neglected at q > 2 fm_] (the
third maximum, at the end of the measured angular distribution). Forcing

the calculation to agree with the data in this region - which is possible

in a model independent analysis — may be one of the reason for the large

23)

values of r obtained in this work . The other reason is of course the
bad fit obtained at forward angles. This is rather surprising for a model
independent analysis which should in principle be able to reproduce any
measured shape. To this extend, the analysis of the Saclay data done in
ref.25) is much better since the X2 is near one per point (Incidentally,

10-13) reach similar values for Xz)- Correlations

the model dependent fits
have however been neglected in this work. Also, the authors rely on the

Glauber approximation which is not totally equivalent to the KMT approach



— 104 —

because of the eikonal approximation. So, the results obtained in ref.25)

may still be subject to some improvements in the near future. Let us

however note that their larger value of rn—rp for 48Ca is due to a depletion

in the interior of the neutron density. Such a feature may still (or may

not) be present in a more complete calculation, and will decide whether

rn-rp is compatible (or not) the presently available Hartree-Fock results
(rn—rp ~ 0.14-0.23), As a brief conclusion, let us simply say that high

energy proton scattering seems to be quite an accurate tool for determining
neutron densities. The differences between the various analyses are rather
small, and a careful examination of the theory can decide among the latter
which one is the most accurate. At low momentum transfer (q < 2 fm_]), the

only approximation that has not been thoroughfully checked are the relativistic
corrections of ref.l4). It would be worth to solve the Dirac equation exactly
and to compare to the recipe used by all authors working with the KMT approach
(the same assumption is also made in the Glauber approach, since the straight
line trajectory assumption implies it). A large momentum transfer (q > 2 fm),
almost nbthing is known : the correlation calculation has to be refined, dis-
persive corrections carefully included ; the results may also be quite sensi-
tive to the explicit form assumed for the t matrix which is usually taken as

a gaussian. These problems should be considered, especially since high momen-
tum transfer experiments are currently done, or planned in the near future.
Whereas such experiments are quite stimulating and may lead to new informations
on neutron densities, one should however not forget that the accuracy of the
presently available information is severely limited by the quality of the

data at low transfer. The measurements at various angles are sometimes not
sufficiently consistent with each other and do not lead to smooth enough curves.,
Also, the angle measurement itself has to be extremely precise (less than 1 %)

so as to permit to reach the desired 1 % accuracy on the neutron r.m,s. radii.
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Table 1
b=r - s alk. P Igo & cs 9
+ 0.05 fm 1 GeV 1 GeV 800 MeV 1 GeV,revised
40 -0.03 -0.02 0.01 -0.04
42 0.04 0.03 0.08 0.03
44 0.06 0.06 0.10 0.02
48 0.16 0.15 0.19 0.09
a) Ref.l13 b) Ref.l1 c) Ref.l12 d) Ref.22

Values of the difference A = r - rp of the r.m.s. radii obtained by various
authors. The first three analysis make nearly the same assumptions, but do
not use the best proton and neutron form factors (see discussion in the text)

and omit correlations. The last column includes all these corrections.



Table 2
b=rx_ cLs Coul. ) ¢ y 4 VB e)
1 GeV
+0.05
40 -0.04 -0.04 -0.04 -0.05
42 0.03 0.01
44 0.02 0.015
48 0.09 0.06 0.14 0.23 0.18
a) Ref.22 b) Ref.l c) Ref.4 d) Ref.2 e) Ref.3

Values of the difference A = r - rp of the r.m.s. radii obtained from

| GeV proton scattering (col.l), compared to the same quantity extracted

from Coulomb energy differences (col.2). The last three columns give the

Hartree-Fock results of Gogny, Negele and Vautherin-Brink.
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Table 3
A= r-r a) b)
P 800 MeV 1 CeV-600 MeV
+ 0.05 fm + 0.04 fm
40 0.10 -0.02
48 0.23 0.17
a) Ref., 23 b) Ref. 25

Values of the difference A = r - rp of the r.m.s.

radii obtained from various model independent

analyses.
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FIGURES

From ref.13, Total proton-proton cross—-section versus incident (kinetic)

energy. For energies between 0.7 and 1.5 GeV it is nearly constant and

close to 46 mb,

From ref.13. Proton-proton differential cross—section from 650 MeV to

1732 MeV as a function of the momentum transfer q. Above 700 MeV, the
cross—section appears practically independent of energy but for 650 MeV

an important decrease of the differential cross-section for all transfered
momenta is observed. The curve corresponds to the parametrization used

in ref.13.

. 40 . .
From ref.13, Effect of correlations on Ca. In the first calculation
correlations are ignored (dashed line), in the second one (solid line)
short range and center of mass correlations are introduced. Long range

correlations are omitted. Their effect is show in fig.4.

From ref.18. Effect of long range correlations (or dispersive corrections).
Virtual excitation of the low lying 3 (3.74 MeV) and 5 (4.49 MeV) collec-
tive states, as well as the giant quadrupole state (18 MeV) are included.
They are important for angles largen than 15° (q > 2.3 fm—]), but negli-

gible at small momentum transfer.

From ref.13, Influence of the spin-orbit amplitude given by a comparison
of two KMT calculations performed with (solid curve) and without (dotted
curve) spin-orbit term. A difference of 20 7 is obtained at the second
maximum. The influence of the eikonal approximation is shown by a compa-
rison of a KMT (dotted curve) and a Glauber (dash-dotted curve) calcula-
tion performed both with exactly the same nucleon-nucleon amplitude and

the same form factors.

From ref.13. Values of A, difference of proton and neutron r.m.s. radii

obtained by various authors

13)
22)

a) KMT calculation for 1 GeV proton scattering (upper values) and

revised results including correlations and the correct proton

and neutron form factors (lower values).

b) KMT calculationlz) for 800 MeV proton scattering done with the same
approximation as the upper values of (a).

D

. . . Lo . .
c) Glauber calculation without spin-orbit interaction, with the same

approximation as the upper values of (a).
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7)

d) 16 MeV proton scattering .

e) Intermediate energy (1.37 GeV) alpha scattering26), same approximation
as the upper values of (a).

f) 166 MeV o particle scattering6).

5)

g) 79 MeV o particle scattering

D

h) Neutron radii obtained from Coulomb energy shifts

i) Pionic atom827).

j) Pionic atomszg).

7 - From ref.13, Damping coefficient Ng = |e2162| due to the absorption as
a function of x = R/kR, with R = 1,2 Al/3, The values x < 1 correspond

to the nuclear interior.

8 — From ref.13. Comparison of the Born term (dashed line) to a complete
calculation (solid line) for 1 GeV elastic scattering on 58Ni. Even
at low transfered momentum, the difference is large since multiple
scattering terms are important. But the Born term is never negligible.
The dot-dashed curve is the full calculation when the last bump near

3 fm_] of the form factor has been suppressed.

9 - From ref.13. Cross—sections for the four Ca isotopes obtained by a
least-square fit of the neutron density. Tree parameter Fermi type
. densities are used for protons and neutrons. Only the neutron density
parameters c (radius) and a (surface thickness) are adjusted to the data.
Experimental points corresponding to angles above 16° (q > 2.3 fm_l) are
not included in the fit. A model dépendent analysis of the 800 MeV datall)

leads to fits of the same quality as those shown here.

10 — From ref.13. Three parameter Fermi densities for the protons (solid line)
and the neutrons (dashed line) obtained by fitting the latter to the

1 GeV proton data.

11 = From ref.23, Model independent fits to the Ca isotope data at 800 MeV,
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Alpha-Particle Scattering from Ca-Nuclei

H.J. Gils
Kernforschungszentrum Karlsruhe GmbH
Institut fiir Angewandte Kernphysik
P.O0.B. 3640, D-7500 Karlsruhe
Federal Republic of Germany

Abstract

The possibilities, advantages, and difficulties of
determining nuclear matter densities by elastic scattering of
alpha-particles are generally discussed. On the basis of
particular experimental data - 104 MeV alpha-particle scattering

£rom 40,42,44,48Ca

- a refined folded potential is introduced
using a density-dependent alpha-nucleon-interaction and target
nucleus densities described by Fourier-Bessel-series. Thereby,

the total nucleon densities of these isotopes were determined

with little model dependence. The resulting root-mean-square

radii and density differences are compared with other experimental

results obtained by different methods.

Talk presented at the International Discussion Meeting:
"What do we Know about the Radial Shape of Nuclei in the
Ca-Region?"

May 2-4, 1979, Karlsruhe, Germany
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1. INTRODUCTION

Besides the proton scattering discussed in the previous
talk elastic scattering of other strongly interacting projectiles -
among them in particular alpha-particles - has been suggested
as experimental source of informations about the neutron or

total matter densities of nuclei1).

For any hadronic projectile
the general difficulties to interpret the experimental results
in terms of the target nucleus density have, of course, the
same reason, namely the incomplete knowledge of the projectile-
target nucleon interaction which leads to simplified model
assumptions of the reaction mechanism. However, for particular
projectiles having special features one can imagine some
problems to be reduced or better understood, or even completely
to vanish even though other difficulties mayarise. In addition,
it is near at hand that different projectiles at different
energies probe different moments or radial regions of the
nuclear matter densities. Thus one can hope to get a more
complete picture of the whole slope of the nucleon distribu-
tions when comparing and combining the results of the

different methods.

The strong absorption of alpha-particles at the nuclear
surface known since a long time has been the most conspicuous
hint that alpha-particle scattering should be a sensitive probe
determining nuclear radii. Additionally, alpha-particle
scattering analyses are distinctly simplified since the alpha-
particle has vanishing spin and isospin § = T = 0. Finally, the
great amount of available experimental data enabled many
systematic and methodic studies helping better to understand

the alpha-particle-nucleus interaction.

These general considerations favouring alpha-particle
scattering, however, do not tell us which quantity of the
target nucleus we can most reliably extract from elastic alpha-
particle scattering cross sections and which experimental
prerequisites have to be fulfilled. Thus, in the first part of

the present talk some features of alpha-particle scattering
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at low and medium energy important for the determination of
nuclear radii will be specified, in order to get an insight
into the advantages and limits of this experimental tool. High
energy alpha-particle scattering in the GeV region will not be
treated in detail here, since the dominant experimental
features and the methods of analysis are quite similar as for
GeV-proton scattering discussed in the previous talk. In the
following ,refined phenomenological and microscopic procedures
for the analyses of medium energy alpha-particle scattering
will be introduced mainly basing on one particular experiment,
namely the elastic scattering of 104 MeV alpha-particles from
40’42'44’480a performed at the Karlsruhe Isochronous Cyclotron.
By means of this experimental data and procedures the nuclear
matter radii of the Ca-isotopes have been determined with
little model dependence. The results will be compared with
other methods and further efforts improving the analyses will
be suggested finally.

2. DIFFRACTION AND RAINBOW SCATTERING

In order to get a clear understanding what happens in
alpha-particle scattering we first look at some experimental
gross features. The strong absorption of alpha-particles at the
nuclear surface already mentioned leads to a pronounced
diffraction pattern of the angular distributions of elastic
scattering cross sections as demonstrated in Fig. 1. For the
following considerations we focus our attention only to the
scattering into the forward hemisphere since the backangle
behavior - though also a very interesting field of investiga-
tions - is not strongly related to the size of the target
nucleus. In analogy to the Fraunhofer diffraction known from
classical optics one calculates for the angular difference A0

between the diffraction maxima:

(2.1)
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Herein k = %_1 is the wave number of the incoming particle and

R is called the "diffraction radius", which can be looked at as
a measure for the size of the target nucleus. In fact, the
first investigations of nuclear radii by alpha-particle

scattering3’4) basically have compared diffraction radii.

With increasing alpha-particle energy A0 becomes distinctly
smaller as expected from eq. (2.1) due to the increase of k.
For energies higher than about 50 MeV we observe a new
phenomenon: the diffraction pattern is strongly damped at
larger angles (2 60°) and after a maximum value the cross
sections fall off exponentially. This behavior becoming more
dominant at still higher energies (see Fig. 1b) can be
understood by semiclassical considerations concerning the
trajectory and deflection function 0(b) of a particle in a

central potential as defined in Fig. 2.

The fundamental ideas of this treatment were at first
elaborated by Ford and Wheelers) for scattering from a pure
real potential. Lateron, it has been extended to complex
potentials using some ad hoc assumptions or elaborating a more
or less theoretically exact foundation, respectively6’7). The
semiclassical treatment is physically based on the fact that at
higher energies where a sufficient number of partial waves
contribute to the scattering process, the angular momentum can
be regarded as a continuous variable. Quantum mechanical
quantities thus are identified by their classical analoga. For
a realistic nuclear potential which consists of the Coulomb (C)
and of the nuclear (N) part some characteristic trajectories
and the deflection function 0(b) are shown in Fig. 3. The
deflection function has extreme values de/db = 0 at two parti-

cular angles 0_ (C,N) due to the different parts of the

R
potential.
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Fig. 2: Trajectory of a particle in a central potential.
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Fig. 3: Characteristic trajectories and deflection function

for a Coulomb plus nuclear potential (schematically).

In the classical limit the scattering cross section grows

towards infinity when approaching 6 from smaller angles and is

R

zero beyond 0, as shown in Fig. 4. We call OR'the "rainbow

R
angle" since the considered phenomenon is in formal analogy to
refraction of light in rain droplets generating the natural

rainbow at a certain "scattering" angle.

In the semiclassical description of scattering the
interference of different trajectories is included, that means
the amplitudes corresponding to the different impact parameters

b are coherently added. Thereby the classical rainbow scat-
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(8) Classical Particle
¢ N/ e Wave-Particie
[

Fig. 4: Scattering cross sections at the "rainbow angle" OR

(schematically).

tering is, of course, distinctly modified. The pole at OR is
smeared out and the cross section reaches a finite maximum

value at the rainbow angle 0_ and decreases exponentially

beyond it as indicated by a gashed curve in

Fig. 4. This behavior is expected at both the Coulomb and the
nuclear rainbow angle. The Coulomb rainbow scattering has been
demonstrated very nicely by heavy ion scattering whereas alpha-
particle scattering above 50 MeV considered here is dominated
by nuclear rainbow scattering as displayed in Fig. 5 for
different target nuclei. The nuclear rainbow scattering has
very intensively been studied by Goldberg and Smith8) resulting
in the so-called "nuclear rainbow criterion" for alpha-particle
scattering which says: "If the cross section measurements are

extended to scattering angles in the refraction region far

beyond the nuclear rainbow angle then the real optical

potential can unambiguously be determined even in the interior

of the nucleus."

Therefore, from the semiclassical treatment of alpha-

particle scattering the following gross features can qualitatively

be concluded:
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8., (deg)

Fig. 5: Elastic scattering of 140 MeV alpha-particles from
different target nuclei demonstrating nuclear rainbow

scattering (from Goldberg and Smith, Ref. 8).

1. The diffractive alpha-particle scattering sensitively

probes the nuclear surface expressed in diffraction radii.

2. The refractive alpha-particle scattering beyond the
nuclear rainbow angle should be able to answer questions
about the optical potential at innermore parts of the

nucleus under investigation.
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3. OPTICAL POTENTIALS

The optical model is of central importance for interaction
processes of nuclear particles and for many years now it has
been a standard procedure to interpret scattering experiments
in terms of an average complex potential

V(ir) = - (r) + Vv

(r) - iw (r) (3.1)

Vreal imaginary Coulomb

The shape of V is assumed to be of the same general form as

that of the nugiZir density because of the short range of the
nuclear forces. Since also in more microscopic interpretations
as e.g. folding models, the optical potential is the quantity
which is primarily determined from the scattering cross
sections we have to discuss some important features of the
alpha-particle scattering potential in order to be able to

judge the validity of the microscopic methods presented later.

Numerous analyses have established the gross features of
the phenomenological forms of the potentials specified by
empirical sets of parameters describing the strength and radial
size. Most frequently the Saxon-Woods (SW) form has been used

as parametrization of the potential

SW _
Vi) =V fv(r)
w(r) =W . £ (r) (3.2a)
r-r
. SW _ V,W 7-1
with fV,W = [1 + exp ay W—— ]

Since alpha-particle scattering requires different radial

shapes of the real and imaginary part, not only the strengths
Vo’ Wo but also the half-way radii rV,W and skin thicknesses

aV,W (diffuseness), respectively, have been treated as independent
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parameters. At lower energies covering only the diffraction
region sometimes a surface term has been added to the imaginary
potential or used instead of the volume term (eq. 3.2a).
r-r
W = W2 d

S -1
s & ag gy L1+ exp a ] (3.2b)

The improvement of the theoretical cross sections by using this

term, however, is not observed at higher energies (z 100 MeV).

Because of some deficiencies of the Saxon-Woods form other

parametrizations of the optical potential have recently been

2),9)

studied by different groups with the additional aspect of

o using global form factors £
Among others the Saxon-Woods form-factor squared (SW2)

an energy dependence of Vo’ W v,W

sw? Ty, W |72

f = f1 + exp
V,W - av’w

(3.3)
has been found to describe the experimental cross sections over

a wide energy range much better than the SW~form. Thereby, it

is most important to introduce the squared form (3.3) in the

real part of the potential whereas the squared form included in
the imaginary part does not distinctly improve the reproduction

of experimental cross sections (even if the surface term

) 0) 1) of the

optical potential for alpha-particle scattering reveal the real

squared is added .In fact,microscopic treatments

part to be close to the (SW)2 form and the imaginary part to be

close to the SW form.

However, the Saxon-Woods form and the Saxon-Woods form to

some power and most of the other parametrizations studied
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imply a coupling between the surface region and the interior
part of the potential. This could introduce undesirable
constraints in the analysis and lead to a strong dependence of
the results on the model used. In order to remove these
constraints and to reduce the model dependence we present a
more flexible description of the real optical potential

suggested by Friedman and Batty12).

Following descriptions of nuclear charge distributions13)
a Fourier-Bessel (FB) expansion is chosen, namely
N

Vreal(r) = Vol(r) + z bn jo (

nmrr

R
c

) (3.4)
n=1

where jo(%££) are spherical Bessel functions and RC is a

suitably chosen cut-off radius beyond which the series

vanishes. The Fourier-Bessel-coefficients bn are varied

parameters. The term Vo(r) called "first guess" potential has a

fixed form during the analyses which already reproduces the

experimental cross sections under investigation rather well.

This "first guess" term is not necessary for the FB-method, but

it is used in addition to the FB series in order to prevent
that the total potential wvanishes beyond Rc. Additionally it
leads to a rapid convergence of the FB fit procedure. Each
commonly used parametrization (SW, SW2 or others) can be chosen
as first guess potential. The necessity of a flexible and less
model dependent form for elastic alpha-particle scattering
analyses is demonstrated by the Xz—values per degree of freedom
which are reduced by factors of 2-3 when introducing the FB-

method as shown in Fig. 6.

Another very important advantage of the FB-method is the
ability to determine realistic errors of the potential at each
radial point as well as of integral quantities like rms-radius
and volume integral. Thereby, also the error correlations
between the different parameters are respected12). These
correlations dominantly contribute to the total error and are
not respected in error considerations connected with commonly

parametrized potentials.
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In Fig. 7 the FB-potentials of 104 MeV alpha-particle

scattering from 40Ca and 48Ca are displayed together with the

respective error bands. These potentials result from analyses

of data ranging from OCM = 3° to GCM = 110° which is far beyond

the nuclear rainbow angle at about OCM = 55°, One recognizes

significant differences between the potentials particularly at

the slope between r ¥ 3 fm and r ~ 5 fm.

I
va-T(r) 1

[MeV) )

—I'OCG (a,a) I.OCq
200 ---48Ca(aa) “8Ca o

Fourier-Bessel-Potentials

150

100

50 \

0

N
2 4 6 8 riftm)

Fig. 7: Real optical potentials for elastic 104 MeV

40,48

alpha-particle scattering from Ca determined

by the FB-method. The hatched areas are the error bands.

As an example the relative errors of the potential for a
particular set of Rc and N are displayed in Fig. 8 as full line
for the case of 48Ca indicating that the optical potential is
best determined in the radial region between 2 and 7 fm,
respectively, where the errors are smaller than 2 %. When
excluding the data points beyond the nuclear rainbow angle one
still obtains small errors at r ~ 7 fm which is the strong
absorption radius as indicated by the dashed lines in the upper
part of Fig. 8. The errors in the innermore part of the
potential especially at the slope, however, are drastically

increased and consequently also the errors of the rms-radii
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(see inset in Fig. 8). On the other hand, when excluding the
very forward angle data from the analyses the error band at
larger radii remarkably increases (Fig. 8, lower part)
underlining the importance of the forward angle data for a
precise determination of the outer tail of the potential. The
error band is also increased at larger radii (r z 3 fm) by a
factor of about two when taking larger angular steps of the

data points (1.5° instead of O.5°)10).

Av(%) il
. “Cala,a)“Ca |

3By £ 620 .
3:95::50° - 1

Fig. 8: Relative errors of the optical potential for alpha-
particle scattering from 48Ca at Ea = 104 MeV. The
different curves correspond to different restricted

ranges of the data points used for the analyses.

The remaining model dependence of the optical potential

when using the FB-method can be characterized as follows: Even

when starting from remarkably different "first guess" potentials

as e.g. SW and SW2 which deviate by 25 MevV at r = 0 fm the

final FB-potentials agree within the error bands up to about
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r = 8-9 fm. Hence, this radial region is determined rather
model independently. At larger radii, however, where the errors
exceed 100 % the potentials are dominantly determined by the
"first guess" form. Therefore the rms-radii still depend on the
"first guess" model when integrating up to large radii (12-14
fm) . For the volume integral the model dependence is strongly
reduced because of its weaker r-weighting. The resulting
integral quantities as well as the detailed shape of the
potential, however, do not depend on the form-factor of the
imaginary part when using the FB—method10). This is in contrast
to each common parametrization where one observes a remarkable
coupling between the real and imaginary part of the potential
which obviously is due to the deficiencies of these common

parametrizations.

Besides the FB-method other flexible parametrizations have
been used as e.g. Laguerre polynomials or spline functions.
Though they have not been so intensively studied, they seem to

give similar results as the FB-method.

We can now quantitatively conclude that the optical potential is well

determined in a wide radial range by scattering of alpha-particles in the

100 MeV region if

- the diffraction region is measured in sufficiently small angular steps

- the cross sections have been measured up to scattering

angles far beyond the nuclear rainbow angle

- a flexible ("model independent”) potential form is used.

Furthermore, with these preconditions the model dependence of the deduced

potential is strongly reduced.

After having discussed how reliably the primary quantity -

the optical potential -~ can be determined by elastic alpha-
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particle scattering and which experimental preconditions have
to be fulfilled one would like to relate the potential in a
more fundamental treatment to the proton and neutron densities
of the interacting particles via an effective nucleon-nucleon -
interaction between each pair of target and

projectile nucleons. The final aim of such a procedure should
be the possibility directly to deduce the target nucleon
densities from the scattering cross sections using a well-
founded interaction and a known projectile density. Important
steps in this direction have been attempted by folding models,
an approximation essentially based on the first term of a
multiple scattering expansion of the (real part of the) optical

potential14_18). Most of the calculations have been carried out
by folding into the target nucleus density distribution Pp an

effective alpha-particle-bound-nucleon interaction

Y (R):
P_NT P
(P) =
Upp' (£)= [ dZy o (%) vP_NT (Rp) (3.5).
The interaction VP—N (ﬁP) is either taken from phenomeneological
analyses of nucleon-g-particle scattering at low energy19) or

itself generated by folding a nucleon-nucleon interaction into

20). The latter method
16)

the o-particle density distribution o
is equivalent to a double folding procedure calculating the
leading (simple direct) term of the real part of the optical

potential by

(8) - >
Upp (£) = [ aZ, pp(Z,) [ dfy o (@) t(rgy) (3.6)

where the coordinates used are defined in Fig. 9. The quantities

°p and pPp are point matter density distributions of the projec-

tile and the target nucleus, respectively, (T

NN) is an
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effective nucleon-nucleon interaction assumed to be density
independent in simple calculations. Eqg. (3.6) neglects
noncentral terms and isospin dependence in the nucleon-nucleon
potential. Moreover, exchange and antisymmetrization effects
due to the Pauli principle are omitted. On the other hand,
single folding procedures using phenomenological projectile-

9)

nucleon potentials1

interactions21)22), sometimes supplemented by an energy-

or phenomenoclogically adjusted effective

dependent pseudo-potential accounting for exchange effect523)24)

implicitely absorb a great part of the neglected effects. This

Projectile (P)

Target (T)

Fig. 9: Coordinates of the Projectil-Target-System

may explain why actually single folding models have proved to
be more successful in describing experimental data when
compared to the simple double folding procedure of the

type of eqg. (3.6).

As example for the single folding models we regard the

most widely used Gaussian alpha-particle-nucleon-interaction
VP_NT(RP) = Ap V, exp(-|R,|%/a?) (3.7)

where the strength Vo v 40 MeV and range a ~ 2 fm have been

determined by folding a nucleon-nucleon interaction into the
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alpha-particle densityzo). The normalization parameter X_ is

R

energy-dependent and is empirically adjusted. For calibration
purposes 40ca has been taken using a point-proton distribution
pp(r) derived from experimental charge distribution pch(r) by

unfolding the charge form factor of the proton pp_ch(r) via

pep () = [ drt o (1T = T'[) o,y (F") (3.8)

The neutron distribution in most cases has been assﬁmed to be

identical to the proton distribution, i.e.

In Fig. 10 angular distributions of 4OCa(a,a)-scattering
at several energies are displayed with the corresponding
folding model descriptions using the Gaussian interaction. In

each case only the normalization factor A_ and the imaginary

R
part of the potential have been adjusted to the measured cross
sections25). It turns out that this simple folding model yields

a good reproduction of the diffraction cross sections in
particular at higher energies (100 MeV). The deficiencies at
lower energies are dominantly due to the neglection of antisym-
metrization effects which are less important at higher energies
because of the shorter interaction time. Two other examples
using the Gaussian folding model at alpha-energies of 79 and
166 MeV are shown in Fig. 11. These data are well reproduced by
the theoretical descriptions which aimed at a determination of

40Ca and 48Ca and we shall

the radius differences between
discuss the results later (sect. 5). The Gaussian folding model
has very successfully been used also for inelastic alpha-
particle scattering cross sections to extract isoscalar
transition probabilities which are - in.contrast to more
conventional methods - in excellent agreement with corresponding
completely model independent spectroscopic investigations

2 .
6,27) corroborating the usefulness of this approach.
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With a few exceptions, however, the Gaussian folding model

has been restricted to the diffraction region of the angular

distributions since in these cases only the outermost region
of the target nucleus contributes to the scattering process
where the density is expected to be low enough to neglect
saturation effects originating from the density dependence of
the N-N-interaction. In order to extend the single folding
model to the very important refraction region recently an

29)

additional term has been introduced accounting for the

saturation effects:

Fig. 10: Elastic alpha-
e my particle scattering

. from 40Ca at different

T energies. The theoretical
569 MoV curves correspond to
folding model des-
criptions adjusting the
70.1 MeV strength of the
effective Gaussian

. interaction to the
experimental data (from

59.1 MeV Lerner et al. Ref. 25).

39.6 Mev

10° 20° 30* 40° 50° 60*

8..c.



— 144 —

E = 166 MeV
Q

=
Ea = 79 Mev L
a
S
g
10° - . . - <
(@) — *carir <
------- Miller HF % |
= . \l’ " 48C° ::
\ i3 o Yoo ata p
‘I T b .’\ ~ *k'a ]
Y | 1’ \'\ ./, ’-c 1
& o Vi |
5 i
o1 d 4
A A 8q T
AR ]
SRRV «
L off Ao E
0°  10°  20° 30° 40° 50°  60° YA \ , | , LS
Be.m © 15 20 25 30 35 40
S'%cm.
Fig. 11: Folding model fits to elastic alpha-particle
scattering cross sections at Ea = 79 MeV and
Ea = 166 MeV (from Refs. 24,28).
2/3
- _ 2752y _
va_NT (Rp) v exp (-|Rp[2/a?) (1 -y o *"7) (3.9)

The parameters VO, a and y have empirically been determined by
adjusting them to the elastic scattering cross sections of 104
MeV alpha-particles from 40Ca. It is interesting to note that
the phenomenological value for y obtained thereby is very close
to 2 fm? as found in more fundamental investigations30). In
Fig. 12 the Gaussian folding model description of 104 MeV
alpha-particles with and without (y = 0) the additional term
(3.9) are compared clearly indicating the importance of this
term for the cross sections at large scattering angles. The
final N-a-interaction is displayed in Fig. 13a for a free
nucleon (r, = «) and for nucleons imbedded in a 40Ca nucleus at

N
different radii.




Fiqg.

0/0g

12:

— 145 —

120

101 . | . ; \ ! A | . !
40Ca[a,al40Ca
ELAB: 104 MeV

100~ F3 - Fotding
XZ/F = 4,8

1071 -

10—2_

1073 -

10_4 " T T T T

0 20 40 60 80 100
O [deg]

lUl : ! i . . ! |
40Ca[a,a]40Ca
Ee = 104 MeV

100 | F3 - Folding
x/F = 113

A o

10-1- CERV

1072

10—3.

10_4 T T T T T T T

0 20 40 60 80 100
Om [deq]

Folding model description of 104 MeV alpha-particle

0Ca without (v = 0)
3.9).

scattering from 4

saturation term (eq.
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Fig. 13: a) Effective phenomenological N-a-interaction
respecting saturation effects due to the target
nucleus density for scattering of 104 MeV alpha-
particles from 40Ca.

b) Microscopic interaction from Majka (1978) Ref. 31.

The phenomenological Gaussian N-a-interaction can be compared
with a microscopic interaction generated from Grenn's density
dependent effective nucleon-nucleon interaction including anti-

31)

symmetrization effects as shown in Fig. 13b). Only the

strength and the saturation factor y have been adjusted to the
40Ca (a,a) cross sections in Fig. 13b). A good agreement of
both interactions is observed for r, > 2 fm and ry > 2 fm. The
description of the elastic alpha-particle scattering cross
sections by the microscopic interaction is only slightly worse

when compared to the phenomenological Gaussian interaction.

A further step in the direction of a full microscopic

description of alpha-particle scattering recently was performed

by Majka et al.32). Alternatively to the folding over the

target density ("target folding") by eq. (3.5} they started
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Fig. 14: Microscopic descriptions of 4OCa(a,a) 40Ca elastic

cross sections using various approaches (see text)
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with an adequate nucleon-target nucleus interaction Vip_y then

constructihg the real part of the projectile-target interaction

by integrating over the complex projectile density

(T) - 2
Upp (X)) = [dZy o, (Z)) VT_NP(RT) (3.10)
In the nucleon-target interaction VT-NP(RT) density dependence
and exchange effects have been included similarly to the

31). Results

mentioned procedure generating the N-a-interaction
for the procedures S (eq. 3.6), P (eq. 3.5) and T(eqg. 3.10) are
displayed in Fig. 14. In each case only the normalization
factor of the potential AR and the imaginary part of the
optical potential have been adjusted to the experimental data.
The lowest curve shows the result of procedure T without
respecting exchange effects which gives only a slightly worse
reproduction of the cross sections indicating the minor

importance of this effect.

A remaining considerable criticism of the presented
folding model and also of other respective approaches33) is the
need of an empirical renormalization of the microscopically

calculated potentials (by a factor A, < 1) indicating an

R
insufficient understanding of important contributions. In order
to overcome this deficiency an intermediate approximation has
been introduced using eqg. (3.6) with a density dependent NN-

interaction tp(r p) and neglecting antisymmetrization

NN’
effects (justified by the results of Fig. 14). In a local
density approximation the density p appearing in tp thereby is

given by

op (%P + £ /2) + g (%T + 1y /2) (3.11)

The inner integral of eqg. (3.6) which for m = O (the "adiabatic"
approximation) is just the free nucleon-target potential V

T-N
is now dependent on the density Pp of the imbedded projectile
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nucleons. The factor m (0 £ m < 1) accounts for the degree of
the compressibility of the nuclear matter in the overlap region
of the colliding nuclei. With the reasonable value m = 1/2 one
obtains a satisfactory description of experimental (a,a)

cross sections without any readjustment of the real potential

(AR = 1) as shown in Fig. 15.

do (0) o o - -
dop,(O) ] ]
00 “Och («, w49ch I
1 Eus= 104 MeV
1 IM; XYF =40 -
1074 -

]
102

10734 8
?
lo—u LA LR i T ! I ! i T
20 o 60 80 100 120
Oc.n.s. [Deg.]
Fig. 15: "Intermediate approximation”" describing
40

Ca(a,a)40Ca cross sections without any parameter

adjustment of the real potential.

Thereby the characteristica of the folded optical
potential as rms-radius, volume integral and skin thickness are
in reasonable agreement with the phenomenological potential
obtained e.g. by the FB-method. Thus we conclude that the

refined folding models including density dependence are a
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useful, well-understood, and reliable description of elastic

alpha-particle scattering at medium energies.

4, ELASTIC SCATTERING OF 104 MeV ALPHA-PARTICLES
FROM 40,42,44,48Ca

The particular experiment and analyses we now want to
discuss more in detail is the elastic scattering of 104 MeV

alpha-particles from 40,42,44,48

Ca performed at the Karlsruhe
Isochronous Cyclotron. Part of the experimental results have

been already presented in the previous general discussion.

The targets used for this experiment were self-supporting

metal foils of natural Ca (96.9 % 40
42,44 ,48

Ca) and highly enriched

Ca (enrichment 94-99 %), respectively. The target
thicknesses ranged from 1 to 5 mg/cm?. The scattering chamber
used had a diameter of 130 cm enabling to obtain a small
acceptance of 0.15° of the slits in front of the 4 mm thick
surface barrier detectors used for the detection of the
scattered alpha-particles. The overall energy resolution was
150-180 keV sufficient to separate inelastic and contaminant
peaks (C,0) at almost all scattering angles. Particle
identification was not necessary because the maximum energy
loss of protons, deuterons and tritons was less than 43 MeV far
outside the interesting energy region of elastically scattered
alpha-particles. 3He-particles did not interfere with the
spectra, because of the distinctly different Q-values (about 15
MeV) compared to alpha-particles. Great efforts were focussed
to the determination of the absolute zero point of the
scattering angles by measuring on both sides of the beam (left-
right measurement) and by additionally observing the kinematical
behavior of the carbon and oxygene *“arget contamination peaks.

The absolute total uncertainty of the scattering angles was



— 161 —

determined to within + 0.05° ,The targets were measured in turn
at each scattering angle in order to avoid angular errors by
new settings. The elastic scattering cross sections were
measured from 0 = 3 up to 0 = 110° in steps of 0.5° in the

CM CM
diffraction region (0 < 60°) and in steps of 1.5° beyond. The

beam current was measﬁgeg on a Faraday cup behind the scattering
chamber and additionally monitored by a fixed angle detector.
The statistical errors were 1-2 % at most of the forward angles
(<50°). The uncertainty of the absolute scattering angle was
converted into cross section errors by taking into account the
slope of the angular distributions. Since the uncertainties of
target thickness, integrated beam current and detector
acceptance determined the absolute scale of the cross sections
only within 10 % accuracy the data were finally normalized at
forward angles to optical model predictions. The experimental
results covering nine orders of magnitude are displayed in

Fig. 16. With increasing mass number the behavior of the cross sections
in the transition region between diffraction and refraction and
also the decrease at large angles are very similar for

40’42’44Ca, whereas the transition structure and the slope of
the refractive decrease in the case of 48Ca differ obviously

from those of the other isotopes.

Concerning the determination of the optical potentials the
experimental data have been analyzed by several approaches
including a realistic Coulomb potential by double folding of
the charge densities of projectile and target, using SW and SW?
imaginary potentials, and FB-series for the real potentials
with SW and sSW?-forms as "first guess". The final results of
the various approaches are very similar at least when looking
at the differences between the isotopes under investigation. As

a representative result for a conventional optical potential
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Differential cross-sections of elastic 104 MeV
. . 40,42,44,48

alpha-particle scattering from Ca.
The error bars include a contribution from the
angular uncertainty (+ 0.05°) which has been conver-

ted into cross section errors.
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Fig. 17: Differential elastic scattering cross sections of

40’42’44’480a (a,a) normalized to the Rutherford

cross sections and FB-potential analyses (solid lines).
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analysis Fig. 17 shows the results of the FB-analyses of the

optical potential. The corresponding differences of the real

potentials per volume integral

VA(r) V4O(r)

4 mr? {JO(A)/4A " 3_(40)/4+10

}

42’44’48Ca and 40Ca including the

between the isotopes
corresponding error bands obtained from the FB-method are

displayed in Fig. 18. The curves directly reflect the excess
potential strength per nucleon in a spherical shell of 1 fm

thickness.

For all three isotopes one observes a distinct potential
excess at the nuclear surface while in the cases of 42’44Ca
additionally a more or less small depression is indicated
inside the nuclei. This result, though it tells us up to now nothing
directly about rms-radii or any other features of the matter densities is

the most reliable and least model dependent result which can be extracted

from the present experiment.

For a more direct interpretation of the experimental results in
terms of the nucleon densities we have chosen the folding model
using the Gaussian effective interaction including the
saturation term (eqg. 3.9). The more refined methods (egs. 3.10
and 3.11) are too laborious to vary the assumed densities in a
fit procedure. Adopting the usefulness and reliability of this
interaction corroberated by many systematical studies we
focussed our attention to the problem of the model dependence
of the parametrized nucleon densities. Similar as in the case
of the optical potentials the coupling of different radial
regions of the densities given by widely used functional forms
as e.g. the 3-parameter Fermi form (F3)

o(r) = po [1 +wiz ] [1 + exp 222 |77 (4.1)

2 a
c

may introduce undesirable model effects in the analyses as also

observed in electron scattering analyses.
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Therefore, we describe the nuclear matter distributions by

. n'rwr
LR v (4.2)

N
p(r) = po (r) + Z
n

following the FB-method for the optical potential. In order to

keep the volume integral of P constant only Bzm..BN, were
varied parameters and B1 was determined from
N
B1 = ) — (4.3)
n'=2 n'

For the "first guess" density po(r) we studied different cases,

each parametrized by the F3-form

D

A: polr) = pp(r)
with pp(r) derived from experimental charge distributions

as described in sect. 3.

B: po{r) = result of a fit procedure varying the parameters
of F3 in order to reproduce best the cross sections under

investigation.

In addition to these "first guess" densities we also chose

different strengthsVo for the effective interaction:

Vo adjusted by means of the 40Ca cross sections.

IT: Vo slightly changed (via grid calculations) in order to
give the best description in an F3-fit for each nucleus.
The changes were less than 5 % compared to case I

o . . 42,44

requiring weaker interactions for

18ca.

Ca and stronger for
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For the FB series cut-off radii between 6 fm and 7.5 fm
have been chosen and the number of terms (N') was between 6 and
9. The theoretical reproduction of the angular distributions
obtained by these approaches were very similar. A typical
example is shown in Fig. 19. The resulting matter densities

averaging the single calculations are displayed in Fig. 20.

The corresponding rms-radii are compiled in Table I,
together with radii of the corresponding proton distributions
(from Ref. 34).

The differences of the matter densities including the
respective error bands obtained from the FB-analysis are
displayed in Fig. 21. For comparison corresponding charge
density differences are plotted on the right-hand side. In all
cases one observes a nucleon or charge excess at the nuclear
surface when compared to the 40Ca—core, indicating that a local
increase of the neutron density (due to a filling of an
additional shell) also leads to an increase of the proton
density in the corresponding radial region. This effect
generated by the dominating n-p force seems to be responsible
for the surprising behavior of the nuclear charge radii, in
particular for the small value of 48Ca which is due to the fact
that protons from the outermost surface are pulled into the
region at r v 3.8 fm by the additional neutrons. When comparing
finally the matter and charge differences for each nucleus one
recognizes for 48Ca a long positive tail for the matter and a
negative bump for the charge difference which has to be

interpreted as a distinct "neutron skin" of 48Ca.
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RMS-RaD11 oF PROTONS

FROM H.D, WOHLFAHRT ET AL., PHys. LetT. 73B (197%8) 131

w212 <R

FROM (o,a) PRESENT WORK

RMS-Rap11 oF ToTAL MATTER

<R2N>l/2 =[1/N (A <R2M> -7 <R2P>ﬁl/2 = RN: RMS-RAaD11 oF NEUTRONS

RMS-RADIT (gm)
A R, R, Ry ARy Ry R, DRy _p (W)
(A-40) (A-40) (A-40)
40 3,386 3,335 3.361 -0,051
42 3.422 0.036 3,420 0.085 3.421 0.060 -0.002
44 3,439 0,053 3.476 0.141 3.459 0.098 +0,037
48 3,407 0.021 3,635 0,298 3,541 0,180 +0,226
Table I : Root-Mean-Square-Radii

of Ca-Isotopes
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5. COMPARISON WITH OTHER METHODS

The elastic scattering of protons35'37)

24,25,38) 39,40) as well as the total cross section
42)

;, alpha-particles

and pions

41) 43)

for protons and pions and observations of pionic atoms

have been used for studies of the nuclear density distributions

of calcium isotopes. Table II summarizes values of <r2n>1/2

<r2 >1/2, the differences between the neutron and proton rms

radii, obtained by the various methods where in most cases the

values for 40

Ca given in Table I have been used as "calibration".
When comparing at first the present results with those obtained
from other experiments of elastic scattering of alpha-particles
we note that the flexible (model independent) FB-method had not
been applied before for Ca-isotopes others than 40Ca-Thus most
of the previous analyses could have lead to results which

depend on the assumptions made about the form of the distributions.
In particular, no information is obtained on the nuclear
interior if only the diffraction region is included and thus
results depend on the arbitrary extrapolation due to the chosen
functions. All previous experiments using alpha-particle
scattering at about 100 MeV were confined to the diffraction
region of the angular distribution. Indeed, if we analyze only
the diffraction part of our data we find values for <r2 >1/2
quite different from those quoted for the full angular range
strongly depending on the approach used for the density.
Furthermore, the estimated errors (e.g. from the FB-procedure,
if convergence is achieved at all) increase by factors of 2-3
(see Fig. 8).

The analysis of 1 GeV proton scatterin935_37) is a
promising method thanks to the plausibility of using the free
p—nucleon interaction. Procedures like the FB-method have

7)

already been used for the analysis of proton scattering3



<R§>l/2 - <Rg>l/2 (Fm]

METHOD REFERENCE
40 42 4y 48
a-SCATTERING LERNER ET AL, -0.02* 0.03 + 0.08
79 MeV(DIFFRACT.) P.R. C12 (1975) 778
104 MeV PRESENT EXPERIMENT (-0.05+0,03)| 0.0+0,03 0.0440.05 | 0.23 + 0,04
166 MeV BRISSAUD ET AL. -0.0340.12 0.07+#0.16 | 0,30 + 0,12
N.P.A191 (1972) 145
1.37 GeV ALKHAzdv ET AL. -0.02+0.03 | 0,03+0.03 | 0,07+0,03 | 0,18 + 0,03
N,P,A280 (1977) 365
P-SCATTERING CHAUMEAUX ET AL. -0.03 0.04+0,03 | 0.03+0.03 { 0,16 + 0,03
1.04 GeV P.L., 72B (1977) 33
REANALYSIS SHLOMO AND SCHAEFFER -0.04* 0.0 +0.03 { 0.0 +0.03 | 0,10 + 0.03
PREPRINT 1979
800 MeV [co ET AL,
P.L. 81B (1979) 151 0.01+0.08 | 0.08+0,08 } 0.10+0.08 } 0.18 + 0.08
T TOTAL CROSS JAKOBSON ET AL. 0.01+0.05 ! 0.12 + 0.05
SECTIONS P.R.L, 38 (1977) 1201
T ATOMS BATTY ET AL. -0.05+0,05
P.L, 81B (1979) 165
P TOTAL CROSS ANDERSON ET AL. -0.05+0.09 | 0.52 + 0,09
SEcTIONS 700 MeV P.R. C19 (1979) 905
* ASSUMED

Table II: Differences between neutron and proton density rms-radii of Ca-isotopes

— €9 —
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However, the models are unable to reproduce the data at angles
beyond the third diffraction minimum and analyses have,
therefore, been confined to very forward angles. This presumably
leads to consequences regarding the nuclear interior similar to
those discussed before. In contrast, in the folding model for
alpha-particle scattering the density dependence was introduced
in the present work in order to be able to include into the
analysis the full range of angles that could be measured.

The elastic scattering of pions was analyzed39’40)

using
a simplified model (of a black disc) and the results obtained
could strongly depend on those assumptions. Total cross sec-—

tions41’42) 3)

and observation of pionic atoms4 provide only one
or two experimental numbers (cross section or level shift and
width) and therefore the analysis must rely on the choice of
functions for the density distributions. It is, therefore,not
clear whether or not the results of these experiments can be
presented by rms-radii, particularly when looking for small
isotopic differences. In view of the above arguments one should
also ask the question whether all the other experiments (if
any) really determine the rms radii. Some of the conflicts
between different results as observed in Table II may be
resolved if a combined analysis of several experiments is
performed, all of which probe different radial regions of the
nucleus. For example, it may turn out that moments of the
density distributions different from the second (i.e. the rms-

7)

radius) are better determined3 and analyses of different

moments may prove useful.

6. CONCLUSIONS

The experiments presented in section 4 fulfill the
preconditions to reveal the whole slope of the optical
potentials and nuclear matter densities of the calcium isotopes

with good accuracy. The methods of analyses include refined
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techniques as e.g. density dependence and the flexible Fourier-
Bessel description which (i) are completely able to reproduce
the experimental results over the whole angular range, which
(ii) distinctly reduce the model dependence of the extracted
quantities, and which (iii) have never been used before for
alpha-particle scattering. Thus we claim the quoted results to
be most reliable at least when regarding the differences of the

shape of the potentials and matter density distributions.

Nevertheless, some deficiencies remain, namely

1. the unsatisfactory treatment of the imaginary potential,
even though an important influence could not be observed
when using different approaches10).

2. nuclear structure influences not explicitly taken into

account, but obvious from the different level schemes of

the spherical nuclei 40’48Ca and the softly deformed

nuclei 42’44Ca.

Both points are to some order connected with each other due to
the fact that the imaginary part absorbs all inelastic and
reaction channels which depend on the structure of the
particular nucleus. An important step to improve this deficiency
could be to consider at least the strongést inelastic channels
directly in a coupled channel calculation. This is presently
under investgation. Moreover, systematic studies are necessary
to answer the question which experimental information provide
an unambiguous determination of the imaginary potential and how
the model dependence of the imaginary potential shape can be
reduced. A microscopically evaluated imaginary potential should

be the final aim of these efforts.
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Abstract

We present a short review of the present status of the theory of Coulomb
displacement energies, AEc , discussing the Okamoto-Nolem-Schiffer anomaly and
its solution. We emphasize, in particular, that contrary to previous hopes,
AEc does not determine L the root-mean square (rms) radius of the excess
(valence) neutron density distribution. Instead, AEC is very sensitive to the
value of Ar==rn -rp , the difference between the rms radii of the density
distributions of all neutrons and all protons. For neutron rich nuclei, such
as 48Ca and 208Pb, a value of Ar=0.1 fm is found to be consistent with AEC
This value of Ar , which is considerably smaller than that (of 0.2-0.3 fm)

predicted by some common Hartree-Fock calculations, seems to be confirmed by

very recent experimental results.
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INTRODUCTION

The Coulomb displacement energy, AEC, between analog states is the binding
energy difference between a pair of nuclear states which belong to the same
isobaric multiplet but whose values of the third component of the isospin differ
by one unit. These states, referred to as the parent |ﬂ>, and the analog state
|A>, are related by

-1/2

|a> = N,

T |m> , Ny = <r|T,T_|m>, (1)

where T, and T_ are the usual raising and lowering isospin operators, respecti-—

vely. Experimentally, AEC is determined from the relation

AE =M, -M, +6 , (2)

where MZ and MZ are the atomic masses (in MeV) of the members of the isobaric
> <

multiplet with the greater and the lesser charges, respectively, and
5 = D
np

determined with an experimental accuracy of better than 1Z. In particular, for

mo-omy = 0.782 MeV. It is important to note that, at present *, AEc are
mirror states the values of AEc are known to an accuracy of 0.27. The values
of AEc increase from 0.764 MeV for the A=3 system to 18.83 MeV for the

analog of the ground state of 208Pb.

Bethez)

(1938) was the first to make use of AEC for mirror nuclei to
extract some information concerning the size of the atomic nucleus., With
simplifying assumptions, such as a uniform charge density distributions

of equal radii for the two mirror nuclei, AEC is given classically by

6 Ze2
AEc -5 R (3)
Using the experimentally known values of AEC for mirror nuclei and assuming
R = r, A]/3, a value of r, = 1.45 fm is obtained from (3). This value for r,

is considerably larger than that obtained from electron scattering and muonic

X-ray data, which give r, ~ 1.20 fm for medium and heavy nuclei. This apparent

0
discrepancy between the experimental data concerning AEc and the charge

density distribution in nuclei was explained by noticing that (3) should be

corrected for the exchange Coulomb term2’3)

. Also, in the shell model picture,
the analog state is obtained from the parent state by replacing a valence

neutron by a proton and everything else remaining the same. Hence, expression
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(3) should be replaced by

dir ‘e 3
= 4
AE, N-Z J Uc(l:)pex(l:)d * ? (4)

where UC(E) is the Coulomb potential which is due to the other Z protons of
the core having a density distribution pc(g) (which is more like a Fermi type
distribution than a uniform distribution). pex(f) in (4) is the density
distribution of the N - Z valence neutrons (excess neutrons) which is gene-
rally more extended than pc(f); Consequently, the value of r, extracted from
the shell model (using (4)), by reproducing the data for AEC, is expected

to be smaller than that obtained using (3) (in which P. and peX are of the

same shape).

About a decade ago, the existing models of nuclear structure were
challenged by the increasing experimental accuracy (of better than 17) in

determining AE and . the charge rms radius defined by
2 2 3
e =
. Jr pc(:)d r . (5)

Nolen and SchifferA) (1968) have used (4) (with UC(E) deduced from the experimen-—
tally determined pc(f)) including the excbange term and the effect of the
electromagnetic spin-orbit interaction to determine L the rms radius of
pex(g). They found that in order to reproduce the experimental values of

AEC, values of L had to be significantly smaller (10-20%) than those

obtained from any reasonable single particle calculation. Otherwise, the cal-
culated AEC would be smaller than the experimental ones by 5 - 10%, which is

far beyond the experimental error of 1%. Figure. 1 shows the quantities neces-—
sary to evaluate (4) for the case of the ground states of the mirror nuclei

4180 - 4]Ca. The Coulomb potential Uc(r) is deduced from the experimentally
determineds) pc(r), of 40Ca with a corresponding rms radius rc==3.487 fm. The

radial wave function of the ]f7/2 neutron orbit is obtained from

2
(Iz’—m + U(r))ipn = E @ (6)

using a Woods-Saxon form (with R1 =4.60 fm, a=0.68 fm and Up= -51.2MeV) for

U(r). This potential well is consistent with the experimental value of r and
also reproduces the experimental value of -8.36 MeV for the 1f7/2 neutron
separation energy (in 4]Ca). We note that the value obtained for T of the
neutron orbit is 4.13fm. From (4) we find the value of 7.045 MeV for

1f
%312
the direct Coulomb term of the interaction between the valence 1f7/2 particle
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' L WS R=4,60fm
i a=0.68fm
\ Ug=51.20fm
VoorDY224131m
CUg” = 7.045 MeV
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Plot of the experimental charge density distribution,

L+OCa (wine bottle with c¢= 3.676 fm,

pc(r), of
a=0.585 fm, w = -0.102 and rms radius of 3.487 fm,
obtained by Frosch et al. (1968)), the corresponding

uOCa and

Coulomb potential U (r) of the protons in
a typical 1f,,, radial density function |IR|2 with
rms radius of 4.13 fm (which produces a direct Coulomb
term of 7.045 MeV) obtained using a Woods-Saxon
potential well. Note that the scale of the potential

is on the left, that for the wave function is on the

right.
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Fig. 2 Plot of AE_(dir) = Ep - E, for the 1f, , mirror

41 41

Sc - Ca obtained with the help of

(6)

states of

(8) and as a function of the ratio

eq.
Yy between the rms radius of the 1f7/2 wave function
and the rms radius of the charge distribution of

L+OCa.

The upper line is for the proton wave function
(Yp) and the lower line is for the neutron wave

function (Yn).
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with the Z = 20 protons of the core. Including the exchange Coulomb term, which
is —=3.7% of the direct term (~270 keV), and the contribution of the electroma-
gnetic spin-orbit interaction (-100 keV), we find that the calculated value of
AEc is 6.675 MeV. This value is smaller than the experimental value of 7.28 MeV
by 0.6 MeV (~97).

Figure 2 demonstrates the fact that AEk is practically determined by the
rms radius of Pox? for a fixed value of r.. To take into account the Thomas-

Ehrman effect, we redefine here the direct Coulomb term as

AEdir= Ep -E (7)

where EP is the proton single particle separation energy obtained from

;2
(% + U(r) + uc<r))wp = E 0, , (8)

and En is the corresponding one for the neutron, obtained from (6). In figure 2

we plot AEdir as a function of

Y = rex(lf)/rC s (9)

the ratio between the rms radius of the 1f7/2 neutron (or proton) orbit and the
rms radius of the charge distribution of the core ( Ca). The parameters of the
Woods-Saxon potential U(r) were varied over a wide range, adjusting U0 (the depth)
to maintain the experimental value of En = -8,36 MeV. The Coulomb potential

Uc(r) of the core protons is that due to a uniform charge distribution with

r, = 3.49 fm. It is clear from figure 2 that AEdirdepends almost linearly on Y.
Including the exchange Coulomb term and the effect of the electromagnetic spin-

orbit interaction, we need a value of AE = 7.60 MeV to account for the expe-

dir
rimental value of 7.28 MeV. This is obtained, as shown in figure 2, for v ~ 1.05
as compared to the value of v ~ 1.23 which is obtained from reasonable shell

model and Hartree-Fock calculations.

Table 1 demonstrates the fact that the problem exists for a wide range

of nuclei and the discrepancy between theory and experiment increases with A.

For the ground state analog of 208Pb, the calculated AE_ is smaller than the

, . 6) © .
experimental value by ~ 1 MeV. Okamoto has pointed out ) that all published cal-
culations of the 3He - 3H binding energy difference, in which the experimental

charge density distributions were reproduced and in which the finite size of the

proton charge distribution was taken into account, produce values which are
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TABLE |

Calculated Coulomb energy differences of mirror states

with a finite potential well

. ) . a)
Mirror States Values in MeV rms ratio
b)
AEdir Aexc Aexp Discrepancy Yp Yn Y
155 - 15y 1p1}2 3.42 -0.21 3.54 0.33 1,05 1.04 0.87
17p _ 17, 1d 3.39 -0.19 3.54 0.34 1.38  1.33  1.15
17p - 17, 25, /5 3,05 -0.15 3.17 0.27 1.65 1.55  1.45
39 -

39ca- °7k 1d3}2 7.05 =-0.30 7.30 0.55 1.08 1.06 0.98
Hlg_ Mg 1£,,, 6.85 -0.25 7.28 0.68 1.2 1.22 1.05
41 41

se- ‘‘ca 2p,,, 6.55 -0.21 7.05 0.71 1,40 1.30  1.17

a) Ratio calculated using an appropriate Woods-Saxon potential.

b) Values which are in agreement with experimental Coulomb energy differences.
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smaller by about 100 keV than the experimental value of 764 keV. On the experi-
mental side, it has been shown more recently that reducing T, as a solution to
the problem is highly improbable. The analysis of (i) electron scattering on

8)

. . . .7 .. . . ‘o
isotones and neighbouring nuclei ), (i1) magnetic scattering ', and (iii) sub-

Coulomb nuclear-transfer reactions ) produce values for L which are much lar-
ger than those needed to reproduce the experimental values of AEk (rex ~ 3.2 and

4,0 fm for the 1d and 1f orbits, respectively).

5/2 7/2

This problem led to vigorous studies of previously neglected correction
terms, charge dependence in the nuclear forces, the interplay between the
Coulomb and the nuclear forces (second and higher order terms) and the relation
between A}a:and the proton and the neutron densities (rms radii) in nuclei (see
ref. 10 and references therein). In the following section we summarize these
efforts in a systematic way, starting from a basic theory, we make a careful
check of the assumptions made in the actual calculations of AEC. In section 3,
we present a solution to the problem and demonstrate the relation between AEC

and r - r . Section 4 is devoted to discussion and a conclusion.
P

2. BASIC THEORY OF AE
We start from the basic assumption that nuclei consist of interacting nu-
cleons and obey the Schrodinger equation. Let us consider the Hamiltonians H

1
and H, which describe nuclei | and 2, respectively. Their energies are obtained

2
by solving
Hy =E, and Hy, = Ejb, . (10)
Here, we are interested in the energy difference
AE =E, - E (11

between isobaric analog states. It is not possible to obtain exact solution of
(10), since the nuclear parts of H] and H2 are not well known. Also the equations
(10) are many particle equations. Consequently, we proceed by making the follo-

wing simplifying assumptions

Assumption 1 : Isospin T is a good quantum number and, hence, w] and wz are
related by (1).

Assumption 2 : The nucleon—nucleon (NN) forces are charge independent, i.e.,

[HN,Q] = 0.
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From these assumptions it follows that
_ _ _ em _ em
BE = <y, |H,[,> = <, [B [¥,> = <p, [H 7 w,> - <p, [H"|v,> . (12)

To carry out the calculation of (12) we assume that

Assumption 3 : The wave functions Y, and Y, can be well approximated by simple

shell model wave-functions, which coincide with the independent-particle model
(IPM) wave—-functioms for the simple cases of one particle or one hole outside
closed shells. An underlying assumption of the simple shell model picture is
that the core protons occupy exactly the same orbitals as the core neutrons and
the analog state (wz) is obtained from the parent state (wl) by replacing a
valence neutron in wl by a proton without perturbing the core, i.e., the cores
of w] and wz are the same. Consenquently, Ala:isdue to the electromagnetic inte-

raction of the valence nucleon with those of the core, i.e. (12) is replaced by

AE_ = <, |88 |y, > (13)

em em
2~ H
Assumpiion 4 : The electromagnetic interaction among nucleons is well approxima-

where AH™ = H . To simplify the calculation we also assume

ted by the Coulomb interaction between point protons, i.e.
2
A= Aut= ) =, (14)
T
1<] 1]
and

Assumption 5 : The corresponding single-particle potential wells should be con-

sistent with the experimental values of charge rms radii r, of neighbouring

closed-shell nuclei. To determine the size of the well we assume that

r =71 , (15)

where rp is the calculated shell-model rms radius of the corresponding density

distribution of the protons.

Consider for example the case of 4]Sc - 41Ca. Within the shell-model picture,

AEC is due to the Coulomb interaction of the 1f7/2 proton with the Z=20 protons
of the core. Using the harmonic oscillator potential well, which is completely
A . . 10
specified by the size parameter V =mw /W, we obtain )
AEC (4]Sc - 4]Ca) = (23.85 - 0.86)e2 %%— (16)

‘The first term in (16) is the direct Coulomb term (given by (4)) and the second

term is the exchange term. We now determine the size parameter v by making use
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of (15). The experimental value of rC for 40Ca 1s 3.49 fm . Hence we have

2 _ .2 _3_ 2
<r >S_M— rp =3 (3.49) (17)
1/2

which gives v = 2,015 fm. Substituting this value in (16) we find that

AEc(lf7/2

by about 10%. We note that within the harmonic oscillator model we have

) = 6.55 MeV, which is smaller than the experimental value of 7.28 MeV

AECOCN and T, 1/~ (18)

Consequently, using Ala:= 7.28 MeV in (16) to determine Vv, the calculated
charge rms radius of 40Ca becomes smaller than the experimental value by 107.
We emphasize that this discrepancy between theory and experiment is far beyond
the experimental errors of 17 in the values of AEk and .. A similar discre-
pancy is also found when using a Woods—-Saxon potential or other potential

wells and when applying wave functions obtained from Hartree-Fock calculations.

Therefore, looking for a solution to the problem, we consider now correction

0)

terms] to the simplifying assumptions made above. For simplicity we confine
ourselves to several mirror nuclei with one particle or one hole outside closed
shells in the A = 16 and 40 regions, and take into account correction terms

which contribute more than 0.5% to AEk (see ref. 10 for details). The results
are summarized in Table 2. To correct for assumption 5, relation (15) is replaced

by

2 2 2 3 2
<r~> + <> + <> - = =
T “om r P "7 T 2av T e i (19)
2 2 2 . ..
where <r >p = 0.64 and <r >n-= -0.12 fm  are, respectively the mean square radii

of the proton and neutron charge density distribution and the last term in the
2.h.s. of (19) is the correction due to the center of mass motion. Another effect
of the finite size of the proton charge distribution is to modify the Coulomb

interaction at short distance,so that e2/r should be replaced by

2
v =S (14£G0), £G0) = —e K48+ 33x+ 9x 4x) /48, x = /1Z1/0.8.
(20)
Thus, to correct for assumption % , we have replaced (14) by
ARE™ = AESl 4+ AE™@B 4 A VP (21)

where the magnetic interactions include the orbit-orbit, spin-orbit, spin-spin
and the Darwin terms. For the case of a particle or a hole outside a LS closed

shell, the contribution from the spin-orbit term dominates. ARYP in (21) 1is




— 181 —

TABLE 2

Coulomb Energy Shift and Correction Terms (in MeV)

15 156 17 17 39 39 41 41

0o - N F - 0 Ca - K Sc - Ca
Contribution -1 1
P17, dg5s0 28470 g/ 19/ 2P3)9
1) Direct Coulomb 3.420 3.390 3.050 7.050 6.850 6.550
2) Exchange Coulomb -0.210 -0.120 -0.150 -0.300 -0.250 -0.210
3) Coulomb perturbation(a) (-0.025)(-0.040)(-0.070)(-0.050) (-0.060)(-0.140)
4) Center of mass motion -0.070 - -0.070 -0.070 -0.04O -0.040 -0.040
5) Finite size of the proton 0.065 0.095 0.085 0.090 0.110 0.100
6) " "o Y peutron . ~0.035 -0.035 -0.035 -0.040 ~0.040 -0.040
7) Magnetic interaction 0.100 —0.660 0.025 0.130 - -0.090 -0.020
8) Vacuum polarization 0.020 0.020 0.020 0.0u40 0.040 . 0.0u0
9) p-n mass difference 0.025 0.035 0.035 0.025 0.035 0.035
10) Short range correlation 0.065 0.0u5 0,050 0.125 0.075 0.105
Total (calculated) 3.38 3.23 3.01 7.08 6.69 6.52.
Experimental 3.54 3.54 3.17 7.30 7.28 7.05
Discrepancyb) 0.16 0.31 0.16 0.22 0.59 0.53

(a) This contribution is included in the direct term.
(b) With uncertainties of 0.04 and 0.08 MeV for the A = 16 and 40 regions, respectively.
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. . . 2
the correction due to vacuum polarization (~0.006e"/r).

0)

Other correction terms] which were included in Table 2 are (i) the
Coulomb perturbation effect which is known as the Thomas-Ehrman effect (most
important for loosely bouﬂd orbits and orbits with small &), (ii) the dynamic
effect of the n- p mass difference, which takes into account the difference
between the kinetic energies of a proton and a neutron in the same state, and
(iii) the two-body short-range correlations which are calculated via the Bethe-
Goldstone equation. We see from Table 2 that the contributions of the correc-
tions terms are small (1-27%) and with alternating signs. Their sum does not
resolve the Coulomb energy discrepancy. We note that by including the contri-
bution of the Thomas-Ehrman effect we have improved upon assumption 1 (concerning
isospin purity). The corrections describing deviation from the simple shell
model prescription (assumption 3) are, in the language of perturbation theory,

second and higher-order terms

<0|v |m><m|\{q |o>
¢ N + (higher-order) |, (22)

m

N’ interactions, each appearing

(at least) once. These terms in (22) account for the interplay between the

which include the Coulomb, Vc’ and the nuclear, V

Coulomb and the nuclear forces. The short-range correlations are part of (22)
and by including them in Table 2 we have only partially accounted for the

assumption 3.

An important term in (22) is the effect of isospin mixing in the core sug-
gested by Auerbach,Kahana and Weneserll) (AKW) as a possible solution to the
Coulomb energy problem. The Coulomb repulsion polarizes the N = Z core and leads
to a non-vanishing proton-neutron density difference P, = ppc T P which is
positive at the surface region, for r > o, and negative for r < . This induces
a small symmetry potential through the isospin-dependent component of the NN
interaction. In terms of perburtation theory, we are concerned with the mixing
of the isovector monopole states (T=1, J=0) in the ground state of the N=2
system (VC in (22) includes the core-core interactions and Vi includes the
valence—core interaction). The contribution of this (AKW) effect to A]%:has
been the subject of several investigations (see ref. 10 for details). Unfortuna-
tely, due to the lack of knowledge of the location of the isovector monopole

states and the uncertainty in the isovector part of the nuclear interactions, the

contribution of the AKW effect (which is about 2% of the direc* Coulomb term)
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is not quantitatively well established. The contribution depends strongly on
the location of pex(r) and consi%gently poses a significant state-dependent
effect. A reasonable assessment of the contributions to the ground states
of the mirror nuclei with A = 15, 17, 39 and 41 produces the values of -0.15,
0.0, -0.25 and 0.1 MeV, respectively, when using the wave function applied in
the calculations of Table 2. Hence, including the AKW effect we find that the
discrepancies for meighbouring particle and hole states are about the same ;

0.30 + 0.06 MeV and 0.50 * 0.10 MeV for the A = 16 and 40 regions respectively.

0)

There have been several calculations] of other certain selections of the
terms (22), referred to as long-range and tensor correlations, core-polarization
and configuration mixing. The calculations indicate that the contributions of
these effects are not necessarily small (0-3%). However, the definitions of

these effects in terms of (22) are overlapping and consequently lead to a double
counting problem. The present results of these calculations (of (22)) do not

seem to explain the discrepancies. Nevertheless, it should be emphasized that
these calculations are rather incomplete and contain large theoretical uncertain-
ties, due to the lack of knowledge of the response function of the nucleus and

to uncertainties in the effective nuclear interaction. Consequently, it is quite

likely that a reliable calculation of all the corrections (22) can resoclve the

Coulomb energy problem.

Let us consider now the possible contribution of charge dependent terms in
the nuclear forces to AEC and hence correct for the assumption 2 made above.

Charge independence, which is represented by

N
[E,I] =0 s (23)
implies, assuming only two-body interactions, that Vnnﬁ=vbp = Vnp in the T=1
states. For a pair of mirror states, only the charge symmetry breaking (CSB)
potential
v oy -y, (24)

will contriBute to AEC, in first order, since the np intz;actions in both
mirror states are equal. It has been suggested by Okamoto that the discrepancy
(of ~100keV) for the 3He-—3H pair is due to CSB in the nuclear forces, and
indeed this discrepancy seems to be strongest evidence for the occurence of a

2)

CSB potential. It was proposed by Negele1 that the discrepancies in the higher

mass regions are also due to a CSB potentiall On the nucleon—nucleon level the
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. 1 .
difference between the proton-proton and the neutron-neutron S, scattering

0
length, a - a , was found experimentallle) to be -0.9 £ 2.0fm and is

consistent (within the experimental error) with a CSB potential of the order

13)

of 17. From theoretical considerations one expects that indirect electroma-
gnetic effects may induce a breaking of charge independence of the order of 17.
Figure 3 shows some meson exchange processes generating charge asymmetric in

the nuclear force. The theoretical calculations of these processes are quite
ambiguous due to the uncertainties in the signs and the magnitudes of the meson-
nucleon coupling constants and of the isospin mixing coefficients. It is,
however, of crucial importance to find out whether one can at all account for

all the Coulomb energy discrepancies by a VCSB which is compatible with the

processes described in Figure 3.

10,14) made use of the fact

Considering this question, Shlomo and Riska
that the range and the spin structure of the CSB potential, generated by an
exchange mechanism, are determined by the masses and the quantum numbers of the
particles exchanged in the process. Thus, one finds that the contributions of

the processes of Figure 3 can be well approximated by

CSB
\ = CﬂV“(r) + covo(r) + vaw(r) , (25)

where the potentials Vﬂ, VO and Vw are due to the one 7,0 and w exchange poten-—
tials with the corresponding meson masses of 135, 550 and 783 MeV, respectively.
The coefficients C, treated as free parameters, are expected to be of the order

4)

of 17. It was concluded in this analysisI that it is not possible to obtain

a VCSB potential consistent with the requirements mentioned above. If one adjusts
VCSB in (25) to reproduce 100 keV for the A = 3 case, its contributions for the
higher mass regions are too small to account for the discrepancies. Due to the
present theoretical uncertainties in evaluating the processes of Figure 3, it

is quite likely that the A = 3 problem is due to a CSB potential which is reaso-
nably small and of short range. Its contribution to the A = 41 case is less than
200 keV (1/3 of the discrepancy). We thus conclude that contrary to previous
conjecture, the Coulomb problem (for the higher mass regions) is not due to the
assumption 2 made before and a closer look at assumption 3 (concerning wave

functions) is called for.
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3. A SOLUTION TO THE PROBLEM

We thus expeét that the remaining discrepancy (more than half) between
the experimental and calculated AEQ is due to deviations from the assumed wave
functions (assumptions 1 and 3). Instead of evaluating all the correction terms
(22) in a reliable and consistent way (almost an impossible task), we return
to the starting equations (10) and consider the exact wave functions of the
analog states. We look for the required properties, of the exact wave functions,
needed to account for AEk and for experimental evidence justifing these requi-

rements.
Starting from (10) and using (1) we find that AEE is given by

=f -F =
AEC = EA E‘IT N]
1

N—l- (<TTI[T+,[H,T_]]I1T> + <1T|[H,T_]T+|1T>) s (26)

(<w|T HT_ |m> - <w|T,T_H|m>)

5)

.1 . . . .
except for the Thomas—-Ehrman correction . The normalization constant 1s given

by

N, = <r|T,T_|m> = 21 + 21+ 2)e?, (27)

where 82 is the amount of isospin mixing in |ﬂ>, expected to be of the order

of 17, and 2T = N-Z. Assuming pure isospin (assumption 1) we have that the last
term in the r.h.s. of (26) vanishes (T+|ﬂ>==0). If we now approximate the exact
state |m> by a Slater determinant (of single particle orbits) consistent with
pp and P, of |ﬂ>, we have that the first term in the r.h.s. of (26) can be

written as a sum of direct plus exchange terms, where the direct term is given by

dir e 3
AE™ = 3= J U (©) Ap(r) d7r , (28)
with
Ap(r)=Np (r) - 2 pp(g) , (29)

i.e., Ap(r) 1is the difference between the density distributions of all neutrons
and all protons of the parent state. It is easily seen that (4) can be obtained from
(28) by assuming peX(E) = Ap(r). This assumption holds in the simple shell

model picture, since in this picture the core protons occupy exactly the same
orbits as the core neutrons and the analog state is obtained from the parent

state by replacing a valence neutron by a proton. In real nuclei, Ap is expec-

ted to differ from the density distribution of the valence orbits (pex)'
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For a fixed value of r , the contribution of (28) is practically determined by
the rms radius of Ap. Consequently, if Ar = L is small enough (smaller than
that obtained in the shell model prescription), the rms radius of Ap will be
smaller than L. and the value of AEiirobtained from (28) will be larger than
that obtained from (4). This enhancement in the calculated value of AEcij

obviously due to the difference between Ap(r) and pex(g).

To understand the origin of this enhancement in the calculated AEC let us

6)

recall that it has been shown by Talmi and Shlomo1 that if one assumes that

the rms radii ro and r are equal in the parent and also in the analog state,
p

r =Y =71 , (30)

then for a reasonable value of LI in which L. > rp, there is an additional
term to the calculated AE%: which is due to the compression of the 'core" Z
protons in the analog state, relative to the parent state. In fact since the
analog states are related by (1), the mass rms radius r of the analog state is
equal to that of the parent state. Assuming (30) holds for both states, then rp
for the (Z+ 1) protons in the analog state is equal to that of the parent state.
Denoting by ré the rms radius of the density pé(y) of the Z core protons in the

analog state we have the relation

(7 + 1)rp2 - ZrI;2+ er (31)

P’ i.e. the core Z protons in the analog state

are compressed relative to the core protons of the parent state by A1%:= r -r'>0.
P

i > > r!
Clearly, if T s rp, then rp T

Since a shrunken core has a larger Coulomb interaction, this core—compression
effect leads to an additional electrostatic term to AEC. Using uniform charge
distributions, this core-compression term can be approximated by

3/2 Ar
AE = (2) e2 z(2-1) (__E\ , (32)
cc 5} T rp

where the factor multiplying Arc/rp is the Coulomb self-energy of tE? corealwhich
is of the order of ~100MeV. Considering, for example, the case of Sc - Ca,
the assumption (30) implies that r, = 3.5fm is the same for both mirror nuclei,
Putting the valence proton in Sc in the 1f7/2 orbit with Ty = AA?fHI (the shell
model value), we find from (31) that the protons in the core of Sc are compres-—
‘sed (relative to 41Ca) by Arc== 0.04 fm. Using (32) we find that this corresponds

to a correction of 0.8 MeV that should be added to that obtained from (4).
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This core compression effect is large enough to explain the discrepancy of
0.6 MeV in the A = 41 case, The same situation was found to hold also for the

other cases.

Clearly, the assumption of pure isospin which led to (28) and the assumption
(30) concerning r and rp are simplifying assumptions and are not expected to
hold exactly. However, the main point is that these assumptions demonstrate
the possible occurence of the core rearrangement effect. This means that,
contrary to the shell model prescription, there is a difference between the
cores of the analog states which contributes to the calculation of AEc' In
fact, if isospin is pure, then pn(f) and pp(r) are interchanged for a mirror
pair when going from the parent to the analog state. This can be obtained using
(26) and replacing H by the density operator. This result is equivalent in the
simple shell model picture to the replacing .of the valence neutron in the parent
state by a proton to obtain the analog state. Since in this picture there is no
difference between the densities of the neutrons and the protons of the core,
i.e., p](f) = ppc(f) - pnc(E) = 0, no relative core compression occurs. In real
nuclei p](g) is not expected to be identically zero and if Ar = ro- rP in
both nuclei are smaller than the corresponding shell model values (and g is
large enough), the core-compression effect emerges. Under the assumption of pure
isospin, pl(g) will reverse its sign going from the parent to the analog state.
Of course, in a detailed calculation the isospin impurity should be taken into

account,

Although the direct Coulomb term of (4) and AEcc in (32) are quite sensiti-
ve to the value assumed for LS their sum was found to be practically independent
or r_ . Thus, contrary to previous hopes, Coulomb displacement energy cannot be
used to determine the value of rex’ the rms radius of the valence neutrons den-
sity distribution. Instead, as it easily seen from (28), AEQ depends on the
value assumed for Ar = ro- rp, and, of course, the value of rp. This has been

17)

demonstrated recently by Friedman and Shlomo , applying the energy density
formalism as a simple means to relate AEk and Ar. The variational equations for
the densities, derived by minimizing the symmetry plus the Coulomb energies,
where solved for both ends of the isospin multiplet (Ti = 1T).The resulting
neutron and proton densities wereusedto evaluate the direct Coulomb term,

AEd, the core compression term AEkc and the difference between the symmetry
energies of the analog states, AEsym' Varying the parameters of the model,

a rather unique relation is obtained between AEC and Ar. This is demonstrated
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Fig. 4

Values of rn in I1L8Ca and the Coculomb displacement

energy A*Ed = AEd + AE_ ¢+ AEsym (direct Coulomb

term + core compression term + chamge in symmetry

”1Ca calculated 'using the energy

energy) for
density formalism (Friedman and Shlomo 1977).

y 1is the rélative strength of the l/pm term in
the symmetry interaction and the dashed and solid
curves correspond to RM = 5,2 fm and RM > ©,
respectively.

A*Eq(MeV)
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TABLE 3

Experimental and calculated results of nuclear radii, (in fm)

. . 8
and Coulomb displacement energies (in MeV) for L+1Ca, * Ca

208

and Pb analog states using the energy density_formalism

(Friedman and Shlomo 1977).

TSP I 2085,
Experimental
Ty 3.508 ° 3.487 5.487
T Ty -0.0240.02  0.08%0.06 040.1
T - 4,0+0.1 4.,0+0.1 - 6.15+40.1
AE_ 7.279+0.005  7.190+0.011 18.834+0.009
Calculated : !
r - o -0.002 0.082 0.040 .
n P .
Ar 0.013 0.010 0.005
AE 4 7.14 7.15 18.87
AE 0.35 0.31 0.66
ccC »
AE 0.05 0.00 ~0.05
sym
AE correca) -0.27 -0.27 -0.40
sE P 7.27+0.1 7.1940.1 19.08+0.2

a) The'corrections include: exchange Coulomb term, electromagnetic
spin-orbit, vacuum polarization and dynamic effect of n-p
mass difference.

b) The uncertainty results from the uncertainty in AEsym and

the correction terms (exchange Coulomb term). The uncertainties

in the other quantities, such as rn—rp, were not taken into

account.
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in Figure 4. Table 3 shows some details of the calculation for the analog
states of 41Ca, 48Ca and 208Pb, adjusting the model to account for the experi-
mental value of AEk for 48Ca. We Sée that the value of AEC in 48Ca is repro-
duced if Ar = 0.08 fm. This value of Ar is much smaller than that obtained

8)

by some common1 Hartree—-Fock calculations (Ar = 0.20 fm) or the shell model

prescription (Ar = 0.30 fm).

Very recently, some experimental data of hadron scattering seem to support
this prediction that Ar in nuclei (particularly neutron rich nuclei) are signi-
ficantly smaller than those predicted by the common Hartree-Fock calculations
or shell model prescription (see ref. 19 and references therein). These data
show that Ar = r - Tp in 48Ca and 208Pb is about 0.10fm, in good agreement
with the prediction of AEk as can be seen from Table 3. The very recent results
of electron scattering at backward angles (magnetic scattering) which indicatezo)
that L in nuclei are somewhat smaller than the common Hartree-Fock prediction
also support the present conclusion since a smaller Tox indicates a smaller value
for Ar. Tt should be emphasized that the amount of the core compression effect
depends on the values taken for Ar and Tox" It decreases with the increase of
Ar and the decrease of r _. Considering the experimental values of Ar = 0.08 fm
and Tox = 4.0 fm for  Ca, shown in Table 3, we have a relative core compression

of only 0.01 fm, as compared to 0.04 fm found if Ar=0 and L 4.2 fm ., Clearly,

more accurate data concerning Ar, in particular, will help clear up the situation.

4, DISCUSSTON AND CONCLUSION

We have discussed the theory of Coulomb displacement energies in nuclei
considering, in particular, the solution to the long-standing Coulomb energy
problem. Starting from a basic theory we have considered the simplifying assump-
tions which are usually adopted in the conventional calculation of AEk. We found
that it is most likely that the major part of the discrepancy between the calcu-
lated and experimental AEC, in medium and heavy nuclei, is due to the assumption
adopted for the wave-functions. More specifically, it is due to the assumption
that the analog state is obtained from the parent state by replacing a valence
neutron by a proton without disturbing the core. Considering mirror nuclei and
assuming pure isospin, we have that pn(f) and pp(f) are interchanged when going
from the parent to the analog state. Consequently, p](E) = ppC(E) - pnc(E) will
change sign going from the parent to the analog state. Of course, the assumption
of pure isospin is somewhat extreme. Still, it is reasonable to expect that

the valence neutron affects the neutrons'core density differently that it affects



— 192 —

the protons' core density and vice versa for the valence proton. Hence the cores
of the parent and the analog state differ, i.e., p](E) in both states is not

the same. This core rearrangement effect should be included in the calculation
of AEC. If the values of Ar =r - rp are small enough and L is relatively
large(larger 'than rc), a compression of the core protons of the analog state
relative to the parent core takes place, leading to an electrostatic correction

to AEk that helps resolve the anomaly.

We have emphasized in the last section that under the assumption of pure
isospin, the direct Coulomb term is given by (28), in terms of Ap==an(£)-pr(£X
The core rearrangement term is included in this formulation of (28), since we
have used the relation (1). Thus, in a simplifying way, we can say that the
origin of the Coulomb energy problem is due to the assumption pex(E) = Ap(x)
which is adopted when (4) is used to evaluate the direct Coulomb term. The
solution to the problem is simply given by the use of (28) with (most importantly)
a relatively small value of Ar that leads to large enough value for the direct
Coulomb term. Of course, in a more detailed calculation, correction terms, such
as the exchange Coulomb term and the last term in the r.h.s. of (26), should
be added to (28) for obtaining AEC. It can be stated that it makes no difference
whether (4) or (28) is used as a starting point for calculating AE% as long as
one takes into account all the corresponding corrections in a reliable and con-
sistent way. However, using (28) is more preferable since. (i) It shows that AEc
depends on Ar = r, T Tp and not on L and hence L. need not be small to account
for AEC. (ii) It takes into account the core rearrangement effect. (iii) It
solves the problem in a simple way and gives a prediction for Ar in neutron rich
nuclei, providing a check on various models for p_(r) (and p_(r)). For the
analog state of the ground state of48Ca (and 208;b; the valEe of Ar =~ 0.10 fm
is found to be comsistent with AEk. This value of Ar agrees with recent experi-
mental results and is significantly smaller than that predicted by common
Hartree-Fock calculations (Ar ~ 0.20 fm). Another problem with these calculations
seems to be that the predicted values of r,. are somewhat larger than the
experimental results. These discrepancies in the values of AEC, Ar and L fit
into a consistent picture indicating the missing of some effective neutron-proton
attractions, if one requires that pn(f) and pp(g) of the exact wave-functions

be reproduced by the Hartree-Fock wave—functions.

In conclusion, although the Coulomb energy anomaly for the 3He - 3H case
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can be explained by CSB in the nuclear forces, this effect can explain less than
half of the discrepancy in heavier nuclei. The remaining part of the discrepancy
results from the approximations adopted for the wave functions. It can be
corrected By the use of (28) instead of (4) with relatively small values of Ar.
Clearly, more accurate experimental data concerning Ar (and rex) in neutron rich
nuclei will help establish this (suggested) solution to the Coulomb energy

problem,
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The 600 MeV data of proton elastic scattering on

0-42-44-48
40ca [1] and the ! Gev data of elastic scattering on 4 Ca

[1,2] have been analyzed in the framework of the Glauber multiple
scattering approximation in its optical limit. The effective pp

and pn elementary scattering amplitudes we used were obtained from

a fit of medium energy p—4He scattering data using the same Glauber
approximation [ 3] . The neutron densities are extracted from the

data in an approximately model-independent form. Following the
method developed in ref.[ 4] for charge densities in electron
scattering, we divide the neutron density into two parts

pn(r) = pylxr) + p,(r), where p, is arbitrary (it could be a Gaussian

or a Fermi function) and p, is a correction which is expressed as

a truncated Fourier series based on an interval 0 < r < R :

2R mux
p,(r) = L sin | — 1
1 rR R (1)

m =1

The outer radius R is chosen at the outer edge of the density,
whefe P, is small and comparable with the uncertainties in its
determination. The maximum number of coefficients L which can be
determined is a function of the range of the momentum transfer in
the analyzed data and the absorption of the projectile by the
nuclear medium. The coefficients Bm are determined by minimizing

the mean square error Xz between the experimental data and the

x . , \ . .
Division de Physique Théorique, Laboratoire associé au CNRS
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calculated differential cross sections. The procedure [5] is
iterative, at the end of each iteration (i) the correction pfl)

(1) (i+1)

is added to p, to define a new "guess" density p, In

that way the influence of the starting density po(l) on the final
results is minimized. This method is much faster and systematic
than the "trial and error" method used in ref.[ 6] . The procedure
determines both the coefficients Bm and their mean square error,

related to the purely statistical error of the experimental data.

These errors are transformed into real space and provide a statis-
tical error envelope for the fitted neutron density. The contri-
bution of target protons to the scattering has been taken into
account by using the proton densities deduced from electron
scattering [8,9]. The effects of finite proton size, electro-
magnetic neutron form factor and electromagnetic spin-orbit cou-
pling have been eliminated from the experimental charge densities.
A more detailed description of the iterative method is given in
ref.[5] . A similar technique was already used in the analysis
of o-nucleus scattering [7] to determine the optimum real part of
the phenomenological optical potential.

In the present analyses we have used at 600 MeV 94 data
points for 40Ca (qmax ~ 2,15 fm~!) and at 1 GeV 39 and 53 data

0 -
points for 40¢a (q__, = 2.1 and 2.5 fm L,
" . 55 for *%ca (g ~ 2.6 fm~'), 55 for
a) “ca (Secley) max
0; Ep=600Mev //4 4 4 -1 4 8
Ep-T0uMe = Ca (g 2 2.6 fm ) and 35 for Ca
o e weiams max
(g = 2,10 fm'l). The results we have
max
obtained for the neutron densities of
40,44 ,48

Ca are summarized in figures 1

and 2. The shaded areas (fig.1l) or the

areas covered by curves of the same type

b} o AN
Ep=1000MeY &5 Q.
(Gatehina)

indicate the envelope of the different
densities which give an agreement with
the N experimental data points with

W
>>:§§‘t%aﬁf ¥x?/N < 1.3.This upper bound of accepta-

ble densities is somewhat arbitrary. It

3 2 3 ¢ 5 (tm)

is fixed according to the best fit that

- Fig.1l -
g can be obtained with conventional

3-parameters Fermi functions, i.e. give an idea of the range in
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which the densities are as good as the traditional specific func-
tional forms. The upper and lower bounds of the densities are
generated by changing R and L in the series of eq.l within large
bounds (6 S R < 14 fm and 5 < L < 10). Our method of exploring
the allowed regions of the densities is less restrxictive than one
used in ref.[10] in the analysis of 800 MeV proton elastic

scattering data on 40,48

Ca which give optimistically small error .
envelopes.

The main results we have obtained in the present analy-
ses are the following :

a) The neutron densities are not determined in the nuclear
interior. This insensitivity is mainly due to the absorption of
the projectile by the nuclear matter. These results are in agree-
ment with the predictions of ref.[11]. b) Comparing the
uncertainty en;elope for 40Ca at 600 MeV to that at 1 GeVv (fig.la)
one sees that it follows the trend of the absorptive part of the
elementary NN amplitude. From that point of view, the lowest
energy compatible with the wvalidity of the theory of scattering
would provide the best determination of the densities. c) Elimi-

nating in the analysis of 40Ca the high

wﬁ:\\ momentum transfer data (2<qg < 2.5 fm 1)

azel (see figs. la and 2) the error envelopes

increases by about 50 %. d) The inde-

015}
termination arising from the purely

010 statistical uncertainties in the

experimental data is much smaller than
005

the one produced by other sources of

i 3 3 i 5 & ritm) indetermination (shaded are in the
middle of fig.la). This is in marked

- Fig.2 - contrast with the electron scattering

analysis. e) The r.m.s. radii of
neutron densities (point-like nucleons) follow approximately the
low r = .98 A1/3. We have used the point-like proton density
radii deduced from the charge radii of ref.[13]. £f) The surface
thickness of the mass density (pn + pp) (see ref.[12] for the

definition) is larger for the open shell nuclei 42_44Ca than
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for 40_4'8Ca
A rn(fm) aM(fm)
40 3.38 £ 0.04 0.47 = 0.02
42 3.42 + 0.04 0.54 = 0.02
44 3.49 t 0.05 0.51 = 0.02
48 3.58 + 0.04 0.45 + 0.02
[1] Report DPh-N-ME 78.1, edited by G. Bruge (Saclay) 1978
and to be published in Journal de Physique (France).
[ 2] G. Alklazov et al., Report 218 Gatchina, USSR (1976) and
Phys. Lett. 57B (1975) 47.
[ 3] J.P. Auger and R. Lombard, to be published and Ann. of Phys.

115 (1978) 442.
[ 4] J.L. Friar and J.W. Negele, Nucl. Phys. A212 (1978) 93.
[5] I. Brissaud and X. Campi, submitted to publication and
Report IPNO/TH 79-11 (Orsay) 1979.
[6] I. Brissaud and M.K. Brussel, Phys. Rev. C15 (1977) 452.
[ 7] E. Friedman and C.J. Batty, Phys. Rev. C17 (1978) 34,
E. Friedman, H.J. Gils, H. Rebel and Z. Majka, Phys. Rev.
Lett. 41 (1978) 1220.
[ 8] I. Sick, Phys. Lett. 53B (1974) 15.
[ 9] B. Frois et al., private communication.
[10] 1. Ray, Preprint LA-UR-79.93 (1979).
[11] =
[12] ~X. Campi, this conference.
[13] H.D. Wwohlfahrt et al., Phys. Lett. 73B (1978) 131.

.0. Meyer, Phys. Rev. C17 (1978) 1116.
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DETERMINATION OF MATTER RADII IN THE Ca REGION
THROUGH LOW-ENERGY o~PARTICLE SCATTERING

F. Michel”
Division de Physique Théoriqueﬁ
Institut de Physique Nucléaire
F-91406 ORSAY Cedex - France

Although low-energy o-particle scattering from medium weight
nuclei has long been referred to as a strong absorption process,
it is now known that, for some targets at least, the large angle
cross sections are not only sensitive to the tail of the interac-

tion potential, but also to its surface and interior regionsl’Z)

3) D indicate that o-particle

notch tests performed by Delbar et al
scattering from uOCa at Ea = 36.2 MeV is sensitive to modifications
of the potential between 2 and 7 fm; Put2) likewise showed scatte-
ring from QOZP at 40 MeV to be sensitive to the range 4-9 fm. This
is illustrated for LlOCa and LMCa in fig.1 where the effect of modi-
fying the real part of an optical potential fitting the 29 MeV
data on the whole angular range is displayed : this figure shows
the ratio of X2 to the best fit X;in as a function of the radius

R of the distortion factor multiplying the real potential
CE(3R) = (1 o+ £ exp (-((e-R)/2)?)), (1)

where fo=.1 and a=1 fm. Most oﬁuthe effect is due to the large
angle data, as can be seen for Ca where the same modification
was carried out with a data set truncated to 6= 90° (fig.1).

A convincing explanation of this sensitiveness has recently

4)

been put forward by Brink and Takigawa who have shown in a

Permanent address : Faculté des Sciences, Université de 1'Etat,

B-7000 Mons, Belgium.

Laboratoire associé au C.N.R.S.
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100 L

semi-classical calculation of barrier penetration effects that
the wave reflected at the most internal turning point of the ef-
fective potential can give an appreciable contribution to the
elastic cross section at large angles when the absorption is mo-
derate, this internal contribution being even responsible for
the strong enhancement (commonly referred to as ALAS (see, e.g.,
ref.5)) observed in the backward hemisphere for LLOCa and other
nearby targets. An example of this semi-classical decomposition

is displayed in fig.2. for "9Ca (a,a) at 36.2 Mevl’ is the

a
SC
semi-classical cross section (which closely reproduces the re-

sults of a full quantal calculation), o, and o, denoting res-

pectively the barrier cross section (wh?ch is ieen to be domi~
nant at small angles) and the internal cross section (which
accounts for most of the full cross section beyond 120°). The
corresponding amplitudes fB and fI are seen to interfere stron-
gly at intermediate angles, making the full elastic cross sec-
tion very sensitive to minor modifications of the potential, even
at small distances. It thus appears that low-energy o-particle

elastic cross sections are liable to provide information on the
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interior region of the interaction potential if large angle data
are considered and if the absorption is weak enough not to damp

out completely the internal contribution g1 (in that latter case,

which is typical of scattering from heavy targets like 208Pb, the
cross section is completedy insensitive to the interior and sur-
face regions of the potential and the well-known "continuous ambi-
guities" set in).

These considerations have prompted us to undertake a detailed
inVestigation of low-energy o-particle scattering from 36’40Ar,

4O, 42,40 ,48

Ca on the whole angular range6 ; to avoid enforcing un-

physical constraints on the interaction potential, we performed a

"model-independent" analysis similar to those recently carried out

at higher energy by Brissaud and Brussel7), Friedman and Batty8)
and Friedman, Gils, Rebel and Majkag), and also by Put and PaanSZ)
90

for Zr between 40 and 141.7 MeV. The technique we used is essen-

tially similar to that of ref.2, i.e. the real part of the poten-

tial was represented as a spline functionlo) between 0 and 9 fm

in 1 fm steps, the imaginary part of the potential being parame-

trized by means of a squared Woods-Saxon form factor. Elimination

of the residual "discrete ambiguities™ was obtained in the case of
uoCa by requiringz) a smooth connection between the low-energy po-
tentials and the unique family fitting the high-energy data11>.

The main results of the analysiss) are summarized here below
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~ the low-energy uoCa potentials fitting the recent SIN data12)

display a smooth energy behaviour; their volume integrals per nu-
cleon pair JV/MA and r.m.s. radii <r2>1/2 turn out to be well de-
fina2d quantities, especially at low energies (22< E, < 34 MeV)
where typical fluctuations from energy to energy do not exceed

4 MeV. fm3 and 0.02 fm respectively. The error band corresponding
to an increase of X2 per degree of freedom of one unit is shown

in fig.3; the real potential remains very poorly determined bet-

9)

ween O and 1.5 fm, as 1s also the case at highér energy

“Calaal 29 Mev

V {MeV)

100

Fig.3.

r {fm)

- Although experiment shows spectacular changes in the backward

hemisphere as a function of mass number for a fixed incident ener-
36,40 b2.,44.48
Ar, Ca

was achieved (fig.4), resulting in real potentials dis-

gy, an accurate description of the 29 MeV
13)
data

playing a smooth A-dependence (fig.5); their volume integrals per
nucleon pair do not vary by more than 3% with respect to the L+OCa
value, their r.m.s. radii increasing regularly with A.

It is tempting to try linking the changes seen in r.m.s.
radii of the derived potentials, which seem to be determined with
good accuracy, with changes in the r.m.s. radii of the correspon-

ding matter distributions. It is well knownlu) that, within the
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frame of the usual folding model, the volume integral of the real
potentials per pair of nucleons is independent of the target, and
that its mean square radius is equal to the sum of the m.s. ra-
dius of the matter distribution and a constant (equal to the m.s.
radius of the (density independent) effective nucleon-alpha inte-
raction in the case of a single folding model description); dif-
ferences between m.s. radii of the real potentials for two diffe-
rent targets are thus identical to the differences between the m.s.

6,9)

radii of the corresponding matter distributions It is inte-

resting to inquire to what extent this result is affected when the
potential is calculated within' the frame of refined folding mo-

dels including one nucleon exchange and/or density dependence of

15,16,17)

the effective interaction Fig.6 shows the m.s. radius

of potentials calculated for nuclei between 28Si and 64Ni17)
within N. Vinh Mau's mode116) (which includes one nucleon exchange)
as a function of the input m.s. matter radii, taking ”oCa as a
reference nucleus; the calculations were performed with Brink and

183 and with the den-
19)

Boeker's density independent interaction B1

sity dependent interaction G-o of Campi, Sprung and Banerjee

17)

- (within two different approximations ). All points are seen to
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fall reasonably near to the bisector where they would be located

in a usual folding model calculation, especially if we restrict

to nuclei not too far from L+OCa.
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We therefore calculated the matter radii of the targets con-

sidered in this study using the usual folding model prescriptions’g)
taking L+OCa as a reference nucleus; the neutron radius of L+OCa was
assumed to be equal to its experimentally determined proton radius
of 3.39 fm20). This led us to the matter radii listed in table I1;

the radius found for 36Ar (3.2140.06 fm) is compatible with the

proton radius recently determined by Finn et a121) <r2>1/2=3.23 fm.

p
On the other hand, the difference between the u8Ca and L}OCa matter

radii (+0.10+0.06 fm) is in good agreement with the difference

found by Friedman et al. at higher energyg) (+0.12+£0.06 fm); it is

also consistent with the recent determinations of the Saclayzz)

3)

and Gatchina2 groups using 1 GeV (p,p) scattering. The corres-

ponding r.m.s. neutron radii were also calculated from the relation

A<r2> = N<r2> + Z<r2> , Where <r2>1/2

36,407 40
> 7Ar, ref. 20 for Ca and from the recent work of Wohlfahrt

24) L. 42,414,048

with the differences A between the r.m.s. neutron and proton radii.

The latter are found to be consistent with zero for 36Ar and 42Ca.

Differences A of +0.20+0.09 fm and +0.14+0.09 fm were found for

was taken from ref. 21 for

et al. Ca; they can be found in table I, together
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Target IR 202|020 a2 [ A
B Ar £.06 3.21 -017 323 318 -0.05
“Ar LN 3.40 +0.01 3301" 3.50 +0.20
- ca 4.20 3.39 0 339 2} 339 0
“2Ca 4.23 3.43 +0.04 3.42 343 +0.01
“cq 4,28 349 “0M 3u " 353 | +0.09
“Ca 4.28 3.49 +0.10 34 355 | +0M%
st | so03 | o008 +0.06 2009 | +009

1} JM Finn et al. - Nuel. Phys, A 274 {1976) 28
2} RF Frosch elal.- Phys.Rev. 174 [1968) 1380

31 HD. Wohllahel et al. - Phys. Lelt. 738 (1978) 131

40

tent with the high energy (a,a)g) and (p,p) results

Table T.

(all lengths
in fm)

Ar and L}8Ca respectively : this last estimate is again consis-

22,28) g

well as with most of the recent HF calculations performed with

density dependent interactions (see app. C of ref. 22); it would

be interesting to have an independent determination of the neutron

skin thickness for ”OAr.

1) Th. Delbar et al- Phys. Rev. C18 (1978) 1237.
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"Model independent" potentials for elastic & - 40Ca scattering

and the problem of deducing nuclear matter densities

H.P. Gubler, G.R. Plattner, I. Sick

Department of Physics, University of Basel

This report describes an optical model analysis of G- 40cq
elastic scattering. Initially, our work was undertaken to
solve - at least partially - the puzzle of "anomalous large
angle scattering" (ALAS) of o -particles, which is most pro-
minent with 40ca. The feasibility of an optical model des-
cription of ALAS with little energy-dependence of the para-
meters was shown by several groups l)_3). It was found that

the imaginary part of the optical model has to be lowered
compared to neighbouring nuclei, which do not show ALAS, and
that the shape of the real part of the optical potential is
different from a Woods-Saxon (WS) form factor. Woods-Saxon form

factors raised to anﬂexponential and folding-potentials were

used in these investigations.

40~

The phenomenological fact of reduced absorption in o -
scattering may lead to an increased sensitivity to the shape of
the inner part of the optical potential, since in such a case
the a-particle can penetrate deeper into the nucleus without

being absorbed.

In fact, the scattering at intermediate angles and at ALAS-

energies (i.e. from ~20 to ~50 MeV) is very sensitive to the
detailed shape of the real part, since scattered waves from

different parts of the effective potential interfere strongly.
This interpretation is supported by semiclassical analyse€s 4) .
In order to investigate, whether this sensitivity can be used
to accurately determine the effective a-nucleus potential in

a "model independent" manner, we have tried to express the real
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part of the potential by a sum of gaussians ("SOG") rather than

by using a preconceived analytical form:
N 2,2 2 |
V(r) = 2 Ai {exp L—(r—ri) /Yy 1+ exp[:-(r+ri) /YZJ} (1)
i=1

The coefficients A; are treated as free parameters. The position
ri and the widths y of the gaussians are established a priori,
but are changed in a random manner in different fits 5) . The
values chosen for y were in the range from 0.9 to 1.6 fm. The
number N of gaussians can also be changed and is around 10 in

our analysis.

The imaginary part is taken to have a WS-shape. Modified WS-

potentials of the form -

W(r) = Wo{l + exp [(r—RI)/\)I aI]} V1 (2)

were also tried. No significant differences between the fits
with different vy were found, so that there is no strong de-
pendence on the form chosen for the imaginary part of the po-

tential-

We find that the SOG-parametrization of the optical potential
gives us enough flexibility to fit the data very well, with
values of X2/degree of freedom between 1 to 7, depending on
the angular distribution. The data cover the energy region from
18 to 166 MeV. It includes our own data measured at SINbbe—
tween 26 and 47 MeV, as well as other sets from the literature
7)-11) | With a few exceptions the angular distributions cover
the full range from ~30° to ~1759. We intentionally restric-
ted our work to the potential family with a volume integral per
nucleon pair of ~ 350 MeV fm3. This family is required 6) if

one wants to fit the data above ~ 100 MeV.

In Fig. 1 we show as an example a fit at 36 MeV with a SOG-po-

tential.

At any one energy, we thus obtain the effective real potential
and i1ts uncertainty at different radii by taking the envelope

of all the (~60) fitted potentials which fulfill the criterion
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2 < )
min Xmin
but we think it is justified in view of the fact that all of

that ¥ < X2 + 2. Clearly, this choice is arbitrary,
the "optically" good fits lie within this range. In Fig. 2 we
show two potentials and their respective error bands, derived
by the analysis described above. Clearly the shape of the
effective two body pofential describing the elastic scattering
of o -particles from 40ca is dependent on the bombarding energy.
This is not just an accident. In- fact, takihg a potential which
describes the angular distribution at 36 MeV, and trying to fit
another angular distribution at another energy by readjusting
the strength and by freely fitting the imaginary part of the
optical potential, we do not obtain acceptable fits. The dis-
crepancies increase as the energy moves away from 36 MeV.
Examples of the result of this procedure are shown in Figs. 3
and 4. This clearly shows that the shape of the effective real
potential must be energy dependent. We can only speculate about
the reasons. It is conceivable that we see here an effect of

other channels coupling to the elastic scattering.

The volume-integral per nucleon pair J/4A reveals another inte-
resting fact (see Fig. 5). Our analysis shows that the energy
dependence is not linear over the full energy range, but is

more complicated:

J(E) = SIS (1-a(E) » E) (3)

Recently Fliessbach has derived an energy dependent strength of
a folding potential by taking into account the Pauli-distortion
of the incident o -particle 12), we find that a(E) as calculated
by Fliessbach follows roughly gur empirical values as a func-
tion of energy. It is interesting to note that above E ~ 60 Mev
the energy dependence is approximately linear with a value for
a of ~0.0016 Mev_l. This corresponds closely to the theoreti-
cal predictions based on consideration of the inherent non-

locality of the nuclear force.l3)
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From our analysis we conclude that the derivation of nuclear
matter distributions or of rms-radii of nuclear matter distribu-
tions by a simple folding procedure cannot be considered to be

reliable in view of the following facts:

- Only the effective (local) two body potential for elastic

scattering of a-particles can be derived directly from measure-

-ments of elastic a-scattering

- The shape (not just the strength) of the potential is found to

be energy dependent

- The Pauli-principle has to be taken into account at least at

energies below ~60 MeV

- At higher energies (2100 MeV) the absorption becomes stronger,

the. nucleus less transparent, and consequently o-scattering
probes only the outer nuclear region. In our analysis we ob-
serve a corresponding increase in the uncertainties (~5%) of

the volume-integrals and the rms radii determined from the data.

- Even if only differences of rms-radii between various nuclei

are considered, the required degree of cancellation of the
systematical errors would have to be very large in order to
achieve a meaningful accuracy. Unless this can be justified at

least on theoretical grounds, such a procedure is unsound.

To state it simply and clearly:

The connection between the nuclear matter distribution and the
effective d-nucleus two body potential is complicated. Effects
which at present can not be included in a folding model will

have to be investigated in detail before we can hope to extract
precision information on nuclear matter distributions from the

analysis of da-scattering.
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Fig. 3
Angular distri-
bution at
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tical curve
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nomial fit to the data, the dashed line is an

extrapolation of the "high energy" behaviour.
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Alpha Optical Potential and Nuclear Radii of Ni Isotopes
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and
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The elastic and inelastic scattering of alpha particles on
58’60’62’64Ni isotopes was measured at E, = 172.5 MeV using the
a—particle beam from the Jlilich isochronous cyclotron. The experi¥
ment has been performed in the 100 cm scattering chamber using two
AE-E semiconductor telescopes. Each telescope consisted of a 1000 um
commercial silicone surface barrier AE transmission detector and a
Ge (Li) E detector of'the side entry type developed in the detector

1)

laboratory of the institute ’. Cross sections were measured in the

© (LAB) sufficiently broad to include

angular range from 45° - 70
the so called rainbow scattering. The energy resolution 250 keV
(FWHM) allowed to resolve clearly peaks corresponding to the elas-

+ and 3

tic scattering and inelastic scattering to the first 2+, 4
excited states in all four nuclides. The angular resolution was

0.2° and the uncertainty in the scattering angle was +0.025°. The
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angular step size was 0.5° in the diffraction region (small
angles) and 2°-6° in the nuclear rainbow region. The targets
were 4-6 mg/cm2 thick self-supporting foils, isotopically en-
riched to better then 99 %. The target thicknesses were deter-
mined by weighing and independently by alpha absorption methods.
This last one allowed to test the target nonuniformities. Error
analysis included contributions from statistics, angular uncer-

tainties, peak fitting systematics and target nonuniformities.

Optical model analyses were performed using standard six-para-

1 form

meter potentials of the (WS)1(WS)1, (WS)Z(WS)2 and (WS)2(WS)
for the real and imaginary part respectively. (WS) indicates as
usual the Fermi function. The best-fit potential parameters to-
gether with x2 values per degree of freedom are shown in Table I.
It can be seen that good fits of comparable quality are obtained
for all investigated potentials. As an example the fits for the

(ws) 2 (ws) !

combination are shown in Fig. 1.

The values of the root mean square radii and their differences
for the real part of each of the obtained potentials are listed in
Table II together with the corresponding values of r.m.s.radii of
nuclear matter distribution obtained from the analysis of 1 GeV

)

, Hartree-Fock-Bogliubov type calculations3)

4)

proton scattering2
and microscopic analysis of 166 a-scattering data For comparison
r.m.s.radii of the proton distributionS) are given in the last
column. We notice that the absolute values of r.m.s. radii of the
real part of the optical potentials are model dependent being lar-

.
ger for (WS) shape. The r.m.s. radii differences exhibit less mo-

del dependence and are pretty close to the corresponding values of
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Fig. 1: Angular distributions of elastically scattered alpha-

particles on Ni-isotopes fitted with the optical model

potential of the (WS)2(WS)1 form.
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the matter distribution predicted by the H.F.B. calculations. This
fezature of th=z optical model r.m.s. radii has been recently found
hy P.,I, Robertson et a1.6) for the case of the 140 MeV o scatte-
ring from even titanium isotopes. Within the limits of + 0.01 fm the

r.m.s. radii of the real part of the optical model potentials ob-

1/3

tained in the present work are proportional to A (see fig. 2).

This result agrees with the results of the microscopic analysis

of the 166 MeV o scattering data obtained by Brissaud et al.4)

and with results of the optical model analysis of the 42 MeV u

7)

scattering by Fernandez and Blair These two last works were how-

ever confined to mass numbers 58-60-62 only. The r.m.s. radii of
the matter distribution from 1 GeV proton scattering data of Alkha-

N 2] 2 .
zov et al.“’ and Chaumeaux et al. ) do not show a regular increase

1/3

with A We notice also that the r.m.s. radii of the proton dis-

5)

tribution increase with A though not as rapidly as A1/3.

8)

It has been argued for some time that the real part of the

o-nucleus optical model potential can be represented by the simple

folding integral when antisymmetrization effects are neglected:
> = = SN | 3501
Vv oaE) = [P @Y v (jr-rtdrt ... (1)

where V and Vo indicate the real part of the a-nucleus and

-A

effective n-a potentials respectively, §A being the matter point

density distribution in the target nucleus of mass number A. Accor-

8)

ding to Barret and Jackson the following formula for the r.m.s.

radii is then valid:
2

2 _ 2
x> _a = <r >fA to<rts e (2)

If we use for the analysis the optical potential of the shape given

by the folding formula (1) then the differences between the m.s.r.
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Root mean square radii of the real part of the a-opti-

cal potentials for Ni isotopes. Straight lines are

drawn to guide the eye.
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of the potentials should be equal to the differences between the
m.s.r. of the matter distribution for the corresponding isotopes

providing that the effective o-nucleon interaction is constant.

2 that the shape of the real

It has been shown by Majka et al.
part of the o optical potential for medium weight nuclei obtained
from the folding model can be well approximated by the (WS)2 form.,
The shape of the imaginary part of the o optical model potential

10) in terms of the Feshbach formalism turned

calculated by Vinh Mau
out to be close to the (WS)1 form. Therefore further analysis in the
present work is confined to the (WS)Z(WS)1 potentials. In fig. 3

the r.m.s. radii of the matter distribution determined from the

optical model analysis of the present o scattering data using for=

mula (2) are plotted against A1/3 for all four Ni isotopes. The
triangles indicate r.m.s. matter radii calculated for <r2>;£i = 2.45 fm.
1) 10)

This value was used by Bernstein1 and Vinh Mau as describing

the effective density independent a-nucleon interaction. The full

circles indicate r.m.s. matter radii calculated for <r2>l§; = 2.89 fm.

This last value was obtained by requiring the equality between the

r.m.s. matter radii obtained in the present work and those obtained

) for 58Ni nuclei. The r.m.s.

2,3)

from the 1 GeV proton scattering2

matter radii obtained by latest H.F.B. calculations and from the

)

1 GeV proton scattering2 are indicated by circles and crosses res-
pectively. Examination of fig. 3 tells us that the matter radii ob-
tained using formula (1) and (2) with non saturating free nucleon-
alpha interaction are larger by about 0.3 fm from the real nuclear
radii. Similar effect was also found by Majka et al.9) in the ana-
sysis of the a-scattering on 9oZr using the double folding potentials.

This discrepancy can be removed when using a density dependent o-

nucleon potential. This potential has saturating properties and in
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Fig. 3: Root mean square radii of the matter distribution for

Ni isotopes obtained from 172.5 MeV o scattering data,

3)

H.F.B. calculationsz’

2)

and 1 GeV proton scattering

analysis
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consequence suppress the interaction as the penetration into the
nucleus becomes deeper what increases the r.m.s. radius of the
potential. The importance of the density dependent interaction

12,13,14) 1. order to save

was recently shown by several authors
the use of simple formula (2) a density independent oa-nucleon

interaction with larger r.m.s. radius has to be used what confirms

the results obtained earlier by Friedman and Batty14). Using the
1/2
value <r2>n_a = 2.89 fm we can reduce the differences between the

matter radii obtained from o-scattering, high energy proton scatte-
ring and H.F.B. calculations to within 0.07 fm. The slope of the
increase of the r.m.s. radius value determined from alpha scatte-
ring is slightly larger than that obtained by other methods. This
difference may be accounted for by the antisymmetrization effects.

It has been shown by Majka et al.9)

that the inclusion of the one
nucleon exchange terms increases the r.m.s. radius of the real
part of the potential by about 0.02 fm. Since with increasing
neutron number the importance of the exchange interaction will
increase it is quite likely that some additional increase of

the r.m.s. radius of the total potential will occur in comparison
with the direct term given by formula (1). Finally we should
comment on the possibility of the influence of the core polariza-
tion effects on the values of the r.m.s. radii of the optical po-
tential. The dynamical deformation parameters o extracted from
the inelastic scattering data by means of the DWBA analysis for
the most strongly excited first 2+ and 3~ states are collected in
Table 3. As can be seen these values are very close to each other
so that if any core polarization effects are present they should

not influence the relative values of the r.m.s. radii obtained

from the optical model analysis. On the other hand the coupled
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channel analysis of the scattering of 104 MeV alpha particles by

58Ni nuclei performed by A. Budzanowski et al.15)

have indicated
that beside the 5 % decrease of W some slight modification of the
real part of the optical model potential is also required in order
to obtain a good fit to both elastic and inelastic scattering. How-

ever this modification leaves the mean square radius practically

unchanged.

The elastic and inelastic scattering of alpha particles from
Ni even isotopes was also studied at Ea = 104 MeV by H. Rebel

et al.16).

These last data did not extend far enough into the
rainbow region so that the results concerning the r.m.s. matter
radii can be only qualitatively compared with that obtained in

the present investigation.

In conclusion we can say that the results of the present inves-
tigation confirm the necessity of using the model independent methods
for the a-elastic scattering analysis as well as density dependent
interactions. The extraction from such data informations about the
r.m.s. radii of nuclear matter within the accuracy better than
0.07 fm would require better understanding of the exchange effects

in the nucleus-nucleus collisions.
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Table 1 Optical model potential parameters

v re ap W ri ay JR/4A \ <r‘2>l§/2 JI/4A3 <r2>i/2
(MeV)  (fm)  (fm)  (MeV) (fm) (fm) (MeV fm") (fm) (MeV fni") (fm)
ws)l (us)?
8\i  111.47 1.248 0.792 22.73 1.564 0.580 287.1 4.761 99.3 5.161 2.8
60Ni 111.29 1.245 0.804 21.68 1.577 0.603 285.3 4.815 97.4 5.281 2.3
62Ni 108.84 1.256 0.797 22.20 1.572 0.623 283.1 4.858 99.3 5.347 3.2
64Ni 11254 1.240 0.818 21.22 1.586 0.608 285.0 4.900 96.7 5.409 2.4
(WS)2 (WS)2
58\i 149.76 1.360 1.336 25.55 1.671 1.123 270.8 4.639 90.5 5.189 2.8
60ni 142,79 1.354 1.319 24.35 1.696 1.143 265.7 4.682 90.3 5.318 1.6
62yi 140.84 1.361 1.316 26.42 1.672 1.197 265.9 4.728 93.4 5.352 2.4
64Ni 154.02 1.316 1.423 20.14 1.756 1.024 265.1 4.794 84.7 5.478 3.2
Ws)2 (us)?
58\i 140.34 1.379 1.266 25.14 1.458 0.766 275.0 4.639 96.5 5.217 3.1
60Ni 131.98 1.402 1.229 23.90 1.493 0.754 275.5 4.685 97.0 5.326 1.4
62yi 132.72 1.400 1.242 25.00 1.478 0.777 272.0 4.731 99.2 5.373 2.4
64Ni 146.53 1.354 1.359 19.08 1.583 0.686 273.0 4.798 98.0 5.527 4.6

— 62¢ —



Table II R.M.S. radii and their differences

0.M. 0.M. 0.M. matter matter matter proton
ws) syt ws)2ws)2  ws)2ws)! 1cevproto? H.F.B.3) 166 Mev?)  u x-ray®
alpha
R.M.S. radii (fm)
o8y ; 4.761 4.639 4.639 3.63 3.69 3.66 3.781
60y; 4.815 4.682 4.685 3.68 3.73 3.71 3.818
62y 4.858 4.728 4.731 3.69 3.78 3.76 3.847
645 4.900 4.794 4.798 3.75 3.82 - 3.866
R.M.S. radii Differences (fm)
60p;-%8yi  0.054 0.043 0.046 0.05 - 0.04 0.05 0.037
62 -0ni  0.043 0.046 0.046 0.01 0.05 0.05 0.029
04152y 0.042 0.066 0.067 0.06 0.04 - 0.019

— 0ge —
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Table III

Deformation parameters g for first 2% and 37 excited states of even Ni isotopes

E_(MeV) J 8
58y; 1.45 ot 0.155
4.47 3 0.122
60y; 1.33 ot 0.167
4.04 3" 0.122
62 1.17 * 0.176
3.75 3 0.126.
64y 1.35 o 0.152

3.55 3 0.126
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Optical model fits (1) to the elastic scattering data of

48’40Ca (2) using a Fourier Bessel

104 MeV alpha particles from
description of the real potential show that the rms radius of
the u—48Ca potential is greater than the a—4OCa one by an

amount of <r2>1/2 - <r2>1/2 = 0.13 + 0.04 fm.

Pot (48) Pot (40)
Moreover, the volume integrals per nucleon pair for both poten-
tials agree within the experimental error of + 3 MeV.me.

In the present note we are concerned with the question
whether this difference reflects solely the density dependence
of the nucleon-nucleon interaction or whether it uniquely
implies a difference between the rms radii of the corresponding

nuclear density distributions.

Recently, the double folding procedure has been refined so
that in addition to an exchange term (3) the density dependence
of the effective nucleon-nucleon interaction (4) has been
included. The density dependence originates from the presence

of the surrounding nucleons changing the intermediate processes
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that might occur in the interaction of two nucleons. The
importance of the saturation has been recently demonstrated for
104 MeV alpha-particle scattering (4) where a density dependent
folding model was able to describe also the "rainbow" scat-
tering resulting in reasonable values of the potential volume
integral per nucleon pair. In that specific case exchange

effects have been shown to be of minor importance.

The basis of our discussion is the refined double folding
model described in detail in ref. (4) where
__)

> »> > -
Vot—Ca(r) - ff Pa (_Z)a) pCa(ZCa) t(r’Za’ zCa) dl'g d—Z>Ca (1)

All guantities and the coordinates in eq. 1 are defined in
ref. (4). The effective nucleon-nucleon interaction depends
actually on the local density p(?,Za, §Ca) of the overlapping
system. Due to the Pauli distortion this local density is

assumed to be intermediate between the arithmetic sum of Py and

Pea {sudden approximation: maximum compression) and the
adiabatic case o Pca (no compression). For simplicity we
parametrized as follows p (r, Ea, ZCa) =mp, (Zu) * Pea (ZCa)

with m (O < m < 1) accounting for the compression of nuclear
matter in the overlap region. The Value* of the parameter m was
40Ca(a,u)4OCa data. To
calculate the real part of the a—48Ca potential using eq. 1

fixed by requiring a fit to the

two extreme assumptions for the matter density distribution’ in

the 48Ca nucleus were examined.

*

m = 0.5, see ref. (4).

"1In eq. 1 for Py Ve used the point matter density distribution
deduced from matter density distribution P by unfolding the

charge distribution of a single proton.



— 235 —

(48) = %% op (48) where we use three parameter Fermi

p
pgoton distribution pP(48) derived from ref. 5.

This model provides a considerable increase of the central
density in the 48Ca nucleus as compared to the 40Ca one
leading to a modification of the density dependence of the

nucleon-nucleon interaction.

Adopting the same value of the central density in 48Ca as
for the 40Ca nucleus and adjusting the shape of Py SO that

the rms radius was equal to that of the proton distribution

used in case (a).

40

In Fig. 1 we compare the Ca matter density distribution and

that of

48Ca obtained in (b). As one can see from table 1 the

resulting rms radii of the folded potentials are equal for both

Fig.

Om
[tn™) lewriagl
m
(tn')
015 6
g = [4Tr71gh 48) ~gl, (0]
0.1 4
0.05 2
8 r "m ]
1. Matter density distributions
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Table 1. The rms radii and the volume integrals per nucleon

pair of the calculated potentials.

. . ,.1/2
Double folding Matter density <r*>5o¢ JN
potential distribution in
target nucleus” (£fm) (MeV . fm3)
40 40 A
Ca(a,a) Ca pm(40) == pp(40) 4.22 298. 0
48 48 A
Ca(a,0) Ca pm(48) =57 pp(48) 4.23 280, 3
48ca(a,a)t8ca <r2>;72 (48)
- <r2>;/2(48) 4.21 283, 6

po(48)=p,o(40)

means that the semimicroscopic double folding model with the

saturation effect included is not able to reproduce the

experimentally determined difference between rms radii of

te potentials without additional assumption of increased

size of the neutron distribution in the 48
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ABSTRACT

The imaginary part of the light ion optical potential has
3

some interesting features which may be usefully exploited. For the “He-nucleus
cystem at medium energies it has been found that the elastic scattering
ross—-sections in the backward hemisphere are almost entirely determined by

the imaginary part of the optical potential. The dynamics of this potential

3

corresponds to energy conserving transitions in which (i) the “He excites the

3

target collective states and (ii) the “He itself undergoes incoherent 1p 1lh
excitations using as intermediate states the single particle levels of the
target nucleus. It has been found that the back angle elastic scattering data
is very sensitive to the nature of the target collective states that enter:
into the calculation of the imaginary potential. Thus we have an additional

way of studying nuclear shapes.,

1. INTRODUCTION

1)

the lignt and heavy ion optical potentials. Most investigations have been

Considerable effort has been invested in understanding
addressed towards elucidating the nature of the real part of the nucleus-
nucleus optical potential and also for determining an appropriate single

2,3) have their own

particle model for it. However, severazal of the light ions
special features and so require further investigation. Although the imaginary
potential is strongly linked to the real part, the former has not received
much attention as yet. Nevertheless the imaginary potential for the 3He
projectile has displayea some specific features which may be usefully
exploited. In this paper we examine the conerent nature of the imaginary part
of the 3He optical potential and suggest an additional way of investigating

nuclear snapes.

X . . ) . .
Lavoratoire Associd au C.N.R.S.
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3

2., THE “HE-NUCLEUS INTERACTION POTENTIAL.

In this section a single particle model for the
interaction is first considered in some detail because it is essential to
understand exactly what dynamics is inherent in the model before including

the coherent imaginary potentialse

2.1 Single particle model.

Our starting point is the single particle folded model.
In this model it is assumed that the interacting nuclei remain in their ground

states throughout the collision. However for a weakly bound projectile like

3

He it is useful to extendz) the folded model to include excitations of the

3

nucleons in the “He but it is assumed that the target being relatively stable

would remain in its ground state.

2.1.1 Formalism.

The 3He—nucl'eus optical potential is conveniently

expressedz) in the Feshbach formalism to be
Ure=§RIE®IV + Veegrgre @V | 40NN O

where the suffix A implies that the above matrix element is properly

antisymmetrized. %(&) and (é(gr) are respectively the ground state
internal wave functions of the target and projectile. H is tne iotal

Hamiltonian of the system and E is the c.m. energy of the projectile. Assuming

that only two body interactions occur
14

V=2 5 v (>

where .D% is a N=-N intera;;io;:—'AT is the nucleon number of the target. The
open cnannel projection operator e projects the total wzve function H/ on
to the ground state of the target plus projectile system as

LY=o $&) B (&) (32)
whered¥ is an antisymmetrization operator. Then the closed channel projection

(26)

operator (;)0 is defined as

Qoz“"Pe
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and it projects off the ground state of the system., The first term of eq.(1)
is the usual folded potential for the real part and the second term, *
containing s propogator, couples the elastic channel to a non-elastic one.
The VQ,before the propagator couples the elastic channel to a non-elastic
cnannel in Q,Space and the Qy after the propagator decouples the same.

It is useful to transform eq.(l) in order to express

3

He-nucleus optical potential as a function of the optical potentials

3

the
of the constituent nucleons of the
over all the target nucleons in eq.(2), thus \/: E \%j , where Vb is

a=!
rnow the nucleon—nucleus optical potential for the 'ﬂ» nucleon of the 3He.

He. This can QF done by first summing

Thus the He-nucleus optical potential is

oP{ <¢(ﬁ)) L\/ +\,§— %HMMCDZ ] 32(6 (4)

2)

decompose the propagator to be a function of the Hamiltonian Fy for the

-tk. 3

The propagator in eq.(4) contains the total Hamiltonian H. As before we

nucleon of the “He interacting with the target nucleus. Then only

retalnlng terus SeCOﬂd order in \g' we obtain
U = @@]Z \+Y6 g " " c?-neQJZ\’ A 4’(5‘) ()

where (;5. is the amalogeous operator to (;L of eq.(3b) for the nucleon-

nucleus system and
Ei#f - E "—T% -_MT]< (gi>

where 1} and‘Tk are the kinetic energy operators of the other two
nucleons of the Z’He. Now calculating the potential at E,,H instead of E
ig eouivalent to including the internal motion of the nucleons of the
projectile. In eq.(5) there are 9 propagator terms. We distinguish between

3

the protons (Pl’PZ) and neutron (n) of the “He and so j= P,, P, or n.

2.1+2 Approximations.

We proceed as beforez)

(i) Choosing qﬁ [€I> to be symmetric Wwith respect to exchange of the
)
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3

positions of the nucleons of the

V‘ = Vr)_ and  ©@pz Gy 72

2

He allows us to put

(ii) We make the additional approximation in second order only

N~ \G;

-
Gy
N\

2.1.3 Meaning of propagator terms.

With the approximations of eqs.(?) the propagator

terms refer to 1lp lh excitations of the nucleons of the 3He. At low energies

3

the intermediate states in the propagator are those of the “He-target

compound nuclear system., At medium energies, in which we are interested

here, the required intermediate states are the excited levels of the

3 4)

He projectile has no excited levels

3

unperturbed system. Since the only

the target excited states contribute. Thus the nucleons of the “He undergo
1p 1h excitations using as intermediate states the target excited levels,
Therefore the presence of the propagator terms extends the folded model

to include the excitations of the nucleons of the projectile. This amounts
to simulating the effect of the break up of ihe 3He projectile. Further
in eq.(5) we have made a perturbation expansion, thus the propagator

terms in our case will give an attractive potential.

2.1.4 Model representation of eqg.(5).

The nucleon-nucleus optical potentials \{; have

real and imaginary parts which are approximated as follows in the

3

calculation of the “He optical potential.

(a) The real part is calculated in a folded model that takes into account

5)

scattering effects in the nucleon-nucleus optical potential.

6,7)

exchange

This exchange prescription has also been extensively tested in

7)

nucleon exchange effects. The effective interaction used is an extension of

o( -nucleus scattering and found to be adequate to represent single

the Kuoe) force where odd state forces and the energy dependence of the

9,10)

effective interaction have been included.
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(b) The imaginary part is calculated in a Fermi gas model where the
9,11)

potential is given by

e i e (8

wilth \lf s the projectile velocity,<¢;> , the average nucleon-nucleon

cross=section in nuclear matter, where the Pauli principle has been
included. The term éli’O'é Vf) simulatesg’ll) the effect of non-forward

N-N scattering amplitudes. The factor UR/JR gives the potential a finite
range9’11) where'UR is the real potential as calculated above and JR is

its volume integral. Dynamically eq.(8) corresponds to an incoherent
lp 1h excitations mechanism.12

(c) The 3He—nucleus optical potential is calculated by folding the direct

terms of the nucleon-nucleus optical potential with the local target

9)

density and the exchange terms with the equivalent local target density,
so that eq.(5) is properly antisymmetrized. The classification of the

terms of the potential is the same as beforez) but suitably extended for

9,10)

the use of our effective N-N interaction. However unlike the

2)

and second order and energy dependent parts in an identical way to the

previous calculation, the imaginary potential is split into its first

real potential. This is possible since each component of the real
potential yields an identical component for the imaginary potential as

can be seen from eq.(8).

2.1.5 Physical content of the single particle model.

(1) The break up of the projectile 3He has been simulated in a perturbation

approximation as explained in subsection 2.1.3.

(2) Internal motion of the 3
E:¢+L in eq.(6).

(3) single nucleon exchange has been included. This is likely to be the

He nucleons is included in the definition of

dominant exchange contribution since 3He is a weakly bound projectile.

(4) Only single particle intermediate states have been included throughout. ’



2,2 Inclusion of coherent imaginary potential.,

In subsection 2.1 the imaginary part of the nucleon=-
nucleus optical potential was calculated in a single particle approximafion.
However the imaginary potential is known to have a coherentlz) component
which is difficult to include microscopically, so we resort to the

13)

phenomenological coupled channels approach in the following manner. We
preserve identically the single particle projection operators of eqs.(B),
then we extend the open channel space by defining a new projection

operator P to include both single particle and coherent components as

PY=RY+RY =R GG +Z dedE) (D

where the projection operator Pi,, projects on +to the inelastic
collective states of the target and on to the ground state of the
projectile, Then the projection operators for the closed channels are

= - - - + 4 = . . .
Qo IE Po and Qiﬁ' I Pin with IE Iin 1. Thus for all projections

in
we have a separation of the single particle and coherent components.
Therefore we can preserve intact the entire single particle potential
calculated in subsection 2.1.

13)

In the coupled channels method the interaction
potential has two components. The spherical part which describes the
uncoupled single elastic channel and so is represented by the optical
potential. The deformed part which couples the elastic channel with the
target inelastic levels is represented by the coherent deformed optical
potential. Therefore identifying the single particle potential of
subsection 2.1 with the spherical component of the coupled channels
potential leads automatically to the separation desired in eq.(9). However,
in the conventional coupled channels approachlB) both the real and
imaginary parts of the optical potentials are deformed, but in our

calculations only the imaginary potential was deformed.

2.2.1 Dynamics of the imaginary potential.

Now the imaginary potential has contributions from

3

(i) incoherent energy conserving 1lp lh excitations of the “He nucleons via
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the single particle levels of the target and (ii) coherent energy conserving
excitations to target collective levels., Also the dynamics described 'in

subsection 2.1.5 are still inherent in the model.

3. RESULTS

Here we test the models of section 2 against elastic
scattering cross-sections for 3He scattering from 56Fe between 30 - 85 Mev.
It was hoped to test these models using the recently acquired9) data at
53+53 Mev from 4OCa, 44 48

analysis is as yet incomplete,

Ca and ' Ca, but the lengthy coupled channels

3,1 Single particle potentials.

The detailed results with this model are not of
immediate importance to the aim of this paper, but it is a necessary step

before we can discuss the results with the coherent imaginary potential. In

Fig.l the fits to the data are displayed for the present9’10) extension of

8)

the Kuo interaction and also for the original Kuo interaction.

3
%

i e (i o e e e

Fige 1. = Fits to the 3He - 56Fe elastic cross-section data. The fit with the
present interaction is the solid line and the fit with the Kuo interaction,
taken from ref, 14, is the broken line.

From the data analysis the following points emerge:

14)

(a) The analysis with the Kuo forcea) using the potentials of ref. 2 for
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the 3He - 56Fe system clearly shows that the model breaks down very severely
for all but the forward angles. '

(b) The situation is somewhat retrieved when we use the model of subsection
2.1.4 which includes9’1o) the energy dependence of the effective N=N
interaction and odd state forces. Now the forward angle region is well
fitted and the calculated cross-sections do fall off unlike the Kuo case.
However, the renormalization parameters for the reai and imaginary
potentials ameSR«JO-5 andSInJl-Z respectively. For the real part we have
not solved the renormalization problem, but it should be remembered that

(i) in our model (subsection 2.1.3) the second order terms are a priori

attractive; (ii) the closure approximation still persists in our

9,10)
3

and so the second order terms are probably overestimated;
2,15,16)

interacfion
(iii) for the

reproduce the data betiter. Thus both the perturbation expansion and the

He projectile, models with a second order potential
model representation of the second order terms require further
investigations.

(¢) In the present analysis an attempt was made to fit the data by
introducing ad hoc renormalization parameters for the energy dependent and
independent parts of both the real and imaginary potentials. At 55+4 and
82«7 Mev this procedure did not lead to any improvement, but the 33.4 Mev

data could be fitted with unphysical renormalization parameters.

Therefore we conclude
(i) The 3He-nucleus interaction for the 3%+4 Mev data is different from the

higher energy cases.

(ii) For the 53+4 and 82-7 Mev cases we have reached the limit of validity
of the present single particle model.

(iii) Only the forward angle data can be fitted with our single particle

model.

3.2, Inclusion Qf coherent imaginary potential.

From the above analysis it is Clear that more physics

should be included into the model for the 3He-nucleus interaction.
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3.2¢1 Details of analysis.

We start by systematically considering the inclusion
of collective levels for the 827 Mev case. The collective states were
included so that the open channel space was gradually extended. The
following models were considered:-

(i) The inclusion of the first 2+ state at 0:8465 Mev as a one phonon
vibration.

(ii) Mixture of a one phonon state 2% (0:8465) and two phonon states

4% (2.0851) and 2% (2.658). The gégures in brackets are the energies of

the states in Mev. In this case “ Fe is treated as a typical vibrating

nucleus.

(iii) Mixture of a quadrupole 2 (0:8465) and Octapole 3~ (3.27) one
phonon states.

(iv) The inclusion of 2% (0.8465) and 4* (2.0951) levels as rotational
states. Here > Fe is treated as a rotational nucleus.

In all the above cases the relevant coupling
parameters were determined emperically by fitting the data. The
renormalization parameters SR and SI respectively of the real and imaginary
potentials were also optimised. None of the above models showed sufficient
improvement to suggest that collective states contributed to the 3He-
nucleus interaction potential, but the rotational model was found to be
the best. Therefore
(V) next we considered a deformed nucleus with a ground state rotational
band 0% (0-0), 2% (0-8465), 47 (2.0851); a Beta bana 0% (2.942); a
Carma band 2+ (2.658) and an Octupole band 3" (3-27). In order to
determine the most important vibrations a careful search procedure had
to be initiated.

(a) The initial values of the coupling parameters ﬁi for each of the
abovementioned i bands was taken as in table 1. These /34 values were

fixed and the renormalization parameters SR and SI were varied.
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Table 1. Values of [3, obtained from previous analyses.

Band & Value Ref.

Ground state ﬂa, =019 17
Beta Bp =0.1 18
Gamma Py =0.11 19
Octupole 3sct =0.1 20

(b) Then with the fixed new values of SR and SI’ the coupling parameters
for the vibrations were varied i.e. /3;3, Ly, /?.,pt. « The ground state
deformation parameter [33 was not varied as this caused random sign
changes in other ﬂv parameters that were being varied simultaneously.
(¢) Then Sp» So» Ban s By and fot  were all varied.

() The band structure was systematically changed at this stage using
the criteria: As the coupling parameter for a given band tended towards
zero, We removed the levels of that band and added levels of higher
excitation energy to the bands with the largest values of the coupling
parameter. Then sequence (c) was initiated again.

(e) Finally, having obitained a stable configuration by repeatedly
performing sequences (c) and (d), we then allowed all the parameters to
be varied including /35/ « The value of F“,L' was not well determined

and was fixed in several of the search sequences.

Next the 53+4 Mev data was analysed starting with
the converged ﬂu values and band structure obtained from the 827 Mev
data analysis. Having followed the above search procedure it was found
that the p., values automatically converged very close to those for the

827 Mev. On exchanging the f3./ values of the two cases we were able to

get almost indistinguishable fits to the data in both cases. Therefore an

average was taken of each 3+ value obtained from the analysis of the
data at 53+4 and 82-7 Mev. These values are presented in table 2 and the

fits to the data are displayed in Fig. 2.

The 334 Mev data was similarly analysed using all
five schemes described above but no evidence for collective effects was

found. This result is in keeping with the observation in section 3.1 that
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the 33«4 Mev data could be fitted by including various parameters into our

single particle model.

Table 2. Parameters obtained from the analysis.

gy ; EE Values
Ener SR SI

82+7 Mev 0+5 1-09 ﬁ7 :o-326,/?>p =0+349
53+4 Mev 0+48 1-02 Bat =015
T T ¥ T 1 T -
' ‘ 82+7 Mev CiET T
{ =
w' |- ] \I ‘\ 4"‘ E 2]~
t "0:
l’ : ’ :g\
; w":% /\,\7
wt - :E v
107,4=
,io*‘:
' - E 3
O-R lo"E:
_In‘; o j
cm -
IU": PR AU YOS ISV DU TR SN (Y W NI SUSNN NS N
< 1
. » 0 2 10 w 6 M0 120 1 160

Fig. 2, = Best fits to the 3He-56Fe elastic cross-section data. The present
model fits are the solid lines. The semi-microscopic (microscopic real and
phenonenological imaginary) fits of ref, 16 are the broken lines. The
phenomenological coupled channels fit of ref., 21 to the elastic channels
are the dotted lines.

We conclude from this amalysis that
(i) The magnitude and structure of the data is much better reproduced on
including a coherent imaginary potential. Further improvement may be
possible by coupling to niore levels but ithis is beyond our scope at present,

However, the essential features of the data are reproduced here,
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(ii) The back angle elastic scattering data is almost completely determined
by the imaginary part of the optical potential, while the forward angles
are determined by the real potential.

(iii) The imaginary potential is very sensitive to the nature of the
collective states that enter into its calculation. Thus this part of the

potential is sensitive to the shape of the nucleus.

3.2.2 Comparison with other analyses.

In Fig. 2, along with the coherent imaginary fits, we
show for comparison (i) the best fit taken from ref. 16, where the first
and second order real potentials were calculated in a different single
particle model, but the imaginary potential was phenomenoclogically fitted.
(ii) The best fit to the elastic channel taken from a phenomenological

21)

coupled channels analysis « The following features appear from this
comparison.

(a) In the backward hemisphere, where the data is almost entirely
reproduced by the imaginary potential, we find that our prescription for
the imaginary part is better,since the phenomenologicallyl6) fitted one
produces rather erratic oscillations. Further the parameters introduced in
our analysis (subsection 3.2.1) have a direct physical interpretation,
unlike the phenomenological ones.

(b) Our fits are very similar to those obtained for the elastic channel in
a phenomenologicalzl) coupled channels analysis. At 5%3+4 Mev our fits are
only slightly inferior in reproducing the magnitude of the cross-section.
At 82+7 Mev our model reproduces more closely the gradient of the fall off
of the data, but cannot reproduce the magnitude of the last maxima at~s 70 ,

56

However, our analysis does clearly treat “ Fe as a rotational nucleus while
equivalentzl) fits were obtained phenomenologically using either a

rotational or vibrational model,

3,2,3 Values of 31 .
[

The values of the f?{ parameters of table 2 obtained

from the present analysis are much larger than those of table 1 obtained

22)

from previous phenomenological anélyses. Earlier for £ -nucleus inelastic
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scattering exactly the same was observed. This feature may easily be
explained. A phenomenological Woods-Saxon potential is on average
proportional to the nuclear density f . However, a calculated microscopic
potential is a complicated function of the density:

Direct density-independent part L4 f

Direct density-dependent part & f f

Exchange density-independent part « fm("’)h)

Exchange density-dependent part « rm (."')M) f
where the effective N-N 1nteractlon9’ 0) has a fy§ dependence and ﬁ“(4f4)
is the mixed density. It can be seen that only the first contribution is
linearly proportional to the density. All other contributions are powers of
the density, which give the calculated potential extra curvature i.e.
diffuseness as compared to the phenomenological Woods-Saxon potential.
Therefore larger values of ﬁ% are required to achieve the same
deformations as the phenomenological potential, although this feature is
not gquantitatively established yet. However, it has been pointed out23)
that values of /3L are not themselves comparable from one analysis to
another, but the values of/3if2 are comparable, where R is the half value
radius of the Woods-Saxon potential used in the analysis. This procedure is
perfectly alright as long as we are comparing potentials that are parametric
vgriations of a fixed form. In such a case the half value radius R simply
becomes a reference point for comparison between two analyses. In a
microscopic model the half value radius of the potential is determined by
competition between physical effects such as energy dependence, odd state
contributions, exchange scattering etc.. Therefore a single parameter like
the half value radius is not sufficient to describe the surface region of
the potential. Thus in the absence of a quantitative relation we suggest
that larger values of [ﬁ, are obtained for microscopic potentials due to

their larger diffuseness,

%3.2.4 Suggested nuclear shape.

56

The present analysis clearly indicates that Fe is a
deformed nucleus. The phenomenological coupled channels analysis21) is
56

unable to distinguish between a rotational or vibrational model for Fe

even though the analysis included elastic and inelastic scattering data
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between 30-83 Mev. The vibrational model yieldsQl) a value of f57 =0.19
and rotational /33 =20.172. The experimenta117) estimate of [Bg= 0.19,

but the levels of the ground state band were fitted using a rotational

56

model. We conclude that from our analysis that 7 Fe is a deformed nucleus,
which is in agreement with experimental findings within the limitations

mentioned in subsection 3.2.3.

4. CONCLUSIONS

3

(1) Forward angle elastic scattering cross-sections for the “He-nucleus
system at medium energies are sensitive to the real part of the optical
potential and the backward angles to the imaginary potential.

(2) Between about 50-80 Mev the imaginary potential is strongly coherent
and the 3He projectile excites target collective levels. It is found that
the back angle data is sensitive to the nature of the target collective
states that enters into the calculation of the imaginary potential. Thus
this part of the potential is sensitive to the shape of the nucleus.

(3) The shape for 56

with experimental findings. However, a quantitative method of comparing

Fe determined from the present analysis is in agreement

deformations obtained from microscopic and phenomenological analyses still
' requires to be established.

3

(4) The dynamics of the imaginary part of the “He-nucleus optical potential
is: (i) incoherent 1p 1h excitations of the nucleons of the 3He using the

excited single particle levels of the target as intermediate states

(ii) excitation of target collective states.
(5) The inclusion of the projectile excitations in a perturbation expansion
requires to be examined,

3

(6) Experimentally and theoretically it is worth studying the “He-nucleus
interaction because it is still possible to measure accurately cross-
sections in the backward hemisphere, which gives a sufficient angular
range to study the nature of target excited states if the excitations of
the 3He can be properly treated. Thus we have an additional way of suggesting

the shape of a given nucleus.
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I. Introduction

What can we learn from the elastic scattering of strongly absorbed parti-
cles near the Coulomb barrier? If we define a strongly absorbed particle as a
particle which is totally absorbed once it has surmounted the Coulomb barrier,
we see immediately that we are going to learn something on the tail of the po-
tential outside of the Coulomb barrier, which is in turn influenced by the tail
of the density distributions of the colliding nuclei. In the present talk T will
show in part II what can be deduced from a-scattering near the barrier on a lar-
ge range of nuclei, not ineluding calcium region, and in part III what can be

deduced from '®0 scattering near the Coulomb barrier on some calcium isotopes.

I1. Elastic scattering of o particles from medium and heavy nuclei

Figs. | and 2 show two examples of a-particle scattering near the Coulomb
barrier on medium and heavy nuclei. Fig. | shows excitation functions which were
measured near 180° at the Saclay tandem by Badawy et al.[l] from a range of nu-
clei from ''°Cd to 2°®pb, Fig. 2 shows an angular distribution measured at 22
MeV from 2°%Bi by Barmett and Lilley [2]. Both types of data can be interpreted
in the framework of a four-parameter optical model with strong absorption, and

very good fits are obtained (the lines in Figs. 1 and 2 are optical model fits).

The signature of strong absorption is not as simple as it is at higher
energies, where the reflection coefficients [ngl jump from zero to one in a few
2-values near the grazing angular momentum. Here, the angular momenta involved
are small and their effective barriers are close to each other. As a result, ng
varies smoothly from small values to one as a function of £. Strong absorption
is characterized by the fact that the calculated cross—-sections are insensitive
to the depth of the imaginary potential inside the Coulomb barrier, provided it
has some minimum value which insures the total absorption of particles. This is
apparent in Fig, 3, where the ¥x? is plotted as a function of W (all other para-
meters being kept fixed). Clearly any value between 10 and about 50 MeV will
give almost the same fit to the data. Another indication is the agreement with
incoming wave boundary (IWB) calculations which assume strong absorption from
the beginning [3]. However, D.F, Jackson and M, Rhoades-Brown [4] have shown
that strong absorption is not necessary to fit the data., Equally good fits are
obtained with weakly absorbing potentials. The signature of weak absorption is
here an odd-even staggering of lnll as a function of %, as compared to their
smooth behaviour in the case of strong absorption. Fig. 4 from ref.[4], shows

the reflection coefficients for different real potentials, and with a (weakly
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a 2°8pPb nucleus has very little chan-

ces of not being absorbed and form
219po, which can certainly offer all
possible phase space at 19 MeV excita-
tion. That was in any case the attitu-
de we adopted to analyse the Saclay
data []] and I will discuss now which

conclusions can be arrived at if

strong absorption is assumed.

In a strong absorption situation,
the data are only sensitive to the
real potential outside of the Coulomb
barrier. As a consequence, only two
parameters at best can be determined

namely the Igo constant V exp % and

absorbing) surféce imaginary potential
which was ajusted to give the best fit
to the Pb(o,a) data of Barnett and Lil-
ley [2] at 22 MeV. Fig. 5 shows the ﬂéS
obtained by Barnmett and Lilley for ei-
ther volume (strong) absorption (full
line) or surface (weak) absorption
(dashed line). The calculated cross-
sections are essentially identical ex-
cept at small angles where the latter
gives more interferences, but even the-
re differences are on the 1 Z level. In
the absence of a small-angle, very pre-
cise experiment, it is largely a matter
of taste to decide if there is weak or
strong absorption, My personal prejudi-

ce is that ana particle which penetrates
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04
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Figure &

the diffuseness parameter a. However, at energies close to the Coulomb barrier,
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the data are very insensitive to the value of a and only one size parameter can
be determined. Goldring et al.[S] have used the o-nucleus distance at the maxi-

mum of the Coulomb barrier, which they call the Rutherford radius r_, while

Tabor et al.[3] have used a "constant fraction" radius where the raiio of the
nuclear and Coulomb potentials is 2 %. In the analysis of the Saclay data, we
found that all potentials giving a good fit cross in a very narrow region, where
their depth is about 0.2 MeV, see Fig. 6. Therefore the best choice for a size

parameter is the o-nucleus distance R such as V(R0 2) =-0.2 MeV. In other

0:2
words, all parameters VO, Ropt’ and a which give a good fit obey the relation-
ship
R - R
Vo oexp—BE 02 _ _ 49 yey (1)
0 a
i ' ! ' | ' I ' ] What does that imply on the
TAIL OF - density distribution of the target
RN NUCLEAR POTENTIALS )
 a-052Ffm nucleus? Barnett and Lilley [2]
—a.057fm . 2094
E 1 ---02062fm _4 have analysed their Bi data by
% - - folding an effective force of Woods-
é O 1 Waxon type into various density
§ - -4 distributions of Fermi shape and
E " 1 found that all densities which gave
8 - T4 a good fit to the data crossed in a
14
ﬁ narrow region near 2 X 10”° nucle-
-
8°J? - on/fm’. They used the effective a-
< C N nucleon interaction deduced from
i )ﬁ‘ ‘F 71 p-o and n-o free scattering at low
B 18 152 206F 7
L Sn Sm b| energy by Mailandt et al.[6], name-
8 | 1ly at the barrier
V . (r) = 42.5 e expini2l] T
0.01 i | 1 1 1 | 1 eff ' P 0.34
) 10 " 12
r(fm) _
(MeV, r in fm) (2)
Figure 6

The Saclay data were analysed
using a variety of forces and density shapes, in order to determine which was
the best determined density region and to which extend the result would depend
on such choices. It was found that the choice of the shape of the distribution

was not crucial, Either a simple Fermi shape
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o
p(r) = — (F2)
1 + exp
N
or a "modified gaussian" shape [7]
)2
e [
°N
p(r) =p (MG)
o 2
r° - c
1 + exp
2
N

gave similar results,

In contrast, the results are more sensitive to the range of the effective

force used. Four such forces have been used, either of gaussian shape
- _ w22
Veff(r) Uo exp(- K°r°)

or of Woods-Saxon shape

Vegs ()

namely

- 127 MeV and K = 0.6 fm~' (Gl)

- 42,5 MeV and XK = 0.5 fm~' (G2)
- 37 MeV and K = 0.5 fm~' (G3)
(4) Woods-Saxon, with Uo = - 42,5 MeV, Re = 2.35 fm

ff
and a = 0.34 fm (WS)

(1) Gaussian, with UO

(2) Gaussian, with Uo

(3) Gaussian, with UO

eff

The gaussian force Gl or, equivalently, the Woods—Saxon force WS, were found by
Sumner [8] to give the best fit to his 42 MeV o scattering on “°Ca, when he used
for the "°Ca density the Hartree-Fock calculation of Negele [9]. It is quite re-
markable that this Woods-Saxon force WS is so close to the one deduced from qui-
te different data by Mailandt et al.[@]. Batty et al.[lO] have found that the
range of gaussian forces should be between 0.5 and 0.6 fm~!, and that Uo and K
are then linked by the relationship

U K™% =~ 2600 MeV fm®. (2)

The gaussian force Gl and G2 have both
U K™° = 2720 MeV fm®.
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Finally, force G3 was derived by Bernstein [11] by folding a nucleon~nucleon
force into a density distribution of the o particle. The calculated potentials
with WS and Gl are equal within less than 1.5 keV outside of the Coulomb barrier,

which makes these forces strictly equivalent.

The different combinations of density sha-

pes and effective forces which give a good fit to
208

S,

the Pb(a,0) are represented on Fig, 7. Taking
all such combinations into account leads to the
determination of the radial distance Ty 002 where
the density is 0.002 nucleon/fm® with a model-
dependent uncertainty of * 0.14 fm, From tin to

lead, there exists a simple relationship between

r0.002 and the a—nucleus distance R0.2 determined
in the Woods—-Saxon analysis
R 5~ (3.11 £ 0.14) fm. (3)

To.002 = %o,

If we restrict the values of the range of

the force, the model-dependent uncertainty is

NUCLEON DENSITY DISTRIBUTION (nucleons/fm)

much smaller. We feel that there are some good

evidences in favor of Gl (K = 0.6 fm‘l)

a) it is essentially identical to WS, which was

7 g“ 9“ ‘%0
DISTANCE FROM CENTER ( fm) deduced quite independently,

b) it also gives a good fit to the

208
Figure 7 Pb data

both at 42 MeV and at the barrier when the best

calculated densities are used (1).
If we therefore restrict ourselves to Gl, we have

Ty 002 = R0.2 - (3.06 + 0.03)fm. (4)

The values of ¥y op2 ¥ere deduced that way for 23 nuclei from 110cd to 2%8pp,

They are shown on Fig. 8.Spherical nuclei follow a line

/3

= 1.355 A1 + 0.87 fm. (5)

£0.002

Now, what about the calcium region? Some time ago, we tried a measurement

at Saclay on “Osh2,5 805480,

looking at the elastic scattering near 180° as a
function of energy. The results are shown on Fig. 9. It is very clear from this
figure that ALAS was also present at the barrier, and in fact on all four cal-

cium isotopes, and consequently no simple optical model analysis could be done
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to learn something on the density distributions. I will therefore now turn to
another projectile which Zs strongly absorbed in collisions with “0ca at the

barrier, '°0.

III. Elastic scattering of '®0 from calcium isotopes

16

The elastic scattering of “°0 near the Coulomb barrier was first used by

Bertin et al.[l12] in order to gain some information on the relative sizes of
40,445,480, after they observed that o scattering, as I said before, proved to
be unsuitable for that purpose. They bombarded calcium targets by an oxygen beam
between 20 and 42 MeV and observed the elastically scattered ions at lab.angles
of 50°, 70°, 90°, 110° and 130°. The Coulomb barrier for "%Ca is 23.5 MeV (c.m.)
or 32.9 MeV (lab). The analysis of these data was made along the lines of ref.
[5], in terms of the Rutherford radius deduced from a four-parameter optical mo-
del analysis. Fig. 10 shows their measurements for HBCa, with optical model fits
to “®ca and *°*""Ca as well.

16

A new measurement of elastic scattering of "0 was made by Groeneveld et al.

[]3] on "°Ca and “®Ca, with another purpose in mind. They wanted to check a
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' ' ' T prediction made by Chatwin et al.[l4]

on the occurrence of resonances in the

L2t
LO— s s 180 + “%Ca elastic scattering, on the
08: ] basis of the optical model with R-
06; ; dependent imaginary potential. Their
| Oy i data comprise excitation functions
o8l ] measured near 180° with an annular
06: j detector from 23 to 36 MeV, see Fig.
04: ] 9, and angular distributions measu-
02: ] red at 40 MeV(lab), see Fig. 11. The
LO’ b 1 analysis of these data was made with
08: i a conventional four-parameter opti-
06: ] cal model (the lines in Figs. 11 and
OA: ’ 12 are optical model fits) and the
= Oé: j Rutherford radius was extracted. The-
E? L&;ﬂ_ 1 se data are very well suited to an
é& OB: ] analysis in terms of nuclear density
= 06: i distribution, which I have made re-
© 04[ ] cently and which T will now discuss.
02: : A first investigation in terms
LO{__rf_L__, 1 of Woods-Saxon potential shows mno
08k % colculoted with the  — sensitivity to the diffuseness para-
06: n ot . i meter a, when it is allowed to vary
0',4; ::Z" ‘ %0 “ from 0.5 to 0.7 fm. All potentials
o2k “ogq \\ B that give a good fit to the data lie
Ooh : 1 ! \*\] ! ] within the hatched area of Fig. 13
20 23 E?ﬁeV) 3 40 (bottom part). It is clear that the
Figure 10 nucleus—nucleus distance at which

the potential is about 1 MeV deep
is, to a large extent,independent of the choice of parameters V, ROpt and a. We

can for example determine for *9ca

Ri0

9.50 * 0.03 fm

or

R 9.65 £ 0,02 fm.

0.8

The uncertainties quoted here are only the "model dependent' uncertainty.
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Let us now turn to a double folding model analysis. For that purpose I will
take the view point that the best Hartree-Fock calculations available to-day for
the doubly magic, N = Z, nuclei '®0 and “%Ca give the neutron distribution as

exactly as the proton distribution, to which they give very good fits. I have
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used the Hartree-Fock calculations of Campi
[15]. It is now necessary to choose an effecti-
ve nucleon-nucleon force which will generate
by folding with these two densities a potential
giving a good fit to the data. I have used the

interaction of Satchler and Love []Q], namely

exp (= 11, 1)
Voo(r) =1, Y + U,

exp(- Y,r)

H2r

The parameters given by Satchler and Love,
namely U, = 6315 MeV, [, = 4 fm~', U, = - 1961
MeV and 4, = 2.5 fm~! produce a potential which
is, as noted by the authors, slightly too small
in the tail. The best fit is obtained by va-

rying slightly the strength U, of the second

R0.8:9'65 +002 fm

o1l Yukawa potential from —-1961 MeV to —-2264 MeV or

its range u, from 2.5 fm™! to 2.42 fm~!. In

'R T N SR T T S T

8 9 10 1
Nucleus-nucleus distance (fm)

both cases the fit to the data is exactly as
good as with standard Woods-Saxon potential,
such as shown in Figs. 11 and 12. This interac-

Figure 13

tion, with u, = 2.42 fm~!, was then folded into

the Hartree-Fock density of '®0 in order to produce a nucleon-1€0 cffective in-
teraction with which we will now proceed to analyse (a) which region of the nu-
cleon density of “0Ca is most sensitive to the data and (b) other isotopes. This
effective nucleon-'%0 force is shown in Fig. 14 (full curve). On the same figure
are plotted two approximations to it, which give in practice identical results,

namely a Woods—-Saxon form (dashed line, open circles)

22.45

1 + exp Eégé%g

(MeV, r in fm)

and a gaussian form (dotted line, open triangles)

137 exp (—(0.42 r)?)(MeV, r in fm).

Which is the radial region of the *%Ca density which is most sensitive to
180 scattering data near the Coulomb barrier? In order to answer this question
let us first consider the following Fermi-2 parameter parameterization of the

Hartree-Fock density of “°Ca
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(£) = 0.1345
P |+ opn I3:88°
P 5.452

This distribution differs from the Hartree-Fock one in the interior of the nu-
cleus, but is within 1-2 Z of it for r > 4 fm. It gives an equally good fit to
the data. The diffuseness parameter of this distribution was varied from 0.400
to 0.575 fm in steps of 0.025 fm., In all cases an equally good fit could be ob-
tained. All such densities fall in the hatched region of Fig. 15 where the

Hartree-Fock density of Campi []5] is represented by a full line. It appears

T ' r ' 1 l 101 = ¥ ¥ T T T T T T T ] T T T T
....... | - 4 . ;
} B Oca densities ]
T ; —
i ", ] ___ Hartree-Fock ]
X 73 1 i =T Fermi 2-parameter 1
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—a— QGaussian ] % b
A
01 L ] L ] L 10 TR N T N N TR WA T SR NN N B N
2 L 6 A 5 6 7
ro(fm) Radial distance (fm)
Figure 14 Figure 15

that all distributions cross in a radial region where the density is about
5 x 10~® nucleon/fm®, and in turn the elastic scattering of %0 from "°Ca is
mainly influenced by a size parameter which can be taken as the radial distance

0005 where the "%Ca density is 5 x 10~% nucleon/fm®. For “’ca, = 5,35 fm.

£0.005
The potentials generated by these density distributions are shown in the

upper part of Fig. 13. They all cross for a depth of about | MeV, and give

R].O = 9,53 + 0.01 fm - or RO;8 = 9,65 * 0.02 fm
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in agreement with the value deduced from the Woods—Saxon analysis, but rather on

the high side.

The same analysis was then performed on the “®Ca data, using the same nu-

cleon-'%0 interaction. Very similar results are obtained, namely :

i) all potentials which give a good fit to the data cross in a region where they

are about 1-MeV deep, and for *®ca, R =9.84 = 0.0! fm,

0.8
ii) all densities (of Fermi shape) which give a good fit to the data give

5 x 107° nucleon/fm® at the same distance Ty 005 = 5.54 * 0,01 fm.

From the *°Ca and “®Ca analyses, it is now possible to deduce the following

simple relationship for this region :

g WS)

ro.005 =Ryg - 4,30 £ 0.02 fm.

This relationship enables one to deduce r from a simple Woods-Saxon analy-

0.005

sis. Values of Ty oo5 Vere in particular deduced that way from the results of

ref.[li]. All results are summarized in table 1.

Table 1
| £0.005

Isotope | Ref. Ro_g exp. theory [15]
40 5%

Ca 13 ] 9.65 | 5.35 5.35%
400y 12 9.58 | 5.28
Moo 12 9.70 | 5.40
48

Ca 13 9.84 5.54 5.58
48, 12 9.88 5.58

% taken as reference

There are some discrepancies between the data of refs.[]i] and []j], which

'+0Ca . 48

are not explained. The difference between r values for Ca are

0.005
0.19 fm for ref.[li] and 0.30 fm for ref.[]i] while the Hartree-Fock calculation
gives 0.23 fm. It is hard to decide at present if such a discrepancy can be at-

tributed to standard experimental uncertainties, or to some systematic differen-

ce in the data or in the analysis. Such a discrepancy was already apparent
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in the analysis of Groeneveld et al.[ﬂﬂ.

Summary

The elastic scattering of strongly absorbed particles near the Coulomb bar-
rier is sensitive to one size parameter, which is the distance at which the real
nuclear potential has some fixed value, 0.2 MeV for a-particle, 1 MeV for '®0.
This size parameter can be related in a simple way to the radial distance of the
target nucleus where the density takes some given value, 2 X 1073 nucleon/fm?

3

for a-particle scattering and 5 X 10™% nucleon/fm® for %0 scattering.
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ABSTRACT

* and 1~ elastic scattering off calcium isotopes in the

Recent experiments on 7
TN(3,3) resonance region are evaluated, and the merits of first theoretical
attempts to extract information on neutron distributions with pions are

discussed.

l. INTRODUCTION

The pion has long been considered as a powerful probe for the distribution of
neutrons and protons in nuclei. That the pion has T = 1 leads to a specific
isospin coupling of the pion-nucleon system. For instance at moderate energies
xS 300 MeV) the pion nucleon interaction is dominated by the well
known Az3 resonance which acts in p-wave states with J = 3/2 and T = 3/2. The

(100 MevV < T

other partial waves are substantially smaller in this energy range. Around the
resonance region the 7 -n (n++p) elastic scattering amplitude is approximately

three times stronger than the corresponding w -+p (n++n) amplitude since

£(ntap) = fel(1T+p)
“5p) =+ - 2 0
£f(m »p) = 3 fel(ﬂ p) + 3fex(ﬂ n) (1)
f(n =>n) = fel(n_n)
+ 1 + 2 o
£(m ' »n) = 3 fel(n n) + 3fex(Tr p)
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Fig. 1lb Total and elastic cross sections for the scattering of negative pions

by protons.
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do 2 ,
Therefore a0 |f| implies
do 4+ . _ . do -
an (m"p) 9 o (m7p) and ,
(2)
do , - _ o G0 ., 4
o (mn) =9 ao (m7n)

Consequently the much stronger 7™ n (W+p) coupling should emphasize the effect
of the neutron (proton) distribution of the nucleus. The total and elastic

+

cross sections for the scattering of ' and 7~ by protons are given in fig. la

and lb.

For the reasons stated above a comparative study of 7t and 17 elastic scatter-
ing on the different Ca isotopes should lead to reliable information about the
differences in the neutron distributions of these isotopes, provided the
Coulomb distortion effects are well understood. In addition, both experimental
and theoretical uncertainties are reduced significantly if isotopes are compa-
red during the same experiment. However the blackness of the nucleus to pions
in the mwN(3,3) resonance energy region implies that experiments are sensitive
to neutron distributions in the tail region of the nucleus rather than to a

half density radius. This is illustrated in fig. 2.

S(r)
} g0

Fig. 2 Example of nuclear density distribution.

region of sensitivity for (3,3)
resonance pions

>
' r(fm)

half density radius
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-
590 MeV
protons

Fig. 3 Lay-out diagram of the SIN 7M1 beam line and pion spectrometer.
C = multi-wire proportional chamber, S = scintillator, T = scattering
target, B = pion production target, D = dipole magnet, Q = quadrupole

magnet, SEP = electrostatic separator, DS = separator magnet, SL =

adjustable collimator, F = intermediate focal plane.
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In this paper we present some experimental procedures, the available data and
some consistency checks. Then we discuss different interpretations of the data,
in particular the black disk model, the detailed treatment of Coﬁlomb effects
by Germond and Wilkinl), the improved black disk model by Johnson and Bethez)
and an optical model analysis by Sternheim and Yoo3). Finally our concluéions

and an outlook are presented.

2., EXPERIMENTAL PROCEDURE AND PRESENTATION OF THE DATA

With the advent of "Pion Factories" at LAMPF (Los Alamos), SIN (Ziirich) and
TRIUMF (Vancouver), good intensity and high resolution pion beams and spectro-
meters have become available making precise pion-nucleus scattering experiments

possible.

As of now, elastic nt

and 7 scattering data on calcium isotopes in the wN(3,3)
resonance region include :

4
~ 40ca and “*8ca comparison at 130 ), 180 and 230 MeVS)

- 4%0ca measurements at 115, 163 and 241 MeV6)

~ 40, 42,44, 480y comparison at 115, 180 and 291 MeV7).

The *0/48ca comparison at 130, 180 and 230 MeV was carried out at SIN by a
Neuchdtel - Grenoble - SIN - South Carolina (NGSS) collaboration with the SIN mMl
beam and pion spectrometer. The 40ca measurements were taken with the same
equipment by a Karlsruhe - Grenoble - SIN (KGS) collaboration. Finally the

40, 42,44, 480y comparison at 3 energies was measured at LAMPF with the EPICS

system.

A detailed description of the SIN mM1l channel can be found in ref. 8 and a

general layout of the NGSS experiment is shown in fig. 3.

As an example, elastic nt and 1~ angular distributions are shown for 40ca and

5)

48ca at 180 MeV in fig. 4a and 4b. A clear shift in the position of the first

minimum between 7t and m~ data is seen for “8Ca whereas this shift is much

smaller for “0ca thus indicating the sensitivity of m~ to neutrons (r* to pro-
9

tons). The curves shown on these figures are a fit with a formula ) for the

scattering amplitude :
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4 2 -aqg2/2
£ = 0| 1 @--Le™ (3)
l=l qi

where f(0) is the forward scattering amplitude; qi the complex zeros and o a
slope parameter. Although there is no immediate physical meaning for these
parameters, such a fit is extremely useful to determine the exact positions of
the minima of the angular distributions. Moreover, it was used by Germond and
Wilkinl) to understand Coulomb effects in detail. Since *0Ca data now exist at
several energies, a consistency check was carried out. In fig. 5 we plotted
the position of the first minimum (Re qdz) versus the pion kinetic energy.

+ and circles for w . Black dots are KGS data and white

Square dots are for 7
dots NGSS data. Statistical errors are smaller than the dots. The lines drawn
are a simple guide for the eye. The agreement between the different data points
is unusually good except for the mt results at 163 MeV. In an analysis of all
the data to extract some information on neutron distributions, the 163 MeV nt
results should therefore be omitted. The LAMPF data are still preliminary. In
general there is satisfactory agreement with the SIN data except on 2 points
There is a small systematic shift of the minima of the LAMPF results with res-
pect to the SIN results. This may be due to a slight error in the energy
calibration of the LAMPF or SIN pion beams. Furthermore at 180 MeV the SIN

data have a shallower first minimum than the EPICS data, which probably results

from EPICS superior angular resolution.

3. ANALYSIS

3.1. Black Disk Model

Although the black disk model is a very crude analysis, it can be justified by
the fact that the nucleus in the region of the wN(3,3) resonance is black.
However since mw-nucleus scattering in this energy region is a surface phenome-
non, the black disk radii R obtained will be greater than the usual half-
density radii. 1In the black disk framework the elastic scattering amplitude

is given by
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Fig. 5 Comparison of the position of the first minimum in pion - %0ca elas-

tic scattering vs the incident lab pion energy. The position of the
first minimum was obtained by fitting a formula given in the text.

Statistical errors are smaller than the dots.
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5 J1 (qR)
(@) = ikR? ——— 4
fQ =1 = (4)
where g = 2k sin %-= momentum transfer

® = CM scattering angle

R = black disk radius
J; = Bessel function

k = pion wave number

The only experimental information that enters into this model is the position
of the first minimum wherxe J; (qR) = 0 for gR = 3.83. The black disk radius R
can also be given in function of the scattering amplitude parametrization

(equation 3)

R = 3.83 + Re(—l—) (5)

Q12

If the minimum is deep (Im (q12) << Re(q12)) one can write

R = 3.83 /Y Re (q;2) (6)
The results of an analysis of the NGSS data in this framework are given in
table 1 :
40ca 48ca

T AR,y = R(n7) - R(nt) AR,g = R(m”) - R(m") AX = AR,g - ARy

(MeV) (fm) (fm) (fm)

130 0.21 0.51 0.30

180 0.10 0.34 0.24

230 0.05 0.25 0.20

table 1

Black disk analysis of NGSS data at three energies.
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In this crude model AR (”OCa) is attributed to Coulomb effects and

AX = AR (%8ca) - AR (*0ca) is due to a larger neutron radius.

3.2. Germond and Wilkin Modell)

The Germond-Wilkin (GW) model is a tool for understanding the Coulomb effects
in detail, the importance of which can be seen from the “0ca column in table 1.
The Coulomb force modifies the elastic pion-nucleus scattering amplitude in
impact parameter space in three distinct ways. There is an additive phase, a
distortion of the trajectory of the pion and a shift in the effective energy
of the pion-nucleus interaction. First GW fit separately nt and n~ elastic
data with formula (3) and obtain parameter values in both cases. The average
parameters give fy(0), the nuclear amplitude. They then introduce Coulomb
effects in impact parameter representation and obtain an exceilent agreement
with the data as can be seen in fig. 6 (solid line). The success of this
amplitude analysis suggests that Coulomb corrections are understood well enough

so that neutron distributions may be meaningfully investigated with pions.

3.3. Johnson and Bethe Modelz)

The Johnson and Bethe (JB) model is an improved black disk calculation. Their

expréssion for the scattering amplitude is

ikR2J7 (qR) ) 2
£(8) = —_—_EE_—__ + ikaRJo(qR) C +1nln2 +§ In(l+Y )
+ kaR J, (qR) arc tan Y (7)
Re K(p) - k
where Y = ————
Im K(p)
C = 0.577 = Euler constant
J, and J) = Bessel functions

K(p) = wave number of the pion in matter density p (r)

a = diffuseness parameter

The first term in equation (7) corresponds to the usual black disk model

(equation 4). 1In addition the second term is important for energies away from
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energy shift as the solid curve.
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the 71N(3,3) resonance since Y is small near TTr = 180 MeV. The third (real)
term is neglected. The value of a is deduced from electron scattering and
removal energies for the last-bound nucleon; it should be chosen so as to yield
an accurate representation of the tail of the nucleus.

Furthermore JB calculate the density value p(r)/po with density dependent
Hartree Fock (DDHF) theorylo). They find p(R)/p0 values of 0.27 (T; = 115 MeV),
0.20 (130 MeV) and 0.13 (163 MeV) for “0ca. These values are in good agreement

with the fact that pions near the 7N(3,3) resonance are only sensitive to the

tail of the nucleus.

JB conclude that from a comparison with 130 MeV data the tail of the neutron
distribution in *8Ca is shifted inwards by v 0.1 fm with respect to DDHF theory
which amounts to a neutron distribution of ~ 0.15 fm larger than the proton
distribution. However it would be quite useful to repeat the JB analysis at
several pion energies and perform a GW type fit to yield a precise determina-

tion of the position of the first minimum.

3.4. Sternheim and Yoo Model3)

Sternheim and Yoo (SY) compared the 130 Mev *0/48ca NGSS data with an optical
model analysis. Contrary to the black disk type analysis they try to fit
complete angular distributions by using a Kisslinger type potential with pheno-
menological parameters. The best X2 in fitting the 48Ca data is obtained with
l+8rn —L*Orn (rms radius) = 0.25 fm. However the change in X2 for different “Srn
values is minimal and the fitted sets of optical-model parameters are not

unique. If the SY analysis is applied to data at several energies it may be

possible to determine unique parameter sets.

4. CONCLUSIONS

With pion elastic scattering results on the Ca isotopes now becoming available
at several energies around the wN(3,3) resonance it should be possible to test
more elaborate optical model calculations with separate neutron and proton
distributions. 1In addition the 291 MeV LAMPF data may be particularly inte-

resting since at this energy the nucleus is not as black and therefore the
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pion is more sensitive to a half-density type radius. Furthermore an experi-
ment was proposedll) at 600 MeV where mt are more sensitive to neutrons and 7~
to protons (see fig. la and 1lb) and the nucleus is not black. However it is
not yet clear if reliable information on neutron distributions in calcium

isotopes can be obtained from this type of experiment.
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1. Introduction

Pionic atoms offer another method for studying nuclear radii. The probe
involved is a negative pion in an atomic orbit strongly interacting with the
nucleus. As with any strongly interacting probe, there is the need for some
"calibration" of the method and this is most naturally provided by “%Ca, where
one may safely assume that neutrons and protons have very similar density
distributions. From the atomic point of view the Ca region is also the most
suitable one for studies of nuclear radii using pionic atoms and, therefore,
results of this method for calcium isotopes are interesting in connection
with the comparison between different methods of investigating nuclear radii,
which is the topic of the present conference. The analysis of pionic atom
data is carried out with the help of an effective ("optical") pion-nucleus
potential which is simply related to the nuclear densities. The potential
is obviously a simplification of the true interaction and its parameters
are obtained from fits to experimental results. However, the method is most
likely quite reliable for the studies of differences between neighbouring
nuclei or of isotopic effects.

The pionic atoms method consists essentially of the measurement of
transition energies between the levels of a negative pion in atomic orbits.
When the overlap between the atomic wave function and the nucleus becomes non-
negligible, the binding energy deviates from that obtained for a point charge.
The shift in the binding energy is due to the finite size of the charge distri-
bution of the nucleus and due to the strong pion-nucleus interaction, which
also causes a broadening of energy levels due to the absorption of pions, hence
leading to a measured width of the transition (in addition to the electromag-
netic width and, obviously, instrumental width). The measured shifts and
widths are analysed with the help of a pion-nucleus potential, which is
capable of supplying information on nuclear radii, within the framework of the
simple models used.

The analysis to be presented here is based on the precision measurements
of shnifts and width of 2p states carried out recently by the team at the
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Rutherford 1aboratory]’2).

2. Outline of the Experiments and Results

The experiments were performed using the stopping meson beam from the
7 GeV proton synchrotron Nimrod. Stopping pions were detected and identified
with a counter telescope system. The X-ray detectors used were a planar 5 cm3
Ge(Li) and a coaxial 70 cm3 Ge(Li) detector with 600 eV resolution at 122 keV
and 1.68 keV resoltuion at 1.33 MeV, respectively. Figure 1 shows the general
lay-out of the beam line. The X-ray signals in coincidence with identified
stopped pions were analysed using an 8192 channel ADC and stored in an on-line
computer system. Calibration spectra were recorded simultaneously with the
data by forming random delayed coincidences between particles stopping in the
target and events detected in the X-ray detector. The calibration spectrum
was stored in the on-line computer separately from the data spectrum. The
peaks in the calibration spectra were analysed using a least squares fitting
procedure to obtain the energy calibration and detector response function.
This experimentally determined response function was then folded with a
Lorentzian and fitted to the strong interaction broadened peaks to obtain the
energies and widths of the relevant X-ray lines.

An example
of a strong-inter-
action broadened
peak is shown in
fig. 2 together
with an unbroaden-
ed gamma transi-
tion peak. Also

shown are weak

muonic transitions

ACCEPTANCE

PRODUCTION Mk in the vicinity

BRGEY of the pionic

7Gev

oA / ‘ \ peak and these
Qioz K 17 BEAM LINE & COUNTER ASSEMBLY

were taken into

Fig. 1 Lay-out of the beam line account when the

pionic peak was
analysed.
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Fig. 2 An example for a strong interaction broadened peak and several
background peaks.

Table I summarises the experimental resu]ts]’z)

for the 2p pionic
states. Also given are previous results for the same targets and it is evi-
dent that in most cases the improvement in accuracy is by about an order

of magnitude.

Table I Strong interaction shifts and widths

present work previous work
Element Level shift width shift width
(keV) (keV) (keV) (keV)
AL 2p 0.2071 + 0,009 [ 0.120 + 0.007| 0,212 + 0.023
0.12 +0.10 0,36 + 0.15
Si 2p 0.308 + 0.010 § 0.192 + 0,009| 0.29 + 0.15
S 2p 0.635 + 0.016 | 0,422 + 0.018| 0,54 + 0.10 0.79 + 0.15
0.7 +0.3 0.8 +0.4
0,502 + 0,035 0.50 + 0,06
Ca 2p 1.929 + 0.019 | 1.590 + 0.023] 1.97 + 0.18 2,00 + 0.25
1.6 0.3 2.1 0.6
Fe 2p 4,368 + 0,113 1 6.87 + 0,21 {40 +0 8.7 +0.6
4.4 1 6.0 + 2.5
Cu 2p 6.67 +0.28 {11.4 + 0.8 7.0 + 2.0 15,9 + 4.0
In 2p 6.44 +0.38 {12.4 + 1.4 8.0 3.0 16.8 + 6.0

References to previous work can be found in Ref. 2.
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Table II summarises the experimental results for the 44:40Ca experiment
which was specifically designed to accurately measure small differences between
isotopes. In order to reduce possible systematic errors the same chemical
form (CaC03) was used in the two experiments in addition to the metallic Ca
target studied before (“*“Ca was available only as ”“CaC03). This was important
because in the initial stages of the atomic cascade there is a dependence of
the intensities of various transitions on the chemical form of the target. It
is seen that in this case of an 1soto§1c difference the improvement in accuracy

compared to the previous measurement4 is also by about an order of magnitude.

Table II - Isotopic effects for 44'40Ca
present experiment previous experimenta)
c(44) - ¢(40) -0.331 + 0.027 -0.36 + 0.17
(kev)
r(44) - r(40) -0.040 + 0.075 -0.22 + 0.20
(keV)
a) Ref. 4

3. The Pion-Nucleus Potential

‘The experimental results for the level shifts and widths have been ana-
lysed using a pion-nucleus effective potential. This momentum-dependent
potential, which is used in the Klein-Gordon equation, has been shown5) to
yield good average fits to experimental results. The potential is written as

V(r) = 5 [q(r) + ¥ a(r) « V] | (1)

where , is the pion-nucieus reduced mass. The term q{r) is parameterised in
terms of the neutron (pn) and proton (pp) density distributions as follows

3)
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q ==4r(1+ ﬁ? [(b (e te ) + byley-p )] - 4x(1+ %ﬁ? 4 Bop (2)

Y P P

where m is the nucleon mass and bo’ b] and B0 are parameters determined from
fits to the data. The parameter Bo is a complex number whose imaginary part
represents the absorption of pions on pairs of nucleons.

The momentum-dependent part of the potential, a, is usually written as

a
(o]
¢ = —— (3)
1
1T+38a
where &(0 < ¢ 2 1) represents the Lorentz-Lorenz (LL) effect5). The term
o is parameterised as follows
- uy-1 ; uy-l

a = 4n(1+ ) [Co(pn+pp) * cqle, pp)] +A4n(1+ 52) 7 4 CoPnfp (4)

where again C» € and CO are parameters determined from fits to the data.

The parameter CO is a complex number in analogy with Bo. We have also analysed
the data with a different form for the momentum-dependent component of the
potential where the LL effect is included only in the term linear in the
nuclear density. In this case o is written as

“
a = + oy (5)
1
1+ 3 £ o
where
- dy-1 _
ap = 4n(1 + 5) [e (o, + o) + C1(pn pp)] (6)
- -l
a, = 4n(1 + 52)77 4 Copnpp. (7)

Strong interaction level shifts and widths were calculated by solving
the Klein-Gordon equation with the pion-nucleus potential (1) and comparing
the resulting complex binding energies with the real binding energies obtained
by solving the same equation with only the electromagnetic interaction present.
The Coulomb potential was that due to the charge distribution of the nucleus
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Fig. 4 Fits to all available
data for 2p states.

Fig. 3 An example for the coupling
between by and r,-ry for nuclei
with an excess of néutrons.

Table III Parameters for effective pion-nucleus potential
The conventional units of m;] = 1.4138fn are used
(a) (b) (c) (d)

b, (m1) | -0.017 -0.017 -0.017 -0.017
| by (m])) -0.12 + 0.02 -0.12 + 0.02 -0.12 + 0.02 -0.13 + 0.02
e, (mh)|  0.0875 0.0475 0.0475 0.0475
ReB,/ImB, -1.0 -1.0 -1.0 -1.0

co (m3) | 0.250 + 0.003 0.21 0.21 0.21

¢, (m3) 0.17 0.17 0.17 0.17

ImC, (m;s) 0.090 + 0.005 0.080 + 0.005 0.0425 + 0.005 0.0425 + 0.005
ReC,/ImC, 0.0 1.7 £+ 0.1 1.95 + 0.05 -0.80 £ 0.05
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as determined from electron scattering and muonic atoms. The first order vacuum
polarization potential was also included as it slightly affects the strong
interaction shifts and widths.

Fits to the 2p data were made in two steps. First the parameters were
adjusted to fit the Al, Si, S and Ca data. In the second step fits were made
to the Fe, Cu and Zn data. The reason for this separation was that the neutron
density distribution, P> which forms an essential 1ngred1ent of the pion-
nucleus potential, is usually not as well known as the proton density distribu-
tion. Therefore, it was considered preferable to start with nuclei where one
may safely assume that neutrons and protons have the same density distributions.
Experience showed that any set of parameters which fitted the Ca data always
gave very good agreement with the experimental results for Al, Si and S.
Therefore, the first step was essentially a fit to the Ca data. As the data
consists of just two numbers (level shift and width) we could only adjust two
parameters in the first step of the fitting procedure. The choice was to vary
two out of the three parameters C.o ReCo and ImCo for the momentum-dependent
potential, as these are the more relevant ones for the 2p state. Note that
b] and c, are not effective for nuclei with equal numbers of neutrons and
protons and have negligible effects in the case of Al. The parameters bo and

6)

B0 of the local potential were taken from a fit ’ to 1s states.

Fits to the Ca data were made using four different sets of parameters:
(a) c, and ImC_ were adjusted, keeping ReC_ = 0. (b) c, was held constant at

its theoretical va1ue7)

of 0.21 m;3 and the complex number Co was adjusted. In
both cases the conventional form of the LL effect was chosen, (Eq. (3)) with

£ = 1. (c) For the third parameter set the LL effect (with £ = 1) was only
included in the term which is Tinear in the density (Eq. (5)) and again C,

was adjusted whilst keeping c, constant at 0.21 m;3f Finally, parameter set
(d) was obtained with & = 0 (i.e. no LL effect) and again adjusting CO only.
As mentioned above, excellent fits were obtained for Al, Si,S-and Ca. Note
that values for c, obtained in previous fits, and also in parameter set (a),
are quite close to the value expected for pions interacting with free

nucleons. -

In the second stage of the fitting procedure the data for Fe, Cu and
In were used and only the coefficients of (pn-pp) (i.e. by and c1) were
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adjusted. This stage is the critical one when nuclear radii are concerned
because for these nuclei, which have an excess of neutrons, the radial para-
meters of the neutron density distribution could no Tlonger be considered as
identical to those for the protons. Therefore, in each case the radius para-
meter of the neutron distribution was also allowed to vary. If the value of

C, was held at its free-nucleon value (and this is reasonable because of the
close connection between c, and c1) and if b1 was also held constant at the
value of -0.087 m;] determined from fits to 1s statesG) then it was found that
the rms radijus of the neutron distribution, oo had to be about 0.3 fm larger
than r_, the rms radius of the proton distribution. This difference was also
observed for nuclei as light as P and Ar which is clearly unreasonable. Alter-
natively, if the value of rn—rp was kept in the range 0.05 to 0.15 fm and the
value of cq adjusted, it was necessary to reduce cq by some 200%, which is again
unreasonable, particularly in view of the observation that c, is found to be
close to its free-nucleon value. However, if the absolute value of b1 was
increased by 40% very good fits to all available data for 2p levels were
obtained. Figure 3 shows an example for the coupling between values of b] and
values of rn-rp. Note that no fit is possible with the alternative form

%pﬁpm for the absorption terms. Figure 4 shows the good fits obtained for all
available data on 2p states. It should be stressed that no precise values were
assumed for " but only rather broad "reasonable" 1imits, hence the present
potential parameters should enable to determine values of g within wide ranges
although they, a priori, exclude large values of rn-rp such as 0.3 fm for P
and Fe.

Table III summarises values of the parameters obtained for the four

different forms of the potential.

The parameters listed in Table III were obtained by requiring a good
fit to the experimental results for 2p states only. One can gain more confi-
dence in the use of these parameters for determinations of nuclear radii if it
is found that they have a wider range of validity, and indeed it was shownz)
that with these parameters good fits to the data are obtained for 1s states
in Tight nuclei and for 3d and 4f states in heavy nuclei. In the latter case
the neutron rms radii are not known and they can be determined from the fits

to the data, or at least the values determined can be used as a check on the
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overall consistency. Unlike the lighter nuclei, it was found that whilst the
predictions for parameter sets (a), (b) and (c) were very similar to each other,
the predictions for parameter set (d) differed by several standard deviations

of recent experimental results. Consequently, whereas agreement with experi-
ment was achieved for set (a), (b) and (c) using values of "o in the range
of 0 to 0.1 fm, it was necessary to increase " by a further 0.15 to 0.2 fm

in order to get agreement for parameter set (d).

Finally, we note that the 2p states, which form the basis of the present
work, are most suitable for the determination of pion-nucleus potential para-
meters. In the case of 1s states there is a very small sensitivity to the
momentum dependent component of the potential and for 3d and higher states the
sensitivity to the strong interaction is reduced due to the smaller overlap
with the nucleus.

4, Nuclear Radii in the Ca region

The careful measurements3) of the differences between shifts and widths

2)

of 2p pionic levels in “*%Ca and “%Ca, together with the potential parameters
presented above, serve as an

interesting case for testing the
8=%4Ca-%9Ca #- 2p

capabilities of the pionic atom oz
method for studies of nuclear ol
radii. Figure 5 shows experi- 0
mental and calculated values ok
of (8e,8T), the differences 3z
x -U.
between shifts and widths % o
in 44Ca and “0Ca, where ' o2
rn(44), the rms radius of
03
the neutron distribution
in “%Ca is varied along the -04 1~
lines. Very good consist- 05 r
ency is observed between — e S
0 oI 02 03 04 05
the experimental results
-3€ (keV)

and the calculations. In

the calculations we used pp(r) Fig. 5 Calculated and measured differ-
as known from muonic atoms and ences between shifts and widths

in “%Ca and %*°Ca.



— 296 —

electron scatteringB).

Having established the consistency between the experimental results and
the predictions of all four potentials (a), (b), (c) and (d), we now proceed
to determine nuclear radii. Figure 6 compares separately calculated values of
Se and 8T vs. rn(44) - rn(40) with the experimental results. As 7~ pions
interact predominantly with neutrons we chose rn(44) as the variable; if
rm(44) is chosen then the scale of radii is simply compressed. The calcula-
tions displayed in Fig. 6 are based on the four parameters sets discussed

0.5}~
“8e,-8T| o o 44g, _ 40, , 2p states SM(b)
(keV) 7
0.4
-~ -8€exp
o3 r—————— — /S — — — — -
0.2
0.1 e
= I‘exp

0.0

-0.1

¥n(44)-r,(40) (fm)

Fig. 6 Calculated and mesured differences between shifts

and widths in “*%*Ca and “0Ca as functions of

difference between neutron rms radii in the two

isotopes.
above. Of a special interest are the dashed curves which are based on shell
model density distributions for both “%Ca and “*Ca (contrary to all other cases
where the Fermi form was used for the densities). The parameters used with
these distributions are based on set (b) but very slightly modified to get a
precise fit to “9Ca, because for “49Ca we used here r,-r, = -0.04 fm (and not 0),
as obtained from many Hartree-Fock calculations. It is evident from the figure
that the extracted value of rn(44) - rn(40) depends 1ittle on the details of
the analysis. In fact, the largest source of uncertainty is due to the para-
meter b1. We stress again that b1 was obtained essentially from fits to Fe,
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Cu and Zn by requiring "reasonable" values for raps that amounts in the
#4540Ca case to a "prejudice" that rn(44)-rn(40) <0.15 fm. However, within
this rather broad 1imit that difference is determined quite accurately.

One may choose the shell model density distributions as the most suitable
ones for the present analysis, as they contain some additional information, i.e.,
that the four extra neutrons in ““Ca are 1f7/2 ones. The results of the present
experiment then becomes rn(44)-rn(40) = 0.06 + 0.05 fm, which is in good agree-
ment with the results of other methods reported in this conference.

Figures 7 and 8 show predictions for “8-%0Ca for the four parameter sets
(a) - (d) using Fermi density distributions and also for shell model distribu-
tions using a modified set (b). It is seen that in this case the various pro-
cedures give somewhat different results, although good experimental results
should enable to determine rn(48)-rn(40) to a reasonable accuracy.

48 40
Ge.érl'lL Ca - "“Ca
(keV)1 0 Parabotic Fermi
- oo - Shet Modet (b') g
0.9F ‘:J
0.8
ABCa _ 40(:a
-8T 0.7h
(keV)
0.3} 0.6
0.2k 0.5
0.1t 0.4
0.0}— 0-3r
0.2
_0_1_
0.1
-0.2F
0.0
-0.3}
1 | [ L 1 0.1
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 '
-6e  (keV) 1
0.0 0.1 0.2 0.3
rn(48) - rn(40) (fm)
Fig. 7 Predictions for the ‘ Fig. 8 Predictions for the

48Ca-40Ca differences. 48Ca-40Ca differences.
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5. Discussion

An effective pion-nucleus potential had been established which is based
on precision measurements of strong interaction level shifts and widths for 2p
levels and which had been shown to provide good fits to the data throughout the
period table. The potential obtained is non-unique but nevertheless it predicts
rather unique results for neutron radii when the neutron excess is not too large.
The residual ambiguity concerning neutron radii can be considerably reduced if
some additional information becomes avai]ab]eg) relating e.g. to the value of
the Lorentz-Lorenz parameter ¢ or to the sign of ReCo. (Parameter set (b)
seems to be favoured).

The above potential is obviously an over-simplification of reality, parti-
cularly in its using zero-range forces. That could, in principle, have far
reaching consequences, particularly with regard to the momentum-dependent term

VoV. It had recently been shown]O’]])

that an infinity of strongly bound
pionic states may exist for the potentials used here, if Rea > 1 in the nuclear
interior. However, if a finite range is introduced to the momentum-dependent

interaction, only one or two of these states may survive 0212:13)

It is, there-
fore, essential to analyse pionic atoms with a finite-range potential before
full confidence can be established in its applicability to the problem of nuclear
radii. This has yet to be done. However, the above mentioned phenomenon of
strong binding results from a singularity in the wave equation and it can be
shownlz)
to the singularity are negligibly small. Figure 9 shows calculated results for

40Ca where a smooth transition through the critical value of Req(0) = 1 is

, that under the conditions prevailing in pionic atoms the effects due

observed, thus indicating that the introduction of finite range forces may
have 1ittle effect (except, of course, changing values of the fit parameters).
It is, therefore, suggested that at least for comparisons between different
isotopes or between neighbouring nuclei pionic atoms provide a reliable means
for studying nuclear radii.
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Fig. 9 The dependence of shifts and widths
on Rea(0).
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Total Cross Sections and the Nuclear Matter Distribution
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"Truth is not always in a well. In fact, as regards the more
important knowledge, I do believe that she is invariably

superficial."
Edgar Allan Poe

Introduction

In fig. 1, mT—n" averaged total cross sections at the maximum of the (3,3)
resonance are shown for a number of nuclei. 1In this case,as well as for total

cross sections of other projectiles, one finds a striking depen&ence on the

. .
T+ " "
5000L o (Z5tT ),AT TOP OF "RESONANCE /o/
"y
3000 ,.«‘@
(.\‘
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Fig. 1: Average m'-m". total cross /y/ O Ret. 12
sections at the pion energy which sool o
corresponds to the top of the (3,3) //)y/
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mass A of the target nucleus Op = const'Az/3 (solid line). This probably

is the origin of the idea to connect total cross sections and reaction cross

sections with aspects of the nucleon distribution p(r) in the nucleus. Assuming
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2/3

incompressibility of nuclear matter, any observable which scales with A has
to be connected to the lateral extent of the probed nucleus and thus, to its
radius. If the nucleus was an object with a sharp surface we even would know
exactly what is meant by its "radius." However, since the nucleus has a diffuse

surface we need a definition of the radius R. There are "point-like" definitions

(e.g. "R is the radius where the nuclear density p(r) has fallen below a certain
value") or integral definitions (e.g. the r.m.s. radius of p(r)). In any case,

we need information on the shape of p(r) to make such definitions meaningful.

It is therefore incorrect to separate the search for R, using whatever definition,
from the investigation of the shape of p(r). In fact, it must be our goal to
measure the nuclear nucleon distribution p(r) to an extent and accuracy comparable
with what has been achieved with respect to the proton distribution pp(r) by

means of elastic electron scattering.

In view of the obstacles, this goal is ambitious, indeed. In order to be
sensitive also to the meutrons in the nucleus we have to use strongly interacting
probes. Not only do we have to understand their interaction with the nucleus
as a whole, we also have to formulate this interaction in terms of "elementary"
projectile-nucleon amplitudes, in order to be able to isolate the "observable"
p(r). Furthermore, we have to understand in detail the contribution of the
electromagnetic force to the strong part of the interaction (e.g. ref. 1).

In this talk, I will address the following topics. Which features of
the point-nucleon density p(r) can be determined from a measurement of a hadron-
nucleus total cross section op or total reaction cross section ogp? What are the
problems in determining the r.m.s. radius? How does the elastic scattering
differential cross section do/dQ as a source of information compare to the
observables op and 0,? With respect to the analysis of actual data I will

R

emphasize the simultaneous analysis of o, for various projectiles and bombarding

energies for one given target nucleus, tﬁe comparison of 'nmeighboring' cases
(e.g. isotopes) and the combined analysis of O and do/dQ. Finally, I will con-
clude with some thoughts about possible future developments in the determination
of p(r).

The observables Orp and oR have the advantage that their measurement requires
only very low beam intensities (<<lO6 particles per second). Data at many bom-
barding energies and for many targets can be obtained quickly. Also, the use of

more exotic probes such as kK and p becomes practical. In the case of Op, @
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disadvantage is the necessary correction for the contribution of the inter-
fering Coulomb amplitude. At low energies and for high Z targets this contri-
bution is sizeable. In its usual definition, Orp becomes dependent on a model.
Only recently has it been suggestedz) that Orp could be defined in such a way

that its determination is model independent.

Which features of p(r) can be determined from o _or dp?

To discuss qualitatively to which features of the nucleon distribution p (r)
Op Or Op are sensitive, one chooses a formally simple model, rather than the most

3)-5)

realistic one. Therefore, recent investigations on this subject all made
use of the optical model in the impulse approximation with an eikonal propagator
(meaning simply straight line trajectories). Such a model neglects higher order
terms in the optical potential and corrections arising from the use of the free
projectile-nucleon T-matrix.

In the following, I also neglect spin, isospin, and the real part of the i

elementary forward amplitude. The projectile (X) — nucleon (N) contribution is

then represented by the elementary total cross section OxN* Let me define
. . — 1
the profile function S(b) = NO) p(z,b)dz (1)
‘ o

. plo) b
which is the "thickness" of the target nucleus at impact

parameter b and
_ -1
the mean free path A= (p(O)'OXN) (2)

where p(r) is the nucleon density. The total cross section can then

be written o S (b)

0T=41rj (1-e » )bdb (3)

[¢]
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In order to evaluate what features of the radial function p(r) (contained in

S(b)) are determined by a measurement of op we calculate the cross section

Op = Op + Ao generated by a slightly different density p'(xr) = p(r) + Ap(r).
Conserving the number of nucleons means that the change Ap(r) is normalized to
zero. Expanding S'(b) and retaining only terms linear in Ap(r) one obtainsB)
= * 2
Ao OYN 4 _g T Ao(r)Ap(r)dr )
)
where Ao(r) is a "radial weight function" which can be written as
s 2.-1/2
A= e X ea-eH Mg (5)

N
o
As an example, consider a transparent nucleus, i.e. one for which S(b) << A

for all b. 1In this case, Ay(r) = 1 everywhere, and AGT (eq. 4) only depends

on the volume integral of Ap(r). This means that o, is sensitive only to changes

T

in the number A of nucleons in the target. In this case, 0, would thus be a

T
trivial observable. We conclude that only if there is substantial absorption

of the projectile, can oT be sensitive to any aspect of the density distribution!

On the other hand, if the nucleus is strongly absorptive inside some radius
R this means that S(b<R) >> X and Ao(r) ~ 0 for r < R. A calculation of A,(r)

for some realistic cases has been carried out. The result is shown in fig. 2.

0.16

0.2

Pulr) (F™)

Fig. 2: Radial weight A (r) for several

projectiles bombarding 40Ca. Also shown

(dashed line) is the point nucleon

density of H0Ca used in the calculation 0.04
of Ao(r). The figure is from ref. 3.

2 4 6 8 10 12 13

[+]
X

(4)
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As can be seen, A, (r) typically is small in the interior

absorptive region

and rises steeply outside this region. To a first approximation eq. 4 there-

fore becomes

(o]

Aop = ogy * 4 vf r2 Ap (r) dr
R

This means that o7 is sensitive to the number of nucleons outside a sphere of

radius R, where R is loosely defined as the extent of the 'black", i.e. strongly

absorptive, region of the nucleus. For most cases, R lies in a region where

p(r) is exponentially decreasing. Relative changes of p(r) in the region beyond

R are thus most effective right at the radius R.

We are thus led to the qualita-

tive statement that Orp is sensitive to the value of the density p(r) in the neigh-

borhood of a certain radius R which is located by the onset of Ao(r) and the fall-

off of p(r). With minor modifications similar arguments can also be made with

respect to the total reaction cross section oOR.

3)

in this case

have the same general dependence on r as Ao(r).

The radial weight functions found

From the above arguments we must conclude that op or Op Dever directly deter-

mines the r.m.s. radius <z_:.2>l/2 of p(r).

In order to determine such an integral

quantity we need to assume a continuation of p(r) into the 'black" region. Often

a Woods-Saxon (WS) distribution is used to express p(r) at all radii. Since the

norm is fixed, there remain two free parameters:

the radius parameter c and the

diffuseness a. In fig. 3 the parameter space for a typical WS distribution is

Fig. 3: Effect of restricting a WS
distribution. Shown are the loci in

(c,a) - parameter space for i) a constant
r.m.s. radius (dashed curve) and

ii) a constant density in the tail re-
gion, at r = 5 fm (solid line). The

norm of p(r) is kept constant at all
times.
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displayed. The measurement of an observable which depends on p(r) puts a
restriction on ¢ and a, leading to a locus in fig. 3. The locus given by a
constant r.m.s. radius (dashed line) is compared to the locus determined by

a constant value p(ry) at a fixed r, in the tail region (solid line). It can
be seen that the two loci almost coincide. This means that a measurement of
p(r) in the tail region is equivalent with a determination of <r2>l/2. There
is physical truth to this statement only if p(r) in reality is identical to

a WS distribution. This we should keep in mind whenever discussing <r2>l/2
derived from hadron-nucleus observables.

4),6)

In so called model independent analyses one tries to avoid a rigid
functional dependence on r, using a flexible, unbiased parametrization for

p(r) or the profile function S(b). The space of all test functions p'(r) which
lead to the same calculated Orp is then evaluated. For a given p'(r) often the
so—called density moments My are evaluated:

® 1/%
br / k+2

Mk = N J p(r) r dr| (7)

(o]

The constrained space of all test functions p(r) resulting in a constant Orp

+
then determines an "error" GMK/MK . For w total cross sections in the resonance

40Ca as a target it has been found4) that the moment determined best

region with
is between M2 and M4. The physics insight gained by such an analysis is question-
able since in principle one obtains just an expansion of the radial weight
function Ao(r) into an orthogonal set of M. 1In addition it turms out that it

is necessary to restrict the space of test functions by imposing upper and lower
bounds for p(r) and its derivatives and it is not clear how such restrictions

affect conclusions about the sensitivity to specific moments.

Elastic scattering angular distributions do(8)/dQ

It is interesting to compare do/d? as a source of information on p (r)
to the observables op and Op* Arguments similar to the ones mentioned in the
preceeding section are also possible for the scattering amplitude F(q) in
do/dQ = |F(q)|2 . The change AF(q) caused by changing the original p(r)
3)

by an amount Ap(r) is then found to be
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[oo]

h| .
AF(q) = fy(q=0) Z o T J A WCITIOL: 8)

[¢)

This relation is analogous to eq. 4. for the case of ¢ Here also, the

T
density change Ac(r) is folded with radial weight functions Aj(r). The

expression for Aj(r) is given in ref. 3. 1In fig. 4. AO-A3 are shown for 1 GeV

*°ca(p,p)*°ca, T,=1Gev

Fig. 4: Dependence of the radial weight
function on momentum transfer. The A4(r)
are defined in eq. 8. TFor details refer
to the text. :

r (fm)

proton scattering on 4OCa. As can be seen, the Aj(r) for all j look very similar
to Ao(r). It is true, that for larger momentum transfer q the higher moments

of Ap(r) become important but the masking by the radial weight function still
occurs at approximately the same r. By the same argument as used above,

we would expect do/d also to be sensitive to the value of p(r) in the neigh-
borhood of a certain r = Reff' This conclusion is in agreement with a

7) . . . . . *

of the angle at which diffraction minima occur in =

48,40

recent analysis

scattering from Ca in the (3,3) resonance region. It is in fact shown
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that the radius extracted from the zero of the Bessel function is directly related
to the impact parameter at which the profile function assumes a given value.

In view of this, one tends to suspect that in the case of strongly absorbed
projectiles the information on p(r) gained from oy or op is very similar to what

one can learn from elastic scattering angular distributions.

Analysis of op for various projectiles on the same target

The fact that oRr is sensitive to the density near a certain radius (or in
the language of the Glauber model, the profile function near a certain impact
parameter) has also been pointed out in a recent analysis of hadron reaction
cross sectionss) . Again using the impulse approximation with an eikonal propagator,
the following remarkable result has been obtained. First, an effective radius based

- on the observed OR is defined

R s = JOR/N . (9)

Making several simplifying assumptions and using an approximation for the integra-
tion over impact parameter, a relation is obtained between the profile function

(eq. 1) and the mean free path (eq. 2):
2 S(Reff) = A, (10)

The striking aspect of such a relation is that if it would hold exactly, a measure-

ment of op would tell us at which impact parameter b = Reff the "thickness of the

nucleus" S(b) is equal to the mean free path. Since neither the nature of the

projectile nor the bombarding energy is specified in eq. 10 one could change A

by varying the probe. Thus S(b) could be mapped out over a range of impact

parameters. From this knowledge the value of the density in some corresponding

interval of r could be obtained free of a model assumption about the shape of p(r).
The immediate question is, of course, to which degree the relation eq. 10

holds in reality. In order to investigate this, one may plot Reff (defined by

eq. 9 in terms of the experimental oR) versus the mean free path A, derived from

the free projectile-nucleon cross section. This is carried out in fig. 5 for

OR on 12C for a variety of projectiles, including ﬂ+, T 5 Ps Do Kt and K~ over

a range of incident momenta from 0.29 GeV/c to 200 GeV/c. The data are from
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' Or ON c
Fig. 5: The mean free path
A versus Refg defined by 4
the reaction cross section G_gv R =0 /77')"2
for many projectiles and \ R eff - W
bombarding energies. Also - 3(«(200) x =0 r
shown is the profile £ 3} 1 K7(200) “\On Po
function to test the ot \ £ (200}
L ~ — i TTZI
relation A = S(R.gf). 3 2 s(b) \
The data are from refs. a; . b (L16)
8-11. . o AN / P (200)
o L -T*(1.0)
~ M. P (200)
\\
~ T (0.37)
T \\JL /71054)
W T (0.31)
7°(0.29)
| 2 3 4
Rygq0r b (fm)
refs. 8 =11 . The dashed line is a guide to the eye. The solid line corresponds

to 2S5(b), where the profile function has been calculated from a single particle
shell model density. If the relation eq. 10 would hold,the dashed and solid lines
in fig. 5 are expected to coincide. That this is not the case is not surprising
in view of the many assumptions made to derive eq. 10. However, what is truly
remarkable is that the data for many different projectiles, spanning three orders
of magnitude of incident momentum, indeed fall on a common locus which in addition
seems to be related to S(b). This suggests that a relation like eq. 10 indeed
exists and, if known, can be used to map out S(b) and thus p(r) over a fair range
of r. This teaches us that we probably learn more about p(r) from simultaneously
analyzing many different hadron-nucleus data as compared to concentrating our
efforts on one projectile at a single energy. At the same time,we have to keep
in mind that a relation like eq. 10 is approximate and we need to fill in the
details.

That such details can be important is shown in the example of ﬁ+ and 7
total cross sections across the (3,3) resonance of which there are now several
systematic studies availablelz)_l4) (see fig. 6). As is well known, the peak
in op, corresponding to the (3,3) resonance, broadens and shifts towards smaller

16) that this

pion energies if A is increased. Based on ref. 15, McVoy showed
shift is due to a sign change of the nuclear potential at the energy of the (3,3)
resonance. This means that at some level the real part of the elementary amplitude

can not be neglected as has been done e.g. in the derivation of eq. 10.
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Fig. 6: Pion nucleus total cross
sections in the (3,3) resonance

region. The data are from refs. 5.01~ Tay - Tt
12-14, the figure from ref. 14,

) I
I

Pb Pb

TOTAL CROSS SECTION (b)

| .
o} 100 200 300 400 O 100 200 300 400

LABORATORY KINETIC ENERGY (MeV)

Ratios or differences of cross sections

It is reasonable to assume that an accurate description of the projectile-
nucleus interaction is less important if one only attempts to compare cross
section data, either for similar projectiles or for similar targets.

It is tempting to make use of the isospin dependence of the pion-nucleon
interaction in order to learn about differences in the neutron and proton

1)

distributions. A com.parisonl of oR(ﬂ_) with oR(n+) in the 1 GeV/c region
on C, Ca and Pb is an example. As it turns out, the measured ratios OR(H_)/

+ ,
OR(ﬂ ) are close to 1. In addition the Coulomb distortion, computed following
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a semiclassical treatmentl7) accounts for most of the effect. The extraction of in-
formation on pn/pP therefore not only relies on very accurate measurements but also
on a thorough understanding of the interplay between the strong and the Coulomb
interaction.

A comparison of isotopic targets is less affected by difficulties due to the
Coulomb interaction. An example is the measurementl8) of Or with 90-250 MeV ﬂ+

40,44 ,48

- + -
and 7 for the isotopes Ca. In fig. 7 the differences AOT(n ) and AGT(ﬂ )

Ao, (**ca - *°Ca)
300——— .

200

100 -
:g o [ 1
~ T T

200} +

Fig. 7: Isotopic total cross section

differences for w~ and vt in the

(3,3) resonance region. The solid 100
line represents the best fit. The

dotted and dashed curves show the

effect of increasing the r.m.s. radius

of the neutron and.proton distribution ol -
by 0.1 fm, respectively. The figure
is from ref. 18. L L

100 200

T, (MeV)

for the pair 48Ca, 40Ca are shown vs. the bombarding energy. Nucleon distribu-
tions assumed to have a WS shape, were used to construct an optical potential.
Since essentially two numbers (AOT(ﬂ+), AGT(ﬂ—)) were measured, two free parameters
could be determined. These were chosen to be the isotopic difference between the

2.1/2 2.1/2

neutron and proton r.m.s. radii A<rn> and A<rp> for the two isotopes. The
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2>l/2

advantage of this is the fact that A<rP of course is well known from

electron scattering which allows an overall consistency check of the procedure.
. . . 8) .
For the isotope difference in neutron r.m.s. radius the result1 ) is

0.09 + 0.05 fu  (“*ca - *0ca)
0
48 4

At >1/2 _
n

0.14 + 0.05 fm Ca - Ca)

(By the way, these numbers have been quoted incorrectly in at least two recent

publicationsS)’lg).)

Recently, reaction cross sections op of 700 MeV protons on the isotopes
48’44’4OCa have been measuredzo). An analysiss) leads to a result compatible
18) in the case of the pair 44,40

- 0.62 + 0.15 fm for “8:40c,

with pion total cross sections
2.1/2

>
n

Ca but to a very

large difference A<r
Differences between the neutron distributions of the isotope pair 48Ca, 4OCa
have indeed drawn much interest in the recent past. Invariably, the difference
between r.m.s. radii is quoted. A glance at compilations (e.g. refs. 5, 19, 21)
of this parameter as extracted from a variety of experiments reveals the puzzling
fact that the range from 0 fm to 0.75 fm is essentially covered by A<rr21>l/2 "data
points'" often with error bars as small as 0.05 fm. Theoretical predictions of
the 480& - 40Ca neutron radius difference (ranging from 0.06 fm to 0.42 fm) are
compiled in ref. 19 . Here, one has to remember that the primary quantity deter-
mined from a hadron-nucleus experiment is inherently coupled to a narrow region in
impact parameter space. It is thus likely that different projectiles on the same
target (or target combination) test disjunct features of p(r) (or Ap(r)). The
discrepancies between r.m.s. radii extracted from different experiments may well
be explained by the model dependence of the continuation of p(r) into regions of
r to which the observables are not sensitive. However, in order to really decide
this issue, we have to be able to exclude discrepancies introduced by the inter-
action model.

22)

For completeness sake, I would like to mention another recent investigation
of the 44Ca, 40Ca r.m.s. radius difference using data on the shift and width of
pionic X-ray transitions (a "total cross section" in some sense, too). This

approach leads to a result which is also in agreement with pion total cross

18)

sections .
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OR OF Op Versus do/df as a source of information on p(r)

The question whether to use Op (or og) to extract information on p(r) rather
than some other observable such as the elastic scattering angular distribution

do/dQ is irrelevant. Either the two sources contain equivalent information (as we

suspect to be approximately the case with very opaque nuclei) or, if they do not,
we have to require the results from both to be consistent. In this sense, one
observable may be viewed as a constraint in the analysis of the other, hopefully
leading to a reduction of ambiguities (rather than a contradiction).

As an example, I mention a recent unified analysiszs) and do/dQ for

130 MeV n' 48 40

Ca and
search for a microscopic optical potential (Kisslinger model) reproducing the

of Op

and m on Ca. 1In this analysis, the first step was to

elastic scattering angular distributions by varying the nucleon distributions and

It was found that a number of

In fig. 8 the 48Ca

the m-nucleon related parameters in the potential.
40

such potentials exist which give equivalent fits to do/dQ. Ca

Set |
Set 11

n
[
()

- L
C 7 77777777777
vl Elpenmenl { Ref\8) // /
° // // /
;) /// / / / //
150 // /(/ /{
“b Ao~ . //
1 //.
© o o
. “9 //
Fig. 8: Total cross section difference v 100~ - _
versus neutron r.m.s. radius difference %

from an optical model analysis of the
differential cross section of 7 elastic "
scattering from 48 Ca, 40ca (solid and
dashed curves). The shaded region <
inditates the experimental values for
Agr from ref. 18. The figure is from

ref. 23. L ] 1 1 { ! ! ]
) -02 0

Arg = 1o *8Co)- 1y (%9Ca) (fm)

total cross section difference Aop predicted by these potentials is plotted vs.

1/2

the corresponding A<r > calculated from the nucleon distributions used in the

analysis. The solid and the dashed curve represent the correlation between

2.1/2

A<r > However, only

and AGT which is generated by the interaction model.



— 314 —

these potentials are acceptable which agree with the experimentally determinedlB)

Ao, (shaded region in fig. 8, refer also to fig. 7). This is done for 7 as
well as for = (upper and lower part of fig, 8). As can be seen, there is no
A<rr21>l/2 which is consistent with all the experimental information introduced

into the analysis. This proves the presence of deficiencies in the used interaction
model, not withstanding the fact that the elastic angular distributions are fitted
very well. This analysis also teaches us that elastic scattering angular distribu-

tions by themselves cannot always be used as a source of information on p(r).
40
Ca

In contrast to the above example, elastic scattering of 800 MeV protons on
(ref. 19) seems to be a case where only little can be gained by a knowledge of Orpe

24)

A recent analysis in terms of the KMT microscopic optical model reveals

almost no dependence of the calculated o, on variations of the parameters of the

R
model, if the fit to do/dQ is restored by readjusting all other parameters. In
addition, the value for OR predicted on the basis of the elastic scattering data

20)

agrees well with a subsequent measurement of og with 700 MeV protons .

Conclusions

We have seen that strong absorption of hadrons by nucleil is at the same time
making possible and inhibiting the use of total cross section in learning about
nuclear density distributions. While without the absorptivity og or op would be
trivial observables)it is the same absorptivity which limits probing to a region
outside the "black" nuclear interior. In fact, roughly speaking, hadron-nucleus
experiments are sensitive to p(r) within a narrow radial region most often located
in the tail of the nuclear density. It is for this reason that integral aspects
of p(r) such as the r.m.s. radius are difficult to extract from hadron-nucleus
data,including elastic scattering differential cross sections.

We are confident that the goal to accurately determine nuclear matter distri-
butions, and thus the neutron density distribution p,(r), will be gradually
approached in the near future. It is obvious that what is needed is a more de-
tailed knowledge of the hadron-nucleus interaction in all its aspects. At present
there is a trend to accept model deficiencies and to just make them less important
by e.g. comparing isotopes. Eventually, we have to get away from this and aim at

absolute information for a given single nucleus.
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It seems important to point out that it is unlikely that a single type of
experiment will emerge as the prime source of information on matter distributions.
The credibility of experimentally determined p(r) (or aspects of p(r)) will be
born out by the consistency of results obtained with many different projectiles

over a wide range of bombarding energies, analyzing o do/dQ (elastic) and

> ORr>
possibly reaction channels. In addition, the use of projectiles with different
mean free paths in nuclear matter will provide us with the radial sensitivity
(see fig. 5) which is lacking if only one measurement is considered. Pions

on resonance probably will be useful to investigate the far tail of p(r). In
this case, elastic scattering angular distributions are not expected to yield
much more information than oR or or. Nevertheless, do/dQ data will serve their
purpose as a more sensitive test of the interaction model used.

On the other hand, we also need strongly interacting probes which are only
weakly absorbed by the nucleus, in order to map out S(b) to smaller impact para-
meters., In this case, the variation of the momentum transfer and thus elastic
scattering data will be the prime source of information while Op OF Op become
less important with increasing transparency of the nucleus. A candidate for such
a weakly absorbed but strongly interacting probe is the K+. Beam intensities
for K+ of ~lO5 sec_l are currently available (AGS,1976), but kaon factories may
become a reality in the future. The average K;, KZ cross section at low energies

is ~9 mb as compared to 200 mb for ﬂ+ at the (3,3) resonance. The mean free path

p
of K 1in nuclear matter thus becomes A ~ 7 fm, i.e. larger than the radius of all
known nuclei. In addition, the K+-nucleon interaction exhibits a number of features

25)

which greatly. simplify K+—nuc1eus interaction models The main disadvantage
of kaons as nuclear probes currently lies in the insufficient knowledge of the

elementary amplitudes but this should be no obstacle once intense K+ beams are

available,

Another weakly absorbed hadron is the low energy pion (T1T < 50 MeV). Besides
experimental difficulties there are also considerable theoretical uncertainties
which at present prohibit the extraction of reliable information on p(r). It is
mandatory that very low energy pion scattering and pionic atoms are understood

26)

in the same framework, a task which is currently receiving attention
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1. Introduction

Single nucleon transfer reactions as well as electron and hadron scattering,
pion absorption, pion and p meson photoproduction, k  and p captures etc.,
depend strongly on nuclear density near and outside the nuclear surface. However
the removal and addition of a nucleon with specific angular momenta 1 and j
provide a unique information which concerns the radial distribution of a single
particle orbit. It is the purpose of the present contribution to demonstrate that
the enormous amount of transfer data that has been accumulated in the literature
can serve to extract root mean square (rms) radii of single particle orbits with
accuracy, at least in certain cases, comparable to that achieved in large angle

electron scattering.

In the distorted wave Born approximation (DWBA) analyses of single nucleon

transfer reactions the differential cross-section factorizes as follows:

Toxp(®) = N qgj O e, (D

where the reaction normalization N, and the transition strength Gﬁj are essen-
tially two overlap integrals; the first involving the projectile and ejectile
wave functions and the latter involving the target and residual nuclei. The
transition strength Géj contains most of the spectroscopié information while all

aspects of the reaction dynamics are included in © A major problem in

pwsa (8 -

using the DWBA to calculate CDWBA concerns the radial distribution of the

transferred nucleon.Particularly ¢ depends strongly on the usually unknown

DWBA

1
4, of the transferred nucleon wave function. On the other hand,

. 2
rms radius, <r >

. . . . 2.2 .
the quantity © is correlated almost uniquely with <r >2, Such a correlation

confirms that Ezgé% is a physical quantity which can be extracted by comparing
experimental cross-sections with those calculated in DWBA techniques. Obviously
N and ng must be reliably known in order to engble a meaningful interpretation
of measured cross-sections. Absolute values of sz as obtained from standard

DWBA analyses are not reliable. As demonstrated in Sec. 2 a change of 1% in
1 .
<r2>/2 induces a change of 10% in values of Géj, However a simultaneous analysis

of stripping and pickup data on the same nucleus leads to absolute sz values
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Fig.l. Dependence of £ = 3 f7 neutron transfer cross sections on the radius

parameter rg. The single-particle potentials include a real volume term whose
depth was adjusted to reproduce the experimental binding energy and a common
spin-orbit term A = 25 and diffusness parameter a = 0.65 fm. (Ref.3)

which are free from systematic errors in N and GDWBAl (see Sec.3). Further the
normalization constants from various sources seem to fit into a most consistent
patternz’3 and typical errors in N for reactions with light (A < 4) projectiles
are estimated to be about 10%. We note that the normalization for (p,d) and (d,p)
is among the better known quanities in nuclear physics what makes these two

processes particularly interesting in studying neutron distributions.
2. Anatomy of DWBA Analyses

A major problem in calculating Opwpa COnCerns the radial form factor, i.e.,
the wave function of the transferred nucleon. It is a standard procedure to
calculate the radial form factors in a Woods-Saxon (WS) well. A radius parameter
ry ~ 1.2 fm, diffuseness a = 0.65 fm and a spin-orbit term X = 25 are often
used. The depth of the well is adjusted to reproduce the experimental values of

binding energies, i.e., the nuclear separation energies. Since the geometrical
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Fig.2. Dependence of £ = 3 £4,, neutron transfer cross sections on <?>%, The

depth of the single particle potential was adjusted to reproduce the experimental
binding energies.

parameters of the WS well are not uniquely determined the calculated cross
sections are not reliable. In particular the calculated cross sections (and
hence the transition strength sz) are quite sensitive to values of Ty 5; a 4%
change in ry leads to 30-40% change in the cross sections (see fig.1). On the

other hand, the cross sections are better correlated with the rms radius,

1 .
<r2>6, than with the radial parameter or the form of the single particle poten-

tial (see fig.2). Subject to the condition that the radial parameter Ty is

' . 1
chosen to reproduce a specific value of <r2>/2 the cross section becomes insen-
sitive to values of A or non-locality corrections. Also a change of 1% in the

diffuseness parameter a induces only a 0.5 - 0.8% change in 9WBA®

Clearly the WS shape is not necessarily the correct one, but the results
should not be very different for other similar shapes which reproduce the
binding energy correctly. While the shape of the form factor in the nuclear
interior is open to - some question, . the exponential fall-off in the nuclear
exterior is rather well defined by the separation energy. By forcing the radial
form factor to reproduce a specific value of rms radius we determine in fact,
the normalization of the radial form factor near the surface and outside

nucleus.

The DWBA results depend also on the optical potentials for the entrance
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and exit channels. There is internal evidence from different transfer reactions
and different methods of analysis that uncertainties due to optical potentials
can be reduced down to 5 - 10% (see ref.4). We also note that at energies below

the Coulomb barrier the results are less ambigousz.

3. SDSR Analyses
3.1 Spin Dependent Sum Rules

Partial and total spin dependent sum rules are assesed-.via the following

expressions :
23 41 (J, § J (23, + 1)
+ T B Tla~ B
ST +S. o+ (23, + 1)(-1) % { . }s = —F (1 -01 veve (2)
Jg cJB 8 I J, 3900, T @+ D)
T (T +s T ST = (25 + 1) -A (3)
(S5 c. )t ;g = @5+ 10 -4
Jg "B Jg 3, "o

where Jr denotes the target spin, Ja and J_, spin of final states populated in

B

pickup and stripping, and A represents a constant correction due to center of

- . 2
mass. 538 and Sy are related to the conventional C'S values deduced from exper-
o4

~iment:
23, + 1)
+ 8 2 . 2
S. = ——=—t —_ ¥ c., S, (njt.) = X G,. (B)
Jg o (2, + 1) 8,7 gfixed B B8~ 73 B,J gFixed £ e ()
- 2 . 2
S, = X Cy Sa(nﬂjts) = X Gy,. (o) ceee (5)
o a,J fixed ' o,J fixed J

Here t3 is the charge of the transferred nucleon. The contribution from the con-

tinuum is denoted by SCJB but is neglected at first.

As indicated in the previous section, because of -the large sensitivity of
;- ‘
Opwpa ©P <r2>2, the absolute values of sz extracted using the standard DWBA
techniques are not reliable. However,detailed calculations show that relative
values of sz are almost independent on the rms radius of the transferred
4
nucleon wave function, and any reasonable choice of <r2>2 can serve to determine
a set of relative values of sz. To account for overall systematic errors in N
and 9DWBA the sum rules are written as follows
. Jg 390/ -
sty « (23, + Dz n S ) - Q- cer. (6)
J B J 34 J L
B JB(X r o

Q, = {(n'
g
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L @ s})+z @ S;)=(23+1) (-4 eee. (D
J B J o
B o
where the normalized experimental spectroscopic factors (n' 53 ) and (n° Sj )
o

can have only random uncorrelated errors. The present analysis is essentially a
fitting procedure of the partial sum rules to data by varying n' and n~. The
following criteria are used to evaluate the quality of a fit:

(a) The overall relative error

Var(QJ ) + gt )2 - g7 )2
0 =% Db /|z N G | ceen (8)

(27, + 1)
Jg B Jg (@1, + 1) J 23+ 1
(b) the number of partial sum rules N for which Q%B > Var (QJB); where the
variance Var(QJB) is calculated assuming a relative error 0, = 10% in the indivi-
dual spectroscopic factors S
(c) The sum S = £ Q
Ja J
_B 8 +
criterion when n and n are varied independently.

8 and Sa.

must vanish when data are perfectly fitted. We can use this

The results from fitting sum rules to neutron transfers on 45Sc are shown
in fig.3 (see ref.3). Comparable overall errors are obtained for 1.10 < n_ < 1.35

and 0.95 < n' < 1.15, but using the criterion c¢ we find

10k a

Do v’
-2
T/ T =¥ 5=16x10

_3 o™

10 5-+15x10"°

A 1 1. L i | A A .

wn 105 10 NS 120 125 130
n-

Fig.3. The overall error versus the normalizations n' and n”. The figures indi-
cated by S represent the sum of Q; . The curves are reproduced with neutron
transfers on 45Sc (ref.3). B
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+
n

1.05 + 0.05

n =1.25 % 0.05

with o = 3.3%. Using curves similar to those of fig.2 we associate these values

1 1
of n+ and n with specific rms radii <r%>/2 = 3.83 fm, <rf>/2 = 4,03 fm for 1 f7/2
. 45 46
neutron in Sc and Sc.
Table 1
. ' _ . . 51, ., 3, +50,..

Spectroscopic factors S for the £ = 3 f7/2 proton pickup in the “"V(d,"He)" Ti

reaction (ref.7-9).

T voa) v b) ' a) '

Ey (MeV) J SzRL SZRL SERNL S eyt P
0.00 o 0.73 + 0.04 0.80 + .06 0.64 + 0.01 0.82 + .06
1.56 2" 0.35 £ 0.03 0.40 £ ,03 0.30 + 0.02 0.38 + .03
2.68 4* 0.65 * 0.06 0.72 £ .05 0.55 + 0.02 0.70 + ,05
3.20 6 1.00 £ 0.09 1.10 £ .07 0.86 = 0,05 1.10 £ .07

. ]
a) DWBA analysis with<r_>6=3.99 fm., ZRL calculations with D2 =1,9 x 104 MeVz'fmS;

1.6 x 104 MeV2 fm3 and 8 = 1.42 fm-l. The errors

are the spread of various independent determination from the quoted average

FRNL calculations with Dg

values.

b) =1.10 S}

. . . ]
Values obtained from partial sum rule fit to data SZRL (b) 7RL (a).

The errors represent the overall error o of eq.8.

3.2 Radii of 1 f_,, protons in >ly and *“cr.

7/2
We present some details of SDSR

analyses of 1 f proton transfers on 51V. In this case the rms radius of 1 f7/

7/2 2
proton has been determined via large angle electron scattering6 and hence
provides a very good case for illustrating the reliability of our results. Tables
1-2 summarize the spectroscopic factors %{ZJB + l)Sé and S& obtained from zero

range local (ZRL) and finite range non-local (FRNL) DWBA analyses along with

Jg and Jg , the spins and parities of the corresponding final states. For proton
pickup we have three sets of data from the 51V(d,s‘He)SOTi reaction7_9. For
51, .3 10,11

proton stripping we included two sets of data from the “"V("He,d) reactions
and one from the 51V(a,t)52Cr reactionlz.Two sets of spectroscopic factors are
given in each of tables 1-2. Sets (a) are the nominal valuesobtained from our

1
DWBA analyses with a rms radius <r2>2 = 3.99 fm. Sets (b) are the normalized
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Table 2

Spectroscopic factors —-(2JB+1)S for £ = transitions in the 51V(SHe,d)52

7/2
(refs. 10,11) and V(a t)52Cr (ref. 12) reactions

a) b) a) 1 ' b)
Ex (MeV) J" (2J +1)SZRL (2J +1)SZRL (2J +1)SFRNL §{2JB+1)SFRNL
0.00 o 0.50 £ 0.03 0.48 £ .03 0.46 £+ 0.05 0.48 £ .03
1.43 2" 0.79 = 0,03 0.75 £ .05 0.76 + 0.06 0.80 £ .05
2.36 4+ 0.68 £ 0.04 -0.65 £ .05 0.65 + 0.08 0.68 + .05
2.77 4+ 1.23 + 0.05 1.17 + .08 1.12 £ 0.10 1.18 + .08
3.11 6 2.51 £ 0.09 2.39 + ,17 2.31 + 0.15 2.43 + .17
a) . . 2. L . . 2 _ 4
DWBA analysis with<r?>?=3.99 fm; ZRL calculations with D" = 2.8, 20.5 x 10

+
MeV2 fm3 for (3He,d) and (o,t) FRNL calculations with D2 = 2.4, 9.8 x 104 MeV2

fm> and 8 = 1.42, 1.23 fn !

of various independent determinations from the quoted average values.

for (3He,d) and (o,t). The errors are the spread

b)

Values obtained from partial.sum.rule fit to data; S (b) =.0.95 x S

! =
and SFRNL(b) 1.05 x Spon: (2)

The errors represent the overall error o of eq.8.

ZRL ZRL( a)

Table 3

. . + - . ' R '
Normalization constants n , n , partial sums and best fit overall error from

sum rule fit to data

DWBA analysis n* n . (st 2. (mS.) g% e
J J J J
B8 8 o, o
ZRL 0.95 1.12 5.43 3,04 7.0
ZRL b) 1.05 1.07 5.34 ' 3.13 7.6
FRNL %/ 1.05 1.24 5.56 2.91 6.5
FRNL b) 1.10 1.28 5.26 3.29 8.5
1
a)with <r2>/2 = 3.99 fm

b)
e)

with ry = 1.241, 1.219 fm for stripping and pickup

the overall fit o of eq.8.
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(n+ Sg) and (n S;) spectroscopic factors obtained from SDSR analysis. The errors
quoted for sets (a) represent the spread of various independent determinations

of spectroscopic factors from average values. Although the absolute values of
the spectroscopic factors SéRL and SFRNL are somewhat different we obtain the
same normalized spectroscopic factors. The normalizations n from various analy-
ses are given in table 3. Since it is not clear if the rms radius is the same

to all final states we have included results obtained with a common radial
parameter e for all £ = 3 transitions. It should be noted however that similar
analyses13 of analogue states indicate that reproducing the same rms radius is

more correct. From table 3 we obtain the following average values:

n" = 1.18 £ 0.10

n 1.04 + 0.07

L 1
These values correspond to <rf> = (3.97 + 0.04)fm and <r%>/2 = (3.92 £ 0.06)fm

for 1 £ proton in 52Cr and 51

7/2
3.3 RMS radii of 1 g9/2 nucleon in Sr isotopes

Partial and total strength for £ = 4, nucleon transfers on Sr

1 82
isotopes are summarized in table 4 (see ref.14 for details). For even A targets
only total strength can be analyzed. The results of table 4 were obtained with
<r2> = 4.66 fm as determined by Sick et al.”~. The total neutron transfer
strength are ~ 10% smaller than the upper limit of 10.67 (Eq.3). This result

is significant because it is obtained independently for all four isotopes. A 1%
decrease in <r2>]/2 could, of course, lead to a better agreement between calcula-
tions and experiment but it would be more natural to attribute the 'missing'

strengths to weakly excited or continuum states which are not identified

Table 4

Partial and total strengths for £ = 4, 1 89/2 nucleon transfers on Sr isotopes.

The partial and total sums are defined as in Ref.l, i.e.,SZ = ZJBSi J;,
- - + - . . ’
Si = ZJaSi,Ja’ and Si = Si + Si’ with i = p,n (ref.14).
Target + Neutron Transfer + Proton Transfer
’ - - S
Nucleus Sn Sn Sn Sp SP p
8sr 0 9.94%1.3 0.94+1.3 11.7¢1.7 0.0 11.7+1.7
873y 1.2410.2  6.48+0.7 7.72£0.7 Not reported 0.0
86Sr 2.00.2 7.3£0.7 9.3+x0.7 10.0%1.0 0.97+0.1 11.0+£1.0
84

Sr 4.0+0.3 4.5+0.4 9.5+0.5 Not resolved Not reported
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experimentally. On the other hand the total proton sums slightly exceed the sum
rule value, thus indicating that the rms radius of 1 89/2 may be slightly larger
than that of the 1 gg/2 neutrons,

4. Concluding Remarks

The deviations of ni from unity originates from three main sources:
(1) Improper values of <r2>1/2 (2) Inaccuracies in the DWBA calculations, such as
systematic errors in N, finite range parameter, optical potentials for the
entrance and exit channels or experimental cross sections. (3) Not all strength
is included in the analyses. The radii quoted in sec.3 are based on the assump-
tion that the deviations of ni are due to slightly incorrect values of <r2>%.
There is internal evidence in our results that contributions from the various
sources of items 2-3 are not significant. Data from various reactions and differ-
ent analyses lead to ni values with a scatter of 5-10% from average values,
Further, stripping strength into the continuum plays a minor role only. In the
case of 51V the inclusion of 5% strength due to the continuum, all evenly dis-

tributed among the final states J, deteriorates the fit and gives a violation

B
of one partial sum rule. Finally the dependence of the cross section on the
diffuseness parameter a is another source of uncertainty which is not compiled
. + . . . .

in the errors quoted for n~. Following the discussion of sec.2 a 10% change in

a may induce 5-10% change in ¢ For the particular case of 51V it is more

DWBA®
realistic that errors in n' and n~ are ~ 20%, which in turn correspond to errors

of about 2% in the rms radii.
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1. Introduction

Sub-Coulomb transfer reactions have proved to be a powerful means of
determining the size in the asymptotic region of the wavefunction of the
single-particle component of a nuclear state. Within the framework of the
DWBA the cross-section for a heavy-ion sub-Coulomb transfer reaction (HITR)

1)

A(a,b)B may be written schematically as

2 2
© N, N P
do (6) Sbn SAn bn An (1)

where Sbn Nin refers to the spectroscopic factor and sizg of the tail of the
wavefunction of the nucleon n bound to core b, and SAn an similarly refers
to the nucleon n bound to the core A. 1In exact finite range codes now
available2) the dependence on the bound-state wavefunctions does not appear
explicitly, but the sensitivity of the cross-section to these wavefunctions
is still essentially as expressed above in eq. (1)
For light-ion transfer reactions (LITR) such as A(t,d)B the
differential cross-section in the Sub-Coulomb regime may be written 3) as:-
3 2

do(0) = E-D SAn dozR (0) ... (2)

2 .
where D is a normalization factor dependent upon the <t|dn> vertex function,
S is the spectroscopic factor of state populated in nucleus B, and

An
do (0) is the zero-range DWBA prediction that depends implicitly on the

zR
wavefunction of the neutron bound to nucleus A.
From equations (1) and (2) we see an important feature of all
transfer reactions - that no information on the <An|B> overlap can be obtained
without knowing the properties of the projectile-ejectile system. A series of

HITR experiments has been performed 4) which has calibrated many of the useful
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projectile-ejectile systems for sub-Coulomb neutron transfer. These
experiments have also provided an indirect calibration of the (t,d) reactions
by comparison with the data of ref 5). As yet no such project has been
completed for heavy-ion proton transfers. However, a series of experiments
has just been completed6) to calibrate the sub-Coulomb (t,a) reaction by
comparison with recent magnetic electron scattering results. We are now in
a position therefore to remove the ambiguity inherent in eq.(l) and (2) and
obtain a value for the <An|B> overlap by comparing experimentally measured
cross-sections with theoretical predictions calculated using the calibration
information.

In order to determine the tail size of the single-particle wavefunction
component of the nuclear state in nucleus B it is necessary to disentangle
the contribution of the spectroscopic factor. The value of the spectroscopic
factor can be found in general by carrying out a sum-rule analysis of all
available single-nucleon stripping and pick-up data on the target nucleus
involved. Such an analysis removes the dependence of the spectroscopic factor
on an arbitrary choice of bound-state well geometry (see ref 7) for an
example of the application of a sum-rule analysis). The uncertainties that
remain in SAn are those due to possible missing stripping and pick-up strength
at high excitation in the residual nuclei, and the use of the approximation
that.the same bound-state well geometry applies to all states in a nucleus.

, Knowing the spectroscopic factor leads therefore to a determination
of the tail size. By postulating a form for the bound-state potential it is
then possible to deduce from this tail size the rms radius of the single-
particle wavefunction. There is, of course, a degree of model dependence in
the transformation of a tail size into an rms orbit radius. The uncertainty
in <r2>% due to this model dependence is however small if one accepts that a
Woods-Saxon functional form is a reasonable representation of the average
nucleon-nucleus bound-state potential. In the Woods-Saxon potential there
are two parameters (ro,a) that fix the geometry. The depth is determined by
requiring that the potential reproduces the nucleon separation energy. It
is found that there is an infinite number of combinations of r, and a that
produce the same tail size, and each of these combinations gives a slightly

different value for the rms radius of the nucleon orbit. The model dependence
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of <r2>lz derived from a tail sizé in this way needs to be determined for each
separate case, but in general the uncertainty introduced into <r2>;2 is small
and is of the order of * 0.05 fm. A further model dependence is introduced
by the specification of the spin-orbit component of the bound-state potential.
This will be somewhat (nlj) dependent. The derived rms radius of a nucleon
orbit does not depend very sensitively on the spectroscopic factor, a 10%

2%

change in S leading in general to approximately 0.05 fm change in <r">° (i.e.
vo1%) .

One further feature of sub-Coulomb transfer reactions needs to be
discussed. This is the sensitivity of predicted cross-sections to nuclear
interactions between the core nuclei. HITR have a particularly nice feature
that the small de Broglie wavelength of heavy-ions ensures good localization
of the incident projectile. This means that it is always possible to choose
a bombarding energy at which the effect of including an optical potential is
negligible. This makes heavy ions the most accurate means, in principle, of
determing orbit radii. This semi-classical characteristic of HITR does lead
to an associated disadvantage. This is the need to match the Rutherford-like
orbits in the exit and entrance channels. Whether a HITR is matched or not
depends upon the Q-value. Any significant departure from a well-matched Q-
value leads to a large reduction in the cross-section. For example, in a
neutron transfer reaction, where the products of charges in the entrance and
exit channels are equal, the Q-value should be close to zero. This condition
requires one to choose a suitable projectile-ejectile system to study a given
nucleus.

The large de Broglie wavelength of low-energy light ions implies that
the converse situation applies in reactions such as sub-Coulomb (d,p) or (t,d).
Even at energies well below the nominal Coulomb barrier there is some nuclear
interaction between the colliding particles. The degree of sensitivity of
predicted cross-sections to different choices of optical model potentials that
fit entrance and exit channel elastic scattering is still however rather small,
there being an optical model dependence of the predicted cross-section of the
order of 10-15%. This leads to errors in rms radii of about 0.05 f£m. The

(t,d) reaction is less specific from the kinematic point of view in the final
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states populated compared to HITR, because of the reasonable overlap of the
entrance and exit channel "orbits" even in cases where the Q-value is far from
zero. The sub-Coulomb LITR are therefore extremely useful in making systematic
studies of nucleon orbit sizes over, say, an isotopic or isotonic sequence of

nuclei.

2. The 40Ca(l3C, l2C)4l Ca Reaction

8
We have recently measured ) the angular distribution of the

1
40Ca( 3C, 12

41
C) "Ca reaction at 18.5 and 19.0 MeV. The work was carried out

at the University of Oxford EN tandem accelerator. The 1f ground state and

7/2
I - . . , 41 N
J = 3/2 first and third ex¢ited states of Ca were populated. The lf7/2
data were fitted using a spectroscopic factor of 0.90 * 0.05 and the

13, 12 4)

("¢, C) calibration of ref . The size of the tail of the 1f neutron

7/2

wavefunction was the free parameter. The rms radius of the 1f neutron

7/2
4
orbit in lCa was found to be 3.89 * 0.12 fm. This value corresponds to a

choice of diffuseness parameter of the bound-state well of a = 0.60 * 0.10 fm.
The range of uncertainty in a contributes * 0.05 fm to the error in <r2>%. A
further + 0.02 fm comes from the dependence of the predicted cross—section on
the optical model parameters in the exit channel. The large positive Q-value
of this reaction makes the cross-section more optical model dependent than is

usual for better matched reactions. The remaining contribution to the error

(* 0.05 fm) comes from experimental statistics, the uncertainty in the

spectroscopic factor, and the error on the (l3C, 12C) calibration.

Two previous determinations 2. 10 of this orbit size have been made

2.5

using the (t,d) reaction. Comparison with the published values of <r >° is
not meaningful since these authors used different values for the spectroscopic

factor, bound-state well diffuseness and values of the (t,d) normalization
12c)

1
factor different from the value consistent with the presently used ( 3C,
4
calibration (see Franey et al., ref )). In order to make a meaningful
comparison, table 1 presents the results of the three experiments, analysed in

a consistent way. The spectroscopic factor was taken as 0.90, the diffuseness

4
parameter as 0.65 fm and D2 (t,d) = 3.26 10 MeV2 fm3.
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Table 1
lCa ground state orbit size.
Experiment <r2>% (fm)
Present 3.86
ref. 9 3.91
reg. 19 3.96 (3.84)

The errors on each of these measurements is approximately = 0.07 fm
(this error does not now include any contribution from uncertainties in choice
of diffuseness parameter). One problem with this comparison is that the
Strasbourg data reanalysed in ref 10) is approximately 28% higher in magnitude
than the data of ref. 9). If the Strasbourg data is renormalized downwards
then the rms radius given in brackets is obtained. The difference in the rms
radii of ref ?) and ref lO)’ using the same cross-sections, presumably arises
from the different optical model parameters used in the analyses. This high-
lights one of the difficulties with light ion experiments. However within the
quoted errors the agreement is good, and the present heavy-ion result lies
between the two light-ion values.

The experimentally determined rms radius for the ground-state of 4lCa
can be compared with values deduced from analyses of the Coulomb energy
difference (CED) between 41Ca and 41Sc, and with HF calculations. It is found
that the observed value of the neutron excess radius is 0.4 £ 0.1 fm larger
than that deduced from the CED. This anomaly has been the subject of much
discussion 11) and suggestions have been made that C.E.D. may not in fact be
as directly sensitive to neutron excess radii as was originally supposed. The
radius determined in the present work is also somewhat smaller than that
predicted in HF calculations. Part of the discrepancy is caused by the failure
of HF calcuzitions to reproduce the correct separation energy for the f7/2
neutron in Ca. However, the discrepancy remains when this effect is taken
into account. One point of importance that this comparison reveals is that

HF calculations that reproduce charge radii of nuclei do not lead to mean field

potentials that correctly reproduce individual neutron orbits.
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NEUTRON RADIAL DISTRIBUTIONS FROM ELECTRON SCATTERING

I. Sick

Department of Physics
University of Basel

Basel,Switzerland

The density distribution of protons, as everybody knows, is ob-
tained mainly from electron scattering and /L—X—ray experiments.
The reasons for this are familiar. Rms-radii can be determined
to 1%, , and the density can be obtained to 1%, prévided data
up to momentum transfers of g « 3.5fm™! are available. More-
over, reasonably model-independent densities, i.e. densities

p(r) accompanied by a realistic uncertainty estimate JP(r),

can be obtained. As an example let us consider a density (fig.l)
that has received much attention in the past, the one of 40c,,

This new densityl)

results from an experiment done initially at
Stanford, and recently extended to higher g at Saclay, to

Anax = 3.5fm~l. Once one goes to that high g, and once one can
measure &o/d2 down to 10”12mb/sr, one can obtain P(r) to bet-
ter than 1%, without any ambiguity. In which case one can mea-
sure the amount of shell structure, i.e. the property where dif-
ferent Hartree-Fock calculations (solid D.Gogny, dashed J.Negele,

dash-dot X.Campi, dotted M.Pearson) differ most.

These achievements of electron scattering are such that nowa-
days no other type of experiment even tries to determine proton
densities. For neutrons, however, the situation is very diffe-
rent. Many types of experiments are exploited to determine pro-
perties of Pn(r), and many of them are discussed at this meeting.
If I try to paraphrase the results - and when doing so I neces-

sarily oversimplify things - then I would have to say that :
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1) there is no method that allows to measure Pn(r) the way elec-
tron scattering measures Pp(r) point by point. Either Pn(r) at
large radii, or the large-r properties of a valence shell is sam-
pled. And 2) that in many cases there are still considerable un-

certainties concerning the reaction mechanism.

In this talk, I would like to discuss the measurement of neutron
radial distributions by electron scatteringz). This new method
will not deal with the limitation 1); only valence neutron radial
wave functions can be determined, not Pn(r). However, this can
be done with good sensitivity to all radii, and with very 1little

ambiguity due to the reaction mechanism.

What I will deal with concerns elastic electron scattering from

the components of the nuclear magnetization density of large mul-
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tipolarity A . In this context, I have to explain two things
how to extract these components from electron scattering experi-
ments, and how to interpret them in terms of the radial wave func-
tion R(r) of the valence nucleons. In order to cope with the
first point, the following equation displays (in PWBA, which is
good enough for the qualitative discussion given here) the diffe-

rent contributions to the elastic cross section

A L A L
ERSTRPIACIEN RS D INCT) Jee

iIl(SIE)='G~
N=2 C?

o & Motr
Here, OpMo 1is the cross section for scattering from a pointlike
charge, g is the momentum transfer ~2Esin®/2 , F are the form
factors for scattering due to the charge (C) and magnetic (M)
multipole distributions. The sums run up to a maximum multipola-
rity N = 2j, where j is the spin of the nuclear ground state. By
doing experiments at variable scattering angle 6 but constant g,
the magnetic and charge contributions can be separated. This is
feasible in particular at large g, where Fy drops off less quickly
than Fp. (See Fig. 2 where Fpp is given for 6 = 155°). The in-

dividual multipoles cannot be separated in general, unless pola-
rization measurements are done. However, the multipole of the

highest allowed order, A= 2j, dominates Fy over a large g-range
and therefore can be isolated de facto (see fig. 2). Can this
form factor be interpreted unambiguously in terms of R(r) ? To
answer this question, let us consider a particularly simple
case, the one where the j of thevvalence shell is the highest
one of all occupied states. Given the fact that multipolarity
A? 2] corresponds to a complete j-flip, and given the fact

that (in the impulse approximation) the electron intefacts with
one nucleon at a time only, no other but shell j can contribute
to multipolarity /A . In which case Fy depends on R(r) of this

shell exclusively. Via the relationship

Fun(@) = const q. [ R [ (qu) rdr >
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R(r) can be extracted.

When deriving this equation I have made two simplifying assump-
tions, the ones concerning the absence of configuration mixing
and meson exchange currents. Configuratioh mixing in the ground
state leads to pronounced changes of Fya for A<N | For the
highest multipole the shape of FMA is not changed significant-
ly, just its overall magnitude (i.e. the occupation of shell j)
is reduced. Only if strong 2p2h-excitations involving shells
with j'> j occur, will the shape of Fyp(gq) be changed. Such
contributions have been calculated by Arita et al?) . For the
nuclei to be discussed here, the change in FyaA(g) found leads
to a change of the rms-radius of the R(r) extracted that is
less than 0.3%.
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This leaves us with meson exchange currents (MEC) as the only
potentially appreciable correction to eq.2. Contrary to char-
ge scattering, MEC can contribute in first order already to mag-
netic scattering. Fortunately, for the highest multipole the
MEC process also includes at least one nucleon of shell j. Con-
Sequently, AAFMEC has a shape quite similar to the one of Fua -

A number of calculationss) for the contribution of MEC, by
Suzuki and Dubach, have been carried out. From the calcula-
tions that do include the WNN-vertex form factors we deduce
that their effect on the rms-radius of the R(r) extracted is

1.1 * 0.5% (for °1lv) i.e. quite small.

This means that magnetic scattering from the highest allowed
multipole distribution, A= 2j, can be interpreted unambiguous-
ly in terms of R(r). And moreover, as I will show now, it also

can be measured !

Fig. 2 already showed that for a nucleus with an unpaired

lf7/2 proton, 51V, this could be done3). The emphasis in this
talk mainly concerns neutrons, so let us look at an example of
an unpaired neutron. Fig. 3 shows the datab) the Saclay group
49T.

obtained for i, a nucleus that has a lf7/2 neutron-hole con-

figuration. You note that data have been taken between 1.8

and 3.3 fm_l. At lower g we run, at a maximum scattering angle
of & = 1559, into troubles with charge scatterind, at higher g
the cross sections become smaller than lO'lOmb/sr. In the re-
gion where Fy can be measured, it is due to the M7 component
mainly. The A& 5 components are less than 10%, and I will skip

them in the qualitative discusssion given here.

In order to compare to theory, Fig.3 shows a prediction from

a DDHFB calculation of Gogny7), a calculation that does ex-
tremely well for proton-densities. The too large form factor
in the M7 maximum is expected, since the f7/; depopulation

due to configuration mixing is not included. More important,
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however, the DDHF form factor falls off too quickly at large
g. This shows that the radial extension of RypHE is too lar-
ge, i.e. that the maximum of the DDHF radial wave function oc-

curs at too large a radius.

A quantitative estimate for this difference can be obtained
by fitting the M7-data using a radial wave function R{(r) cal-
culated in a WS-potential. The radius of this potential is
fit to the M7-data, while the depth is determined by the neu-
tron separation energy. The skin thickness of the potential
(which from HF-calculations is known to be very similar for
all shells) is obtained by fitting the charge scattering cross

sections with a charge density calculated from a WS potential.
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The resulting fit is shown in Fig.3. The rms-radius of the
1f; /o neutron orbit turns out to be 4.011% 0.04 fm, while
DDHFB yields 4.159 fm. 'The difference of 3.7% is quite sur-
prising since in HF-calculations protons and neutrons are
strongly coupled, the protons being responsible for ~70% of
the effective potential seen by the neutrons, and vice versa.
A calculation doing very well for the protons would have been

expected to do as well for the neutrons.

Often it is of particular interest to determine the relative
size of neutron and proton orbits.rather than to determine
absolute p- and n-radii separately. This is particularly desi-
rable if you consider that in most cases neutron radii are
obtained (implicitly at least) from a difference of the mea-
sured matter-radius, and the known proton radius. The obli-
gation to take this difference increases the effect of syste-

matical errors by a factor of 2.

From electron scattering, we actually can get the relative

size of p- and n-orbits directlyz). Consider neighbouring
nuclei having an unpaired proton or unpaired neutron respec-
tively. From HF-calculations we know that the shape of the
radial wave functions of p and n are very similar, the main
difference being a small change in the radial scale. It there-

fore seems reasonable to try the ansatz
-3/
2
Ro(r) = Rw(ﬁr)‘ (5 (3)
where /3 is a factor close to one describing the squeezing of
the radial scale. If this is reasonable an assumption, then

we can derive immediately that

P

FM/\(‘%) = FM: (QI/P)'

Ma du
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A comparison of the MA -form factors then will give Isdirect—
ly. We never have to talk about the R(r) actually used, and
we can make a n-p comparison of an unusual model independen-

ce.

Fig. 4 shows the M7 data for 51y (unpaired lf7/2 proton) com-

pared to the data for 49

Ti (unpaired lf7/2 neutron) plotted
on a compressed g-scale. The data clearly define a unique
M7-curve, thus showing that eq. 3 is sensible. From the com-
pression factor f3(plus a 1% correction accounting for the
different tails of R(r) at large r as imposed by different
separation energiesz) ) we obtain directly rmsn(Ti)—rmsp(V)

= -0.4 T 0.8%. This value has the great merit of being in-
sensitive to systematical experimental errors, model assump-
tions on R(r), or MEC corrections. The theoretical value for
this difference, + 1.3%, again indicates that DDHF predicts
neutron orbits with radii 2% too large. For heavier nuclei?)

(A290) this tendency is amplified.

How do these electron scattering results compare to other
information ? Concerning the comparison with transfer re-
actions, I do not have to go into details after A. Moalem's
talk. If transfer reactions are analyzed using the R(r) pro-
vided by electron scattering, one can determine absolute
spectroscopic factors. This allows for thé first time to
determine to which degree occupation number sum rules are
exhausted. For the Sr-isotopes Moalem®) finds that about
10% of the strength has not yet been observed, the missing
strength amounting to 25% for 87Sr. For 5lV, where I have
carried out a similar analysis, one finds a deficit of 18%.
Which is quite reasonable given the fact that transfer re-
actions have observed states in the residual nucleus up to

6 MeV only. A comparison with subcoulomb transfer reactions
will be most fruitful once the asymptotic normalizations of

_ R(r) discussed by J.Durell are available.




— 345 —

10-2
| 1B ]
[ -
a2y L,
A
"4
\
10-3| AN |
\
h
\
N L)
—_ \
—_ \
o \
- \
P
LL_}: 10""1,_ #\ —
1
\
\
\
51
t v \
. ue \J
10-5- ¢ 11 coMPRESSED {
1 l | \
2,0 2,5 1 3.0
B Fig. 4
Qe (FM) ig
Concerning (pp), ( (d,d) ) the comparison is not quite

straightforward if one thinks that these experiments deter-
mine.Pn(r), while (e,e) détermines the density of a valence
nucleon orbit only. Still, a direct comparison should be
possible : protons (alpha particles) are strongly absorbed
in the nuclear interior. Therefore, they only provide in-
formation on py,(r) at large radii, where P, is smaller than
about 30% (10%) of the central density. At .these radii
gn(r) is dominated by the valence nucleons due to the sur-
face-peaked nature of large—E radial wave functions, (lea-

49

ding, incidentally, to the fact that in Ti the 1f7/3 neu-

trons account for ~37% of the contribution to the total rmsp!)
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In order to make such a comparison, we can consider the nu-

48Ca and 49Ti (neglecting differences in R(r)7/2). For

clei
the former one there are a number of (p,p) and (&,d), for
the latter one an (e,e)-experiment. Starting from a Woods-
Saxon or Hartree-Fock calculation, one can deduce the ratio
of the contribution of the filled lf7/2 neutron shell to
the total neutron density. In the region where this ratio
is close to one, one can combine it with the neutron-den-
sity determinedg) by (p,p), or (d,d), and derive the "ex-
perimental” contribution of the 1£f7/2 neutron shell. This
density then can be compared to the one obtained from elec-
tron scattering. The result of this comparison shows a
non-negligible difference : At 5 fm, where (p,p) and (d,d)
are very sensitive to Pn(r) and where the f7/2 neutrons
dominate Pn(r), one finds a radial displacement of 0.1-0.15
fm. If we can trust the subtraction of the core-part, this
would indicate that (p,p), (L&) give rms-radii too large.
This finding would be compatible with the fact that rms,-
rmsy as determined by hadron scattering is in quite good
agreement with HF-calculations, while electron scattering
places the neutrons 1 - 2% further inside the nucleus. These
differences may be connected to the fact that (p,p) and (o)
at large r yield too slow a fall-off of R(r). The comparison
of these results with other experimental information is very
interesting and will have to be carried out in more detail.
The hope is to use the few cases where electron scattering
is applicable as test cases for the analyses of experiments

using strongly interacting probes.
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BACKWARD-ANGLE ELASTIC ELECTRON SCATTERING FROM 39K

C.W. de Jager, P. Keizer, L. Lapik&s and H. de Vries (I.K.O.,
Amsterdam) and S. Kowalski(M.I.T., Cambridge)

In a simple-minded shell model picture the nucleus %°K can be
regarded as a 1d3/2 proton hole coupled to “°Ca. Elastic electron
scattering from the 3°K magnetization distribution was studied in
an attempt to map out the radial behaviour of this wvalence nucleon.

The cross section for elastic electron scattering from a spin J

nucleus can be written in PWBA as

do _ w2 2 Oyn2
a@ = “Mott (FL(@) + (5 + tan® 5)Fp(q))
In the single-particle model the transverse form factor is
given by
2J . . nl
2 - 13 . nl 15 . 2
Ppla) = 2 My{<dy 2"+ A<
- odd

involving the radial integrals

<j>\>nl =[R2, 3, (gr)ridr

The PWBA is quite accurate in practice if one uses the effective-
momentum-transfer representation

4 Zohc

=all + 3 Rg)

Qeff

Data were taken at energies between 60 and 90 MeV with the 180°
facility of IKO (Amsterdam) 1)
scattering angles of 160° and 180°

and at energies up to 255 MeV at
2) at the MIT-Bates facility.
Metallic targets of natural isotopic abundancy were used. The
cross sections were measured relative to that of the proton 3).
The contribution from charge scattering to be subtracted from the
measured cross section was calculated with the charge-distribution

4)

data thus obtained are shown in the figure. Good agreement between

parameters determined by Sinha et al The magnetic form factor
the different data sets is apparent.
The experimental data clearly deviate from the simple single-

particle prediction, indicated by the dotted curve. Several
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generalizations of the SP model were attempted in orxder to fit
the data where the experimental value for the magnetic dipole
moment was always used as a constraint. The only successful

parametrization found was
FZ = {(a1<3o> + B1<32>)2 + (a3<ia> + B3<jy>)?} FéM(q)f;(q)

where FCM and fp denote the centre-of-mass and the proton form
factors, respectively. This amounts to allowing different
effective g-factors for the M1 and M3 form factors. The radial
wave function R(r) for a ld3/2 proton was calculated either in

a HO or in a WS well. For the WS well the separation energy was
taken to be the experimental proton separation energy (6.38 MeV),
the spin-orbit term conforming to a spin-orbit splitting of

5.75 MeV and the diffuseness parameters 0.65 fm. Both the HO

and WS wave functions yielded equally acceptable fits:

HO WS
b or r 1.89 + 0.02 4.26 + 0.05 (£m)
<r?>® 3.54 + 0.03  3.59 + 0.03 (£m)
Q 6.8 + 0.9 6.6 + 0.9 (uyfm®)

Here only the statistical errors have been quoted. The value of the
octupole moment  obtained is approximately seven times larger

than the single-particle prediction — the dipole moment is
enhanced by a factor of three —. For the WS fit effective g-
factors are found of g = 4.64 + 0.11 and g, = 0.99 + 0.02

for the M1 and g = 5.5 + 0.5 and 9, = ~1.60 + 0.14 for the M3

form factor. At present adequate theoretical predictions of the
effects due to configuration mixing and core polarization

are lacking.
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EFFECT OF THE FREQUENCY DEPENDENCE OF THE NUCLEAR
MEAN FIELD ON THE RADIUS OF A VALENCE ORBIT

A. Lejeune+ and C, Mahaux,
Ingtitut de Physique, Université de Liége,
B4000 Liége 1, Belgium

Abstract. The mean field felt by nucleons is not only non-local,
but also energy (or frequency) dependent. The latter dependence
arises partly from core polarization and becomes particularly

large for valence orbits. It is neglected in the Hartree-Fock
approximation and is only roughly included in previous Brueckner-
Hartree-Fock or in standard density-dependent Hartree-Fock calcu-
lations., We investigated the influence of this energy dependence

on the single-particle energies and on the shape of the valence
orbit, for several nuclei. The resulting single-particle spectrum
is compressed near the Fermi surface, in keeping with experimental
evidence., The root mean square radius of the valence orbit is squee-
zed by about one per cent. This reduction is about four times smal-
ler than the one measured by recent magnetic scattering data. This
may be an indication of the importance of current exchange correc-

tions.

Contribution to the Discussion Meeting on "What do we know about

radial shapes of nuclei in the Ca region", Karlsruhe May 2-4, 1979

T presented by A. Lejeune
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EFFECT OF THE FREQUENCY DEPENDENCE OF THE NUCLEAR

MEAN FIELD ON THE RADIUS OF A VALENCE ORBIT

A. Lejeune and C. Mahaux,

Institut de Physique, Université de Liége,

B4000 Liége 1, Belgium

1, INTRODUCTION

In the independent-particle model, each nucleon is assumed to
move in an average mean field created by the other nucleons. This
model has proved quite successful in reproducing the spatial dis-
tribution of protons and of neutrons [1] as well as several other
single-particle properties, e.g. the single-particle energies.
Nevertheless, this simple model cannot hopefully be exact, and
corrections must be considered if one wants to achieve detailed
agreement with experimental data. In the present contribution, we
try to consider some of these corrections while remaining in the
framework of a mean field theory. Our purpose is not to fit any
particular experimental quantity, but rather to exhibit semi-quan-
titatively the nature, the effect and the magnitude of these cor-

rections.

2. MEAN FIELD APPROXIMATIONS

In increasing order of sophistication, the various mean-field

theories can be grouped into the following three main categories.

24, Local Mean Fiteld

In early calculations, the mean field was assumed to be local
and independent of energy. Its depth was given a simple parametric
form, for instance a Woods-Saxon radial shape

V(WS)(O)

w8 (zy - : (1)
| + exp[(z-R)/a]
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It is now well-established that this simple assumption cannot re-
produce simultaneously the density distributions and the single-

particle energies.

2B, Non-Local Static Mean Field

More elaborate approaches are based on a non-local field,
usually computed in the framework of the Hartree-Fock approxima-

tion. Let us use the simple example of infinite nuclear matter
! kg . Here, kF is the Fermi mo-

mentum. The Hartree-Fock field felt by 2 nucleon with momentum k

with uniform density p = 2(372) "
is given by

M - T &I

where } denotes a plane wave and where v 1is the nucleon-nucleon

interaction., This approximation is represented by graph (a) in Fig.

1, where the horizontal dashes represent v . In coordinate space,
the Fourier transform of M;HF)(k)

yields the non-local Hartree-Fock

k k k .
i~ S bd\ field MéHF)( ;—¥'|) . The single-
-0 b atr di a ‘ particle energies are given by
k kKT kf T
(a) (b) {c) (HF) _ K% (HF)
e, (k) 5 k° o+ Mp (k). (2)
Fig. 1

We note that equation (2) yields a relation k(e) which can
be used to replace the dependence upon k (non-locality) by a de-

pendence upon energy :

HF
) Gy o wBP) (o)) = wEP ey (3)
P ] P

The energy dependence of the resulting local-equivalent (energy-de-
pendent) Hartree-Fock mean field is characterized by the effective

ar

mass me* :

HF
0

o CHF)

0 (e) . (4)

% d
(e) = 1 -&—e- M
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In order to obtain a crude estimate of the Hartree-Fock field
M(HF)(r,e) in a finite nucleus, one could use the simple local

density approximation [2]

(HF)

(HF) -
M (r,e) Mp(r)

(e) > (5)
where p(r) 1is some input density distribution, e.g. the one gi-
ven by eq. (2.29) of ref. [3]. In order to compare the "Hartree-
Fock" approximation for the mean field with the simple Woods~-Saxon
parametrization (1), we shall rather adopt the following (equally
crude) prescription

(HF)
M(HF) (r’e) = \') (r,e) , (6)

1 + expl (r-R)/al

where

(HF)

V(HF) (r’e) = vp (r) (e)

C(HF) + Ie [l-m:HF)x(E)/m]dE . (7
°F

Below, we choose the integration constant CHF in such a way that

M(WS)(r) and M(HF)(r,eF) both have a bound

state at the experimental value ep of the Fermi energy (binding

the two mean fields

energy of the last closed shell).

The strength of the free nucleon-nucleon interaction is too
strong to justify the use of first-order perturbation theory, i.e.
of the Hartree-Fock approximation. In practice, one therefore re-~

"effective" nucleon-nucleon interaction. The

places v by a weak
latter may for instance be a purely phenomenological one, fitted
to some nuclear properties [4]. It can alternatively be estimated
from standard nuclear matter calculations based on a realistic nu-
cleon-nucleon force [3]. In all these cases, this effective inter-
action v is such that the effective mass méHF)x defined in eq.
(4) is essentially independent of the energy e . As indicated, the
effective mass may in some approaches depend on the demsity. This

is the case when one uses a density-dependent Skyrme force [5].Then,

m(hF)x
P
grounds.

(e) approaches m when p+0 , as required on rather gemneral

G.E. Brown et al. [6] pointed out long ago that empirical data

on single~particle energies contradict the assumption that mg is
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independent of e . These authors showed that one should have
mg(eF) = m , while m¥(e) = 0.7 m for |e-eF| > 20 MeV . This
"enhancement" of the effective mass near the Fermi energy e, was
interpreted by Bertsch and Kuo [7] as originating partly from the
process represented by the diagram (b) in Fig. l|. In the standard
Bethe-Brueckner approach to nuclear matter calculations, the con-
tribution of this diagram to the mean field is strongly suppressed
by requiring that the energy difference e(a) + e(b) - e(k) - e(j)
be larger than about 100 MeV . In other words, the standard ap-
proach disregards the possibility of exciting low-lying core sta-

tes by letting the valence nucleon k interact with the core

nucleon j .

2C. Non-Loecal, Frequency-Dependent Mean Field

Together with J.P. Jeukenne [8], we had investigated a new
version of the Bethe-Brueckner theory of nuclear matter, in which
the difference e(a) + e(b) - e(k) - e(j) 1is allowed to be very
small, In the Brueckner-Hartree-Fock approximation, the correspon-
ding mean field (sum of diagrams (a),(b),(¢),... in Fig. 1) 1is

both non-local and frequency- (or energy-) dependent

BHF > T >+ + >
M; )(kse) = X <ksJ|g(e)Ik’J_Jyk> ’ (8)
I<kg
where g(e) 1is the energy-dependent Brueckner reaction matrix.

The single-particle energies are now given by

(BHF) I P (BHF) (BHF) ‘
e, 2 10 e e O PI (9)
This equation gives a relation k(e) which can be used to replace

the dependence upon k (non-locality) by a dependence upon energy:

R S R R IO T BN T ORI (10)
The energy dependence of the corresponding local equivalent Brueck-

ner-Hartree-Fock field is characterized by the effective mass (see
eq. (4))

(BHF) ~ _d , (BHF)
m (e) = 1 Te Mp (e) . (11)
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In Fig. 2 (from [8]), we show the quantity (l1) as calculated from
Reid's hard core interaction (long dashes, left-hand scale). We note
that the effective mass now displays the required enhancement near

the Fermi energy e(kF) = ep

elk) - elkg) (MeV)

26 -10 0 14 51 101 156
J I | I 1 !
1.0 ~10
kg =110 fm™ .

09+
£
i3

08+

0.7}

0.6 1 ! | 06

00 05 10 15 20°
kike
Fig. 2

In order to compare this approach with approximations (1) and
(6), we used the parametrization

(BHF)
M(BHF)(r,e) - v (r,e) (12)

1 + expl[(r-R)/al

where

e
V(BHF)(r,e

y =V _m(BHF)x
)

(BHF) . o(BHF)
p(x) (e) = ¢ +f [1 (E)/m]dE . (13)

°F

C(BHF)

Below, we choose the integration constant in such a way

that the mean field M(BHF)(r,eF) has a bound state at the experi-

mental value en of the Fermi energy, thus sharing this property
. W

with M( S)(r) and M(HF)(r,eF)
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3. NUMERICAL RESULTS

We compared the single-particle energies, total densities and
single-particle wave functions obtained from the potentials
T oy, B (e w (BEE) In the

case of the

respectively.
m;HF)(e)
by a straight line between
150 MeV . We
1.230 Al/3

and ,e)

"Hartree-Fock" field, we used for the value

obtained from interpolating méBHF)(e)

= -50 MeV
a = 0,62 fm R =
(1), (6),(12).

For illustration, we give some results in the case of the nu-

4l1gc . We took ep = -8.365 MeV

level). The binding energy

that of the 1£f

square radius <r§ >1/2 ,

the values calculated at e-ep and e-e_ =

F

arbitrarily chose typical values and

fm for the geometrical parameters in egqs.

cleus (binding energy of the

e(lsllz) of the deepest single-

ld3/2

particle state, valence orbit and its root mean

7/2 1/2

and the root mean square radius <ri>
of the total charge distribution are collected in the table. As
e(ld3/2) e(lf7/2)

and largest in the case of

is smallest in the case
M(HF)(r,e) .

expected [6],
of M(ws)(r)

the gap

4lg,

1 1

2 2 2
e(lsl/Z) e(ld3/2) e(lf7/2) <rf > <rc>
7/2

(MeV) (MeV) (MeV) (fm) (fm)

u (WS) - 33.14 - 8.365 - 1.727 4.034 3.283

y (BHE) - 42.16 - 8.365 - 1.420 4.076 3.245

w (HF) - 41.64 - 8.365 | - 0.801 4.106 3.245
The root-mean square radius of the valence 1If orbit is

(%42

squeezed by about one per cent in the case of M (r,e) as com-
M(HF)(r,e)

of the difference between recent experimental measurements

pared to This goes in the right direction to account
for part
[9,10] and Hartree-Fock calculations.

There exists an intimate physical relationship between the ef-
fect investigated above and the recent work by Castel and Goeke
[11].

These authors adopted, in a density-dependent Hartree-Fock
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calculation, a Skyrme-2 effective nucleon-nucleon interaction
(m*/m = 0.58) for all core orbits (up to “OCa) and a Skyrme-6
interaction (m*/m = 0.95) for the valence f7/2 orbit. This
mocks up the frequency dependence of the effective interaction, or
equivalently the frequency dependence of the mean field. The value
(0.37 m) assumed by Castel and Goeke [11] for the difference m*

(£7/2
have calculated. Hence, it is not surprizing that they found a much

) - m¥ (d3/2) is much larger than the one (= 0.04) that we

larger squeeze (= 4.5 7) for the radius of the valence orbit.

The possible importance, in the present context, of the enhan-
cement of the effective mass near the Fermi energy was pointed out
by Zamick [12]. The physical interpretation is that the enhancement

(BHF) (BHF)
of m (e) somewhat above e=e renders M (e)

F
than M(HF)(e) , for e-e, = several MeV .

deeper

According to Bertsch [private communication, 1979] the excita-
tion of low-lying vibrations could reduce the size of the squeeze
of the radius of the valence orbit, Bertsch argues that these vi-
vrations will render the enhancement of mg(e) particularly large
at the nuclear surface. However, we have seen that the enhancement
already exists in uniform nuclear matter. We note that our expres-
sion for ms(e) has been chosen in such a was that mg(eF) + 1,22
m for p+0 , in order to account qualitatively for the role of
surface vibrations.

Brown et al., [private communication, 1979] have investigated
the effect on an orbit of the fact that mg(e) is larger at the
nuclear surface than in the nuclear interior. Inasmuch as we are
informed of their work, it seems that these authors compared the
(lf7/2) wave functions in two potential wells, one which is non-
local and one which is local. Both are chosen in such a way that

they yield the same binding energy e (I1f They find that the

7/2)
orbit in the non-local well is dilated with respect to that in the
local well. Thus, the non-locality of the mean field cannot account
for the squeeze of the valence orbits. We emphasize that nuclear
matter calculations show that the non-locality is approximately the
same for all orbits [8]. This is why in our model the squeeze of
the valence orbit originates from the energy dependence of the mean

field, and not from its non-locality.
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In conclusion, we believe that the frequency dependence of
the mean field leads to a squeeze of the valence orbits with res-
pect to the bulk of the nucleus. However, this effect appears to
be too small to explain the empirical observations. It has recently
been suggested by Dubach [13] that meson exchange current correc-

tions may play an important role in the analysis of the data.

We are grateful to G. Bertsch, G.E. Brown, B, Castel, K. Goeke

and L. Zamick for stimulating discussions and correspondence.
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In recent years, a number of powerful methods have been
developed for deriving the gross properties of finite nuclei from
the two-nucleon force. Among these properties the nuclear densi-
ties appears to be the richest source of information by which
the validity of these methods can be studied. The aim of this talk
is first briefly overview the status of theoretical efforts to
evaluate nuclear densities and secondly examine how well the
calculated densities of nuclei of the Ca region agree with

experiment.

THE NUCLEAR MEAN FIELD APPROXIMATIONS

The reaction G matrix

Most of the microscopic calculations of the ground
state of nuclei in the medium mass region are more or less based
on (or supported by) the Brueckner theory. The basic element of
this theory is a microscopically derived effective interaction
G(w) =V + vVQ(w - Hpe (1) - H0(2))"1QG(w) which accounts for the
scattering of two nucleons in the nuclear medium up to all orders
in the free-nucleon potential V. >/?/\/< = >_Y_< :'__'{ +J: ¥
Thus are built into the wave function the short—range correlatlons
resulting from the repulsive core of the nuclear interaction. The
parameter w 1is the energy available for the two interacting

nucleons. The reaction matrix G(w) depends on the Pauli operator Q

b3 . . =
Laboratoire associé au C.N.R.S.
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and on the single-particle hamiltonian Hgo = K + U, where K is the
kinetic energy and U the average single-nucleon potential in the
nucleus. A second form of resummation of the perturbation series
involves the definition of this one-body potential. It has been

explicitely shown that the three classes of diagrams

\/.-x=\\é<~o+\2}[\~(£0 VS B R

“) @) Q3)

are very important in finite nuclei. This means that every diagram
which contains the one-body potential = - )( exactly cancels an
important class of similar diagrams in which —~—- X is replaced
by the terms shown on the right. Diagram (1) corresponds to the

standard definition of the

oi6
. | oL—WFQQ, | ‘ Hartree-Fock potential. It's
oM- \\{ :::iﬁfsi: 7] the only one retained in the
ORZ\\\Q:\\\:::ixﬁgﬁgﬁémm;\[m B calculations denominated
R ‘q\ Brueckner-Hartree-Fock
TooofTg - (BEF) [1] . Diagrams (1)
g mm:\\\{\ 1 and (2) (single particle
° spectra rearrangement) are
§ 006(— — included in the Renormalized-
Brueckner-Hartree-Fock
. ] calculations (RBHF) [2].
002 - The three insertions (1) +
| (2) + (3) (Pauli rearrange-

ment) are needed in order to

make the two-body cluster

- Fig. 1 -

energy stationary. This is
realized in the calculations called Density-Dependent-Hartree-Fock
[3,4].

The necessity of including the important diagrams in
the one-body potential becomes apparent when one calculates the
one-body density. As an example, comparing curves a,c and d in
Fig.1, taken from Ref.[5] , one sees the crucial role of the
rearrangement diagrams (2) and (3) in obtaining the proper satura-

40

tion for the charge density of Ca. (The experimental density is

practically indistinguishable from curve e). However the crucial
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point in these Brueckner calculations appears to be the convergence
of the series. Because of the numerical complexity, present calcu-
lations of medium mass nuclei do not go beyond this mean field
approximation including diagrams (1), (2) and (3). However, recent
calculation in infinite nuclear matter [ 6] including higher order
diagrams, seems ﬁo indicate a convergence in the binding energy
and in the saturation density.
The perfect agreement with experiment it is not for
the moment the main objective of these calculations based on
"first principles”". We know from the three-body problem (where the
Schrddinger equation may be solved nearly exactly with realistic
two-body forces) and also from the calculations of light nuclei
based on the formalism of Coester, Kimmel and Zabolitzki [ 7]
(which is equivalent to summing G-matrix ladder diagfams, three-
body Faddeev diagrams and RPA ring diagrams) that an agreement
between theory and experience it is never achieved for the one-body
densities. This is probably due to the shortcomings of the used
two-body force (the Reid soft-core potential in most cases), but
also for neglecting three-body forces and relativistic effects.
Because of the inadequacy of our present understanding
of nuclear forces and relativistic corrections and given the
difficulty to calculate higher order diagrams in the mean field
expahsion, in some approaches it has been introduced a phenomenolo-
gical adjustment of the calculated G-matrix to account for the
deficiencies in the saturation properties [3,4]. A single choice
of a two-parameter correction to the short range part of the
G-matrix yields systematic agreement with experiment throughout
the periodic table. (For double-magic nuclei maximum deviations
between theory and experience are of the order of 2 % for the bin-
ding energies and less than 1 % for the r.m.s. radii of charge
densities [4]). The effect of this adjustment on the charge density
of 40Ca is represented by the difference between curves 4 and e
in Fig.1 [5]. These gratifying results give some confidence on the
validity of the mean field approximation and encourage the hope
that in a near future, using better nucleon-nucleon forces [8] and
more efficient techniques for evaluating diagrams, a more complete

understanding of the properties of the nuclear ground state will
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be achieved.

Phenomenological effective interactions

In parallel with the development of the theories we
have overviewed, many other calculations with simple phenomenolo-
gical interactions have been performed. The goal with these
rhenomenological interactions is to fit, rather than derive, the
principle characteristics of the nuclear ground state. The great
advantage with these interactions is that they reduce drastically
the computational complexity of the calculations. The price we pay
for this is that there ;s no way to theoretically improve the
method because one never deals with the free nucleon-nucleon inter-
action. The functional structure of these simple effective forces
is substantiated by a density matrix expansion of the exchange
terms in the HF equations (case of the Skyrme [9,10] , Moszkowski
[11] and Beiner-Lombard [12] forces, including zero range,
gradients and polynomials in the density terms) or by a schematic
parametrization in r-space of the general behaviour of G-matrices
(case of forces B of Brink and Boeker [13] and force Dlof
Gogny [ 14] ). The values of the different parameters (six free
parameters in the Skyrme forces, fourteen in the Gogny force ) have
been adjusted to achieve the best possible description of a given
set of experimental data. At this point it is interesting to notice
that the fit of solely binding energies and r.m.s. radii do not
suffices to define the optimal incompressibility of the nuclear
matter and the non-locality of the mean field, guantities which
play an important role in determining the properties of the

nuclear densities.

Corrections to the HF densities

Before to be compared with experiment the calculated
point-like proton densities have to be corrected for the well
established electromagnetic corrections : proton and neutron form
factors and spin-orbit coupling. Both proton and neutron densities

have to be transformed to the center of mass frame. This
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transformation is not unique and the resulting uncertainties
are not negligeable in light nuclei.

Another significant question concerns higher order
contributions to the perturbation expansion of the ground state
expectation value of the one-body density operator. The lowest

order contributions may be written

OOVVO’ _~.x0:D OW(D’ &:& @

(the dot denotes the density operator and —-- X  the one-body
potential). The first term is the Hartree-Fock or single particle
density. By taking into account in the definition of-the potential
the termsof equation (1), the next four graphs cancel. The only
second order correction is the sum of the last two diagrams, which
describes the change in the one-body density due to two-body
correlations. Numerical evaluations of these diagrams [3,15] in
40Ca yvields very small corrections. Low lying excitations,
however, which give rise to long range correlations, are not
properly handled in these calculations.

An alternative approach is to evaluate the ground
state correlations in the framework of the RPA [16] . Recently
using a phenomenological effective interaction the corrections
to the densities of 40Ca and 48Ca have been calculated [17] .
The results are shown in figure 2. We see that these corrections
are very large, in apparent contradiction with the perturbation
results. It is interesting to remark that in this calculation
80 % of the correction to the central density of 40Ca (and 56 %
in 48Ca) arise from the coupling with the 37 state, which is very

collective in the RPA. Obviously more work in this direction

is needful.
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- Fig. 2 -

COMPARISON OF THEORETICAL DENSITIES WITH EXPERIMENT

The best test of the quality of the theoretical densi-
ties is the direct comparison with experiment of the calculated
elastic scattering cross sections of various projectiles (e  for
charge densities, p, 4He.. for neutron densities). At the same
time, it should be pointed out that in this direct comparison it
is difficult to recognize the origin of particular disagreements
or even accidental agreements between experiment and theory.

To understand the origin of the shorﬁcomings of the
various methods it is more instructive to discuss the behaviour
of p(?) in real space. The big advantage is that one can use
more physical intuition in attempting to recognize the origin of
certain salient features of the densities, such as the r.m.s.

radii, the surface thickness or the gquantum oscillations.
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Principle characteristics of nuclear densities : Radial

moments, surface thickness and quantum oscillations

k > k. - >
The radial moments <r > =‘/b(r)r dr/<7b(r)dr are

among the few characteristics of the density which are objectively
<r251/2

well defined. The r.m.s. radii r, = of charge densities
can be measured and calculated with great accurancy. However the
comparison of theory with experiment for a single nucleus like
40Ca is of few interest, because as we already mentioned, most
of the calculations have been adjusted to reproduce the observed
r.m.s. radii of double magic nuclei. Although the absolute value
of r. for a given nucleus is not well defined by the theory, its
variation with the mass number should be. This is because the
variation of the radius depends critically on a balance between
the incompressibility of nuclear matter and shell effects. It is
this balance which one hopes to have correctly reproduced. Also
the neutrons radii r. and the differences between protons and
neutrons rn—rp, which have not been adjusted in the theories,
are of great interest in many problems of nuclear physics. In
table 1 we compare to experiment the results of a DDHF calcula-
tion [ 4] (which contains a phenomenological adjustment consisting
in a single choice of two parameters chosen to improve on average
E/A and kF in nuclear matter and the binding energies and r. radii
of double magic nuclei). It is guite remarkable the agreement
for the neutron radii, in absolute value and for the differences
between neighbouring nuclei. For the series of isotopes, the
variation of the r radius is the consequence of the increasing
number of particles in an external orbit (f7/2), which is a first
order effect and follows approximately the low A1/3. This effect
is partly compensated by a second order effect, the core polari-
zation of the core neutrons by the extra neutrons in the external
shell (see Fig.lc of Ref.[19]). For ca isotopes one observes that
r = .98 al/3,

As was shown by Bertozzi et al. [18] the famous
anomaly between the charge radii of 48Ca—4OCa can be nearly resol-
ved by taking into account the effective charge densities generated

by the neutrons form factor and the e.m. spin-orbit interaction.

Some remaining disagreement can be attributed to a shell closure
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EXperiment G-0 force(e)
*a * x %
r r r -r r r r -r
c n n p c n n p
4OCa 3.479 b 3.38%.04 -.02+.04 3.406 3.36 -.04
42 g
Ca 3.509 3.42%,04 -.02%.04 3.46 3.44 .02
44 g
Ca 3.507 3.49%,05 04%.04 3.46 3.50 .08
48 d
Ca 3.467%.007 3.58%,04 17%.04 3.46 3.59 .18
39 3.429+.018% - - 3.42 | 3.35 -.01
48 | 3.57 f - - 3.54 | 3.56 .06
All lengths in fm
*
( )Point -like nucleons ; (a) Ref.[19] ; (b) Ref.[20] ;
(c) From isotope shifts 40_42Ca and 40-44¢4 Ref.[21] ;
(d) Ref.[22]; (e) calculated with the formalism of Ref.[ 4] ;
(£) From the 487i-40ca isotone shift Ref.[21]
(g) From Ref.[27].
- Table 1 -
, , 8 0 (%)
effect, which is known to be more marked for Ca than for Ca .

In the RPA calculations of Gogny [ 17] this correction is even too

large. It has to be emphasized that one obtains these sensible
results only if one uses a theory which reproduces the binding

0Ca and

energy difference between

neutron orbital correctly.

48Ca and which places the f7/2

This is because the isotope shift of

charge densities is a polarization effect of the proton core by

the extra neutrons. The magnitude of the effect depends critically

(%)

Presumably the observed large isotope shifts for

0
4 Ca—44Ca,

0Ca—42Ca and

not reproduced by the present DDHF calculation, are

also due to the effect of the neutron open shell.
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on relative radial positions of the proton core density and the
density of the polarizing neutrons. As an example, by shifting
(changing the spin-orbit force) the neutrons 1f7/5 energy by

4 MeV (many HF calculations give larger errors for the 40Ca—48Ca
binding energies difference) causes a change in the charge radius
of 48Ca of .006 fm. This is of the same order as the experimental
difference between the charge radii of 40Ca and 48Ca. The energy
of the 1f7/2 neutron orbit is also strongly correlated with the
rn—rP differences. We see in table 1 that these differences for
the Ca isotopes are understood in the framework of a DDHF
calculation.

The surface thickness is a second characteristic
quantity for the densities which can be defined without great
ambiguity. One definition [23] which gives an average over the
entire surface region is given by the slope of the radial moments
=[6 R R}'{]l/2 /T  where Ry =[5§1 <rk>:|1/k and R} = g§£ .

" is practically independent of k

(1 é k é 5). For a Fermi distribution with parameters R,a this

ayx k

For a well-behaved density, a

definition gives a, ® a, to terms of the order (a/R)*® . The

surface thickness :f the calculated densities is governed essen-
tially by the non-locality of the nuclear mean field and by the
incompressibility of the nuclear matter (") [25,23].

In table 2 we compare the surface thickness of the
charge densities calculated with various interactions. We see
that forces with small incompressibility and large non-locality
(Brink-Boeker force Bl) yield larger thickness than forces like
Skyrme III (large K and reduced non-locality). From the comparison
with experiment we remark that all calculations account for the

decreasing in the thickness between 40Ca and 48Ca

(+)

A semi-quantitative relation between the surface thickness and
the incompressibility of the nuclear matter and the non-locality
of the potential has been derived for semi-infinite

systems [ 26] .
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Effective Surface Thickness (fm)
interaction 40Ca 48Ca
Skyrme III 0.50 0.47
Skyrme V 0.52 0.50

Beiner-Lombard 0.53 0.49
Brink-Boeker Bl 0.54 0.50
DDHF - GO 0.52 0.48
Experiment 0.53+.01 0.49%.01
(calculated from data of Ref.[20,22]

- Table 2 -

The surface thickness of the experimental mass distri-
butions (p_ + pp) deduced in the analysis of Ref.[19] are compared

to the results of the calculation DDHF-GO in table 3.

2 |
aMass 4OCa 4 Ca 44Ca 48Ca
(fm)
Exp (%£.02) .47 .54 .51 .45
DDHF-GO .49 .48 .48 .47
- Table 3 -
Presumably the observed large values for 42Ca and

44Ca are also due to long-range correlations in the open shell

f7/2, not taken into account by the DDHF calculation.

The situation for the guantum density fluctuations in
the interior of the charge densities is summarized in fig. 3 where
we have compared to experiment [20] the densities calculated with
two Skyrme interactions SIII and Sv [ 10] and with the G-0 force.
We see that the purely phenomenological interactions give about the
right amplitude of the oscillatibns whereas the semi-phenomenologi-
cal long range force G-0 gives too large oscillations. This

particular behaviour is common to all forces based in a short range
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expansion (Skyrme [12] , Moszkowski [11] , Beiner-Lombard [ 13]) on
one side and to long range forces (Negele [3] , 60 [4] , Gogny
[14]) on the other side. Notice that the situation is the opposite

for 208Pb (Skyrme-like forces give larger oscillations). To explain

T T J T g this particular effect Friar
f%#ﬂ”nv% and Negele [25] used an argument
based on the relation between
the density and the one-body
potential. However the reason
why the sophisticated semi-
phenomenological approaches give
too much oscillations is still

an open question. Probably the

corrections due to the two-body

correlations must help in solving

0. 1. 2. r(fm) this problem.

Density differences between neighbouring nuclei

The density differences between neighbouring nuclei
(isotones/isotopes) provide an intuitive picture on how the nucleons
distribute in valence orbits and/or how the core is polarized by
these valence particles. In figure 4, taken from Ref.[24] is
. shown the charge density
Aptr) difference between the
isotones 40Ca—39K. The
0.002; proton 1d3/p single
particle radial wave
0.0011 function and a small pro-
ton core dilatation are

clearly seen. Figure 5

shows the charge density
48Ca_40Ca

40, 39, oo
-0.001- difference

---DDHF G-0 taken from Refs.[ 20,22],

i.e. the polarization of

- Fig. 4 - the Z = 20 protons by
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the 8 extra neutrons in the orbit f7,/2. We see in both examples
that a DDHF calculations accounts semi—quantitatiVely for the

experimental results. An

' example of neutrons densit
- Aph (fm-3) 1 P a8 40 ¥
o002t € P {1 difference ("“Ca-""Ca) is
. p / .
y'd shown in Fig. 1c of
0- 7 W
- /4 { Ref.[19].
ad ’ -
L / ]
Tl Exp-.
i -—— DDHF(GO) i
- 005} J
7‘ 48Cq_40C0 i
1 1
1 3, 5 pifm)
- Fig. 5 -
CONCLUSIONS

We have briefly overviewed the present status of
theoretical efforts to derive the radial shape of nuclear densi-
ties in the framework of the mean field approximations. Some
emphasis has been putted in clarifying the various approaches
according to their degree of phenomenology : Calculations in which
the mean nuclear field is derived from the bare two-nucleon
interaction (RBH and unadjusted DDHF), with one or two free para-
meters improving the saturation properties (adjusted DDHF), and
purely phenomenological. For nuclei in the Ca region not far
from the closed shells to which the mean field approximation is
applicable the last two approaches yield reasonable agreement with
experiment for most of the salient features of density distri-
butions (r.m.s. radii of charge and neutron densities, surface
thickness, isotope and isotone shifts). On the other hand the
problem of the amplitude of the quantum oscillations in the
interior of the densities is in our opinion not well understood.
Another completely open question is the importance of the long-
range correlations and the related question of the significance

of the ground state RPA correlations.
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THE NEUTRON AND PROTON DISTRIBUTIONS

OF THE CALCIUM ISOTOPES

B.A.Brown, S.E.Massen and P.E.Hodgson

Nuclear Physics Laboratory,

Oxford

The calcium isotopes are worthy of special study because they are
the first 1long chain of experimentally-accessible isotopes in the
‘periodic table ard they are bounded by two nuclei, 40ca and 48Ca, with
closed-shell configurations that are suitable for Hartree-Fock
calculations. As shown in Table 2, their RMS charge radii are very
irregular compared with the global Al/3  yariation. It is thus an
important test of nuclear theories to see whether this microscopic

structure can be understood.

Ideally, .it would be desirable to carrf out Hartree-Fock’
calculations for all the calcium isotopes, constraining the occupations
of orbitals near the Fermi surface by the results of ancillary shell
model calculations and by experimental data. Since this is very
difficult, we use a simpler approach in which it is assumed that all
nucleons feel the same average potential whose parameters are adjusted
to reproduce experimental single-particle centroid energies and RMS

radii. It is also assumed that all orbitals ezcept those near the Fermi
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surface are completely filled. This method is in a sense complementary

to the Hartree-Fock calculation..

In our model, the roles of the iscscalar core density, tbe
isovector core density and the valence density are distinguished, the
interaction between the core and valence particles is included and the
Coulonmb and isovector potentials are treated self-consistently. These
calculations are first made for the core nucleus 40Ca, and are then
extended through the isotopic sequence by the addition of a valence

potential.

Our calculations proceed in two stages: we first obtain
semi-self-consistent distributions for the core nucleus and then extend

the calculations to include the valence nucleons.

We use a potential of the standard form

Vo, n(E) = Voou1(r) + Vp,nf (r) + Vg (r) 1)

where VCoul(r) is the Coulomb potential that is present only for

protons, Vp'nf(r) the central potential, Vgo(r) the spin-orbit potential
and f(r)=[1l+exp{ (r-R)/a}1L.

Instead of the usual expression

Yon = Vo * B2V (2)
we use

‘ pq(r)

Von=Vo -1V (3)
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where

©
Il

o = Pnlr) + Py(r) (4)

and

‘/pl = pn(r) - pp(r)

where pn(r} and op(r) are the neutron and proton distributions

respectively. Unlike (2) the form (3) has an isovector potential which
is non-zero for N=Z nuclei, and so enables the difference between the
neutron and proton distributions for these nuclei to be calculated self

consistently.

We begin by adjusting the parameters Vo, and R to give the rms
charge radius of a closed-shell (core) nucleus, and the experimental
proton single-particle centroid energies. - The neutron and proton

distributions are defined by expressions of the form

=1 1L g |2 "
p(r) e Z n(nlj) | ;—Unlj(r) | (5)

where the n(nlj) are occupation probabilities, Unlj(r) the radial

wavefunctions and the sum runs over all occupied orbits. The symmetry

potential V;=-30 MevV and the other parameters have standard values Vg,=7
MeV, a=0.65fm.

After the first calculation, the proton and neutron distributions
are inserted in (3) and the whole calculation iterated to

self-consistency in the proton and neutron distributions.

To extend the calculation to nuclei with wvalence nucleons, the

central potential is written in the form
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Vp,nf(r) = {Vo po(r) t Vi pl(r)} F(r) (6)

where F(r)=f(r)/poc(r), and poc(f) refers to the core nucleus. This
expression 1is identical to (3) for the core rnucleus but for nuclei with
valence nucleons, it has additional terms that include the effects of

the interaction between the core and valence nucleons.

Using this potential, the calculation can then be repeated for the
nuclei in an isotopic sequence without any additional parameters.
Throughout the calculation the potentials are constrained to fit the
single-particle centroid energies and the orbit occupation probabilities
are taken from analyses of nucleon transfer reactions, from shell-model
calculations, or as parameters adjusted to reproduce the isotopic

changes in charge radii.

The experimental charge density of 40ca is shown in Fig.l. The two
experimental curves arise from a discrete ambiguity in the analysis of
the charge form factor which results from a phase ambiguity in the data
around g=3.2fm (Sick 1974a). Recent experiments at high q transfer have
shown that the smoother density (curve I in Fig.l) 1is correct (Frois

1978) ..

The charge density has been calculated assuming a closed shell
configuration (labelled IIA in Fig.l) and a non-closed shell
configuration (labelled IIB in Fig.l); the parameter R is 4.614fm and
4.,562fm, respectively. It 1is amusing that the calculated shape
corresponds closely to the "incorrect" experimental distribution (II).
Hartree-Fock calculations give a shape of the charge distribution nearly
identiéal to the present calculation but with an interior magnitude

which is quite sensitive to the interaction (Negele 1970, Campi and
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Sprung 1972). In all of the calculations the interior bump is due to

the filled s orbits.

Thus all calculations for 20Ca show much more interior structure
than is found experimentally; this may mean that the effective
many-body interaction is more complicated than the ones which have been

inferred from the "surface" properties of nuclei.

Numerous calculations for the Ca isotopes have been carried out
using the standard Woods-Saxon approach (Gibson and Van Oostrum 1967,
Elton 1967, Elton and Webb 1970, Malaguti et al 1979). Relative to the
present calculation the fault of these calculations is that there are
too many parameters. Hartree-Fock calculations have been carried out
for 40ca and 48ca but they do not give very good agreement with
experiment (Negéle 1970, Bertozzi et al 1972). As will be shown below
the probable fault in the conventional Hartree-Fock approach is that

non—-closed shell configurations are ignored.

The most accurate experimental data on the rms radii is provided by‘
the muonic atom experiments. The Barrett radii are given in Table 1 and

these are converted into equivalent RMS radii using the scaling relation

0.5
ars

<rke
(rch)ilB = | e (rch)igB
<rke"“r>£g3

and the results are given in Table 2, The comparison of the RMS radii
using a Fermi shape in the muonic atom analysis [(rch)E] is quite close
to the values we infer from the Barrett radii [(rch)ﬁIB].

((r )IIB=(r

I1IA R
ch)u Ch)u to within ¢0.002fm).
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The experimental density difference between 48ca and 40ca is shown
in Fig.2. The broken lines are the model-independent analyses of Sick
(1974a, 1978), the two corresponding to the discrete ambiguity of 40ca
of which (I) is correct (Frois 1978). The solid line is the
model-dependent analysis of Frosch et al (1968) for which a modified
Fermi distribution was assumed. The various densities agree relatively
well. The model dependent densities of Frésch et al for 42ca and “ca
relative .to 40ca are shown by the solid lines in Figs.3 and 4,
respectively; a model independent analysis is not available in these
cases. It is interesting to note that the magnitudes of the density
change relative to 40ca as shown by the solid lines in Figs.2, 3 and 4
become progressively larger in going from 42ca to 48Ca whereas the RMS

charge radii of 40ca and 48ca are nearly equal.

In our calculation we first consider the situation for a closed sd
shell and valence neutrons in the f£p shell; We use simplified but
realistic (McGrory et al 1970) fp shell occupation probabilities of 90%
1f7/2 particles plus 10% 2p3/2 particles. The isotopic dependence of
the RMS radii is small and smooth in disagreement with experiment (Table
2). However, the density changes as shown by the dot-dashed (labelled
IIA) curves in Figs.3, 4 and 5 are large and in rough qualitative

agreement with experiment.

Hartree-Fock calculations (Negele 1970) have been made with this

assumption of a closed sd shell. If we further restrict the neutron

configuration in 48ca to be 1008 £7/2 then our calculated proton charge

density difference Ao(r)gg is similar to the Hartree-Fock results as

shoWn in Fig.6.
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Now we consider the amount of excitation of prétons ‘from the sd
shell to the fp shell which is needed to reprcduce thé Ca RMS radii. 1In
order to limit the number of pagameters we first notice that the density
change in the region r=0-1fm is extremely sensitive to the change in
occupation of the 2s; /) orbit. The small dip in the cenfre. of the
experimental (Sick I) 48ca-40c, density difference shown in Fig.2 can be
explained by a change of only 0.04 particles in the 2sl/2 orbit between
40cy  ang 48ca, The flat interior density differences for 42ca and 44ca
obtained by Frosch et al shown in Figs.3 and 4 indicates that there is
no change in the 2sy,) occupation probability between 40ca, 42ca and
44Ca; however, this is probably due to the restricted Fermi shape used
in the experimental analysis and a model independent analysis of higher .
q data would pfobably reveal interesting interior structure for 42¢3 and
44ca, For the éresent, it is be adequate to assume that the 251/2 orbit

is full for all the Ca isotopes.

The Ca isotopes have been studied with the following one-parameter

wave functions, for n>2

|40+nc,s = ml(\)f.]/2 p3/2)n>
+B|(nd3/2)'2 (£5 p3/2)2 (VE7 /3 p3 /)™ ' (7)
and for 40ca
140ca> = a|0>
8l ndy )L (69 D) (vag Tt (7 5 byt (8)

where |0> is the closed shell configuration. We use this wave function
schematically to obtain the number of proton holes in the d3/2 orbit

relative to 40ca which is given by

a(n) = 282(40+ncy) - 52(40cy), (9)
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As above, it is assumed that the f7/2 P3/p configuration is 90% £7,, and
10% P3 /2.

At first A(n) is chosen to reproduce the experimental RMS radii and
fhen the density difference is compared with experiment to test our
assumptions. For A(n) we find A(2)=1.0, A(4)=1.1, A(6)=0.35 and
A(8)=~0.4. The negative number for 48c4-40ca is not surprising; it
means that there is more core excitatién in 40ca than in 48ca. The wave
functions we have used cofrespond to values of 82=0.7, 0.85, 0.9, 0.525,
and 0.15 for 40ca to 48Ca, respectively; It should be emphasized ’that
these wave functions have little meaning in themselves because they do
not explicitly contain the more complex four-hole configurations,
whereas the values of A obviously depend on the total number of proton

holes coming from all configurations .

In Fig.5 the calculated difference for the 4805-40ca charge density
is shown for the various approximations which have been used; for a
closed sd shell plus eight f7/2 neutrons, for a closed sd shell plus an
(fp) neutron configuration (IIA) and finally for the A(8)=-0.4
- configuration (IIB). As pointed out by Bertozzi et al (1972) the
contributions from the neutron finite size and spin-orbit correcfions
are imporfant in this case. These corrections have been included in all
our calculations. In Fig.7 the spin-orbit correction for the (1f7/2)8
configuration is shown and compared with the more realistic (fp)8
neutron configuration which has 10% P3/2. The calculation with
A(8)=-0.4 is compared with experiment in Fig.8 (Sick I from Fig.2); the

agreement is excellent.
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A comparison of the calculated and experimenﬁal charge density
differences for %42ca-40ca and %44ca-40ca. is shown in Figs.3 and 4,
respectively. In both cases but especially for 42c3 the calculations
which include core excitation (IIB) are much improved compared with the
closed shell calculations (IIA) especially in the important surface
region. In these figures we give a third calculation (IIC) in which the
amount of 2p3 ;» admixture has been increased to 20% to show the
sensitivity to this parameter. A more detailed comparison in these
cases must await a better experimental determination of the density
change and theoretical calculations of the form factors F(g). For
completeness the calculated density change for 46ca-40ca is shown in

Fig.9.

Now it ié very interesting to compare our values of A with other
experimental and theoretical determinations of .this quantity.
One-proton transfer spectroscopic factors should be a sensitive  measure
of the number of proton holes and the literature concerning these
reactions for the Ca isotopes is extensive. For example, the stripping
reaction on 42ca leading to positive parity states in 435c is a direct
measure of the number of proton holes in the sd shell H(sd) in 42Ca, and
the pickup reaction on 42c4 leading to negative parity states in 4lg is
a direct measure of the number of proton particles in the fp shell,
P(fp). Values of H(sd) and P(fp) extracted from a sumrule analysis are
given in Table 3. If everything has been carried out properly for a
given nucleus we should have A+§=P(fp)=H(sd) where & is chosen to give
the absolute number of proton holes in 40Ca and we have rather arbitrary
chosen 6=0.7. It is seen in Table 3 that in fact none of these three

quantities agree very well. For the stripping and pickup reactions this
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is a serious problem which has been pointed out previously (Dehnhard and
Cage 1974, Doll et al 1976). We feel that the main difficulty is that
in order to make use of a sumrule analysis one must be careful to
include all the high-lying 1levels and to take into account the
well-known anomalies that result from comparing 1levels with very
different binding energies (Moalem et al 1978). The parameter A should
be the most direct measure of the number of proton holes in the Ca

isotopes.

Shell model calculations for ‘the Ca 1isotopes which include
excitations from the sd shell have been progressively improved but still
seem far from explaining the entire experimental situation. Many
calculations have used a (d3/2, £7/2) basis. Three different types of
calculations have been made fqr 40c; within this basis; Gerace and
Green (1967, 1969) have considered configurations up to 8p~8h but in
which the £, , particles are restricted to couple to isospin T=0,
Federman and Pittel (1969) and more recently Seth et al (1974) have
considered configurations up to 4p-4h but allowing all values of T for
the f7/2 particles, and finally Sakakura et al (1976) have used a
complete basis (up to 8p-8h with all values of T). The values obtained
for' the number of proton holes in the d3/2 orbit in 40ca in these three
calculations are §=0.19, 6=0.53 and 6=0.76, respectively. Only the
least two are in agreement with the experimental values given in Table

3.

It is interesting to compare our value of A(2)=1.0 with the values
obtained from these shell model calculations. Gerace and Green obtain
4(2)=0.24 and Seth et al obtain A(2)=0.37; both are in poor agreement

with the experimental wvalue. The full-basis calculations such as
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Sakakura carried out for 40ca apparently fail complefely when they are
extended to 48Ca (Graf et al 1978) and the results of these calculations
have thus not been reported. It seems, however,‘ that full-basis
calculations of this type will be needed in order to understand A2¢,,
Flowers and.Skouras (1969) considered an extended basis of (sl/2, d3/2,
f7/2, P3/2) for 42ca  with 2p and 4p-2h components. In two
approximations, A and B, they obtain wave functions which give
A(2)+6=0.20 and 0.41, respectively; these are in very poor agreement

with the present value of A(2)+6=1.7.

In addition to these fully microscopic calculations, simple
schematic wave functions with two or three components have been
constructed in order to understand transition matrix elements and alpha
transfer for the Ca isotopes (de Voight et al 1974, Towsley et al 1973,
Fortune and Cobern 1978, and Graf et al, 1978). The two-component wave
function which Towsley et al use to explain E2 transitions, in 42c, gives
A4(2)=0.52 and the three-component wave function which Fortune and Cobern
use to explain alpha-transfer to 42Ca gives A(2)=0.47, neither of which'
is in agreement with the present value of A(2)=1.0 obtained from the
ground state charge radii. However, one must consider whether or not
the transition rate and alpha-transfer data could be equally well
explained by using wave functions with more components with more core
excitation. Graf et al have considered two-component wave functions to
explain the excitation energies and the E0 transition matrix elements to
the excited 0% states for all of the even-even Ca isotopes. With their
wave functions they find A(2)=1.09, A(4)=0.81, A(6)=0.24 and A(8)=-0.08
(see Table 5 in Graf et al 1978), which are in rather good agreement

with the present results of 1.0, 1.1, 0.35 and -0.4, respectively.
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However, the value of §=0.21 which they obtain for 40ca seems too small.
Thﬁs at present it seems that we need different models to explain
different data for the Ca isotopes and clearly the only unified approach
to this problem 1is a careful calculation of all quantities in a large
shell model basis such as has been used by Sakakura et al (1976) for

40Ca.

We want to emphaéize the differences between the occupation numbers
imposed by the electron scattering data and the occupation numbers
obtained from one-proton transfer experiments. In Table 4 we 1list the
"experimental" occupation probabilities obtained by Malaguti et al
(1979) from a combination of .the stripping and pick-up strengths
summarized by Doll et al (1976). These occupations have been used to
calculate the charge densities, and the differences are plotted in
Fig.10. First we note that the calculated differences in the RMS charge
radii of 0.006fm and 0.019fm for 42Ca-40Ca and 44Ca--40Ca, respectively
are not in agreement with the experimental values of 0.031fm and
0.039fm, respectively. Secondly the density changes shown in Fig.l0 are
not' in good agreement with experiment. In particular, in 4405-40ca the
large central peak in the calculated density is due to the large number
of holes in the 2s1/2 orbit in 44c,, However, it should be remembered
that the electron scattering has been analyzed with a restricted form
for the density. New, less model-dependent, analyses and new
experiments of higher q on 42c4 and %4ca may reveal interesting interior

density changes due to the 251/2 orbit.

An important feature of the present calculation is the self-
consistency between the Coulomb potential and the symmetry potential.

Once the proton and neutron occupation probabilities and the potential
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for the protons are fixed, the neutron single-particle energies and
densities are determined with the assumption that the nuclear force is
charge symmetric, i.e. that 'the pp and nn nuclear interactions are
equal. It is well known that the neutron single-particle energies
calculated in this way for mirror nuclei deviate from the experimental
values by about 10% (Nolen and Schiffer 1969). This is also the case in
the present calculations and a detailed report of the results for
Coulomb energies and the displacement energies of mirror nuclei will be
presented elsewhere (Brown et al 1979). The results for the neutron
densities will be discussed and compared with experiment to see if any

related anomalies appear.

It is fortunate that for most nuclei considered here the neutron
occupations are theoretically well-determined relative to the proton
occupations. For example in an N=Z nucleus it is a good assumption that

nn=np for each orbit. And in Eq.(7) the neutron occupations are

independent of 82 due to the structure of the wave functions.

It is imporﬁant to emphasise that the neutron distribution élone
cannot be measured and that one must consider carefully what assumnptions
have been made when an "experimental" neutron radius is quoted from an
analysis of hadron scattering. Alpha scattering and high energy proton
scattering experiments determine most directly the matter radius r

m

; 2_0. 2457,-2
defined by Arm er+Nrn.

There are many sources of uncertainty in the extraction of r, (Ray
et al 1978b) but many of them are probably not so important for the
change in the mass radius Arm=rm(A)_rm(40Ca)r we will concentrate here

on these numbers Ar . The theoretical and experimental values for 3
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are given in Table 5. We have not included results of analysis of low
energy proton and alpha scattering since there is great uncertainty in
the optical model which leads to.results to which one must assign a
large errors. For example, a value of AL =0.12%0,06fm was obtained from
a careful analysis of 104 MeV o scattering (Friedman et al 1978) but
larger values are obtained from the more simplified folding model

analysis of the same data, Ar =0,17fm, and other data, Ar;=0.38

(Brissaud et al 1972).

As seen in Table 5 different analyses of four different sets of
experimental data yield quite consistent values for Arp and this leads

us to choose "adopted" values with errors of *+0.02fm.

Now we consider the theoretically interesting quantity rnp=rn"rp'
the difference between the neutron and proton RMS radii. An
experimental value for this quantity can be found by combining the
results for the charge and matter radii. We will define a quantity r,
by the relation r=r tr., where r, is the point proton radius and re is
the correction due to the proton and neutron finite charge distribution
and to relativistic effects (Bertozzi et al 1972, and Chandra and Sauver
1976). We first concentrate on rnp(40Ca)=2(rm_rch+re). We could take
rgx9=3;39(3)fm from Table 5, rggp=3.479fm from Table 2, and the

calculated value of r.=0.10fm and we obtain
exp (40 = + -
rngp( Ca) = 0.02 * 0.06 fm

It is unfortunate that there is such a large error in the
experimental rn—rp value in 40Ca. The values of rn—rp in N=Z nucleil are
relatively well determined theoretically since the difference is only

due to Coulomb effects (the known charge-asymmetric force is much
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smaller than the Coulomb effect). Since the radial 'dependence of the
Coulomb force in nuclei is dominated by a one-body term proportional to
r2, in an harmonic-oscillator basis its effect is simply a scale change
in the potential; 1i.e. pr=a¥'iwn (Soper 1968). In addition the
dominance of the r2 term leads to a very simple form for the isovector

density difference (Auerbach 1974),

rdog(r)
p =C 3 ( + 8
1(1:) { le) r) ar ( )
where
/fll(r)dT =0 (9)
and
p 23r
m— = =2C (10)
[Do(r) rzdr
and thus
c=3 (rﬁ-rg)/ (rr21+r§,) =1 (rn=rp)/rp (11)

This simplicity suggests the following procedure for the analysis
of hadron scatering on N=Z nuclei. First one can obtain the proton
point density from electron scattering experiments,(i.e.. by correcting
for the proton and neutron finite charge distribution). Then for the

neutron point density one can use:

d .
Pn(r) = Po(r) + 2C | 3Pp(r) + ¢ —gggfl:l (12)

where C is a parameter. 1In particular, if good fits cannot be obtained

from this one~parameter model, this strongly suggests that the reaction
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theory analysis rather than the nuclear density distribution is at
, fault. In the present calculation for 40ca we have C=0.0077, but other

models may give_slightly differeﬂt values.

We now consider the values of r, ., for the other calcium isotopes.

To obtain a simple relationship between Ip and the well determined

experimental quantities Ar, and Arg, we use Iy“rptNrn,/A, then

exp =A eXp _ A,eXp 40
r&XP (a) E[Armxp DrSEP + Ar_ 4 % Enp ( Ca)] (13)

and we will assume that r_ (40ca) is accurately given by the theoretical

np(
value of -0.056fm. The values of Arggp are taken from Table 2 and Arg
is the calculated correction due to the neutron charge distribution and
valence spin-orbit corrections. The adopted values of Ar%XP from Table

5 are used to obtain the value of rggp given in Table 6.
It is interesting to notice that the value of
rgkp (48ca) = 0.11 * 0.04 fm

which we have arrived at is smaller than any value quoted previously
(Igo et al 1979); we have tried to combine the most accurately measured
quantities with what we believe are well determined theoretical

corrections and this has not previously been done.

The interaction of pions with nuclei gives new information;
however, the optical model analyses are yet at a primitive stage and
theere are large uncertainties in the densities extracted from these
experiments (Sternheim and Yoo 1978). However, analyses have been

attempted and values for the change in neutron radius Ar_ are given in
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Table 7. Also we give the result obtained from a combination of the

experimental quantities Ar and br, with the relation

xp exp L exp _ 48
Arn>_ 2Arm - rCh + Are - _(;N_A_Z__)_ rnp ( Ca) (14)

and using the theoretical value of rnp(48Ca)=0.l68fm (note that this

last term is a small quantity).

There is a final category of experiments with which it is
interesting to compare our calculations, namely those. which are
sensitive to the density of a particular orbit. The cross sections for
one-nucleon transfer are very sensitive to the RMS radius of the orbit
of a particular nlj from which the transfer takes place. If one has an
independent estimate of the spectroscopic factors involved one can
extract relative RMS radii such as those between different nuclei in the
1f7/2 shell or those between T and T, states of a given nucleus.
Sub-Coulomb heavy-ion transfer experiments are particularly useful since
the trajectories can be accurately calculated. In particular, the
ona-neutron transfer reactions (13C,12C) and (170,160) have been used to
obtain absolute RMS radii of valence orbits. (Jones et al 1974, Durell
et al 13976 1977, Franey et al 1979). Finally the electron scattering
experiments have determined magnetic form factors of odd-even nuclei
from which the highest multipole component has been used to extract
radii for the odd particle (de Witt Huberts et al 1977 and de Witt

Huberts 1978).

Results from the experimental analyses are given in Table 8. We
should remark on some of the uncertainties in these analyses which are

not included in the errors. The sub—Coulomb (;70, }60) and (13C, 12C)
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reactions must be "calibrated", that is the amplitudes of the 175+160+4n
and 13cs12cen parts of the reaction must bé known if one wants to
extract information on the target. Due to a change in this calibration
(Franey et al 1979) the values for the 1dg ;5 and 25 5 radii quoted by
Durell et al (1977) have been increased by about 10% (Durell 1978) and

the new values are quoted in Table 8.

For the magnetic electron scattering, corrections for
core-polarization and mesonic exchange effects must be taken into
account. Since the RMS radii are determined primarily from the shape
and not the magnitude of the high—-g form factor data, any correction
which 1is equivalent to a g-independent (but perhaps A-dependent)
renormalization will not be important for the extracted radii. The
core—polarizatioh calculations which have been carried out thus far
(Arima et al 1978, Arita 1977) give relatively large (up to about 30%)
but g-independent quenchings (for a given i) and hence the effect on the
extracted radii is small (less than 1%) (deWitt Huberts 1978).
Calculations of the mesonic exchange effects on the other hand give a
more g-dependent renormalization (Arima et al 1978, Dubach 1978). 1In
the simple cases of A=17 (4 s2) and A=41 (£, /2) it was found that for
neutrons (protons) the extracted RMS radii were about 2.5% (1.5%) larger
when mesonic exchange is included than they were when mesonic exchange
is not included (deWitt Huberts 1978). The electron scattering RMS
radii given in Table- 8 do not include the core—polarization and

mesonic—exchange corrections.

The comparison between experiment and theory is in general good but
there is a systematic tendency for the experimental radii to be a few

percent smaller than those calculated. For the radii obtained from
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magnetic electron scattering the estimates quoted above for the mesonic
exchange correction would bring all eXperiméntal results within about 2%
of the theoretical calculations. To be certain that this is not due to
a calibration problem in the one-nucleon transfer experiments it would
be interesting to measure the radius of a hole orbit, for ekample by a
40Ca+39Ca reaction. The RMS radius of the d3/2 orbit in 40Ca should be
closer to the average RMS radius and hence there is 1esé theoretical

uncertainty. The calculated value is rn(d3/2)=3.649fm and

In(d3/2) /rp=1.098 (in the harmonic oscillater limit rp(d)/rp=1.080).

The largest anomaly in Table 8 is in the comparison of the change
in  the 1f; /5 neutron radius between 48ca and 40ca from the (d,t) and
(t,d) reactions (Friedman et al 1977) which gives 0.17¢0.03fm compared

with the calculated value of -0,026fm.

It should be mentioned here that a 2-6% change in the valence
radius would have 1little effect on the calculated Coulomb energy
differences between mirror nuclei. The dependence of the direct term in

the Coulomb energy on the RMS radii is approximately given by (Brown et
al 1979)

_ 2 ’
AE, = ﬁ_eEZ. § N LA A (15)
5RL4 2
r
ch

where R= (5/3)1/2 ' and r, is the rms charge radius of the valence

orbit. From this equation it is easy to see that in order to explain a

10% anomaly in AE, one needs to change r, by at least 20% as concluded

by Nolen and Schiffer. 1In addition the core polarization contribution

tends to reduce the dependence of AEC on r, (Auerbach 1974) and in the
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limit of rn=rp (Friedman and Schlomo 1977, Schlomo and Friedman 1977)
AEC+6eZZ/5R which is the classical liquid drop limit and does not depend

at all on r,.

The model for calculating nuclear densities‘presenfed in tﬁis paﬁer

is in several respects complementary to Ehe Hartree-Fock method. The
- present model takes full accéunt of the complex configuration mixing
found in 1light nuclei but is only semi-selfconsistent because we only
allow the potential to vaty linearly with the density. 1In Hartree—Fbck
the density is fully self-consistent but the configuration is restricted
to a single Slater—determinanent with the particles in the lowest
spherical or deformed configuration. For ﬁost of the nuclei we have
considered the results using the linear density approximation are in
good agreement with the Hartree-Fock method when we confine ourselves to
the closed shell configurations assumed in Hartree-Fock. However, the
experimental density differences are not well reproduced by these
closed-shell calculations and we have found much better agreement by

allowing excitations out of the closed shells.

The charge densities are mainly sensitive to the proton occupations
and these can also be obtained from one-proton transfer reactions. For
the Ca isotopes the proton occupations determined from the charge
densities are consistent with the one-proton transfer data. However it
is not possible to calculate accurate charge densities based on the
one-proton transfer data because of the inconsistency between
occupations obtained from stripping and pickup reactions which exists at
present. We plan to investigate this problem further in order to

,;understand whether this inconsistency is due to problems with the form

factor or problems with the sum rule analysis.
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To illustrate the present status of our knowledge about neutron
densities it 1is interesting to summarize all results for 40ca and 48ca
including the RMS radii of the l.f7/2 valence neutrons. In table 9,
typical experimental results are compared with the present calculation
as well as with Hartree-Fock calculations (Lane et al 1978). Our
results are Qery similar to the Skryme IV Hartree-Fock calculation. The
Skryme III calculation gives some interesting differences which are in
slightly better agreement with experiment. The only theoretical value
given in Table 9 which is very sensitive to the 40ca core excitations is

the quantity Ar,, If we regard the present calculations as a correction

to the Hartree-Fock results then the best theoretical estimate is

AL, (SKIII)+[Ar, (1IB)-4r,(ITIA)]=0.21fm which is in better agreement with

the experimental determination.
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TABLE 1

Experimental and calculated Barrett radii for calcium isotopes

Exp?) Th(IIA) Th(IIB)

M k R <rke™or> <rke=ary (pkemary
40ca  0.065 2.114 4.4609 (12) 10.871(6) 10.897  10.851
42c4  0.065 2.114 4.4998(13)  11.049(6) 10.949  11.052
44ca  0.065 = 2.114 4.5126(13)  11.108(6) 10.995 11.091

46c, 0.065 2.114 4.4881 (45) 10.996(21) 11.037 10.972

48ca  0.065  2.114 4.4621(12)  10.877(6) 11.074 10.865

a) Wohlfahrt et al (1978a)
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TABLE 2

RMS charge radii for calcium isotopes

Exp Th (IIA) Th(IIB)
(e,e) p atom u-atom
F a IIB b

Leh (fen)y ) (rch)u ) Teh Ich
40c4 3.474(3)C 3.480 3.479 3.483 3.476
4204 32,5044 3.510 3.510 3.490 3.510
44ca 3,5024 3.520 3.518 3.497 3.515
4604 3.501 3.497 3.503 3.493
4804 3.465(5)C 3.481 3.475 3.509 3.473

a) From the aflalysis in the references given in footnote (a) in Table 1
based on a Fermi (F) distribution shape.

b) Obtained from Table 1 using the present density shapes given by IIB.

c) Sick (1978).

d) Values normalized to 4OCa from Frosch et al (1968).
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TABLE 3

Comparison of the number of proton holes in the sd shell obtained from
electron scattering (a+8), pickup reactions [P(fp)], and stripping

reactions [H(sd)].

A+s H(sd)®) H(sd)P) P(£p)©) p(fp)d)
40c, 0.7 0.4 0.27 0.73 0.3
42c, 1.7 0.9 1.12 1.03 0.4
44cq 1.8 1.9 1.98 1.01 0.6
46¢c, 1.05 0.4 0.2
48¢ca 0.3 0.15 0.44 0 0

a) (3He,d), quoted by v.d.Decken et al (1972)
b)  (3He,d), quoted by Doll et al (1976)
c)  (d,3He), Doll et al (1976)

d) (t,a), quoted by Dehnhard and Cage (1974)
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TABLE 4

Experimental occupation probabilities for 40¢c,, 4204 and 44Ca used for
Fig.10. The proton occupation probabilities are from Malaguti et al
(1979) and are based on the one-proton transfer data summarized by Doll

et al (1976). Simple neutron configurations are assumed.

np n,

40ca P32 0.15 0.15
£5,2 0.56 0.56

d3 /5 3.59 3.59

$1/2 1.70 1.70

42ca P32 0.15 0.20
£,2 0.92 1.80

d3 /7 3.37 4.00

51/2 1.56 2.00

*ca P32 0.16 0.40
£1,2 0.83 3.60

d3 /2 3.57 4.00

S12 1.44 2.00



40Ca
42Ca
44ca
46Ca

480,

(a)
(b)
(C)‘
(a)

(e)

Theory

3.369
0.055
0.099
0.123
0.143
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TABLE 5

RMS matter radius of 40Ca and relative matter

radii, Arm=rm(A)_rm(40Ca)

Experiment
(a) (b) (c) (d) (e) adopted
3.40(3) 3.39(4) 3.40 3.39 3.38(3) 3.39(3)
0.06 0.08 0.06 0.06(2)
0.08 0.08 0.09 0.08(2)
0.10 0.12 0.10 0.09 0.12 0.11(2)

1.05 Gev p; Chaumeaux et al (1978), Table X.

1.05 GeV p; Brissaud and Campi (1979)

1 GeV p; Alkhazov et al (1978), Table 6.1.

0.8 GeV p; Igo et al (1979)

1.37 GeV a; Alkhazov et al (1977)
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TABLE 6

Differences between neutron and proton

RMS radii, rnpzrn—rp.
ar 2 ~ Theory Experiment®
b

p atom Are rnp rnp
40c, ‘ ~0.056 =-0.056
42¢c, 0.031 0.001 -0.010 0.00 (4)
4404 0.039 -0.004 0.053 0.02(4)
46c, 0.018 -0.011 0.116
48¢4 -0.004 -0.019 0.168 0.11(4)

(a) From cclumn 4 of Table 2

Sr_4r

(b) rch p e

(c) Based on the adopted values in Table 5
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TABLE 7

: : ;g 40
kelative RMS neutron radii AL =r  (A)-rp( Ca)

Theory Experiment
(a) (b) (c)
42¢a 0.079 0.12(4)
44cq 0.152 0.09 (4) 0.09 (5) 0.05(5)
46c4 0.201
48¢ca 0.240 0.18(4) 0.14(5)

(a) Based on the adopted values in Table 5.
(b) nt total cross sections; Jakcbson et al (1977)

(c) 7~ pionic X rays; Batty et al (1979)



Nucleus

Neutrons 41Ca

4945
440,400,

48Ca_40Ca

48Ca_40Ca
48.,_40-,

51

Protons

nlj

1£2/2

23/,

lf7/2

1552
1£5/2
2p37
1€,

lf7/2

a) Occupation set IIB
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TABLE 8

Point RMS radii of valence orbits

Theorya

r
(£m)
4.096
4.350
4.070
0.005
-0.026
-0.069
-0.113
4.093

Exp
r
(fm)
4.00(9)
4.24(6)°
4.01(4)
~0.02(8)
0.17(3)
0.06 (7)

~0.10(5)

4.01(4)

b) This is for the 1.94 MeV 3/2” level in 2lca.

Exp/Th

0.976(22)
0.975(14)

0.985(10)

0.980(10)

" Reaction

40Ca(l3C,l2C)

40Ca(l3C,12C)

Pri(e,e)

ca(t70,60)
ca(d,t), (t,d)
cat70,60)
ca(3He,d)

51V(e,e)_

Reference

Durell et al (1978) °
Durell et al (1978)
deWitt Huberts (1978)
Jones et al (1974)
Friedman et al (1977)
Jdones et al (1974)
Friedman et al (1977)

deWitt Huberts (1978)
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TABLE 9

Comparison of neutron RMS radii inv405'Ca and 8¢,

l:-n(lf7/2) | In~Ip
40, 48¢, 480,-40C, 40c4 48c,
Exp 4.00(9)3)  4,01(4)P)  0.01(10) ©0.11(4)9)
0.17(3)¢)
_Th Present 4,096 4.070 -0.026 -0.056 0.163
wr skrrr?) 40001 4.096 0.095 -0.044 0.138
HF SkIV 4.153 4.159 0.006 -  =0.046 0.172

a)  40ca(13¢,12¢) purell et al (1978)

b) “97i(e,e) dewitt Huberts (1978)

¢) Ca(d,t) and (t,d) Friedman et al (1977)
d) Table 6

e) Table 7

£) The Hartee-Fock calculations are from Lane et al (1978)

I'n
48ca-40ca

0.18(4)€)

0.240
0.237

0.254
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Figure Captions

Experimental and theoretical charge densities of 40ca, The two
experimental curves correspond to the form factor ambigquity
discussed by Sick (1974a, 1978). ITA and IIB refer to the
calculations with closed shell and non-closed shell configurations,

respectively.

Experimental charge density difference between 48ca and 40ca
obtained by electron scattering. The solid curve is from the
model-dependent fit to the data by Frosch et al (1968) and the two
dashed‘ curves are from the model-independent fits of Sick (1974a,
1978) corresponding to the ambiquity in the 40ca data shown in

Fig.l.

Experimental and theoretical charge density differences between
42ca and 40ca. The experimental curve is from the model-dependent
fit to the‘electron scattering data by Frosch et "al (1968). The
three theoretical curves correspond (1) to a closed sd shell

configuration, (2) to a non-closed sd shell configuration with 10%
293/2 and (3) to a non-closed sd shell configuration with 20%

Experimental and theoretical charge density differences between

44ca and 40ca (see caption to Fig.3).

Theoretical charge density differences between 48ca and 40ca.  For
curves (1) end (2) a closed sd shell for both 48ca and 40ca is
assumed and for curve (3) sd shell core excitations are allowed

for.. FPFor (1) the valence neutrons are in a pure (lf7/2)8



6)

7)

8)

9)

10)
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configuration and for (2) a configuration with 90% lf7/2 and 10%

2p3/z-has been used.

Comparison b-tween the present calculation and the Hartree-Fock
calculation of Negele (1970). The same assumption for the shell
model configuration, namely (lf7/2)8 for the valence neutrons, has

been made in both calculations.

Spin-orbit correction to the charge density difference between 48¢4
and 40ca, Curve (1) was obtained using a pure (lf7/2)8

configuration and curve (2) was obtained using a configuration with

90% 1, /5 and 108 2p3 /.

Experimental and theoretical charge density difference between 48c4

and 40Ca. Curve (1) is from Fig.2, and curve (2) is from Fig.5.

Theoretical charge density difference between 46ca and 40Ca.

44Ca and 40Ca and

Theoretical charge density differences between
between 42Ca and 40Ca as calculated using the experimental
occupation probabilities given in Table 4 and discussed in the

text.
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Exp (Sick 11) p(r¥.,*0Ca

Exp (Sick 1)
Th(I1A)
0.0 - Th(11B)
80~ \\
o
x
£ 6.0
-~
4.0
2.0
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Chur?Ap(r),
» 400 q- 48¢cq o

0.010

0.008
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1. Introduction

I realized with some surprise recently that about 10 years have already
elapsed since I gave a talk on '"Shapes of Nuclei'' at the Montreal conference
on Properties of Nuclear States (Barrett 1969). A casual glance at the situa-
tion pertaining then showed quite a few similarities with the present state
of affairs: purely theoretical calculations could be carried out to produce
proton and neutron densities which would fit the electron scattering, hadron
scattering and other experimental results. These "successful' calculations
were done using the single particle shell model (SPSM), and the few Hartree-
Fock (HF) or Mean Field Approximation (MFA) calculations which were being
displayed gave poor fits to electron scattering. Since that time there have
been many revolutions in theory and experiment and, particularly, in the
analysis of experiments to deduce charge distributions. We have heard about
some of the most sophisticated of these as applied to nuclei of the Ca- region
discussed during the last three days. The general techniques of obtaining
both theoretical and "experimental' charge distributions have been reviewed
and updated regularly during the last few years (e.g. Negele 1976, 1977, 1978;
Frois 1978, Barrett 1974; Barrett and Jackson, 1977). Nowadays the "experi-
mental' charge densities are produced with convincing error estimates due to
the innovations of workers such as Lenz (1969), Friar and Negele (1973, 1975)
and Sick (1973). In addition the accuracy of experiments such as those
described by Wohlfahrt (1979) means that root mean square radii are known to an
accuracy of a few hundredths of a fermi (and the model-independent radii to
about 0.001 fm!)., This kind of accuracy means that the theorists are left far
behind. It is not possible to obtain densities to anything like this accuracy
using the HF approximation. It is very much to be hoped however that it will be
possible to use the A-particle non-relativistic Hartree-Fock calculation as
starting point and obtain corrections due to correlations, relativistic effects
and exchange currents as small perturbations. We shall discuss these correc-

tions in the next sections.
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When we consider matter densities or neutron densities the picture is
completely different. The task of deducing Pn (r) from hadron experiments is
very much more difficult and there have been hardly any attempts to obtain
model- independent densities or radii except fairly recently in the case of
proton and a-scattering experiments. This is a pity because it i§_possib1e
to state what properties of the density are being measured by w-scattering
for example, by carrying out a model-independent analysis, If the resulting
error bars are 1007 or greater this does not mean that they should not be
published.

We now consider the‘developments in probing individual orbits by magnetic
scattering. Dramatic developments in this subject have been reported by
de Witt Huberts (1978), Lapikas (1978) and Sick (1979). Although it is not
possible to obtain densities of valence neutrons and protons with anything like
the accuracy of total charge densities, (certainly not in a model-independent
way) we do obtain a very interesting test of the HF wave functions obtained

using effective forces, and are able to probe neutron wave functions directly.

In 82 we discuss the single particle shell model, in §3 the Hartree-Fock
or mean field approximation, in 84 corrections to the mean field approximation

and in 85 some examples and conclusions.

2, The Single Particle Shell Model

| The earliest attempts to fit electron scattering with anything other than
a simple '"model density" or parametrized shape met with a fair measure of
success (Elton and Swift, 1967). A Woods-Saxon potential was constrained to
fit separation energies but its parameters were otherwise allowed to vary
freely so that the densities fitted electron scattering. This was easy to do
at first when the experimental range of momentum transfer q was not too large
but became increasingly difficult as higher energy experiments were done.
Eventually new parameters had to be introduced, namely the occupation numbers
of the single-particle orbits (Elton and Webb, 1970). It is reasonable to vary
these because of the 2p-2h (two-particle: two-hole) and 4p-4h correlations.
The main objection of this approach is the large number of parameters which

have to be adjusted and the fact that they do not vary smoothly with N or Z.
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Some interesting new calculations have been carried out by Brown et al.
(1979). They use a single-particle '"self-consistent local potential based on
the optical model"., The depth of the real part of the optical model can be
fitted globally over a range of targets by the formula (Becchetti and Greenlees
1969)

1/3

U= 54+ 24,0 (N-Z)/A + 0.4/A - 0.32 E.

The second term is from the isospin dependence and would have the opposite sign
for neutron scattering. Brown et al. consider the first two terms for their
SPSM calculation but replace the isospin term by a term proportional to the
local difference (pp(r) - pn(r) in neutron and proton densities. Their proton

and neutron potentials are given by the equations

[Vo * Vl gﬂ:EB'.] £(x) + Vc

V =
P pn+pp
’n"p
V_n = {V - 1 pn+pp] f(r)

where the function f(r) is the Woods-Saxon shape and Vc is the coulomb potential.
In order to extend this from a nucleus with proton and neutron densities
0 and pz to a neighbouring nucleus with densities differing by App and Apn

P
they change the quantity inside the square brackets by

Apn+ Ap Apn— Ap
Vo( o c ) * Vl( c c )
p_+ P P+ p

n p n n

where the +(-) sign is for protons (neutrons). Thus no additional parameters
are needed., In this way the added particle or particles produce a core
polarization. For 40Ca the neutron-proton rms radius difference which they
obtain is -0.056 fm with the isospin (Vl) term and -0.092 fm without it,.
(Experiment gives -0.04). The corresponding differences in charge density are

shown in Fig 1 together with the isospin part of the potential.
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The charge density which they obtain for 40 Ca is shown by the points
(marked +) in Fig. 2 together with the experimental density and the results of
some self-consistent field calculations (Frois, 1978). The curve GO was
calculated with incorrect parameters and should be deleted. The method
clearly needs some refinement in order to compete with the Hartree-Fock type
calculations. Improving these calculations may turn out to be too complicated
but one possibility which could easily be tried is to include the 0.4 Z/Al/3

term in the proton potential in order to simulate the non-locality.

In some of their calculations Brown et al. used non-integer occupation
numbers of the neutron orbits obtained from calculations of 2p-2h admixtures
and they also varied the occupation numbers of the proton orbits, promoting

them from the d3/2 to the f7/2 orbit in order to reproduce experimental charge

pep (@) (fn %)

N -
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radius differences. Fig. 3 shows the result of such a calculation for the
48 . 40
Ca-

Ca density difference, together with the range of experimental densities
determined by Sick.

Fig. 3

Here the agreement is impressive and could no doubt

be improved by
altering the 2S occupation number.
. 002"
v
=
ha
0 0 ‘
‘:(__. 8
oL r (fm)
4
—— Exp (Sick)
---- Theory 1
-.002 —— Theory 2
DDHF GO

Fig. 4
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We now consider much larger density changes, namely isotone shifts.
Fig. 4 shows the familiar experimental results analyzed by Sick (1975)
together with theoretical curves by Brown et al. The core polarization is

clearly in evidence but the agreement is not as good as with Hartree-Fock.

This single particle method provides a very simple way of including
some self-consistency and may turn out to be very useful,

-

3. The Mean Field Approximation
I am trying to follow the recommended terminology and avoid the use of the

term "Hartree-Fock' because it is sometimes used to refer to a particular sort
of self-consistent calculation in terms of free two-body forces. Strictly
speaking the terms '"Brueckner-Hartree Fock', '"Local-Density-Approximation-
Hartree-Fock!", '"Renormalized-Brueckner-Hartree-Fock'" and ''Density-Dependent-
Hartree-Fock" refer to calculations which include quite different diagrams and

produce dramatically different densities as shown in Fig. 5 (Negele 1974),
' I l l T T
~ a-—BHF o

+— b——LDAHF o

0.14 A ¢ ——RBHF Lo\

o 121 b\, d-——DDHF o+ NATD *\LD)

T~- “\._ e --— Adjusted DDHF

0.08

0. 061

Charge Density (fm 3)

0.04

0.02

r (fm)

Fig. 5: Charge density distributions for 4UCa. Results b-d include the indica-

ted diagrams in the single particle potential, a and b correspond to oscillator
space and LDA calculations respectively (and should give the same result but
differ for technical reasons), and curve e indicates the effect of the phenomen-
ological adjustment to obtain observed radii and binding energies.
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In comparisons with experiment these self-consistent field calculations
have achieved some impressive results, The central density is still a problem

208Pb it is now measured with about 17 accuracy and the

for many nuclei: for
calculations give results about 15% too high., Some of the ways of improving

or correcting such calculations are discussed in the next section.

4. Corrections to the Non-Relativistic Mean-Field Approximation

In order to apply the HF method a single determinant wave function must
be a good approximation. One of the requirements for this is that the binding

energy should have a deep minimum as a function of deformation. Fig. 6 shows

48C

that this condition is reasonably met for 4OCa and a. The curves suggest

48

that 4OCa is a better closed shell nucleus than ' Ca but the latter is probably

more stable against octupole deformations. A linear combination of determinants

16
16 | 0
18 |
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)
3 330 [
e
= 394’%
oo
2 48
2 400
=1
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428 t, . . r N
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2
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Fig. 6

represents the addition of 2p-2h and 4p-4h states and the usual effect of this
is to lower the central density by removing s-state protons. This also damps
the fluctuations which always seems to be bigger in HF-type calculations.

The results of a RPA calculation of this depletion in 4OCa are shown in Fig., 7.

The effect of neutron charge densities is now well-known, especially in

the case of 48Ca (Bertozzi et al., 1972) and the results of applying it to the

40Ca—48Ca charge difference is shown in Fig. 8 (Negele 1976).
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Of course these curves refer to calculations in which the binding energy

and charge radius are different from each other and from experiment and it
remains necessary to insert one or two parameters into the theory in order to
obtain these experimental quantities., (It should be stressed, however, that

these parameters are adjusted just once to fit all closed shell nuclei).

A different point of view is to abandon any attempt to use free two-body
forces and do all the adjustment in the parameters of the effective two-body
force, as has been done by Vautherin and Brink (1972) and many other workers.
This method is easier since the forces are chosen for convenience and calcula-
tions may be carried out for a much larger range of nuclei including non-
closed shell and deformed nuclei (the reason for this is not one of principle
but it is because the DDHF calculations are too difficult to carry out in
practice except for closed-shell nuclei). Since they are effective forces any
shortcomings in the theory due to the inadequacy of the mean-field approximation

can be masked by the parameters.

Negele (1976) has considered differences between adjusted DDHF calcula-
tions and effective force calculations, especially those with zero range. He
has looked at the predictions for the two types of calculations of a) central
density, b) average interior slope, c¢) surface diffuseness, d) oscillations
or fluctuations. He found that for a) and b) there is little to choose between
the calculations. In the case of diffuseness, however, although this is
mainly determined by the single particle binding energies, there is a difference
in that the larger range and non-locality of DDHF tend to increase the dif-
fuseness. 1In the case of fluctuations a §-function term tends to enhance the
oscillations and a V2p modification to suppress them so that it is a matter

of chance which of these effects dominates.
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Another effect studied by Chandra and Sgyer (1976) is the departure of

the proton form factor from that due to a single gaussian. They tried a sum
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of three gaussians but in fact the single dipole form factor (as used by
Bertozzi et al. 1972) is about as good. Perhaps we should be more accurate
than this and use the exact Mainz form factor for the proton (Borkowski et al.,
1975, Walther, 1978).

Density correction
(% of nuclear matter charge
density)

Fig. 9

Corrections due to the meson exchange current (MEC) are significant and
have been calculated for a range of nuclear by Negele and Riska (1978). The
resulting density corrections are shown in Fig. 9. The effect of including
these in calculating magnetic form factors is quite dramatic, as shown in
Figs. 10 and 11 (Negele 1978) although Sick (1979) finds that the inclusion
of the m-nucleon form factor reduces the effect at high momentum transfer by

up to a factor of two.
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Conclusions

shell nuclei is almost satisfactory.

It seems to me that the situation regarding charge densities of closed

There is still some work to be done in

putting in the RPA corrections and renormalizing the ADDHF calculations to

take account of this,
severe one and the theory is now to be trusted in most respects.

of individual orbits come from isotone shifts, and magnetic scattering.

The charge density test of calculations is a very

The tests
The

latter can be fitted very well by scaling the proton wave functions in the

case of

93

Nb,

87

Sr by a factor of 0.954(6) which after corrections implies

a radius ratio of 0.962 compared with MFA prediction of n1.00 (Negele, 1978).
In the case of 51V and 49Ti the ratio is 0.396(8) compared with a prediction
of 1.014 from a HFB calculation. (Sick 1979).
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All this suggests to me that the HF type calculations are just as likely
to give correct neutron distrubutions as hadron eﬁperiments. This does not
mean that the latter should be stopped because HF calculations are cheaper!
Perhaps we are on the verge of finding a disagreement but I am not too
worried about the present figure of 100 millifermis (or attometers). Perhaps
more attention should be paid to the surface thickness parameter which has
been defined (in terms of the equivalent uniform kth moment radius Rk) by
Campi (1974) as '

o=l ron gl
Although I don't think rms radii are the best quantities to compare, in the
absence of something more model-independant I have collected together a few
of the numbers which you have been seeing regularly in Table I and Campi's

surface thickness parameter in Table II.

Table T = Proton neutron and charge rms radii for Ca isotope

40 42 44 46 48
T 3.480 3.510 3.520 3.501 3,481
T 3.40 3.46 3.46 3.41
P Exp ’
T 3.38(4) 3.44(4) 3.52(5) 3.58(4)
rn—rb : -.02(4) -.02(4) .06 (4) L17(4)
GO rn*rp 3.46 3.46 3.46 3.46  3.46
GO -.04 .02 .08 .18
Lane -.04 .14
Brown 1 - | -.06 .163
o p
Negele -.04 .19
. 40 48 .
Table II Surface Thickness of “"Ca and ~"Ca (Campi 1979)
40 48
Skyrme 0.50 0.47
Skyrme 0.52 0.50
%h
¢ Go 0.52 0.48
Exp 0.53(1) 0.49(1)
a - Go 0.49 0.47
mass
Exp 0.47(2) 0.45(2)
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It seems that a fair amount of work remains to be done. We will soon be
cut off by the law of diminishing returns but before then I should think the
numbers will change a bit, perhaps in both theory and experiment, and quite
possibly in the direction which brings them into agreement.

I am indebted to R.C. Johnson, X. Campi, I. Sick and D.F., Jackson for

discussions and comments.
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What do we know about the radial shape of calcium nuclei?

Closing remarks instead of a summary lecture
Peter Brix

Max-Planck-Institut fiir Kernphysik
Postfach 103980, D-6900 Heidelberg 1

There are well established traditions for summary
lectures at international conferences. One extreme is that the
speaker takes intensive notes at every lecture, adds a couple
of jokes - possibly new ones - as well as his own modest per-
sonal opinion, and presents a thorough mixture of all this,
trying to do justice to every main speaker. The other extreme
possibility is to give that uninvited lecture which the speaker

wanted to present, without much reference to previous talks.

Fortunately this was not an international conference but
a discussing meeting. The facts and figures are still in every-
body's memory,and there is no need to repeat them. In addition,
Dr. Barrett has just given not only an excellent review of the
theoretical results but also of the experimental situation and
the historical background. Let me therefore try to formulate a
summary not for the experts but for nuclear and non-nuclear
physicists who may be interested in a short answer to the

question which brought us together.

As nuclear physicists we are occasionally asked whether
times have not passed when nuclear physics was an exciting
science, and whether exciting new developments have not shifted
to other fields inside or outside of physics. My answer is that
I can make up a list of, say, twelve fascinating "news about
atomic nuclei" which are the results of very recent research
and discovery. By "recent" I mean the last few years. The first

three items on my list are the following:



— 442 —

1. The size of the atomic nucleus, that fuzzy ball, has
now been measured in quite a few cases with an accuracy of
1% as far as the spatial distribution of the charge density,
with an accuracy of 0.1% as far as a well defined radial
extension is concerned. The measurement of length has recent-

ly reached the attometer (10_18m) region.

The small irregular changes of the nuclear charge distri-
bution which occur when neutrons or protons are added have
been studied precisely for selected regions of the isotopic

chart.

2. For several nuclei, the spatial distribution of the
magnetization and of the intrinsic charge deformation have
been measured. We begihn to "see in space" what happens when

nuclei are excited.

3. From theoretical arguments there has never been much
doubt that the neutrons have about the same spatial distribu-
tion as the protons. However, it has only been recently possible
to measure reliably where the neutrons are. For 48Ca it has
now been established that neutrons and protons are not uni-

48Ca has a "neutron skin".

formly mixed:
I do not want to bother you with my nine other "news from

the world of nuclei". Please make up your own personal list.

A useful, but imaginary Physics Journal contains frequent-
ly updated short articles, always with the same titles, devoted
to important basic subjects. One of my favorite titles would
be "What do we know about the radial shape of nuclei in the

Ca-region?"

Dr. Trdger has pointed out in his contribution why the Ca-

region is an ideal playground which nature has given us for
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studying nuclear radii: 40Ca is the heaviest stable closed
shell nucleus with equal numbers of protons and neutrons; the
addition of 8 neutrons leads to an even better closed shell
nucleus, 48Ca, with sufficient abundance to make isotopically
pure targets; there are four more stable Ca-isotopes; finally
there exist five stable isotones for Z=20 as well as 28. This
is the reason why it pays to concentrate present efforts of
measuring proton- and neutron distributions on these nuclides.
However, as indicated by the title, I shall c?nfine the follo-

wing remarks to the calcium isotopes.

H-atoms and (e,e) hadronic probes ;
Rproton V( ) f;
P ——=p, |=——=p, (N}=———|p ()| =——| V(r 2
N
A Ren Rp |=—=| Ry Rm Ry @
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43 .: » ““radial distances”
“ 5 R=<r2>12
46 . , “integral radii”
T T T TS 1
48 | E(Rn'sz.a:

Fig. 1: The radial shapes and the many different nuclear
radii of calcium isotopes: a survey

Fig 1 can serve as a guide for our survey. We are mainly
interested in the ground state proton and neutron distribu-
tions pp(r) and p,(r). Neither of them is determined directly
from experiment. Apart from other corrections, the finite size
of the proton and the neutron form factor lead to a difference

between pp(r) and the charge distribution Pch (r) measured by
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electron scattering and muonic atoms. An iterative procedure
is, therefore, necessary in deriving pp(r) and pn(r) from a
measured matter distribution pm(r),and pch(r). This is indi-
cated by the curved arrows in Fig. 1 (see also, e.g., Ray 79).
Another problem is the connection between pm(r) and the real
potential V(r) for hadronic probes.

Let us start with Pch for 40Ca. This quantity is the
corner-stone in our network. So far it was not available. If
one wanted to draw a diagram of the charge distributions of
closed shell nuclei (see, e.g., Bri 77), one could not include
4oCa because an ambiguity in the analysis resulted in two
different charge distributions for the central region which
were compatible with previous data. It is great news from this
meeting that Dr. Frois has shown us the new Saclay results.
The momentum transfer has been extended to 3.6 fm_1, and cross
sections down to 10_38 cm2 have been measured. We have heard
that this means recording two counts per day with a beam power
of 10 MW! One could imagine a bell being rung at Saclay when-
ever another scattered electron gave news about the very
interior of the 40Ca nucleus! For this important nuclide the
experiment has reached a precision where the errors of the
experiment are of the same order of magnitude as the wvarious
uncertainties of the analysis. The charge density of 40Ca,
including that in the center of the nucleus, is now known with

a precision of at least + 1%.

As we know, the analysis of pch(r) from electron scattering
needs the precise radius parameter Rk obtainable from muonic
2p-1s x-rays. One the other hand, Rch can be evaluated from

the Barret radius Rk if pch(r) is known.

This leads us to the "many different nuclear radii" of Fig. 1.
By writing this I want to stress that there are several iso-

topes (mass number A); that one has to state whether the charge-,
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proton-, neutron-, matter-distribution or the potential is
meant; and - above all - that there are many different defini-
tions of the radius itself. Finally, in addition to the data
referring to all protons or neutrons, there may be specific
information on single nucleon orbits. The distribution for

a valence nucleon as measured by magnetic electron scattering

is an impressive example.

The rms radius R may be called an "integral radius". On the
other hand, hadronic probes usually probe the nucleus predo-
minantly at some characteristic radial distance. Dr. Meyer
spoke of "point like" radii. The symbol Ry reminds of his talk,
the symbol Rp of what Dr. Fernandez has told us. One cannot be
careful enough in always stating precisely which radius is
meant. On the other hand it has become evident at this meeting
that important information will be obtained by combining the
results from various experiments, using a consistent set of

input data.

At this point it should be mentioned that this manuscript
was written after the oral presentation at the end of the
Karlsruhe meeting. In writing it, I felt that I could now happi-
ly omit those figures and data of some of the exciting brand
new results which I showed at that time. Nothing could be gained
by repeating here what the authors themselves had formulated
best. The information is easily accessible by turning back the
leaves of these proceedings. Let me arbitrarily select two
"news" which I personally would include in a report on this

meeting.

1. The revival of optical isotope shifts as a tool for
nuclear physics is impressive, and its applicability to nuclei
as light as Ca quite surprising for someone who worked in this
field earlier. Since the charge density of the atomic s-electrons

is constant over the nuclear volume, differences of rms radii



— 446 —

Rch are the relevant measurable quantities. Fortunately, the
charge radii of Ca-isotopes do not change in a regular way
with neutron number. Only this fact gives the optical spectros-
copist a handle to separate the mass dependent effects which
lead to regular changes of the isotopic frequences from the
irregular contributions of the nuclear volume effect. (By

the way: why not forget the unnecessary separation of "normal"
and "specific" mass effect, at least when talking to non-
specialists?). A news at this meeting was the radius of 41Ca
measured at Heidelberg (KowT 79). We have learnt that it

agrees exactly with that of 4oCa within#0.006 fm. We also heard
that the accuracy of the optical measurements can possibly be
improved by a factor of 10, and that the charge radius of 45Ca
(163 days half-life) is within reach. - It is remarkable that

isotopic and isotonic rms-charge radii differences for even-

even nuclei in the Ca-region derived from precise energies of
muonic Ka—rays show almost the same trend as function of
neutron or proton number, including the sudden increase at

Z or N equal 28.

2. As far as neutron radii are concerned,the gquantity
most reliably determined experimentally seems to be (Fig. 1):

(1) A = (Rn—Rp)48 - (Rn—Rp)4O.

New values for A were presented at this meeting (see also the
table in Dr. Gils' contribution), and a recent compilation may
be found in (IgoA 79). The value A = 0.13(4) fm from a recent
analysis (Ray 79) of 0.8 GeV polarized proton elastic scatte-
ring at Los Alamos may be added to the list. I think that one
now may tell everybody that A is without doubt different from
zero and positive. This is clear experimental evidence of
differences in neutron and proton distributions. I shall
refrain from writing down a number because that needs a careful
discussion. Karlsruhe has done much to emphasize the importance

of such a discussion.
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One may look at (1) in two ways: For theorists,
(Rn—Rp)4O is small and4galculable, and A thus a measure of
the "neutron skin" of Ca. The experimentalist may start
from the experimental fact that R_ is pratically the same for
40Ca and 48Ca. A then reliably ingicates different neutron

distributions in both isotopes.

In closing, let me repeat two remarks which I shall
remember: the surprizing statement made by Edgar Allan Poe
on V(r) as quoted by Dr. Meyer: "Truth is not always in a
well. In fact, as regards the more important knowledge, I
do believe that she is invariably superficial", and
Dr.Hifner's comment: "The point you want to omit may be the

only one that contains a lot of physics".

Incidentally, this meeting took place 70 years after
Geiger and Marsden discovered the back scattered alpha rays
which started the discovery of the atomic nucleus. It mana-
ged to get together scientists working in many different fields
but having the same scientific interest (For many conferences
it is the other way round). As the last speaker, I have the
pleasure and privilege to thank the Kernforschungszentrum
Karlsruhe, and especially Prof. Klose, in the name of all
participants for making this useful meeting possible, and
for their generous hospitality. We are very grateful to our
colleagues Gils, Rebel, and Schatz from Karlsruhe for their

initiative and for all the work that was the result.
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