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Abstract

To evaluate Optica1 Model cross-sections, the Optical Model formalism is

described. Adjusting the optical model parameters a sensitivity analysis

is performed. Optical Model cross-sections assuming a spherical potential

are evaluated for the nuclei U-238, Pu-240, Pu-242, Am-24 I and Cm-244

taking into account the smooth A-dependence of these cross-sections. Com­

puting the compound elastic cross-section aCE with the Hauser/Feshbach

formula, and in one case with a semi-empirical method, the following types

of cross-section are obtained: the total cross-section a ,the elastictot
cross-section a l' the reaction cross-section a and the differentiale r
elastic cross-section ~~el. The evaluated cross-sections are compared to

experimental data. Discrepancies in experimental and evaluated da ta are

pointed out and recommendations are given. Furthermore capture cross-sections

are evaluated based on the simple giant dipole resonance model.

Berechnung von Neutronenwirkungsquerschnitten einiger Transactiniden­

kerne im schnellen Bereich mit Hilfe des optischen Modells

Zusammenfassung

Zur Berechnung von Wirkungsquerschnitten mit dem optischen Modell wird der

Formalismus des optischen Modells beschrieben. Zur Anpassung der Parameter

des optischen Modells wird eine Sensitivitätsanalyse durchgeführt. Wirkungs­

querschnitte nach dem optischen Modell werden für die Kerne U-238, Pu-240, Pu-242

Am-24 I und Cm-244 berechnet, wobei ein sphärisches Potential zugrunde ge-

legt wird und die langsame A-Abhängigkeit dieser Querschnitte berücksichtigt

wird. Nach Berechnung des compound-elastischen Querschnittes aCE nach der

Hauser/Feshbach-Formel und in einem Fall nach einer semi-empirischen Methode

werden folgende Querschnittstypen berechnet: der totale Wirkungsquerschnitt

a ,der elastische Wirkungsquerschnitt a l' der Reaktionsquerschnitt atot e r
und der differentielle elastische Querschnitt :~e1. Die berechneten Wirkungs-

querschnitte werden mit experimentellen Werten verglichen. Diskrepanzen

in den experimentellen wie in den evaluierten Daten werden deutlich gemacht

und Empfehlungen werden gegeben. Uberdies werden aufgrund des einfachen

'Giant-Dipole-Resonance-Modells' Capture-Querschnitte berechnet.
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1. Introduetion

Transaetinide nuelei are in general highly radioaetive and to sorne extent

very shortlived. Therefore the measuring of neutron eross-seetions of

these nuelei is extremely eomplicated. In this situation evaluated cross­

sections are useful to fill gaps of the measurements and sometimes they

ean even be used to verify existing experimental data.

From the upper keV - to the MeV - region the Optieal Model is the most

useful tool to evaluate average neutron eross-seetions. The Optical ~fodel

parameters are adjusted to a suitable nucleus and, on the basis of the

A-dependenee, are extrapolated to other nuclei, for whieh experimental

data are searee or less aecurate.

In this work the parameters are adjusted to the total eross-section of

U-238, beeause U-238 is an even-even nueleus, for whieh a large amount

of experimental data is available. On the other hand, for heavier even­

even nuelei, whieh are the main object of eonsideration in this work,

the measured eross-seetions are searce and partly less aecurate.

Optical model eross-sections, for example the total eros,s-seetion a tot

and the absorption eross-seetion ab' depend smoothly on the mass number
a s

A. In the ease of a in the mass region 232 < A < 239 this ean be seen
tot

from Fig. la and Ib, whieh are taken from Madland and Young /1/. Therefore

it is possible to extrapolate cross-sections aecording to the A-dependence.

Theoretieally this behaviour is eonfirmed by the terms for the average

eross-seetions derived from the optieal model formalism. In the limiting

ease of low energies one obtains for the total eross-seetions /2, 3/:

Here R' is the scattering length for potential seattering, k the wave

number, m the redueed mass from neutron and target nueleus, W the

imaginary part of the potential and u the radial part of the wave function

ljI for 1 • o.
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The ratio R'/R, where R is the potential radius, varies between A • 238

and A • 244 aeeording to Feshbaeh /2/ between 1.08 and 1.06, resu1ting

in a deerease of 4 % in R,2. On the other hand, R2 inereases 1ess than

2.5 % aeeording to the A2/ 3-behaviour. The variation of the seeond term

in (1.1), whieh also depends aeeording to the A2/ 3-behaviour of the

optiea1 potential on A, is of the same order.

These ref1eetions show that aeeording to eq. (1.1) a should vary 1esstot
than 4 % in the region 238 <A < 244. This behaviour is verified by this

work (see seet. 3).

In eontrast there are experimental data, whieh show 1arge diserepaneies.

For instanee, the total eross-seetion varies between A • 238 and A • 242

up to 35 %, being near1y ten times larger than the physieally reasonab1e

va1ue. In the past evaluated eross-seetions in the transaetinide region

often ignored the A-systematies shown above. Therefore they are partly

very diserepant.

The present evaluation was performed with a spheriea1 optiea1 potential,

in spite of the fact, that the nue1ei eonsidered are strong1y deformed.

It was shown, howev~r, that the neutron eross-seetions in the energy

region from 10 keV to 15 MeV ean be eva1uated with this simple model

quite satisfaetorily. Furthermore, the werk of Mad1and and Young, eited

above, shows, that a eoupled-ehanne1-ea1eu1ation with deformed potential

searee1y produces better results.
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2. The Optical Model

Nuclear reactions are many-body-problems, the incident particle inter­

acting with the nucleons of the target nucleus. The optical model approxi­

mates the many-body-problem by a two-body-problem. The target nucleus acts

with the average potential Ver) upon the incident particle. The particle's

motion in the potential Ver) is given by the Schrödinger equation:

ä~ + 2~ (E - V(r»~ • 0
~

(2.1)

Bere E is the incident particle's energy in the center-of-mass system.

The first efforts to replace the target nucleus by a potential weIl were

undertakeo by Bethe io 1933 /4/. However, Bethe's potential weIl model

failed to explain the oarrow resonances in the low energy region. On the

other hand, the compound nucleus theory developed by Niels Bohr soon

afterwards /5/ was able to explain these narrow resonances on the basis

of nucleon-nucleon interactions. According to the compound nucleus theory,

the incident particle is absorbed by the target nucleus distributing its
-16eoergy after a short time (ca. 10 s) equally among all nucleons. So

the incident particle loses its ideotity during the compound state, the

compound nucleus decaying independent of its formation. In this process

the incident particle has a short mean free path compared to the radius

of the nucleus. This results from the strong interaction with the nucleons

of the target nucleus.

After World War 11 cross-section measurements in the MeV region became

possible and the experimentalists (e.g. /6/) discovered resonaoces having

widths in the order to same MeV, whereas the widths of the compound­

resonances lie in the order eV to k.eV. These so-called giant resonances

depend on the mass number A and on the incident energy E. Because ooly a

potential weIl model is able to explain the giant resonances, the optical

model was stre8sed again /7, 8/. In order to take into account the absorp­

tion and therefore the formation of the compo~nd nucleus, the potential

was made complex. So the absorption is given by the imaginary part of the

potential Wer). This was done in analogy to optics, where a complex index
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of refraction is used to describe the refraction and absorption of light

propagating through a refractive medium.

In this case, the incident particle possesses a mean free path comparative

with the radius of the nucleus. Therefore, resonances can occur in the

potential weIl at particular values of the wave length.

These single-particle-resonances depend on the potential radius Rand on

the wave number inside the potential weIl K. For example, a square weIl

potential of the form

r < R

r > R

where the potential depth according to the Fermi-gas-model is of the order

of 45 MeV and the potential radius according to the A1/ 3-law is

R = 1.2 • A1/ 3 , yield resonances for /9/:

1
K·R = (n + -)'Ir

2

with n even, 1 = angular momentum quantum number

Up to high energies, the compound nucleus theory had to be completed by

the optical model. The optical potential, however, is an average potential

of all nucleons of the target nucleus. Therefore the optical model is unable

to reproduce the precise structure of the cross-sections. Rather the optical

model yields average cross-sections. Up to high energies, however, the

compound resonances become unresolvable and in this region the optical model

cross-sections agree with the measured cross-sections.

To yield the cross-sections evaluable with the optical model, the compound

resonances therefore have to be averaged. In the following the derivation

of the average cross-section and the association with measurable cross­

sections is given.
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2.1 Average Cross-Sections

The scattering of a spin1ess partic1e at a spin1ess nuc1eus is considered

in the fo1lowing. The wave functions W(~) of the partic1e considered
. 11 . f h . •d 1 (' d' ') ikzasymptot~ca y cons~sts 0 t e ~nc~ ent p ane wave ~n z- ~rect~on e

and the scattered spherica1 wave:

ikr)ee (2.2)

Herein A is a constant to be normed, e is the scattering angle and r is

the distance particle-nucleus. So the scattering is described by the

scattering amplitude f(8). The total cross-section 0 t is obtainedto
according to the optical theorem (e.g. Schiff /10/) from the imaginary

part of the scattering amplitude in forward direction:

0tot • ~w Im[f(O)] (2.3)

The differential cross-section for e1astic scattering is given by the

absolute square of the scattering amplitude /10/:

dOel--dO (2.4)

Therefore the elastic cross-section is given by:

(2.5)

The reaction cross-section ° is finally obtained in the following
r

manner:

(2.6)

Provided that the energy resolution is good, the scattering amplitude f(e)

fluctuates strongly, dependent on the incident particle's energy E. This

is so, because f(e) describes the exact structure of the cross-sections.

The optica1 model scattering amplitude, however must be an averege ampli­

tude, for optical model cross-sections are average cross-sections. Therefore
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f(6) must be averaged over an interval ~ which is large compared to the

widths of the compound resonances, but small campared to the widths of

the giant resonances:

I. -
~

E+ A
2

J f (E' )dE'
A

E- -
2

(2.7)

Now the optical potential is that potential, for which f(6) is the scattering

amplitude. According to eq. (2.3) ° t depends linearlyon f(6). This
~ to

yields for 0tot (following Hodgson /11,12/ the optical model cross-sections

are signed with a tilde):

i.e.

~tot • :w Im[f (6)]

~

0·0tot tot

(2.8)

(2.9)

The opcical model total cross-section agrees with the average total

cross-section.

For the elastic cross-section according to eq. (2.5) is valid:

(2. 10)

But ~el disagrees with öel ' which is defined as follows:

(2. 11)

The difference, the so-called fluctuation cross-section 0fl' is given

by the angle-integrated average fluctuation square:

~

With eq. (2.6) ° is given by:r

~ ~ ~

a • 0 - 0 • a - a + a • a + a flr tot el tot el fl r

(2.12)

(2.13)
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therefore:

(2.14a)

(2.14b)

The average reaction cross-section ° includes all reactions, therefore
r

0fl represents an elastic cross-section. On the other hand, ~r contains

0fl' and especially for är = 0, i.e. there are no reactions, ~r is totally

given by 0fl' concluding that 0fl is an absorptive cross-section. So 0fl

represents that part of the elastic scattering, where the incident particle

is first absorbed, leading to the formation of the compound nucleus, but

then is emitted back into the entrance channel. Therefore 0fl is given by

the average compound elastic cross-section äCE ' that can be shown also

by explicit averaging over Breit-Wigner resonances (e.g. Hodgson /11, 12/).

'" ..On the other hand,. 0el represents the pure potent1al scatter1ng, the

incident particle being only scattered by the target nucleus, but not

'"absorbed. Therefore 0el is called in general the shape elastic cross-

section aSE.

~ is the total absorption cross-section (including the average compound
r

elastic cross-section) being identical with the compound nucleus formation

cross-section ° . This also can be shown strictly mathematically.c

For the optical model cross-sections now the following equations are

valid:

'" (2. ISa)
° • °tot tot

'" (2.15b)
° • 0 • ° + °CE • 0r abs r c

'" (2. 1Sc)
°el • aSE • °el - aCE

Only the average cross sections 0tot' 0r and 0el can be measured. Therefore

the average total cross-section is the only cross-section evaluable with

the optical model and simultaneously measurable by experiment. So 0tot is highly
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suitab1e for parameter adjustment (comp. sect. 3.J).

The experimenta11y measurab1e reaction cross-section ° however cannot be
r

eva1uated direct1y by the optica1 model. The optical model yie1ds the
• • '\0 11 dabsorpt10n cross-sect10n ° • ° b • In order to ca cu ate ° an compareras r

with experimental resu1ts, ä
CE

must be known (cf. sect. 2.2).

By averaging the e1astic cross-section is sp1it into the compound e1astic

part aCE and into the shape e1astic part aSE. Experimenta11y however aSE

and aCE cannot be separated. Measured is the quantity:

As in the case of ° , comparison with experimental resu1ts can on1y be
r

done if äCE is known.

In the high energy region (E > ca. 7 MeV) 0CE however decreases rapid1y

towards zero. This is so, because up to high energies more and more out­

going channe1s are opening, especia11y a lot of competing ine1asti~

channe1s open, and therefore the probability of the partic1e considered

being scattered into the compound e1astic channel becomes extremely small.

Moreover, at high energies the direct processes become significant, out­

weighing the compound e1astic part of the scattering. So above 7 MeV holds:

0 ·0abs r and E > 7 MeV

2.2 Determination of aCE

To obtain aCE there are on princip1e two distinct methods applicable:

a) The Hauser/Feshbach formula

The Hauser/Feshbach formu1a IJ31 yields the cross-section 0aB for areaction

going via the compound nucleus from channel a to channe1 ß:

'Ir.--
k 2

a

I
J,l

(2. J6)
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Here are:

J
g

2J+I
= ~(="21:-'+-=I~)~(2="=1=-+-=1"':"") the spin weighting factor

i • the incident partiele's spin quantum number

1 • the target nueleus' spin quantum number

J is the total angular momentum quantum number, whieh sums up aeeording
... ... T tto the sum rule for the angular momentum: J • 1 + 1 +

1 = angular momentum quantum number of the ineident partiele

T - I - In 12
:a a

Transmission eoeffieient being ealeulated by the optieal

model (n is explained in seet. 2.5).a

The first sum in (2.16) takes into aeeount all allowed angular momentum

eombinations, the sum r T
ß

, in the denominator of (2.16) extends over all
ß'

energetieally possible ehannels.

The Hauser/Feshbaeh formula (2.16) is elarified by writing

a = _'11"_ L gJ. T J
e,a k 2 J 1 a

a '

when a is the eompound nueleus formation eross-seetion via ehannel ae,a
and Pa is the probability for deeaying into ehannel ß. Therefore the

Hauser/Feshbaeh formula ean be written in the following form illustrating

the eompound nueleus proeess:

a • a • Pa,ß e,a ß

The eompound e1astie eross-seetion is gainedfrom (2.16) by putting a • ß:

ft • ft • -!- • ~gJ •
uCE usa 2 L

k J ,1
a

T 2
a

L T
ß

,
13'

(2.17)
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However, to get aCE via eq. (2.17) the eompound nueleus' energy levels

must be known, or if they are missing a level density formula must be

applied (cf. seet. 2.6).

b) Semi-empirieal method

If there are enough reliable eross-seetion data for the interesting nueleus

it is possible to get aCE by a semi-empirieal methode To do this, the

optieal model parameters are first adjusted<fii suitable eross-seetions.

Often the differential elastie eross-seetion at high energies, where äCE
is zero, is used for adjusting /14/. With the parameters gained d~~l is then

evaluated in the low energy region. Finally one gets d~gE, assumed to be

isotropie, by subtraeting the evaluated data from the experimental ones.

This proeedure is done for several energies to get the energy dependenee

of aCE.

Another way to get aCE by a semi-empirieal method is followed in this work.

Here the parameter adju8ting is done at the total eroBs-seetion. Tbis has

the advantage, that the adjusting ean be exeeuted over the whole energy

region of interest. aCE ean be gained simply by doing the differenee

_ a - a exp
aCE abs ne (2. 18)

where abis the absorption eross-seetion ealeulated with tbe adjusteda s
parameters from the optieal model and a exp is the experimental non­

ne
elastie eross-seetion. To see the aeeuraey of the evaluated äCE values,

the elastie eross-seetion a
el

ean be eomputed aeeording to

and so ean be eompared to measured ael-data. Furthermore, if experimental

:~ data are available, d~~l ean be obtained by adding to d~gE the isotropie

differential eompound elastie eross-seetion and so ean be eompared with

measured data:

daCE aCE
cur-- • 4ir

dae1 daSE +
aCE

<nr • 7;;fdO

(2. J9)

(2.20)
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In the present work aCE is evaluated both with the Hauser/Feshbach formu1a

and with the semi-empirica1 method after adjusting the parameters to atot •

The resu1ts are compared in Fig. 3. In section 3.1 this point will be

considered in greater detail.

2.3 Form of the Optica1 Model

The optica1 potential used in this work is based on the work of Wi1more

and Hodgson 1151 (cf. also sect. 2.4). The potential consists of areal

part Ver) and an imaginary part Wer). A coulomb term is not included, since

on1y neutron-induced reactions are considered. Further a spin orbit term

is not taken into account since this is hard1y significant 111, 12/, except

in the case of po1arization being not considered here. The form of the

optica1 model therefore is as fo11ows:

U(r) • - V-f(r) - i-W-g(r) (2.21)

Herein V is the real and W the imaginary potential depth, f(r) and ger)

are the form factors giving the form and radial dependence of the potential.

Especially f(r) is of the Woods-Saxon form:

1 +

1
f (r) • --";"r--"""'R-

re--ar

(2.22)

where R is the real potential radius: R = r _A1/3 and a is the realr r r r
diffuseness.

The imaginary form factor ger) is of a derivated Woods-Saxon form having

its maximum at r • R•• This choice is based on the fact, that the absorption
1

takes p1ace mainly at the surface of the nucleus 111/.

r-R.
1

d 4-e a i
ger) • -4-a1• - dr f(r) •

(
r:~i)2

1 + e 1

(2.23)
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where R. is the radius of the imaginary potential weIl: R. • r._A1
/
3 and

111

a. is the imaginary diffuseness.
1

So the optical model parameters free for adjusting are in this case:

If the evaluation is performed over a large energy region, using a local

potential, it is necessary to choose the potential depths V and W energy

dependent (cf. sect. 2.4), e.g.:

W • W + W.-Eo 1

So the parameters VI' V2 and WI are to be adjusted additionally.

The optical model parameters, free for adjusting, clearly are "free" on1y

within physica1ly reasonable limits. So the real potential depth V must be

of the order 40 - 50 MeV (according to the Fermi gas model giving a Fermi

energy of ca. 30 MeV, assuming a neutron separation energy of ca. 10 MeV,

V is of the order of 40 MeV). The real radius parameter r must have a
r

va1ue near 1.2 fm, which is deduced from experiments.

Furthermore, there are so-cal1ed optical model ambiguities arising from

the fact, that different va1ues of certain parameters produce the same

results. For instance, a real potential depth of ca. 47 MeV can yie1d

atot-values in good agreement with experimental values, but V =80 MeV or

V = 120 MeV can also produce such agreement. Clearly, the last two potential

depths are physically unreasonable. Another example is the V_rn ambiguity,

where n is ca. 2. This means that the resu1ts from optical model calcula-
ntions are not changed when changing V or r in such a manner that Ver • const.

So if the agreement is optimal for V • VI and r = r l , the same agreement

will be obtained choosing V • V2 and r = r 2 with v2-r2
n = vl-rln.

Now adjusting optical model parameters, it is clear that several ambiguities

are to be studied in order to gain the physica1ly reasonable parameters.
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However in the ease of this work the physieally well-established Wilmore/

Hodgson parameters (cf. seet. 2.4) are used as starting point in the

adjusting proeedure and finally they are only slightly ehanged (cf. seet.

3.1.1). Therefore a detailed ambiguity study is not performed here. A dis­

eussion of the optieal model ambiguities is given e.g. by Hodgson /11, 12/,

a detailed analysis in the ease of 3He-seattering at light nuelei is given

by Sehelinsky et ale /29/.

2.4 Perey/Buek potential and Wilmore/Hodgson approximation

The optieal potential ean be derived from the mieroseopie many-body­

problem, as was done by Feshbaeh /2/. There the potential sums up all the

individual interactions of the ineident partiele with eaeh nue1eon of the

target nueleus. Now in deriving an average potential, i.e. an optieal

potential, Feshbaeh showed this potential to be non-loeal in eharaeter.

So the potential aeting upon the ineident partie1e not only depends on

the distanee r target nue1eus-partiele but is also influeneed by the wave

funetion ,(r') of the partiele and therefore depends on both rand r'.

The potential thus beeomes momentum-dependent.

In the Sehrödinger equation the term:

.... ....
V(r) • 1JI(r)

deseribing the interaction partie1e - target nue1eus ehanges into:

f
........ .... ....

V(r,r') 1JI(r') dr'

Henee the Schrödinger equation

112 ........ ....
{ 2m 6 + E } ~(r) • V(r) .(r)

ehanges into the fo1lowing integro-differential equation:

112 }.... f ........ .... ....{ -- 6 + E ,(r)· V(r,r') .(r') dr'
2m

(2.24)

(2.25)
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Here V(~,~') is the non-10ea1 potential. Pereyand Buek showed 114/, that

in using this non-10ea1 potential no energy dependenee of the potential

is needed to reproduee neutron eross-seetions. However the integro­

differential equation (2.2S) is diffieu1t to handle. It ean be solved on1y

with enormous effort by numeriea1 integration and iteration. But Perey and

Buek also showed that if eertain eonditions are fu1fi11ed, there is an

equiva1ent 10ea1 potential VL(r) eorresponding to the non-10ea1 potential

VN(r) satisfying the fo110wing equation:

(2.26)

where ß is the range of the non-10ea1ity.

Wi1more and Hodgson solved this equation by iteration Ilsl. They showed

that already the first approximation for vL(r) is suffieient. The para­

meters gained by this proeedure show the fol10wing energy- and A-dependenee,

being equiva1ent to the non-Ioeality (2.2S):

E2
U • 47.01 MeV - 0.267·E - 0.00118 MeV (2.27)

W= 9.S2 MeV - 0.S3-E E in MeV

-6 2 -S 3r • 1.32 - 0.00076-A + 10 A - 8-10 A (fm)
r

-6 2 -S 3r. • 1.266 - 0.0037-A + 2-10 A - 4-10 A (fm)
1

a • 0.66 fmr a. • 0.48 fm
1

With these parameters and the eorresponding potential, using the Woods­

Saxon form faetors deseribed in seet. 2.3, Wi1more and Hodgson sueeeeded

in reprodueing neutron eross-seetions over a 1arge A- and E-region. However

in the aetinide region, where U-238 was eonsidered, the results were less

sueeessful. Nevertheless, the Wilmore/Hodgson parameters are used &8 a

starting point in this work. As deseribed in seet. 3.1.1, the parameters

had to be ehanged slightly for the nuelei eonsidered.
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2.5 The basic formulae and the procedure for computing the optical model

cross-sections

To obtain the cross-sections, the Schrödinger equation (2.24) must be

solved with the potential (2.21). To do this, a partial wave analysis is

performed yielding for the present assumed case of a spinless particle

(no spin-orbit interaction) the following differential equation for the

partial ul(r) (u(r) = r'~(r»):

d2
+ {k2 _ 2~.v(r) - 1(1;1)}U

1
(r) - 0-2 u1 (r)

dr 1\ r

with k2 2m
• E--112

The cross sections then are /16/:

2'1r r (21+1)( I"'Re [Tl1] )a tot -':-2
k 1

'Ir r (21+1) 11-Tl112aSE --k2 1

'Ir r (21+1)(1-ITl1 1
2)a --abs k2

1

(2.28)

(2.29a)

(2.29b)

(2.29c)

Here the eigenvalue of the scattering natrix Tl1 describes the change in

phase and amplitude of a partial wave scattered by the potential V(r). The

scattering amplitude f(O) is associated with Tl l according to the fo1lowing

Legendre expansion:

f(O) - ~ r (21+1) (1-Tl1)P1(cos 8)
2k 1

where Pl (cos 0) is the Legendre polynomia1 of order 1.

The differential cross-section therefore reads:

(2.30)

da--dO
(2.31)
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The ca1cu1ations were performed with the computer code HAUSER*4 /17/.

However the prograrn had to be modified, since in its original version on1y

reaction cross-sections cou1d be ca1cu1ated (cf. sect. 3.1).

The modified version, ca11ed HAUSER*4/MOD, is ab1e to ca1cu1ate n1 and

according to eq. (2.29 a - c) a ,aSE and 0 b • Furthermore, a subroutinetot a s
was imp1emented, which enab1es computing the differential shape e1astic

cross-section for spin1ess partic1es according to eq. (2.31).

The radial Schrödinger equation (2.28) with the potential (2.21) is solved

numerica11y with the Cowe11 method /18, 19, 20/. In this procedure the

function u1(r) is obtained at the points rand !J.r. Outside the range of

the potential (V(r) is set equa1 zero for r > r , the matching radius r
- m m

is chosen to be twice the va1ue of the potential radius R) for

u1 (Pm) = u1(k o rm) the fo110wing ana1ytica1 term is obtained /12, 16, 20/:

(2.32)

F1(p) and G1(p) are Besse1 resp. Neumann functions as being defined e.g.

in Schiff p. 85 /10/ or Messiah appendix B.2 /9/. Together with the va1ues

of u1(Pm) and u1(Pn ) = u1 (Pm + !J.p) gained by numerical integration

of eq. (2.28), n1 is obtained from the ratio

yie1ding for n
1

:

(2.33)

Now knowing n1 the cross-sections (2.29 a - c) can be eva1uated. Furthermore

the partic1e transmission coefficients are obtained according to

(2.34)
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and so can be used in the Hauser/Feshbach formula (2.16).

However to do the sum in the denominator of (2.16) besides the particle

transmission coefficients, the capture, and in the high energy region,

the fission transmission coefficients contribute an essential part. The

procedure to obtain the capture transmission coefficients is described in

sect. 2.6. The evaluation of the fission transmission cross-sections is

described in the following only briefly because fission cross-sections are

not considered in this work. The fission transmission coefficients used

in (2.10) for calculating aCE and aare obtained according to HilI and
n,Y

Wheeler /21/:

I
Tf • -----=--=--E-E

I + exp{-hI}11).

(2.35)

where the fission barrier is assumed to be an inverse oscillator potential

of height E. and width nw •. Taking into account the double-humped barrier

is done by calculating the transmission coefficient TA resp. TB individually

for each barrier and taking an average transmission coefficient according to:

(2.36)

2.6 The capture cross-section

Besides optical model cross-sections capture cross-sections are considered

in tbis work. The partial capture cross-sections a (E), where E is the
n,Y Y Y

photon'energy, are obtained from the Hauser/Feshbach formula (2.16) setting

T
ß

• Ty • The capture transmission coefficients are computed according to

Holmes and Woosley /23/:

~
• M c 2 •

p

(2.37)
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for EI-radiation and

(2.38)

for MI-radiation. Only EI and MI radiation are assumed to contribute to

the capture transmission coefficient~ because higher polarities are very

unlikely below 25 MeV /25/.

The constants in (2.37) resp. (2.38) are: N" number of neutrons,

Z - number of protons, A = N+Z, M • proton mass, c • speed of light,
p

e = elementary charge. ~ and ~ are parameters free for adjusting at

experimental data. Holmes and Woosley used 0.25 for ~ and 0.05 for ~.

However, as is described in sect. 3.4 ~ had to be changed in this work.

fE(Ey ) resp. fM(E y) is the profile function reading in the case of EI

radiation according to the "giant dipole resonance model" /24, 25/ as

follows:

(2.39)

and in the case of MI radiation is reduced to a constant according to

the Weisskopf model:

For the width of the giant dipole resonance rGDR and the resonance energy

EGDR the values given by Holmes and Woosley /23/ are taken:

35
EGDR = AI/ 6

33
r GDR .. AI /3

(MeV)

(MeV)

(2.40)
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To calculate the total capture cross-section 0 the transmission coeffi-n,y
cients TE1,MI(Ey ) must be summed up over all decay energies Ey ' in the

continuum TE1,MI(E
y

) has to be weighted with the level density and inte­

grated over the corresponding energy region:

E* J1T
+ f T (E*-E')p(E')dE'

E . EI,MI
1

(2.41)

Rere E* is the maximum excitation energy of the compound nucleus composed

of the incident neutron energy E and the neutron binding energy:
n

E* • E + Bn n

E' is the excitation energy:

E' = E* - E
Y

(2.42)

(2.43)

and E) the energy of the highest discrete level of the compound nucleus.

The level density p(E'), needed in eq. (2.41) as in the Hauser/Feshbach

formula above the known discrete levels, is represented according to

Gilbert and Cameron /26/. For high energies E > E (E is defined below)
x 'x

the "back shifted Fermi gas formula ll is used:

J(J+I)

20
2 2/a(E-l1)

e (2.44)

For energies E < E the IIconstant temperature formula" is adopted:
x

E - E
o

p(E) 1
• - eT

T (2.45)

The density parameters are computed following Gilbert and Cameron:

a • (0.00917 - S + 0.120)-A (2.46a)
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where S • S(Z) + S(N) is a shell correction depending on the neutron number

N and the proton number Z. S(Z) and S(N) are tabulated in the Gilbert/Cameron

paper /26/.

The pairing energy is calculated fram:

/). '" p(Z) + P(N)

P(Z) and P(N) also are taken from /26/.

The spin cut-off parameter 0 is given by:

0 2 _ 0.0888 la(E-/).) • A2/ 3

(2.46b)

(2.46c)

The energy E at the matching point, where the formulae (2.44) and (2.45)
x

are connected, is obtained by:

(MeV) (2.46d)

The nuclear temperature T in (2.45) is given by:

4=~E~/).t - 2(~-/)') (2.46e)

Finally the referring energy E 1n (2.45) is obtained by:
o

(2.46f)

where PF . is the Fermi level density given by (2.44).erm1

The parameters calculated according to the formulae above are given 1n

Tab. 11. The capture cross-section calculations are described and discussed

in sect. 3.4.

'.
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Cross-Section Evaluation and Interpretation

U-238 cross-sections

Parameter adjusting and sensitivity analysis for 0 of U-238tot

For the optical model parameter adjusting the nucleus U-238 is chosen for

being that even-even nucleus with the highest mass number, for which still

the most reliable experimental data of 0 are available. The values oftot
o used for adjusting are those from the Kerndatenbibliothek Karlsruhe 3

tot - - -
KEDAK-3, where experimental data of several groups are taken into account /27/.

As a starting point, the Wilmore/Hodgson parameter (2.27) are used in

HAUSER*4/MOD to obtain 0 t' However the agreement to the KEDAK-3 data isto
very unsatisfactory. So a new parameter adjustment has to be performed.

The parameter adjusting is done in two steps. First the optical model code

AßACUS /28/ is used to obtain a first set of improved parameters. The code

ABACUS is ableto do an automatie parameter search by varying simultaneously

up to five parameters to minimize the quantity:

{
th exp

o. - o.
1 1

expo.
1

(3. 1)

theoretical from the experimental values
th

sents the average error in o. referred
1

where o.th is the evaluated value of
1

and N is the number of values. So X
2

tained by this step are:

exp. h . 10., O. lS t e exper1mental va ue
1 1

is the square of the deviation of the
2and the square root of X repre-

to oexp. The new parameters ob-

v = 45.92 MeV r = 1. 22 fm
r

r. = 1.298 fm
1

All other parameters are unchanged in this step. The total cross-section

evaluated with these parameters is plotted in Fig. 2 together with the

KEDAK data.
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The seeond step is to use the adjusted parameters by ABACUS in HAUSER*4/MOD

and to vary some dominating parameters systematieally.

This step is performed for two reasons:

i) The optimal parameters gained by ABACUS must not neeessarily be the

optimal parameters for use in HAUSER*4/MOD.

ii) It is of partieular interest to see how ° is sensitive to eertain
tot

parameter variations.

The results from this sensitivity analysis ean be seen from Fig. 3a to 3e.

To diseuss the results, we start with the variation of the real potential

depth V. It is seen from Fig. 2 that the agreement to the KEDAK values in

region below 100 keV is bad. This point is of partieular interest and is

diseussed deeply in the following seet. 3.1.2. Nevertheless, if V is in­

ereased from 45.92 MeV to 47.01 MeV (the original Wilmore/Hodgson value)

the agreement below 100 keV beeomes better (see Fig. 3a), but above 100 keV

° beeomes too high. If on the other hand V is deereased to 45.0 MeV,tot
° inereases strongly below 100 keV simultaneously deereasing above 100tot
keV, however agreeing weIl with the KEDAK data in this region.

Now although V = 45.0 MeV gives good agreement above 100 keV, the values

below 100 keV are mueh too high. It is therefore attempted to use the

Wilmore/Hodgson value 47.01 MeV yielding for ° relatively good agree-tot
ment below 100 keV and to get better agreement above 100 keV by ehanging

the real radius parameter r • This is shown in Fig. 3b. Deereasing r to
r r

1.21 fm results in a satisfaetory agreement above 100 keV, though 0tot is

slightly inereased below 100 keV. A further deereasing of r to 1.20 fm
r

on one hand gives better agreement above 100 keV but on the other hand 0tot

is inereased too mueh below 100 keV.

From seet. 2.3 it follows that inereasing V is eompensated by deereasing

rand viee versa. As it is elear from the variations in V and rr r r
deseribed above, it is neeessary to find a eompromise in ehoosing the

optimal va lues for V and r • So a high V value gives relatively good results
r

above 100 keV but elearly the results below 100 keV are worse. On the

other hand, a low value of V results in good agreement above 100 keV and a
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high value of r gives good agreement below 100 keV. As ean be seen from
r

Fig. 3a and 3b to ehoose V • 47.01 MeV and r "" 1.21 fm is a satisfaetory
r

eompromise.

A further improvement is aehieved by deereasing the imaginary potential

depth Wfrom 9.52 MeV to 9.0 MeV, thus 0 deereases slightly in thetot
region 100 keV to ca. I MeV and slightly inereases below the giant resonanee

near 4 MeV, while the region below 100 keV is nearly unaffeeted (see Fig. 3e).

Comparing Fig. 3e and Fig. 2 it is obvious that ehoosing the parameters

V = 47.01 MeV, r "" 1.21 fm and W= 9.0 MeV instead of the ABACUS para-
r

meters results in equal agreement above 100 keV, whereas the results below

100 keV are improved. So the ehoiee of the final parameters is justified:

2
V = 47.01 MeV - 0.267·E - 0.001180~

MeV

w= 9.0 HeV - 0.53 0E

r "" 1.21 fm
r

a "" 0.66 fmr

E in MeV

r. = 1.298 fm
1

a. = 0.48 fm
1

(3.2)

With these parameters a X
2

of 2.15010-3 was aehieved, yielding an average

deviation of the evaluated 0 values from the KEDAK data of ca. 5 %.tot

It should be noted that in eontrast to the Wilmore/Hodgson parameters (2.27)

the new adjusted parameters rand r. are chosen to be mass independent.
r 1

This is done beeause the nuelei eonsidered here are close together and the

mass dependence of the potential radii Rand R., given by the A
I/3 law,

r 1

is sufficient.

3.1.2 Diseussion of the evaluated total eross-section

The 0 values of U-238 evaluated with the new adjusted parameters (3.2)tot
are plotted in Fig. 4a together with the KEDAK-3 data. Above 50 keV the

agreement is satisfaetory over a wide region, only in the giant resonanee

region the experimental data are underestimated resulting fram the use of
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a spherical potential, for the deformation is strongest in this region /1/.

However, as mentioned in the previous section, there is a discrepancy in

the region below 50 keV. So the KEDAK-3 value of cr at 10 keV is ca.tot
13.7 barn, whereas the evaluated value is ca. 16 barn. From the previous

section it is obvious that this discrepancy can only be solved by using

a new set of parameters below 50 keV, for V, yielding good results below

50 keV, has to be increased by an amount which would destroy the good

agreement above 50 keV. But it was the intention of this work to cover a

wide energy region with one global set of parameters.

However there were some good reasons to suspect that the KEDAK data below

50 keV are too low:

i) The work of Madland and Young /1/ yielded 0 values for U-238 ac-
tot

cording to the results from this work using the global parameters (3.2).

(see Fig. la).

ii) From Fig. la it can be seen that for nuclei with 232 ~ A ~ 239 even

the experimental data for 0 have the same tendency for 10 keV < E
tot -

~ 50 keV as in the case of this work: with decreasing neutron energy

o 1S increasing to reach a value near 16 barn at 10 keV. This be­
~t

haviour of each nucleus is of course in agreement with the A-mass-

dependent behaviour of 0 in the actinide region described in the
tot

introduction.

iii) Furthermore a literature search yielded the result that in the region

10 keV to 100 keV there are experimental cr da ta of U-238 by Byoun
tot

and Block /30/. These da ta were higher than the KEDAK data.

Therefore a search was undertaken to see if the KEDAK data below 50 keV

are correct, yielding, that raw instead of corrected transmission data

were used for cr • So the KEDAK-data below 50 keV were indeed too low.tot

Now at 10 keV the Byoun/Block value of cr is ca. 14.8 barn, the value
~t

of this work evaluated using the parameters (3.2) is ca. 16 barn, so is

the Madland/Young value, but the KEDAK value is ca. 13.7 barn. So the
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evaluated 0 -value at 10 keV is still higher than the Byoun/Block value,tot .
the deviation however being smaller. Nevertheless, the new adjusted para-

meters being global parameters (3.2) were considered as suitable to re­

produce optical model cross-sections in the region 10 keV to 15 MeV and

to extrapolate to further transactinide nuclei: It must be kept in mind

however that the cross-sections evaluated with the global parameters (3.2)

are less accurate below 50 keV.

A further point confirming this 0 t-evaluation was obtained by computingto
the s-wave strength function S • The strength function is a measure for

o
the average width of the compound resonances per unit energy and is cal-

culated in the resolved energy region from the ratio of the average neutron

width r
l

to the average resonance distance D. The s-wave strength function,n
can be extrapolated to the unresolved energy region by the following for-

mula /2, 12/:

S
o

ron. -_.-
D

1 T -i 1Eev
I E in eV2n - 1-0,n

(3.3)

strength function calculated according
-4= 1.18,10 ,using the parameters (3.2) is S

. 0

a value which is next to that calculated from the corrected Geel data g1v1ng

S = 1.14_10-4 /31/ and also to the new ORNL value of S = 1.168-10-4 /46/,
o 0

gained from the latest resonance data. In contrast, the KEDAK-3 value,

gained by resonance analysis from experimental data in the resolved region,

is S = 1.02,10-4 /31/.
o

Therefore S can be obtained by the s-wave optical model transmission
o

coefficients Tl ~ The s-wave=o,n
to (3.3) from the optical model

3.1.3 Elastic Cross-Sections

In order to check further the evaluation performed, the elastic cross­

section 0el as weIl as the differential elastic cross-section is evaluated.

To do this, first the compound elastic cross-section 0CE is computed ac­

cording to the Hauser/Feshbach formula (2.17) and following the semi­

empirical method described in sect. 2.2b according to (2.18). The calcula­

tion of äCE according to (2.18) is done only in the case of U-238. Con-
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cerning the other nuc1ei described in the fo1lowing sections, there are

no re1iable a -data availab1e.ne

From Fig. 5 it can be seen that up to ca. 1 MeV aCE obtained from both

methods agrees re1ative1y wel1. Above 1 MeV however, aCE calcu1ated ac­

cording to the Hauser/Feshbach formu1a decreases rapidly, aCE calculated

with the semi-empirical method contributing an amount up to 7 MeV. This

discrepancy is not analysed further, since äCE contributes not much com­

pared to aSE in this region. possible reasons are too low a -data /27/n,e
as an inadequate level density description according to Gi1bert and

Cameron.

In the further calcu1ations, aCE obtained by the Hauser/Feshbach formula

is used, since this method is also applicab1e for the other nuc1ei. The

e1astic cross-section obtained now by

agrees we11 with the KEDAK-3 da ta (cf. fig. 6) confirming the va1idity of

aCE'

For U-238 there are several experimental data of the elastic differential

cross-section available /42-45/, so the possibi1ity is given to check

the quality of the optical model parameters used as wel1 as that of the

aCE evaluation performed. With the use of the subroutine DIFF imp1emented

in liAUSER*4, ~~SE is computed according to eq. (2.31).

After this the differential compound elastic cross-section (2.19) being

isotropie is added to ~~SE according to eq. (2.20). The results obtained

in this manner are compared in Fig. 7a-h to experimental values. The agree­

ment is excellent, confirming the choice of the optical model parameters

(3.2) and the evaluation of äCE according to the Hauser/Feshbach formula.

3.2 Pu-240 and Pu-242 cross-sections

For Pu-240 and Pu-242 there are experimental a -data of Käppeler et a1.tot
/32/ in the range 10 keV to 400 keV, for Pu-240 there are additionally
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data of Smith et al. /33/ for a and a 1 in the range 100 keV to 1.5 MeV.tot e
In the region 10 keV - 100 keV the Käppeler data however deviate nearly

35 % from measured a -data of U-238, being in contradiction to thetot
assumed mass-dependent behaviour of a in the mass region 238 < A < 244,tot - -
as was shown in the introduction. So the a -value at 10 keV is for Pu-240

tot
17.8 barn, for Pu-242 17.3 barn (Käppeler), however for U-238 this value

is 13.7 barn (KEDAK-3) and 14.8 barn (Byoun and Block).

First an attempt was made to find optical model parameters being able to

reproduce the Käppeler-data. In the case of Pu-242 it is not possible to

find physically reasonable parameters giving satisfactory agreement of

a with the Käppeler data. In the case of Pu-240 satisfactory agreement
tot

in the region 10 keV - 100 keV is achieved choosing the following para-

meters:

v = 45.0 W= 8.0 r = 1.20
r

(3.5)

However, aA is shown in the following, the parameters are hardly justified

by physical arguments.

Assuming that the new adjusted parameters (3.2) reproduce a tot of U-238

satisfactory, being shown in sect. 3.1.1, there are two reasons for con­

sidering the parameters (3.5) as physically not justified: Firstly, going

from U-238 to Pu-240 two nucleons are added, so the nuclear radius in­

creases. According to (3.5) the real radius 'parameter is 1.20 fm, according

to (3.2) r is 1.21 fm. So going from A = 238 to A = 240 by adopting the
r

parameters (3.5) this would result in a smaller radius. Secondly, the

potential depth V has to be mass-independent according to the Fermi gas

model /e.g. 3/, adopting the parameters (3.5) would mean decreasing the

potential depth from 47.01 MeV to 45.0 MeV.

A further reason not to use the parameters (3.5) is given by computing

the s-wave strength function S according to eq. (3.3). Using the parameters
o

(3.5) results in an extremely high value of S = 1.7 0 10-
4

• On the other
o

hand, s-wave strength functions in the actinide region have values near

1.0 0 10-4 according to the resonance analysis /31/ (cf. Tab. I). Using the

parameters (3.2) adjusted to U-238 gives S = 1.15 0 10-
4

for Pu-~40 and
o
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S = 1.10 0 10-4 for Pu-242. These are va1ues near to those from the reso­
o

nance analysis.

The ref1ections on the A-dependence of cr in the range 238 < A < 244
tot

(cf. introduction and sect. 3.1.2) furthermore show that cr t shou1dto
have a va1ue between IS and 16 barn at 10 keV, being achieved by using

the parameters (3.2) adjusted to U-238. As can be seen from Fig. 8, the

cr -values of U-238, Pu-240 and Pu-242, being eva1uated with the para-tot
meters (3.2) which are considered to be valid, 1ie c10se together and

furthermore they are c10se to the,experimenta1 U-238 data of Byoun and

Block, whereas the Pu-240 and Pu-242 data of Käppe1er are extreme1y high.

From the evaluations and ref1ections described above the conclusion has

to be drawn that the parameters (3.2) adjusted to U-238 are ab1e to re­

produce neutron cross-sections satisfactori1y for A > 238 in the range

10 keV ~ E ~ 15 MeV, whereas the data of Käppeler appear to be too high

in the interval 10 keV to 100 keV.

After computing the compound e1astic cross-section with the Hauser/Feshbach

formu1a the e1astic cross-section is computed for the isotopes Pu-240 and

Pu-242. The va lues obtained for the total and e1astic cross-sections are

shown in Fig. 9 - 10 together with the avai1ab1e experimental data.

3.3 Am-241 and Cm-244 cross-sections

Origina11y it was intended to eva1uate on1y optica1 model cross-sections

for the even-even nuc1ei U-238, Pu-240, Pu-242 and Cm-244. In a later

stage of the work it was decided to consider additiona11y the capture

cross-section and, as the capture cross-section of Am-241 is of parti­

cu1ar interest, the cross-sections for the odd-even nuc1eus Am-241 were

also taken into account.

Based on the A-systematics the parameters (3.2) adjusted to U-238 are

used to compute cr of Am-241 and Cm-244. Especia11y in the case of Cm-244tot
a set of parameters, being ab1e to extrapo1ate, is necessary, for no experi-

mental cr -data of Cm-244 exist.tot
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There are however several evaluations for Cm-244 /34/ showing large dis­

erepaneies. The present evaluated a -data are eompared with those eva-
tot

luations in Fig. 14. The present evaluation is eonsidered to be valid

beeause of its systematie A-dependenee. It is satisfaetory that the pre­

sent evaluation lies approximately in the middle of the other evaluations.

From Fig. 12, where the evaluated total eross-seetions for all nuelei

eonsidered here are plotted, the systematie A-dependenee of a ,ci tedtot
several times, is obvious.

In the ease of Am-241 there are experimental a -data of Phillips andtot
Howe /35/ in the range 3 - 20 MeV. These data are eonfirmed exeellently

by this evaluation. Here the validity of the parameters (3.2) to reproduee

total eross-seetions for A > 238 is evident at least for E > 3 MeV.

The elastie eross-seetions for Am-241 and Cm-244, obtained aeeording to

the proeedure deseribed in seet. 3.2, are plotted in Fig. Ilb and 13b.

There are) however, no experimental ael-data.

3.4 Computing the eapture eross-seetions

The eapture eross-seetion a is ealeulated with the Hauser/Feshbaeh
n,Y

formula using the formalism deseribed in seet. 2.6 to obtain the eapture

transmission eoeffieients. The level density is represented by the 'eonstant

temperature formula' as well as the 'Fermi gas formula'. The density para­

meters are eomputed following the semi-empiriea1 formulae aeeording to

Gilbert and Cameron deser~bed in seet. 2.6 and they are 1isted in tab. 11.

For U-238 there are experimental a -data in the range 10 keV to 10 MeV,
n,Y

for Pu-240, Pu-242 and Am-241 in the range 10 keV to ca. 300 keV /27, 36

39/. These data are proeessed in the nuelear da ta file KEDAK-3 /27, 40/.

Therefore it is tried to reproduee the KEDAK-3 eapture data for the nue1ei

mentioned above. In the ease of Cm-244 there are no experimental a -data,n,Y
on1y several evaluations exist.

As a starting point of the eapture eross-seetion evaluation, the Ho1mes/

Woos1ey values for the parameters ~, ~, r GDR and EGDR , given in seet. 2.6,
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are used and also the density parameters aeeording to Gilbert and Cameron,

given in Tab. 11. However, using these parameters, the agreement in an,Y
to the KEDAK-3 data is unsatisfaetory. So it is tried to improve the

agreement by adjusting the empirieal eonstants ~ and ~.

° is hardly sensitive on changing ~, therefore in the further ~valua-n,Y -~

tion the Holmes/Woosley value ~ • 0.005 is used, on changing ~, however,

° is very sensitive. The optimal adjusted ~-values are listed in Tab. 11n,Y -~

for the speeifie eompound nuelei.

As ean be seen from Fig. 15 - 17, the ° -values, evaluated with these
n,Y

parameters, agree relatively weIl with the KEDAK-3 data. In the ease of

U-238, where the experimental ° -data reaeh up to 10 MeV, it is shown
n,Y

that the representation of the level density aeeording to Gilbert and

Cameron is suffieient to reproduee eapture eross-seetions above 1 MeV.

Coneerning the other nuelei, the experimental da ta reaehing only up to

ca. 300 keV, the eapture eross-seetion above 300 keV is less weIl estab­

lished. It is assumed however, that it is relatively aceurate as in the

ease of U-238.

In the ease of Cm-244, where no measured ° -data exist, the K--valuen,Y -~

1.25 is used. From Fig. 20 it is seen that the present evaluation of °n,y
agrees weIl with the other evaluations, whereas in the ease of a tot there

are large diserepaneies, as mentioned above.

Below the inelastie threshold, the possibility is given by the optieal

model to eompute the eapture eross-seetion ° by subtraeting the eompound
n,Y

elastie eross-seetion from the absorption eross-seetion ° b • The reaetiona s
eross-seetion ° obtained by doing this subtraetion agrees with the eapturer
eross-seetion below the inelastie threshold sinee no further reaetions

take plaee in this energy range besides the sub-threshold fission, whieh

ean be negleeted.

The reaetion eross-seetions evaluated are plotted in Fig. 15b - 19b to­

gether with the KEDAK eapture eross-seetions. It is seen that the reaction

eross-seetions evaluated reproduee indeed the eapture data below the in­

elastie threshold, lying between 40 and 50 keV for the nuelei eonsidered.
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Considering the progress of the reaetion eross-seetion, the opening of

the inelastie ehannels beeomes obvious. a , being given by a below ther n,y
inelastie threshold and therefore deereasing with inereasing energy, de-

ereases spasmodieally when reaehing the inelastie threshold. In this region

the main part of a is given by the inelastie seattering, whereas the
r

fission beeomes signifieant above I - 2 MeV.

4. Conelusion

Optieal model eross-seetions, espeeially a , show a systematie A-tot
dependenee in the unresolved energy region and therefore should be eval-

uated under this aspeet, however being often ignored in the paste Cross­

seetion evaluations for individual nuelei without taking into aeeount

A-systematies, often yield diserepant results, espeeially if nuelei are

eonsidered for whieh no experimental data exist. This was demonstrated

in the ease of Cm-244. Measuring total eross-seetions, an analysis should

be made to see if the measured data are eonsistent with the A-systematies.

The spherieal optieal model now being used for over 20 years was shown to

be still the evaluator's most useful tool to obtain theoretieally eross­

seetions in the unresolved energy region. Furthermore it was shown, that

the optieal model is even able to eritieize diserepant experimental data,

whieh was demonstrated in the ease of the ineonsistent experimental a tot
data of Pu-240, Pu-242 and U-238.

The present work shows that a spherieal potential is suffieient to obtain

average neutron eross-seetions in a satisfaetory manner, even in the ease

of strongly deformed nuelei. A spherieal potential, being approximately

equally effieient, needs mueh less eomputing time than a deformed poten­

tial, sinee there the SehrBdinger equation eannot be separated into par­

tial waves, leading to a system of eoupled differential equations. As long

as no inelastie processes are eonsidered, it seems to be suffieient to

evaluate optieal model eross-seetions with a spherieal potential. This

ean also be dedueed from the work of Madland and Young /1/ (cf. Fig. la

and Ib).
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Capture cross-sections can be obtained by adjusting with the simple giant

dipole resonance model. The evaluated capture data of U-238 show that the

continuum is well represented by a level density according to Gilbert and

Cameron. Further capture cross-section measurements in the future will be

necessary to check the evaluated capture data above 300 keV for the other

nuclei considered here.

Finally the optical model calculation was confirmed by computing the differ­

ential elastic cross-section of U-238 showing excellent agreement with

experimental data. Furthermore. this shows that angle distributions can

be obtained satisfactorily. even neglecting the spin in the scattering

process.
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