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Abstract

The I*-method, which is a non-approximative treatment of the neutron balance
equations by the use of double-differential cross sections and a generalized
angular transfer probability, is realized within the NITRAN system. It is
shown, by means of test calculations for assemblies related to fusion reactor
neutronics that double-differential cross section data provide substantial
progress in transport prdblems with kinematically complicated reaction chan-
nels like (n,2n), (n,n'yY), and (n,n'a), because the I¥-method is free from
kinematic assumptions. The properties of the exponential method to generate

the supplementary equations to the S equations are investigated.

N

Schnelle strenge numerische Methode fiir anisotrope Neutronentransport-
Rechnungen und das NITRAN-System fiir Anwendungen bei Neutronik-Rech—

nungen zu Fusionsreaktoren

Zusammenfassung

Die I¥-Methode, die eine strenge Behandlung der Neutronen-Bilanzgleichungen
durch den Gebrauch doppelt-differentieller Wirkungsquerschnitte und einer
generalisierten Winkel-Uibergangswahrscheinlichkeit ist, wurde innerhalb des
NITRAN-Systems verwirklicht. Mit Hilfe von ersten Rechnungen zu Neutronen-
transport-Problemen des Fusionsreaktors wird gezeigt, daB doppelt-differen-
tielle Wirkungsquerschnitte bei kinematisch komplizierten Reaktionskandlen
wie (n,2n), (n,n'Y), (n,n'a) deutlich von Vorteil sind, weil die TI¥-Methode
frei von kinematischen Annahmen ist. Die Eigenschaften der exponentiellen
Methode zur Erzeugung der Ergdnzungsgleichungen zu den SN—Gleichungen werden

untersucht.
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Preface

The present report is written as a strict continuation of KFK 2832, Part I,
"Fast Rigorous+) Numerical Method for the Solution of the Anisotropic Neutron
Transport Problem and the NITRAN System for Fusion Neutronics Application'.
In part I two new methods, the Ii- and the I*-method, are introduced. The
Ii-method, which relies on existing nuclear data files, was realized by

means of the code system'NITRAN. At that stage of the development the NITRAN
system comprised one-dimensional transport calculations in spherical geometry
with only one isotope and a single material zone. Having proved that this
method is suited for technical use, the improvement of the code system with
respect to this point is a necessary conclusion. This is one aspect this

part IT on the NITRAN system deals with.

The main aspect of this part II is the practical introduction of the
I¥-method, which is based on the following argumentation: A comnsiderable
amount of the calculational efforts is devoted to the reconstruction of

the three-dimensional scattering kernel matrices from the existing single-
differential data files. As this can be done independently from the transport
calculation, the separation of the kernel and the transport calculations is
already an essential part of the Ii-method. But it is more effective to
avoid this reconstruction of the scattering kernel matrices at all and to
pass over to the use of double-differential total neutron emission cross
sections from a new type of evaluated data file, together with a generalized
angular transfer probability matrix. In this part II we want to present

the distinct advantages of the I*-method, which uses these data, by means

of calculational results.

Before reading this part II, it is recommended to read part I, because

the definitions and the formulae are not repeated herein.

Rigorous: non-approximative treatment of the neutron balance equations.



1. Introduction

Radiation transport calculations need only two types of nuclear data:

the total cross section and the double differential total secondary
emission cross section as the scattering kernel in the integro-diffe-
rential transport equation. Since the latter requires a large storage
area, if the energy and“angie coordinates are subdivided into sufficient-
ly narrow intervals, and since the transformation of the coordinate ang—
les to the scattering angle introduces complexity, approximations have
been used. The accuracy of the approximations increased according to

the requirements of the transport calculations. The basic approximation

is the isotropic scattering. There we need only energy distributions for

)

sedondary neutrons as differential data®’. The mext step.in the series

of approximations is the Tl’ the so-called transport approximation, which
needs only the average cosine of the scattering angle as additiomal in-
formation on the distribution of secondary particles. After this, a more

precise method was developed, the P_ method /1/, which uses truncated

Legendre polynomial series to approiimate the scattering kernel. The data
needed to realize thé PL method are partial cross sections with either
energy or angle distributions for the secondary particles in single-dif-
ferential form, which are treated with use of kinematic relations to
reconstruct the double differential cross section of the scattering kermel.
An improvement of the'PL method is the TL+1 method /2/, which takes the
estimation of the rest of the Legendre series into account in a consistent
manner. The latter two methods save computer space by storing coefficients
of series expansions rather than point data. Both start from disturbed
radiation balance equations in a microscopic sense. Since storage capacity:

in modern computers is no langer a severely limiting factor, the rigorous,

Sometimes cross sections for inelastic scattering with excitation of
discrete levels are called "differential". We do not continue this |
habit, but apply the term "partial" for all cross sections which describe

the incident energy dependence of a certain reaction channel.



i. e. non-approximative methods based on an undisturbed microscopic
neutron balance equation can be introduced. From the programming point
of view these methods replace evaluations of series (which means cal-
culating) by use of stored data in sufficiently subdivided form (which

means table-look-up).

In neutron transport calculations in general only the anisotropy of the
elastic scattering is included for the calculations. But there is experi-
mental evidence /3/, /4/, /5/ that for fusion reactor calculations the
anisotropy of the nonelastic scattering must be taken into account.

The status of the evaluated nuclear data files, of course, is such that

the requirements of the currently accepted approximations is met. At pre-—
sent this is the single-differential form of partial cross sectionms.

Using this form of evaluated nuclear data for a rigorous transport cal-
culation means that one has to reconstruct the complete particle emission
from the scattering center as a function of the incident energy and the
outgoing energy and angles in the laboratory system. In the Ii-method /6/
this is done by means of the collision kinematics and the rigorous angular
transfer probability for each partial cross section. With 14 MeV source
neutrons this reconstruction process comprises already so many reaction
channels that it is inefficient to repeat this for each tranmsport calcu-
lation. Therefore, the scattering kernel matrices are stored on magnetic
tape, This is nothing but another evaluation of evaluated data. Moreover,
by separating the experimental information on the scattering into partial
cross sections and recombining them for the transport calculations necessa-
ry double-differential information is destroyed and additionally, by looéing
covariance information, the probable errors of the result will}be increased.
Therefore, inversely, if a certain target accuracy of the results is to be
met, the present practice raises the demands for the error margins of the
original experimental results unduly /7/. The most prominent example with
respect to this problem is the nuclear data fog beryllium, for which ma-
terial double-differential data have been published /8/. More double-diffe-
rential data are being accumulated /9/. To stimulate an efficient ﬁse of

these data is one of the intentions for this paper: The I¥-method, which




uses these data, is realized by means of new data processing codes and
the transport calculations are performed with improved and extended ver-

sions of the NITRAN system codes, ref. /6/.

For abbreviation the expression "double-differential cross section data"

will be referred as ''DDX data".

The lay-out of the NITRAN system for the I*-method is still that of ref. /6/,
the actual version is explained in section 2. The subcodes for the new parts
of the sysﬁem are explained in section 3. In section 4 the advantages of

the I¥*-method are illustrated by comparison with another approach. In section
5 we present results of some test calculations related to the neutronics

of the fusion reactor for Be, a Be-Li mixture, and an assembly with Be and

Li in separate material zones. The implications of these results are dis-
cussed in section 6. Technical extensions and improvements of the "old"

NITRAN codes are reported in appendices.

2. The extended NITRAN system

The extended NITRAN system comprises both the Ii- and the I¥-method. The
lay-out of this system is shown in Fig. 1. Possible flows (''routes'") are
drawn for the Ii- and the I¥-method. The Ii-route has been explained in
ref. /6/, and has been completed with the code NIMIX, which is for mixing
isotope kernels and arranging them in the order of the material zones in

an assembly. Details are given in Appendix 2 . The transport codes NITRAN-MP
(for Multilayer Plane geometry, one-dimensional) and NITRAN-MS (Multilayer
Sphere geometry) are also new and they are explained in Appendices 3 and 4.
Some improvements in NIKER and the transport codes are mentioned in the
Appendix 1, they are merely technical. Several trial calculations were
carried out with use of supplementary equations derived from an exponen-
tial interpolation‘of,the fluxes /10/, /11/. The merits of the'éxponential
method (EM) are low for the case of a monoenergetic source in the spherical

geometry. It fails to interpolate the angular fluxes in the angle space,
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Fig. 1: Concept of the extended NITRAN system
realizing the I*-method

where the angular fluxes vary by orders of magnitude from one meshpoint to
the next. For a discussion of this problem see Appendix 4. The I*-route

(in Fig. 1: DDXD or DDXS - DDXMIX - ATP+ANIKER - sN) is new. In the future
the main flow will be from DDX data. Actually it is only an auxiliary input
from cards. DDXD produces the grouped (averaged within energy and scattering

angle interval) double-differential cross sections ( double-differential with




respect to the outcoming energy and scattering angle) for each material

or isotope, whichever is available from the data base. The program DDXS
does the same for the single-differential data with use of the reaction
kinematics. The input is not directly from the data base, but from NIO,
where the Po kernels afe written on magnetic tape. For mixtures of material
the program DDXMIX combines the grouped DDX. Compared to the Ii-route, much
less computer space is needed for these operations. In section 3 this is

explained more detailed.

Grouped data from either DDXD or DDXS are written on magnetic tape. For one-
dimensional calculations the program ANIKER produces the scattering kernel
matrices with use of the generalized angular transfer probability T*¥(n*;n',n),
which is generated by the program ATP. The route to two- or three-dimensional
S calculations is not yet open. There the scattering phase matrix has to

N

be produced by a prdgram "PHASE" and the S_ equations have to be solved by

N
appropriate codes. The storage of intermediate data on magnetic tape is ba-
sed on the same idea as in the initial NITRAN system: avoid unnecessary re-

petitions of calculations. |

In the Ii-method the kinematics and the angular transfer probability Ii(u',u)
are used to reconstruct the scattering kernel, i. e. the relation

between an incoming and an outgoing particle current at a scattering center
with no distinction between the various reaction types in the final result.
By the formulation of this process it becomes less obvious that one deals
with a reconstruction. When entering the I*¥-route from the DDXS path this

is more easily recognized. The hybrid use of the ideas of the Ii- and the
I¥-method opens the chance to demonstrate the usefulness of genuine DDX

data and allows a smooth transition to the new data type.

We have the possibility to use DDXD and DDXS in a mixed mode, if some data
for particular reaction channels ére given as single-differential data (SDX)
and others as DDX. This was practiced for the test calculations described

in section 5. For one-dimensional calculations the code NIMIX can also be
used to arrange the scattering kernel matrices for several layers of ma-

terial.



In the I*-route calculations of the (anisotropic) scattering kernel matrix

Og(g‘;n',n) are carried out with use of the Eq. (80) in ref. /6/, which is+)

h: * 9 s ]
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n&-

1

(1)

3. Subcodes in the I¥-route for the scattering kernel production

3.1 ATP

The subcode ATP produces a numerical table of the generalized angular

transfer probability following the averaging formula for the I*-function.

Ti= [ [ [T g i o o (a2 5p) =

i (2)
. - ’ AN S
://[ams:n yh.“}.— Qaresmn y”"f] a[/“ 09/("%4#%) )
am e;d
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. > . »
N e T L RV P!

n*+1 = z z /
'J4 ~Mn 1[4 = Mn /l-(: 41 = boundaries of the angular
= % interval A,

(4)

In ref. /6/ the averaging over * was replaced by the point value at p=n*.
Here we deal with the full averaging over the three variables.

In some special cases we have

e e T R RO iy s
yh*{-% = +1 ﬁfﬂ:(/a(: _&(ﬁf(/: *1/2 (6)
(1)

v
yn"tﬂ;_ = 0 f"/"n-&ﬁ,’_‘/; or /5:4/4:_4/&

+ . . . .
) In contrast with ref. /6/ the designation "o*'" is now used for J?g',g;n*)
only. This characterizes its importance in the I®-method, whereas og(g';n',n)

is common to both the Ii- and the I*-method (see fig. 1.).




where from Eq. (2) to (7)

o =V A1 A et 1 1

The flow chart of the code ATP ;s shown in Fig. 2. As "calculational con-

citions" we read NMAX, KMAX and the u_~set from cards. NMAX is the order

i

Input caleul. conditions
[ ]

calculate weights wp
T

cale. subdivision ‘up g
[

cale. matrix ™n%n'.n)
¥ .

calc. limits n:, n;
y

normalize T"

‘ Y
Output 1 optional list

T(n%n,n)
( )

Fig. 2: Flow chart of ATP

of SN’ KMAX the number of subdivisions within the angular intervals [un—l’un]'

Practically sufficient accuracy was obtained with KMAX = 10 in Slg'calculations.

There is no severe problem associated with this code'if one does not forget
the switching between the conditions (4) to (7). Angular transfer matrices

T‘(n';n';n), normalized with
ZT*(n*/n n)W =1 L . L (9)

are stored on magnetic tape together with n: and n;, which correspond to

» x
Bl and Bz.



An example for ™ is shown in Fig. 3.
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Fig. 3: Example of discretized angular transfer probability
for the un set Syg

3.2 DDXD

This is the code to produce grouped DDX data from a DDX data base. The
original data are interpolated and averaged by means of the following formula,

which is Eq. (81) of ref. /6/:

* , " * g !

6(3,3;n“)=,[ﬂw(5 >ff6(535w")°9* dE dE’ Aﬂ:ﬂw(f)"‘f 10)
AE,  AE, 4m, AEy

The weighting function fw(E) can be generated in the traditional way. The flow

chart of DDXD is shown in Fig. 4.

The actual input to DDXD is from cards, because we do not posséss DDX data

(not even formally) in a standard data base. Such data for 9Be at three inci-




Input calcul. conditions

Y
Input G{E',E;u*)

B

calc. preliminary variables

Y

prepare interpolation
interpolate DDX data
to boundary points of
E'.E, and u® meshes
successively ... -
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average DDX data

¥

interpol.+ average G’.m
normalize DDX data to
'  Gem

_ ¥
Output, list optional

, .
(ﬁ G”Wgﬂg;n*{)

Fig. 4: Flow chart of DDXD

dent neutroﬁ energies are the only published ones which we found and

they were used for the test calculations, see section 5. Presently DDXD
uses linear interpolation and, for completeness, extrapolation. Improve-
ment by using more sophisticated functions (e. g. Spline functions) should

be introduced carefully, because their use is not trivial /12/.

DDXD passes with the interpolation through the arrays of g', g, and then
n¥. Averaging is performed and the grouped data are renormalized for nume-
rical consistency to the total neutron emission cross section Oen (g') with

the following condition:

®ool g ) = ' R '
2. 2678, 4" )W = 6, (5") g (11)
n* 4
Oem(g') is also read from the auxiliary card input. The final data are
listed and stored on magnétic tape in the order of the sink energy group.
Examples of the grouped DDX data for 9Be, derived from the original data

in ref. /8/, are given in Fig. 5.
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3.3 DDXS

This code produces grouped DDX data for an isotope from a single-differential
cross section (SDX) data base. Since the structure of such a code, if started
from scratch, would have to contain many elements of the code NIO, such as
reading data, interpolation and grouping, generating secondary distributions,
we save some work by starting from the P0 kernels produced by NIO. Then we
are faced with one type of single-differential data only. We named the trial
code DDXS-T in order not to spoil the more general qame,DDXS, in case that

there should show up severe limitations of this concept.

The flow chart of DDXS-T is shown in Fig. 6. As the output of NIO is used
as input, the sequence of the data processing is the same as in NIKER.
First the production of DDX data is executed for elastic scattering (L=1),
then for inelastic level scattering (L=2...LMAX), and finally for the

scattering to the continuum, which is including (n,2n) and (n,3n).
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Inside the loop of the sink energy group g (outgoing energy) the scatte-
ring angle u:, which corresponds to scattering from E , to Eg’ is calcu-

lated using the kinematic eéquation Eq. (9) of ref. /6/:

- E _j_ E, 2 G; -
o Algepg

This is performed in'subroutine ANG. For the energy groups g' and g the
transformation of the energyvariables E' and E within the intervals into
u.‘ results in an interval, the limits of which are named-u‘.' . and uf .

i 1 min i max

To find these limits, the search is done by evaluating Eq. (12) for the
subdivision points (KMAX) within both groups. The interval [11‘ .Y ]

i min’ i max

is either partly or entirely falling into intervals of the set u; for the
transport calculation. So, when adding up the parts of the Po kernel, which
contribute to a particular interval [u:_l,u;] , we have to seek for the frac-
tion, with which both intervals overlap. Fig. 7 illustrates the five possible

cases,

Ni“min p’i‘mux N:. 1
T* I Miset
Iun-1 :
N?min prmux * »
[ | W = Mn~Mn,
A.l“ o N.. N?mux;p i“min
n-1 ’ n
Mimin M ma
" = ,U: -Ni*min
H~ pi“max-prmin
n-1 n
'ui*min Ni*mux » gk
W= Nimox Iun-1
' ,uu ‘ — ,"U* prmux—lui*min
n- n
‘ Iui“rnin N?mo‘x
T T W=0
M M

rig. 7: The five cases of overlap between the
intervals of au! and u?



We have for the scattering probabilities
e, . .* R : ;
G: (§,3:") = OZ .552 AOORVNC AV Cam

Au: is the width of the interval.

In this equaeion Wg,g/Au; is the fraction with which both intervals over-
lap. Many of the wg'g will be zero. The scanning for the non-zero values
need not be extended over the entire range of g' and g, because the kine-
matic limitation for the reaction channel i is already known from NIOQ, where
this information (LIMIN, LIMAX, JISHO, JIMAX) is used to reduce storage

area and computing time. At this stage of the problem the process to get
grouped DDX is similar to the method described in ref. /13/, but there

it is applied only for elastic scattering. At later stages the methods differ.

Again as in NIKER the kinematics in the energy range between the forward
and the backward threshold are simplified to use only the positive sign
of the root in the solution of the equation for u;. The Oi(g',g;n') ob-
tained with Eq. (13) is normalized for numerical consistency to the total

neutron emission cross section for the particular reaction type i, which is
o !
6: o (8= 22 G;°C8', )
! L4
Thus:

> 2. 68,8, 7 YW = G, (§)
¢ n* / (15)

The main difference between NIKER and DDXS is the explicit output of

(14)

% . . . . .
o(g',g;n*) in DDXS, whereas in NIKER this is bypassed by directly generating

ZG’ (9 3,n) T (h ,'n h) Whe = G(a’/' """). (16)

Therefore the additional dlscretlzatlon step is needed in DDXS. The advantage
of the IT*-method to require less storage capacity for the kernels is paid

with the slight disadvantage of the additional discretization step when star-
ting from a single-differential data base. This, however, is not the true aim

of the I*-method.
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As already .stated inref. /6/, section 3.3.2 on NIKER, the I*-method

does not present the difficulties as.the Ii-method for heavier nuclei.

If the P kernels are, given in fine groups for the outcoming energy, DDXS
presents no: d1ff1cu1t1es to, transform the energy, coordlnate 1nto the u
coordlnate At present in the code DDXS T ‘we assume that the group struc-
ture for 1ncom1ng energy and outg01ng energy are 1dent1ca1 ThlS is also
assumed in NIO. To ellmlnate thlS 11m1t1ng assumptlon 1s a necessary 1mprove--

ment of the codes to be done next.

Analogously to NIKER the g. (g .85 n ¥) are . summed up for the e1ast1c and

level scattering to glve o 1(g ,g;n¥). Then the contlnuum scatterlng

lev
is treated, again analogously to NIKER, with the Q array as in NIKER glve

COI'I.

(g',g;n *). so, finally we have the grouped total neutron emission double-
RYE , LT T
differential cross section

.

Gy, g:n") = Coevee (895 ")+ O ('35 17). (17)

The output is stored on magnetic tape.

3.4 DDXMIX

Input calcul.conditions:
number of isotopes NI
number of channels K

—3

Input DDX du'ta tor
K channels per isotope

K ¥
NI sum up DDX data

Output, list optional

‘ A
( c*g'g ) ] |

Fig. 8: Flow chart of DDXMIX

+) A shorter name for this should be introduced. Unfortunately, the term

"transport cross section" is used for the T; approximation.
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This is an interface program to arrange the grouped DDX data of the isotopes
for materials of several isotopes. There is no need for exciting know-how in

this code, as can be seen from the flow chart in Fig. 8.

The present code needs not to arrange the data for several layers of

material, because this can be done with NIMIX. On the other hand DDXMIX

has to coﬁbine DDX data for various reaction channels of the same isotope,
if partially data are available from a DDX data base aﬁd only the rest

has to be reconstructed from a SDX data base. This option was used for the
data of 9Be, where we had DDX data for (n,2n) from ref. /8/ and the rest
from KEDAK /14/. This operation is not at all difficult, because the data
for a fraction of the possible reaction channels are treated as coming

from another isotope.

Examples for grouped DDX data are given in Fig, 9.

L{(g.g.n")
incid.E'=14 868 MeV (g=1)
outg.E: —1098 MeVi{g=15}

=612 MeV(g=30)
N 1.78 MeV {g=50)
(Cm ) el
1024
el.

e 1

i
4| i /
1074 in2nl 0

..........

e SR B S S
—————
'
3
Y

gy ]
o I y
103 B
s r--" (n.2n}
!
| i
: - 'J
! :
51 \
10 —t —t
. -1 0 . 41 " -
Fig. 9: 9Be: total scattering DDX data,

processed by DDXMIX




3.5 ANIKER

This lS the subcode to produce the scatterlng kernel matrices for the one-
dlmen31onal transport calculat]_on u31ng Eq. (1). The 1nputs are the grouped
DDX data from e1ther DDXMIX or from DDXD or DDXS dlrectly, and the angular
transfer probablllty matrlx from ATP. The code is so simple that explanatlons
beyond the flow chart in Flg 10 are not needed. The output is stored on

magnetlc tape in the order of the sink energy group.
. o S ! 5

Input DDX data for
_single material,
number of groups:IMAX

+

Input T*(n*n"n)

3 DDX T"w(n*)
n-

4"7

Output, list optional \-DLG'Q (g';n'.n) J

END

Fig. 10: Flow chart of ANIKER
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4. Comparison between the I¥-method and two other approaches

4.1 Direct method

In ref /13/ a calculatlonal concept is proposed whlch also allows the
direct numerlcal integration of the collision source term. For thls
approach they found that "the transfer cross sections must be evaluated
for all transfer angle combinations {u +uk2}. Such considerations
necessitate large data storage requirements, and computer storage 11m1ta-
tions often preclude the use of this technique". This statement, however,
does not apply to the If-method. A more close look at the calculational
flow in both methods reveals the origin of this difference, which is deci-

sive for the practical use.

The loop organization of the direct method proposed in ref. /13/ is as

follows:

DO 2 U

DO 2 ' 4
collision source = 0O

DO 1 u'

DO 1 1 4
calculate scattering angle u"™ (2 My in ref. /13/) with
= uu 4+ 1rI:u'§1 . qll—uzj « cos (Y'-¥).

discretize u* into Mo

seek 0(g',g;U*)within appropriate interval of u*

(continuous data in the p¥-variable)
calculate collision source

1 CONTINUE

2 CONTINUE P

The loop organization of the I*-method is not much different from that:

DO 2 .

D0 2 ¢
collision source = 0

pDo1 '

DO 1 u® with limitation B; and B;
read tables T* and A™

e

calculate collision source term with use of grouped DDX data

(averaged also in u*) <
1 CONTINUE

2 CONTINUE




......

The arrows point to the essential parts of the loop organization. The
T*.methiod gives a more strict discretization by the use of the generalized
anguléf transfer probability. This allows to discretize the DDX data prior
to the very tfanépoft calculations (e. g. the solution of the SN equations
or the Monte Carlo calculation). This distinct calculational:advantage for
two- or three-dimensional calculations is enhanced by the limitation for
the execution of the innermost DO-loop for u*. In the I¥-method this loop
is executed for the 'non-zero values of the transfer cross section only,
whereas in the direct method these values must be seeked within the execu-

tion of the loop.

For one-dimensional calculations the difference between both methods becomes
‘smaller, but is still large enough to make the I¥-method superior. The inte-
gration of the kernel over an arbitrary phase shift A can be executed in the
I*-method as well as in the direct method, though this is not mentioned in
ref. /13/.

'4;2 Calculational speed compared to the PL method for the two- or three-

dimensional case

19—P5 calculation for a duct problem. There we have to
sum up 25 terms of the series expansion in the collision source term calcu-

‘Tet us- consider a'$S

lation. In the I*-method with its limitation in the innermost DO-loop for

1¥ we need a 'summation of only about 10 terms or less, and for each of these.
terms- less calculational time is needed than for the series calculations. So
in total the calculational speed of the I*-method for two- or three-dimen-
sional -calculations is several times higher than that of a SN—PL calculation.
Additionally it remains questionable, wether a PL calculation for a duct
problem is appropriate.
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5. Test calculations and their results

9Be is the most prominent example for the need of genuine dopble-differential
total neutron emission data for accurate transport calculations. Recently another
verification of the discrepancies between measured and calculated multiplication
factors of a beryllium layer has been reported /3/, which confirms the older
results /15/. They found that the calc¢ulation predicts twice as many addi-

tional neutrons as were found in the experiment. In ref. /6/ we discussed

the origin of that discrepancy. Here we report numerical results for some

assemblies containing beryllium,

5.1 Calculational conditions and nuclear data

In the present calculations an asymmetric U, set /5/ of 19 points, see Table 1,
was used. While the results are close to those of a 839 calculation with a
symmetric,un set (see Table 2 in ref. /6/), calculational time was saved.

The 67 energy group structure of ref, /6/ was retained. Data for the elastic
scattering on 9Be were taken from KEDAK /14/, single-differential data on

(n,2n) from ENDF/B-1V, processed by SPTG-4Z /16/ (an extension of SUPERTOG /17/).
DDX data for (n,2n) from ref. /8/ are given down to .4 MeV. As this is al-

ready well below the maximum of the evaporation part 6f the secondary neutron
spectra, the data were interpolated linearly between the lowest value and zero.

For 7Li the same data as in ref. /6/ were used.

For all calculations the elastic scattering was treated anisotropically. For
the nonelastic scattering matrices of single-differential origin the calcula-
tion was made with isotropic scattering in the lab. system as is usually done,
Examples for the scattering kernels are given in Fig. 11. The data are inte-
grated over the scattering angle u* As can be seen from Fig. 11, the (n,2n)
data from ENDF/B-1IV yield more neutrons in the energy range 3 to 13 MeV than
the double differential data.

How this difference affects neutron fluxes and neutron multiplication is

shown in the next section.

For the calculations of the neutron transport in Be-Li-mixed assemblies the

nonelastic scattering was treated either isotropically or anisotropically
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L°(E'E) for E'=14 MeV
& X ¥ (cmMev)™!
10_1'_—
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Fig. 11: "Energy distribution of secondary neutrons

for scattering on ‘Be
{(#): Nucl. Sci.Eng. 63, 401(1977)

in both isotopes. The intermediate cases of treating this change in only

one of the isotopes are less interesting.

For the calculations of the neutron transport in a sphere of 9Be a third
version for the scattering kernel was used: The (n,2n) data were taken from
ENDF/B-IV and treated along the Ii-route to produce the c.m.-to-lab. system
tranformation for thé‘secondary‘neutrons. This is made to replace the calcula-

tion with preliminary data in ref. /6/.

The shell source was located at r = 8 cm, the source spectrum was the spec-—

trum of the experiment ref. /5/, for the same reasons as in ref. /6/.



5.2 9Be Sphere results

Fig. 12 presents calculated scalar neutron spectra in a sphere of 9Be with
20 cm outer radius and 8 cm radius of the inner void region. The spectra are

drastically different. As already stated in ref. /6/ the c.m.-to-lab. system

Neutrons per cm?
per source neutron
per leth. unit

Neutrons per cm?
per source neutron
per leth. unit

! 0'34

10

isotropic g
ENDF/B-IV

‘i e -

o o

"5 o, 0t
R TR S

,o'em-to-lab.”*,

isotropic
ENDF/B-IV .

e

-4 transf.
transt. . 10t
anisotr. DDX data
16°4
anisotr. DDX data
'(n,Zn) thresh. Energy ’(n.Zn)lhruh. Energy
0 5 10 15 MeV 0 5 10 15 MeV

9Be-sphere,ZOcm outer, 8cm inner radius:
effect of the (n,2n) anisotropy on the scalar
neutron spectrum at r=825cm

SBe-sphere, 20cm outer, 8cm inner radius:
effect of the (n,2n) anisotropy on the scalar
neutron spectrum at r=14.25 cm

Neutrons per cm?
per source neutron
per leth. unit

c.m-to-lab.
transt. srel

.7 isotropic
% ENDF/B-IV
2 ‘

anisotropic DDX data

=5

107t
*(n.Zn) thresh. Energy
Fig. 12: -+ 4 —
0 5 10 15 MeV

9Be-sph\ere,20cm outer, 8cm inner radius:
effect of the (n,2n) anisotropy on the scalar
neutron spectrum at r=19.75cm
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transformation plays an important role in the problem. The results for the

(n,2n) reaction rate are shown in Fig. 13. Again large differences are

0.1y

-0

(n,2n)-treatment:
0.05¢ A: anisotropic, DDX data

B: isotropic from ENDF/B-1V
L C: as B, but with em-to-lab. transtf.

(n,2n) reaction rate41rr?
4 per cm and source neutron

void-—]— Be

- L

0

8 10 5 20 cm
r —e

SBe-sphere: effect of the (n, 2n) anisotropy on the
radlql distribution of the (n,2n) rate

Fig. 13:

upper: new results,

lower: corrected version of
Fig. 27 a of ref. /6/. Though
the secondary neutron distri-
bution has.been just presumed,
the.relative effect of the
~c.m.Tto-lab.-system transf. is
not much .different from the

newer result..

{n,2n) rate «4rr?
per cm, per source neutron

futly isotr.(n,2n)

————

0.1¢
c.m.tolab. tronsf

for (n,2n)
I elast. anisotr. by i,
unchanged
005+ Yo . . Radius
5 10 5. 20 cm

°Be sphere, 20cm radius: effect of
the cm. to lab. transf. for(n,2n) scatt .,
(n,2n) by evaporation, nucl. temp
taken from Li(n,n'x)
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3¢ oo

Neutron production
15+ * /

isotr. (n,Zry'

calc. ref.(»)
. "OT Py .isotr{n,2n) +

I*
anisotr.(n,in)

meas. ref.(x)

thickness of Be layer

0 A L S S S | i I —— b 41 [l

10 20 50 100

2 5
_ ‘ cm
Fig. 14: Be-sphere, effect of the (n,2n) anisotropy on

the neutron production, calc. with I*-method,
ref.(»): TK.Basu et al., Nucl. Sci. Eng. 70, 309 (79)
different assembly

found between the various results. Fig. 14 shows the results for the neutron

+)

multiplication M inside a spherical Be layer " as a function of the thickness
of the layer. To compare this with the results of ref. /3/ we need a transfor-
mation for the different geometries and the difference in the as{semblies.‘We
adopt a technique employed in fission reactor calculations: The upper curve

9

in Fig. 14 is.calculated with the same nuclear data for “Be as have been used

in ref. /3/. Therefore we select a point on this curve to normalize both results.

+
) The multiplication is defined as for a fission reactor: M = 1/(1—keff).




_25_

From ref. /3/ we take the value M = 2.03 for their thickness of the Be layer.
On our curve this value is given at a thickness of 13.5 cm. If we go from

this point down to the second curve for the results obtained with anisotro-
pic nonelastic data, we come with M = 1.75 much closer to the measured value

of ref. /3/, which is M = 1.58 + 0.1.

5.3 Sphere of 9Be and 7Li mixture

The kernel for these calculations was produced by combining the individual
data by means of the code NIMIX. With the calculations for the Be-Li mixture
we intended to investigate, how the tritium breeding in Flibe /18/ is affec-
ted by the scattering kernel differences. Lacking data of fluorine we took
only 9Be and 7Li in the atomic densities of Flibe, which are 0.018 - 1024

atoms/cm3 for either isotope.

Fig. 15 presents calculated average spectra of the scalar neutron flux in

a sphere of the 9Be—7Li mixture with 38 cm outer radius and 8 cm radius of

Neutrons per cm?
L per source neutron
per leth.unit

b "N
bttt

ey

... isotr. nonelast.
] .,-'.f """"" : B W .[:.

-4 anisotr. nonelast. . .

10

Ll

T e |

. N Energy

L 02 05 9 2 5 10 % MeV

Fig. 15: Be-7Lifsphere,38cm outer, 8cm inner radius:
effect of the nonelastic anisotropy on the
average scalar neutron spectrum (vol-aver)
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the inner void for the two kernels ﬁith either isotropic or anisotropic
nonelastic scattering. Taking these neutron fluxes for reaction rate cal-
culations we find a change of about =15 7 for 7Li(n,n'a)T and *15 7 for
6Li(n,d)T referred to the isotropic nonelastic data. The figure for §Li
may not be taken too seriously, because the fully anisotropic data are
only estimated below 0.4 MeV, but the sign of the effect should be kept

in mind.

Fig. 16 shows the effect of the anisotropy of the nonelastic scattering
on some reaction rates as a function of the radial coordinate in the
sphere of the above Be-Li mixture. The values for 6Li(n,a)T were included

with the restrictions mentioned above.

Ratio of reaction rates
(iso./aniso.) nonel.

'Be(n, o)

-2t : 98e(n,2n)
1.14 /’_\ TLi(nnte) T

reference anisotropic nonelast.

0.8 8Li(n,00)T
for E,>300keV

0.7 void—*—gBe—"Li-mixture -
) N I?adius
0 10 20 30 40 cm
Fig. 16: °Be-’Li-sphere: radial dependence of the effect

of the nonelastic anisotropy on reaction rates

5.4. 7Li sphere with inner 9Be multiplier

With this calculation we intended to investigate, how the tritium breeding
is affected if the thickness of the Be layer is varied. Again only the cases
of either isotropic or anisotropic nonelastic scattering in both isotopes
were considered. .The assembly under consideration had an outer radius of

1.28 m, an outer 7Li zone of 90 cm constant thickness and a Be layer of variable
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thickness (radius of the Be-Li interface 38 cm). The source was a point

source in the center of the sphere.

Fig. 17 presents the effect of the variation of the Be layé'r thickness on

the tritium breeding in 7Li._This reaction rate is monotonically decreasing

with the thickness of the Be -laye‘r',; so the gain in the total breeding ratio

relies entirely on the increase of the reaction 6Li (n,a) T.

T; breeding ratio
| 128¢cm

1.04

1
0.8

isotr. nkcvme‘l.
AR . 0:6 ;\- s

+ anisotr. nonel.
04T
- d.thickness of Be layeér

0.2 ———t———p——} et ! -

Fig.

17:

o 1 2 3 4 5 6 7cm
TLi-sphere with inner °Be multiplier, effect

.of the nonelastic anisotropy on. tritium

breeding by ’Li(n,n'a)T

In Fig. 18 the effect of the anisotropy of the nonelastic scattering on’

the tritium breeding in 7Li is shown for a very thick layer of 7Li and a

Be multiplier of 4.5 cm thickness. We expected that the sign of the effect

would change at greater distance from the source, but this did not occur.

The flux reduction near the source is not compensated. Furthermore, the re-

duction of T-breeding at higher energies is not compensated by breeding at

lower energies in 6Li, the less abundant isotope. This comes from the fact

that with the anisotropic data the fraction of secondary neutrons above
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tritium atoms
per cm, per source neulron

AN discrepancy in
0.015¢ N breeding ratio: 17,

0.010+
0005+
gBe
voidl I Li
radial distance
0 + —— + } + + ‘ 4 —
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Fig. 18: Li-sphere with inner %Be multiplier, effect of the (n,2n) anisotropy
on tritium breeding by 'Li(n,na)T, rates4mr2

the threshold of 9Be (n,2n) and 7Li (n,n'0) is lower than with the ENDF/B-IV
isotropic data. Though we have more neutrons in the lower energy part after
a first interaction (see Fig. 11), the loss in multiplication b'y the lack
of neutrons at higher energies is not compensated. So, in general for any
mixture of lithium isotopes the breeding ratio of a large assembly will

be lower than expected from calculations with isotropic nonelastic scattering

data.




_2'9_

‘6. Consequences from the results of the test calculations

It is obvious that the uncertainty of the results is intolerable. However,
bpéh to'debate is the question how to' procede. Of course, the traditional
way of evaluating nuclear data into single-differential data can be used

to solve the problem up to a certain degree of accuracy, but by the example
of beryllium it can be seen that this is no longer the best way for fusion

neutronics.

From ref. /8/ it follows clearly that it is no longer allowed to describe

the (n,2n) process in 9Be by a "first mneutron', which is scattered with
excitation of discrete levels,and a "second neutron", for which an energy

and angular distribution is given. Only a fraction of the "first neutron"

can be tréated with the kinematics of inelastic level scattering. There—

fore at least one additional reaction channel must be introduced. Furthermore,
the kinematics of the emission of the "first neutron'" are coupled to' the kine~
matics of the second emission and therefore this channel has to be treated
twice for the coupling to each channel for the "first neutron'. So, though

in principle possible, the method to employ more and more reaction channels
for the description of an interaction, ‘in order to save the single-differen-

tial data base, becomes ineffective.

The‘double—differenfial data base - even if only available for particular
réaction channels like in the Be case - avoids all the difficulties of
classifying scatteriﬁg data into partial data, for which defined kinematics
can be given. This does not only apply for the (n,2n) reaction, but also

for (n,n'Y), (n,n'p), (n,n'a), (n,n't), etc. Especially in the (n,n'y)
reaction we face these difficulties already in the Ii-method, where the
treatment of the continuum scattering cannot really be regarded as appro-
priate. In‘the neutron transport problem it does not matter, wether the
outgoing neutrons beléng to a certain reaction channel, becausé we mneed.

only particlé currents before and after the passage of the scattering cen-.
ter. Distinguishing between '"direct", "preequilibrium", and "compound" neutrons
may serve for a theoretical interpretation of the interaction in the nucleus,
but for the transport calculation these distinctions do not matter. In a
multiparticle break-up we are unable to formulate the kinematics as simple

as for the scattering of a single particle, if at all.
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When investigating the uncertainty of transport calculations, the systematic

error sources can be grouped in the following way:

i) geometric simplification in the transport calculation (divergence term)
ii) approximative treatment of the scattering kernel in the transport
calculation (collision source term)
iii) use of single-differential data in the transport calculation (recon-—
struction of DDX data)

iv) unknown covariances

In the present form of uncertainty analysis by means of the sensitivity
studies /19/ not all of the error sources could be taken into account.

This caused that very often results obtained with this method were not

taken seriously. In fact, in said reference errors of all four types concern
the imperfectness of the tools for the realization of the method, whereas

the mathematical basis of the method is not affected.

Commonly, errors of type (i) are investigated independently. This is only
an approximation, because it has some correlation with errors of the other
types. A three-dimensional Monte-Carlo-calculation, even with rigorous
scattering kernel treatment like in /20/ fails to predict effects, if the
target volumes under consideration become small. To investigate smaller ef-
fects and for investigations in systems studies two-dimensional SN calcula-
tions are required, however, with higher angular resolution near to a pre-

ferred direction /5/ than presently available.

The present paper deals with the error sources of types (ii) and (iii).
Having established a method to eliminate errors from these sources down to
the level of the discretization errors, attention should be concentrated

on errors of type (iv). The naive method of introducing "plausible'" changes
into double-differential data can certainly not account for the complex
partial error compensation in the error propagation process, Therefore we
propose the use of double-differential data together with their covariance
data-in a rigorous sensitivity study by means of the rigorous I*-method for

the transport calculational part of the problem.
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7. Conclusions

The I¥-method as described in KfK 2832, Part I, was realized within the
NITRAN code system. By this method neutron transport calculations can be
performed, in which a rigorous treatment of the anisotropic scattering ker-
nel provides an undlsturbed mlcroscoplc neutron balance equatlon Double—
differential cross section data make the I*-method 1ndependent of assump- i
tions about the phy51cs of the scattering. A smooth transition from single-
differential data to this data type is provided in the I*-route of the

NITRAN system.

By means of test calculations for some assemblies related:to the neutronics
of a fusion reactor we demonstrate the 1mportant effects associated with
the anisotropy of the nonelastic scattering. It was shown that 1ntroduc1ng
the treatment of this anisotropy into the transport calculatlons is more
than just another approximation: the element of rigour, which is introduced
with the Ii-method, is also introduced for the nuclear data part of the
problem by demanding double-differential cross sections in the form of a to-
tal neutron emission cross section in the lab. system. Though in Appendix 3
of KfK 2832, Part I, we can see, that the PL method can be used also for
double-differential data, we do not see the necessity to develop such a
method in addition to the existing I®*-method. Currently used PL calculations
require kinematics for the partial single-differential data and so does the

Ii-method. From this point of view the Ii-method is not completely rigorous

as is the I*-method.

Since the I®-method is not directly comparable to other methods, its rela-
tion to the Ii-method can be used to appreciate the high calculational speed
of the method. If double-differential data are available the scattering ker-—
nel matrix generation shrinks to an interpolation problem in connection with
some flux-weighted averaging. For the solution of the SN equations any method
can be used, and therefore it is advisable to adapt existing S codes also

N
for the use of the I¥-method.
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With respect to the conclusions of Part I the following work remains

to be done:

a) SN codes for cylindrical, two-dimensional and three-dimensional

geometry must be developed.
b) A Monte-Carlo code should incofporate the I*-method.

c) Codes for uncertainty analysis by means of the sensitivity study
method with use of the I*-method for the tramsport calculation part

of the problem should be developed.

d) Double-differential neutron emission cross section data must be evaluated

together with their covariances.

e) Both the Ii- and the I*-method should be applied also to transport

calculations for other particles than neutrons.
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Appendices: Improvements in the NITRAN System

Appendix 1: NIKER

The kernel outputs were changed from parallel output of level and continuum
kernels to a single"output, which is stored in FI. This reduces the required

storage area.

The isotropic part of the scattering kernel is transfered directly to the
SN codes, if the input parameter ICON = O, For ICON = 1 the matrix FI contains
the complete kernel.

Of course, the input of NITRAN-S was modified to accept the new format of

the kernel. The other SN codes are coupled to NIMIX.

Appendix 2: NIMIX -

This code produtes "mixed-isotope" kernels and/or kernels in the order of

the layers in an assembly with several material zones. NIMIX contains two
subroutines, MONMIX-aﬁd MULMIX. The former is to produce mixed-isotope kernels
for a single layer of homogeneous material, then the latter arranges them in

the order of the material layers in the assembly.

NIMIX accepts the outputs from both NIKER in the Ii-route and ANIKER in the

1¥-route to produce kernels for one-dimensional transport calculations.

We do not claim that the code NIMIX is programmed elegantly, it should be re-
vised for technical use. Fig. A 1 shows the flow chart of NIMIX.

Input caleul. conditions

single zone

several
zones

CALL MULMIX

CALL MONMIX

END

Fig. A 1: Flow chart of NIMIX
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Input data COMMON
number of kernels:IKMAX

¥

read kernel

K{1)

: G(Mustcr Tape MT1 ]
‘—D(Buﬂcr Tape BT1 )

write kernel K(1)

~ g )
(IK=1K+1 )
read kernel K{IK) Master Tape MT1 J
1K-1 Buffer Tape MTIN
read FIMIX = ) K1) =BT1 for even IK
1=1 =BT2 for odd IK
9
]
FIMIX = FIMIX+ K(IK) *
l Buffer Tape MTOUT
— write FIMIX =BT2 for even I[K
= BT1 for odd IK
IK <IKMAX
= “TKMAX
/ =\
Buffer Tape MTOUT
read FIMIX =BT2 for even IKMAX
g r L: BT1 for odd IKMAXI

write FIMIX in final
format. zone data,pn
Eg, Gy . kernel

n:

‘e ;
Buffer Tape MTIN
=BT1 for even IKMAX

=BT2 for odd IKMAX

et

RETURN

Fig. A 2: Flow chart of subroutine MONMIX in NIMIX

Fig. A 2 presents the flow chart of the subroutine MONMIX. Reading and wri-
ting is straightforward from magnetic tapes to magnetic tapes. Several tapes
are employed for input or output, therefore the related unit numbers MTIN and

MTOUT are switched according to the requirements.

The flow chart of MULMIX differs from MONMIX only slightly, and in Fig. A 2 the
points at which both soubroutines differ, are marked by (). In MULMIX the ker=
nels are not added, but arranged in the sequence of the material zones for each

sink group.
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Appendix 3: NITRAN-MS

‘This is the extension of the code NITRAN-S for spherical assemblies with
several material zones. NITRAN-MS receives the cross section data from
NIMIX. At present NITRAN-MS adcepts up to 5 material zones. For calcula-

tions for a single material zone the code NITRAN-S is left in operationm,

Appendix 4: NITRAN-MP

This Sy code solves the transport problem for a one-dimensional plane assembly.

Up to 5 material zones are accepted. The basic difference equation is

/»‘,,[f, (m+"z,n)'F'(”‘f"u")]4'6;"5"..'!3(”‘/”)"’Axm[ca(“'f")' S’(m,n)] (A-1)

where £ (m+1/2 n), f (m—1/2 n), and f (m,n) are angular fluxes at the spa-
tial boundary points and the central one, respectlvely Cg is the collision

source expressed by the Ii- or I*-formalism, and Sg the external source,

Both the linear and the exponential method (LM and EM) are used to generate

the supplementary equations. Option parameter is LORE.

Exponential method (LORE = 0):

The assumption is, /10/:

i (”".“)]l: flmttm) fylm-2on) e

Substituting Eq. (A-2) into Eq. (A-1) we obtain the following equation,
which gives successive solutions for the fg(m,n) starting from the flux

values at the boundaries ("inner iteration loop'"):

(3(».,.,.)= 1(-A+/A"+ ‘le ) B

- Gt ax,,

w;th.' - f

Lma |
B-= (” + _,_ (c(»u.)+s(mn))]

(A-4)

" (A-5)
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where

{ (3(»1-"/z .4) {or/u>0 ( fa(hw n) far/q <0 . (4-6)

The flrst 1terat10n is always executed w1th the LM, and at the boundarles
M 1s to be used in a11 iterations, because in both cases the flux values
can be zero systematlcally. Furtherﬁore, the program switches to the LM,

if the flux values are less than 10 30. Thus also numerical difficulties
by accidentally very small values or zeros are avoided.

Linear method (LORE = 1):

» The, assumptlon 1s /1/
'(’(,,,',,) [{}(nﬁt,l?) 6(»4 J_,h)] v -

Substitutinngq. (A-7) into Eq. (A-1) we get

fytmn - C"f""* D[%(m' ")+ S (m, *')]

(Aés)
w1th
C Qf/m.l -D/Ax
=2 (4-9)
_ G*ax.,
D= AXM/[QI/“nl* e © J (A-10)

where the fi are given as in (A-6).

For the negative flux correction the same strategy as in ref. /6/ was applied,
which means that a negative flux correction is programmed as a fix-up at zero,
but it is not used, because the rigorous methods diminish the problem drasti-

cally by the non-negative collision source term.

The exponential method yields.higher caleulational speed, though the supple-
mentary equations are more complicated, because a larger spatial mesh size
can be applied. For a fine mesh aize the result with the EM must Be close to
the result with LM, because the assumption (A-2) for the EM can be approxi-
mated by the assumption (A-7) for the LM, if the differences between the fg

are.small,




- 41 -

The source term’(Cg + Sg) is treated in the same manner as in NITRAN-S

(and -MS), The flow chart of NITRAN-MP differs only slightly from that

of NITRAN-S: The iteration starts at the source boundary and three sub-.
routines are added for various options to estimate the effect of the
transverse leakage, steered by the option parameter LEAK. For LEAK = O

no correction is made, LEAK = 1, 2, and 3 are used to call the subrouti-
nes FLEAKl, FLEAK2, and FLEAK3, respectively. FLEAKl produces the usual
diffusion approximation (buckling correction). This approximation, however,
fails for the cases, where the collision frequency is so small, that the

fluxes are strongly anisotropic.

In subroutine FLEAK2 the diffusion approximation is adjusted to account

: for the anisotropy.of the flux. It uses the effective total cross section
Gy (X,E) = G (E) + 7(x,E)- D(E) B,

where D(E) 'is the diffusion coefficient at Qf the transverse buckling.

(A-11)

The function n(x,E) is a trial function for the adjustment, which is

n = 1 for isotropic flux and n = O for purely forward or backward flux,
A first attempt to determine values for n(x,E) relies on the assumption,
that the transverse component of the flux-weighted average of the flux,

which is

+1 +1
/T(K,E)=./;‘4'F(x/ , E) "V//((":/"E)"[/“ (A-12)
-1 -1

can be used to estimate .
- 2
q(xE) = [1- Gaxe) |7

In the averaging the angular fluxes of each iteration step can be used.

(A-13)

This means, that this correction is included in the iteration process, as

opposed to an initial energy-dependent buckling.
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We intend to replace the exponent. (1/2) in Eq. (A-13) by a fitting para-
meter a, the value of which is adjusted by means of a separate Monte—Carlo.

calculation /20/.

Actually, FLEAK2 relies on an initial flux guess (NGUESS = 1) in the input
for NITRAN-MS, but this can be bypassed by some additional statements.

The third subroutine FLEAK3 uses an effective transverse leakage that is.
estimated by means of the non-collision probability Poon for a neutron that
flies from the x—axis to the transverse surface of the assembly. For a

eylindrical slab assembly this is estimated as

: R
_Gt(x,E)-Ts-a‘_ n ]
P"Oh (x//‘IE) = e | 1 M fO'f /"‘4 5__/4 é/-(‘ (A 14)

with R = radius of the assembly, and Y restricted to those radius vectors
which point .to the transverse surface. Within this angular interval Poon
is averaged to give .the transverse leakage LJ_(x,E) weighted with the angu-

lar fluxes:

 MxE) | +1
Ly (5 E)= [ Ruun o E)-f8 1, E D ﬁcx,/«,sm |
(A-15)
Ma(%E) -1

The effective transverse leakage cross section is then
1-L,(X%E)

6 (xE)= G (€)-

(A-16)

In the SN difference equation the effective total cross section

(ot(x,E) + cL(x,E)) is used insted of‘ot(x,E). This procedure is most
promising for the cases in which the collision frequency in the x-direc-
tion is small. This may be another way to produce an estimate for the

parameter a in FLEAK 2.
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Fig. A 3 shows results for the various transverse leakage approximations.

1 Neutrons per cm?
per source heutron
[ per leth.unit

040"“’1‘ *
. 'FLEAK3 ,°

., ot et
. AL TR g

e FLEAKZ oo

0.1t

FLEAK 1 (diffusion approx.)

Energy
— |
0 5 10 15 MeV
Fig; A 3: TLi-slab: effect of various transverse leakage

approximations on the average scalar flux

Appendix 5: Failure of the exponential method for spherical geometry

We attempted to introduce the exponential method (EM) to generate the supple-
mentary equations to the SN equations. The supplementary equation for the EM

in the spherical geometry is /10/:
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£}

etV (g2, ) 4G H]
fo(min) = 26

where
‘/‘nl A* &y LY
G=Lt—7—+ —
{l:m‘ Wn'ffn

oul Ao + =22 i+ [ () + Sy Omn) [V,

I
u

with
f&n
f«'m {9("’*":,")’{0-'/“0; ,;,,éfg(m—’/z,n) for p> 0
,Q“z Am and A,**= H”"’"’ f‘or M &0
A" = AM*'I and A" = A for/g> o

The other quantities are defined in ref. /6/, section 3. In ref. /10/

f&(m' "'4/1) (first index "i" for "initial")

(A-17)

(A-18) .

(A-19)

(A-20)

A‘

is used at the place of A** . This was one of the causes for the trouble

reported in ref. /6/.

For the starting angle an additional supplementary equation is used /
Within an iteration step the fin and f‘im are the angular fluxes at th
boundaries, from which the solution of the difference equation proced
to generate the central flux value fg(m,n), from which by the starti

assumption the fluxes at the opposite boundaries are generated, i. e,

[Fs(”"")]l \

(‘” = f (first index "f" for "final")
th

[(s(""")y

10/.
e

es

ng

> (A-21)

fe ™ . ' )
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where ffn = f’_ (lmln-e-"/z.)
fpn= fo (motin) for pc@
ﬁm Fa(vm»’;_'n) faf M0,

(A-22)

As stated in ref. /10/ at the boundaries and in the first iteration, when
systematically fluxes can be zero, the linear interpolation method (LM)
must be used. Furthermore. the program switches to LM, if the flux values

are less than a small positive value, e. g. 10—30.

Of course, the first trials with the EM were made with the same radial mesh

as for thefpufe IM calculation. A result is shown in Fig. A 4. The scalar
fluxes obtained with the EM are not close to the result of the pure LM calcu-
lation. The reason for this difference is illustrated in Fig. A 5, which shows
angular fluxes near the monoenergetic and localized source in the problem.

The presumed nearly exponential dependences of the fluxes on both radius and
angle are simply not true for this case. The linear interpolation is also

only a crude assumption to generate the supplementary equations, but it be-
haves numerically good-natured and leads at least to fast convergence, whereas

the EM converges slowly, if at all.

In the next approach to save the EM for that part of the problem, where the
~assumptions about the flux shape are more realistic, we inserted statements

to switch to the LM, if the ratio of the fluxes to be interpolated exceeds

a certain limit, i. e. two, or even only one order of magnitude. However, even
with this restriction the EM failed to converge as rapid as the LM, Therefore
with additional statements in the innermost iteration loop and the slow con-
vergence, the EM failed to satisfy our expectations on the gain in the calcula-
tional speed by a more coarse radial mesh, at least in the outer parts of the
assembly. The related statements are left in the program to facilitate further

studies of this problem.
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-2| Scalar flux in group 1
10°T (neutrons per cm?
per source neutron.
per leth.unit)
— LM, ar=1cm
+ [o} ++ EM.Arz 1cm
+ OO LM,Ar=5cm
+ no convergence for EM,Ar=5cm
+
10-3:'
0 .
10—4 , ' , : Radius
8 10 15 20 25 c¢cm

Fig. A 4: 7Li sphere: test of the exponential method versus the

method to generate the supplementary equations

T

Angular flux

[ per lethargy unit
| per source neutron

[ atr=225em

0

107°t

10_61I14LJ';L,LJ‘LIIAA

0 5 10 15MeV
Fig. A 5: 'Li-sphere, angular fluxes to illustrate
the origin of the failure of the EM

(outer radius: 38 cm, inner: Bcm; Syg, LM, ar=tem, NITRAN-S)

Elnergy
FE |

linear
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For fission reactor problems, where we have spatially and energetically
distributed sources, the exponential method is useful, especially in
connection with the rigorous Ii- and I*-methods, which do nbtblead to

negative collision source term problems.

Erratum in part I (ref. /6/)

Erroneously the ordinate values for Fig. 27 a have been multiplied by an
additional factor of 2. Moreover, the rates are per cm, and not per cmz,
as has been drawn. The corrected version of Fig. 27 a is on page 23 of

this part II, together with new results with better data.



Table 1: S19 U-set
n n
1 0.9999
2 0.9250
3 0.8200
4 0.5735
5 0.3200
6 0.1600
7 0.0500
8 0.0500
9 0.1600
10 0.3200
11 0.4500
12 0.5735
13 0.7000
14 0.8850
15 0.9250
16 0.95106
17 0.98480
18 0.9950
19 0.9999
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© O O 0O O O O O 0O 0O O o © O O O ©o o o

.018775
044975
.087875
.125000
.103375
.06750
.05250
.05250
.06750
.07250
.063375
.06250
.077875
.05625
.016515
.014950
.010985
.003775
.001275






