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Abstract

Some recent neutronics experiments for fusion reactor blankets show that

the precise treatment of nisotropic secondary emissions for all "types of

neutron scattering is needed for neutron transport calculations. In the

present work new rigorous methods, i. e. based on non-approximative microsco­

picneutron balance equations, are applied to treat the anisotropie colli­

sion source term in transport equations. The collision source calculation

is free from approximations except for the discretization of energy, angle

and space variables and includes the rigorous treatment of nonelastic

collisions, as far as nuclear data are given.

Two methods are presented: first the Ii-method, which relies on existing

nuclear data files and then, as an ultimate goal, the I*-method, which

aims at the use of future double-differential cross section data, but which

is also applicable to the present single-differential data basis to allow

a smooth transition to the new data type.

An application of the Ii-method is given in the code system NITRAN (an acronym

for ~on-!sotropic TRANsport) which employs the SN-method to solve the transport

equations. In general, magnetic tape is used as a stOrage interface to separate

the scattering kernel calculations fromthe calculation, which solves the SN­

difference equations.

The calculational speed of the Ii-method is high, because a new analytical

integration over the second angular variable is introduced into "the - also new ­

concept of the angular transfer probability. Compared to the approximative

PL-calculations the computation time is between P3 and PS. Thus, the rigorous



methods are not only valuable as reference methods, but also for technical

application.

Both rigorous methods,the ri- and the r~-method, are applicable to all

radiation transport problems and they can be used also in the Monte-Carlo­

method to solve the transport problem.

Some demonstrative calculations for Li, Be and C spheres with a central

D-T neutron source show that the effect of the anisotropy of the non­

elastic colli~ions on th~ scalar flux and the r~action rates is very large.

A proposal is given that the double differential cross sections for each

material should be given in a future nuclear data file in the form of a

total neutron emission double-differential cross seetion, for all types

of interactions together, in the laboratory system. These cross sections

can be used with the more advanced, but also rigorous r·-method.



Strenge Methoden für anisotrope Neutronentransport-Rechhungen und

das NITRAN-System für Anwendungen bei Neutronik-Rechnungen zu

Fusionsreaktoren

Zusammenfassung

Einige neuere Experimente zur Neutronenphysik des Blankets eines Fusions­

reaktors zeigen, daß eine genaue Behandlung der anisotropen Sekundärneu­

tronen-Verteilungen für alle Arten von Streuung für Neutronentransport-Rech­

nungen erforderlich ist. In dieser Arbeit werden neue, strenge Methoden an-

. gewendet, um die anisotrope Stoßquelle in Transportgleichungen zu behandeln.

Die Berechnung des Stoßquellterms ist frei von Näherungen mit Ausnahme der

Diskretisierung von Energie-, Raum- und Winkelkoordinaten und schließt die

strenge Behandlung der nicht-elastischen Stöße ein.

Zwei Methoden werden vorgestellt: Zuerst die li-Methode, die gegenwärtig ver­

fügbare Datensätze zu verwenden erlaubt, dann die l*-Methode als das eigent­

liche Ziel, die auf die Verwendung zukünftiger doppelt-differentieller Wir­

kungsquerschnitte ausgerichtet ist, die aber gleichwohl auf einzel-differen­

tielle Daten zurückgreifen kann, damit ein sanfter Ubergang zum neuen Daten­

typ möglich ist.

Eine Anwendung der li-Methode im Programmsystem NITRAN (ein Acronym für

!icht-!sotroper TRANsport) wird beschrieben, wobei die SN-Methode zur Lö­

sung der Transportgleichung benutzt wird. Ganz allgemein wird Magnetband

als Zwischenspeicher eingesetzt; insbesondere, um die Berechnung des Streu­

kerns von den Rechnungen zur Lösung der SN-Differenzgleichungen zu trennen.

Die Rechengeschwindigkeit der li-Methode ist hoch, weil eine neue analyti­

sche Integration über die zweite Winkelvariable eingeführt wird in das

ebenso neue Konzept einer', Winkel-Ubergangswahrscheinlichkeit. Verglichen

mit den appro~imativen PL-Rechnungen liegt die Rechenzeit zwischen P3
und PS' Daher sind die strengen Methoden nicht nur als Referenz wertvoll,

sondern auch für den technischen Gebrauch. Beide Methoden, die li- und die

l*-Methode, sind anwendbar in allen Strahlungstransportproblemen. Sie kön­

nen auch für die Monte-Carlo-Methode zur Lösung von Transportproblemen ein­

gesetzt werden.



Einige Rechnungen fUr Kugeln aus Li, Be und C mit einer zentralen D-T­

Quelle zeigen, daß der Effekt der Anisotropie der nicht-elastischen Streuung

hinsichtlich der SkalarflUsse und der Reaktionsraten sehr groß ist.

Es wird vorgeschlagen, daß die doppelt-differentiellen Wirkungsquerschnitte

fUr jedes Material in einem zukUnftigen Kemdatensatz in der Form eines

totalen Neutronen-Emissions-Querschnitts in doppelt-differentieller Form

fUr alle Reaktionsarten zusammengefaßt im Laborsystem gegeben werden soll~

ten. Diese Art von Querschnitt kann dann mit der fortgeschrittenen, aber

gleichermaßen strengen I~-Methode verwendet werden.
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I. Introduetion

We have met severe diffieulties in the applieation of eurrently used

neutron transport eode systems with available evaluated nuelear data

files.

Beeause of the loealized D-T neutron souree and strongly anisotropie col-

lisions, the neutron fields become very anisotropie. Calculational aceura-

eies for angular and sealar fluxes and reaetion' rates beeome sometimes

very poor, and we have had no means to estimate the accuraey of our eal-

eulation tools. Diffieulties are arising from both approxi~ative methods

of ealeulationand insufficient nuelear data files. Commonly, the status
,

of the data files refleets the approximations in the ealeulationalmethods.

Therefore, when introdueing a progress into the calculational methods, one

has immediately to solve also the data problem. First in this report we

present a solution (the Ii-method) for the rigorous anisotropie neutron

transport caleulation relying on an existing data file. Then we show the

ultimate goal, the I*-method, which is more general and simpler by the

use of t'he double differential neutron emission cross section'and a gene-

ralized angular transfer probability. But double differential data will

only be available in the future, and so we have to show the important

effeets by means of the Ii-method. In order to see the present status,

we piek up the 4 recent works, whieh eontain typieal results relating

to the present work.

At Jülich [1,2,3,4} tritium production rate measurements were carried

out in a cylindrical assembly of natural lithium. Calculations were done

mainly with the Monte-Carlo code MORSE using ENDF/B-III data. There was

a fair. agreement between measured and ealeulated results. In the same
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lithium assembly a beryllium layer as .a neutron multiplier was used.

For this case they reported a large discrepancy between experiment

and calculation. The multiplication factor of the beryllium was measu-

red independently by surrounding it with a polyethylene layer instead

of the lithium assembly. There the calculated multiplication factor

(MORSE with ENDF/B-IV data) was 20% higher than the measured one.

At JAERI, in Japan, they measured threshold fission rate distributions

in a nearly spherical assembly of natural lithium with and without gra­

phite reflector [S,6], and compared them with results of S64-PS-calcula­

tions using the code ANISN [7] with ENDF/B-IV data processed by SUPERTOG

[8]. They found 10 to 30% discrepancies in the ratios e/E (calc./exp.),

see Fig. 1•

50
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100 group Ps cross sections
from ENDF/B-IV processed by
---.--- SPTG 4Z
~ NJOY

1.3

1.1

1.01---~'-------------------1

1.4

1.2

1.5

0.9

0.8 L-~~-_+_-~---&---.JL..--.a---.JL..L-- .......- ......-~

o

.f....---------------------.
E
1.6

Fig. 1: Lithium experiment at JAERI:
spherical assembly with reflector;
rate measurements
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They presumed that the effect should be due to the anisotropy of non­

elastic scattering, which cannot be treated in code systems like ANISN

+ SUPERTOG. Some support for this hypothesis was given by the results

of another calculation using the GAM-II 100 group cross section set [9]

processed by NJOY [10]. This data set included the anisotropy of the inela­

stic scattering to the first level in carbon with a Ps approximation. As

can be seen from Fig. 1 the discrepancy between calculation and measure­

ment is slightly reduced. Their assembly, however, was constructed with

a rat her high fraction of stainless steel in the lithium zone in a pseudo­

spherical matrix structure, which makes the analysis complicated.

At the Osaka University, measurements of angular spectra from plane lithium

assemblies based on the associated particle time-of-flight method [11,12,13J

were carried out. The results were compared with S64-PS-calculations with

ANISN + SUPERTOG, using ENDF/B-IV data. They found large discrepancies in

the 4 to 10 MeV range, see Fig. 2, which were attributed to the anisotropy

of the inelastic scattering not included in the calculations. They also

pointed out that the angular flux calculations by the SN-PL-method are

strongly disturbed by the negative flux generation in the collision source

term, as is shown in Fig. 3. The flux oscillations were found "in heavy ele­

ments, too, besides a general discrepancy in the upper MeV range, see Fig. 4.

At Karlsruhe measurements of angular neutron spectra and the space dependent

tritium production rate were done with a spherical assembly of natural

lithium containing a minimum of stainless steel in the inner parts of the

assembly [14, ISJ. The calculations were perfor~ed with the code DTK in

the SN technique. A special partition of the angular coodinate, S19' was
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introduced to allow for the strong anisotropy of the neutron flux in the

radial direction. For the treatment of the anisotropy of the elastic

scattering a new technique of cQnsistent improved extended transport appro­

ximation, TS' was used [16]. Nuclear data were ENDF/B-III for lithium

and KEDAK-3 for iron. Large discrepancies in the angular fluxes under ob­

lique directions, as shown in Fig. 5, together with a fair agreement in

the radial direction lead to the conclusion, that the scalar fluxes, which

could not be measured in that experiment, are calculated drastically too

high in the energy range 2 to 10 MeV. The estimated discrepancy in the

scalar spectra (40 to 60%) should affect the calculated tritium production

by 13 to 20%. However, the discrepancy between the measured and calcula­

ted tritium production rates (Fig. 6) was larger than that. Therefore they

concluded that there were two major sources of errors, namely ~he error

of the transport calculation and the error in the 7Li(n,n'a) cross section

value at 14 MeV. Lacking the possibility of including the anisotropy of

the nonelastic scattering in the calculations, they were not able to verify

the magnitude of the effect of the anisotropy of the nonelastic scattering.

From the above four experimental studies we may extract the following two

stat ement s :

1) Due to the finite Legendre polynomial expansion for the collision source

term of the SN-calculation the angular information is distorted. Errors

from this have not been estimated. A rigorous reference method to vali­

date the existing methods is therefore desirable.
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2) The full anisotropy of the scattering (i. e. elastic, inelastic,

(n,2n), (n,n'x), etc.) must be included in order to fulfill the need

for a reference method.

As already stated, the data problem is an obstacle on the way to the goal

of the desired reference method. Instead of touching existing codes, which

due to their complexity would have built up additional obstacles, a comple­

tely independent code system NITRAN (an acronym for !on-!sotropic TRANsport)

was developed. The code system is described in detail, as well as the result

of calculations for spherical assemblies of 7Li , 9Be , and 12C, which prove

the necessity of the rigorous method.

Finally, we will describe the I~-method, which is also rigorous, but simpler

and more general than the Ii-method. The Ii-method fits to the present status

of nuclear data files, while the I*-method will fit to the future nuclear

data files that contain double differential neutron emission cross sections [17].
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2. The Ii-method

2.1 The collision source term 1n the neutron transport eguation

A purely mathematical derivation of the 1i-method is presented in a sepa-

rate report [18]. Here we present it more from a physicist's point of view.

The neutron balance equation for the angular flux f (;tn) of the energy
g

group g is generally written as

+

.)
, _., -9

b t . f, (.,. I S2.) =

(1)

By using the new concept of an angular transfer probability for specified

type of collision, i, (see Appendix 1 and ref .19) the collision source term

is writt"en as follows; by directly carrying out the integrat ion over the

second angle y' for the collision source term with delta-functional kerneis

2./t .,..,

1- L G"0 (,',$).1n- JJf" (r,~', $P') 9' 011"
(2)

t 2. co,",

3' o -'1

with 11' = eosine of the incident neutron angle,

11 = eosine of the outgoing neutron angle.

1L total number of type of collisions (ei. plus inel. level)

ff) Throughout the text "0" is used for macroscopic cross sections to

distinguish from the summing symbol.
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The first term of the right hand side of Eq. (2) shows the eontribution

of anisotropie eollision events, while the seeond shows that of isotropie

events in the LAB system. We need not earry out an integration of the ani­

sotropie eollision souree over'f in the transport ealeulation"*). This is a merit

of the li-methode The matrix cr~ (g:g), whieh represents the energy distri-
1.

bution of seeondary neutrons in the LAB system, is defined by

(3)

where cr.(E ,,~-.) is the angular differential cross seetion in the GM system,
1. g e1.

and g.(E ,) is a Ja~obian (see Appendix 2).
1. g

The Jacobian is given as follows:

2

where

(4 )

with A = mass of nueleus relative

to neutron

(5)

lI: A
E = - • E , (6)A+I g

Q.= Q-value for the eollision of type i, with
1.

QI=O for elastie seattering

The relation between ~* ., the eosine of the angle of the seeondary
e1.

neutron in the CM system, and the energies E , (ineident) and E
g g

') The eollision souree for an isotropie seattering (seeond term of

Equ. (2» is related to the sealar flux ~ (r ) only, beeause
~~+~ g

qSt (r+) ~ j f f, (r~r, r) o{r. 01 r
o _-4
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(outgoing), derived from the scattering kinematics (see Appendix 2)

is as follows:

={CAt 1)3. • ~ _ ~. (-1- aE'~) _.iJ/~ 1- tl, IE'"
2. A 11' 2. 2Ft

The matrix 0
0 (g',g) in the second component of Eq. (2) representscon

the energy distribution of secondary neutrons, which is .treated as iso-

tropic in the LAB system.

•The phase shift in the 1"-space after the collision, f:,., see Fig. 7 for
1.

definitions, is given by

(7)

(8)

In: }J'=cos8'
Out: }J =cos e
Scatt. :}Ji= cos 8i

r or k-z

(acc. to
geometry)

Fig.7: Definitions of angles in the LAB system.
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~
~i' the eosine of the seattering angle in the LAB system, is given by

the kinematies [181 for a type i of eollision as

(9)

For given ~' and ~ t he phase shift (~- J-') must be fixed, beeause the

eosine of the seattering angle ~~ is fixed. ~~ being the eosine of the
1. 1.

-+- -+-
angle between the n and the n' veetors, there is only one ineident veetor
-+- -+-
n' corresponding to the outeoming n. The angular transfer probability

funetion, the explieit use of whieh is new in neutron transport ealeula-

tions, ean be given analytieally, exeept for some extreme eases, as

(Appendix I):

(10)

Dr- = o

where the limits between the kinematieally allowed and forbidden regions

of ~ are

-p.~
I

* 1_~~2ßI = ~'~.1. 1.

ß2 = ~,~~ +.p.~ 1-~i2'
1.

( 11 )

(12)

The physieal meaning of the Ii(~',~)-funetion and some examples are

explained in the next seetion.

In the ease of a one-dimensional transport problem we can eliminate

the phase shift 6~ using the symmetry eondition in the ~-spaee. For
1.



- 14 -

the spherieal ease, for instanee, the balance equation beeomes

~ .~ ("1"1. F: er: ..c.c.)) t- 1 ~ rtt_,r2.) F. (r. ~)l + s'·/: (rr) =
't~ a,. 1'/ r ~/" Lr' J-'/ ] t" I

+., XL.

=4 J? (;/(3:') ·fL' ~~/-)- 1'('-'1"") ~I + (13)

3 -... 1=1

'Z,1i

where: ~ ('-, /",) == f f
t
(r;~) J Y

o

-+
and the sealar flux ~ (r) is given by

... " g ...., 2ü

~:(~)"' JF, (r,l' )~ =Jf~ (i', S:) J 'I' .y.
-1 _~ 0

2.2 Charaeter of the Ii-funetion

The Ii-funetion is the distribution funetion for the probability, with

whieh a neutron ineiding at the angle·) ~' appears at an outeoming angle

*~ after a eollision of type i with the seattering angle~.• If the seat-
~

tering in the CM system is isotropie, a~(g',g) beeomes eonstant with re­
~

.., For abbreviation we use the word "angle" also for the eosines, if the

distinetion is easy.
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spect to g, and the anisotropy of the scattering kerne1 is represented by

the Ii(~',~)-function alone. Hence, the Ii-function contains the CM-to-LAB

system transformation.

+
As can be seen in Fig. 7 the angle vector Q after the collision draws

+
a circle around the axis Q' of the incident vector. In the case of Q'-

+
symrnetry this circle rotates about the position vector r. All outcoming

vectors are distributed on this curved surface. Inside a cone with opening

angle 82 and outside a cone with opening angle 8
1

there are no outcoming

vectors: this is the kinematically forbidden region. The region between

8 1 and 82 , resp. the eosines ß1 and ß2, is the allowed region, and the

distribution function of vectors on this curved surface is Ii(~',~). The

relations (11) and (12) are just the transcribed addition theorems for

the eosine:

= cos 8' cos 8~ - sin 8' sin
1

= cos (8'-8!) = cos 8' cos 8~ + sin 8' sin
1 1

8~
1

* *If the scattering angle 8i becomes 0 or TI, i. e. ~i = + 1, the allowed

angular interval collapses to a point. In this case the Ii-function be­

comes a delta-function [181.

Fig. 8 shows some representative examples of angular transfer probabili-

ties Ii(~',~). The Ii-representation of the angular transfer probability

is rigorous in the sense, that the scattering law is treated without

approximation. For the validity of the scattering law itself in the energy

range of interest no doubt has been raised so far.
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It is the most important aspeet of the ri-funet ion that the outeoming

angle ~ is restrieted to the region of ßI < ~<ß2' This restrietion is

missed in eurrently used approximative methods like the PL representation

of the eollision souree term, in whieh the full range of ~, i. e.

-I ~ ~ ~ +1, is always used. The seeond important point is that the an-

gular transfer probability depends on the type of the eollision through

*~ .• This means that we have to treat the seattering kinematies for eaeh
~

type of eollision separately in order to reeonstruet the eorreet anisotropy

of the seattering. The ri-funetion satisfies the eonservation of probabi-

lity,

+1

f r,' Crl,r) elr
-1

1 ) ( 14)

*and is symmetrie for the three variables ~',~ and ~ ..
~

2.3 Relation between the ri- and the PL-method

The balance equation for anisotropie neutron transport is usually written

[7, 16, 19J with use of the eollision souree term in the form of a fini-

tely truneated Legendre polynomial expansion:

~2.' ~[t1~(r,)A)]~ ~ g,,[("_/At)~(~jA)]~C{1~ (r;~)
+-1

- E J1 t (JL(a: 3)'~ y.').~ (j'). ~. (r;.r') ~' (15)

&' -1 .{= 0

.,.. ~('i~)
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If we take into account the kinematics of the various types of collisions,

the P.Q,-coefficients of the matrices (t"he "PL-kerneis") , are given by

(see also Appendix 2):

u
D

(a',3) = f 6;, (Ea, ,';<:i)' ~i (EI')
; ='1

and

(16)

(19 )

Il-
(f.e(S~3)== L: (2(~1)'()i (EtJ ;f<:)'8"(E4,)' ~ {)A/} (17)

t= "
",,"1'" .(;:: ;f, 2, •.• I ~

The averaging within the energy groups is abbreviated for simplicity.

By substituting Eqs. (.16) and (17) into (15) and using Eq. (3) we get

+1

+ f L Ö';i8',,)J11,( r;)"') "'I" ,
I' -'"

Comparing Eq. (18) with Eq. (13) we find that the angular transfer pro­

bability P~ (~',~) for a collision of the type i is expressed by

L.

p.t. (r/'r):S i L (2l+ 1).~ ~t)· ~er)· ~~)
c. l=o

In ref. [18] it is proved that the function P~(~',~) converges against

Ii(~',~), if L~, i. e •..
Ii (p',r);:: f 2: (2e+,,)· ?~""). ?(r') ·?(r).

l:o

In Appendix 3 the same is done for the I~-method.

(20)
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Thus it is demonstrated from another point of view that the Ii-method

is a rigorous treatment of the anisotropie eollision souree term.

A first impression of the differenee between the PL- and the Ii-method

is given by Fig. 9, whieh shows angular transfer probability funetions

with various finite truneations of the Legendre polynomial expansion in

eomparison with the rigorous Ii-funetion. The Ps approximation is still

very rough from this point of view. More than 20 terms of the Legendre

expansion are needed for a representation of the shape of the Ii-funetion.

Rigorous angular transfer probabilities are in most eases unsymmetrie

against ~ = O. Thus,it ean be seen from Fig. 9, why the PL-approxim~tion

with low even number of L (i. e. P2 or P4 ) is less aeeurate than that for

odd L (i. e. PI' P3 or PS)'
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3. Realization of the Ii-method

3.1 Discretized balance equation (SN-equation)

The discrete ordinates equation based on Eq. (13) is derived by discre­

tization of the r and ~ variables [19] for the spherical geornetry:

(21 )

The notation follows ref. [19]:

~n

w
n

angle point; ~n + I angular boundaries
-'2

weight for angle po~nt

A 1rn+­
-2

2= 4 7T. (rm +..!..) •
-2

area of cell surfaces (22)

r 1m ! '2; radial points at radial boundaries of volurne cell.

0. 1
rn,n-+t

- 0. 1 = - w ~ (A 1 - AI)
rn, n-'2 n n rn-+t rnZ

(23)

0. 1=0. 1=0
m,nrnax+z rn'2

(~ = + 1) (24 )

v = 4 7T (r
3

1
rn rn"2

r 3 I) / 3; volume of the cell
rn"2

(25)

Cg ; collision source for energy group g

Sg; external source for energy group g

1F (m~2,n); angular fluxes at spatial boundaries of a volume cell
g -

1F (m,n~2); angular fluxes at angular boundaries of a space-angle volume
g -

cell

F (m,n);
g

angular flux at amidpoint of the volume cell
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The new formulation for the eollision souree term is the essential change

to the SN-method,

CI(mln) == ~ ~ ~ (j'j YJ; 11) . t;, (W,/"") 'W"" r
~' ",' (f ~

where the anisotropie seattering kernel (matrix) a (g';n' .n) isg

given by

IL
G8 (S' j n:n) =, r ~.O(a',a)' I,,' (",'/11).

i=4

The angular transfer probability Ii(~'.~) is diseretized into

"') )-\1'1 +~n+ i

1 Wn· 7i. (.,: ..) = j I< (f';~) J.;-." -
p..., - ~)'t.., - 1-

'Z.

(26)

(27)
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where

(30)

In the present code (FUNGII, see section 3.3) averaging over wn ' is not

done. Eq. (29) is approximated by

(31)

for ß] < ~n < ß2•

As the ~n variables must be between ß1 and ß2, some provisions are needed

for the case that ß] or ß2 is included in the mesh wn (see Appendix FUNGII).

One can notice, however, that the analytical integrability is advantageous

for the discretization.

3.2 Development of the NITRAN code system and description of its structure

The new Ii-method can be applied to currently used SN code systems like

DTK [20] or ANISN [7] by rearranging their cross section processing codes

GRUGAL [21] and SUPERTOG [8], to stay with the first two examples. Parts

of the collision source calculation must be changed in the SN codes. This,

however, is not an easy task, because the nuclear data processing and the

kernel production are tightly connected to the SN calculation schemes. For

instance, about ]0 essential subroutines like OUTER and INNER in DTK [20]

must be revised in order to apply the Ii-method.
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Therefore we decided to develop an independent code system NITRAN ,~)

which has a new manner of data processing and scattering kernel calcu-

lation, based on the Ii-method. Fig. 10 depicts the concept of the NITRAN

system. The neutron transport.calculation itself, i. e. the solution of

the SN equations is separated from the kernel calculations. This concept

differs from the currently used scheme, in which the scattering matrices

are produced together with the calculation on the solution of the SN equa­

tions, even if a calculation on the same material is repeated.

The nuclear data file KEDAK [20,23] is used as a nuclear data source.

Auxiliary input for nuclear data is necessary, because some of the data

needed for the new type of calculation are presently not available from

KEDAK.

In addition to Fig. 10, Fig. 11 shows the working scheme of the kernel

calculation. The first processing code NIO produces the the so-called

p -kernel a~ (g',g) with use of the scattering kinematics and the diffe-
o ~

rential cross sections, and stores it on magnetic tape No. 1. These scat-

tering matrices can already be used for transport calculations with iso-

tropic collision source. The second processing code NIKER produces ani-

sotropic scattering rnatrices

stores them on magnetic tape

a (g';n'n) by means of
g

No. 2. This processing

the Ii-function, and

is done for each iso-

tope. The interface code NIMIX produces the anisotropie scattering matrices

for materials with several isotopes and for several layers of materials

("zones"). Its results are stored on magnetic tape No. 3. The code NIMIX

is not yet realized.
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Transport calculations can be done by means of various SN-codes. When

writing this report,.only the o~e-dimensional code NITRAN-S for spherical

geometry is completed. SN-codes for other geometries are planned, but they

are not necessary for the demonstration of the new method. Angular and

scalar fluxes, as calculated by the various SN-codes, are stored on magne­

tic tape No. 4, where they are ready for use in subsequent calculations of

nuclear effects and for y-transport.

The working scheme of the kernel calculation reflects the situation with

the nuclear data file. At present, scattering anisotropies in the GM system

are treated for elastic and level-inelastic scattering only. Angular distri-

butions for the secondary neutrons of elastic scattering are read from-

KEDAK, whilst the data for inelastic level scattering have to be read from

cards. Continuum-inelastic and (n,2n) scattering are treated as isotropie

in the GM system and 0
0

. (g',g) is produced with use of the evaporation mo­
~n

deI. In future the first emitted neutron from the (n,2n) process should be,

at least, treated as anisotropie in the GM system. This can be treated

by the same kinematics as the level-inelastic scattering. Then the second

neutron may be approximated as isotropie in the CM system. In the same

way also the anisotropy of processes like (n,n'x) and (X,n'x') should be

included, too.

Anisotropie scattering matrices are produced by NIKER by summing up

o~(g',g) • Ii(~',~) - or, more accurately: o~(g',g) • Ti(n',n) - for all

types i of scattering: elastic, level-inelastic and continuum. In the follo-

wing some explanations on details of the calculational procedures are given.
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3.3 Calculational procedures in the codes

3.3. 1 NIO

In Fig. 12 the calculational flow in NIO is demonstrated for the case of

elastic scattering on 7Li • A 67 group structure (see Table 1) is used for

all calculations in this report. The energy of the secondary neutrons af-

ter elastic scattering spreads over 22 of these groups. First we search the

energy points E , on which the secondary neutron energy spreads, according
g

to ref. [18] , between

Al
( 1.- QlIE-) T 211 f1- (Je /E lt '

(11-+1)2.

Ehi~1It - E,"
A'"(1- (Je'!E tt ) - 211.J1- Q"/E- t t- 1

(A+1)l.
(33)

Secondly we transform the Eg-points to the cos-angle points ~c in the GM

system with use of Eq. (7) - step 1 to 2 in Fig. 12. Then we can pick up

angular distribution data corresponding to ~ci = ~c(Eg) points. Thirdly

we transform the angular distribution data into an E array (step 2 to 3g

in Fig. 12, backwards), and integrate them over E (wh ich in effect is made
g

by summing up) to get SUM. SUM should be the Jacobian g.(E ,) of Eq. (3).
~ g

In the actual calculation, however, we normalize SUM to the cross.section

a.(E ,) instead of using the g.(E ,) factor. Thus, we obtain a~(g',g). The
~ g ~ . g ~

averaging within the groups is done with use of a subdivision in each energy

group, for the example of 7Li the groups were subdivided into about 10 groups.

This scheme is repeated for the level inelastic scattering. As can be seen

from Eqs. (32) and (33), if E- approaches the maximum possible value E~ = Q.,
~
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we get E. = E = E ,/(A+I)2, which is the energy of the neutron stuck to the
m~n max g

nucleus. Above the related incident neutron energy of E , = Ef = Q"(A+l)/Ag ~

we get aseparate scattered neutron. At the slightly higher value of

E , = Eb = Q:A/(A-I) we get E. = O. Above this value of E , we have neutrons
g ~ m~n g

scattered into the backward direction of the LAB system (~~<O). Therefore
~

this value Eb is called the backward threshold /33/. Below Eb the scattered

neutrons appear inside a forward cone, theopening angle of which shrinks

from ~ = 0 to ~ = I, as Eg , approaches Ef , which is called the forward

threshold. Inside the forward cone the energy of the outcoming neutron has

c:
0-::J
.c
'e::-Ul

"0 0.1 I-
c:
0
~-::J
GI
c:
>.
~

Cj
"0
c:
0
~ 0.01 ~

tJ')

7Li elostic scottering
born/MeV source energy

14,867 MeV

,..

-
-

-

I""

I""

I""
-

-

'----++-+-!--+-~I-+-+-+I~-+-t_++~t_+_+_++_.....~

11 NIO_II-+-~l....;~....;-l+-+~--+;-++-+-+~....;+O,,~1~,+'++-1'~'H'H1__;~
I(N[KE~U \ \ \\\\\\\\~~\\~r~

-1 0 1
~}Jr

Fig.12: Flow of the scottering kernel production in the
NITRAN system I G)~(i)~®~@
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two possible values. At present the pro grams account only for one of the

two values. This simplification affects only one or two groups of incident

neutron energy in the present 67-group structure (see table 1 at the end of

the paper) and, moreover, the related cross sections are small.

A simplified flow chart of NIO is shown in Fig. 13. Flow charts of some

subroutines, which are essential in the Ii-method, are shown in Fig. 14.

We first open the KEDAK file with use of LDFOPN, which belongs to the

KEDAK retrieval package [23]. The subsequent use of the other retrieval

routines is omitted in Fig. 13. These direct-access routines are called

from subroutines SUBI to SUB4, which are specialized to read the various

data types instead of a single subroutine with many options. The material

name MAT is read in the alphameric convention for KEDAK. The total cross

section pointwise data are read and linearly interpolated for the group

cross sections. In the actual status of the subroutine only smooth cross

sections are treated correctly (like those of 7Li , for instance). Avera-

ging with a weighting function must be introduced soon. Then elastic scat-

tering.is treated. The cross section is expected to be always available

from KEDAK. The data are interpolated to get ° 1 (E ,), which in the Ii­e g

notation is 01(Eg ,). The angular distribution input data are read from

KEDAK in the form of pointwise data, but the subroutine ANGIN is prepared

to read also Legendre coefficients. It was not necessary, to make this op-

tion readily available. The subdivided points for the outcoming energy are

transformed into scattering angles II by the subroutine NARABE ("rearrange-
c I

ment"). We transcribe the interpolated (by INTER) angular distribution data

to the energy array and integrate them over the subdivided energy points

within ~Eg with use of the subroutine XENER, to get the (unnormalized) ker­

nel (i. e. angular distrlbution converted to E-space). To get o~(g',g) we
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END

Fig •. 13: Flow chart of NIO. simplified
(* starting treat ment of next
reac t ion type)
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ovrr sub division
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10 ~joJc

RETURN

rrarrangr
rnrrgy arrays:
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NARABE
t

RETURN

XENER
RETURN

NORM

Fig. 14: Calculational flow in three subroutines of NIO
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integrate the unnormalized kernel within E. < E ~ E ,normalize themln g max

kernel to t and multiply then groupwise by 0t(Eg ,). This is done in sub-

routine NORM. This process 1s repeated for all groups of incident energy

Eg ,. The matrix o~(g',g) is stored on tape No. t in the order of a sink

group kernel (arrays in g' for fixed g).

For the level-inelastic scattering, the process can be repeated from the

beginning at the cross section input, but just here technical changes are

necessary, because the data input presents more problems. The program seeks

at first for KEDAK data. If they are available, the further processing is

done as for elastic scattering and the outcoming kernels are indexed with

i = 2, 3, etc. If KEDAK data are not available, which is alrea~y true for

the first attempt to read an angular distribution for the first level inela-

stic scattering, data can be read from cards. If a level cross section is

read from cards in addition to KEDAK data, e. g. a second level cross

section, where KEDAK contains only the first level cross section, this addi-

tional cross section(s) must be subtracted from the continuum cross section.

This is done in NIO. For the inelastic scattering to the continuum the data

table is read from KEDAK and interpolated to get 0 (g'). Next we read thecon

energy distribution of the secondary neutrons, actually only in the form

of nuclear temperatures, as these data are given for the light elements

(for Be not even thisl). The subroutine EVAPO calculates 00 (g',g) bycon

use of the formula

. exf [-E,/T(,,)} (34)
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with the normalization factor fN:

(35)

o
The kernel a (g',g) is not immediately written on magnetic tape, becausecon

we must add to it the other possible continuum kernels, most probably the

(n,2n) kernel.

The (n,2n) and (n,3n) kernels are treated in the same manner as the first

continuum kernel, except for the normalization factor in EVAPO. These ker-

nels, if existing, are added to the first continuum kernel and the final

sum is written on tape No. 1, again in the form of a sink group kernel.

It is this treatment of the nonelastic scattering, which we are least .sa-

tisfied with. Improvements in this section are really necessary, e. g.

evaluated double-differential data for the secondary neutrons. This point

will be treated more extensively in section 5.

3.3.2 NlKER

The flow chart of NlKER is shown in Fig. 15. The continuation in NlKER for

the calculational flow in the kernel production is demonstrated in Fig. 12.

The flow chart of the most important subroutine of NlKER, FUNCII (for the

Ii-function, resp. T.(n',n) matrix) is shown in Fig. 16. We start with
1

the card input for the calculational conditions, including the ~ set for
n

the SN calculation. The energy group boundaries and the total cross section

are read from tape No. 1.
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E .... ,..t, Euppe~BUwhere ..
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FI= SK- FIND

yes

RETURN

Fig. 16: Calculational flow in subroutine
FUNCII of NIKER

*1

no

I, t...!.(XSECINrtlTap -J•
I - ;-.{Tap~2)-

output: GIE',E;,..',,..)

END

Fig. 15: Flow chart of NIKER

sink energy loop
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NIKER has three options for generating anisotropie seattering matriees.

With IIORPL = 1 the Ii-method is used. With IIORPL = 0 the PL-method is

used with a representation of the angular transfer probability in the en-

tire range of ~ - the usual method. With option IIORPL = -I the PL-funetion

is set to zero outside the kinematieally allowed range ß1 to ß2 , and renor­

malized inside this interval. Here we eoneentrate on the option for the

Ii-method. The kerneis are produeed in a single sink group loop. Therefore

the P -kerneis o~(g',g), i = 1 to IL and 0
0 (g'.g) are read from tape No.o 1 eon

at onee.

Inside the sink energy loop the elastie and level-inelastie seattering is

treated first by ealling FUNCII with a speeified Q.-value and ineident ener­
1

E "E and Q., based on Eq. (9) byg g 1

subroutine FMZ. In Fig. 12 this is demonstrated asmeans of the funetion

gy E ,. In FUNCII (see Fig. 16) we ealeulate the eosine of the seattering
g

*angle, ~., in the LAB system, from
1

the step 3 to 4.

The outeoming energies within 6E are subdivided into KMAX points. KMAX
g

is defined automatieally in the main routine of NIKER, such that the trans-

formed angle points ~:(g' ,gK) give a slightly finer seale than the ~n~set

of the SN-ealeulation. For instanee, if we earry out a S32 ealeulation ~~

is set to somewhat more than 2 for 7Li , beeause - referring to the example

< <of Fig. 12 - 22 energy groups eorrespond to the seat~ering from -I = ~ = I.

Aetually KMAX was set to at least 6 or 7, to keep the aecuraey of the

transformation. Next we calculate ß1 and ß2 for eaeh ~n' to restriet the

~ -space. Then we calculate the angular transfer matriees T.(n',n) with
n 1

*Eq. (31) and average the obtained values over the KMAX points within 6~.
1
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that correspond to 6Eg • The new matrix is called T:(n',n):

I<~Ak

I 7i (~:h)' AltJK
QI<= 1

(36)

In order to keep the numerical accuracy we use the following normalization

(normalize FIND in Fig. 16):

(37)

Then we get the anisotropic scattering matrix for scattering of type i:

(38)

In the first part of the sink energy loop this is done for the elastic

and the level-inelastic scattering. The partial scattering matrices are

added up into the FI-matrix, which finally contains:

IL
G4u~( (S', ~ i ",', "')::: L0; (g', 3i n', "")

i:. 1

(39)

Next in the sink energy loop we treat the kernel for the scattering to the

continuum. The distribution of secondary neutrons is assumed as isotropic

in the CM system. For a queue of assumed Q-values, which we call the Q -arrayc

and an element of it Q .; we transform the secondary energy distribution from
Cl.

the CM to the LAB system. According to Eqs. (32) and (33) the maximum and

minimum energy for Q . is calculated and the section of the secondary neutron
Cl.

odistribution between these limits is then treated as a P -kernel 0 .(g',g)
o Cl.

in the same manner as the elastic and level inelastic kernels. In order to

cover the entire distribution of secondary neutrons, the elements of the



- 37 -

Q -array are calculated such that the resulting E and E. are over-c max ml.n

lapping by a certain portion, which is actually 30 %. This is shown in

Fig. 17.

arbitrary

secondary neutron distrib.

Fig.17:

i i i i ""I
0.1 1 10 MeV

Treatment of the c.rn. to lab. transf.
by rneans of assurned Q -values
yielding overlapping energy intervals,
here case of 9Be, 30% overlap.
QC1=0; and QC max for Emin(QCmax)=O.

oIn this treatment we first assume the Po-kernel a .(g',g) to beCl.

where CMAX is the total number of the Q .• Then FUNCII is called to produceCl.

the angular transfer matrix T-.(n',n) to getCl.

( ' , ') ~o ( , ) _oJ{ I
~; 3, ~ I ~, 11 = ~Cf' ~ ,~ , ~i (1Il, t1) . (41 )

This procedure is donefor all Q .-values and the.partial kerneIs are addedCl.

and renormalized:
CI1IiX

<r (4', QJ' VI', H) - /Je.' ~ 0:,' (s', Q I' 11'1 "') ,
C/)'" 0 f1 .( ~ '"" CI 4

"='"
(42)
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The normalization factor f is given by
c

Finally, weadd the continuum kernel to the level-kernel to get the total

anisotropie scattering kernel

This all being done for the sink energy group I, the results are stored

on magnetic tape No. 2. The program returns to treat the kernels for the

next sink energy group unless the last group has been reached or the com-

(43)

(44 )

putation time foreseen for the calculation has been consumed. For this case

a continuation of the calculation in a subsequent job is foreseen, and

ISTART is then the new starting group for the kernel calculation.

In the present stage of the development the continuum kernel is not added

to the level kernel, but written separatelyon tape No. 2. At the expense

of computer space the treatment became more straight-forward and allowed

the control of errors and individual effects more effectively.

We have concentrated the werk on light nuclei, because there we can demon-

strate drastic effects, but some remarks must be made concerning heavier

nuclei. For these the scattering - mainly elastic - is strongly peaked in-

to the forward direction. If we use the energy group structure of table 1,

the energy spread of the secondary neutrons covers only a small number of

groups, e. g. 5 groups in the case of 56Fe elastic scattering at 14.8 MeV

incident neutron energy. As the angular distribution of secondary neutrons
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in the eM system is converted to the P -kernel a~(g',g) by NIO, few groups
o ~

must represent the anisotropy. This means, to stay with the above example

of S6Fe , that a S32-calculation becomes effectively a SS-calculation only.

In order to avoid such a decrease in accuracy~ we could use a very fine

energy group structure, but that makes the computations expensive. Another

solution of this problem may be to restrict the use of a very fine energy

group structure to NIO for the Po-kernel. In NIKER we then may come back

to broader energy groups:
XL. ICHItJ<

G,(s',3i~:~) = ~A: .2: ö"/(S',I«)'7i ~.tt(8#fJi/f#1"~")· AE"t<
(.1 -. I{a'"

. E - A E - 1. AEQ + 1<' AlS.. 4.",01 AEq == AEfI / /(NAXw.fk 'I< - ~, 2." -,I< I 01< f/ J

using the T. probability of Eq. (31).
~

NIO and NIKER should be made able to carry out this procedure. However, if

double differential cross section tables are given, we can avoid this proce-

dure by using the rr-method (see section S.).

We use the scattering matrices on tape No. 2 to calculate the neutron transport

in a single isotope assembly. The flow chart of the one-dimensional code

NITRAN-S for spherical geometry is shown in Fig. 18. It is a characteristic

of the code that the scattering matrices are read inside the loop for the

sink energy group. Moreover, it has an option to choose between two inter-

polation schemes to get the angular fluxes in a space-angle-cell, the linear

or the exponential (24] scheme, steered with the input variable LORE. In the

linear interpolation scheme we use
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Input calcul. condilions

calculate coefficiClnts
for difference equations
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difference equations
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output of fluxes

END

Flow chart of NITRAN - 5
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2 F (rn,n)g

2 F (rn,n)
g

(45)

(46)

with index g denoting the source group nurnber, and the sink group being

constant within the loop. For the exponential scherne [24] we use

2= F (rn,n)g
(47)

2F (rn,n)
g

(48)

At the centre of the sphere, where we have

as the boundary condition, we use a linear interpolation in lJ,which rnakes

it possible to use an unsymmetric set of angular rnesh points, lJ •
n

(49)

An unsymrnetric lJ set is useful for fusion neutronics applications, because
n

densely distributed lJ-points in the forward direction are needed to allow

for the good description of the strong forward anisotropy of the neutron

flux [14].

NITRAN-S has three options for negative flux correction, steered by the

input variable NFC. If we use negative flux fix-up, unnegligible errors will

be produced. To correct for these, rebalancing of neutrons has 'to be used.

Up to now, it was unnecessary to introduce this rebalancing for the following

reasons. When applying the Ii-method it is only by the linear interpolation



- 42 -

scheme and by numerical effects in the computer that negative fluxes

are produced. Their absolute values, however, are small. Moreover, the

microscopic neutron balance [19J is sustained by the difference equation

itself, because the collision source term is rigorously treated by the Ii­

method and we use a sufficiently fine spatial mesh width. A test calcula­

tion for a vacuum sphere with a spherical shell source gave a result which

was very close to an analytically obtained result. For a calculation also

without rebalancing, but with negative flux correction, the result differed

by several percent from the others. The exponential method, as proposed in

ref. [24] , was introduced into NITRAN-S to allow for larger spatial mesh

widths without loosing accuracy. In ref. [24] it was stated, that the prob­

lems of the negative flux generation is not solved by this interpolation

method alone, but that a non-negative collision source term formulation is

also necessary (see Fig. 3). The Ii-method therefore should be used in con­

junction with the exponential scheme. Unfortunately, we failed to make

successful calculations, when using the equations given in ref. [24]. Per­

haps they contain some error. But in view of the promises of this interpo­

lation scheme we will continue the efforts to use it.

In this report, we present only results of calculations without negative

flux correction.

The inner iteration is stopped in the usual way, the changes are printed

for control. The outer iteration is not yet needed, therefore the results

can be written group by group on magnetic tape No. 4 after the end of each

inner iteration (there is no up-scattering).
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4. Test ealeulations and results

4.1 Testing the aeeuraey of the PL-method and eomparing the ealeulational

speeds

4.1.1 Caleulational eonditions

NIKER has an option to produee anisotropie seattering matriees based on

Eqs. (15) to (19), i. e. aeeording to the PL-method (input variable IIORPL= 0).

Using this option four PL-kernels were produeed for 7Li : PI' P3 ' Ps

and P20 • The referenee kernel was produeed by the Ii-method (IIORPL = 1).

The eomparison eoneerns elastic seattering only, non-elastie seattering

treatment was unchanged. The input data were for elastie seattering ENDF/B-IV,

proeessed by SUPERTOG [8], for non-elastie a eolleetion of data from ENDF/B-IV,

ENDL and BNL 400, proeessed by NIO. These are deseribed in seetion 4.2, where

they are more relevant than here. In NIKER they were treated as isotropie

in the LAB system. Only the elastie seattering was treated with the full

anisotropy in both the CM and the LAB system.

S32-ealeulations with NITRAN-S, using the ~n-set of table 2~were earried

out for a sphere of 7Li with 50 em radius and 1 em radial mesh width. The

D-T-souree was loeated at a eentral shell of 2 em radius, and the measured

speetrum of the source in the lithium sphere experiment [14] was used.

67 energy groups (see table 1~ )were used for all ealeulations.

4.1.2 Results for flux and reaetion rate

As had been expeeted the higher order PL-ealeulations yield results for

reaetion rates so elose to the referenee Ii-ealeulation, that we present the

*)At the end of the paper
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relative deviation from the referenee at an expanded scale in Fig. 19.

The rate ealeulation with the Ps approximation is already so elose to

the referenee values that we omitted the PZO result.
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Here it must be pointed out again, that the above eomparison between the

PL- and the Ii-method eoneerns the elastie seattering only, and that one

eannot draw eonelusions on the aeeuraey of the entire ealeulations.

In the rate ealeulation we have a lot of error eompensation. The situation

with the fluxes, espeeially the angular fluxes, is already mueh worse,

as ean be seen from Fig. zo.
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In PL-calculations of low order large discrepancies are found in the

energy region, where we have most probably neutrons with single interac-

tions. These errors propagate spatially and energetically. After several

interactions the randomization of the errors provides a compensation.

In fact, below 10 MeV the PS-results - and of course the PZO results, too ­

were so close to the reference, that we did not include them into Fig. ZO.

However, PS-calculations and even PZO-calculations give rise to serious prob­

lems with negative fluxes in the backward directions [IZ, 13]. We expect

the error compensation to work less effectively in the neighbourhood of a

major local heterogeneity like a duct or a strongly, absorbing rod.
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From this point of view a rigorous reference method is needed to allow

an estimate of the errors also for those more complicated geometries.

Therefore, also a two-, or even three-dimensional SN-code should be de­

veloped, which uses the Ii-method.

4.1.3 Calculational speed of the Ii-method

In the NITRAN system the computation time needed for a SN-calculation is

independent from the scattering kernel calculations. Therefore, the com-

putation time for the Ii-method can be compared with that for the PL­

method by comparing the time needed to compute the scattering matrices

with NlKER. For the PL-method, this depends on the order L. Naively and

from the general experience with rigorous reference methods one expects

a statement like the following: "In view of the rigorous reference re-

sults the calculational speed is still acceptable." However, as Fig. 21

shows, the calculational speed of the Ii-method lies between that of P3­

and PS-calculations. Therefore the Ii-method is not only suited for

accurate reference calculations, but also for practical use in techni-

cal calculations.

Relative
costs

3

2

li -method

53
0

1 10 20
order of PL

Relative costs of collision
source calculations with NIKER

Fig. 21:
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4.2 Effect of the anisotropy of the non-elastic scattering

4.2.1 In 7Li , referring to the lithium sphere experiment ~

In order to show the effect of the anisotropy of the non-elastic scatte­

ring, we had to prepare two scattering matrices, which were identical

for the elastic part. These elastic data were - as in section 4.1 ­

taken from ENDF!B-IV, processed by SUPERTOG [al. The pro gram NIKER

treated these data by the Ii-method, taking into account the full aniso­

tropy in the CM and the LAB system.

The first kernel contained. the non-elastic scattering in fully isotropie

form, i. e. the secondary neutrons were assumed to be isotropie in both

the CM and the LAB system. Input data were taken from KEDAK [23], which

were transcribeddata from ENDF!B-III. These data consist of the first

level inelastic scattering cross section, the continuum cross section and

the (n,2n) cross section. The secondary neutron distribution for the latter

two is given by nuclear temperatures. An example of the intermediate kernel

OO(g',g), the input to NIKER, is shown in Fig. 22a.

The second kernel contained the nonelastic scattering as far as possible

in fully anisotropie form. Data were taken mainly from ENDF!B-IV. As this

data set includes only the first level cross section, the data for the se­

cond level cross section were taken from ENDL [25] and some data for the

angular distribution from BNL 400 [261. The second level cross section was,

of course, subtracted from the continuum cross section. For the angular
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distribution of the first level inelastie seattering the data of the

elastie seattering were taken. This approximation is allowed in view

of the faet that the Q-value (.478 MeV) is low compared with the inei­

dent neutron energy 14 MeV. Thus an estimate of the anisotropy in the

CM system is ineluded in the data set, whieh then was treated by the

NIKER eode with the Ii-method. In Fig. 22 b an example of the interme­

diate kernel for this ease is shown. In Fig. 22 e the total seeondary

neutron distributions for both eases are eompared. The seeond kernel has

remarkably less high-energy neutrons.

For the anisotropie e~se in NIKER the eontinuum inelastie and (n,2n)

seattering was treated by use of assumed Q-values (see seetion 3.3.2).

Both neutrons of the (n,2n) proeess were treated by inelastie seatte-

ring kinematies to produee the anisotropy in the LAB system. This is not

fully eorreet, but the eontribution of (n,2n) to the total eontinuum seat­

tering is small for 7Li •

Due to all the approximations for the anisotropie kernel the data set

serves only for the demonstration of the effeet of the anisotropy of the

non~elastie seattering on neutron transport. The S32-ealeulations with

NITRAN-S were done in the same way as in seetion 4.1, the only differenee

being the seattering kernels. Fig. 23 presents ealeulated sealar flux

speetra for both eases. Ratios of sealar fluxes are shown in Fig. 24 a

and b. These figures show that the sealar fluxes in average in the sphere

are overestimated by as mueh as 35% (exeept for the souree energy region)

unless we inelude the anisotropy of the non-elastie seattering. The effeet
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Table 3

Tritium breeding isotope
7li 6Li 7U+ 6Li

NITRAN isotr: inel. 0.598* (0.115)* 0.713 *
532 - Ii anisotr. inel. 0.526* (0.080)* 0.606 *

DTK isotr. inel. 0.569 0.115 0.684519 -T5

Experiment KfK - - 0.43 ±0.035

Comparison of calculated and measured tritium
breeding ratios for a lithium metal sphere
of 1m diam., measured source spectrum in calcul.
*: from flux in pure 7Li
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depends on the distanee from the source. The effeet is large in the

higher energy region for positions near the source. More distant

from the source, where the lower-energy neutrons are produeed by sub-

sequent eollisions after a first interaction at higher energy, it pro-

pagates to lower energies. The effeet for the sealar fluxes integra-

ted over the whole sphere is naturally dependent on the size of the

sphere: If we calculate the fluxes in a very large assembly, the effect

appears only according to the energy dependence of the spectrum and

the reaction cross section.

Fig. 25 presents ealculated tritium production rates by the 7Li (n,n'a)T

reaction for the ealculations with the two kerneIs. The effect of the

anisotropy of the non-elastic scattering is about 15% in average and

up to 18% near the source. A third, dashed curve in Fig. 25 is the

result of a calculation with a kernel in which the anisotropy of the

non-elastic scattering was taken into account for the CM system, but

the CM to LAB system transformation not being performed. Thus, it can

be seen that the major part of the effect is due to the anisotropy of

the scattering in the CM system.

In Table 3 the tritium breeding ratios, i. e. the tritium production

rate integrated over the sphere, are listed for the various calcula-

tions as weIl as the results of the Karlsruhe lithium sphere experiment

[14]. This experiment was carried out with natural lithium in a spheri­

cal container of stainless steel. In view of the low content of 6Li

(7.42%) in natural lithium and the very similar elastic scattering we
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ean approximate the natural lithium by pure 7Li for the neutron transport

ealeulation. Moreover, sinee the treatment of the neutron transport in

the target support ean be eliminated by using the measured speetrum of

the target support [14], we were able to simplify the problem to a trans­

port ealeulation in a single material zone with a single isotope. The re­

sults for the ealeulation with isotropie non-elastie seattering are not

perfeetly identieal, beeause there are differenees in the ealeulational

methods and slightly different data for elastie seattering were used.

The relative ehange of the tritium breeding ratio due to the inelusion

of the anisotropy of the non-elastie seatt~ring is 18%. Fig. 26 shows

two angular speetra of ref. [14J, tagether with speetra ealeulated with

NITRAN-S for pure 7Li , as deseribed before. This figure is to be eompared

with Fig. S, in whieh the ealeulated speetra da "not inelude the anisotropy

of the non-elastie seattering. The large diserepaney in Fig. S between

measured and ealeulated speetra is seen to be greatly redueed. The shift

of the elastie and the seeond level inelastie peak is due to the isotropie

souree speetrum, whieh does not take into aeeount the kinematies of the D-T­

reaetion. In ref. [14] an effeet of 13 to 20% on the tritium produetion

rate was derived from the observed diserepaney between measured and

ealeulated angular speetra. The then suggested origin of that diserepaney,

namely theanisotropyof the non-elastie seattering not being ineluded in

the ealeulation, is eonfirmed by our present investigation (18% at about

r = 10 em). Having ineluded a first estimate of the anisotropy of the

non-elastie seattering there remain errors, whieh ean be attributed to a

manifold of origins, exeept for the method to ealeulate the eollision souree
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a) The 7Li (n,n'a) T total cross section value at 14 MeV may be too

high. This is the main reason for therest of the discrepancy in the

tritium breeding ratio (14}.

b) Angular distribution of elastic scattering at 14 MeV seems to be

incorrect at 550
(~ ~ = 0.574), see Fig. 26 at the high energy peak.

c) Angular distribution of secondary neutrons not taken into account

for continuum-non-elastic, which includes the (n,n'a) and the (n,2n)

reaction.

9 124.2.2 Effect in spheres of Be and C

In the actual KEDAK data for 9Be there is no information on the angle-

or energy-distribution of secondary neutrons from the (n,2n) reaction.

Therefore we produced scattering matrices by assuming the evaporation

model with nuclear temperatures lent from the 7Li (n,n'a) data. This

enables us to give a rough estimate of the effect of the CM- to-LAB

system transformation by using the kinematics of inelastic scattering

for both neutrons (see section 3.3.2). In Fig. 27, a and b, the effect

of the CM to LAB system transformation is shown for a Be-sphere of

20 cm radius.
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A fraction of the "first neutron" from 9Be (n,2n) comes from inelastic

level scattering. Recent works on the secondary neutron distributions from

scattering on 9Be [27, 28] show that in ENDF!B-IV this fraction on inelastic

level scattering is overestimated. Consequently, as the (n,2n) cross

section is agreeing with the newer measurements, the contribution of

reaction channels as 9Be (n,a) 6He* and the direct multiparticle breakup,

which provide neutrons of lower energies, are underestimated. When calcula-

ting the multiplication effect of a beryllium layer with ENDF!B-IV data

there are three sources of errors, which all increase the estimate of the

effect. Firstly, an increased fraction of higher-energy neutrons allows

more second (n,2n) interactions after a first one. Secondly, neglecting

the anisotropy of the non-elastic scattering increases the scalar fluxes

near the source, and thirdly, omitting the CM to LAB system transformation

affects the. calculation in the same way. Thus, we can understand that there

is a great discrepancy between the measured and calculated multiplication

factor of a beryllium layer in ref. [4]. Moreover, for the fusion reactor
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design of ref. [29J, in which the molten salt Li 2BeF4 ("Flibe") is pro­

posed, and for which a tritium breeding ratio of 1.07 has been calculated,

it is to be feared that the breeding is less than marginat, even if the

reserves of the design are exhausted.

12 h . l' .,.. KE A 5 1 1 .For C t e 1ne ast1c scatter1ng 1S g1ven 1n D K as eve scatter1ng

cross sections in contrast to ENDF/B-IV. But no information on angular

distributions of the secondary neutrons, except for the elastic scattering,

9is given. Therefore, as for Be, we can only present the effect of the

CM- to-LAB system transformation.

Ratio of sealar fluxes,
referenee: inel. by (i -method
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Fig. 28:
o 5 10 15 MeV

12C sphere. 23em radius: effeet of the
e.m. to lab. transf. for inel. seatterg.

data KEDAK: inel.levels up to 14 MeV.
isotropie in e.m.s.

This effect is shown in Fig. 28 referring to the scalar fluxes. The effect

is large, even for the mass of 12. There are few data available [26J for

angular distributions from level scattering on the Ql' Q2 and Q3 levels.

These data indicate that they should not be neglected [12].
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5. The I--method

5.1 Double differential cross section

In the present NITRAN-system we need both the reaction cross section

and angular (or energy) distribution data (single differential cross

section with respect to outcoming angle or energy). We also need the

collision kinematics in order to reconstruct the complete scattering

kernel. Therefore we need a large amount of detailed nuclear data for

every reaction in every isotope to calculate the neutron transport accu-

rately. This situation originates from the strategy of nuclear data com-

pilation and evaluation in the existing nuclear data files: we have

normalized angular distributions of secondary neutrons for various reac-

tions, and there are some other reactions, for which the secondary energy

distributions are given. For lower energies, up to several MeV, this

strategy is quite useful, but above that the werk to reconstruct the

full scattering kernel increases with the number of reaction channels.

This makes the data processing in NIO and NIKER complicated. Besides the

rise in efforts due to the data storage in partial cross sections there

is the problem of missing information, so that the scattering kernel cannot

be reconstructed completely, as was the case for all our examples in the

preceding section.

If the double differential neutron emission cross section in the LAB system,

d2a
a(E',E;~o) = 2n • anodE' were given in an evaluated nuclear data file for

each material (or isotope, if needed 1n this form), the data processing for

the scattering kernel calculation weuld become very simple. The transport

calculations following the Ii-method must then be modified. The modified
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Ii-method is shown to be an independent rigorous method, and therefore

it is called the I*-method.

In the Ii-method (see section 2.) double differential cross sections

are related to their data processing by the following formulae, which

use single differential cross sections with respect to the scattering

Jk
where ~. 1S dependent on the kinematics of the collision type i, and

1

(50)

(51 )

(52)

(53)

(54)

where ~ and ~ express the scattering angles for the LAB and the
o c

C . 1 . h da1. - (') h *' h dM system, respect1ve y, W1t d~O =a i E,~o • In t e I -met 0 we start

from the double differential cross section, which no longer needs the

information on the collision type. We use the next formula as an operator

in the I*-method.

+1

~y..-)"")Jr"==J.jcr(E;C'/) Sy..?") dr"
-'1

(55)

This angular transformation operator is based on the idea that the eosine
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-+
of the angle between the incident neutron vector n' and the outcoming

-+
neutron vector n is identica~ to the eosine of the scattering angle,

which is given as parameter of the double differential cross section.

The operator works as:

... 1

C;((fi)'o)/a,(i:;'; Y"):r(E;E i/> ~0.'l"*)~'(T,j<; r) 00" (56)

-1

It is the purpose of the I*-method to reduce the number of angular variables

*to the only meaningful one, i. e. the scattering angle ~ . This is the

origin of the high calculational speed of this method (and the Ii-method,

but there it is not so obvious). This has not been recognized in ref. /34/.

5.2 The neutron balance equation and its collision source

-+-+
The neutron balance equation for the angular flux f (r,n) in an energy

g

group g is expressed by

A .V" (T'; A) ... GtiJ--ta (?;ii) =-

+1 2.rr

- :r,.~JJ(;(a: a;)<·)fs'(;;1': y') cI'f' +' .,.
r -1 0

-4-" ur

f 0r 2;Gi,. (8',3)f j1lr:r, 'f" )J'I" 9' .,. S3 (r; R>
# -1 D

where the energy variables are already discretized and

(57)

(58)
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We may combine cr(g',g;~ ) and cr. (g',g) to get a single kernel, howevero ~so

we keep the two separately, because the anisotropie treatment is not al-

ways needed, partieularly for the lower energy region. By using Eq. (56)

we rewrite the anisotropie eollision souree term as:.
)

CL"llSO
( c..ti.. SO"l r-c.e. =

't~ 2.'iT H

= irrI;.f JJ()(i,~ i/,-'').fv-..-/> .~.(7!,.r;'I") 00* oI'1'~'
8 -'" 0 --t

At first we perform the integrat ion over YJ', following the same path as

(59)

described in Appendix I, and obtain:.
)

Q.141.10

( c~. ~ol4.ra =

J
+1j~,: (60)

~ (1' I~(" , ) f - ~) _I ~ ,=~ .0 3',ti,P-)- ~i~/)A 'f((T,/{','ft-A ~ ol/-,
, -1 ~1

where the phase shift 6* in the e,P-spaee is

(61 )

For fixed ~' and ~ there is a restrieted range of the seattering angle

(62)

(63)

The angular transfer probability funetion I*(~~~',~) is given by the

*'same equation as the Ii-function (Eq.(IO», but here we use ~ as an

independent variable in the eollision kinematies.

1
:-

1r{-1-r7.. _r''- _;-*.'2. + 2/'ri* i

(64 )

_ 0
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Of course, the ~-function has the same characteristics as the Ii-func-

tion, and in the same way as for the Ii-function we can show that the

~-method corresponds to the PL-method with L ~ 00. The neutron balance

-+
where S (r,n) is the external source, and the definition of the scalar

g

flux is
.,.1 LV

Pt (7) =Jfb(or, SI.) aW a0
--r 0 .

• *In the I -method we integrate over ~ . Another approach to the use of

double differential cross sections, in which the collision source is cal-

(66)

~

culated by integrating over n, is discussed later.

We have to treat the phase shift ~. to solve the transport equation, except

for the case of the one-dimensional calculation, where we bypass the

...
~ -treatment. For a spherical assembly the balance equation becomes in the

r*-formulat ion:



- 63 -

+-1

+1L G;,. (a;3)j f. (r; /-" ) +' +- 53 (-r;j-<)

8' -'1

5.3 Relation between the 1*- and the Ii-method

In the Ii-method the anisotropie seattering kernel of the transport

where Ö = Y' -y. From the knowledge in Appendix 1 the kernel is expres-

sed by means of the Ii-funetion:

:Ll..

E Gi ( Eil /Ac: >0; (E'). L' ~'/~) .
l:= '1

In an analogous way the kernel is derived for the representation by

means of the rt-funetion using Eq. (55):
zJT

~1

k (E', E i.;'."/"); f G (e, E i/"'~)j .f0.-/"') dA oJ/,,",

--t 0

(67)

(68)

(69)

(70)

(71 )
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And again, as for Eq. (70):

Consequently the following relation holds:

(72)

This relation can be transformed to show the equality by carrying out

the integration over ~* for the left hand side with use of Eq. (53). Thus,

we have confirmed that the I~-method is consistent with the Ii-method. But

moreover, in the I~-method double differential cross sections need not al-

ways be delta-functional (Eq. (53». Therefore the I~-method is more gene-

ral than the ri-method. The Ii-function depends on the scattering kinematics,

while the r*-function is free from scattering kinematics.

5.4 Discretization of the tJ-function

For discrete ordinate calculations we have again Eq. (21) for a spherical

assembly:

w-v -s (""""")11 lfM. B I

+ ()(~+ i ~ (""', V\+ f ) - ()i.~1-~ ('-",111-1) + ~ -<>;1: V
Itl

- ~ (""', &1) =

:= Wh v.. [C;...·..("', h) i" C;...•(.... "~ f

(74
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where S (m,n) is the external source, and
g

(75)

ICI.so

t
(76)

are the anisotropie and isotropie parts of the collision source.

The sink group anisotropie scattering matrix o-(g' ;n',n) is defined by
g

* ~ ~ *where n 1 and n2 correspond to ß
1

and ß2•

f (E) is the weighting function such as scalar flux spectra. The angular
w

transfer probability function TM' (l1"';n' ,n) is then discretized in an

analogous way to the Ii-function, (Eq. (29) to (31».

ry.."i In:,,) = 1.:w.. · [o.n:~'" (~:.f)-Q.n::·;"(~:·t)] ("!':'I"~<'A"

=- 0 (78)

(79)

If the double differential cross section data O(E',E;~, are g1ven *)

the processing code, which produces the scattering matrix,treats only

the process of Eq. (77) with use of Eqs. (78) and (79), the I'-function.

~ We can also produce the double differential cross section from the par­

tial (single differential) cross sections 0i(E',l1c) using Eq. (53).
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If we separate the averaging for the double differential cross sec-

tions from the angular transfer probability function, we can use a

fixed table for T*(n~;n',n) by applying the same angle points ~
n

the three variables. Thus we get

V1
1f

~.(3' i VI',-) = 1:CJ(3~ 3i VI*) . r"( ... >.",.).W."

1111 "

where

for

(80)

The matrix T~ is normalized in the sense that

*1Il)..L T*( lIItfi 1Il'/ Vl )' Wl1 _ - 1
VI*"
"

(82)

~
In Eq. (78) ~ = ~n.is used. This procedure is suitable for practical cal-

culations. Eq. (80) means that we sum up the possible contributions of the

angular transfer probability for the collision for fixed n' (incoming angle)

and n (outcoming angle), by remarking the possible scattering angles n~.

This procedure corresponds exactly to the SN-p~-calculation (see Appendix 2).

I h . I!f; h d h h' . h ,.n t ~s -met 0 we ave to carry out t e summat~on w~t respect to n ,

instead of the calculation of PL-coefficients and the summation of the poly­

nomials ~n the PL-method.

From the experience with the speed of the NITRAN-calculations we conclude

that the calculational speed of the I*-method will be high enough for

practical calculations.
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For two- or three-dimensional calculations we can also make a fixed

table for t::,* using

/"", ... - ~"'~111

~1-~:'-r;- JA:' (83)

With this table we can calculate the collision source in a two- or

three-dimensional transport problem without difficulty. Then the aniso-

(84 )

For two- or three-dimensional sN-calculations, therefore, we must calculate

the collision source directly with use of the double differential cross

section and the angular transfer probability tables T* and t::,k. Within

aSN-code this is to be done inside the iteration loop for the sink energy

group, the outer iteration loop. In Fig. 29 we present the proposed wor­

king scheme of a code system which realizes the Itf-method. Use of the "old"

single differential data types must be foreseen, because the double diffe-

rential data will certainly not be available for all materials.
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Nucl~ar Data Fil~
-- - -- --- -- r--- - ---
singl e-diffrrential I double- ditto
cross sections : cross sections

i

2 ~
DDXS DDXD AT P PHASE

produce grouped produce groupe d produce angular produce phase
double-di tferen tial do uble- different iaI transfer matrix shift matrix
cross section cross ~ection

trom G'i (E',~c)
&6'

ttrom aa-no E

1 t (T*(n*: n',n) J fl* (n*; n',n)
(5'(g',g;n*» Tape Tape I Tape

I

, ,
ANIKER 1 , ,

produce anisotro pic

~ l-dim~ns. 2-or 3-dim~ns.scattering kernet
(ig(g';n',n) SN cod~ SN cod~

•

Fig. 29: Future system of neutron transport calculation by the

r* -me thod

The way in which we propose the use of double-differential cross sections

is not the only one which we thought of. There is a more direct approach,

starting from Eq. (68). When producing the kernel one can integrate the

double differential cross section over an arbitrary phase shift !:J. = f'-Y

and use Eq. (58). However, for the sake of methodical clearness we pre-

fer the description of this section.
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6. Conclusions

6.1 Conclusions with respect to accomplished work

We have presented two methods, the Ii~ and the I*-method, for calcula­

ting the anisotropie collision source term for all types of scattering

in a r~gorous way. The following advantages are assoeiated with these

methods:

a) We are free from approximations when caleulating the anisotropie

collision source. The discretization, e. g. in SN-calculations, for

numerical computation is the only approximation in these methods. There­

fore, they can be references to test the accuracy of other methods,

especially approximative methods like the PL- or the TL+I-method.

b) Both methods provide an excellent tool to include the anisotropy of

the non-elastic scattering into transport calculations.

c) No negative fluxes are generated from the collision source term. This

property makes these methods suited for the exponential interpolation

scheme to produce the supplementary equations for the SN-equation.

d) When realizing the Ii-method by a one-dimensional code for spherical

geometry, NITRAN-S, it was found that the calculational speed lies

between that of P3- and Ps calculations. Therefore the Ii-method is

not only suited for accurate reference calculations, but also for prac­

tical application.
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e) The I*-method is very promising, if the double differential neutron

emission cross section in the LAB system is given. Unless these data

exist in evaluated form, the Ii-method is used to reconstruct the double

differential data from the partial data.

With respect to the flux and reaction rate calculation for fusion reactor

neutronics we have to state the follöwing:

a) The effect of the anisotropy of the non-elastic scattering is not

at all negligible.

b) The effect of the transformation from the CM to the LAB system for

non-elastic scattering is significant for light nuclei, even still

12for C.

6.2 Conclusions with respect to future development

For the near future the existing code system NITRAN should be extended

to have more feasibilities for technical use. In detail the extensions

should be:

a) The processing codes NIO and NIKER should accept more types of nuclear

data.

b) The interface code NIMIX to produce mixed-isotope-kernels for several

material zones should be prograrnmed.

c) Various SN-codes should be built for more geometries than only spherical:

plane, cylindrical, two-dimensional, three-dimensional.
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d) NIO and NIKER should be connected to other SN-codes, e. g. DTK.

e) The Ii-method should be available also in the Monte-Carlo-calculations.

On a longer time scale the following extensions should be realized:

a) The I*-method should become the main tool for the neutron transport

calculations. Therefore, the measurement and the evaluation of double­

differential neutron emission cross sections, at least for the higher

energies (above 2 MeV) must be stimulated.

b) The Ii- and the I*-method should be applied also to transport calcula­

tions for other particles than neutrons, especially at higher energies.

The nuclear data file KEDAK may easily be completed for fusion reactor

application, because its aiphameric declaration of data types is more

open to new types than are the formats of ENDF/B. At least for the de­

velopment of the I*-method one can produce formally correct double diffe­

rential neutron emission cross sections. This would introduce an element

of continuity into the development of neutron transport calculations.

Finally, it must be stated that any useful assessment of errors for cal­

culated quantities - here with respect to neutron transport problems ­

needs

a) a rigorous calculational method for the neutron transport, and

b) covariance data for the error estimate of the nuclear data together

with a rigorous use of the~ for the error analysis.
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Very often the double differential neutron emission cross section can

be measured directly, especially at higher energies, and hence the co­

variance data can be given reliably. The present practice, however, is

to construct partial cross sections with individual covariances (if at

all). By this practice the requirements for the accuracies of the indi­

vidual partial cross sections are unduly raised, if a given target

accuracy of the neutron flux is to be met. Thus, again the I~-method turns

out to be best suited for the neutron transport part of the error analysis

problem. For the second part of the problem the tools are to be developed.

The sensitivity analysis method is a step into this direction [30]. This

method should be extended to include also the effects of secondary neutron

distributions with respect to angle and energy.

Looking backwards into the paper we find that the status ofthe nuclear

data file is the most prominent obstacle on the way to neutron transport

calculations with reliable error margins for the results.

Part 11 of this report is devoted to the realization of the I*-method.
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Appendix I: Derivation of the Ii-function

The delta-functional representation of the scattering kernel, i. e. the

double differential cross section for collisions of type i is written as

(see also Appendix 2):

(A-I)

where the energy distribution of secondary neutrons, again only for the

collisions of type i,is

(A-2)

with

~", = scattering angle in' the CM system
c~

a. (E "~ 1(.) = differential cross sction (from data table)
~ g C~

g. (E ,)
~ g

Jacobian for the collision of type i for incident

energy E " see Eq. (4)g

+
The angle between the incident neutron vector ~ and the outcoming neutron

+
vector ~, see Fig. 7, is

(A-3)

This is, however, not a free variable. Eq. (A-I) means that the scattering

angle is fixed to the particular value of ~~, which is defined by the scat­
~

tering kinematics, i. e. E " E , Q., and A. The collision source for scatte-
g g ~

ring of type i is written by summing up the neutrons coming from (E ,,~',y')
g

+
to (E ,~,~) at a given position r

g

(c..tR. ,...rc<)gJ =f f'(a~8)' irrPV.'-;ofn·1"Cr,j<; r') Jr' 00'
-1 0

(A-4)
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We transform the variables as folIows, in order to carry out the inte-

grat ion over VI:

x = Xo • cos (lf-V")

(A-5)

(A-6)

The integration over (0,2 TI] in y>'-space being equal to the integration

over [r,2 TI+ If]Eq. (A-4) is transformed as follows:

(CAlR. SOC4t"c.e) I =
3· '-

-+1 Xo

=~j; ($~')' *-1-1X;1_ y! .Jw'-I'.~1-x) ·t,,(v; 'f+ ort«>< (~)}JX,y.'
a -1 -Xo

We can carry out the integration over X and get:

(A-7)

(u-U. ?t>~)9'~ =
... -1

= Li0:: o( ,~a)' D(r'Jj"") '~I (:r;j-<~ ri" A~) o!r'
~t -1

where Ii (~I,~) is given, by setting X=~: _~~I in ,JX~ - 2'
X , as:

(A-8)

The phase shift ~~ in the collision (in ~-space) is given as
1

(again X = ~ ~ -~~ I )
1

* [~t-r?']A· = a.Y"C. CJD$
, ",,1_r2.i,j1_~'7..'

~..,. IrL.. 1 , ')'t' J*1 , a-.l ()-t·t J "p 1

(A-IO)
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or 1j.l.1 = 1
~

thedelta-functional

kernel (Eq. (A-l» becomes independent of r l
• For these extreme cases we

get firstly:
t-" 21i

(eatt. ,.~r<.<),. ~ = '[.10.,.(t:3). Sy../,·-:1";") .f".ft3J ( 'F';)-'; er') cl 'f' /cl"...'
#' --1 0

(A-ll )

if Ij.ll = 1 or Ij.l I I = 1.

Secondly: ~~ = 0
~

Ii (j.l I,j.l) = <5
...(j.l_ j.l Ij.l.) (A-12)
~

if !j.l:1 = 1, and Ij.ll =F 1, Ij.l , I :f= 1.
~

For discretized calculations (e. g. SN) we need only the representations

(A-9) and (A-I0) for the calculation of the angular transfer probability.

In calculations with continuous variables, e. g. Monte-Carlo, the repre-

sentation of the extreme cases must be included.

Appendix 2: Scattering kinematics and kernel

A 2.1 Scattering kinematics

After the collision the target nucleus is excited to an energy Q., which
~

may be Ql = 0 for elastic scattering, Q2' Q3' etc. for discrete level exci-

tation, and some other value for continuum scattering. The conservation of

energy and momentum yields the two equations

( A)2. z..1 - . (tri) r
2. A.,. .... (A-13)

c.
V; + A 'iC

:: 0
1 (A-14)
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where VI is the incident neutron velocity in the Laboratory (LAB) system

corresponding to the incident energy EI. v~ is the neutron velocity in

the center of mass (GM) system after the collision,v~ the velocity of

the recoil nucleus in the CM system, and A the mass of the nucleus re­

lative to the neutron. Replacing VI, v~, and v~ by energies we get:

E =E'
R- 2. ( 1 - Qi I E tf) + 1 + 2 A/'<c.'

(t1 r1)2. (A-15)

where E is the neutron energy after the collision and llc the scattering

angle in the GM system. ll~ is an abbreviation:

II I = II . ~ l-Q ./E·....,
c c ~

d
't.an E ~s another one:

... A
E =-- . EI

A+l

For II , the scattering angle in the LAB system, we get:
o

(A-16)

(A-I7)

1- Ac<~
(A-18)

For II :
c

(A-19)

Replacing the abbreviation II I in Eq. (A-18) by (A-16) and substituting
c

llc from Eq. (A-19) we obtain:

(A-20)
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A 2.2 Scattering kernel

The scattering kernel (double-differential cross section) a.(E'~E,n'4Q)
. 1

in the laboratory system is

().(E'-E j{'....;L) = irr c;; (e;.r<.,) cf(j<o-~r(E;E)).~o 1
1 J .

As ~o = ~i(E',E), we get ~ by differentiating the right hand

Eq. (A-20):

I~I~ ~ {( Ij +1)I! T~ LA'(1- 0,./e)- 11ft}.

(A-21)

side of

(A-22)

The differential cross section is usually given in the CM system,

a.(E', J.l). The relation between a.(E',~ ) and a.(E',~ ) is
1 C 1 C 1 0

(A-23)

To get the derivative ~ , we use the relation between ~ and ~ , which
o~· c 0

o
we obtain from Eqs. (A-15), (A-18), (A-19) and (A-20):

(A-24)

Hence

We define the function g.(E'), the "Jacobian", as follows:
1

G.,(E') = lhl·1 ~I<[I 'd E. a,JA- 0

with Eqs. (A-22) and (A-25) we obtain:

~I'(E'):= 2
(1-OL)' E I, ,j1-tJ;1c-'

(A-26)

(A-27)
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(A-l)2/(A+l)2 and EH- = E' • A/(A+l).

For e1astic scattering, (Qi = 0), gi(E') is the we11 known slowing-down

kernel for isotropie scattering in the GM system. For the general case

we rewrite the seattering kerne1 Eq. (A-21) with the Jacobian g .•
1

(A-28)

The total scattering kerne1 is produced by summing up all partial kerne1s

IL
::7 -~ ~ (' -'7_)

o(E'->E,.n:~..o...)::.~ (5,' E~E,..a.'-'7.S2...

1:1

In the initial phase of the development of the new method the summing

(A-29)

of kernels referred only to level scattering, now the continuum scattering

is inc1uded.

A 2.3 Legendre po1ynomia1 expansion of the scattering kerne1

The Legendre polynomial expansion of the scattering kerne1 is written

as [31]:

(A-30)

The n-th eomponent of the series is obtained by mu1tiplying Eq. (A-30)

with P (~ ) and integrating over ~ :
n 0 0

t-1J6; (E' ...... E, SLr_~,:;:).t/". -
-1

-+"
~lrft G;.t{E;E)·~{)A.)·p"y...)J;<.(A-3I)

-1 l=O

The absolute convergenee of the series a1lows exchange of summation and

integration. Then with use of the orthogona1ity of the Legendre po1y-

nomials, i. e.



+1

2<';.1 f p... ()A)' Yn (1') oIj.
-1

we get:
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- 1

- 0

(A-32)

+1

G/( E;6) = :2~+1.~n-J0,. (E·~E,n!-~).1'" e;..) oJt.••
-1

-+ -+
Inserting a.(E'-+E,n'+n) from Eq. (A-28) into (A-33):

l.

+1

f5;'(E.~ E) =(3..+1)fW;(E>,J' a;(E')' J(1<.-)<;"(E; E»)' p. (,A.) 4u.
-1

In this integration ~ is no longer a free variable. It is fixed byc

the o-function and the kinematic equations Eqs. (A-15), (A-18), and

(A-19). Therefore the integration yields:

(A-33)

. (A-34)

(A-35)

~*. is given by the right hand side of Eq. (A-19),and ~~ by the right
Cl. l.

hand side of Eq. (A-20) for the same reasons. Eq. (A-35) can be transfor-

med another time by the use of Eq. (A-2), which in the form of continuous

variables becomes:

Thus we have:

(A-36)

(A-37)
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the coefficients a~(E',E), if only
1

a~(E"E) are called the "Pt-kernels",

Eq. (A-37) means that we can obtain

a~(E',E) is given. The coefficients
1

especially a~(E',E) the "Po-kernel". In the "PL-method" the Lengedre

polynomial expansion of the scattering kernel, Eq. (A-30), is truncated

at the L-th term. It is the characteristic of Eq. (A-37), which has caused

the wide-spread use of the PL-method. In the "improved" PL-methods, for

instance in the TL+ l-method /16/, an estimate for the rest of the series

is introduced.

Appendix 3: Relation between the 1*- and the PL-method

In the PL-method the expansion of the scattering kernel, Eq. (A-30), is

truncated at the L-th term:

L

<5( E~ Ei ~/~) ::: ~;r L ()L( E~ E') . ~ (;-t lt),
.(.=::O

(A-38)

f(

We have omitted the index i for the collision type and write ~ for

M
the scattering angle without distinguishing between ~ and ~ •

o

We changethe notation for the kernel using the following relation:

1- b (E' E' fl")
2.'(( I Ir

(A-39)

which is the final form of Eq. (50) in section 5. Thus we get:

L

G( E" Ei JA ~) :: t I G" (( F:', E) . ~ ()-t ~)
l-;O

(A-40)
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In the same way as in Appendix 2 the ~-th coefficient of the series is

given by

.+1

<; e( E', E) - (:1.( +1)J<;(E: Eir")· Pe (r") "'r'" .
-1

We transcribe Eq. (A-40) with use of the addition theorem for the

Legendre polynomials [32J:
l-

6 (E; Ei /<") = 1~6'((C': E' ). ( Pe (/<') · ~ (/,,) +

+;L ~(e-~)! . '2mCI-~/). 'P. W1
(?-). ~(~'('II_Y'))J

L.-., (e+ ""'){ e. c .
""'= 1

(A-41 )

(A-42)

The collision source term iq the transport equation for the one-dimen-

sional case in the discretized form with group-averaged cross sections

Replacing that part of this equation, which corresponds to the right

(A-43)

hand side of Eq. (A-40) by the more,complicated expression Eq. (A-42)

we can integrate over 9'. As we integrate over full periods of the co-

sine, all terms vanish except for the first:

with
2.U

~,('t;)-") = jf3' ('t,/,,','I')d'f' .
o

(A-44)

(A-45)
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R,
Inserting a (E "E ) from Eq. (A-41) into (A-44) we get:

21T g g

fl ~"':So
~•.sOIoLr"U)~ cl Cf ~

o

Comparing this equation with Eq. (60) of section 5 we notice that the

angular transfer probability TL in the PL-method is expressed by:

L.

I
L
(~lti jJ-',)A): 1L (2f+1) t; (?~) ?(~'). ~ er)

f~o
(A-47)

As the series Eq. (A-30) represents the identical starting poi~t for

both the I*- and the PL-method, we find that TL(~~;~"~) converges

against T*(~ ;~',~) for L~, because convergence is assured at all stages

of the derivation of TL.

In general coordinates we have the original form of the collision source

term in the I*-method:.
(~. Sou.f"Ce) ca.."",o

& +-1

=' ;tr L/1r; (E" )f, i)<*) J()<. /-'*) 18,(:;;~) <>Ir* oIn!

" 4'-1

(A-48)

If we use the Legendre polynomial expansion of the delta-function, i. e.

00

~(ro-~It) = 1 2:= (;z.e+-f) ~ (?It). ~(rJ
e=o (A-49)
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Using the equation for the determination of the P~-coefficients, Eq. (A-41),

the co11ision source representation is transformed into that of the PL-method

for L ~ 00 :

.
Gl",~O(coee. scwu) =

a (A-51)

Thus, we have confirmed that the I~-method is equivalent to Poo not on1y

for the one-dimensiona1 case, but also for general coordinates.



GROlJP

- 90­

Ta. bLe. 1
61 - GRCUP ~EUTF(N ENER(~ (RO~P SfRuC1LRE

E~E~GY (T(P,L(w,MIC) ENERGY-WIDTH LETHARGY-WIDTH

1 1.~OOCCCOE+Ol 1.41350COEiOl 1. l 8l1493E+Cl 2.6500034E-Ol 1.7824583E-02
2 1.4135COOE+Ol 1.44j4CCCEiCI 1.46045CCE+Cl 2.60S9~6ßE-Ol 1.7871425[-02
3 1.1,414COOE+Ol 1.I,21BOCCE+01 1."~45SS3E+Cl 2.55<;S957E-Ol 1.1844260E-02
4 1."218COOE+Ol 1.3StlCCOE+Ol 1.40S2499E+Ol 2.51COC40E-Ol 1.7810531E-02
5 1.3<H: 7000E +0 1 1. ~12CCCCE+01 1. 28434S 8EH 1 2.46sc;n4E-OI 1.7842382E-02
6 1.~72CCCOE+Ol 1.3411CCCE+Ol 1.2598495E+Cl 2.430CCC3E-Ol 1.1E6S551E-C2
7 1.3417COOE+Ol 1.3239((OE+Ol 1.~357SS4E+C1 2.3799992E-Ol 1.1817091E-02
e 1.~239000E+Ol 1.3C050COE+01 1.3121SS4E+C1 2.34C0021E-Ol 1.78n013L:-02
9 1.3005000E+01 1.21i5CCOE+Cl 1.28B9S<:i9E+Cl 2.3QC005'JE-Ol 1.7843321E-02

10 1.2115000E+Ol 1.25490CCE+Ol 1.2f619C;5E+Ol 2.259'lSS3E-OI 1.7d48942E-02
11 1.25490COE+Ol 1.21820CCEiOl 1.23l54S4E+Cl 3.f6SSS63[-01 2.966C751E-02
12 1.2182000E+Ol 1.1825CCCE+01 1.2C034Q4E+Ol 3.5700035E-Ol 2.97427AIE-02
13 1.18250COE+Ol 1.141~CCCE+Cl 1.1E51~~3E+C1 3.45~S512E-01 2.9696491E-02
14 1.141'iOOOE+Ol 1.1143üCCE+01 1.13105S1E+Cl 3.3600044E-Ol 2.9107603E-02
15 1.11"3COOE+Ol l.eS11CCOE+Cl I.CS1~SS6E+Cl 3.25QS926E-Ol 2.9691864E-02
16 I.C817000E+Ol 1.05COCCOE+Ol I.Cl53493E+Ol 3.170C039E-01 2.9743705E-02
17 I.C5COOCOE+Ol I.CCESGCOE+Ol I.C294495E+C1 4.1100025E-Ol 3.9929260E-02
1B 1.(C8QOCOE+Ol G.69255S8E+CC 5.ESCSSE8E+CC 3.95999g1E-01 4.0041048E-02
L9 S.l92GGG8E+OC 9.~L4CCC1E+CC 9.~C~4943E+CC 3.1BSS911E-01 3.9885279E-02
20 S.~140CCIE+CO E.S4SCC04EtOC 9.13150J2E+CO 3.6499977E-01 3.gg75993E-02
21 E.54<;0004E+(°0 8.591<;996EiOC E.l'134SE5E+CC 3.51COC19E-OL 4.0011730E-02
22 E.591SC;S6E+<lO E.26(9951EiCC E.4294S68E+CC 3.3()c;C;<;8'JE-01 3.<:i~83325E-02

23 E.26(9997E+QC 1.S31~9<;7E+CC E.C994949E+CO 3.22999Q5E-Ol 3.9d83442E-02
24 1.~31<;S97E+OC 1.62fS9GSE+CC 1.1EZ49S3E+CC 3.1CS9C;S7E-01 3.9965913E-02
25 l.l26S999E+00 1.326SS~1E+OC 1.4769SS3E+CC 3.00aOOI9E-01 4.0128089[-02
2~ 7.3269997E+CC 1.C4IC004E~0( 1.1E~OGCOE+CC 2.B5~993JE-Ol 3.9815627E-02
21 I.C410004E+00 f.i65CCC3EiOC f.5C2SSS<;E+CC 2.7600C02E-01 3.SSB1S01E-02
2B 6.;650CC3E+OC l.5CCOOCCE+OC l.l;24SS7E+CC 2.6500034E-01 3.9959498E-02
29 6.5CQCCCOE+OC 6.241C;SS6E+CC 6.;7(~<;S3E+(C 2.5800037E-01 4.050089aE-02
30 t.2419S96E+OC 5.SS4C;9SSEiCO l.11E4SSBE+CC 2.46SSS74E-Ol 4.0314506E-02
31 5.~S4SSS9E+OC 5.15iCCCCE+CC ~.E15gSS5E+CC 2.3799~92E-Ol 4.0509138E-02
32 5.;51CCOOE+OC ~.529(OC;E+C( 5.l429SSfE+CC 2.275996JE-01 4.04J'l312E-02
33 5.~29C003E+OC ~.21000G4E+OO ~.41S5~C4E+CC 2.1899986E-01 4.0414806E-02
34 ~.;ICCC04E+OC ~.C9<;COCCF~~C ~.2C45JC2E+CC 2.11G0044E-01 4.0546685E-02
35 5.(QSOOOOE+OO 4.ESiCOCjEiOC 4.~S30CCIE+CC 2.01SSS66[-01 4.0421221E-02
36 4.ES10C03E+OC 4.70300C1E+00 4.€COOOr.2E+CO 1.S40002~E-Ol 4.0422134E-02
31 4.1C20C01E+OC 4.515SS~8E+CC 4.fCS4<;S9E+CC 1.8700027[-01 4.0573243E-02
38 4.~159S<;8E+OC 4.336~9SSEiCC 4.426~5S4E+CC 1.7ESSSSJE-01 4.0443201E-02
39 4.3JtSSQ9E+QO 4.165COCOE+CC 4.250;S<;5E+CC 1.71;9993E-Ol 4.0466093E-02
40 4.1650000E+OC 4.00CCOCCE+OC 4.Ci24<;S5E+CC 1.64S5S96[-01 4.0421221E-02
41 4.CCCCCCOE+OO 2.69<;OCC4EiOC 3.8494SS1E+CC 3.00SS964E-Ol 7.8231692E-02
42 2.6'lQC004E+OC ~.418SS51E+OC 3.5590~CCE+OC 2.8000069E-Ol 7.8714013E-02
43 3.418SSS7E+OC ;.161SSS7EiOC J.2S04SS1E+CC 2.56C;99S7[-01 1.8142643E-C2
44 3.161S9S1E+OC 2.G23~SSEE+CC 3.042Q993E+00 2.3799~92E-01 7.8252011E-02
45 2.923S~SBE+CC 2.iC4COG5E+CC 2.EI4CCCLE+CC 2.19C;Sg3LE-OL 7.821Q354E-02
46 ~.i040C05E+OO 2.5CCOCCCEiOC 2.f0200C2E+CO 2.04GCC47E-Ol 7.8441620E-02
41 2.5CCCCCOE+QO 2.21CCOC5EiOO 2.~8500C2E+OO 2.29g9954E-01 9.6510589E-02
48 2.2100C05E+OC 2.06(SS~SEtOO 2.1~~~~SlE+CC 2.09COC59E-01 9.65J8492E-02
49 2.(6C~<;99E+OO 1.El1C003EiOC 1.~l5qSC;6E+CC I.Q99995ßE-Ol 9.6117477E-02
50 1.E110C03E+OC 1.6-;eCOCO[+00 1.1E4'iCClE+CC 1.13C0034E-Ol 9.1021341E-02
51 1.69aCOOOE+OO 1.541SSS8EiCC 1.USQSS9E+CC 1.5600014E-Ol 9.6310280E-02
52 1.~419~S8E+OC 1.3SSSSStE+OO 1.47C99S1E+CO 1.4200020E-Ol 9.6601566E-02
53 1.3S.,SG96E+OC 1.214<;9<;6[+00 r.3~74SS6EHC 1.25GOOO'JE-OL 9.3525529E-02
54 1.2i4'iSS6E+OC 1.161S9 <;1 EiO 0 I. tl S/i S92E+OO 1.12S9'1S 2E-01 9.2802703E-02
55 1.16199S1E+OC 1.(51<;9S6E+00 1.1C99SS1E+CC 1.0400009E-01 9.3761802E-02
56 I.C57SS96E+OO C;.63~S9<:iSE-01 I.CICSSC;1E+CC S.39SS624E-02 9.3043447E-J2
51 <;.l3<;~S99E-CI E.1800002E-Ol S.'1C10COE-Cl E.5999S66E-02 9.3443930E-02
58 8.1BCOC02E-Ol E.OOOOCOIE-Ol E.38SS915E-C1 1.80C0009E-02 9.3034685E-02
51 B.CCOOC01E-Ol i.13000COE-01 1.~l4SSilE-OI €.1000012E-02 1.1512959E-Ol
60 1.13CCCCOE-Ol t.34<;9~S'lE-Ol l.13'lQS79E-01 7.8000009E-02 1.1585605E-Ol
61 f.;4<;SS99E-01 ~.f5SS~<;BE-Ol l.(C4SS63E-CI 6.~OC0006E-02 1.1503017E-Ol
62 5.l5SSSS8E-01 ~.C4CCOC1[-Cl ~.34S<;S85E-C1 6.1SSS~17E-02 1.1601740E-Ol
63 5.(4CCOOIE-Ol 4.49COOCOE-Ol 4.;649SS1E-01 5.5000007E-02 1.1555278E-01
64 4.49COOOOE-Ol 3.SS~C;<;S8E-Ol 4.244q~S'lE-Cl 4.90C0025E-02 1.1555785[-01
65 3.~S~9SS8E-01 3.560COC1E-Ol 3.11SSSC;6E-CI 4.3JQ9970E-02 1.1653358E-01
l6 3.5600COIE-OI 3.16~SSS1E-Ol 3.3l4<:iS99E-Ol 3.9000034E-02 1.1602843E-01
61 3.16SSS~7E-Ol I.COCC002E-02 l.f~4SS55E-CI 3.0699992E-01 3.4563160E+00
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Table 2 ~-points for 832 calculation

n ~n W
n

- 0.99990 4.0000E-4

2 - 0.99850 1.2250E-3

3 - 0.99500 1.7500E-3

4 - 0.99150 2.5500E-3

5 - 0.98480 5.3750E-3

6 - 0.97000 8.4350E-3

7 - 0.95106 1. 1250E-2

8 - 0.92500 1.5265E-2

9 - 0.89000 2.6250E-2

10 - 0.82000 4. 7500E-2

11 - 0.70000 6.1625E-2

12 - 0.57350 6.2500E-2

13 - 0.45000 6.3375E-2

14 - 0.32000 7.2500E-2

15 - 0.16000 6.7500E-2

16 - 0.05000 5. 2500E-2

17 0.05000 5. 2500E-2

18 0.16000 6. 7500E-2

19 0.32000 7. 2500E-2

20 0.45000 6.3375E-2

21 0.57350 6. 2500E-2

22 0.70000 6.1625E-2

23 0.82000 4.7500E-2

24 0.89000 2.6250E-2

25 0.92500 1.5265E-2

26 0.95106 1.1250E-2

27 0.97000 8.4350E-3

28 0.98480 5.3750E-3

29 0.99150 2.5500E-3

30 0.99500 1.7500E-3

31 0.99850 1.2250E-3

32 0.99990 4.0000E-4




