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Abstract

A finite difference code and a code based on the method of characteristics

applied to the calculation of a stationary flow of an ideal gas through a

convergent-divergent nozzle are compared. The stationary profiles of the

flow variables are obtained as asymptotic solutions of the transient cal­

culation. An analytical solution serves as a basis to criticize the two

different codes: while the code based on characteristics agrees fairly well

with the analytical solution, the finite difference code supplies strongly

smoothed, unrealistic profiles due to numerical damping.

Berechnung e1ner idealen Gas-Strömung durch eine Düse mit grundsätzlich

unterschiedlichen Rechenprogrammen

Zusammenfassung

Ein Finite-Differenzen Code und e1n Charakteristiken-Code werden anhand

der Berechnung einer stationären Strömung eines idealen Gases durch eine

konvergent-divergente Düse verglichen. Die stationären Profile der Strömungs­

variablen werden als asymptotische Lösungen der transienten Rechnung er­

halten. Eine analytische Lösung ist die Grundlage zur Beurteilung der beiden

unterschiedlichen Programme: während der Charakteristiken-Code recht gut mit

der analytischen Lösung übereinstimmt, liefert der Finite-Differenzen Code

stark geglättete, unrealistische Profile,verursacht durch numerische Dämpfung.

1. Introduction

The fluid dynamic computer codes used for the current light water reactor

safety analysis are mainly finite difference codes of first order in space

[-1_7, [-2_7. As they fortunately allow for a rather flexible adaption to

the geometry of the problem (one- or multidimensional, obstacles, free sur­

faces etc.) in contrary to a code based e.g. on the method of characteristics

and as physical modelling seems to be of primary importance one is easily

tempted to ignore the numerical background of finite dif~erence codes. The

main problem of a transient calculation is its stability, which is often

solved using the donor-cell technique (upwind differencing) L 3, pp. 64_7.

This again leads to a so called first order c' ~~ of which the numerical

damping is a well-known effect. Second order ,:coes enlarge the expense but
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due to first order errors resulting from geometry modelling, coarse reso­

lution possibilities, non-linear equation of state etc. they are not that

much superior to first order codes. Moreover first order methods can be

more accurate when only coarse grids are treatable due to computing time

L-4_1 or when the solutions contain discontinuities L-S_I.

The following investigation, which clearly shows some weak points of both

a finite difference code and a code based on the method of characteristics,

was initiated by an experiment with the "HENRY-nozzle" (Semiscale Mod-l,

Idaho) and its check with several codes by Travis & Hirt /-6 I. There, as

weIl as in some of our calculations L-7_1 emphasis was laid on the effect

of dimensionality, i.e. whether a one dimensional (lD-)calculation of such

an axisymmetric nozzle flow is satisfying or whether a 2D-calculation is

required. Here the main interest was focused on a comparison between

a quasi analytical solution of the stationary critical nozzle flow of

an ideal gas

a calculation with a code based on the method of characteristics (ID,

transient)

a calculation with a finite difference code (ID/2D, transient)

The test example was insofar modified with regard to the above mentioned

experiment with the HENRY-nozzle, as the two-phase steam-water mixture flow

was modelIed by an ideal gas flow with K = cp/cv = 1.07. This simulation

matches the real two-phase flow quite weIl due to the uncommon value of K

and permits a quasi analytical solution. So the comparison between the codes

due to the simple equation of state is possible. Therefore 1n this investi­

gation only calculations are compared with each other and not with the

experimental results. The stationary nozzle flow is calculated by both the

codes as an asymptotic solution of a transient calculation starting from

constant initial values.

1.1 Geometry

The HENRY-nozzle (see fig. 1, original and model in different scales) con­

sists of a convergent conical part followed by a cylindrical part representing

the nozzle throat and a divergent concical part for the acceleration in the

supersonic range. It should be noted that the straight contour lines cause
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discontinuities of the derivatives of the radius and the cross-section

area with respect to the axial coordinate. The cylindrical part before

the nozzle entry was added for the calculations in order to ~ake the radial

profiles of the flow entering the converging part more realistic. The

nozzle was axially divided into 45 and 49 cells for the calculations by the

finite difference code and the method of characteristics code, respective-

ly.

1.2 Basic equations

The basic systemof equations to be solved for the one dimensional tran­

sient flow in a nozzle neglecting viscosity and heat- und mass transfer

consists of:

the Euler equation ,

the continuity equation,

the energy equation.

If a shock occurs in the flowfield, the well-known shock equations (see

/-8, pp. 42 7, for example) for calculating the gas properties across a- - .

shock have to be used in addition to the equations mentioned above.

1.3 Equation of state

The fluid is considered to be an ideal gas, the flow to be inviscid and

adiabatic. Thus the equation of state is

= (I)

p is the pressure and p is the denisty, K = 1.07 the adiabatic exponent.

Thus the experimental two-phase mixture is approximated. This unusual value

of K only quantitatively influences the results but it does not change the

generality of the conclusions.
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1.4 Boundary and initial conditions

At the nozzle entry the following values were fixed for all times t:

Pentry = 4.8 MPa, P t = 56 kg/m
3

, Ten ry entry 534 K.

At the exit for different calculations the pressure was reduced beginning

from p . = 4.5 MPa to p . = 1.5 MPa in 0.5 MPa-steps.eX1t eX1t

Initially (t=O) the state in the whole nozzle except the exit plane equals

the state at the entry, the velocity u is zero everywhere. At the exit the

downstream pressure is given.

2. The codes

2. I STRUYA

The finite difference code STRUYA L-9 I 1S an enhancement of the transient

code YAQUI from LASL L 10_1. It is an arbitrary Eulerian-Lagrangian computer

program for fluid flow at all speeds. ID- as weIl as 2D-calculation is possible,

the option for structure coupling is not used here.

The mesh does not necessarily have to be rectangular, which allows an exact

modelling of the HENRY-nozzle geometry (see fig. I). In STRUYA the conser­

vation equations are included in a more general form than required by this

application. Therefore the viscosity terms of the Navier-Stokes equations

are incorporated. At the walls free slip is assumed. The donor cell technique

is applied. Because neither the shock equations are included nor a shock

detection occurs in STRUYA, a "srneared" appearance of a possible shock is to

be expected. Each calculation cycle consists of three principal steps

(ICE-technique L-II_/):

I. Explicit calculation of guess velocities, densities and pressures for

the entire mesh using the equation of state, mornentum and the flowfield

variables of the previous time step.

2. Implicit solution of the continuity equation by means of pressure itera­

tion with appropriate adjustment of velocities.
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3. Explicit calculation of the energy, using the energy equation and

the iterated flow field variables from the second step.

2.2 Method of characteristics for the one~dimensional transient problem

The Euler equations reduce to

u + UU
t x

I
- -p .

p x
(2)

x and t are the independent variables ~n space and time, the indices denote

derivatives with respect to space and time, u ~s the velocity in x-direction,

p the densi.ty and p the pressure . With regard to the variation of the cross­

section of the nozzle, the continuity equation is given by

Pt + up + pux x
d= - uPdx(ln(A(x)). (3)

A(x) is the cross-section of the nozzle. For theHENRY-nozzle the function
d
dx(ln(A(x)) is piecewise defined corresponding to the piecewise linear

radius.

The energy equation can be written ~n the form L 12, p. 307 7

0, (4)

where a is the speed of sound.

According to the method of characteristics L 12, p. 307 7 the system of

conservation equations is transformed into:

(dt) (Sa)
dx 0 u

dp - 2 (Sb)a dp o ,
0 0

(dt)
u±a'

(6a)
dx ±

dp+ + padu+
pu dA (6b)
A dx
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Equations (Sa) and (6a) define the slope of three characteristic curves,

which are denoted by the indices 0,+,-, while equation (Sb) and (6b) are

differential relations, which represent the flow equations. Each of the

three equations (Sb) and (6b) is valid only along the appropriate charac­

teristic curve given by (Sa) and (6a), respectively. At an intersection

point of all three characteristic curves all equations (Sb) and (6b) are

valid and so provide three equations for the three unknown quantities u, p

and p. But this intersection point where values for u, p and p could be

calculated can only be found, if the solutions for u, p and p are already

known, because u and aare used in (Sa) and (6a). Hence an iterative solu­

tion scheme is necessary.

Replacing the differentials in (5) and (6) by finite differences leads to

a set of difference equations, which can be used to solve the initial value

problem in two different ways.

The first method is called the "direct" one. Initial values are g1ven at

three points of the flowfield on time level t, and at the intersection

point of the three characteristic curves the gas properties u, p and p

for the time level t + ßt are calculated. Both the time step ßt and the

location in x of the "solution point" are given by the computation. In

order to achieve equal time steps in the whole flow field and the same

spacing of the computational grid for all time steps, the "inverse"

method according to L-12, p. 333_7 was used for the calculations in the

HENRY-nozzle.

For the inverse method (fig. 2) the characteristics, which are approximated

by straight lines, are traced back from the new solution point P4 on

time level t + ßt to their intersections with time level t. At the inter­

section points PI, P2, P3 the initial values of u, p and p are linearly

interpolated between the grid points PS, P6, P7 for which all variables

are known. The iterative process of localisation of PI, P2, P3 and then evalu­

ating u, p and p at the solution point P4 is done by a predictor-corrector

algorithm, the localisation of PI, P2, P3 being the predictor - and the

evaluations in P4 the corrector-step. In order to avoid extrapolations,

the time step ßt was chosen such that the characteristics calculated using
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..........~4 ~4
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x
Fig. z: "inverse" solution method of characteristics (nozzle inlet,

inside and exit)

the stagnation-speed-of-sound would intersect at a distance of 1/3 of the

grid spacing from point P6. This prevents from extrapolation for a Mach

number below Z.

3. "Exact" solution for the steady flow

The onedimensional transient calculation of the flow in the HENRY-nozzle

approaches the onedimensional, steady flow asyrnptotically for lang times.

So the steady solution can be used as check for the unsteady calculation.

All equations necessary for the anedimensional steady solution can be

found in / 8, pp. 4Z, 49_7.

The following equation gives a connection between two cross-sections, Al

and AZ' of a nozzle and the Mach numbers MI and MZ of the flow at these

cross-sections:

(7)

A special form of (7) is used, if one of the cross-sections ~s the nozzle

throat because the Mach number corresponding to the throat is equal to 1,

according to the theory of the Laval nozzle. If two of the cross-sections

AI and AZ and one of the corresponding Mach numbers are given, the other

Mach number can be calculated iteratively.
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The energy equation for onedimensional steady flows reads:

2
. U
1 +­

2

2
K P u--- +-

K-I P 2
K

K-1 const. (S)

An almost analytical solution for the one-dimensional steady flow 1n a

nozzle including a shock can be found in the following way:

1. Using the inlet cross-section and the throat cross-section, the inlet

Mach number can be found by (7).

2. Taking the inlet Mach number and the given boundary conditions PI and

PI at the inlet plane, the stagnation pressure and density Po and Po

are calculated with the energy equation (S).

3. Assuming a position of the shock, the Mach number at the supersonic

side of the shock is calculated by (7) and with this Mach number and

the stagnation quantities the flow quantities at the supersonic side

of the shock can be found.

4. With the help of the well-known shock equations {-S, p. 42_7 the flow

quantities at the subsonic side of the shock are calculated and from them

the stagnation quantities behind the shock.

5. The Mach number at the subsonic side of the shock and the nozzle cross­

sections at the location of the shock and in the exit plane make it

possible to calculate the Mach number in the exit plane via (7).

6. The Mach number 1n the exit plane and the stagnation quantities behind

the shock allow to find the pressure in the exit plane, which can be

compared to the pressure given as a boundary condition in the exit plane.

The whole process from 3. to 6. has to be iterated using the Regula Falsi,

till the computed pressure in the exit plane meets the given one. This makes

the solution "quasi analytical". Then the location of the shock is known

and the flow quantities in the flow field can be calculated at any points

desired, using (7) and (S).
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4. Calculation and special problems 1n connection with the method of

characteristics

The treatment of the combined initial and boundary value problems, which exist

in the inlet and out let plane of the nozzle made necessary a modification of

the scheme for the initial value problem in the flowfield. In the inlet plane

only the characteristic C_ (fig. 2) was used and the pressure and density were

prescribed as boundary conditions. So only the velocity had to be calculated.

In the exit plane of a subsonic flow the pressure was prescribed and the C+­

and C -characteristics were used to determine u and p (fig. 2). The exit
o

plane of a supersonic flow can be treated as a field point, because all three

characteristics reach the exit plane from inside the nozzle and so make it im­

possible and unnecessary to give boundary conditions. A shock occuring in the

flowfield was treated as a special boundary dividing the flowfield into two

regions, which were connected only by the shock equations (fig. 3).

T

Fig. 3: Treatment of a shock 1n the flowfield

Computation was carried on until the steady state was reached, which took

between 1200 and 1800 time steps depending on the outlet pressure (öt ~ 5.10-6 sec).

The computing time always remained below 15 min on a UNIVAC-II08.

Detection of a shock:

For most of the outlet pressures a slowly mov1ng and finally resting shock was

expected during the computation. Up to the time when the beginning of a shock

was ascertained no shock calculations were performed 1n the field, but after

its detection the shock was traced trough the flowfield and treated as a special

boundary in it. The following criteria were used to detect the beginning of a

shock:
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I. The flowfield upstream from the point where the beginning of a shock was supposed

had to be supersonic and the flowfield downstream subsonic.

2. Two neighbouring characteristics of the same farnily of Mach lines had to

intersect within a time interval (Lit) sh = 45 I1.t/4. This empirical value of

(l1.t) sh allowed to find the shock at the earliest time, when its fitting into

the flowfield was numerically stable.

Once the shock was detected, its position was taken to be in the middle of the

grid interval in which it was found and the starting flow quantities on both

sides of the shock were taken from the neighboring grid points (fig. 4). The

initial shock velocity was taken to be zero.

\ho X
Fig. 4: detection of a shock in the flowfield

5. Calculation by STRUYA

STRUYA calculates the stationary nozzle flow as the asyrnptotic solution of a

transient calculation starting with the above mentioned initial conditions.

"Stationarity" of ::he calculation was obtained per definition when the maximum

change in locally corresponding velocities in 0.5 ms was less than 0.1 %. This 1S

arbitrarily chosen - 1/12 of the time for the flow to reach stationarity.

The convergence criterion for the iteration in each cycle was

(mass source term) • 11. t < E:' P , -4
E: = 10

Full donor cell technique was applied (a=I); in some examples a was set equal

to 0.75 with negligible effect on the stationary results. Each test was run

over 8 ms corresponding to 8000 cycles, stationarity was reached after 6 to

6.5 ms 1n all cases. This is about 2.5 times as large as tbe characteristic

run-through time of the nozzle in steady state. The computation time was 20.5

min on an IBM 370/168.
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Due to the - in some eases - initially rather large pressure differenee at

the exit problems of stability arose. Stability was obtained by making the

viseosity terms in the Navier-Stokes equation non-zero. As will be diseussed

later, this had the effeet of not only damping instabilities but also the

flow veloeity. In addition to the work presented here, ealeulations were per­

formed with four mesh eells in radial direetion ("2D"). They generally showed

the same results as the ID-ealeulations and therefore will not be diseussed

further.

6. Results

In figs. 7.and 8 (figures with numbers > 7 see appendix) the transient develop­

ment of some typieal profiles is doeumented. Figs. II through 18 show the

quasi-analytieal solution (solid line) together with the eorrespondingstati­

nary results of STRUYA (dashed line) and the ealeulation by eharaeteristies

(dotted line), respeetively.

The "eorreet" - aeeording to gas dynamies - solution elearly distinguishes the

aeeeleration phase in the eonverging part of the nozzle, a seetion of in differenee

in the eylindrieal part followed by further aeeeleration in all examples (the

exit pressure, below whieh eritieal flow oeeurs, is 4.72 MPa!). For downstream

pressures between 4.72 MPa and 1.89 MPa deeeleration is introdueed by a shoek.

Hs loeation is determined by the exit pressure. In the 1.5 MPa ease « 1.89 MPa)

no shoek oeeurs due to a totally supersonie solution downstream of the throat.

The denisty profiles resemble the pressure profiles. The loeal sonie veloeity

is nearly eonstant.

6.1 Method of eharaeteristies

The solution obtained by the method of eharaeteristies shows the following

diserepaneies as eompared to the analytieal solution:

influenee of the time-step

the loeation of the shoek is not deteeted eorreetly

even at large times t there remains a small but negligible pressure

gradient in the nozzle throat
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These discrepancies are results of the combination of constant cross-section

parts and corners in the contour of the nozzle which is rather unfavourable

for using a method of characteristics. The first mentioned influence of the

time-step size on the results can be seen in fig. 5. A small pressure peak

appears at the connection between the cylindrical inlet part and the convergent

part of the nozzle if the time step is taken to be half of the one used for

the other calculations. The effect of the unfavourable nozzle shape on the

numerical process can be shown easily in the case of this pressure peak and

works similarly in the cases of the other discrepancies. Information on the

nozzle cross-section is used by this method of characteristics only along the

C+- and C_-characteristics and only in the term ±~~ in eq. (6b). For points

in regions with constant cross-section, the whole term becomes zero and there­

fore along characteristics coming out of constant cross-section regions no

information about the area of the duct is used. If two grid points are located

as shown ~n fig. 6 and a time-step like ßt] in fig. 6 is used, all characteristics

used for calculations in the left point on time level t+ßt] originate in a

50

40
0:::
CI
CD 30

0.....

Fig. 5: pressure peak due to time-step size

1\1.----_
Fig. 6: influence of time-step size; here ßt]

-6 -6
3.87· 10 sec, ßt 2 = 5. 16· 10 sec

constant cross-section reg~on while all characteristics used ~n the right point

on time level t+ßt 1 come out of a region with varying cross-section. Concerning

the information on the cross-section the two parts of the nozzle are disconnected,
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and therefore the peak ~n the pressure distribution appears. If the time-step

is increased to L'lt 2 in fig. 6, the nozzle parts are connected again and the

peak disappears. Calculations in nozzles wi thout contour corners or parts wi th

constant cross-section did not show any connection between time-step size and

results. They can be taken as proof for the statement that the problems with

the HENRY-nozzle calculations are caused by its special, unfavourable form.

6.2 STRUYA

The calculations with the finite difference code STRUYA show deviations from

the correct solution, which principally change the shape of the profiles.

The shock is smoothed out over a length of about three diameters. In the 1.5

MPa - case, where there should be no shock, still one exists close to the exit

due to the - now senseless - pressure boundary condition. The "edges" of the

curves which are caused by the cylindrical section of the nozzle are totally

smoothed, not the slightest change in the inclination can be detected. This

effect is not influenced by the physical viscosity.

Fig. 10 demonstrates the effect of the physical viscosity in STRUYA. While the

v~scous flow calculation supplies a totally subsonic solution (M = 0.96)~max
where due to the pressure ratio a supersonic flow should result~ the inviscid

flow solution reaches at least M = 1.12. In the 4.5 MPa-case even the inviscid

calculation amounts to a subsonic solution (M = 0.62!, see fig. 12). Sur-
max

prisingly the local speed of sound ~s reached first - if it is ever reached

at the same location (z = 0.085 m) ~n all test examples. At this site the

critical pressure

K

2 K+l
Pexit = Pentry (K+l)

~s calculated correct with a maximum error of 1.5 %. Out-of-throat and out-of­

shock profiles for "non-extreme" cases (3.5 - 2.0 MPa exit pressure) are computed

correctly. The mass flux at the throat is slightly rising with falling exit

pressure though sonic speed is attained. Only at exit pressures below - 3.0 t~a

it remains constant as it should do.
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It is worth mentioning that the 2D-calculations of the two-phase nozzle flow

with STRUYA agreed very weIl with the experimental data {-6_7 concerning the

mass flux. The calculated pressure at z = 0.075 m (pressure tap in the nozzle

wall) was always - 9 % above the experimental value, indicating the same ten­

dency as in this work. It should be added, that after all the 2D-effect for

the HENRY-nozzle with a relatively small angle of convergence 1S negligible

compared with the discrepancies deducted here. Finally we should note that

STRUYA and its predecessor YAQUI were mainly developed for analysis of highly

transient flow situations and are not particularly tuned for steady flows.

7. Conclusions

In the application on a critical nozzle flow of an ideal gas it was demonstra­

ted that a first order finite difference code compared to a code based on the

method of characteristics may produce results which are extremely damped. The

resulting errors are of an intolerable magnitude though the physics of the

code are derived from first principles.

The calculations with the code based on the method of characteristics match

the exact solution fairly weIl, especially if the derivatives of the contour

are steady. The quantitative deviations show that with geometries like the

HENRY-nozzle the method of characteristics reaches limits as weIl.

Due to the numerical damping and the enormous computation time the first order

finite difference code seems not to be the adequate tool for this kind of prob­

lem though easy handling suggests its application. A code of second order 1n

space should supply better results though geometry and the nonlinear equation

of state for example imply errors of first order anyway. On the other hand,

while the method of characteristics 1S far superior in this comparison, cer­

tain problems (e.g. 2D-calculations of a steam-water flow through the same

nozzle) exclude its practical application. Moreover the damping effects are

sometimes desired for transient processes where they are expected to be of minor

influence on the results (like filters are used for experimental evaluation).

It is therefore recornmended to test these codes before application on a similar

but analytically resolvable example to make sure that the numerical effects

such as difference formulation, stepsize, mesh discretisation, stability para­

meters etc. do not dominate (in an unnoticed way!) over the physical effects

which are to be simulated.
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