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Abstract

The I--method, which ~s a non-approximative treatment of the neutron balance

equations by the use of double-differential cross sections and a generalized

angular transfer probability, is realized within the NITRAN system. It is

shown, by means of test calculations for assemblies related to fusion reactor

neutronics that double-differential cross section data provide substantial

progress in transport problems with kinematically complicated reaction chan­

nels like (n,2n), (n,n'y), and (n,n'a), because the I--method is free from

kinematic assumptions. The properties of the exponential method to generate

the supplementary equations to the SN equations are investigated.

Schnelle strenge numerische Methode für anisotrope Neutronentransport­

Rechnungen und das NITRAN-System für Anwendungen bei Neutronik-Rech­

nungen zu Fusionsreaktoren

Zusammenfassung

Die I*-Methode, die eine strenge Behandlung der Neutronen-Bilanzgleichungen

durch den Gebrauch doppelt-differentieller Wirkungsquerschnitte und einer

generalisierten Winkel-Übergangswahrscheinlichkeit ist, wurde innerhalb des

NITRAN-Systems verwirklicht. Mit Hilfe von ersten Rechnungen zu Neutronen­

transport-Problemen des Fusionsreaktors wird gezeigt, daß doppelt-differen­

tielle Wirkungsquerschnitte bei kinematisch komplizierten Reaktionskanälen

wie (n,2n), (n,n'y), (n,n'a) deutlich von Vorteil sind, weil die I~-Methode

frei von kinematischen Annahmen ist. Die Eigenschaften der exponentiellen

Methode zur Erzeugung der Ergänzungsgleichungen zu den SN-Gleichungen werden

untersucht.
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Prefaee

The present report is written as astriet eontinuation of KFK 2832, Part I,

"Fast Rigorous+) Numerieal Method for the Solution of the Anisotropie Neutron

Transport Problem and the NITRAN System for Fusion Neutronies Applieation".

In part I two new methods, the Ii- and the I~-method, are introdueed. The

Ii-method, whieh relies on existing nuelear data files, was realized by

means of the eode system NITRAN. At that stage of the development the NITRAN

system eomprised one-dimensional transport ealculations in spherieal geometry

with only one isotope and a single material zone. Having proved that this

method is suited for technieal use, the improvement of the code system with

respect to this point is a neeessary conelusion. This is one aspeet this

part 11 on the NITRAN system deals with.

The main aspect of this part 11 is the praetical introduction of the

I*-method, which is based on the following argumentation: A considerable

amount of the calculational efforts is devoted to the reconstruction of

the three-dimensional scattering kernel matrices from the existing single­

differential data files. As this can be done independently from the transport

calculation, the separation of the kernel and the transport calculations ~s

already an essential part of the Ii-method. But it is more effeetive to

avoid this reconstruction of the scattering kernel matrices at all and to

pass over to the use of double-differential total neutron emission cross

sections from a new type of evaluated data file, together with a generalized

angular transfer probability matrix. In this part 11 we want to present

the distinct advantages of the I*-method, which uses these data, by means

of calculational results.

Before reading this part 11, it is recommended to read part I, because

the definitions and the formulae are not repeated herein.

+) . . . f h b 1 .
R~gorous: non-approx~mat~ve treatment 0 t e neutron a ance equat~ons.
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1. Introduction

Radiation transport calcu1ations need on1y two types of nuc1ear data:

the total cross section and the double differential tot~l secondary

emission cross section as the scattering kerne1 in the integro-diffe­

rentia1 transport equation. since the 1atter requires a 1arge storage

area, if theenergy andangle coordinates are subdivided into sufficient­

1y narrow interva1s, and since the transformation of the coordinate ang­

1es to the scattering angle introduces comp1exity, approximations have

been used. The accuracy of the approximations increased according to

the requirements of the transport ca1cu1ations. The basic approximation

is the isotropie scattering.There we need on1y energy distributions for

sedondary neutrons as differential data+). The next step in the series

of approximations is the Tl' the so-ca11ed transport approximation, which

needs on1y the average eosine of the scattering angle as additional in­

formation on the distribution of secondary partic1es. After this, a more

precise method was deve10ped, the P
L

method /1/, which uses truncated

Legendre po1ynomia1 series to approximate the scattering kerne1. The data

needed to rea1ize the P
L

method are partial cross sections with either

energy or angle distributions for the secondary partic1es in single-dif­

ferential form, which are treated with use of kinematic relations to

reconstruct the double differential cross section of the scattering kerne1.

An improvement of thePL method is the TL+1 method /2/, which takes the

estimation of the rest of the Legendre series into account in a consistent

manner. The latter two methods save computer space by storing coefficients

of series expansions rather than point 'data. Both start from disturbed

radiation balance equations in a microscopic sense. Since storage capacity

in modern computers is no langer a severe1y 1imiting factor, the rigorous,

+)
Sometimes cross sections for ine1astic scattering with excitation of

discrete levels are ca1led "differential". We do not continue this

habit, but app1y the term "partial" for all cross sections which describe

the incident energy dependence of a certain reaction channe1.
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1. e. non-approximative methods based on an undisturbed microscopic

neutron balance equation can be introduced. From the programming point

of view these methods replace evaluations of series (which means cal­

culating) by use of stored data in sufficiently subdivided form (which

means table-look-up).

In neutron transport calculations in general only the anisotropy of the

elastic scattering is includedfor the calculations. But there is experi­

mental evidence /3/, /4/, /5/ that for fusionreactor calculations the

anisotropy of the nonelastic scattering must be taken into account.

The status of the evaluated nuclear data files, of course, is such that

the requirements of the currently accepted approximations is met. At pre­

sent this is the single-differential form of partial cross sections.

Using ~his form of evaluated nuclear data for a rigorous transport cal­

culation means that one has to reconstruct the complete particle emission

from the scattering center as a function of the incident energy and the

outgoing energy and angles in the laboratory system. In the Ii-method /6/

this is ,done by means of the collision kinematics and the rigorous angular

transfer probability for each partial cross section. With J4 MeV source

neutrons this reconstruction process comprises already so many reaction

channels that it is inefficient to repeat this for each transport calcu­

lation. Therefore, the scattering kerne1 matrices are stored on magnetic

tape. This is nothing but another evaluation of evaluated data. Moreover,

by separating the experimental information on the scattering into partial

cross sections and recombining them for the transport calculations necessa­

ry double-differential information is destroyed and additionally, by loosing

covariance information, the probable errors of the result will be increased.

Therefore, inversely, if a certain target accuracy of the results is to be

met, the present practice raises the demands for the error margins of the

original experimental results unduly /7/. The most prominent example with

respect to this problem is the nuclear data for beryllium, for ,which ma­

terial double-differential data have been published /8/. More double-diffe­

rential data are being accumulated /9/. To stimulate an efficiept use of

these data is one of the intentions for this paper: The I~-method, which
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uses these data, is rea1ized by means of new data processing codes and

the transport ca1cu1ations are performed with improved and extended ver­

sions of the NITRAN system codes, ref. /6/.

For abbreviation the expression "doub1e-differentia1 cross section data"

will be referred as "DDX data".

The lay-out of the NITRAN system for the I·~method is still that of ref. /6/,

the actua1 version is exp1ained in section 2. The subcodes for the new parts

of the system are exp1ained in section 3. In section 4 the advantages of

the I*-method are i11ustrated by comparison with another approach. In section

5 we present resu1ts of some test ca1cu1ations re1ated to the neutronics

of the fusion reactor for Be, a Be-Li mixture, and an assemb1y with Be and

Li in separate material zones. The imp1ications of these resu1ts are dis­

cussed in section 6. Technica1 extensions and improvements of the l old"

NITRAN codes are reported in appendices.

2. The extended NITRAN system

The extended NITRAN system comprises both the Ii- and the I~-method. The

lay-out of this system is shown in Fig. 1. Possib1e f10ws ("routes") are

drawn for the Ii- and the I~-method. The li-route has been exp1ained 1n

ref. /6/, and has been comp1eted with the code NIMIX, which is for mixing

isotope kerne1s and arranging them in the order of the material zones in

an assemb1y. Details are given in Appendix 2 . The transport codes NITRAN-MP

(for ~u1ti1ayer ~lane geometry, one-dimensiona1) and NITRAN-MS (~u1ti1ayer

~phere geometry) are also new and they are exp1ained in Appendices .3 and 4.

Some improvements in NlKER and the transport codes are mentioned in the

Appendix 1, they are mere1y technica1. Severa1 tria~ ca1cu1ations were

carried out with use of supp1ementary equations derived from an exponen­

tia1 interpolation of the fluxes /10/, /11/. The merits of the exponentia1

method (EM) are low for the case of a monoenergetic source in the spherica1

geometry. It fai1s to interpo1ate the angular f1uxes in the angle space,
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where the angular f1uxes vary by orders of magnitude from one meshpoint to

the next. For a discussion of this problem see Appendix 4. The I~-route

(in Fig. 1: DDXD or DDXS + DDXMIX + ATP+ANIKER + SN) is new. In the future

the main f10w will be from DDX data. Actua11y it is on1y an auxi1iary input

from cards. DDXD produces the grouped (averaged within energy and scattering

angle interval) double-differential cross sections ( double-differential with
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respect to the outcoming energy and scattering angle)for each material

or isotope, whichever 1S available from the data base. The program DDXS

does the same for the single-differential data with use of the reaction

kinematics. The input is not direc~ly from the database~ but from NIO,

where the P kerneIs are written on magnetic tape. For mixtures of material
o

the program DDXMIX combines the grouped DDX. Compared to the li-route, much

less computer space is n~eded for these operations. In section 3 this is

explained more detailed.

Grouped data from either DDXD or DDXS are written on magnetic tape. For one­

dimensional calculations the program ANIKER produces the scattering kernel

matrices with use ofthe generalized angular transfer probability Tr;:(n-;n',n),

which is generated by the program ATP. The route to two- or three-dimensional

SN calculations is not yet open. There the scattering phase matrix has to

be produced by a program "PHASE" and the SN equations have to be solved by

appropriate codes. The storage of intermediate data on magnetic tape is ba­

sed on the same idea as in the initial NITRAN system: avoid unnecessary re­

petitions of calculations.

In the Ii-method the kinematics and the angular transfer probability Ii(~',~)

are used to reconstruct the scattering kerne1 , i. e. the relation

between an incoming and an outgoing particle current at a scattering center

with no distinction between the various reaction'types in the final result.

By the formulation of this process it becomes less obvious that one deals

with a reconstruction.When enteringthe I~-route from the DDXS path this

is more easily recognized. The hybrid use of the ideas of the Ii- and the

I--method opens the chance to demonstrate the usefulness of genuine DDX

da ta and allows a smoothtransition to the new data type.

We have the possibility to use DDXD and DDXS in a mixed mode, if some data

for particular reaction channels are given as single-differential data (SDX)

and others as DDX. This was practiced for the test calculations described

in section 5. For one-dimensional calculations the code NIMIX can also be

used to arrange the scattering kerne1 matrices for several layers of ma­

terial.
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In the la-route ealeulations of the (anisotropie) seattering kernel matrix

0g(gl;n',n) are earried out with use of the Eq. (80) in ref. /6/, whieh is+)

(1)

3. Subcodes 1n the I--route for the scattering kernel production

3.1 ATP

The subcode ATP produces a numerical table of the generalized angular

transfer probability following the averaging formula for the I*-function.

T~{..; ~;~);JJfr"Vi/";I") o/-.~' +'jc0/'''.4)<'.0/') =
AI' '"' ~~ (2)

=ff [0..([ ..... y~-.1 - o..r<si~ Y".... 11 dJ"" t9<ßli.~o/'·. 0/') (3)

A~~'
with

(4)

Li- .... 1!. ~ boundaries of the angular
r-h ~ z.. l'1nterva ~t1

In ref. /6/ the averaging over ~ was replaeed by the point value at ~=n~.

Here we deal with the full averaging over the three variables.

In some special cases we have

(5)

(7)

+) In contrast with ref. /6/ the designation "0"" is now used for Oll(g' ,g ;n-)

only. This eharaeterizes its importance in the I~-method, whereas 0g(g';n',n)

is common to both the Ii- and the IW-method (see fig. 1.).



where from Eq. (2) to (7)

ßi" ::~.,;4" I - /1-/,,"2..,. .,j'1 -~:, ' j

- 7 -

~: : I'oy".'+ ,j1-/-<: './1-,-··n~'
. (8)

The flow chart of the code ATP is shown in Fig. 2. As "ca1cu1ationa1 con-

citions" we read NMAX, KMAX and the II -set from cards. NMAX is the order. . n

Input calcul. conditions

calculatr wtights Wn

cale. subdivjsion,un,K

calc. matrix T1n*;n',n)

~ It
calc. limits nl' n2

normaliit YIt

Output ylt optional' list

Fig. 2: F10w chart of ATP

of SN' KMAX the number of subdivisions within the angular intervals [lln-1,llnJ.
Practically sufficient accuracy was obtained with KMAX = 10 in S19 calcu1ations.

There is no severe problem associated with this code if one does not forget

the switching between the conditions (4) to (7). Angular transfer matrices

T*(n";n',n), rtormalized with

n'"z.L: T tI(V,*i n:.,)-~* =1 (9)

..11
1

are stored on magnetic tape together with n~ and n~, which correspond to.. ..B1 and ß2 .



- 8 ...,

An example for T~ 1S shown in Fig. 3.

T"(n";n' ,n)

n"= 4

n' =7
n =13

6 7 8 9

10 11

12--,

0.1

-1 -0.5

KMAX~ 10

KMAX= 5

o 0.5

F · 3 Examplp of discrplizpd angular lransfpr probabi I i ly19. :
for thp foJn spt 5 19

3.2 DDXD

This is the code to produce grouped DDX data from a DDX data base. The

original data are interpolated and averaged by means of the following formula,

which i.s Eq. (81) of ref. /6/: .. .

O!':'i "~)~ [flw(E'>f f~(f::Ei)<~) +~oiE oiE']/r/':ßw(E'J oIE']clO)
.4 Ef. .4f,~. / I AEf.

The weighting function f (E) can be generated 1n the traditional way ..The flow
w

chart of DDXD 1S shown in Fig. 4.

The actual input to DDXD is from cards, because we do not possess DDX data

(not even formally) in a standard data base. Such data for 9Be at three inci-
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averagl

prlparl interpolation

Input calcul. conditions

Ou.tput, list optional

normalizr DDX data to

<rem ..'

intlrpol.. average erlm

intlrpolah DDX data
toboundary points 01
E' ,E, and ~. muhl'

succlSsivlly,

calc, prlliminary va'riablu

Fig. 4: Flow chart of DDXD

dent neutron energies are the only published ones which we found and

they were used for the test calculations, see section 5. Presently DDXD

uses linear interpolation and, for completeness, extrapolation. Improve­

ment by using more sophisticated functions (e. g. Spline functions) should

be introduced carefully~ because their üse is not trivial /12/.

DDXD passes with the interpolation through the arrays of g', g, and then

n". Averaging is performed and 'the groupeddata are renormalized for nume­

rical consistency to the total neutron emission cross section 0 (g') with
em

the following condition:

L L (5'tt('J', 'i l'l"')W~1r - ~~(S')
ntf' t

(11)

o (g ') is also read from the auxiliary card input. The fin.al data are
em

listed and stored on magnetic tape in the order of the sink energy group.

Examples of the grouped DDX data for 9Be , derived from the original data

in ref. /8/, are given in Fig. 5.
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3.3 DDXS

This code produces grouped DDX data for an isotope from a single-differential

cross section (SDX) data base. Since the structure of such. code, if itarted

from scratch, would have to contain many elements of the code NIO, such as

reading data, interpolation and grouping, generating secondary distributions,

we save some work by statting from the P kernels produced by NIO. Then we
o

are faced with one type of single-differential data only. We named the trial

code DDXS-T in order not to spoil the more general name.DOXS, in case that

there should show up severe limitations of this concept.

The flow chart of DDXS-T is shown in Fig. 6. As theoutput of NIO is used

as input, the sequence of the data processing. is the $ame as in NlKER.

First the production of DDX data is executed for elastic scattering (L=l),

then for inelastic level scattering (L=2 ...LMAX), and finally for the

scattering to the continuum, which is including (n,2n) and (n,3n).
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Input calcul. conditions

calc. prrliminary variablrs

=levrl
index

Input GjO(g',g) trom NIO
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analogously to levrl
scathring

sum up G"'i con(g',g;n")

L<LCMAX

.....-.<ANG

Fig. 6: Flow chart 01 DDXS (-T)
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Inside the 100p of the sink energy group g (outgoing energy) the scatte­

ring angle ~~, which corresponds to scattering from E , to E , is ca1cu-
1, g g

1ated using the kinematic equation Eq. (9) of ref. /6/:

;<t= H(A'1)~~> ~;.{ ~i[ft'(1_ ~:.)-1]} (12J

This is performed in'subroutine ANG. For the energygroups g' and g the

transformation of the energy variables E' and E within the intervals into

~ ~ resu1t s in an interva1, the 1imi t s of which are named ~ ~ . and ~-1 1 m1n i max
To find these limits, the search is done by eva1uating Eq. (12) for the

subdivision points (KMAX) within both groups. The interval [~~ .,~~ ]1 m1n 1 max
is either part1y or entire1y fa11ing into interva1s of the set ~. for the

n
transport ca1cu1ation. So, when adding up the parts of the P kerne1, which

o
contribute to a particu1ar interva1 [~:-1'~:]' we have to seek for the frac-

tion, with which both interva1,s over1ap.Fig. 7 i11ustrates the five possib1e

cases.

W =1

,ll ~min ,ll7max
F~--~ ,ll7
I •1L-- ---J1 ,ll ~ set

,ll~-1 ,ll~

I I

,ll~min ,llimaxr,..;.;;.;;.;---.,

W =0

:tig. 7: The five cases of overlap between the
intervals of ,ll7 and,ll~
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We have for the scattering probabi1ities

(13)

~~* is the width of the interval.
n

In this equation W , /~~. is the fraction with which both intervals over­
g g n

1ap. Many of the W, will be zero. The scanning for the non-zero va1ues
g g

need not be extended over the entire range of g' and g, because the kine-

matic limitation for the reaction channel i is a1ready known from NIO, where

this information (LIMIN, LIMAX, JISHO, JIMAX) is used to reduce storage

area and computing time. At this stage of the problem the process to get

grouped DDX is similar to the method described in ref. /13/, but there.

it is applied only for elastic scattering. At later stages the methods differ.

Again as in NIKER the kinematics in the energy range between the forward.

and the backward thresho1d are simp1ified to use on1y the positive sign

of the root in the solution of the equation for ~~. The o.(g' ,g;n~) ob-
1 1

tained with Eq. (13) is normalized for numerical consistency to the total

neutron emission cross section for the particu1ar reaction type i, which is

(14)

Thus:

(15)

(16)

The main difference between NIKER and DDXS is the explicit output of

o'g',g;n*) in DDXS, whereas in NlKER this is bypassed by direct1y generating

L: (5tt(g',gi rl*). T*{"*j ~~ h)- W,,_ == Gi (8',. ni, h).
I'J-

Therefore the additional discretization step is needed 1n DDXS. The advantage

of the I~-method to require less storage capacity for the kerneIs is paid

with the slight disadvantage of the additional discretization step when star­

ting from a single-differential data base. This, however, is not the true aim

of the I*-method.
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As dready ,s'tated: ,iin ref. 1'6/, sect.f61'l 3.3.2 onNlKER,'the I"-method

does not present the diff±cültiesas ,the Ii-method for heavier nuclei.

If the Po ker"nels are" g:i.,ven, in f,ine gro~p;s for the outcoming energy, DDXS

presents nOlftifficulti~s tQ,transformthe energy coordin~te into the ~~
, , .' " , " ", .):.

coordinate. At present, in the code DDXS-T we assume that the group struc-
~ I " r. , ' "

ture for incoming energy and outgoing energy are identical. This is also
. " .

assumed in N~~. To Ed,i,mi:nate ,this limiting a.ssumption is a necessary improve-

ment of the code!?~o 1;>e done next.

(; 1

Analogo~sly to NlKER the o.(g' ,g;n*) are sunnned up for the elastic' and
, .":.' l. '

level scattering to give 0
1

l(g',g;n*). Then the continuum scattering
eve ;

is treated, again analogously to NlKER, with the Q array a~ in NlKER give
c

o (g',g;n*). So, finallywe have the grouped total neutron eml.SSl.on double­con
differential cross section+):

(17)

The output is stored on magnetic tape.

3.4 DDXMIX

Input calcul.conditions:
number of isotopes NI
number of channels K

Input DDX data for
K channels per isotope

K
NI sum up DDX data

Ou tput, list o'ptional

Fig. 8: Flow chart of DDXMIX

+) A shorter name for this should be introduced. Unfortunately, the term

"transport cross section" is used for the Tl approximation.
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This is an interface program to arrange the grouped DDX data of the isotopes

for materials of several isotopes. There is no need for exciting know-how in

this code, as can be seen from the flow chart in Fig. 8.

The present code needs not to arrange the data for several layers of

material, because this can be done with NIMIX. On the other hand DDXMIX

has to combine DDX data for various reaction channels of the same isotope,

if partia11y data are avai1ab1e from a DDX data base and only the rest

has to be reconstructed from a SDX data base. This option was used for the

data of 9Be , where we had DDX data for (n,2n) from ref. /8/ and the rest

from KEDAK /14/. This operation is not at all difficu1t, because the data

for a fraction of the possib1e reaction channe1s are treated as coming

from another isotope.

Examp1es for grouped DDX data are given in Fig. 9.

z: (g',g; n")

incid E'= 14.868 MeV (g'= 1)
outg.E: -10.98 MoVlg=151

_.- 6.12 MoVlg=301
·······1.78MoVlg=501

01-

01

o .1 }J.....
scattering DDX data,
by DDXMIX

•.../
In.2nl•....,. ..,;•..............•....,

, .• J
•••• 1

~_M~---

,,,,,
,,

103 rJ
1
I
1
I
I
I
I

I
I !
I,··..·;
I!
1116' ,;

r··r-\: ,
In.2n) :

~,.,
1r-.I

1

r-J (n.2n)
:
1

r-J

1
1
1

r-J

: r
lÖ5-f'_~....:....--+~\+--+-...!tI__.......-l

-1
gBe: total
processed

Fig. 9:
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3.5 ANlKER

This is the subcode to produce the scattering kernel matrices for the one-
: .,' i .

dimensional transport caiculation using Eq. (l). The inputs are the grouped

DDX data from either DDXMIX or from DDXD or DDXS directly, and the angular

transfer probability matrix f~om ATP. The code is so simple that explanations

beyond the flow chart in Fig. 10 are not needed. The output is stored on

magnetic ~apein the order of the sink energy group.

I'

Input DDX data tor
.single material.
number 0' groups: IIo4AX

Input T"(n";n',n)

LDOX' T*'w ln*)
n-

Output, list optional

g~IIo4AX

END

Fig. 10: Flow chart of ANlKER

Cig (g'; n',n )
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4. Comparison between the I'-method and two other approaches

4.1 Direct method

In ref. /13/ a ca1cu1ationa1 concept is proposed which also a110ws the

direct numerica1 integration of the co11ision source term. For this

approach they found that "the transfer cross sections must be eva1uated

for all transfer angle combinations {~ij~~kt}. Such considerations .

necessitate 1arge data storage requirements, and computer storage limita­

tions often prec1ude the use of this technique". This statement, however,

does not app1y to the ~-method. A more c10se look at the ca1cu1ationa1

f10w in both methods revea1s the origin of this difference, which is deci~

sive for the practica1 use.

The 100p organization of the direct method proposed in ref. /13/ is as

follows:

DO 2 II

DO 2 .,
collision source = 0

DO 1 ll'

DO 1 Cf'

ca1cu1ate scattering angle ll- (~ll in ref. /13/) with

ll~ = llll' + .[1-11,2' .,Jl-112 '. c~s ('('-'I).

discretize ll* into II
n

seek a(g',g;ll*)within appropriate interval of ll*

(continuous data in the 1ll"-variab1e)

ca1cu1ate co11ision source

1 CONTINUE

2 CONTlNUE

The 100p organization of the I~-method is not much different from that:

DO 2 II

DO 2 er
co11ision source = 0

DO 1

DO 1

ll'

ll- with limitation S~ and S;
read tab1es T'" and t/"

ca1cu1ate co11ision source term with use of grouped DDX data

(averaged also in ll*)

1 CONTlNUE

2 CONTlNUE
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The arrows point to the essential parts of the loop organization. The

I$lmethbd gives a more strict discretization by the use of the generalized

"angulat transfer probability. This allows to discretize theDDX data prior

tothe very transport calculations (e. g. the solution of the SN equations

or the Monte Carlo calculation). This distinct calculational advantage for

two,-'or·three-dimensional calculations is enhancedby the limitation for

the execution of the innermost DO-loop for ll*. In the I--methodthis loop

is executed for the 'non-zero values of the transfer cross section only,

whereas in the direct method these values must be seeked within the execu­

tion of the loop.

For one-dimensional calculations the difference between both methods becomes

I smaller, but is still large enough to make the I--method superior. The inte­

gration of the kernelover an arbitrary phase shift ~ can be executed in the

I*-methöd as well as in the direct method, though this is not mentioned in

ref. /13/.

'4~2 Calculationalspeed compared to the PL method for the two- or three­

dimensional case

'Let us consider a'S19'-P5 calculation for a duct problem. There we have to

sum up 25 terms of the series expansion in the collision source term calcu­

lation. In the I*-method with its limitation in the innermost DO-loop for

]1- we need asummation of only about 10 terms or less, and for each of these,

terms less calculational time is needed than for the series calculations. So

in totalthe calculational speed of the I--method for two- or three-dimen­

sional'calculations is several times higher than that of a SN-PL calculation.

Additi6n'ally it remains questionable, wether a Pt calculation for a duct

problem is appropriate.
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5. Test ealeulations and their results

9Be ~s the most prominent example for the need of genuine double-differential

total neutron emission data for aeeurate transport ealeulations. Reeently another

verifieation oJ the diserepaneies between measured and ealeulated multiplieation

faetors of a beryllium layer has been reported /3/, whieh eonfirms the older

results /15/. They found that the ealeulation prediets twiee as many addi-

tional neutrons as were found in the experiment. In ref. /6/ we diseussed

the origin of that diserepaney. Here we report numerieal results for some

assemblies eontaining beryllium.

5.1 Caleulational eonditions and nuelear data

In the present ealeulations an asymmetrie ~ set /5/ of 19 points, see Table 1,n
was used. While the results are elose to those of a 832 ealeulation with a

symmetrie ~ set (see Table 2 in ref. /6/), ealeulational time was saved.
n

The 67 energy group strueture of ref. /6/ was retained. Data for the elastie

seattering on 9Be were taken from KEDAK /14/, single-differential data on

(n,2n) from ENDF/B-IV, proeessed by 8PTG-4Z /16/ (an extension of 8UPERTOG /17/).

DDX data for (n,2n) from ref. /8/ are given down to .4 MeV. As this is al-

ready well below the maximum of the evaporation part of the seeondary neutron

speetra, the data were interpolated linearly between the lowest value and zero.

For 7Li the same data as in ref. /6/ were used.

For all ealeulations the elastie seattering was treated anisotropieally. For

the nonelastie seattering matriees of single-differential origin the ealeula­

tion was made with isotropie seattering in the lab. system as is usually done.

Examples for the seattering kernels are given in Fig. 11. The data are inte­

grated over the seattering angle ~~ As ean be seen from Fig. 11, the (n,2n)

data from ENDF/B-IV yield more neutrons in the energy range 3 to 13 MeV than

the double differential data.

How this differenee affeets neutron fluxes and neutron multiplieation is

shown in the next seetion.

For the ealeulations of the neutron transport in Be-Li-mixed assemblies the

nonelastie seattering was treated either isotropieally or anisotropieally
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rO(E',E) tor E':14 MeV
(cmMeVr'

j, i

,--- ........
" ,,,,,,

ENDF/B-IV \
\,

\

" ,
"I

, I
, I

I I
I I

I I
I

Fig. 11:

10-3...........-l-~-l-14-__-+-_-+--+--+-.......-+-~----!':-_
.5 1 2 5 10 14 MeV

Energy distribution of secondary neutrons
tor scallering on 9Be

(ltl: NucI.Sci.En9·63,401(1977l

in both isotopes. The intermediate cases of treating this change ~n only

one of the isotopes are less interesting.

For the calculations of the neutron transport in a sphere of 9Be a third

version for the scattering kerne I was used: The (n,2n) data were taken from

ENDF/B-lV and treated along the li-route to produce the c.m.-to-Iab. system

tranformation for the secondary neutrons. This is made to replace the calcula­

tion with preliminary data in ref. /6/.

The shell source was located at r = 8 cm, the source spectrum was the spec­

trum of the experiment ref. /5/, for the same reasons as in ref. /6/.
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5.2 9Be Sphere resu1ts

9Fig. 12 presents ca1cu1ated sca1ar neutron spectra in a sphere of Be with

20 cm outer radius and 8 cm radius of the inner void region. The spectra are

drastica11y different. As a1ready stated in ref. /6/ the c.m.-to-1ab. system

anisolr.DDX data
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transformation p1ays an important ro1e in the problem. The resu1ts for the

(n,2n) reaction rate are shown in Fig. 13. Again 1arge differences are

(n.2n) reaetion rate. 4TT r 2

p~r cm Qnd source neutron
0.1

B

A

(n) n)- treatment:

0,05 A: anisotropie, DDX data
B: isotropie from ENDF/B-IV
C: os B, but with e,m,-to-lab,

void' - Be

10 15 20 em
r ---+­

of the' (n,2n) anisotropy on the
of the (n,2n) ratE'" ,

8

9Be-sphere: effeet
radial distribution

. 0 .------+-~~-----+------.._-
o

Fig. 13:

upper: new results,

10wer: corrected version of

Fig. 27 a of ref. /6/. Though

the secondary neutron distri­

butioJl has been justpresumed,

the,re1ative effect of the

c. m. .,-to-lab'. -system transf. is

notml,lch·,different from the

newer resu1t.

(n,2n) rate .4TT r 2

per cm , per source neutron

,,.----- ........
0.1 1/ .............

c,rn. to lab. transt. ""
tor In,2n)

elast. anisotr. by li,
unchanged

0.05 void4l Radius

5 ' 10 15 . 20 cm
9Be sphere, 20cm radius: ettect of
the c.m. to lab. transt. tor (n,2n) scatt.,
(n,2n) by evaporation, nucl. tempo
taken trom 7L1(n,n'cx)
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produetion /-

1*
isol r. ln,2i-

•

Fig. 14:

calc. ret.(*)

. 1.0 P3 .isolr.(n,2n) +

0.5

thiekness of B~ layer
0+---'-----'--'-....................-'-+--""'--........---JL---'--.......................&..4--

2 5 10 20 50 100
em

Bt>-sphere. effeet of the (n.2n) anisotropy on
th~ n~l!tron produetion, eale. with I*-method.
r~f.(*): T.K.Basu et al.. Nucl.Sei. Eng. 70,309 (79)
different assembly

found between the various resu1ts. Fig. 14 shows the resu1ts for the neutron
+)

rnu1tip1ication M inside a spherica1 Be 1ayer as a function of the thickness

of the 1ayer. To compare this with the resu1ts of ref. /3/ we need a transfor­

mation for the different geometries and the difference in the assemb1ies. We

adopt a technique emp10yed in fission reactor ca1cu1ations: The upper curve

in Fig. 14 is·ca1cu1ated with the same nuc1ear data for 9Be as have been used

in ref. /3/~ Therefore we se1ect a point on this curve to norma1ize both resu1ts.

+) The mu1tip1ication 1S defined as for a fission reactor: M = l/(l-keff ).
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From ref. /3/ we take the value M =2.03for their thieknessof the Be layer.

On our eurve this value isgivenat a thiekness of 13.5 em. If we go from

this point down to the second eurve for the results obtained with anisotro­

pie nonelastic data, we eome with M = 1.75 mueh eloser to the measured value

of ref. /3/, whieh is M = 1.58 + 0.1.

53 h f 9 d 7 ..• Sp ere 0 Be an Li mixture

The kernel for these ealeulations was produeed by eombining the individual

data by means of the codeNIMIX. With the ealeulations for the Be-Li mixture

we intended to investigate, how the tritium breeding in Flibe /18/ lS affee­

ted by the seattering kernel differenees. Laeking data of fluorine we took

only 9Be and 7Li in the atomie densities of Flibe, whieh are 0.018 . 1024

atoms/em3 for either isotope.

Fig. 15 presentscaleulated average speetra of the sealar neutron flux in

a sphere of the 9Be-7Li mixture with 38 em outer radius and 8 em radius of

Neutrons per em 2

per source neutron
per leth. unit

-4
10

:.....-v

isoir. none last ,I'

..··.i-;..··,·'..·J·l.,...".....·--.......··c/
J

•

anisolr. noneIasl.

Energy

Fig. 15:
. 0.2 0.5 1 2 510 14 MeV
9Be_

7
Li -sphere, 38cm outer, 8em inner radius:

effect of the nonelastic anisotropy on the
average sealar neutron speetrum (vol.-aver,)
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the inner void for the two kerneIs with either isotropie or anisotropie

nonelastie seattering. Taking these neutron fluxes for reaetion rate eal­

eulations we find a change of about -]5 % for 7Li (n,n'a.)T and +15 % for

6Li (n,a.)T referred to the isotropie nonelastie data. The figure for 6Li

may'not be taken too seriously, beeause the fully anisotropie data are

only estimated below 0.4 MeV, but the sign of the effeet should be kept

in mind.

Fig. 16 shows the effeet of the anisotropy of the nonelastie seattering

on some reaetion rates as a funetion of the radial eoordinate in the

sphere of the above Be-Li mixture. The values for 6Li (n,a.)T were ineluded

with the restrietions mentioned above.

Ratio 01 r~action rat~s

(iso.laniso.) non~l.

1.3

1.2

1.1

9B~(n,2n)

7U (n,n'oc)T

O.

0.8

0.7

r~l~r~ne~ anisotropie non~last.

~-----_ 6Li (n,oc)T
lor En >300 k~V

Radius

Fig. 16:
o 10 20 30 40cm

9Se - 7Li -sphere: rad ial dependence of the effec t
of the nonelastic anisotropy on reaction rates

5.4. 7Li sphere with inner 9Be multiplier

With this ealeulation we intended to investigate, how the tritium breeding

is affeeted if the thiekness of the Be layer is varied. Again only the eases

of either isotropie or anisotropie nonelastie seattering in both isotopes

were eonsidered. ,The assembly under eonsideration had an outer radius of

1.28 m, an outer 7Li zone of 90 em eonstant thiekness and a Be layer of variable
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thickness (radius of the Be-Li interface 38 crn). The source was a point

source in the center of the sphere.

Fig. 17 presents the effect of the variation of the Be 1ayer thickness on

the tritium breeding in 7Li . This reaction rate ~s monotonica11y decreasing

with the thickness of,the J:\e1ayer t' so the gain in the total breeding ratio

re lies entire1y on the increase of the reaction 6Li (n,a) T.

T7 brf'f'ding ratio

1.0

0.4

nonf'1.

Fig. 17:

d ,lhick nf'SS of Be layer
0.2.f.--...--~-+---+--+-...--+---+--+----

o 1 2 3 4 5 6 7cm
7Li -spherf' wilh inneor 9Bf' multipllf'r, efff'cl

,of lhf' noneolaslic a,nisotropy on, trilium
brf'f'ding by 7Li(n,n'oc) T

In Fig. 18 the effect of the anisotropy of the none1astic scattering on

the tritium breeding ~n 7Li is shown for a very thick 1ayer of 7Li and a

Be multiplier of 4.5 cm thickness. We expected that the sign of the effect

wou1d change at greater distance from the source, but this did not occur.

The f1ux reduction near the source is not compensated. Furtherrnore, the re­

duction of T-breeding at higher energies is not compensated by breeding at

lower energies in 6Li , the 1ess abundant isotope. This comes from the fact

that with the anisotropie data the fraction of secondary neutrons above
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tritium atoms
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Fig. 18: 7Li-sphere with inner 9Be multiplier, effect of the (n.2n) anisotropy
on tritium breeding by 7Li(n,nex) T, rate.4fTr 2

the thresho1d of 9Be (n,2n) and 7Li (n,n'a) is 10wer than with the ENDF/B-IV

isotropie data. Though we have more neutrons in the 10wer energy part after

a first interaetion (see 'Fig. 11), the 10ss in mu1tip1ieation by the 1aek

of neutrons at higher energies is not eompensated. So, in general for any

mixture of lithium isotopes the breeding ratio of a 1arge assemb1y will

be 10wer than expeeted from ea1eu1ations with isotropie none1astie seattering

data.
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'6.Consequences from the results of the test calculations

It is obvious that the uncertainty of the results 1S intolerable. However,

'open to'debate is the question how to procede. Of course, the traditiona1

way of evaluating nuclear data' into single-differential data can be used

to solve the problem up to a certain degree of accuracy, but by the example

of 'beryllium it can be seen that,this is no longer the best way for fusion

neutronics.

From ref. /8/ it follows clearly that it is no 10nger allowed to describe

the (n,2n) proeess in 9Beby a "first neutron", whieh is seattered with

exeitation of disereteleve1s,and a "seeond neutron", for whieh an energy

and angular distribution is given. On1y a fraetion of the "first neutron"

eänbe trea'ted with the kinematies 6f ine1astie level seattering. There-

fore at least oue additional reaetion channe1 must be introdueed. Furthermore,

the kinematies of the emission of the "first 'neutron" are eoup1ed to the kine­

maties of the seeond emission and therefore this ehannel has to be treated

twiee for the eoupling to each channel for the "first neutron". So, though

iri principle possible, the method to emp10y more andmore reaction channe1s

for the deseription of an interaetion, in order to save the single-differen­

tial data base, beeomes ineffective.

The double-differential data base - even if only available for partieu1ar

reaetion ehannels like in the 9Be case - avoids all the difficu1ties of

elassifying scattering data into partial data, for which defined kinematics

can be given. This does not only apply for the (n,2n) reaetion, but also

for (n,n'y), (n,n'p), (n,n'a), (n,n't), ete. Espeeially in the (n,n'y)

reaetion we face these difficulties 'already in the Ii-method, where the

treat:ment of'the continuum scattering tannot really be regarded ·as appro­

priate. Inthe neutron transport problem it does not matter, wether the

outgoing neutrons belangto a certain reaction channel, because we need

on1y particl~'currentsbefore snd after the passage of the scattering cen-

ter'. Distinguishing between "direct" ,~'preequilibrium", and "compound" neutrons

may serve for atheoretical interpretation of the interaction in the nucleus,

but for the transport ca1cu1ation these distinctions do not matter. In a

mu1tiparticle break-up we are unable to formulate the kinematics as simple

as for the scattering of a single particle, if at all.
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When investigating the uncertainty of transport calculations, the systematic

error sources can be grouped in the following way:

i) geometricsimplification in the transport calculation (divergence term)

ii) approximative treatment ofthe scattering kerne1 in the transport

calculation (collision source term)

iii) use'of single-differential data in the transport calculation (recon­

struction of DDX data)

iv) unknown covariances

In the present form of uncertainty analysis by means of the sensitivity

studies /191 not all of the error sources could be taken into account.

This caused that very often results obtained with this method were not

taken seriously. In fact, in said reference errors of all four types concern

the imperfectness of the tools for the realization of the method, whereas

the mathematical basis of the method is not affected.

Commonly, errors of type (i) are investigated independently. This is only

an approximation, because it has some correlation with errors of the other

types. A three-dimensional Monte-Carlo-calculation,even with rigorous

scattering kernel treatment like in /20/ fails to predict effects, if the

target volumes under consideration become small. To investigate smaller ef­

fects and for investigations in systems studies two-dimensional SN calcula­

tions are required, however, with higher angular resolution near to a pre­

ferred direction /5/ than presently available.

The present paper deals with the error sources of types (ii) and (iii).

Having established a method to eliminate errors from these sources down to

the level of the discretization errors, attention should be concentrated

on errors of type (iv). The naive method of introducing "pl~us~ble" changes

into double-differential data can certainly not account for the complex

partial error compensation in the error propagation process. Therefore we

propose the use of double-differential data together with their covariance

data'in a rigorous sensitivity study by means of the rigorous I*-method for

the transport calculational part of the problem.
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7. Conc1usions

The l*-method as described in KfK 2832, Part I, was rea1ized within the

NITRAN code system. By· this method neutron transport calcu1ation~ can be

performed, in which a rigorous treatment of the anisotropie scattering ker­

ne1 provides an undisturbed microscopic neutron ba1ance~equat~on. Double­

differential cross section data make the l*-method independent of assump­

tions about the physics of the scattering. A" smooth tr'ans'tdori from' single­

differential data to this data type is provided in the l"-routeof the

NlTRAN system.

By means of test ca1cu1ations for some assemb1ies re1atedto the neutronics

of a fusion reactor we demqnstrate the important effects associated with

the anisotropy of the none1astic scattering. lt was shown that introducing

the treatment of this anisotropy into the transport ca1cu1ations lS more

than just another approximation: the element of rigour, which is introduced

with the li-method, is also introduced for the nuclear data part of the

problem by demanding double-differential cross sections in the form of a to­

tal neutron emission cross section in the lab. system. Though in Appendix 3

of KfK 2832, Part I, we can see, that the P
L

method can be used also for

double-differential data, we do not see the necessity to develop such a

method in addition to the existing l*-rnethod. Current1y used P
L

ca1culations

require kinematics for the partial single-differential da ta and so does the

li-method. From this point of view the li-method is not comp1ete1y rigorous

as is the l--method.

Since the la-method is not direct1y comparab1e to other methods, its rela­

tion to the li-method can be used to appreciate the high ca1cu1ationa1 speed

of the method. lf double-differential data are available the scattering ker­

nel matrix generation shrinks to an interpolation problem in connection with

some f1ux-weighted averaging. For the solution of the SN equations any method

can be used, and therefore it is advisab1e to adapt existing SN codes also

for the use of the l*-method.
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With respect to the conclusions of Part r the following work rema1ns

to be done:

a) SN codes for cylindrical, two-dimensional and three-dimensional

geometry must be developed.

b) A Monte-Carlo code should incorporate the r*-method.

c) Codes for uncertainty analysis by means of the sensitivity study

method with use of the r·-method for the transport calculation part

of the problem should be developed.

d) Double-differential neutron emission cross section data must be evaluated

together with their covariances.

e) Both the ri- and the r·-method should be applied also to transport

calculations for other particles than neutrons.
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Appendices: lmprovements in the NlTRAN System

Appendix 1: NlKER

The kerne1 outpu.ts were changed fram parallel output of level and continuum

kerne1s to a single output, which is stored in Fl. This reduces the required

storage area.

The isotropic part of the scattering kerne1 is transfered direct1y to the

SN codes, if the input parameter lCON = o. For lCON = 1 the matrix Fl contains

the comp1ete kerne1.

Of course, the input of NlTRAN-S was modified to accept the new format of

the kerne1. The other SN codes are coup1ed to NIMlX.

Appendix 2: NlMlX

This code produces "mixed-isotope" kerne1s and/or kerne1s in the order of

the 1ayers in an assemb1y with severa1 material zones. NlMlX contains two

subroutines, MONMlXand MULMIX. The former is to produce mixed-isotope kerne1s

for a single 1ayer of homogeneous material, then the 1atter arranges them in

the order of the material 1ayers in the assembly.

NIMlX accepts the outputs from both NlKER in the li-route and ANlKER in the

l"-route to produce kerneis for one-dimensional transport calculations.

We do not claim that the code NlMlX is programmed elegantly, it should be re­

vised for technical use. Fig. A 1 shows the flow chart of NIMlX.

Input calcul. condi tion s

single zone

seyelal
zones

CALL MULMIX

CALL MQNMIX

END

Fig. Al: Flow chart of NlMlX
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Input data COMMON
numbtr ot ktrntls: IKMAX

Masttr Tapt MTI

Butttr Tapt B1'

Butttr Tapt MTOUT
= B T2 tor tvtn IKMAX
= 8T' tor odd IKMAX

Masltr Tapt MT'

Butttr Tapt MTIN
= BTI for IVtn IKMAX
= BT2 for odd IKMAX

Butttr Tapt MTIN
=BT' fortvtn IK
= BT2 for odd IK

Butttr Tapt MTOUT
= B T2 for IVtn IK
=BTlforodd IK

writt ktrntl KI')

rtad ktrntl KI·l)

rtad ktrntl KIIK)

writt FIMIX

.rtad FIMIX

FIMIX = FIMIX. KIIK)

IK-l

rtad FIMIX =L KII)

1=1

writt FIMIX in final
format: zonr data,Pn'
Eg • Ut, ktrntl

9

9

9

.IK<IKMAX

RETURN

Fig. A 2: Flow chart of subroutine MONMIX ~n NIMIX

Fig. A 2 presents the flow chart of the subroutine MONMIX. Reading and wri­

ting is straight forward from magnetic tapes to magnetic tapes. iSeveral tapes

are employed for input or output, therefore the related unit numbers MTIN and

MTOUT are switched according to the requirements.

The flow chart of MULMIX differs fromMONMIX only slightly, and in Fig. A 2 the

points at which both soubroutines differ, are marked by (W). In MULMIX the ker­

nels are not added, but arranged in the sequence of the material zones for each

sink group.
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Appendix 3: NITRAN-MS

This is the extension of the code NITRAN-S for spherical assemblies with

several material zones. NITRAN-MS receives the cross section data from

NIMIX. At present NITRAN-MS accepts up to 5 material zones. For calcula­

tions for a single material zone the code NITRAN-S is left in operation.

Appendix 4: NITRAN-MP

This SN code solves the transport problem for a one-dimensional plane assembly.

Up to 5 material zones are accepted. The basic difference equation is

where f (m+1/2,n), f (m-1/2,n), and f (m,n) are angular fluxes at thespa-. g g g
tial boundary points and the central one, respectively. C is the collision

g
source expressed by the Ii- or I--formalism, and S the external source.

g

Both the linear and the exponential method (1M and EM) are used to generate

the supplementary equations. Option parameter is LORE.

Exponential method (LORE = 0):

The assumption is, 1101:

(A-2)

Substituting Eq. (A-2) into Eq. (A-l) we obtain the following equation,

which gives successive solutions for the f (m,n) starting from the flux
g

values at the boundaries ("inner iteration loop"):

(A-3)

with
1+=

IJA., I

B = fi [ l,' .,.
(A-4)

(A-5)
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where

(A-6)

The first iteration 1S always e~ecuted with the 1M, and at the boundaries

1M is t~.b~,used in all iterations, because in both cases the flu~ values

can be zero systematically. Furthermore, the program switches to the LM,

if the flu~ values are less than 10-30 . Thus also numerical difficulties

by accidentally very small values or zeros are avoided.

Linear method (LORE = 1):

The,~ssumption is /1/:. ,-", -

(A-7)

Substituting Eq. (A-7) into Eq. (A-l) we get

with

C '::" J '/1.-. / . D/ L\X tM

D :: AX~ / [21ft., I 1- G;'AX h1 ]

where the f. are g1ven as in (A-6).
1

(A-8)

(A-9)

(A-lO)

For the negative flu~ correetion the same strategy as in ref. /6/ was applied,

whieh means that a negative flu~ eorreetion is programmed as a fi~-up at zero,

but it is no~ used, beeause the rigorous methods diminish the problem drasti­

eallY"by the non-negatiye eollision souree term.

The e~ponential method yields higher e~leulational speed, though the supple­

me~tary equations are more eomplieated, beeause a larger spatial mesh size

ean be applied. For a fine mesh size the result with the EM must be elose to

the result with LM, beeause the assumption (A-2) for the EM ean be appro~i­

mated by the assumption (A-7) for the LM, if the diffetenees between the f
g

are. small.
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The souree tenn (C + S ) is treated in the same manner as in NITRAN-S
g g

(and -MS). The f10w ehart of NITRAN-MP differs on1y slight1y from that

of NITRAN-S: The iteration starts at the souree boundary and three sub­

routines are added for various options to estimate the effeet of the

transverse 1eakage,steered by the option parameter LEAK. For LEAK = 0

no eorreetion is made, LEAK =1, 2, and 3 are used to ea11 the subrouti­

nes FLEAK1, FLEAK2, and FLEAK3, respeetive1y. FLEAKl produees the usua1

diffusion approximation (buek1ing eorreetion). This approximation, however,

fai1s for the eases, where the eo11ision frequeney is so sma11 , that the

f1uxes are strong1y anisotropie.

In subroutine FLEAK2 the diffusion approximation is adjusted to aeeount

: for the anisotropyof the f1ux. It uses the effeetive total eross seetion

(A-ll)

where D(E) 'is the diffusion eoeffieient at B; the transverse buekling.

The funetion n(x,E) is a trial funetion for the adjustment, whieh is

n = 1 for isotropie f1ux and n = 0 for pure1y forward or baekward f1ux.

A first attempt to determine va1ues for n(x,E) re1ies on the assumption,

that the transverse eomponent of thef1ux-weighted average of the f1ux,

whieh iS.,..1 +1

j< ( ", E) =f· f ("'/', E) 0/,1-</[/(lC,)<, E ) .Jy.

ean be used to estimate

,0(, E) = [1 - (~( X, E»2.)~
(A-13)

In the averaging the angular f1uxes of eaeh iteration step ean be used.

This means, that this eorreetion is ine1uded in the iteration proeess, as

opposed toan initial energy-dependent buek1ing.
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We intend to rep1ace the exponent. 0/2) in Eq. (A-13) bya fitting para­

meter a, the va1ue of which is adjusted by means of aseparate Monte-Carlo

ca1culation /20/.

Actua11y, FLEAK2 re1ies on an initial flux guess (NGUESS = 1) in the input

for NITRAN-MS, but this can be bypassed by some additional statements.

The third subroutine FLEAK3 uses an effective transverse 1eakage that is

estimated by means of the non~co11ision probability p for a neutron that
non

flies from the x-axis to the transverse surface of the assemb1y. For a

cy1indrica1 slab assemb1y this is estimated as

Pm,., (X,J'f I C) = (A-14)

with R = radius of the assemb1y, and ~ restricted to those radius vectors

which point.to the transverse surface. Within this angular interval pnon
is averaged to give the transverse 1eakage L .L (x,E) weighted with the angu-

1ar f1uxes:

The effective transverse 1eakage cross section 1S then

(A-15)

0. (X E) ;.L , (A-16)

In the SN difference equation the effective total cross section

(Ot(x,E) + 0J,(x,E») is used insted of 0t(x,E). This procedure is most

promising for the cases 1n which the collision frequency in the x-direc­

tion is small. This may be another way to produce an estimate for the

parameter a in FLEAK 2.
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Fig. A 3 shows resu1ts for the various transverse 1eakage approximations.

Neutrons per cm 2

per source neutron
per leth. unit

0.1
approx.)

Energy

o 5 10 15 MeV

Fig. A 3: 'Li-slab: effect of various transverse leakClge
approximations on the average scalar flux

Appendix 5: Fai1ure of the exponentia1 method for spherica1 geometry

We attempted to introduce the exponentia1 method (EM) to generate the supp1e­

m~ntary equations to the SN equations. The supp1ementary equation for the EM

in the spherica1 geometry is /10/:
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(A-17)

where

G 'rn" ,4" +
ot. nt 1'~

= f,m \41.., . f;" (A-18)

H =!r.. 'RIt-f.·w. + ocn-11! f' r [CI' (~/~) + 5,(..,,~)I v~ (A-19)
W

tt
Ut

with
, - L (".., ~ ~) (first index "i" for "initial")
ri~ - r,. I - 1

,,'m = f, ("." ... \, n) fo~ < 0 i ~~ ~ f, (.,.,_1~ I n) '.r~> ()
A~: A,.., 0.."'.( A,'1·= !litt+,,1 po,. /'< ,,(. 0

A" = ,'}- ..... +1 a....tJ If .. tt = AtH ~r /A > 0

(A-20)

The other quantities are defined in ref. /6/, section 3. In ref. /10/ A*

is used at the place of A··. This was one of the causes for the trouble

reported in ref. /6/.

For the starting angle an additional supplementary equation is used /10/.

Within an iteration step the f. and f. are the angular fluxes at the
. ' 1n '1m

boundaries, from which the solution of the difference equation procedes

to generate the central flux value f (m,n), from which by the starting
g

assurnption the fluxes at the opposite boundaries 'are generated, i. e.

(first index "f" for "final")

(A-2.! )



where Pi.. = f} (~, 11 +- -1/l. )

fFwt == ft (~-1, ~ )

Ff ~ = f, (~ .. i , ~ )
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(A-22)

As stated in ref. /10/ at the boundaries and in the first iteration,when

systematica11y f1uxes can be zero, the linear interpolation method (LM)

must be used. Furthermore. the program switches to 1M, if the f1ux va1ues

are 1ess than a sma11 positive va1ue, e. g. 10-30 .

Of course, the first trials with the EM were made with the same radial mesh

as for the pure 1M ca1cu1ation. A resu1t is shown in Fig. A 4. The sca1ar

f1uxes obtained with the EM are not c10se to the resu1t of the pure 1M ca1cu­

1ati6n. The reason for this difference is i11ustrated in Fig. A 5, which shows

angular f1uxes near the monoenergetic and loca1ized sourcein the problem.

The presumed near1y exponentia1 dependences of the f1uxes on both radius and

angle are simp1y not true for this case. The linear interpolation is also

on1y a crude assumption to generatethe supp1ementary equations, but it be­

haves numerica11y good~natured and leads at least to fast convergence, whereas

the EM converges slow1y, if at all.

In the next approach to save the EM for that part of the problem, where the

assumptions about the f1ux shape are more rea1istic, we inserted statements

to switch to the 1M, if the ratio of the f1uxes to be interpo1ated exceeds

a certain limit, i. e. two, or even on1y one order of magnitude. However, even

with this restriction the EM failed to converge as rapid as the 1M. Therefore

with additional statements in the innermost iteration loop and the slow con­

vergence, the EM fai1ed to satisfy our expectations on the gain in the ca1cu1a­

tiona1 speed by a more coarse radial mesh, at least in the outer parts of the

assemb1y. The re1ated statements are 1eft in the program to faci1itate further

studies of this problem.
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5eolor flux in group 1
(neuirons per em2
per souree neulron.
per leih. uni I)

25 em20

- lM.är= 1em
++ EM.t.r= lem

00 lM.är=5em
no eonvergenee lor EM. är= 5em

15

+

10

+

+

-4
10 +--+-----+-----+--...,...---I-----=:..­

8

. 4 7. h '1 h d h I'F1g. A : L1 sp ere: test of the exponent1a met 0 versus t e 1near

method to generate the supp1ementary equations

Fig. A 5:

Angular flux
per lelhorgy unil
per souree neulron

01 r= 22.5 em

10 -6 L...+---l--4-+---l--l--l-~~"""""'-+-I.~L.....+-_
o 5 10 lSMeV

7U - sphere, angu lar fluxes to illustra te
the origin of the failure of the E M

(ouler radius: 38 em. inner: 8em; 519. lM. r.r= lem.NITRAN-S)
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For fission reactor problems, where we have spatially and energetically

distributed sourees, the exponential method is useful, especially in

connection with the rigorous Ii- and I~-methods, which do not 'lead to

negative collision source term problems.

Erratum 1n part I (ref. /6/)

Erroneously the .ordinate values for Fig. 27 a have been multiplied by an
2additional factor of 2. Moreover, the rates are per cm, and not per cm

as has beendrawn. The corrected version of Fig. 27 a is on page 23 of

this part 11, ~ogether with new results with better data.
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n ~n w
n

1 - 0.9999 0.018775

2 - 0.9250 0.044975

3 - 0.8200 0.087875

4 - 0.5735 0.125000

5 - 0.3200 0.103375

6 - 0.1600 0.06750

7 - 0.0500 0.05250

8 0.0500 0.05250

9 0.1600 0.06750

10 0.3200 0.07250

11 0.4500 0.063375

12 0.5735 0.06250

13 0.7000 0.077875

14 0.8850 0.05625

15 0.9250 0.016515

16 0.95106 0.014950

17 0.98480 0.010985

18 0.9950 0.003775

19 0.9999 0.001275




