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Abstract

Some recent neutronics experiments for fusion reactor blankets show that

the precise treatment of nisotropic secondary emissions for all types of
neutron scattering is needed for neutron transport calculations. In the
present work new rigorous methods, i. e. based on non-approximative microsco-
pic neutron balance equations, are applied to treat the anisotropic colli-
sion source term in transport equations. The c&llision source calculation

is free from approximations except for the discretization of energy, angle
and spacé variables and includes the rigorous treatment of nonelastic

collisions, as far as nuclear data are given.

Two methods are presented: first the Ii-method, which relies on existing
nuclear data files an& then, as an ultimate goal, the I*-method, which

aims at the use of future double-differential cross section data, but which
is also applicable to the preseﬁt single-differential data basis té allow

a smooth transition to the new data type.

An application of the Ii-method is given in the code system NITRAN (an acronym

for Non-Isotropic TRANsport) which employs the S -method to solve the transport

N
equations. In general, magnetic tape is used as a storage interface to separate
the scattering kernel calculations from the calculation, which solves the SN-

difference equations,

The calculational speed of the Ii-method is high, because a new analytical
integration over the second angular variable is introduced into the - also new -
concept of the angular transfer probability. Compared to the approximative

PL—calculations the computation time is between P3 and P5. Thus, the rigorous



methods are not only valuable as reference methods, but also for technical

application.

Both rigorous methods,the Ii- and the I¥-method, are applicable to all
radiation transport problems and they can be used also in the Monte~Carlo-

method to solve the transport problem.

Some demonstrative calculations for Li, Be and C spheres with a central
D-T neutron source show that the effect of the anisotropy of the non-

elastic collisions on the scalar flux and the réaction rates is very large.

A proposal is given that the double differential cross sections for each
material should be given in a future nuclear data file in the form of a
total neutron emission double-differential cross seetion, for all types
of interactions together, in the laboratory system. These cross sections

can be used with the more advanced, but also rigorous I*-method.



Strenge Methoden filir anisotrope Neutronentransport-Rechhungen und
das NITRAN-System fiir Anwendungen bei Neutronik-Rechnungen zu

Fusionsreaktoren

Zusammenfassung

Einige neuere Experimente zur Neutronenphysik des Blankets eines Fusions-
reaktors zeigen, daf eine genaue Behandlung der anisotropen Sekundirneu-
tronen-Verteilungen fiir alle Arten von Streuung fiir Neutronentransport—Rech-
nungen erforderlich ist, In dieser Arbeit werden neue, strenge Methoden an-
-gewendet, um die anisotrope StoBfquelle in Transportgleichungen zu behandeln.
Die Berechnung des StoBquellterms ist frei von Ndherungen mit Ausnahme der
Diskretisierung von Energie~, Raum— und Winkelkoordinaten und schlieBt die

strenge Behandlung der nicht-elastischen St¥Be ein.

Zwei Methoden werden vorgestellt: Zuerst die Ii-Methode, die gegenwirtig ver-
fiighare Datensidtze zu verwenden erlaubt, dann die I*-Methode als das eigent-
liche Ziel, die auf die Verwendung zukiinftiger doppelt-differentieller Wir-

kungsquerschnitte ausgerichtet ist, die aber gleichwohl auf einzel-differen-
tielle Daten zuriickgreifen kann, damit ein sanfter Ubergang zum neuen Daten-

typ mbglich ist.

Eine Anwendung der Ii-Methode im Programmsystem NITRAN (ein Acronym fiir
Nicht-Isotroper TRANsport) wird beschrieben, wobei die SN—Methode zur L&-
sung der Transportgleichung benutzt wird. Ganz allgemein wird Magnetband
als Zwischenspeicher eingesetzt; insbesondere, um die Berechnung des Streu-

kerns von den Rechnungen zur L8sung der SN—Differenzgleichungen zu trennen.

Die Rechengeschwindigkeit der Ii-Methode ist hoch, weil eine neue analyti-
sche Integration iiber die zweite Winkelvariable eingefiihrt wird in das
ebenso neue Konzept einer’ Winkel-Ubergangswahrscheinlichkeit. Verglichen

mit den approximativen P_-Rechnungen liegt die Rechenzeit zwischen P3

L
und P_. Daher sind die strengen Methoden nicht nur als Referenz wertvoll,

5
.sondern auch fiir den technischen Gebrauch. Beide Methoden, die Ii- und die
I*¥-Methode, sind anwendbar in allen Strahlungstransportproblemen. Sie kén-
nen auch fiir die Monte-Carlo-Methode zur L8sung von Transportproblemen ein-

gesetzt werden.



Einige Rechnungen fiir Kugeln aus Li, Be und C mit einer zentralem D-T-
Quelle zeigen, daB der Effekt der Anisotropie der nicht-elastischen Streuung

hinsichtlich der Skalarfliisse und der Reaktionsraten sehr grof ist.

Es wird vorgeschlagen, daR die doppelt-differentiellen Wirkungsquerschnitte
fiir jedes Material in einem zukiinftigen Kerndatensatz in der Form eines
totalen Neutronen-Emissions—Querschnitts in doppelt-differentieller Form
fir alle Reaktionsarten zusammengefaft im Laborsystem gegeben werden sollj
ten. Diese Art von Querschnitt kann dann mit der fortgeschrittenen, aber

gleichermaBen strengen I¥-Methode verwendet werden.
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l.

Introduction

We have met severe difficulties in the application of currently used
neutron transport code systems with available evaluated nuclear data

files.

Because of the localized D-T neutron source and strongly anisotropic col-
lisions, the neutron fields become very anisotropic. Calculational accura-
cies for angular and scalar fluxes and reaction rates become sometimes
very poor, and we have had no means to estimate the accuracy of our cal-
culation tools. Difficulties are arising from both approximative methods
of calculation and insufficient nuclear data files, Commonly, the status

of the data files reflecfé the approximations in the calculational methods.
Therefore, when introducing a progress into the calculational methods, one
has immediately to solve also the data problem. First in this report we
present a solution (the Ii-method) for the rigorous anisotropic neutron
transport calculation relying on an existing data file., Then we show the
ultimate goal, the I*~method, which is more general and simpler by the
use of the double differential neutron emission cross section-and a gene-
ralized angular transfer probability. But double differential data will
only be available in the future, and so we have to show the important
effects by means 6f the Ii-method. In order to see the present status,

we pick up the 4 recent works, which contain typical results relating

to the present work.

At Jiilich [1,2,3,4] tritium production rate measurements were carried
out in a cylindrical assembly of natural lithium. Calculations were done
mainly with the Monte-Carlo code MORSE using ENDF/B-III data. There was

a fair agreement between measured and calculated results. In the same




lithium assembly a beryllium layer as a neutron multiplier was used.
For this case they reported a large discrepancy betwegn experiment

and calculation. The multiplication factor of the beryllium was measu-
red independently by surrounding it with a polyethylene layer instead
of the lithium assembly. There the calculated multiplication factor

(MORSE with ENDF/B-IV data) was 207% higher than the measured one.

At JAERI, in Japan, they measured threshold fission rate distributions

in a nearly spherical assembly of natural lithium with and without gra-
phite reflector [5,6], and compared them with results of 864-P5-ca1cu1a-
tions using the code ANISN [7] with ENDF/B-IV data processed by SUPERTOG
[8]. They found 10 to 307 discrepancies in the ratios C/E (calc./exp.),

see Fig. 1.
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They presumed that the effect should be due to the anisotropy of non-
elastic scattering, which cannot be treated in code 8ystems like ANISN

+ SUPERTOG. Some support for this hypothesis was given by the results

of another calculation using the GAM-II 100 group cross section set [9]
processed by NJOY [10]. This data set included the anisotropy of the inela-
stic scattering to the first level in carbon with a P5 approximation. As
can be seen from Fig. 1 the discrepancy between calculation and measure-
ment is slightly reduced. Their assembly, however, was constructed with

a rather high fraction of stainless steel in the lithium zome in a pseudo-

spherical matrix structure, which makes the analysis complicated.

At the Osaka University, measurements of angular spectra from plane lithium
assemblies based on the associated particle time-of-flight method [11,12,13]
were carried out. The results were compared with 864-P5-ca1cu1ations with
ANISN + SUPERTOG, using ENDF/B-IV data. They found large discrepancies in
the 4 to 10 MeV range, see Fig. 2, which were attributed to the anisotropy
of the inelastic scattering not included in the calculations. They also
pointed out that the angular flux calculations by the SN-PL-method are
strongly disturbed by the negative flux generation in the collision source

term, as is shown in Fig. 3. The flux oscillations were found 'in heavy ele-

ments, too, besides a general discrepancy in the upper MeV range, see Fig. 4.

At Karlsruhe measurements of angular neutron spectra and the space dependent
tritium production rate were done with a spherical assembly of natural
lithium containing a minimum of stainless steel in the inner parts of the
assembly [14, 15]. The calculations were performed with the code DIK in

the SN technique. A special partition of the angular coodinate, Sl9’ was
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introduced to allow for the strong anisotropy of the neutron flux in the
radial direction. For the treatment of the anisotropy of the elastic
scattering a new technique of consistent improved extended transport appro-
ximation, TS; was used [16]. Nuclear data were ENDF/B—III for lithium

and KEDAK-3 for iron. Large discrepancies in the angular flﬁxes under ob-
lique directions, as shown in Fig. 5, together with a‘fair agreement in
the radial direction lead to the conclusion, that the scalar fluxes, which
could not be measured in that experiment, are calculated drastically too
high in the energy range 2 to 10 MeV. The estimated discrepancy in the
scalar spectra (40 to 607) should affect the calculated tritium production
by 13 to 20Z. However, the discrepancy between the measured and calcula-
ted tritium production rates (Fig. 6) was larger than that. Therefore they
concluded that there were two major sources of errors, namely the error

of the transport calculaﬁion and the error in the /Li(n,n'a) cross section
value at 14 MeV. Lacking the possibility of including the anisotropy of

the nonelastic scattering in the calculations, they were not able to verify

the magnitude of the effect of the anisotropy of the nonelastic scattering.

From the above four experimental studies we may extract the following two

statements:

1) Due to the finite Legendre polynomial expansion for the collision source
term of the SN-calculation the angular information is distorted, Errors
from this have not been estimated. A rigorous reference method to vali-

date the existing methods is therefore desirable.




2) The full anisotropy of the scattering (i. e. elastic, inelastic,
(n,2n), (n,n'x), etc.) must be included in order to fulfill the need

for a reference method.

As already stated, the data problem is an obstacle on the way to the goal

of the desired reference method. Instead of touching existing codes, which
due to their complexity would have built up additional obstacles, a comple-
tely independent code system NITRAN (an acronym for Non-Isotropic TRANsport)
was developed. The code system is described in detail, as well as the result

9 12

of calculations for spherical assemblies of 7Li, Be, and “C, which prove

the necessity of the rigorous method.

Finally, we will describe the I*-method, which is also rigorous, but simpler
and more general than the Ii-method. The Ii-method fits to the present status
of nuclear data files, while the 1¥-method will fit to the future nuclear

data files that contain double differential neutron emission cross sections [17].
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2. The Ii-method

2.1 The collision source term in the neutron transport equation

A purely mathematical derivation of the Ii-method is presented in a sepa-

rate report [18]. Here we present it more from a physicist’'s point of view.

The neutron balance equation for the angular flux fg(?,ﬁ) of the energy

group g is generally written as ¥)
~7 ~=» -> - 3 ~y =y Uisiom source).
Qv f3 (T, 2 ) + Gt f? (T, Q) = (Co li'sson Sowu )9

+ (external source )3 ()

By using the new concept of an angular transfer probability for specified
type of collision, i, (see Appendix | and ref.18) the collision source term
is written as follows; by directly carrying out the integration over the

second angle ¥' for the collision source term with delta-functional kernels

we obtain: + I

(cold. -‘°“"‘)’= Z: :1/ ‘24 6; (g, 3)'Il'(/4',/‘)'ér (Fp, P )du’ +

A 2)
1 Z o 1 14 N / /
+ 2 G::en (3'9) an {8' (T’/"" sp)d/" o/y
L8 o -1
with u' = cosine of the incident neutron angle,
U = cosine of the outgoing neutron angle,
IL = total number of type of collisions (el. plus inel. level)

%) Throughout the text "o" is used for macroscopic cross sections to

distinguish from the summing symbol.
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The first term of the right hand side of Eq. (2) shows the contribution

of anisotropic collision events, while the second shows that of isotropic
events in the LAB system. We need not carry out an integration of the ani-
sotropic collision source over ¥ in the transport calculationx). This is a merit
of the Ii-method. The matrix Oz (gs;g), which represents the energy distri-

bution of secondary neutrons in the LAB system, is defined by
(' 9) = Gi(Eq, 1) 3 (Eq)
G, (3,9 = GilEg) i) g (Eg (3)

where oi(Eg.,u‘Li) is the angular differential cross section in the CM system,
and gi(Eg') is a Jacobian (see Appendix 2).

The Jacobian is given as follows:

3;(E;)=

2 ,
(4)
(1-o). Eg' ) d'l- Q,‘/E*

where
o = (A—l)z/(A+l)2 with A = mass of nucleus relative (5)
to neutron
*_A. :
E = T Eg. (6)

Qi= Q-value for the collision of type i, with

Ql=0 for elastic scattering

¥ ., the cosine of the angle of the secondary

The relation between | ci

- neutron in the CM system, and the energies Eg' (incident) and Eg

') The collision source for an isotropic scattering (second term of

Equ. (2)) is related to the scalar flux & (r ) only, because
: Y g

G = [[ (T 7) dp dy
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(outgoing), derived from the scattering kinematics (see Appendix 2)
is as follows:

a0t By _ A, Gy 4 1/-."
T LGk B B, E"> TITAK Q;/€ -

/‘C( 2 A E" 2

The matrix Ozon (g',g) in the second component of Eq. (2) represents

the energy distribution of secondary neutrons, which is treated as iso-

tropic in the LAB system.

. * .
The phase shift in the §-space after the collision, Ai’ see Fig, 7 for

definitions, is given by

™ /“f"/AV“’
{ | (8)

= aQrc cos : Y .
Y12 qfa-u?

A

S

In:  an'=cos®'
Out: u=cos®d
Scatt.: yi= cos 6]

54

Tor kz

(acc. to
y geometry)

e e e [ e e

Limits: \.
Bi=cos ©, \
2= cos O, .
with

Br= MAFV1-u2 V-2
Po= W VI-0Z V=67

o
S
~

Fig.?7: Definitions of angles in the LAB system.




_13_

u:, the cosine of the scattering angle in the LAB system, is given by

the kinematics [18] for a type i of collision as
. [ - LB (- %)- /
/‘£={(A*")' ’%,' T A E:—Cﬁ (1 Ec) ")} 2 (9)

For given p' and u the phase shift (¥ -#') must be fixed, because the

cosine of the scattering angle u; is fixed. u;’being the cosine of the

angle between the 5 and the 5' vectors, there is only one incident vector
>

5' corresponding to the outcoming £ . The angular transfer probability

function, the explicit use of which is new in neutron transport calcula-

tions, can be given analytically, except for some extreme cases, as

(Appendix 1):

n

1
AR ARG
L R 1)

or = O for prep, and pzp,

Il‘ (/“"//M')

where the limits between the kinematically allowed and forbidden regions

of U are
= 1! L - |2 - %2
By = W'Yy -0 of -y (11)
2 2"
By = u'w} +-‘/ 1-u' -\l 1-u} (12)

The physical meaning of the Ii (u',u)-function and some examples are

explained in the next section.

In the case of a one-dimensional transport problem we can eliminate

X - - .
the phase shift Ai using the symmetry condition in the ¥-space. For
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the spherical case, for instance, the balance equation becomes

/"r"' 2r (’r (r; 1) +T9/*[(4/“> (r/u)]-q- 6" (r/u.)_

1 IL
=5 [ 36 ) LG ) B o 4
3' -4 (=1

+1
t2 2 Z m(s',s)_/ra, (r,/"">al/4' ¥ Sﬂ(r'/u)
=4

where:  F (r, ) —f( (T o?
M= ';;-.IL /’7”,

53 (v, ) the external Source

N _
and the scalar flux @ (r) is given by

2.2 Character of the Ii-function

The Ii-function is the distribution function for the probability, with

(13)

which a neutron inciding at the angle‘) u' appears at an outcoming angle

p after a collision of type i with the scattering angle u; . If the scat-

. . .. , o .
tering in the CM system is isotropic, oi(g',g) becomes constant with re-

¥) For abbreviation we use the word "angle" also for the cosines, if the

distinction is easy.



_15_

spect to g, and the anisotropy of the scattering kernel is represented by
the Ii(u',u)-function alone. Hence, the Ii-function contains the CM-to-LAB

system transformation.

-5

As can be seen in Fig. 7 the angle vector { after the collision draws
>

a circle around the axis ' of the incident vector. In the case of f'-

. b d
symmetry this circle rotates about the position vector r. All outcoming

vectors are distributed on this curved surface. Inside a cone with opening
angle 62 and outside a cone with openingrangle-el there are no outcoming
vectors: this is the kinematically forbidden region. The region between

91 and 92, resp. the cosines B] and 82, is the allowed region, and the
distribution function of vectors on this curved surface is Ii(u',u). The

relations (11) and (12) are just the transcribed addition theorems for

the cosine:

%X ' .
cos (e'+e§) cos B' cos Gi - sin 8" sin 6:

By

cos 61

= 1 * 1 * + . ] . *
62 cos 62 cos (6 ei) cos 6' cos Gi sin 6' sin Oi
If the scattering angle 9: becomes O or W, i. e. u? = + 1, the allowed

angular interval collapses to a point. In this case the Ii-function be-

comes a delta-function [18].

Fig. 8 shows some representative examples of angular transfer probabili-
ties Ii(u',u). The Ii-representation of the angular transfer probability
is rigorous in the sense, that the scattering law is treated without
approximation. For the validity of the scattering law itself in the energy

range of interest no doubt has been raised so far.
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It is thenwsfinmortant aspect of the Ii-function that the outcoming

angle Y is restricted to the region of Bl < u<82. This restriction is
missed in currently used approximative methods like the PL representation
of the collision source term, in which the full range of u, i. e.

-1 <u é=+j, is always used. The second important point is that the an-
gular transfer probability depends on the type of the collision through
u:_. This means that we have to treat the scattering kinematics for each
type of collision separately in order to reconstruct the correct anisotropy
of the scattering. The Ii-function satisfies the conservation of probabi-

lity,

po

+1
.[I" L _/ Li(pp) dp = 1, (14)
~1 A,

and is symmetric for the three variables p',u and u:.

2.3 Relation between the Ii- and the PL-method

The balance equation for anisotropic neutron transport is usually written
[7, 16, 19] with use of the collision source term in the form of a fini-

tely truncated Legendre polynomial expansion:
9 2 - _
=X L ALY RS A (PRI A YOI A AP

+1
L

D DI P PR E AR VORI
g & 4L=o

t & Onp)
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If we take into account the kinematics of the various types of collisions,
the Pg-coefficients of the matrices (the "PL—kernels"), are given by
(see also Appendix 2): |

IL

6°\9) = D, 6 (Egrr i) 4:(E) + 6. 358  ae
=1

and
, IL
G (g,9) = Z(z(w) G, (Ey , Hei) 3(E) (") an

o-n‘A d= 1,2 ., ,1L

4
The averaging within the energy groups is abbreviated for simplicity.

By substituting Eqs. (16) and (17) into (15) and using Eq. (3) we get

(Cotﬁ So«.rce)

5 [Sogalt Seerrmoned o
7‘;: (r, ") J/A' + %82"5;:" l's)f‘Fg‘ (r,/u')al/,.’,

Comparing Eq. (18) with Eq. (13) we find that the angular transfer pro-

bability P (u',u) for a collision of the type i is expressed by

P (i p)- Z(zw () BG) BGm) o

In ref. [18] it is proved that the function P?(u',u) converges against

Ii(u',u), if Lo, i, e,
Li(p,pu) = 3 2. (260)- P(™) Blw) AR (20)
¢=0

In Appendix 3 the same is done for the I*-method.
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Thus it is demonstrated from another point of view that the Ii-method

is a rigorous treatment of the anisotropic collision source term.

A first impression of the difference between the PL- and the Ii-method

is given by Fig. 9, which shows angular transfer probability functions
with various finite truncations of the Legendre polynomial expansion in
comparison with the rigorous Ii-function. The P5 approximation is still
very rough from this point of view. More than 20 terms of the Legendre
expansion are needed for a representation of the shape of the Ii-function.
Rigorous angular transfer probabilities are in most cases unsymmetric
against ¢ = 0. Thus,it can be seen from Fig. 9, why the PL—approximqtion
with low even number of L (1. e. P2 or P4) is less accurate than that for

odd L (i. e. P,, Pjor PS)'

3
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Realization of the Ii-method

3.1 Discretized balance equation (SN—equation)

The discrete ordinates equation based on Eq. (13) is derived by discre-

tization of the r and | variables [19] for the spherical geometry:

‘Gy“m [f?nr,%‘ ;;

(med,n) - Hm_%’-l-;(m-g, n)]+

+0(M%'F;(m, n+§)-ah_%.]—;(m,n‘—‘}_) +

+W G R (mn) = wa V(G S,)

The notation follows

U : angle point; u

n

ref. [19]:

+ ! angular boundaries

N —

w ¢ weight for angle point
A.m 1 =4 1T-(rm + 1)2 + ; area of cell surfaces
I3 13
Tm i_%g radial points at radial boundaries of volume cell.
1 - = - A1-A
Otm,n+-§ %m,n-= Wnun( mwhs m—%)
OLm,nmax-l-l— = amyl =0 (=D
2 2

= 3 3

V =47 (> 1 =-1r” 1) / 3; volume of the cell

m m—= m——

2

Cg; collision source

Sg; external source
1

Fg (m:i,n); angular

1
Fg(m,q:i); angular
cell

Fg(m,n); angular

2
for energy group g
for energy group g

fluxes at spatial boundaries of a volume cell

(21)

(22)

(23)

(24)

(25)

fluxes at angular boundaries of a space-angle volume

flux at a midpoint of the volume cell
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The new formulation for the collision source term is the essential change

to the SN-method.

CG('"/") - Z Z G;z_(j'} "): n)- /Cg, [M,n’)'w,,, +
81 "I :
(26)

+ 2060, (8,8) 2 [Fpmm')w, ]
& n’ ’

where the anisotropic scattering kernel (matrix) Og(g' n',n) is

given by
] ' L o, 1 T ! (27)
6 (g'imin) = 2,6:°(3'9) i (n'n),

The angular transfer probability Ii(u',u) is discretized into

Ti(n',n) by averaging Ii(u',u):

M+ Yt Lt D,
4 T ! /
E(H:H)z ‘fk/h,h/‘ ,/_t(/ul/u)oﬁu ,}« ) (28)

n
Ay~ 801 Mn A/‘,,.g

the indices of Ay, 4 indicating asymmetric intervals.
-2

From Eq. (10) we obtain *)

A+ BMneg
, 1 . . ,
[/ (nin)= "~ [amsm (yhr%)-— a-rCSm(y,,_%ﬂol/u 29)
Slats fr B pns i
) PR wAth gy o0 Ovrleaf.
ZWnTL'-(VI‘In)=\/It‘(/L("/4)o(/un =
/“""A/“'n_qi

- %f el dip = [aresinGyney)- aresin(g,1)]



_23_

where

1"311. = (30)

In the present code (FUNCII, see section 3.3) averaging over LA is not

done. Eq. (29) is approximated by

—

1 ‘ .
l (n: n)= 2w, [arc Hi (ym%)'— arcsin (y,,_%)] (31)

< .
for B1 Ha < B2
As the M variables must be between Bl and 82, some provisions are needed
for the case that 81 or 62 is included in the mesh v (see Appendix FUNCII).
One can notice, however, that the analytical integrability is advantageous

for the discretization.

3.2 Development of the NITRAN code system and description of its structure

The new Ii-method can be applied to currently used S, code systems like

N
DTK [201 or ANISN [7] by rearranging their cross section processing codes
GRUCAL [21] and SUPERTOG [8], to stay with the first two examples. Parts

of the collision source calculation must be changed in the S, codes. This,

N
however, is not an easy task, because the nuclear data processing and the
kernel production are tightly connected to the SN calculation schemes. For

instance, about 10 essential subroutines like OUTER and INNER in DTK [20]

must be revised in order to apply the Ii-method.
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Therefore we decided to develop an independent code system NITRAN ,")
which has a new manner of data processing and scattering Kernel calcu-
lation, based on the Ii-method. Fig. 10 depicts the concept of the NITRAN
system. The neutron transport calculation itself, i. e. the solution of
the SN equations is separatedvfrom the kernel calculations. This concept
differs from the currently used scheme, in which the scattering matrices
are produced together with the calculation on the solution of the SN equa-
tions, even if a calculation on the.same material is repeated.

The nuclear data file KEDAK [20,231 is used as a nuclear data source.
Auxiliary input for nuclear data is necessary, because some of the data
needed for the new type of calculation are presently not available from

KEDAK.

In addition to Fig. 10, Fig. 11 shows the working scheme of the kernel
calculation. The first processing code NIO produces the the so-called
Po—kernel Oi (g',2) with use of the scattering kinematics and the diffe-
rential cross sections, and stores it on magnetic tape No. 1. These scat-—
tering matrices can already be used for transport calculations with iso-
tropic collision source. The second processing code NIKER produces‘ani—
sotropic scattering matrices Og(g';n'n) by means of the Ii-function, and
stores them on magnetic tape No. 2. This processing is done for each iso-
tope. The interface code NIMIX produces the anisotropic scattering matrices
for materials with several isotopes and for several layers of materials
("zones"). Its results are stored on magnetic tape No. 3. The code NIMIX

is not yet realized.

*)‘gpn-lpotropic TRANsport
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KEDAK Nucl.Data Aux.Inpqt
] / 'O'KdEa[t)l;(“ in

[ ]
produce G{(E'.E)

(Tape 1a,b,..) Aux.Input

Li-7 data for
NIKER
produce G(E'E;u',p)

/ starting phase
(Tape 2a,b,...)

%_ single isotope
.. . .

NIMI
produce kernel for
mixed isotopes

—meeo=d

P
|
!
|
1
|
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|
1
1
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Fig. 10: Concept of the NITRAN System
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G(E=E,u"~u)| Tape

Fig. 11: Present working scheme in the
kernel part of the NITRAN system
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Transport calculations can be done by means of various SN-codes. When
writing this report,.only the one-dimensional code NITRAN-S for spherical

geometry is completed. S -codes for other geometries are planned, but they

N
are not necessary for the demonstration of the new method. Angular and

scalar fluxes, as calculated by the various S —codes, are stored on magne-

N .
tic tape No. 4, where they are ready for use in subsequent calculations of

nuclear effects and for y-transport.

The working scheme of the kernel calculation reflects the situation with

the nuclear data file. At present, scattering anisotropies in the CM‘system
are treated for elastic and level-inelastic scattering only. Angular distri-
butions for the secondary neutrons of elastic scattering are read from-
KEDAK, whilst the data for inelaétic level scattering have to be read from
cards. Continuum-inelastic and (n,2n) scattering are treated as isotropic

in the CM system and Ozon(g',g)'is produced with use of the evaporation mo-
del. In future the first emitted neutron from the (n,2n) process should be,
at least, treated as anisotropic in the CM system. This can be treated

by the same kinematics as the level-inelastic scattering. Then the second
neutron may be approximated as isotropic in the CM system. In the same

way also the anisotropy of processes like (n,n'x) and (X,n'x') should be

included, too.

Anisotropic scattering matrices are produced by NIKER by summing up
Og(g',g) * Ii(u',u) - or, more accurately: Og(g',g) . Ti(n',n) - for all
types 1 of scattering: elastic, level-inelastic and continuum. In the follo-

wing some explanations on details of the calculational procedures are given.
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3.3 Calculational procedures in the codes

3.3.1 NIO

In Fig. 12 the calculational flow in NIO is demonstrated for the case of
elastic scattering on 7Li. A 67 group structure (see Table 1) is used for
all calculations in this report. The energy of the secondary neutrons af-
ter elastic scattering spreads over 22 of these groups. First we search the
energy points Eg’ on which the secondary neutron energy spreads, accor&ing

to ref. [181, Between
FE - E A*(1- Q:/E*) + .20-/1-6?;/5* + 1
max — g (ﬁ'* ,,)z (32)

o E.. A*(1-Q: [e¥) = 2Ry 1- Q/e* + 1 (33)
th 8 (A"' 1)2. ’

Secondly we transform the Eg-points to the cos-angle points Mo in the CM

Eu

system with use of Eq. (7) - step | to 2 in Fig. 12, Then we can pick up
angular distribution data corresponding to Moy = uc(Eg) points. Thirdly

we transform the angular distribution data into an Eg array (step 2 to 3

in Fig., 12, backwards), and integrate them over Eg (which in effect is made
by summing up) to get SUM. SUM should be the Jacobian gi(Eg.) of Eq. (3).

In the actual calculation, however, we normalize SUM to the cross section
Oi(Eg'> instead of using the gi(Eg,) factor. Thus, we obtain Oi(g',g). The
averaging within the groups is done with use of a subdivision in each energy
group, for the example of 7Li the groups were subdivided into about 10 groups.
This scheme is repeated for the level inelastic scattering. As can be seen

from Eqs. (32) and (33), if E® approaches the maximum possible value E¥ = Qi’
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: 2 . .
R = = +
we get E in E ax Eg./(A 1)°, which is the energy of the neutrom stuck to the

nucleus. Above the related incident neutron energy of Eg' = E; = Qf(A+l)/A

we get a separate scattered neutron. At the slightly higher value of

Eg' = Eb = Q{A/(A-l) we get Emin

scattered into the backward direction of the LAB system (uz<0). Therefore

= 0. Abovg this value of Eg' we have neutrons

this value E, is called the backward threshold /33/. Below E, the scattered
neutrons appear inside a forward cone, the opening angle of which shrinks
from u =0 topu =1, as Eg' approaches Ef, which is called the forward

threshold. Inside the forward cone the energy of the outcoming neutron has

; Li elastic scattering ] ]
I barn/MeV source energy B
5 14.867 MeV 1T
-o:-,' 1
e -
=
iU [
P01t - _
c ]
e 1 B
5 B
(7} —
c — [
>y B T |
g 1
v —
[
o) ——
L 001+ I
-1 ‘ 0 *’}Qi

rv,HiH vyvy ©0

[ I J'

8 10 12 2 15MeV

— A
\ (') @

-+

1

—pi

Fig.12: Flow of the scattering kernel production in the
NITRAN system, @—=Q@—=>Q—0
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two possible values. At present the programs account only for one of the
two values. This simplification affects only one or two groups of incident
neutron energy in the present 67-group structure (see table 1 at the end of

the paper) and, moreover, the related cross sections are small.

A simplified flow chart of NIO is shown in Fig. 13. Flow charts of some
subroutines, which are essential in the Ii-method, are shown in Fig., 14,

We first open the KEDAK file with use of LDFOPN, which belongs to the

KEDAK retrieval package [23]. The subsequent use of the other retrieval
routines is 6mitted in Fig. 13. These direct-access routines‘are called
from subroutines SUB! to SUB4, which are specialized to read the various
data types instead of a single subroutine with many options. The material
name MAT is read in the alphameric convention for KEDAK. The total cross
section pointwise data are read and linearly interpolated for the group
cross sections., In the actual status of the subroutine only smooth cross
sections are treated correctly (like those of 7Li, for instance). Avera-
ging with a weighting function must be introduced soon. Then elastic scat-
tering is treated. The cross section is expected to be always available
from KEDAK. The data are interpolated to get Oel(Eg.), which in the Ii-
notation is ol(Eg,). The angular distribution input data are read from
KEDAK in the form of pointwise data, but the subroutine ANGIN is prepared
to read also Legendre coefficients. It was not necessary, to make this op-
tion readily available. The subdivided Epints for the outcoming energy are
transformed into scattering angles u, by the subroutine NARABE (''rearrange-
ment'). We transcribe the interpolated (by INTER) angular distribution data
to the energy array and integrate them over the subdivided energy points
within AEg with use of the subroutine XENER, to get the (unnormalized) ker-

nel (i. e. angular distribution converted to E-space). To get 0?(g',g) we



Feud calcul. condit. I

|»(LDFOPN)
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[ transform u.—>E | NARABE)
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¥*
~ Je(suB 1)

| read Geon

[read nuel.temper. Jam{ SUB 4)

KEDAK only

subtract Gj
from Gcon

[ calculate Gon(E' E)ftm{ EVAPO )
L]

»*
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Y

END

Flow chart of NIO, simplified

(* starting treatment of next
reaction type)
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[ 1nput common |

_.§
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points of angular
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to ANC

|
integrate
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points within AE]

|/
RETURN

XENER

1S
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integrate
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!

normalize angul.
distrib. (XJ2)

produce kernel
G°(EE)=XI(I,])
X1=XJ2% Gj(1)

v
RETURN

NORM

14: Calculational flow in three subroutines of NIO
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nA

A

integrate the unnormalized kernel within E , E E , normalize the
min g max

kernel to | and multiply then groupwise by Ol(Eg,). This is done in sub-

routine NORM. This process is repeated for all groups of incident energy

Eg" The matrix O?(g',g) is stored on tape No. 1 in the order of a sink

group kernel.(arrays in g' for fixed g).

For the level-inelastic scattering, the process can be repeated from the
beginning at the cross section input, but just here technical changes are
necessary, because the data input presents more problems. The program seeks
at first for KEDAK data. If they are availéble, the further processing is
done as for elastic scattering and the outcoming kernels are indexed with

i =2, 3, etc. If KEDAK data afe not available, which is already true for
thé first attempt to read an angular distfibutiqn for the first level inela-
stic scattering, data can be read from cards. If a level cross section is
read from cards in addition to KEDAK daté, e. g. a second level cross
section, where KEDAK contaiﬁs only the first level cross section, this addi-
tional cross section(s) must be subtracted from the continuum cross section,
This is done in NIO. For the inelastic scattering to the continuum the data
table is read from KEDAK and interpolated to get Ocon(g'). Next we read the
energy distribution of the secondary neutrons, actually only in the form

of nuclear temperatures, as these data are given for the light elements

(for Be not even this!). The subroutine EVAPO calculates OZon (g',g) by

use of the formula

o , E ,
qu = 2[N' G;:on (3) ' -F(i;.)’- - exp [_EO/T(3 )} (34)

‘W'ﬂ\ EJ é EJ'
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with the normalization factor fN:

Ea

J

_ E s

fu=1/[ 2. exe{-5/T)} dEy @
o Q) |

The kernel czon(g',g) is not immediately written on magnetic tape; because

we must add to it the other possible continuum kernels, most probably the

(n,2n) kernel.

The (n,2n) and (n,3n) ketnels are treated in the same manner as the first
continuum kernel, except for the normalization factor in EVAPO., These ker-
nels, if existing, are added to the first continuum kernel and the final
sum is written on tape‘No. 1, again in the form of a sink group kernel.

It is this treatment of the nonelastic scattering, which we are least .sa-
tisfied with. Improvements in this section are really necessary, e. g.
evaluated double-differential data for the secondary neutrons. This point

will be treated more extensively in section 5.

3.3.2 NIKER

The flow chart of NIKER is shown in Fig. 15. The continuation in NIKER for
the calculational flow in the kernel production is demonstrated in Fig. 12,
The flow chart of the most important subroutine of NIKER, FUNCII (for the
Ii-function, resp. Ti(n',n) matrix) is shown in Fig. 16. Wé start with

the card input for the calculational conditions, including the B set for
the Sy calcuiation. The energy group boundaries and the total cross section

are read from tape No. 1.
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Fig. 15: Flow chart of NIKER
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NIKER has three options for generating anisotropic scattering matrices.
With IIORPL = | the Ii-method is used. With IIORPL = O the PL-method is
used with a representation of the angular transfer probability in the en-
tire range of U - the usual method. With option IIORPL = -l the PL-function
is set to zero outside the kinematically allowed range B, to B,, and renor-
malized inside this interval. Here we concentrate on the option for the
Ii-method. The kernels are produced in a single sink group loop. Therefore

the Po—kernels oz(g',g), i=1to IL and Oion(g'.g) are read from tape No. |

at once.

Inside the sink energy loop the elastic and level-inelastic scattering is
treated first by calling FUNCII with a specified Qi-value and incident ener-
gy Eg" In FUNCII (see Fig. 16) we calculate the cosine of the scattering
angle, u?, in the LAB system, from Eg" Eg and Qi’ based on Eq. (9) by

means of the function subroutine FMZ. In Fig. 12 this is demonstrated as

the step 3 to 4.

The outcoming energies within AEg are subdivided into KMAX points. KMAX

is defined automatically in the main routine of NIKER, such that the trans-
formed angle points u:(g',gK) give a slightly finer scale than the B -set
of the SN-calculation. For instance, if we carry out a 832 calculation KMAX
is set to somewhat more than 2 for 7Li, because - referring to the example
of Fig. 12 -~ 22 energy groups correspond to the scattering from -1 z u z 1.
Actually KMAX was set to at least 6 or 7, to keep the accuracy of the
transformation. Next we calculate Bl and 82 for each un, to restrict the

U —space. Then we calculate the angular transfer matrices Ti(n',n) with

Eq. (31) and average the obtained values over the KMAX points within Au;
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. . 3
that correspond to AEg. The new matrix is called Ti(n',n):

KMAX
% 1 Z '
TZ (y):n) = 17:? . 72.(;4’/‘;,)*[&/‘(&( . ' (36)
=1

In order to keep the numerical accuracy we use the following normalization’

(normalize FIND in Fig. 16):

NMAX " |
2 T () w= 1 on
h=1

Then we get the anisotropic scattering matrix for scattering of type i:
! o —*,
G (595 ) = Gg,9) T ot m)

In the first part of the sink energy loop this is done for the elastic
and the level-inelastic scattering. The partial scattering matrices are

added up into the FI-matrix, which finally contains:

, IL
Gt (8:81%) = .61 (g, g;,m)
(=1 ‘

Next in the sink energy loop we treat the kernel for the scattering to the
continuum, The distribution of secondary neutrons is assumed as isotropic

in the CM system. For a queue of assumed Q-values, which we call the Qc—array
and an element of it Q> e transform the secondary energy distribution from
the CM to the LAB system. According to Eqs. (32) and (33) the maximum and
minimum energy for Qci is calculated and the section of the secondary neutron
distribution between these limits is then treated as a P -kernel Ozi(g',g)

in the same manner as the elastic and level inelastic kernels. In order to

cover the entire distribution of secondary neutrons, the elements of the
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Q —array are calculated such that the resulting E and E . are over-
c max min

lapping by a certain portion, which is actually 30 7. This is shown in

Fig. 17.

A qrbiqu_ry

secondary neutron distrib.

P .
”/\,

QC3 QG
_.9Cmax_ qcg QCy Qcz

01 1 10 MeV
Fig.17: Treatment of the cm.to lab. transf.
by means of assumed Q-values
yielding overlapping energy intervals,

here case of °Be, 30% overlap.
QC,=0; and QCpmay for Epin(QCra)=0.

. . o
In this treatment we first assume the P_-kernel Oci(g',g) to be

G: (g.3) = 6o, (2'9)/cMAx | 40)

where CMAX is the total number of the Qci' Then FUNCII is called to produce

the angular transfer matrix T:i(n',n) to get
' oo o ] -—%
G (84 9:nm) =G (g,8) I (n)n). 1)

This procedure is done for all Qci—values and the. partial kernels are added

and renormalized:

CHAX
Ceonn (3'19j “'I") = ‘FCZ 0:,;(9,/9;"’/").

(42)
t=1
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The normalization factor f is given by

NI‘MX CMAX
/c = (3/3)/ G (995 mm) W, . 43)
hW=1 (’

1

Finally, we add the continuum kernel to the level-kernel to get the total

anisotropic scattering kernel

6 (g,9; nin) = Gy (g:9;mm)+ O (319 0). (44)

This all being done for the sink energy group I, the results are stored

on magnetic tape No. 2. The program returns to treat the kernels for the
next sink energy group unless the last group has been reached or the com-
putation time foreseen for the calculation has been consumed. For this case
a continuation of the calculation in a subsequent job is foreseen, and

ISTART is then the new starting group for the kernel calculation.

In the present stage of the development the continuum kernel is not added
to the level kernel, but written separately on tape No. 2. At the expense
of computer space the treatment became more straight-forward and allowed

the control of errors and individual effects more effectively.

We have concentrated the work on light nuclei, because there we can demon-
strate drastic effects, but some remarks must be made concerning heavier
nuclei., For these the scattering - mainly elastic - is strongly peaked in-
to the forward direction. If we use the energy.group structure of table 1,
the energy spread of the secondary neutrons covers only a small number of
groups, e, g. 5 groups in the case of 56Fe elastic scattering at 14,8 MeV

incident neutron energy. As the angular distribution of secondary neutrons
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in the CM system is converted to the Po-kernel Og(g',g) by NIO, few groups
must represent the anisotropy. This means, to stay with the above example

56

of " Fe, that a § -calculation becomes effectively a S5-ca1culation only.

32
In order to avoid such a decrease in accuracy, we could use a very fine

energy group structure, but that makes the computations expensive. Another
solution of this problem may be to restrict the use of a very fine energy

group structure to NIO for the Po-kernel. In NIKER we then may come back

to broader energy groups:

It KMAX
Gy@.9imi) = Z ;;45; ; 6" (48 ) T; (5 (90 Aurs M) AE g,

: 14 : = AE,/kMAX
with Eg, = 8Eg-FaFgrk-ABg , and AFg, g/ KMAX,
using the T, probability of Eq. (31).

NIO and NIKER should be made able to carry out this procedure. However, if

double differential cross section tables are given, we can avoid this proce-

dure by using the ¥ -method (see section 5.).

3.3.3 SN-codes

We use the scattering matrices on tape No. 2 to calculate the neutron transport
in a single isotope assembly. The flow chart of the one-dimensional code
NITRAN-S for spherical geometry is shown in Fig. 18. It is a characteristic

of the code that the scattering matrices are read inside the loop for the

sink energy group. Moreover, it has an option to choose between two inter-
polation schemes to get the angular fluxes in a space-angle-cell, the linear
or the exponential [24] scheme, steered with the input variable LORE. In the

linear interpolation scheme we use
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Fg(m+%, n) + Fg(m—%3 n) = 2 F_(m,n) (45)

F (m, n+%) + F_(m, nﬂé) 2 F_(m,0) 46)

with index g denoting the source group number, and the sink group being

constant within the loop. For the exponential scheme [24] we use

P (mtg, m) ¢ F (urg, ) = F (mym)” W
F (m n+l) *F (m n—l) =F (m n)2 (48)
g > 2 g 2 g’

At the centre of the sphere, where we have
F (3 1) = F_(5, W 49)
gZ’U"g'f’ u

as the boundary condition, we use a linear interpolation in y,which makes
it possible to use an unsymmgtric set of angular mesh points, Mo

An unsymmetric M set is useful for fusion neutronics applications, because
densely distributed p-points in the forward direction are needed to allow

for the good description of the strong forward anisotropy of the neutron

flux [14].

NITRAN-S has three options for negative flux correction, steered by the

input variable NFC. If we use negative flux fix—up, unnegligible errors will
be produced. To correct for these, rebalancing of neutrons has 'to be used.

Up to now, it was unnecessary to introduce this rebalancing for the following

reasons. When applying the Ii-method it is only by the linear interpolation
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scheme and by numerical effects in the computer that negative fluxes

are produced. Their absolute values, however, are small. Moreover, the
microscopic neutron balance [19] is sustained by the difference equation
itself, because the collision source term is rigorously treated by the Ii-
method and we use a sufficiently fine spatial mesh width. A test calcula-
tion for a vacuum spherevwith a spherical shell source gave a result which
was very close to an analytically obtained result. For a calculation also
without rebalancing, but with negative flux correction, the result differed
by several percent from the others. The exponéntial method, as proposed in
ref, [24] » was introduced into NITRAN-S to allow for larger spatial mesh
widths without loosing accuracy. In ref. [24] it was stated, that the prob-
lems of the negative flux generation is not solved by this interpoiation
method alone, but that a non-negative collision source term formulation is
also necessary (see Fig. 3). The Ii-method therefore should be used in con-
junction with the exponential scheme. Unfortunately, we failed to make
successful calculations, when using the equations given in ref. [24]. Per-
haps they contain some error. But in view of the promises of this interpo-

lation scheme we will continue the efforts to use it.

In this report, we present only results of calculations without negative

flux correction.

The inner iteration is stopped in the usual way, the changes are printed
for control. The outer iteration is not yet needed, therefore the results
can be written group by group on magnetic tape No. 4 after the end of each

inner iteration (there is no up—scattering).
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4. Test calculations and results

4.1 Testing the accuracy of the PL-method and comparing the calculational

speeds

4.1.1 Calculational conditions

NIKER has an option to produce anisotropic scattering matrices based on’
Egs. (15) to (19), i. e. according to the PL—method (input variable IIORPL= 0).
Using this option four PL-kernels were produced for 7Li: Py, Pg, P,

and P,.. The reference kernel was produced by the Ii-method (IIORPL = 1).

20 _
The comparison concerns elastic scattering only, non-elastic scattering
treatment was unchanged. The input data were for elastic scattering ENDF/B-IV,
processed by SUPERTOG [8], for non-elastic a collection of data from ENDF/B-IV,
ENDL and BNL 400, processed by NIO. These are described in section 4.2, where
they are more relevant than hgre. In NIKER they were treated as isotropic

in the LAB system. Only the elastic scattering was treated with the full
anisotropy in both the CM and the LAB system.‘

S32-ca1culations with NITRAN-S, using the un-set of table 2%") were carried

out for a sphere of 7Li with 50 cm radius and | cm radial mesh width. The
D-T-source was located at a central shell of 2 cm radius, and the measured

spectrum of the source in the lithium sphere experiment [14] was used,

67 energy groups (see table % )were used for all calculations.

4.1.2 Results for flux and reaction rate

As had been expected the higher order PL-calculations yield results for

reaction rates so close to the reference Ii-calculation, that we present the

¥)At the end of the paper
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relative deviation from the reference at an expanded scale in Fig. 19,

The rate calculation with the P5 approximation is already so close to

the reference values that we omitted the on result,
Deviation from
ref.case (Ii) /"\
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Fig. 19:  'Li-sphere, accuracy of R _method

with respect to calc. of T-rate

Here it must be pointed out again, that the above comparison between
PL— and the Ii-method concerns the elastic scattering only, and that one

cannot draw conclusions on the accuracy of the entire calculations.

In the rate calculation we have a lot of error compensation. The situation
with the fluxes, especially the angular fluxes, is already much worse,

as can be seen from Fig. 20.

the'
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Fig. 20: ’Li-sphere: calc.angutar flux at
r=10.5cm, 93°; various methods for
elastic scattering
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In PL-calculations of low order large discrepancies are found in the

energy region, where we have most probably neutrons with single interac-
tions. These errors propagate spatially and energetically. After several
interactions the randomization of the errors provides a compensation.

In fact, below 10 MeV the Ps-results - and of course the P20 results, too -
were so close to the reference, that we did not include them into Fig. 20.
However, Ps—calculations and even on—calculations give rise to serious prob-
lems with negative fluxes in the backward directions [12, 13]. We expect

the error compensation to work less effectively in the neighbourhood of a

major local heterogeneity 1like a duct or a strongly absorbing rod.
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From this point of view a rigorous reference method is needed to allow
an estimate of the errors also for those more complicated geometries.
Therefore, also a two—, or even three-dimensional SN-code should be de-

veloped, which uses the Ii-method.

4.1.3 Calculational speed of the Ii-method

In the NITRAN system the computation time needed for a SN-calculation is

independent from the scattering kernel calculations. Therefore, the com-—
putation time for the Ii-method can be coﬁpared with that for the PL—
method by comparing the timé needed to compute the scattering matrices

with NIKER. For the PL-method, this depends on the order L. Naively and
from the general experience with rigorous reference methods one expects
a statement like the following: "Invview of the rigorous reference re-
sults the calculational speed is still acceptable.'" However, as Fig. 21

shows, the calculational speed of the Ii-method lies between that of P3-

and Ps-calculations. Therefore the Ii-method is not only suited for

accurate reference calculations, but also for practical use in techni-

cal calculations.

Relative
costs

li-method

0 5 & 10 20
order of P,
Fig. 21: Relative costs of collision

source calculations with NIKER
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4,2 Effect of the anisotropy of the non-elastic scattering

4.2.1 In 7Li, referring to the lithium sphere experiment [14]

In order to show the effect of the anisotropy of the non-elastic scatte-
ring, we had to prepare two scattering matrices, which were identical
for the elastic part. These elastic data were — as in section 4.1 -
taken from ENDF/B-IV, processed by SUPERTOG [8]. The program NIKER
treated these data by the Ii-method, taking into account the full aniso-

tropy in the CM and the LAB system.

The first kernel contained the non-elastic scattering in fully isotropic
form, i. e, the secondary neutrons were assumed to be isotropic in both

the CM and the LAB system., Input data were taken from KEDAK [23], which
were transcribeddata from ENDF/B-III. These data comsist of the first

level inelastic scattering cross section, the continuum cross section and
the (n,2n) cross section. The secondary neutron distribution for the latter
two is given by nuclear temperatures. An.example of the intermediate kernel

Oo(g',g), the input to NIKER, is shown in Fig. 22a.

The second kernel contained the nonelastic scattering as far as possible
in fully anisotropic form. Data were taken mainly from ENDF/B-IV. As this
data set includes only the first level cross section, the data for the se-
cond level cross section were taken from ENDL [25] and some data for the
angular distribution from BNL 400 [26]. The second level cross section was,

of course, subtracted from the continuum cross section. For the angular
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distribution of the first level inelastic scattering the data of the
elastic scattering were taken, This approximation is allowed in view

of the fact that the Q-value (.478 MeV) is low compared with the inci-
dent neutron energy 14 MeV. Thus an estimate of the anisotropy in the
CM system is included in the data set, which then was treated by the
NIKER code with the Ii-method. In Fig. 22 b an example of the interme-
diate kernel for this case is shown. In Fig. 22 ¢ the total secondary
neutron distributions for both cases are compared. The second kernel has

remarkably less high-energy neutrons.

For the anisotropic case in NIKER the continuum inelastic and (n,2n)
scattering was tréated by use of assumed Q-values (see section 3.3.2).
Both neutrons of the (n,2n) pfocess were treated by inelastic scatte-

ring kinematics to produce the anisotropy in the LAB system. This is not
fully correct, but the contribution of (n,2n) to the total continuum scat-

tering is small for 7Li.

Due to all the approximations for the anisotropic kernel the data set
serves only for the demonstration of the effect of the anisotropy of the
non-elastic scattering on neutron transport. The Ssz-calculations with
NITRAN-S were done in the same way as in section 4.1, the only difference
being the scattering kernels., Fig. 23 presents calculated scalar flux
spectra for both cases. Ratios of scalar fluxes are shown in Fig. 24 a
and b. These figures show that the scalar fluxgs in average in the sphere

are overestimated by as much as 357 (except for the source energy region)

unless we include the anisotropy of the non-elastic scattering. The effect
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Table 3

Tritium breeding isotope
i 6Li TLis 6L
NITRAN isotr inel. | 0.598%| (0.115)* | 0.713 %

Sy=li anisotr. inel.| 0.526%| (0.080)*| 0.606*

SD_TTK isotr.inel. | 0569 | 0.115 | 0.684
19 5

- Experiment KfK - - 0.43+0.035

Comparison of calculated and measured tritium
breeding ratios for a lithium metal sphere

of 1Tm diam., measured source spectrum in calcul.
*. from flux in pure 7L
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depends on the distance from the source. The effect is large in the
higher energy region for positions near the source. More distant

from the source, where the lower-energy neutrons are produced by sub-
sequent collisions after a first interaction at higher energy, it pro-
pagates to lower energies. The effect for the scalar fluxes integra-
ted over the whole sphere is naturally dependent on the size of the
sphere: If we calculate the fluxes in a very large assembly, the effect
appears only according to the energy dependence of the spectrum and

the reaction cross section.

Fig. 25 presents calculated tritium production rates by the 7Li (n,n'a)T
reaction for the calculations with the two kernels. The effect of the
anisotropy of the non-elastic scattering is about 157 in average and

up to 18% near the source. A third, dashed curve in Fig. 25 is the
result of a calculation with a kernel in which the anisotropy of the
non-elastic scattering was taken into account for the CM system, but

the CM to LAB system transformation not being performed. Thus, it can
be seen that the major part of the effect is due to the anisotropy of

the scattering in the CM system.

In Table 3 the tritium breeding ratios, i. e. the tritium production
rate integrated over the sphere, are listed for the various calcula-
tions as well as the results of the Karlsruhe lithium sphere experiment
[14]. This experiment was carried out with natural lithium in a spheri-
cal container of stainless steel. In view of the low content of 6Li

(7.42%) in natural lithium and the very similar elastic scattering we
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can approximate the natural lithium by pure 7Li for the neutron transport
calculation. Moreover, since the treatment of the neutron transport in
the targét support can be eliminated by using the measured spectrum of
the target support [14], we were able to simplify the problem to a trans-—
port calculation in a single material zone with a single isotope. The re-
sults for the calculation with isotropic non-elastic scattering are not
perfectly identical, because there are differences in the calculational

methods and slightly different data for elastic scattering were used.

The relative change of the tritium breeding ratio due to the inclusion

of the anisotropy of the non-elastic scattering is 187. Fig. 26 shows

two angular spectra of ref. [14], together with spectra calculated with
NITRAN~-S for pure 7Li, as described before. This figure is to be compared
with Fig. 5, in which the caléulated spectra do -not include the anisotropy
of the non-elastic scattering. The large discrepancy in Fig. 5 between
measured and calculated spectra is seen to be greatly reduced. The shift
of the elastic and the second level inelastic peak is due to the isotropic
source spectrum, which does not take into account the kinematics of the D-T-
reaction. In ref, [14] an effect of 13 to 20%Z on the tritium production
rate was derived from the observed discrepancy between measured and
calculated angular spectra. The then suggested origin of that discrepancy,
namely the anisotropyof the non-elastic scattering not being included in
the calculation, is confirmed by our present investigation (187 at about

r = 10 ecm). Having included a first estimate of the anisotropy of the
non-elastic scattering there remain errors, whiéh can be attributed to a

manifold of origins, except for the method to calculate the collision source
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term. Besides the error of replacing the 6Li by 7Li in the above calculation
we list some further sources of errors, in a crude order of presumed impor-

tance.,
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a) The 7Li (n,n'o) T total cross section value at 14 MeV may be too
high. This is the main reason for therest of the discrepancy in the

tritium breeding ratio [141.

b) Angular distribution of elastic scattering at 14 MeV seems to be

incorrect at 55° (& p = 0.574), see Fig. 26 at the high energy peak.

c) Angular distribution of secondary neutrons not taken into account
for continuum-non-elastic, which includes the (n,n'c) and the (n,2n)
reaction,

4.2.2 Effect in spheres of 9Be and 12C

In the actual KEDAK data for 9Be there is no information on the angle-
or energy-distribution of secondary neutrons from the (n,2n) reaction.,
Therefore we prodﬁced scéttering matrices by assuming the evaporation
model with nuclear temperatures lent from the 7Li (n,n'a) data. This
enables us to give a rough estimate of the effect of the CM- to-LAB
system transformation by using the kinematics of inelastic scattering
for both neutrons (see section 3,3.2). In Fig. 27, a and b, the effect
of the CM to LAB system transformation is shown for a Be-sphere of

20 cm radius.
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A fraction of the "first neutron" from 9Be (n,2n) comes from inelastic
level scattering. Recent works on the secondary neutron distributions from

scattering on 9Be [27, 28] show that in ENDF/B-IV this fraction on inelastic

level scattering is overestimated. Consequently, as the (n,2n) cross

section is agreeing with the newer measurements, the contribution of

reaction channels as “Be (n,q) 6He* and the direct multiparticle breakup,
which provide neutrons of lower energies, are underestimated. When calcula-
ting the multiplication effect of a beryllium layer with ENDF/B-IV data
there are three sources of errors, which all increase the estimate of the
effect. Firstly, an increased fraction of higher—energy neutrons allows
more second (n,2n) interactions after a first one. Secondly, neglecting

the anisotropy of the non-elastic scattering increases the scalar fluxes
near the source, and thirdly, omitting the CM to LAB system transformation
éffects the calculation in the same way. Thus, we can understand that there
is a great discrepancy between the measured and calculated multiplication

factor of a beryllium layer in ref, [4]. Moreover, for the fusion reactor
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design of ref. [29}, in which the molten salt LizBeF4 ("Flibe") is pro-
posed, and for which a tritium breeding ratio of 1.07 has been calculated,

it is to be feared that the breeding is less than marginal, even if the

reserves of the design are exhausted.

12 , . . , . , ,
For C the inelastic scattering is given in KEDAK as 5 level scattering

cross sections in contrast to ENDF/B-IV. But no information on angular
distributions of the secondary neutrons, except for the elastic scattering,
is given. Therefore, as for 9Be, we can only present the effect of the

CM- to~LAB system transformation.

Ratio of scalar fluxes,
reference: inel. by [i-method

09 72225 cm
08
. . Energy
_ 0 5 10 15 Mev
Fig. 28: 2C sphere, 23¢cm radius: effect of the

cm. to lab. transf. for inel. scatterg.
data KEDAK:inel.levels up to 14 MeV,
isotropic in c.m.s.

This effect is shown in Fig. 28 referring to the scalar fluxes. The effect
is large, even for the mass of 12, There are few data available [26] for

angular distributions from level scattering on the Ql’ Q, and Q3 levels.

These data indicate that they should not be neglected [12].
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5. The I*-method

5.1 Double differential cross section

In the present NITRAN-system we need both the reaction cross section

and angular (or energy) distribution data (single differential cross
section with respect to outcoming angle or energy). We also need the
collision kinematics in order to reconstrucﬁ the complete scattering
kernel. Therefore we need a large amount of detailed nuclear data for
every reaction in every isotope to calculate the neutron transport accu-
rately. This situation originates from the strategy of nuclear data com-
pilation and evaluation in the existing nuclear data files: we have
normalized angular distributions of secondary neutrons for various reac-—
tions, and there are some other reactions, for which the secondary energy
distributions are given. For lower energies, up to several MeV, this
strategy is quite useful, but above that the work to reconstruct the

full scattering kernel increases with the number of reaction channels.
This makes the data processing in NIO and NIKER complicated. Besides the
rise in efforts due to the data storage in paftial cross sections there
is the problem of missing information, so that the scattering kernel cannot
be reconstructed completely, as was the case for all our examples in the

preceding section.

If the double differential neutron emission cross section in the LAB system,
920 . . .
! R, = .
o(E ,E,uo) 2m 5@;5@ » were given in an evaluated nuclear data file for
each material (or isotope, if needed in this form), the data processing for

the scattering kernel calculation would become very simple. The transport

calculations following the Ii-method must then be modified. The modified
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Ii-method is shown to be an independent rigorous method, and therefore

it is called the I*-method.

In the Ii-method (see section 2.) double differential cross sections
are related to their data processing by the following formulae, which
use single differential cross sections with respect to the scattering

angle:

(aifaE)an;sf, = i 7 S (E B )
(2 )
S )8 )

2'7—2 G (€, /A. (9/%) é(/‘a/“) (52)
=2 ZWE,/“J gi(E') S pi") (53)

(50)

x . . . . .
where ui 1s dependent on the kinematics of the collision type i, and

Q¢ —
<QZT‘)E>;35 = i G (F/E),

(54)
where Hy and U, express the scattering angles for the LAB and the
CM system, respectively, with ggé = Oi(E;uo). In the T -method we start
from the double differential cross section, which no longer needs the
information on the collision type. We use the next formula as an operator
in the I*-method.

+1

Q%DE fn.QE S VK" = 5 [65E L 1) Sipacpdy e (55

-1

This angular transformation operator is based on the idea that the cosine
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>
of the angle between the incident neutron vector ' and the outcoming
->
neutron vector 2 is identical to the cosine of the scattering angle,

which is given as parameter of the double differential cross section.

The operator works as:

+1
-
G(EE po)fy (P, 0')= [SIELE jp0) O p®) fo. T 7Y o™ 69
-1
It is the purpose of the I*—method to reduce the number of angular variables
to the only meaningful one, i. e. the scattering angle u*. This is the
origin of the high calculational speed of this method (and the Ii-method,

but there it is not so obvious). This has not been recognized in ref. /34/.

5.2 The neutron balance equation and its collision source

: > >
The neutron balance equation for the angular flux fg(r,Q) in an energy

group g is expressed by

BThEE) G, (7TR) =
+1 2
= 2%7';[ /G‘(g',g/'/"o)'ga, ;:/"l, y’) d?’ 09"’ t+ (57)
-1 o

+1 20

4 ! — ) ! ) - =
+L,—.,,’Z(7,-“(3,3)f/g(r,/w,s’)a/7’ dp' + 53(", «)
i -1 0
where the energy variables are already discretized and

o= R = gt fat i e (P17,

(58)
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We may combine O(g;g;uo) and Oiso(g',g) to get a single kernel, however
we keep the two separately, because the anisotropic treatment is not al-
ways needed, particularly for the lower energy region. By using Eq. (56)

we rewrite the anisotropic collision source term as:

(crel Source)

4 tT +1
55/ /W 31 IS i )y Gopisr') o™ ol

At first we perform the integration over ¥', following the same path as

(59)

- o -4

described in Appendix 1, and obtain:

auiso
( col?. ocu-rcc) =

60)

> / / ; (a gir0)- I Q54 1) o P 0°) "

where the phase Shlft A¥ in the ¥ -space is

A = arcceos (/—a—":ﬁ-’——'—)

- Y 2 61)
1L11/L .. 1-/u'
For fixed u' and Y there is a restricted range of the scattering angle
X

u‘ By < ﬁ*< 82, where
b ¢ 2
By = wu' - 1-u° o 1=y (62)
BY = w4 o 1-u’ o 1mu? (63)

The angular transfer probability function kaﬁﬁu',u) is given by the
same equation as the Ii-function (Eq.(10)), but here we use u* as an

independent variable in the collision kinematics.

X/ e 0 1 . x

I(/“;/*//*)'W\F T,
VAR

1
N
R
N

A
-

0 e pTEAT or WM
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Of course, the ¥-function has the same characteristics as the Ii-func-
tion, and in the same way as for the Ii-function we can show that the

I* -method corresponds to the P.-method with L -+ «, The neutron balance

L
equation (Eq. (57)) is rewritten as:

~y =P

—$ —> 3: - =
oV 3(7 n.) + 6 f(r.n.

Zf_/G(g 3//“)-[(/‘//“//“)%3(’-/“/%‘1)6/”

-1 /3 (65)

ST6, 6.0 $p (F) + 5, (7, 2 )

+L“(?

->
where Sg(r,Q) is the external source, and the definition of the scalar

flux is -
6 //,gzq- 2y d? du .

In the I‘—method we integrate over u*. Another approach to the use of
double differential cross sections, in which the collision source is cal-
culated by integrating over 5, is discussed later.

We have to treat the phase shift A* to solve the transport equation, except
for the case of the one-dimensional calculation, where we bypass the

% . . .
A -treatment. For a spherical assembly the balance equation becomes in the

I*—formulation:
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z t + C =
/_“... 99. 1:1--7:(?,/«)]4— 47:%4[(474 )-I;("}/") S, /}(’C/“)

/ /G(g 3; )] (/*,/“z/‘)oﬁu] (T, ' Dol +

(67)
T
+1576, (3;)/7-’(7“/4)0// . S( ”
g’
5.3 Relation between the I®- and the Ii-method
In the TIi-method the anisotropic scattering kernel of the transport
equation is related to
ol
(8,6 pip) = ,/(m95>. 4
Qi so (68)

fG (E,/“'c 3(5)5(/“°/"‘/)°(A (69)

2/1

AW

where A = ' -%. From the knowledge in Appendix | the kernel is expres-

sed by means of the Ii-function:

K(EE o p) = 2 G CE it Dge (B)-Li Gpip) . o

In an analogous way the kernel is derived for the representation by

means of the I¥-function using Eq. (55):

Do

+1
K(E)E;pi\pa) = fG (£, E,'/*')/;(/*;/**) da op”
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And again, as for Eq. (70):
/AL - / *
K(ELE; /) = _[G'(E;E;/“’*)'l (i) ol (72)

Consequently the following relation holds:

’-“ IL
f SCELE )T i A= D GEAS) i BV Liluip)rn
A =

This relation can be transformed to show the equality by carrying out

the integration over u* for the left hand side with use of Eq. (53). Thus,

we have confirmed that the I'*-method is consistent with the Ii-method. But
moreover, in the *-method double differential cross sections need not al-
ways be delta-functional (Eq. (53)). Therefore the ™-method is more gene-—
ral than the Ii-method. The Ii-function depends on the scattering kinematics,

while the I™®function is free from scattering kinematics.

5.4 Discretization of the I®-function

For discrete ordinate calculations we have again Eq. (21) for a spherical

assembly:

Wa S [A»w‘/,_' el h) A ? >]

+O, 1 E (mnel) = %, w1 F(m v,-i) + 6; V

¢
[Cawn(hqlh) + C;so(wlh)]-/- Wn'VM' Sa ""‘1"‘) '
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where Sg(m,n) is the external source, and

Cams(om,n)=ZZG (g;n w) (W'")Wn,

) (75)

Cm‘ ZZ G0 (4, (?)Z (M " (76)

el
are the anisotropic and isotropic parts of the collision source.

The sink group anisotropic scattering matrix Og(g';n',n) is defined by

(3 (? P h) =

{ﬂ’w(e )/ /G'(E,E,,u )T (pnyn) o dlE AE//; (E')AE B b Wi

5 AE‘ sy (77)

where n‘t and nX correspond to B’; and B;.

1 2

fw(E) is the weighting function such as scalar flux spectra. The angular
. . * . . . .
transfer probability function T (u”;n',n) is then discretized in an

analogous way to the Ii-function, (Eq. (29) to (31)).

(/«,n n)-z—;r-—w arcs«u(‘ami)-arcsm(g )] (,,/6 /A-K"_/s

= 0 {w/o. 44" or /4;/3,_ (78)
* - /‘ﬁat 1 //&h

If the double differential cross section data O(E',E;Js, are given *)

wath

the processing code, which produces the scattering matrix,treats only

the process of Eq. (77) with use of Eqs. (78) and (79), the #-function.

*) We can also produce the double differential cross section from the par-

tial (single differential) cross sections oi(E',ﬁC) using Eq. (53).
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'If we separate the averaging for the double differential cross sec-
tions from the angular transfer probability function, we can use a
fixed table for T*(n*;n',n) by applying the same angle points Mo for

the three variables. Thus we get

n,'
! ] < ! \ ¥* . X *‘m’ )
%,(3/. ") %:6/(3’3/" ) I (a7 ) Wi ) (80)
1\
where
G(a',s;"’>=[/‘£W(E‘)//G(E,’E;,u")ol,u" dE JE‘] [zy(,,‘.. b, (E)AE e
AE" AE’ %"' AEal

The matrix Tx is normalized in the sense that
"
n,
* * ] —_
' -W =
E T("'/ 7)) Wax 1 (82)
‘n:'

In Eq. (78) ﬂ*= untis used. This procedure is suitable for practical cal-
culations. Eq. (80) means that we sum up the possible contributions of the
angular transfer probability for the collision for fixed n' (incoming angle)
and n (outcoming angle), by remarking the possible scattering angles o,

This procedure corresponds exactly to the SN-Pm-calculation (see Appendix 2).
In this I®*-method we have to carry out the summation with respect to n*,
instead of the calculation of P.—coefficients and the summation of the poly-

L

nomials in the PL—method.

From the experience with the speed of the NITRAN-calculations we conclude
that the calculational speed of the I®-method will be high enough for

practical calculations.
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For two- or three-dimensional calculations we can also make a fixed

table for A¥ using
S —/(An/qnl
2% (W W) = arcos . .
/7 { 2 2 (83)
4—/“% 4_/“?!'

With this table we can calculate the collision source in a two—- or

three-dimensional transport problem without difficulty. Then the aniso-

tropic collision source becomes:
awso
(coll. Sou.ra) =

/
DIV AR R ACITIN ACAASE D R

9' v\' nh

For two—- or three-dimensiomnal S,-calculations, therefore, we must calculate

N
the collision source directly with use of the double differential cross
section and the angular transfer probability tables 7% and A®. Within

a SN—code this is to be done inside the iteration loop for the sink energy
group, the outer iteration loop. In Fig. 29 we present the proposed wor-
king scheme of a code system which realizes the I'-method. Use of the "old"

single differential data types must be foreseen, because the double diffe-

rential data will certainly not be available for all materials.
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Nuclear Data File

", ; e
single-differential y double-diff.

cross sections : cross sections
]

DDXS DDXD ATP PHASE
produce grouped produce grouped produce angular produce phase
double-differential double-ditferentiat transfer matrix shift matrix
cross section cross eﬂction
from G;(E', n.) from

it= e Me 00,0E

6(g'.g:n*) Tape Tape

T*(n%n'n)

g\ &
y
ANIKER
duce anisctron : .
scattering kemel || 1-dimens. 2-or 3-dimens.
Gglg'in'in) Sy code Sy code

Fig. 29: Future system of neutron transport calculation by the

™ _method

The way in which we propose the use of double-differential cross sectioms
is not the only one which we thought of., There is a more direct approach,
starting from Eq. (68). When producing the kernel one can integrate the
double differential cross section over an arbitrary phase shift A =¥'-¥
and use Eq. (58). However, for the sake of methodical clearness we pre-

fer the description of this section.



_69_

6. Conclusions

€.1 Conclusions with respect to accomplished work

We have presented two methods, the Ii- and the I*—method, for calcula-

ting the anisotropic collision source term for all types of scattering

in a rigorous way. The following advantages are associated with these

methods:

a)

b)

d)

We are free from approximations when calculating the anisotropic
collision source. The discretization, e. g. in SN—calculations, for
numerical computation is the only approximation in these methods. There-
fore, they can be references to test the accuracy of other methods,

especially approximative methods like the PL— or the TL+1—method.

Both methods provide an excellent tool to include the anisotropy of

the non-elastic scattering into transport calculations.

No negative fluxes are generated from the collision source term. This
property makes these methods suited for the exponential interpolation

scheme to produce the supplementary equations for the SN—equation.

When realizing the Ii-method by a one-dimensional code for spherical
geometry, NITRAN-S, it was found that the calculational speed lies

between that of P,— and P_ calculations. Therefore the Ii-method is

3 5

not only suited for accurate reference calculations, but also for prac-

tical application.,
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e) The ¥-method is very promising, if the double differential neutron
emission cross section in the LAR system is given. Unless these data
exist in evaluated form, the Ii-method is used to reconstruct the double

differential data from the partial data.

With respect to the flux and reaction rate calculation for fusion reactor

neutronics we have to state the following:

a) The effect of the anisotropy of the non-elastic scattering 1is not

at all negligible.

b) The effect of the transformation from the CM to the LAB system for

non-elastic scattering is significant for light nuclei, even still

for ]20

6.2 Conclusions with respect to future development

For the near future the existing code system NITRAN should be extended
to have more feasibilities for technical use. In detail the extensions

should be:

a) The processing codes NIO and NIKER should accept more types of nuclear

data.

b) The interface code NIMIX to produce mixed-isotope-kernels for several

material zones should be programmed.

¢) Various SN~codes should be built for more geometries than only spherical:

plane, cylindrical, two-dimensional, three-dimensional.
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d) NIO and NIKER should be connected to other SN-codes, e. g. DTK.

e) The Ii-method should be available also in the Monte-Carlo-calculations.

On a longer time scale the following extensions should be realized:

a) The I¥-method should become the main tool for the neutron transport
calculations. Therefore, the measurement and the evaluation of double-
differential neutron emission cross sections, at least for the higher

energies (above 2 MeV) must be stimulated.

b) The Ii- and the I¥-method should be applied also to transport calcula-

tions for other particles than neutron$, especially at higher energies.

The nuclear data file KEDAK may easily be completed for fusion reactor
application, because its alphameric declaration of data types is more
open to new types than are tﬁe formats of ENDF/B. At least for the de-
velopment of the I*-method one can produce formally correct double diffe-
rential neutron emission cross sections. This would introduce an element

of continuity into the development of neutron transport calculations.

Finally, it must be stated that any useful assessment of errors for cal-
culated quantities - here with respect to neutron transport problems -

needs

a) a rigorous calculational method for the neutron transport, and
b) covariance data for the error estimate of the nuclear data together

with a rigorous use of them for the error analysis.
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Very often the double differential neutron emission cross section can

be measured directly, especially at higher energies, and hence the co-
variance data can be given reliably. The present practice, however, is

to constru¢t partial cross sections with individual covari#nces (if at
all). By this practice the requirements for the accuracies éf the indi-
vidual partial cross sections are unduly raised, if a given target
accuracy of the neutron flux is to be met. Thus, again the I*-method turns
out to be best suited for the neutron transport part of the error analysis
problem. For the second part of the problem the tools are to be developed.
The sensitivity analysis method is a step inﬁo this direction [30]. This
method should be extended to include also the effects of secondary neutron

distributions with respect to angle and energy.

Looking backwards into the paper we find that the status of the nuclear
data file is the most prominent obstacle on the way to neutron transport

calculations with reliable error margins for the results.

Part II of this report is devoted to the realization of the I*¥-method.
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Appendix 1: Derivation of the Ii-function

The delta-functional representation of the scattering kernel, i. e. the
double differential cross section for collisions of type i is written as

(see also Appendix 2):

- 1

65, g; F= ) = 5 G Slpm) -

where the energy distribution of secondary neutrons, again only for the
collisions of type i,is
o, 1 = *N.a
6§, §) = Ci(Bg /i) §i(By)
(A-2)
with

ugl = scattering angle in'the CM system

Oi(Eg.,uéi) differential cross sction (from data table)

Jacobian for the collision of type i for incident

gi(Eg')
energy Eg" see Eq. (4)

‘ -
The angle between the incident neutron vector § and the outcoming neutron

+
vector {2, see Fig. 7, is

oo = BT = pip + Af1p o Afap en (7).

This is, however, not a free variable. Eq. (A-1) means that the scattering

(A-3)

angle is fixed to the particular value of u?, which is defined by the scat-

tering kinematics, 1. e. E ,, Eg’ Qi’ and A. The collision source for scatte-

g

ring of type i is written by summing up the neutrons coming from (Eg.,u',?‘)

>
to (Eg,u,?) at a given position r

+1 20

(coll. source) £=Z 0}"(3',9)-2%. 50"0’/“?)'1{;'(’-{/‘; P') ol o’ st
' 90‘1 Y
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We transform.the variables as follows, in order to carry out the inte-

gration over ¢':

- 2 12
Xo = 1-u 1-u
X = Xo * cos (P-¥)

(A-5)

(A-6)

The integration over [0,2 ’IT:I in ¢'-space being equal to the integration

over [‘)’,2 ™ ‘r"]Eq. (A-4) is transformed as follows:

(ueg. Sou.ﬂ.c)g' L =

+1 X,

¢ 1 ‘ Sy Ll co 1‘) od X ol
=Zf>7-<s',s>-}r e S X i o s ()X o
30 e —Xo Xo"x

We can carry out the integration over X and get:

@o&é.ooufte)" =

+1
= > e g0 L) fy (B4 70 65) i
g' -4

. ' . . . Je- v o 2 2
where Ii (u',u) is given, by setting X = My “e’ in Xo - X", as:
e 1
.L‘( I,/“-)= 2 7 ' ! o £ <
” T/‘ﬁw‘—/‘—/ﬂ’-‘ t ZAHMM for P <P

=0 for mEf or g oith |ule1, |ul#1, P EXR

The phase shift A’; in the collision (in % -space) is given as

(again X = uf -uu")

. [M’*/*/*' ]
A‘ = Oovrccos

Vi it

for Lulat, Lilea , amd [l 41

(A=7)

(A-8)

(A-9)

(A-10)
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For the cases of |u| = 1 or |u'|=1 or |ui| = 1 the delta-functional
kernel (Eq. (A-1)) becomes independent of ¥'. For these extreme cases we

get firstly:

+1 - an
! ] % - / / ]
(caee.oour‘cc)g": = 2_ ‘/5‘.0(3; 3) SOA/L( 744‘-)'2%—'/,%’(7'1/“/ ¥ )ol ¥ ol/u
3 - 0

a-11)
if |p| =1 or |u'| = 1.
*
Secondly: Ai =0
, »*
Ii (u'hu) = & (- u'yy) (A-12)

if |uf| =1, and |u| # 1, [u'| *+ 1.

For discretized calculations (é. g, SN) we need only the representations
(A-9) and (A-10) for the calculation of the angular transfer probability.
In calculations with continuous variables, e. g. Monte-Carlo, the repre-

sentation of the extreme cases must be included.

Appendix 2: Scattering kinematics and kernel

A 2.1 Scattering kinematics

After the collision the target nucleus is excited to an energy Q; » which
may be Q1 = 0 for elastic scattering, Q2, Q3, etc. for discrete level exci-
tation, and some other value for continuum scattering. The conservation of

energy and momentum yields the two equations

. 1 A z, A (V'
Loy 4a00) - LGRS 2GR,

c ¢ _
v+ RV =0 (A=14)
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where v' is the incident neutron velocity in the Laboratory (LAB) system
corresponding to the incident energy E'. v? is the neutron velocity in
the center of mass (CM) system after the collision,V? the velocity of
the recoil nucleus in the CM system, and A the mass of the nucleus re-

lative to the neutron. Replacing v', v$, and Ve by energies we get:
1 1 & 8

E _ A (-Q/E" ) +1+ 2R4
E' (A+1)* (A-15)

where E is the neutron energy after the collision and U, the scattering

angle in the CM system. ué is an abbreviation:

4

e 1] 1-Q, /E® | (a-16)

* .,
and E is another one:

M

»
E =I‘:*—l- E' (A-17)

For uo, the scattering angle in the LAB system, we get:

. 1= A
A i aan« A (1-G 7ED) (a-18)
1+ i, + ;

For uc:

a1) E A
LE—AL'E' > (1-a/e")- 5%

,/“C ) 1"1— Gk/%5¥

Replacing the abbreviation uc' in Eq. (A-18) by (A-16) and substituting

(A-19)

M. from Eq. (A-19) we obtain:

fom {eE - o [0 G/E)- 145 (h-20)
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A 2.2 Scattering kernel

The scattering kernel (double-differential cross section) Oi(E'+E,Q'+Q)
in the laboratory system is
G (E~E 2= )= J 6 (E, ) cr(/"«»‘/‘*i”(":'/'E)) PA’ - (a-21)
As uo = ui(E',E), wé get %Eo by differentiating the right hand side of
Eq. (A-20):

I,aE ! {(HM) = +A+1 [A*(1- @ /E")- 7]1/:5:‘}

(A-22)
The differential cross section is usually given in the CM system,
Oi(E', g). The relation between 0-(E',U ) and Oi(E',uo) is
' 1
e | 2]
To get the derivative %%c », we use the relation between Mo and uo, which
)

we obtain from Eqs. (A-15), (A-18), (A-19) and (A-20):

1 2 <%\
Me AW, {/“o 0% 1//;0 1+ A( )} (a-24)

%)
‘ (A-25)
’zm(i’i)'?/{’if VE * awey 1A 0-alE)-1) 1/7

We define the function g.(E'), the "Jacobian'", as follows:

9/4. Qpme
élﬁ*o

9:(E) =

(A-26)

with Eqs. (A-22) and (A-25) we obtain:

§: (&)= 2
t-w)-E' [1-@;7E* (4-27)
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. . %
with the abbreviations a = (A—1)2/(A+l)2 and E = E' « A/(A+]).
For elastic scattering, (Qi = 0), gi(E') is the well known slowing-down
kernel for isotropic scattering in the CM system. For the general case

we rewrite the scattering kernel Eq. (A-21) with the Jacobian gy

G (E~E, R ~T) = 2 5 (Elpae)- gi(E') S (g AT (ELE).

(A-28)

The total scattering kernel is produced by summing up all partial kernels

IL
G (E'-E o'—> )= E G- (E—E =2 )
(=1

(A-29)
In the initial phase of the developmenf of the new method the summing
of kernels referred only to level scattering, now the continuum scattering

is included.

A 2.3 Legendre polynomial expansion of the scattering kernel

The Legendre polynomial expansion of the scattering kernel is written

as [31]:

0o
— \ '~ 8
6 (E—E D—-)= L > GEE)F(r).
l=0 (A-30)
The n~th component of the series is obtained by multiplying Eq. (A-30)

with Pn(uo) and integrating over L
+1 | +1
T —4 1 = £/t
/51 (E'—E, a'2)odu, = 'c;irf 6 “(ELE) ] (i) T (o) Foacsy
L=0
-1 -

The absolute convergence of the series allows exchange of summation and
integration. Then with use of the orthogonality of the Legendre poly-

nomials, i. e.
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+1
z_gL:sz,“(ﬂ)-?n(,«) du =1 fer m=n

=0 for m#n,

we get:
+1

G:"(EE) = &'f!-qnfq-(E'»E,s?-»E).R (fo) duo
-1

> o>
Inserting Oi(E'+E,Q'+Q) from Eq. (A-28) into (A-33):
+1

G (E! E)=(@n+1) [ (E) ) §i (') Spis i (€ By (o) dso .

1

In this integration Mo is no longer a free variable, It is fixed by
the §-function and the kinematic equations Eqs. (A-15), (A-18), and

(A-19). Therefore the integration yields:

G (EE)= (2ne1) G (E\pS) gi(E') B (M) .

“:i is given by the right hand side of Eq. (A-19),and u: by the right

(A-32)

(A-33)

(A-34)

(A-35)

hand side of Eq. (A-20) for the same reasons. Eq. (A-35) can be transfor-

med another time by the use of Eq. (A-2), which in the form of continuous

variables becomes:
G°(E'E)= G (E\ p5)-g:i(E').
Thus we have:

57 (E,E) = @nen) B () 67" (EL ).

(A-36)

(A-37)
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Eq. (A-37) means that we can obtain the coefficients og(E',E), if only
Oz(E',E) is given. The coefficients og(E',E) are called the "Pz-kernels",

especially OE(E"E) the "Po—kernel". In the "P.-method" the Lengedre

L

polynomial expansion of the scattering kermel, Eq. (A-30), is truncated
at the L-th term. It is the characteristic of Eq. (A-37), which has caused

the wide-spread use of the PL-method. In the "improved" P_-methods, for

L

instance in the TL+ -method /16/, an estimate for the rest of the series

1

is introduced.

Appendix 3: Relation between the - and the P_-method

L

In the PL-method the expansion of the scattering kernel, Eq. (A-30), is

truncated at the L-th term:
L

' - = £ y b
6'(EIE/ 'Q'/'Q) = I.%T Z (E'IE>. %(/‘4 )‘ (A-38)
£=0

We have omitted the index i for the collision type and write u“ for
. 1 s
the scattering angle without distinguishing between My and u .
We changethe notation for the kernel using the following relation:
- - 4 TS
G(EE;2a)= T G(E\E;N)
. (A-39)

which is the final form of Eq. (50) in section 5. Thus we get:

L
G(E'E; ") = ’%Z G (e E) - B(K). (A-40)
£=0
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In the same way as in Appendix 2 the 2-th coefficient of the series is
given by
+1

GéeE) = (.2€+4)_/G'(E', Eip) B ) du™ e

We transcribe Eq. (4-40) with use of the addition theorem for the

Legendre polynomials [32]

G(E E; u")= 1 Ze‘(&c) {'P Bim)+

‘2 Z“—'J R0 BT) - coo (mo(9-9)) | (a-42)

(e+m) €

The collision source term in the transport equation for the one-dimen-

sional case in the discretized form with group—averaged cross sections

is written as [7], [16], [19]:

(co& Sou.rce) am‘s_:_
Qu +1
-2 4 Z‘;e‘E' &) .wf/“/**)f,, ) el D
l ¢=0

Replacing that part of this equation, which corresponds to the right
hand side of Eq. (A-40) by the more complicated expression Eq. (A-42)
we can integrate over ¥. As we integrate over full periods of the co-

sine, all terms vanish except for the first:

ar . L
ﬁc.ee.same);" = 02 1 Z‘:S “€3.5) (/*)‘/‘72 (m'): 5, (7, () o (A=44)
0 ) 1

with
2lr

—_ oo ! ! )
/B,('T,/“) -V/(a,(¢,,u,$’)d$” . (A=45)
o




_88_

Insertlng o (E .,E ) from Eq. (A-41) into (A-44) we get:

ﬂc&eg Source a‘“-‘Od $0 =

1 +1 .
fﬁ’(Eau 3//**)( Z(lem)fz(ﬂ* (Péb«)?(/u.) ;:(,,./‘)d/‘ ( -46)

Comparing this equatiom with Eq. (60) of section 5 we notice that the

angular transfer probébility TL in the PL-method is expressed by:

L
Tz_'(/‘“j/“':/“) = .% ; (2e¢1) B B () T ) (A-47)

As the series Eq. (A-30) represents the identical starting poiqt for

both the I*- and the PL—method, we find that TL(u';u',u) converges
against T*(u ;u',u) for Lo, because convergence is assured at all stages
of the derivation of TL'
In general coordinates we have the original form of the collision source

term in the I*-method:

@d%.wuﬂe)aw“

T oamr Z/_/G(Ea')Eg/ﬂ ) ‘S(/“o/“ ) {3,(1* .n.') ol/u o 2

g' 0 -

(A-48)

If we use the Legendre polynomial expansion of the delta-function, i. e.

00

§(po-pu”) = % %_; (2€+4) B (1) (1) (a-49)

the collision source is rewritten as

awiso
€2, some)

4 * » -—?—7
- TTZ/Z(M“) ./ 3"E3’/u )R () o 7)(/“°) '83’ )(A -50)
9’
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Using the equation for the determination of the Pz—coefficients, Eq. (A—~41),
the collision source representation is transformed into that of the PL-method

for L - o« ;
ot s i 2 5%, /Pw@, G,

Thus, we have confirmed that the I*-method is equivalent to P_ not only

for the one-dimensional case, but also for general coordinates.
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Table 1

ENERGY {TCP,LChoMIL)

1.500CCCOE+C]
1.4735C00E+01
1.4474C00E+Q1
1.2218C00E+01
1.29€¢7000E+01

«272CCCOE+O1
1.3477C00E+0 1
1.2239000E+01
1.32005000E+01
1.2715000E+01
1.25450C0E+01
1.2182C00E+01
1.18250C0E+01
1.1475000E+01
1.1142C00E+Q1
1.CE17000E+01
1.C5C0CCOE+OL
1.(C890C0E+01
5.£9266G58E+0C
S «2140CC1E+CO
€£.%45CO004E+CO
€.551716566E +0OO0
€.26(GSSTE+QC
1.637SSSTE+OC
1.€265S99E+0C
7.32699S7E+CC
7.C410C04E+00
6.1650CC3E+(CC
€.5C0CCCOE+OC
€.2419596E+0C
5.%$G46SG9E+0C
£.151CC00E+OC
5.£29C003E+0C
Se21CCCO4E+0OC
£.{550000E+0C
4.EST70CO3E+OC
4.7CZ0CO1E+OC
4.51555G8E+0C
4.32365G99E+00
4.1650000E+0C
4,00CCCCOE+CC
2.699C0C4E+OC
3.41855STE+0C
2.,16155S7E+0¢C
Z24G23¢SSBE+CC
¢+ 1040C05E+00
2.5CCCCCCE+QO
2.2 100CQ5E+0C
2.06C5S99E+00
1.€710C03€E+0C
1.658CC000E+0Q
1.54196S8E+0C
1.35666596E+0C
1.27455S6E+0C
1.1616SSTE+DC
1.,C575596E£+00
S.€355599E-C1
8.7800C02E-01
8.(CN0COLE-O1
7.13CCCCOE-01
€.245S9699E-01
£.€5665GS8E-01
£.(40C001E-01
4.49C00C0E-01
3.¢565568E-01
3.5600C01E-01
3.165G5CSTE~-01

1.4135CCOE+Q1
1.4474CCCE+C]
1.4218CCCE+CI
1.36€67CCCE+OL
1.272CCCCE+C1
1.3477CCCE+01
1.3236CCCE+CQ1
1.3CC50CCE+O1
1.2775CCO0E+C1
1.25490CCE+C1
1.21E20CCE+0]
1.1825CCCE+CL
1.147SCCCE+C1
1.1143C0CCE+01]
1.0817CCOE+C1
1.05CCCCCE+01
1.CCESCCOE+Q]
S.6G52SSSEE+CC
5.214CCCLE+CC
€.545CC04E+G(
8.561S95¢E+0C
€.26(5GCTECC
163769 7E+CC
T<€2€66SSSE+CC
132695S7E+4CC
7.C41Y0004E+40(
€.T€65CCCIEHOC
€.5CCO0CCE+OC
€.241SSGEE4CC
5.664S9GSE+CO
£« T5TCCCCECC
ELE25COCZE+CC
€.2100GC4E+0Q
C«(GSCCGCCE+CCT
4.ESTCOCHE+QC
4.703CCClE+QC
4.5156G6¢S8E+CC
4433ESSGSECC
4+165C0C0E+CC
4.00CCCCCE+CC
3.€950CC4E+QC
2.41E65G<TE+0C
2.1615S<TEHGCC
2+G23CSSSEE+CC
Ze1C4CCCSE+CC
2.5CCCCCCE+NC
Z4270C0CSE+CO
2.06C6SSSE+OC
1.£71C0C2E+0C
1.658CO0CCE+CC
1.5416668E+CC
1.3G6$G6GSEE+0D
1.274S8S6L+CC
1.1615SSTE+GC
1.C5769G6E+CD
$.63¢6GGSE-01
€.780C00G2E-C1
€.0C00CO01E~O1
7. 13C00GOE-C1
€.34G655GS3E-Q1
Ee€56<SSEE-01
£.04CCCCIE-C1
4.49C00C0E-01L
3.6656SS8E~-01
3.560C0G1E-01
2.16%65S7E-C1
1.CCCC002E-0¢

148€1493E+C]
1.46045CCE+C1
1.£3456G3E+(C1
1.4062499E+(C1
1.28434S8E+C1

«3598495E+C1

22357554E+C1
1.2121664E+C1
1.28899G9E+C1
1.2€661665E+01
1.23€654G4E+C1
1.2C003494E+01
1«1€651663E+C
1.1310¢S57E+C1
1.€5736G4E+C1
1.C£534G63E+Q1
1.C2944G65E+C]
€ ESCSSEBE+CC
SeSC24943E+(CC
S.1315C32E+C0
E«TT34SESE+CC
£.4294568E+CC
€.0694949E+(C
T.71824S593E+CC
Te4769GG3E+(C
T.1€64C3CJE+CC
€.SC2G5GGE+(C
¢ .€2245GTE+CT
€.2T7CSSG3E+(C
tallE4GG8E+CC
C.E1595S5E+CC
Ca€42GSSEE+CC
Ca41G65LC4E+CC
€.ZC450C2E+(CC
44S630CC1E+CC
4.ECQODIC2E+CO
44€0G4G59E+(C
444261594E+(CC
4.2503iGS5E+CC
4.CE245GSE+CC
34849465 TE+CC
2.556NCCQE+QC
3.2G04SSTE+(C
3.04299G63E+00
zeE14CCCLE+CC
2.€0203C2E+CC
2.28500C2E+GQ
Ze1€6545GSTE+CC
1eS¢535S6E+CC
1.7845CCLE+CT
1.€1696S39E+(C
1.47C8SSTE+CO
1.2374G6SEE+CC
1.¢184692E+30
141C956G7E+CC
1.C1CG5ST1E+CC
S.z1C30C3E-CL
€.2865G615€E-C1
T«5€49571E-01
£.7295679E-Q1
E.(C4GSE3E~C]
£ a245G665E-C1
4.7649%STE-01
4.24499G69E-C1
2.716696¢E-C1
3.,2€645599E-01
1.€245595E-C1

- GRCUF NEUTECN ENERCY CRCLP STRUCTLURE

ENERGY-WIDTH LETHARGY-WIDTH

2.6500034E-01
2.6059668E-01
2.5556957E-0C1
2.5100C40E~-01
2.4655574E-01
2.43CC(CIE-OL
243759992E-01
2.34CG021E-01
2.3CC0050€E-01
242599683E£-01
2.,€6£566€63E-01
3.57C0035E-01
3.45G95S72E-01
3.36CC044E-01
3.,2555926E-01
3.17CCC39E-01
4+.1100025E-01
3.5595991E-01
3.7855511E-01
3.64956577E-01
3.516CL79E-01
3.3656689E-01
3.2269995E-01
3.1056637E-01
3.00700019E-01
2856993JE-01
2+160CC02E-01
2.6500034E-01
2.5800037E-01
2+4655674E-01
2.3769992E-01
242759969E-01
2.18999806E~-01
2.1130044E-01
240156566E-C1
1.5400024E-01
1.8780027C-91
1.7€656G0E-21
1.71359993E-01
1.€465696E-01
3.00569%64E-01
2.8300069E-01
245665596 7E-01
2+37699G2E-01
2.1GS85531E-01
2.04CCC47E-01
242969954E-01
2.0S5GCC59E-01
1.8999958E-01
1.73G0034E-01
1.5600014E-01
1.4200020E-01
1.25G0002E-01
1.1269562E-31
1.0400009E-01
5.3966624E-02
€+59G69566E-02
7.80C0009E-02
€.7C0C012E-02
7«8036G09E-02
6.70C0006&-02
6.1656677€E~-02
£«5000007E-02
4.9C0C0025E-02
4.396997TDE-D2
3.9G00034E-902
3.06699G92E~-01

1.7824583E-02
1.7871425E-02
1. 1844260C-N2
1.7810531E-02
1.7842382E-02
1.7€66551E-C2
1.7817091€E-02
1.7833013L-02
1.7843321E-02
1. 734894 2E-02
2.968CT751E-02
2.9742781E-02
2.9676491E~-02
2.9701603E-02
2+9691864E-02
2.9743705E-02
3.9929260E-02
4.,0041048E-02
3.5885279E-02
3.9975993E-02
4.0011730€E-02
3.9533325E-02
3.9333442E-02
3.9965913E-02
4.0128089E-02
3.9815627E-N2
3.56817507E-02
3.9959498E-02
4,05008923E-02
4.0374506E-02
4.0509138E-02
4.04J)9312E-02
4.0414800E-02
4.0546685€-02
4.0421221CE-02
4.0422134E-02
4,0573243E-02
4.0443201E-02
4.0466093E-02
4.0421221E-02
7.8231692E-02
T.8714013€E-02
T.8142643C-C2
7.8252017€E-02
7.8219354E£-02
1.8441620E-02
9.,6510589E-02
9.6538492E-02
Fe671T4TTE-Q2
9.7021341E-02
9.€370280E-02
9.0607566E-02
9.3525529E-02
9.2802703E-02
9.3761802E-02
9.3043447E-J2
9.3443930E-02
3.3034685E-02
1.1512959E-01
1.1585605€E-01
1.1503017E-01
1.1601740E-C1
1.1555278E-01
1.1555785E-01
1.1653358E-01
1.1602843E-D1
3.4563160E+00
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p~points for S3o calculation

=]

~ 0.99990
~ 0.99850
- 0.99500
- 0.99150
- 0.98480
- 0.97000
- 0.95106
~ 0.92500
- 0.89000
- 0.82000
- 0.70000
- 0.57350
- 0.45000
- 0.32000
- 0.16000
- 0.05000
0.05000
0. 16000
0.32000
0.45000
0.57350
0.70000
0. 82000
0. 89000
0.92500
0.95106
0.97000
0.98480
0.99150
0.99500
0.99850
0.99990

W
_n

4 . 0000E~4
1.2250E-3
1.7500E~3
2.5500E~3
5.3750E~3
8.4350E-3
1.1250E-2
1.5265E-2
2.6250E-2
4.7500E-2
6.1625E~2
6 .2500E-2
6.3375E-2
7.2500E-2
6.7500E-2
5.2500E-2
5.2500E-2
6.7500E-2
7.2500E~2
6.3375E~2
6.2500E-2
6.1625E-2
4 .7500E-2
2.6250E-2
1.5265E~2
1.1250E-2

'8.4350E~3

5.3750E-3
2.5500E-3
1.7500E~3
1.2250E-3
4 .0000E-4






