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Abstract

To evaluate Optical Model cross-sections, the Optical Model formalism is
described. Adjusting the optical model parameters a sensitivity analysis
is performed. Optical Model cross-sections assuming a spherical potential
are evaluated for the nuclei U-238, Pu-240, Pu-242, Am-241 and Cm-244
taking into account the smooth A-dependence of these cross-sections. Com-

puting the compound elastic cross—section o, with the Hauser/Feshbach

CE
formula, and in one case with a semi-empirical method, the following types

of cross—section are obtained: the total cross-section ¢ the elastic

tot’

cross-section o the reaction cross-section cr and the differential

el’
. . do .

elastic cross-section Eﬁgl' The evaluated cross—sections are compared to

experimental data., Discrepancies in experimental and evaluated data are

pointed out and recommendations are given. Furthermore capture cross-sections

are evaluated based on the simple giant dipole resonance model.

Berechnung von Neutronenwirkungsquerschnitten einiger Transactiniden-

kerne im schnellen Bereich mit Hilfe des optischen Modells

Zusammenfassung

Zur Berechnung von Wirkungsquerschnitten mit dem optischen Modell wird der
Formalismus des optischen Modells beschrieben. Zur Anpassung der Parameter

des optischen Modells wird eine Sensitivitdtsanalyse durchgefiihrt. Wirkungs-
querschnitte nach dem optischen Modell werden fiir die Kerne U-238, Pu-240, Pu=242
Am-241 und Cm-244 berechnet, wobei ein sphirisches Potential zugrunde ge-

legt wird und die langsame A-Abhdngigkeit dieser Querschnitte beriicksichtigt
wird. Nach Berechnung des compound-elastischen Querschnittes O nach der
Hauser/Feshbach-Formel und in einem Fall nach einer semi-empirischen Methode
werden folgende Querschnittstypen berechnet: der totale Wirkungsquerschnitt

Oeot? der elastische Wirkungsquerschnitt Og1° der Reaktionsquerschnitt o,

und der differentielle elastische Querschnitt %%ﬁl. Die berechneten Wirkungs-
querschnitte werden mit experimentellen Werten verglichen. Diskrepanzen

in den experimentellen wie in den evaluierten Daten werden deutlich gemacht
und Empfehlungen werden gegeben. lberdies werden aufgrund des einfachen

'Giant-Dipole-Resonance-Modells' Capture-Querschnitte berechnet.
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1. Introduction

Transactinide nuclei are in general highly radioactive and to some extent
very shortlived. Therefore the measuring of neutron cross-sections of
these nuclei is extremely complicated, In this situation evaluated cross-
sections are useful to fill gaps of the measurements and sometimes they

can even be used to verify existing experimental data.

From the upper keV - to the MeV - region the Optical Model is the most
useful tool to evaluate average neutron cross—sections, The Optical Model
parameters are adjusted to a suitable nucleus and, on the basis of the
A-dependence, are extrapolated to other nuclei, for which experimental

data are scarce or less accurate.

In this work the parameters are adjusted to the total cross-section of
U-238, because U-238 is an even-even nucleus, for which a large amount
of experimental data is available. On the other hand, for heavier even-—
even nuclei, which are the main object of consideration in this work,

the measured cross—sections are scarce and partly less accurate.

Optical model cross-sections, for example the total cross-section @

tot
and the absorption cross-section 9 bs’ depend smoothly on the mass number
A, In the case of %ot in the mass region 232 < A < 239 this can be seen

from Fig. la and 1b, which are taken from Madland and Young /!/. Therefore

it is possible to extrapolate cross-sections according to the A-dependence.

Theoretically this behaviour is confirmed by the terms for the average
cross-sections derived from the optical model formalism. In the limiting

case of low energies one obtains for the total cross—sectiomns /2, 3/:

;t ¢ = a2 + Sﬂ.g [ we u|2 dr
° ketr

Here R' is the scattering length for potential scattering, k the wave
number, m the reduced mass from neutron and target nucleus, W the
imaginary part of the potential and u the radial part of the wave function

Yy for 1 = 0,



The ratio R'/R, where R is the potential radius, varies between A = 238
and A = 244 according to Feshbach /2/ between 1.08 and 1.06, resulting

in a decrease of 4 7 in R'2. On the other hand, R2 increases less than

2/3

-behaviour. The variation of the second term
2/3

2,5 % according to the A
in (1.1), which also depends according to the A"’ ~“-behaviour of the

optical potential on A, is of the same order.

These reflections show that according to eq. (1.1) Etot should vary less
than 4 X in the region 238 < A < 244, This behaviour is verified by this -

work (see sect. 3).

In contrast there are experimental data, which show large discrepancies.
For instance, the total cross-section varies between A = 238 and A = 242
up to 35 Z, being nearly ten times larger than the physically reasonable
value, In the past evaluated cross-sections in the transactinide region
often ignored the A-systematics shown above. Therefore they are partly

very discrepant.

The present evaluation was performed with a spherical optical potential,
in spite of the fact, that the nuclei considered are strongly deformed.
It was shown, however, that the neutron cross-sections in the enmergy
region from 10 keV to 15 MeV can be evaluated with this simple model
quite satisfactorily. Furthermore, the work of Madland and Young, cited
above, shows, that a coupled-channel-calculation with deformed potential

scarcely produces better results,




2. The Optical Model

Nuclear reactions are many-body-problems, the incident particle inter-

acting with the nucleons of the target nucleus. The optical model approxi-
mates the many-body-problem by a two-body-problem. The target nucleus acts
with the average potential V(r) upon the incident particle. The particle's

motion in the potential V(r) is given by the Schrddinger equation:
2m
&y + =5 (E = V(r))y =0 (2.1)
h

Here E is the incident particle's energy in the center—of-mass system.

The first efforts to replace the target nucleus by a potential well were
undertaken by Bethe in 1933 /4/. However, Bethe's potential well model
failed to explain the narrow resonances in the low energy region. On the
other hand, the compound nucleus theory developed by Niels Bohr soon
afterwards /5/ was able to explain these narrow resonances on the basis

of nucleon-nucleon interactions. According to the compound nucleus theory,
the incident pafticle is absorbed by the target nucleus distributing its
energy after a short time (ca. 10-‘63) equally among all nucleons. So

the incident particle loses its identity during the compound state, the
compound nucleus decaying independent of its formation. In this process
the incident particle has a short mean free path compared to the radius

of the nucleus. This results from the strong interaction with the nucleons

of the target nucleus.

After World War II cross-section measurements in the MeV region became
possible and the experimentalists (e.g. /6/) discovered resonances having
widths in the order to some MeV, whereas the widths of the compound-
resonances lie in the order eV to keV. These so-called giant resonances
depend on the mass number A and on the incident energy E. Because only a
potential well model is able to explain the giant resonances, the optical
model was stressed again /7, 8/. In order to take into account the absorp-
tion and therefore the formation of the compound nucleus, the potential
was made complex. So the absorption is given by the imaginary part of the

potential W(r). This was done in analogy to optics, where a complex index



of refraction is used to describe the refraction and absorption of light

propagating through a refractive medium.

In this case, the incident particle possesses a mean free path comparative
with the radius of the nucleus. Therefore, resonances can occur in the

potential well at particular values of the wave length.

These single-particle~resonances depend on the potential radius R and on
the wave number inside the potential well K. For example, a square well

potential of the form
V(r) =

where the potential depth according to the Fermi-gas—-model is of the order

1/3

of 45 MeV and the potential radius according to the A "~ -law is

R=1.2¢ AI/B, yield resonances for /9/:

KR = (n + )7
2
vith n even, 1 = angular momentum quantum number

Up to high energies, the compound nucleus theory had to be completed by

the optical model, The optical potential, however, is an average potential
of all nucleons of the target nucleus. Therefore the optical model is unable
to reproduce the precise structure of the cross—-sections. Rather the optical
model yields average cross—-sections. Up to high energies, however, the
compound resonances become unresolvable and in this region the optical model

cross—sections agree with the measured cross-sections.

To yield the cross—sections evaluable with the optical model, the compound
resonances therefore have to be averaged. In the following the derivation
of the average cross—section and the association with measurable cross-

sections is given.




2,1 Average Cross—Sections

The scattering of a spinless particle at a spinless nucleus is considered

in the following. The wave functions w(;) of the particle considered
asymptotically consists of the incident plane wave (in z-direction) elkz

and the scattered spherical wave:

ikz . £(8)

¥(E) = A% + - .e1kTy (2.2)

Herein A is a constant to be normed, 6 is the scattering angle and r is
the distance particle-nucleus. So the scattering is described by the
scattering amplitude £(8). The total cross-section %ot is obtained
according to the optical theorem (e.g. Schiff /10/) from the imaginary

part of the scattering amplitude in forward direction:

Opor ™ %} Im[£(0)] (2.3)

The differential cross-section for elastic scattering is given by the

absolute square of the scattering amplitude /10/:

do
= = l£@|? (2.4)

Therefore the elastic cross-section is given by:

d9¢1 2
0g = [ (=g )da = [ |£(e)| dn (2.5)

The reaction cross-section . is finally obtained in the following
manner :

o_=a -0 (2.6)

r tot el
Provided that the energy resolution is good, the scattering amplitude £(8)
fluctuates strongly, dependent on the incident particle's energy E. This
is so, because f(8) describes the exact structure of the cross-sections.
The optical model scattering amplitude, however must be an averzge ampli-

tude, for optical model cross-sections are average cross-sections. Therefore



f(0) must be averaged over an interval A which is large compared to the
widths of the compound resonances, but small compared to the widths of

the giant resonances:

B+ 3
HOB %- [ £(E')HE' (2.7)

Now the optical potential is that potential, for which f(6) is the scattering
amplitude. According to eq. (2.3) %ot depends linearly on £(68). This

yields for g ¢ (following Hodgson /11,12/ the optical model cross—sections

to
are signed with a tilde):

~n 4n

Seor = o m[F®] (2.8)
ioec ~ =

%ot = ot (2.9)

The optical model total cross—section agrees with the average total

cross—section.
For the elastic cross-—section according to eq. (2.5) is valid:
n —_— 2
g . = [ |€(8)]|“aa (2. 10)
el
But gel disagrees with Eel’ which is defined as follows:
- —
o, = [ |£(8)|“da (2.11)

The difference, the so—called fluctuation cross-section Oey is given

by the angle-integrated average fluctuation square:

Op1 = Og = Oy = { 1£¢0)|% - |TTY|2 } an (2.12)

With eq. (2.6) 8: is given by:

n n n - - -
g_ =g -0 . =g -g ., +0,, =

r tot el tot el (2.13)




therefore:
l\' -
o =0 _*+o ( )
I\' -
01 ™ Ye1 ~ %1 ( )

The average reaction cross-section Er includes all reactions, therefore
. p ~ .
Og) Tepresents an elastic cross-section. On the other hand, o, contains
. - . . v,
Teyr and especially for o. = O, i.e. there are no reactions, or is totally

given by o_., concluding that o_. is an absorptive cross-section. So ¢

representsf:hat part of the elaitic scattering, where the incident pariicle
is first absorbed, leading to the formation of the compound nucleus, but
then is emitted back into the entrance channel. Therefore Oeq is given by
the average compound elastic cross—-section 9cg? that can be shown also

by explicit averaging over Breit-Wigner resonances (e.g. Hodgson /11, 12/).

~
On the other hand, o,y represents the pure potential scattering, the
incident particle Being only scattered by the target nucleus, but not

absorbed. Therefore ge is called in general the shape elastic cross-—

1
section o__.

SE
v, . . . .
o.1is the total absorption cross-section (including the average compound
elastic cross~section) being identical with the compound nucleus formation

cross—-section . This also can be shown strictly mathematically.

For the optical model cross—-sections now the following equations are

valid:

I\‘ -—

0tot 0tot (

S =g, =g +0._ =30 (2.15b)
r abs ) o CE c

g -6 _ =5 . -0 (2.15¢)

Only the average cross sections o ot’ ;t and ;el can be measured. Therefore

t
the average total cross-section is the only cross-section evaluable with

the optical model and simultaneously measurable by experiment. So %ot is highly



suitable for parameter adjustment (comp. sect. 3.1).

The experimentally measurable reaction cross-section Er however cannot be
evaluated directly by the optical model, The optical model yields the

. . > -
absorption cross-section 9. = Tubs’ In order to calculate o, and compare

with experimental results, o,., must be known (cf. sect. 2.2).

CE

By averaging the elastic cross-section is split into the compound elastic

part o.. and into the shape elastic part o__.. Experimentally however 9gg

CE SE

and ;CE cannot be separated. Measured is the quantity:

- n, -
el “%E " %E " %1 * %k

As in the case of Er’ comparison with experimental results can only be
done if Ocg 18 known.

In the high energy region (E > ca. 7 MeV) d,.. however decreases rapidly

towards zero. This is so, because up to higgEenergies more and more out-
going channels are opening, especially a lot of competing inelastic
channels open, and therefore the probability of the particle considered
being scattered into the compound elastic channel becomes extremely small.
Moreover, at high energies the direct processes become significant, out-

weighing the compound elastic part of the scattering. So above 7 MeV holds:

1] = g and o =g

abs r SE E 27 MeV

el

2.2 Determination of %cp

To obtain g there are on principle two distinct methods applicable:

a) The Hauser/Feshbach formula

The Hauser/Feshbach formula /13/ yields the cross-section Oup for a reaction

going via the compound nucleus from channel a to channel B:

SR M R N (2.16)




Here are:

J 2J+1 . . .
g = GEDIGTID) the spin weighting factor

i = the incident particle's spin quantum number
I = the target nucleus' spin quantum number

J is the total angular momentum quantum number, which sums up according

> >
to the sum rule for the angular momentum: J = I + T+1
1 = angular momentum quantum number of the incident particle

T, =1- lnal2 : Transmission coefficient being calculated by the optical

model (na is explained in sect. 2.5).

The first sum in (2.16) takes into account all allowed angular momentum

combinations, the sum I TB' in the denominator of (2.16) extends over all
. B '

energetically possible channels.

The Hauser/Feshbach formula (2.16) is clarified by writing

T
L J. . J 8
g = z g T P = —
c,a Kk 2 7,1 o B Z T
a 8"

B'

when 9. is the compound nucleus formation cross-section via channel «
’

and PB is the probability for decaying into channel B. Therefore the
Hauser/Feshbach formula can be written in the following form illustrating

the compound nucleus process:

; = g -_ﬂ_.ng._a___ (2.17)
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However, to get o, via eq. (2.17) the compound nucleus' energy levels

CE
must be known, or if they are missing a level density formula must be

applied (cf. sect. 2,6).

b) Semi-empirical method

If there are enough reliable cross-section data for the interesting nucleus
it is possible to get Oep by a semi-empirical method. To do this, the
optical model parameters are first adjusted .tt suitable cross—sections.

Often the differential elastic cross-section at high energies, where o

CE
is zero, is used for adjusting /14/. With the parameters gained dggl is then
evaluated in the low energy region. Finally one gets é%%E, assumed to be

isotropic, by subtracting the evaluated data from the experimental ones.
This procedure is done for several energies to get the energy dependence

of UCE'

Another way to get 0. by a semi-empirical method is followed in this work.

CE
Here the parameter adjusting is done at the total cross-section. This has
the advantage, that the adjusting can be executed over the whole energy
region of interest. ;CE can be gained simply by doing the difference

= exp

g =g -0

CE abs ne (2.18)

where % bs is the absorption cross-section calculated with the adjusted
parameters from the optical model and oneexP is the experimental non-—

elastic cross-section. To see the accuracy of the evaluated o values,

CE
the elastic cross—section 0.1 can be computed according to

%1 = %g * %k

and so can be compared to measured oel-data. Furthermore, if experimental

%% data are available, E%gl can be obtained by adding to d:g the isotropic

differential compound elastic cross—section and so can be compared with

measured data:

do g

CE CE
daQ " O (2.19)
oy dogg 9CcE

m " d@m Y& (2.20)




In the present work 0. is evaluated both with the Hauser/Feshbach formula

CE

and with the semi-empirical method after adjusting the parameters to Oot®
The results are compared in Fig. 3. In section 3.1 this point will be

considered in greater detail.

2,3 Form of the Optical Model

The optical potential used in this work is based on the work of Wilmore

and Hodgson /15/ (cf. also sect. 2.4). The potential comsists of a real
part V(r) and an imaginary part W(r). A coulomb term is not included, since
only neutron-induced reactions are considered. Further a spin orbit term

is not taken into account since this is hardly significant /11, 12/, except
in the case of polarization being not considered here. The form of the

optical model therefore is as follows:

U(r) = = Vef(r) — ieWeg(r) (2.21)

Herein V is the real and W the imaginary potential depth, f(r) and g(r)
are the form factors giving the form and radial dependence of the potential.

Especially f(r) is of the Woods—-Saxon form:

— (2.22)

f(r) =

|+e

a
T

/3

where Rr is the real potential radius: Rr = rroA] and a is the real

diffuseness,

The imaginary form factor g(r) is of a derivated Woods-Saxon form having
its maximum at r = Ri' This choice is based on the fact, that the absorption

takes place mainly at the surface of the nucleus /11/.

r-R.
i
(r) = ~bea, o £L.f(r) - 3:2___fi__. (2.23)
g i dr r-Ri 2
a
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where Ri is the radius of the imaginary potential well: R, = ri-Al/3 and

a, is the imaginary diffuseness.
So the optical model parameters free for adjusting are in this case:

VvV, W, rr, T: ar, ai
If the evaluation is performed over a large energy region, using a local
potential, it is necessary to choose the potential depths V and W energy
dependent (cf. sect. 2.4), e.g.:
2

V=V + V,°E + V_°E
o i 2

W=W + W.+E
(o] 1

So the parameters V., V, and W, are to be adjusted additionally.

1* "2 1

The optical model parameters, free for adjusting, clearly are "free" only

within physically reasonable limits. So the real potential depth V must be
of the order 40 - 50 MeV (according to the Fermi gas model giving a Fermi

energy of ca. 30 MeV, assuming a neutron separation energy of ca. 10 MeV,

V is of the order of 40 MeV). The real radius parameter r. must have a

value near 1.2 fm, which is deduced from experiments.

Furthermore, there are so-called optical model ambiguities arising from

the fact, that different values of certain parameters produce the same
results. For instance, a real potential depth of ca. 47 MeV can yield
otot-values in good agreement with experimental values, but V = 80 MeV or

V = 120 MeV can also produce such agreement. Clearly, the last two potential
depths are physically unreasonable. Another example is the Vor® ambiguity,
where n is ca. 2, This means that the results from optical model calcula-
tions are not changed when changing V or r in such a manner that Ver™ = const,
So if the agreement is optimal for V = Vl and r = T» the same agreement
will be obtained choosing V = V2 and r = r, with Vz-rzn = V|°r|n.

Now adjusting optical model parameters, it is clear that several ambiguities

are to be studied in order to gain the physically reasonable parameters.




_,3_

However in the case of this work the physically well-established Wilmore/
Hodgson parameters (cf. sect. 2.4) are used as starting point in the
adjusting procedure and finally they are only slightly changed (cf. sect.
3.1.1). Therefore a detailed ambiguity study is not performed here. A dis-
cussion of the optical model ambiguities is given e.g. by Hodgson /11, 12/,
a detailed analysis in the case of 3He-scattering at light nuclei is given
by Schelinsky et al. /29/.

2,4 Perey/Buck potential and Wilmore/Hodgson approximation

The optical potential can be derived from the microscopic many-body-
problem, as was done by Feshbach /2/. There the potential sums up all the
individual interactions of the incident particle with each nucleon of the
target nucleus. Now in deriving an average potential, i.e. an optical
potential, Feshbach showed this potential to be non—-local in character.
So the potential acting upon the incident particle not only depends omn
the distance r target nucleus-particle but is also influenced by the wave
function y(r') of the particle and therefore depends on both r and r'.

The potential thus becomes momentum—dependent.

In the Schrédinger equation the term:
V@@ - ¥(®

describing the interaction particle - target nucleus changes into:
[VEE) v@E) dr

Hence the Schrédinger equation

2
[A+E} @ = v@ ¥ (2.24)

changes into the following integro—differential equation:

2 > ->
(L ase}s® = [ V@I v@E) & (2.25)
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Here V(;,?') is the non-local potential. Perey and Buck showed /14/, that
in using this non-local potential no energy dependence of the potential

is needed to reproduce neutron cross-sections. However the integro-
differential equation (2.25) is difficult to handle. It can be solved only
with enormous effort by numerical integration and iteration. But Perey and
Buck also showed that if certain conditions are fulfilled, there is an
equivélent local potential VL(r) corresponding to the non-local potential

VN(r) satisfying the following equation:

2
V(0 e {25 @ - v ) } = vy (2.26)

where B is the range of the non-locality.

Wilmore and Hodgson solved this equation by iteration /15/. They showed
that already the first approximation for VL(t) is sufficient. The para-
meters gained by this procedure show the following energy— and A-dependence,

being equivalent to the non-locality (2.25):

2
E
W =9.52 MeV - 0.53¢E E in MeV

6,2

r_ = 1.32 - 0.00076+A + 10 °A% - 810>

A3 (fm)

r; = 1.266 - 0.0037+A + 2010792 - 4210723 (fm)

a = 0,66 fm a, = 0.48 fm
r i

With these parameters and the corresponding potential, using the Woods-
Saxon form factors described in sect. 2.3, Wilmore and Hodgson succeeded

in reproducing neutron cross-sections over a large A- and E-region. However
in the actinide region, where U-238 was considered, the results were less
successful, Nevertheless, the Wilmore/Hodgson parameters are used ag a
starting point in this work. As described in sect. 3.1.1, the parameters

had to be changed slightly for the nuclei considered.
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2.5 The basic formulae and the procedure for computing the optical model

cross—sections

To obtain the cross—sections, the Schrédinger equation (2.24) must be
solved with the potential (2.21). To do this, a partial wave analysis is
performed yielding for the present assumed case of a spinless particle

(no spin-orbit interaction) the following differential equation for the

partial ul(r) (u(r) = rvw(r)):

2
2—7 ul(r) + {k2 - E%-V(r) - 1(1;1)}nl(x:) =0 (2.28)
dr T ) o
h
The cross sections then are /16/:
=35 1 e aere[n]) (2.29a)
k 1
o )
o =7 L QI+D[i-n] (2.29b)
k 1
2
%abs ~ i% % (21+I)(I-|n1| ) (2.29¢)

Here the eigenvalue of the scattering natrix " describes the change in
phase and amplitude of a partial wave scattered by the potential V(r). The
scattering amplitude f(8) is associated with n, according to the following

Legendre expansion:

£(0) = g% § (21+1) (1-n))P, (cos ©) (2.30)

where Pl(cos 0) is the Legendre polynomial of order 1.

The differential cross—section therefore reads:

do 2 1 2
" |£¢e)|“ = 2;7 |§ (21+1) (1-n, )P, (cos 8)| (2.31)
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The calculations were performed with the computer code HAUSER#4 /17/.
However the program had to be modified, since in its original version only

reaction cross—sections could be calculated (cf. sect. 3.1).

The modified version, called HAUSER#4/MOD, is able to calculate " and

accordlng to eq. (2.29 a - ¢) 9ot® 9SE and 9.bs Furthermore, a subroutine
was implemented, which enables computing the differential shape elastic

cross—-section for spinless particles according to eq. (2.31).

The radial Schrédinger equation (2.28) with the potential (2.21) is solved
numerically with the Cowell method /18, 19, 20/. In this procedure the
function ul(r) is obtained at the points r and Ar, Outside the range of
the potential (V(r) is set equal zero for r > T the matching radius r
is chosen to be twice the value of the potential radius R) for

ul(pm) = ul(k'rm) the following analytical term is obtained /12, 16, 20/:
“1(°m) ~ Fl(pm) + 1-G1(pm) + nl[Fl(pm)-i Gl(pm)] (2.32)

Fl(p) and Gl(p) are Bessel resp. Neumann functions as being defined e.g.
in Schiff p. 85 /10/ or Messiah appendix B.2 /9/. Together with the values
of ul(pm) and ul(pn) = ul(pm + Ap) gained by numerical integration

of eq. (2.28), Ny is obtained from the ratio

uley)  Fley) +1 6 + n [F G ) + 16 G )]
u G ) File) +iG (o) +n[F6 ) +1i6(p)]

yielding for g

oy o) [Py (o) 6, (o )] -uy () [Fy o)+ 6y (o))
TGy [F, G ) G, (o ) +u, G ) [F, G )=1 6 ()]

(2.33)

Now knowing ny the cross-sections (2.29 a - ¢) can be evaluated. Furthermore
the particle transmission coefficients are obtained according to
|2

T, =1~ |n1 (2.34)




_]7-

and so can be used in the Hauser/Feshbach formula (2.16).

However to do the sum in the denominator of (2.16) besides the particle
transmission coefficients, the capture, and in the high energy region,

the fission transmission coefficients contribute an essential part. The
procedure to obtain the capture transmission coefficients is described in
sect, 2.6. The evaluation of the fission transmission cross-sections is
described in the following only briefly because fission cross-sections are

not considered in this work. The fission transmission coefficients used

in (2,10) for calculating OcE and o y are obtained according to Hill and
’
Wheeler /21/:
T, = ! 2.35
£ R (2.33)

1 + exp{hm l}
1

where the fission barrier is assumed to be an inverse oscillator potential

of height E, and width hml. Taking into account the double-humped barrier

1

is done by calculating the transmission coefficient T, resp. T_ individually

A B
for each barrier and taking an average transmission coefficient according to:

Ty * T

T, = (2.36)
£0T, ¢ T

2.6 The capture cross—section

Besides optical model cross-sections capture cross—sections are considered

in this work. The partial capture cross—sections o Y(EY)' where € 1is the

?
photon -energy, are obtained from the Hauser/Feshbach formula (2.16) setting

B
Holmes and Woosley /23/:

T, = TY. The capture transmission coefficients are computed according to

4 3
TEl(EY) 2w --3; —_—_— — 5 EY fE(eY)

= 5,185 ¢« 10 O A o Ky * eY3 . fE(ey) (2.37)
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for El-radiation and

2
e 1 3
T (&) = 157 = 32 ° =27 * Ky 5y Byl
M ¢
P
-7 3
= 3.906 + 10" K+ €+ fyle) (2.38)

for Ml-radiation. Only El and Ml radiation are assumed to contribute to
the capture transmission coefficient, because higher polarities are very
unlikely below 25 MeV /25/.

The constants in (2.37) resp. (2.38) are: N = number of neutrons,

Z = number of protons, A = N+Z, Mp = proton mass, ¢ = speed of light,

e = elementary charge. KE and KM are parameters free for adjusting at
experimental data. Holmes and Woosley used 0.25 for KE and 0.05 for KM.

However, as is described in sect. 3.4 KE had to be changed in this work.

fE(ey) resp. fM(ey) is the profile function reading in the case of El
radiation according to the '"giant dipole resonance model" /24, 25/ as

follows:

TepRr" €y
2 2 2 2
(e ¢epr) * Tepr'ey)

fE(ey) = (2.39)

and in the case of Ml radiation is reduced to a constant according to

the Weisskopf model:

fM(ey) = |
For the width of the giant dipole resonance PGDR and the resonance energy
€GDR the values given by Holmes and Woosley /23/ are taken:
_ 35
“GDR ~ 176 (MeV)
(2.40)
33
Teor ™ 7173 (MeV)

A
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To calculate the total capture cross-section o y the transmission coeffi-
»

cients T (e. ) must be summed up over all decay energies €, in the
El1,M1 7y Y

continuum Tg, Ml(ey) has to be weighted with the level density and inte-
’

grated over the corresponding energy region:

Jw Jn E* T
= #_nt 1 ' .
T z T,” + é _TEl’MI(E E")p (E')dE (2.41)

Here E* is the maximum excitation energy of the compound nucleus composed

of the incident neutron energy En and the neutron binding energy:

*B
E*=E +B (2.42)

E' is the excitation energy:

E' = E* - 2.43
€y ( )

and El the energy of the highest discrete level of the compound nucleus.

The level density p(E'), needed in eq. (2.41) as in the Hauser/Feshbach
formula above the known discrete levels, is represented according to
Gilbert and Cameron /26/. For high energies E > E, (Ex is defined below)

the "back shifted Fermi gas formula" is used:

_J(3+1)
w 202 e2»’a(E—A)
o(E,J) = (2J+l)e . (2.44)
’ 24/7 a' 4 (g-0)°"*
For energies E < E_ the "constant temperature formula' is adopted:

E-E
1

p(E) = % e T (2.45)

The density parameters are computed following Gilbert and Cameron:

a = (0.00917 « § + 0.120)*A  (MeV 1) (2.46a)
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where S = S(Z) + S(N) is a shell correction depending on the neutron number
N and the proton number Z. S(Z) and S(N) are tabulated in the Gilbert/Cameron
paper /26/.
The pairing energy is calculated from:

A = P(Z) + P(N) (2.46Db)
P(Z) and P(N) also are taken from /26/.
The spin cut-off parameter g is given by:

2/3
o2 = 0.0888 /a(E-ay - o2/ (2.46c)

The energy Ex at the matching point, where the formulae (2.44) and (2.45)

are connected, is obtained by:

E =2.5+32 44 (MeW) (2.46d)
X A

The nuclear temperature T in (2.45) is given by:

1 [a’ 3
T "~ \E-3 ~ Z2(E-B) (2.46e)

Finally the referring energy Eo in (2.45) is obtained by:

E,=E =T« In{T « o, .(E-0)} (2.46£)

X

where P Permi is the Fermi level density given by (2.44).

The parameters calculated according to the formulae above are given in
Tab. II. The capture cross—section calculations are described and discussed

in sect. 3.%4.
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3. Cross—Section Evaluation and Interpretation

3.1 U~-238 cross—sections

3.1.1 Parameter adjusting and sensitivity analysis for Trot of U-238

For the optical model parameter adjusting the nucleus U-238 is chosen for

being that even—even nucleus with the highest mass number, for which still

the most reliable experimental data of O or aTre available. The values of
%ot used for adjusting are those from the Kerndatenbibliothek Karlsruhe 3

KEDAK-3, where experimental data of several groups are taken into account /27/.

As a starting point, the Wilmore/Hodgson parameter (2.27) are used in

HAUSER#4/MOD to obtain o
tot

very unsatisfactory. So a new parameter adjustment has to be performed.

. However the agreement to the KEDAK-3 data is

The parameter adjusting is done in two steps. First the optical model code
ABACUS /28/ is used to obtain a first set of improved parameters. The code
ABACUS is able to do an automatic parameter search by varying simultaneously

up to five parameters to minimize the quantity:

2
x =

N .
1 i 1 2
5 Z] { } (3.1)

i

Xp . .
P is the experimental value

th . e
where °i is the evaluated value of ci, 9.
and N is the number of values. So x 1is the square of the deviation of the

. . 2
theoretical from the experimental values and the square root of ¥ repre-

exp

. th
sents the average error in 9, referred to ¢ . The new parameters ob-

tained by this step are:
V = 45,92 MeV r. = 1.22 fm r, = 1.298 fm

All other parameters are unchanged in this step. The total cross-section
evaluated with these parameters is plotted in Fig. 2 together with the
KEDAK data.
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The second step is to use the adjusted parameters by ABACUS in HAUSER¥4/MOD

and to vary some dominating parameters systematically.
This step is performed for two reasons:

i) The optimal parameters gained by ABACUS must not necessarily be the
optimal parameters for use in HAUSER#4/MOD.
ii) It is of particular interest to see how o is sensitive to certain

tot
parameter variations.

The results from this sensitivity analysis can be seen from Fig. 3a to 3c.
To discuss the results, we start with the variation of the real potential
depth V., It is seen from Fig. 2 that the agreement to the KEDAK values in
region below 100 keV is bad. This point is of particular interest and is
discussed deeply in the following sect. 3.1.2. Nevertheless, if V is in-
creased from 45.92 MeV to 47.01 MeV (the original Wilmore/Hodgson value)
the agreement below 100 keV becomes better (see Fig. 3a), but above 100 keV
becomes too high., If on the other hand V is decreased to 45.0 MeV,

g
tot

9ot increases strongly below 100 keV simultaneously decreasing above 100

keV, however agreeing well with the KEDAK data in this region.

Now although V = 45,0 MeV gives good agreement above 100 keV, the values
below 100 keV are much too high, It is therefore attempted to use the

Wilmore/Hodgson value 47.01 MeV yielding for o relatively good agree-

ment below 100 keV and to get better agreementtgﬁove 100 keV by changing
the real radius parameter r. This is shown in Fig. 3b. Decreasing r_to
1.2] fm results in a satisfactory agreement above 100 keV, though Orot is
slightly increased below 100 keV. A further decreasing of r. to 1.20 fm
on one hand gives better agreement above 100 keV but on the other hand %ot
is increased too much below 100 keV.

From sect. 2.3 it follows that increasing V is compensated by decreasing

r_ and vice versa. As it is clear from the variations in Vr and r

described above, it is necessary to find a compromise in choosing the
optimal values for V and r. So a high V value gives relatively good results
above 100 keV but clearly the results below 100 keV are worse. On the

other hand, a low value of V results in good agreement above 100 keV and a
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high value of r gives good agreement below 100 keV. As can be seen from
Fig. 3a and 3b to choose V = 47,01 MeV and r = 1.21 fm is a satisfactory

compromise,

A further improvement is achieved by decreasing the imaginary potential

depth W from 9.52 MeV to 9.0 MeV, thus o decreases slightly in the

region 100 keV to ca. | MeV and slightlytgﬁcreases below the giant resonance
near 4 MeV, while the region below 100 keV is nearly unaffected (see Fig. 3c).
Comparing Fig. 3c and Fig., 2 it is obvious that choosing the parameters

V = 47.01 MeV, r. = 1.21 fm and W = 9.0 MeV instead of the ABACUS para-
meters results in equal agreement above 100 keV, whereas the results below

100 keV are improved. So the choice of the final parameters is justified:

2
V = 47.01 MeV - 0.267+E - 0.00118+%
MeV
W= 9.0 MeV - 0.53¢E E in MeV
(3.2)
r = 1.21 fm r. = 1,298 fm
r 1
a = 0.66 fm a. = 0.48 fm
r 1

With these parameters a xz of 2.15010-3 was achieved, yielding an average

deviation of the evaluated T ot values from the KEDAK data of ca. 5 %.

It should be noted that in contrast to the Wilmore/Hodgson parameters (2.27)
the new adjusted parameters T and r, are chosen to be mass independent.

This is done because the nuclei considered here are close together and the

mass dependence of the potential radii Rr and Ri’ given by the A]/3 law,
is sufficient.

3.1.2 Discussion of the evaluated total cross—section

The © values of U-238 evaluated with the new adjusted parameters (3.2)

tot
are plotted in Fig. 4a together with the KEDAK-3 data. Above 50 keV the

agreement is satisfactory over a wide region, only in the giant resonance

region the experimental data are underestimated resulting from the use of
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a spherical potential, for the deformation is strongest in this region /1/.

However, as mentioned in the previous section, there is a discrepancy in
the region below 50 keV. So the KEDAK-3 value of Teot at 10 keV is ca.
13.7 barn, whereas the evaluated value is ca. 16 barn. From the previous
sectiqn it is obvious that this discrepancy can only be solved by using
a new set of parameters below 50 keV, for V, yielding good results below
50 keV, has to be increased by an amount which would destroy the good
agreement above 50 keV. But it was the intention of this work to cover a

wide energy region with one global set of parameters,

However there were some good reasons to suspect that the KEDAK data below

50 keV are too low:

i) The work of Madland and Young /1/ yielded %ot values for U-238 ac-

cording to the results from this work using the global parameters (3.2).

(see Fig. la).

ii) From Fig. la it can be seen that for nuclei with 232 < A < 239 even

iii)

the experimental data for o have the same tendency for 10 keV < E

tot
< 50 keV as in the case of this work: with decreasing neutron energy

ot is increasing to reach a value near 16 barn at 10 keV. This be-
haviour of each nucleus is of course in agreement with the A-mass-
dependent behaviour of ot in the actinide region described in the

introduction.

Furthermore a literature search yielded the result that in the region

10 keV to 100 keV there are experimental o ¢ data of U-238 by Byoun

to
and Block /30/. These data were higher than the KEDAK data.

Therefore a search was undertaken to see if the KEDAK data below 50 keV
are correct, yielding, that raw instead of corrected transmission data

were used for Otot' So the KEDAK-data below 50 keV were indeed too low.

Now at 10 keV the Byoun/Block value of T ot is ca. 14.8 barn, the value
of this work evaluated using the parameters (3.2) is ca. 16 barn, so is
the Madland/Young value, but the KEDAK value is ca. 13.7 barn. So the
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evaluated otot—value at 10 keV is still higher than the Byoun/Block value,
the deviation however being smaller. Nevertheless, the new adjusted para-
meters being global parameters (3.2) were considered as suitable to re-
produce optical model cross-sections in the region 10 keV to 15 MeV and

to extrapolate to further transactinide nuclei: It must be kept in mind
however that the cross-sections evaluated with the global parameters (3.2)
are less accurate below 50 keV.

A further point confirming this o_ _-evaluation was obtained by computing

ot
the s-wave strength function So' ;he strength function is a measure for

the average width of the compound resonances per unit energy and is cal-
culated in the resolved energy region from the ratio of the average neutron
width Fl,n to the average resonance distance D. The s-wave strength function
can be extrapolated to the unresolved energy region by the following for-

mula /2, 12/:

T
e on 1, .—".'_G‘l ; 3.3
So - = 5 T1=o,n E E in eV (3.3)

D

Therefore So can be obtained by the s-wave optical model transmission
coefficients T1=o,n; The s-wave strength function calculated according i
to (3.3) from the optical model using the‘parameters (3.2) is SO = 1,18.10 ,
a value which is next to that calculated from the corrected Geel data giving
5, = 1.14+10°% /31/ and also to the new ORNL value of s, = 1.168+10"% /46/,
gained from the latest resonance data. In contrast, the KEDAK-3 value,
gained by resonance analysis from experimental data in the resolved region,

is S = 1.02:10°% /31/.

3.1.3 Elastic Cross-Sections

In order to check further the evaluation performed, the elastic cross-—

section cel as well as the differential elastic cross—-section is evaluated.

To do this, first the compound elastic cross-section 0. is computed ac-

CE
cording to the Hauser/Feshbach formula (2.17) and following the semi-
empirical method described in sect. 2.2b according to (2.18). The calcula-

tion of ECE according to (2.18) is done only in the case of U-238. Con-~
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cerning the other nuclei described in the following sections, there are

no reliable one-data available.

From Fig, 5 it can be seen that up to ca. | MeV SCE obtained from both

methods agrees relatively well. Above | MeV however, calculated ac-

9cE

cording to the Hauser/Feshbach formula decreases rapidly, calculated

ECE
with the semi-empirical method contributing an amount up to 7 MeV. This
discrepancy is not analysed further, since ;CE contributes not much com-—

SE in this region. Possible reasons are too low o e-data 127/
»

as an inadequate level density description according to Gilbert and

pared to o
Cameron.

In the further calculations, 0., obtained by the Hauser/Feshbach formula

CE
is used, since this method is also applicable for the other nuclei. The

elastic cross—section obtained now by

= +
%1 ° %k T %k

agrees well with the KEDAK-3 data (cf. fig. 6) confirming the validity of

OCE.

For U-238 there are several experimental data of the elastic differential
cross-section available /42-45/, so the possibility is given to check

the quality of the optical model parameters used as well as that of the

9cg evaluation performed. With the use of the subroutine DIFF implemented

in HAUSER#*4, %%ﬁg is computed according to eq. (2.31).

After this the differential compound elastic cross—-section (2.19) being

dosSE
dQ

in this manner are compared in Fig. 7a-h to experimental values. The agree-

isotropic is added to

according to eq. (2.20). The results obtained

ment is excellent, confirming the choice of the opticai model parameters

(3.2) and the evaluation of g according to the Hauser/Feshbach formula.

CE

3.2 Pu-240 and Pu-242 cross—-sections

For Pu-240 and Pu-242 there are experimental otot-data of Kippeler et al,
/32/ in the range 10 keV to 400 keV, for Pu-240 there are additionally
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data of Smith et al. /33/ for ot and oel

In the region 10 keV - 100 keV the Kippeler data however deviate nearly

in the range 100 keV to 1.5 MeV.

35 % from measured otot—data of U-238, being in contradiction to the

assumed mass-dependent behaviour of o in the mass region 238 < A < 244,

tot

as was shown in the introduction. So the otot-value at 10 keV is for Pu-240
17.8 barn, for Pu-242 17.3 barn (K#ippeler), however for U-238 this value

is 13.7 barn (KEDAK-3) and 14.8 barn (Byoun and Block).

First an attempt was made to find optical model parameters being able to
reproduce the Kippeler-data. In the case of Pu-242 it is not possible to
find physically reasonable parameters giving satisfactory agreement of
%ot with the Kidppeler data. In the case of Pu-240 satisfactory agreement
in the region 10 keV - 100 keV is achieved choosing the following para-

meters:
V = 45.0 W= 8.0 r = 1.20 (3.5)

However, a8 is shown in the following, the parameters are hardly justified

by physical arguments.

Assuming that the new adjusted parameters (3.2) reproduce %ot of U-238
satisfactory, being shown in sect. 3.1.,1, there are two reasons for con-
sidering the parameters (3.5) as physically not justified: Firstly, going
from U-238 to Pu-240 two nucleons are added, so the nuclear radius in-
creases. According to (3.5) the real radius 'parameter is 1.20 fm, according
to (3.2) r is 1.21 fm., So going from A = 238 to A = 240 by adopting the
parameters (3.5) this would result in a smaller radius. Secondly, the
potential depth V has to be mass—-independent according to the Fermi gas
model /e.g. 3/, adopting the parameters (3.5) would mean decreasing the

potential depth from 47.01 MeV to 45.0 MeV.

A further reason not to use the parameters (3.5) is given by computing

the s-wave strength function S0 according to eq. (3.3)._Esing the parameters
(3.5) resulte in an extremely high value of S0 = 1,710 ', On the other
hand, s-wave strength functions in the actinide region have values near
1.0-10—4 according to the resonance analysis /31/ (cf. Tab. I). Using the
parameters (3.2) adjusted to U-238 gives S0 = 1.15-10_4 for Pu-240 and
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So = 1.10'10—4 for Pu~242. These are values near to those from the reso-—

nance analysis,

The reflections on the A-dependence of %ot in the range 238 < A < 244

(cf. introduction and sect. 3.1.2) furthermore show that T ot should
have a value between 15 and 16 barn at 10 keV, being achieved by using
the p#rameters (3.2) adjusted to U-238. As can be seen from Fig. 8, the
ctot—values of U-238, Pu-240 and Pu-242, being evaluated with the para-
meters (3.2) which are considered to be valid, lie close together and
furthermore they are close to the, experimental U~238 data of Byoun and

Block, whereas the Pu-240 and Pu-242 data of Kippeler are extremely high.

From the evaluations and reflections described above the conclusion has
to be drawn that the parameters (3.2) adjusted to U-238 are able to re-
produce neutron cross—-sections satisfactorily for A > 238 in the range
10 keV < E < 15 MeV, whereas the data of Kiéppeler appear to be too high
in the interval 10 keV to 100 keV.

After computing the compound elastic cross-section with the Hauser/Feshbach
formula the elastic cross-section is computed for the isotopes Pu-240 and
Pu-242, The values obtained for the total and elastic cross—sections are

shown in Fig., 9 - 10 together with the available experimental data.

3.3 Am-241 and Cm—-244 cross—sections

Originally it was intended to evaluate only optical model cross—-sections
for the even-even nuclei U-238, Pu-240, Pu-242 and Cm-244. In a later
stage of the work it was decided to consider additionally the capture
cross-section and, as the capture cross-section of Am-241 is of parti-
cular interest, the cross-sections for the odd-even nucleus Am-241 were

also taken into account.

Based on the A-systematics the parameters (3.2) adjusted to U-238 are
used to compute 9ot of Am-241 and Cm—-244, Especially in the case of Cm—244
a set of parameters, being able to extrapolate, is necessary, for no experi-

mental o ~-data of Cm-244 exist,
tot
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There are however several evaluations for Cm—244 /34/ showing large dis-

_ crepancies. The present evaluated o -data are compared with those eva-

luations in Fig. 14. The present evgization is considered to be valid
because of its systematic A-dependence. It is satisfactory that the pre-
sent evaluation lies approximately in the middle of the other evaluations.
From Fig. 12, where the evaluated total cross—sections for all nuclei

considered here are plotted, the systematic A-dependence of o___, cited

tot
several times, is obvious.

In the case of Am-241 there are experimental ctot-data of Phillips and
Howe /35/ in the range 3 - 20 MeV. These data are confirmed excellently
by this evaluation. Here the validity of the parameters (3.2) to reproduce

total cross-sections for A > 238 is evident at least for E > 3 MeV.
The elastic cross-sections for Am—241 and Cm-244, obtained according to

the procedure described in sect. 3.2, are plotted in Fig. 11b and 13b.

There are, however, no experimental cel-data.

3.4 Computing the capture cross—sections

The capture cross—section %Ly is calculated with the Hauser/Feshbach
formula using the formalism described in sect. 2.6 to obtain the capture
transmission coefficients. The level density is represented by the 'constant
temperature formula' as well as the 'Fermi gas formula'. The density para-
meters are computed following the semi-empirical formulae according to

Gilbert and Cameron described in sect. 2.6 and they are listed in tab. II.

For U-238 there are experimental on’Y-data in the range 10 keV to 10 MeV,
for Pu-240, Pu-242 and Am-241 in the range 10 keV to ca. 300 keV /27, 36 -
39/, These data are processed in the nuclear data file KEDAK-3 /27, 40/.

Therefore it is tried to reproduce the KEDAK-3 capture data for the nuclei
mentioned above. In the case of Cm-244 there are no experimental o Y-data,

»
only several evaluations exist,

As a starting point of the capture cross-section evaluation, the Holmes/

Woosley values for the parameters KE’ KM, FGDR and €cpr’ Biven inm sect., 2.6,
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are used and also the density parameters according to Gilbert and Cameron,

given in Tab, II. However, using these parameters, the agreement in o y
’

to the KEDAK-3 data is unsatisfactory. So it is tried to improve the

agreement by adjusting the empirical constants KE and KM.

-

on,y is hardly sensitive on changing KM’ therefore in the further evalua-
tion the Holmes/Woosley value KM = 0.005 is used, on changing KE’ however,
on,y is very sensitive. The optimal adjusted KE-values are listed in Tab. II
for the specific compound nuclei,

As can be seen from Fig, 15 - 17, the on’y-values, evaluated with these
parameters, agree relatively well with the KEDAK-3 data. In the case of
U-238, where the experimental on’Y-data reach up to 10 MeV, it is shown
that the representation of the level density according to Gilbert and
Cameron is sufficient to reproduce capture cross-—sections above 1 MeV.
Concerning the other nuclei, the experimental data reaching only up to
ca. 300 keV, the capture cross-section above 300 keV is less well estab-
lished. It is assumed however, that it is relatively accurate as in the

case of U-238.

In the case of Cm-244, where no measured o_ _~data exist, the KE-value
?

1.25 is used. From Fig. 20 it is seen that the present evaluation of o Y
»

agrees well with the other evaluations, whereas in the case of ot there

are large discrepancies, as mentioned above.

Below the inelastic threshold, the possibility is given by the optical
model to compute the capture cross—section o Y by subtracting the compound

>
elastic cross—section from the absorption cross-section o . The reaction

abs
cross—-section o, obtained by doing this subtraction agrees with the capture
cross—section below the inelastic threshold since no further reactions
take place in this energy range besides the sub-threshold fission, which

can be neglected.

The reaction cross-sections evaluated are plotted in Fig. 15b - 19b to-
gether with the KEDAK capture cross-sections. It is seen that the reaction
cross—-sections evaluated reproduce indeed the capture data below the in-

elastic threshold, lying between 40 and 50 keV for the nuclei considered.
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Considering the progress of the reaction cross-section, the opening of

the inelastic channels becomes obvious. s being given by o y below the

’
inelastic threshold and therefore decreasing with increasing energy, de-
creases spasmodically when reaching the inelastic threshold. In this region
the main part of o is given by the inelastic scattering, whereas the

fission becomes significant above 1 - 2 MeV.

4. Conclusion

Optical model cross-sections, especially o___, show a systematic A-

dependence in the unresolved energy regiontgﬁd therefore should be eval-
uated under this aspect, however being often ignored in the past. Cross-
section evaluations for individual nuclei without taking into account
A-systematics, often yield discrepant results, especially if nuclei are
considered for which no experimental data exist. This was demonstrated

in the case of Cm-244. Measuring total cross-sections, an analysis should

be made to see if the measured data are consistent with the A-systematics.

The spherical optical model now being used for over 20 years was shown to
be still the evaluator's most useful tool to obtain theoretically cross-

sections in the unresolved energy region. Furthermore it was shown, that

the optical model is even able to criticize discrepant experimental data,
which was demonstrated in the case of the inconsistent experimental Oeot”
data of Pu-240, Pu-242 and U-238.

The present work shows that a spherical potential is sufficient to obtain
average neutron cross-sections in a satisfactory manner, even in the case
of strongly deformed nuclei. A spherical potential, being approximately
equally efficient, needs much less computing time than a deformed poten-
tial, since there the Schrddinger equation cannot be separated into par-
tial waves, leading to a system of coupled differential equations. As long
as no inelastic processes are considered, it seems to be sufficient to
evaluate optical model cross—sections with a spherical potential. This

can also be deduced from the work of Madland and Young /1/ (cf. Fig. la
and 1b).
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Capture cross—sections can be obtained by adjusting with the simple giant
dipole resonance model. The evaluated capture data of U-238 show that the
continuum is well represented by a level density according to Gilbert and
Cameron, Further capture cross-section measurements in the future will be
necessary to check the evaluated capture data above 300 keV for the other

nuclei considered here.

Finally the optical model calculation was confirmed by computing the differ-
ential elastic cross-section of U-238 showing excellent agreement with
experimental data, Furthermore, this shows that angle distributions can
be obtained satisfactorily, even neglecting the spin in the scattering

process,
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