Use of Optical Model to Evaluate Fast Neutron Cross-Sections for Transactinide Nuclei

U. Fischer

Institut für Neutronenphysik und Reaktortechnik Projekt Schneller Brüter

Kernforschungszentrum Karlsruhe

KERNFORSCHUNGSZENTRUM KARLSRUHE
 Institut für Neutronenphysik und Reaktortechnik Projekt Schneller Brüter

KfK 2907

Use of Optical Model to Evaluate Fast Neutron Cross-Sections for Transactinide Nuclei

U. Fischer

Als Manuskript vervielfältigt
Für diesen Bericht behalten wir uns alle Rechte vor

Abstract

To evaluate Optical Model cross-sections, the Optical Model formalism is described. Adjusting the optical model parameters a sensitivity analysis is performed. Optical Model cross-sections assuming a spherical potential are evaluated for the nuclei U-238, $\mathrm{Pu}-240, \mathrm{Pu}-242, \mathrm{Am}-241$ and $\mathrm{Cm}-244$ taking into account the smooth A-dependence of these cross-sections. Computing the compound elastic cross-section $\sigma_{C E}$ with the Hauser/Feshbach formula, and in one case with a semi-empirical method, the following types of cross-section are obtained: the total cross-section $\sigma_{\text {tot }}$, the elastic cross-section $\sigma_{e l}$, the reaction cross-section σ_{r} and the differential elastic cross-section $\frac{d \sigma_{e l}}{d \Omega}$. The evaluated cross-sections are compared to experimental data. Discrepancies in experimental and evaluated data are pointed out and recommendations are given. Furthermore capture cross-sections are evaluated based on the simple giant dipole resonance model.

Berechnung von Neutronenwirkungsquerschnitten einiger Transactinidenkerne im schnellen Bereich mit Hilfe des optischen Modells

Zusammenfassung

Zur Berechnung von Wirkungsquerschnitten mit dem optischen Modell wird der Formalismus des optischen Modells beschrieben. Zur Anpassung der Parameter des optischen Modells wird eine Sensitivitätsanalyse durchgeführt. Wirkungsquerschnitte nach dem optischen Modell werden für die Kerne U-238, Pu-240, Pu-242 Am-241 und Cm-244 berechnet, wobei ein sphärisches Potential zugrunde gelegt wird und die langsame A-Abhängigkeit dieser Querschnitte berücksichtigt wird. Nach Berechnung des compound-elastischen Querschnittes $\sigma_{C E}$ nach der Hauser/Feshbach-Formel und in einem Fall nach einer semi-empirischen Methode werden folgende Querschnittstypen berechnet: der totale Wirkungsquerschnitt $\sigma_{\text {tot }}$, der elastische Wirkungsquerschnitt $\sigma_{e 1}$, der Reaktionsquerschnitt σ_{r} und der differentielle elastische Querschnitt $\frac{d \sigma_{e} l}{d \Omega}$. Die berechneten Wirkungsquerschnitte werden mit experimentellen Werten verglichen. Diskrepanzen in den experimentellen wie in den evaluierten Daten werden deutlich gemacht und Empfehlungen werden gegeben. Uberdies werden aufgrund des einfachen 'Giant-Dipole-Resonance-Modells' Capture-Querschnitte berechnet.

1. Introduction
2. The Optical Model
2.1 Average Cross-Sections
2.2 Determination of $\sigma_{C E}$
a) The Hauser/Feshbach Formula
b) Semi-empirical Method
2.3 Form of the Optical Model
2.4 Perey/Buck Potential and Wilmore/Hodgson Approximation
2.5 The Basic Formulae and the Procedure for Computing the Optical Model Cross-Sections
2.6 The Capture Cross-Section
3. Cross-Section Evaluation and Interpretation

3.1 U-238 Cross-Sections

3.1.1 Parameter Adjusting and Sensitivity Analysis for U-238
3.1.2 Discussion of the Evaluated U-238 Total Cross-Section
3.1.3 Elastic Cross-Sections
3.2 Pu-240 and Pu-242 Cross-Sections
3.3 Am-241 and Cm-244 Cross-Sections
3.4 Computing the Capture Cross-Sections
4. Conclusion
5. Figures
6. References

Transactinide nuclei are in general highly radioactive and to some extent very shortlived. Therefore the measuring of neutron cross-sections of these nuclei is extremely complicated. In this situation evaluated crosssections are useful to fill gaps of the measurements and sometimes they can even be used to verify existing experimental data.

From the upper keV - to the MeV - region the Optical Model is the most useful tool to evaluate average neutron cross-sections. The Optical Model parameters are adjusted to a suitable nucleus and, on the basis of the A-dependence, are extrapolated to other nuclei, for which experimental data are scarce or less accurate.

In this work the parameters are adjusted to the total cross-section of $\mathrm{U}-238$, because $\mathrm{U}-238$ is an even-even nucleus, for which a large amount of experimental data is available. On the other hand, for heavier eveneven nuclei, which are the main object of consideration in this work, the measured cross-sections are scarce and partly less accurate.

Optical model cross-sections, for example the total cross-section $\sigma_{\text {tot }}$ and the absorption cross-section $\sigma_{a b s}$, depend smoothly on the mass number A. In the case of $\sigma_{\text {tot }}$ in the mass region $232 \leq A \leq 239$ this can be seen from Fig. la and 1 b , which are taken from Madland and Young ///. Therefore it is possible to extrapolate cross-sections according to the A-dependence.

Theoretically this behaviour is confirmed by the terms for the average cross-sections derived from the optical model formalism. In the limiting case of low energies one obtains for the total cross-sections /2, 3/:

$$
\bar{\sigma}_{\text {tot }}=4 \pi R^{\prime 2}+\frac{8 \pi \cdot m}{k \cdot \pi^{2}} \int W \cdot|u|^{2} d r
$$

Here R^{\prime} is the scattering length for potential scattering, k the wave number, m the reduced mass from neutron and target nucleus, W the imaginary part of the potential and u the radial part of the wave function ψ for $1=0$.

The ratio R^{\prime} / R, where R is the potential radius, varies between $A=238$ and $A=244$ according to Feshbach $/ 2 /$ between 1.08 and 1.06 , resulting in a decrease of 4% in $R^{\prime 2}$. On the other hand, R^{2} increases less than 2.5% according to the $A^{2 / 3}$-behaviour. The variation of the second term in (1.1), which also depends according to the $A^{2 / 3}$-behaviour of the optical potential on A, is of the same order.

These reflections show that according to eq. (1.1) $\bar{\sigma}_{\text {tot }}$ should vary less than 4 \% in the region $238<A<244$. This behaviour is verified by this work (see sect. 3).

In contrast there are experimental data, which show large discrepancies. For instance, the total cross-section varies between $A=238$ and $A=242$ up to 35%, being nearly ten times larger than the physically reasonable value. In the past evaluated cross-sections in the transactinide region of ten ignored the A-systematics shown above. Therefore they are partly very discrepant.

The present evaluation was performed with a spherical optical potential, in spite of the fact, that the nuclei considered are strongly deformed. It was shown, however, that the neutron cross-sections in the energy region from 10 keV to 15 MeV can be evaluated with this simple model quite satisfactorily. Furthermore, the work of Madland and Young, cited above, shows, that a coupled-channel-calculation with deformed potential scarcely produces better results.

Nuclear reactions are many-body-problems, the incident particle interacting with the nucleons of the target nucleus. The optical model approximates the many-body-problem by a two-body-problem. The target nucleus acts with the average potential $V(r)$ upon the incident particle. The particle's motion in the potential $V(r)$ is given by the Schrödinger equation:

$$
\begin{equation*}
\Delta \psi+\frac{2 m}{h^{2}}(E-V(r)) \psi=0 \tag{2.1}
\end{equation*}
$$

Here E is the incident particle's energy in the center-of-mass system.

The first efforts to replace the target nucleus by a potential well were undertaken by Bethe in $1933 / 4 /$. However, Bethe's potential well model failed to explain the narrow resonances in the low energy region. On the other hand, the compound nucleus theory developed by Niels Bohr soon afterwards /5/ was able to explain these narrow resonances on the basis of nucleon-nucleon interactions. According to the compound nucleus theory, the incident particle is absorbed by the target nucleus distributing its energy after a short time (ca. 10^{-16} s) equally among all nucleons. So the incident particle loses its identity during the compound state, the compound nucleus decaying independent of its formation. In this process the incident particle has a short mean free path compared to the radius of the nucleus. This results from the strong interaction with the nucleons of the target nucleus.

After World War II cross-section measurements in the MeV region became possible and the experimentalists (e.g. /6/) discovered resonances having widths in the order to some MeV , whereas the widths of the compoundresonances lie in the order $e V$ to $k e V$. These so-called giant resonances depend on the mass number A and on the incident energy E. Because only a potential well model is able to explain the giant resonances, the optical model was stressed again $/ 7,8 /$. In order to take into account the absorption and therefore the formation of the compound nucleus, the potential was made complex. So the absorption is given by the imaginary part of the potential $W(r)$. This was done in analogy to optics, where a complex index
of refraction is used to describe the refraction and absorption of light propagating through a refractive medium.

In this case, the incident particle possesses a mean free path comparative with the radius of the nucleus. Therefore, resonances can occur in the potential well at particular values of the wave length.

These single-particle-resonances depend on the potential radius R and on the wave number inside the potential well K . For example, a square well potential of the form

$$
V(r)=\left\{\begin{array}{cc}
-V_{0} & r \leq R \\
0 & r>R
\end{array}\right.
$$

where the potential depth according to the Fermi-gas-model is of the order of 45 MeV and the potential radius according to the $A^{1 / 3}-1$ aw is $R=1.2 \cdot A^{1 / 3}$, yield resonances for /9/:

$$
K \cdot R=\left(n+\frac{1}{2}\right) \pi
$$

with n even, $1=$ angular momentum quantum number

Up to high energies, the compound nucleus theory had to be completed by the optical model. The optical potential, however, is an average potential of all nucleons of the target nucleus. Therefore the optical model is unable to reproduce the precise structure of the cross-sections. Rather the optical model yields average cross-sections. Up to high energies, however, the compound resonances become unresolvable and in this region the optical model cross-sections agree with the measured cross-sections.

To yield the cross-sections evaluable with the optical model, the compound resonances therefore have to be averaged. In the following the derivation of the average cross-section and the association with measurable crosssections is given.

2.1 Average Cross-Sections

The scattering of a spinless particle at a spinless nucleus is considered in the following. The wave functions $\psi(\vec{r})$ of the particle considered asymptotically consists of the incident plane wave (in z-direction) $e^{i k z}$ and the scattered spherical wave:

$$
\begin{equation*}
\psi(\vec{r})=A\left(e^{i k z}+\frac{f(\theta)}{r} \cdot e^{i k r}\right) \tag{2.2}
\end{equation*}
$$

Herein A is a constant to be normed, θ is the scattering angle and r is the distance particle-nucleus. So the scattering is described by the scattering amplitude $f(\theta)$. The total cross-section $\sigma_{\text {tot }}$ is obtained according to the optical theorem (e.g. Schiff /10/) from the imaginary part of the scattering amplitude in forward direction:

$$
\begin{equation*}
\sigma_{\text {tot }}=\frac{4 \pi}{k} \operatorname{Im}[f(0)] \tag{2.3}
\end{equation*}
$$

The differential cross-section for elastic scattering is given by the absolute square of the scattering amplitude /10/:

$$
\begin{equation*}
\frac{\mathrm{do}_{\mathrm{el}}}{\mathrm{~d} \Omega}=|f(\theta)|^{2} \tag{2.4}
\end{equation*}
$$

Therefore the elastic cross-section is given by:

$$
\begin{equation*}
\sigma_{e 1}=\int\left(\frac{d \sigma_{e 1}}{d \Omega}\right) d \Omega=\int|f(\theta)|^{2} d \Omega \tag{2.5}
\end{equation*}
$$

The reaction cross-section σ_{r} is finally obtained in the following manner:

$$
\begin{equation*}
\sigma_{r}=\sigma_{\text {tot }}-\sigma_{e l} \tag{2.6}
\end{equation*}
$$

Provided that the energy resolution is good, the scattering amplitude $f(\theta)$ fluctuates strongly, dependent on the incident particle's energy E. This is so, because $f(\theta)$ describes the exact structure of the cross-sections. The optical model scattering amplitude, however must be an average amplitude, for optical model cross-sections are average cross-sections. Therefore
$f(\theta)$ must be averaged over an interval Δ which is large compared to the widths of the compound resonances, but small compared to the widths of the giant resonances:

$$
\overline{f(E)}=\frac{1}{\Delta} \int_{E-\frac{\Delta}{2}}^{E+\frac{\Delta}{2}} f\left(E^{\prime}\right) d E^{\prime}
$$

Now the optical potential is that potential, for which $\overline{\mathrm{f}(\theta)}$ is the scattering amplitude. According to eq. (2.3) $\sigma_{\text {tot }}$ depends linearly on $f(\theta)$. This yields for $\tilde{\sigma}_{\text {tot }}$ (following Hodgson $/ 11,12 /$ the optical model cross-sections are signed with a tilde):

$$
\begin{align*}
\tilde{\sigma}_{\text {tot }} & =\frac{4 \pi}{k} \operatorname{Im}[\overline{f(\theta)}] \tag{2.8}\\
\text { i.e. } \quad \tilde{\sigma}_{\text {tot }} & =\overline{\sigma_{\text {tot }}} \tag{2.9}
\end{align*}
$$

The optical model total cross-section agrees with the average total cross-section.

For the elastic cross-section according to eq. (2.5) is valid:

$$
\begin{equation*}
\tilde{\sigma}_{e l}=\int|\overline{f(\theta)}|^{2} \mathrm{~d} \Omega \tag{2,10}
\end{equation*}
$$

But $\tilde{\sigma}_{e l}$ disagrees with $\vec{\sigma}_{e l}$, which is defined as follows:

$$
\begin{equation*}
\bar{\sigma}_{e l}=\int \overline{|f(\theta)|^{2}} \mathrm{~d} \Omega \tag{2.11}
\end{equation*}
$$

The difference, the so-called fluctuation cross-section $\sigma_{f 1}$, is given by the angle-integrated average fluctuation square:

$$
\begin{equation*}
\sigma_{f 1}=\bar{\sigma}_{e 1}-\tilde{\sigma}_{e 1}=\int\left\{\overline{|f(\theta)|^{2}}-|\overline{f(\theta)}|^{2}\right\} d \Omega \tag{2.12}
\end{equation*}
$$

With eq. (2.6) $\tilde{\sigma}_{r}$ is given by:

$$
\begin{equation*}
\tilde{\sigma}_{r}=\tilde{\sigma}_{t o t}-\tilde{\sigma}_{e l}=\bar{\sigma}_{t o t}-\bar{\sigma}_{e 1}+\sigma_{f 1}=\bar{\sigma}_{r}+\sigma_{f 1} \tag{2.13}
\end{equation*}
$$

therefore:

$$
\begin{align*}
& \tilde{\sigma}_{r}=\bar{\sigma}_{r}+\sigma_{f 1} \tag{2.14a}\\
& \tilde{\sigma}_{e l}=\bar{\sigma}_{e 1}-\sigma_{f 1} \tag{2.14b}
\end{align*}
$$

The average reaction cross-section $\bar{\sigma}_{r}$ includes all reactions, therefore $\sigma_{f 1}$ represents an elastic cross-section. On the other hand, $\tilde{\sigma}_{r}$ contains $\sigma_{f 1}$, and especially for $\bar{\sigma}_{r}=0$, i.e. there are no reactions, $\tilde{\sigma}_{r}$ is totally given by $\sigma_{f 1}$, concluding that $\sigma_{f 1}$ is an absorptive cross-section. So $\sigma_{f 1}$ represents that part of the elastic scattering, where the incident particle is first absorbed, leading to the formation of the compound nucleus, but then is emitted back into the entrance channel. Therefore $\sigma_{f 1}$ is given by the average compound elastic cross-section $\bar{\sigma}_{C E}$, that can be shown also by explicit averaging over Breit-Wigner resonances (e.g. Hodgson /11, 12/).

On the other hand, $\tilde{\sigma}_{e l}$ represents the pure potential scattering, the incident particle being only scattered by the target nucleus, but not absorbed. Therefore ${\underset{e}{e}}_{\tilde{\sim}}^{\text {el }}$ is called in general the shape elastic crosssection $\sigma_{S E}$.
$\tilde{\sigma}_{r}$ is the total absorption cross-section (including the average compound elastic cross-section) being identical with the compound nucleus formation cross-section σ_{c}. This also can be shown strictly mathematically.

For the optical model cross-sections now the following equations are valid:

$$
\begin{align*}
& \tilde{\sigma}_{\text {tot }}=\bar{\sigma}_{\text {tot }} \tag{2.15a}\\
& {\underset{\sigma}{\sigma}}_{r}=\sigma_{a b s}=\bar{\sigma}_{r}+\bar{\sigma}_{C E}=\bar{\sigma}_{C} \tag{2.15b}\\
& \tilde{\sigma}_{e l}=\sigma_{S E}=\bar{\sigma}_{e l}-\bar{\sigma}_{C E} \tag{2.15c}
\end{align*}
$$

Only the average cross sections $\bar{\sigma}_{\text {tot }}, \bar{\sigma}_{r}$ and $\bar{\sigma}_{e l}$ can be measured. Therefore the average total cross-section is the only cross-section evaluable with the optical model and simultaneously measurable by experiment. So $\sigma_{\text {tot }}$ is highly
suitable for parameter adjustment (comp. sect. 3.1).

The experimentally measurable reaction cross-section $\bar{\sigma}_{r}$ however cannot be evaluated directly by the optical model. The optical model yields the absorption cross-section $\tilde{\sigma}_{r}=\sigma_{a b s}$. In order to calculate $\bar{\sigma}_{r}$ and compare with experimental results, $\bar{\sigma}_{C E}$ must be known (cf. sect. 2.2).

By averaging the elastic cross-section is split into the compound elastic part $\bar{\sigma}_{C E}$ and into the shape elastic part $\sigma_{S E}$. Experimentally however $\sigma_{S E}$ and $\bar{\sigma}_{C E}$ cannot be separated. Measured is the quantity:

$$
\bar{\sigma}_{e l}=\sigma_{S E}+\bar{\sigma}_{C E}=\stackrel{\sim}{\sigma}_{e l}+\bar{\sigma}_{C E}
$$

As in the case of $\bar{\sigma}_{r}$, comparison with experimental results can only be done if $\bar{\sigma}_{C E}$ is known.

In the high energy region ($E>c a .7 \mathrm{MeV}$) $\bar{\sigma}_{C E}$ however decreases rapidly towards zero. This is so, because up to high energies more and more outgoing channels are opening, especially a lot of competing inelastic channels open, and therefore the probability of the particle considered being scattered into the compound elastic channel becomes extremely small. Moreover, at high energies the direct processes become significant, outweighing the compound elastic part of the scattering. So above 7 MeV holds:

$$
\sigma_{a b s}=\bar{\sigma}_{r} \quad \text { and } \quad \sigma_{S E}=\bar{\sigma}_{e l} \quad E \geq 7 \mathrm{MeV}
$$

2.2 Determination of $\sigma_{C E}$

To obtain $\sigma_{C E}$ there are on principle two distinct methods applicable:
a) The Hauser/Feshbach formula

The Hauser/Feshbach formula /13/ yields the cross-section $\sigma_{\alpha \beta}$ for a reaction going via the compound nucleus from channel α to channel β :

$$
\begin{equation*}
\sigma_{\alpha \beta}=\frac{\pi}{k_{\alpha}^{2}} \sum_{J, 1} g^{J} \frac{T_{\alpha} T_{\beta}}{\sum_{\beta^{\prime}} T_{\beta^{\prime}}} \tag{2.16}
\end{equation*}
$$

Here are:

$$
g^{J}=\frac{2 \mathrm{~J}+1}{(2 \mathrm{i}+1)(2 \mathrm{I}+1)} \quad \text { the spin weighting factor }
$$

$i=$ the incident particle's spin quantum number

I = the target nucleus' spin quantum number
J is the total angular momentum quantum number, which sums up according to the sum rule for the angular momentum: $\vec{J}=\vec{I}+\vec{I}+\vec{I}$

1 = angular momentum quantum number of the incident particle
$T_{\alpha}=1-\left|n_{\alpha}\right|^{2}$: Transmission coefficient being calculated by the optical model (η_{α} is explained in sect. 2.5).

The first sum in (2.16) takes into account all allowed angular momentum combinations, the sum \sum_{β}, T_{B}, in the denominator of (2.16) extends over all energetically possible channels.

The Hauser/Feshbach formula (2.16) is clarified by writing

$$
\sigma_{c, \alpha}=\frac{\pi}{k_{\alpha}^{2}} \sum_{J, 1} g^{J} \cdot T_{\alpha}^{J} \quad P_{\beta}=\frac{T_{\beta}}{\sum_{\beta^{\prime}} T_{\beta^{\prime}}}
$$

when $\sigma_{c, a}$ is the compound nucleus formation cross-section via channel α and P_{β} is the probability for decaying into channel β. Therefore the Hauser/Feshbach formula can be written in the following form illustrating the compound nucleus process:

$$
\sigma_{\alpha, \beta}=\sigma_{c, \alpha} \cdot P_{\beta}
$$

The compound elastic cross-section is gained from (2.16) by putting $\alpha=\beta$:

$$
\begin{equation*}
\bar{\sigma}_{C E}=\sigma_{\alpha \alpha}=\frac{\pi}{k_{\alpha}^{2}} \cdot \sum_{J, 1} g^{J} \cdot \frac{T_{\alpha}^{2}}{\sum_{\beta^{\prime}} T_{\beta^{\prime}}} \tag{2.17}
\end{equation*}
$$

However, to get $\bar{\sigma}_{C E}$ via eq. (2.17) the compound nucleus' energy levels must be known, or if they are missing a level density formula must be applied (cf. sect. 2.6).
b) Semi-empirical method

If there are enough reliable cross-section data for the interesting nucleus it is possible to get $\sigma_{C E}$ by a semi-empirical method. To do this, the optical model parameters are first adjusted tơ suitable cross-sections. Often the differential elastic cross-section at high energies, where $\bar{\sigma}_{C E}$ is zero, is used for adjusting /14/. With the parameters gained $\frac{d \sigma_{e l}}{d \Omega}$ is then evaluated in the low energy region. Finally one gets $\frac{d \sigma_{C E}}{d \Omega}$, assumed to be isotropic, by subtracting the evaluated data from the experimental ones. This procedure is done for several energies to get the energy dependence of $\sigma_{C E}$.

Another way to get $\sigma_{C E}$ by a semi-empirical method is followed in this work. Here the parameter adjusting is done at the total cross-section. This has the advantage, that the adjusting can be executed over the whole energy region of interest. $\bar{\sigma}_{C E}$ can be gained simply by doing the difference

$$
\begin{equation*}
\bar{\sigma}_{C E}=\sigma_{a b s}-\sigma_{n e} \exp \tag{2.18}
\end{equation*}
$$

where $\sigma_{a b s}$ is the absorption cross-section calculated with the adjusted parameters from the optical model and $\sigma_{\text {ne }}$ exp is the experimental nonelastic cross-section. To see the accuracy of the evaluated $\bar{\sigma}_{C E}$ values, the elastic cross-section $\bar{\sigma}_{e l}$ can be computed according to

$$
\bar{\sigma}_{e l}=\sigma_{S E}+\bar{\sigma}_{C E}
$$

and so can be compared to measured $\sigma_{e 1}$-data. Furthermore, if experimental $\frac{d \sigma}{d \Omega}$ data are available, $\frac{d \sigma_{e l}}{d \Omega}$ can be obtained by adding to $\frac{d \sigma_{S E}}{d \Omega}$ the isotropic differential compound elastic cross-section and so can be compared with measured data:

$$
\begin{align*}
& \frac{d \sigma_{C E}}{d \Omega}=\frac{\bar{\sigma}_{C E}}{4 \pi} \tag{2.19}\\
& \frac{d \sigma_{e l}}{d \Omega}=\frac{d \sigma_{S E}}{d \Omega}+\frac{\bar{\sigma}_{C E}}{4 \pi} \tag{2.20}
\end{align*}
$$

In the present work $\bar{\sigma}_{C E}$ is evaluated both with the Hauser/Feshbach formula and with the semi-empirical method after adjusting the parameters to $\sigma_{\text {tot }}{ }^{\cdot}$ The results are compared in Fig. 3. In section 3.1 this point will be considered in greater detail.

2.3 Form of the Optical Model

The optical potential used in this work is based on the work of Wilmore and Hodgson /15/ (cf. also sect. 2.4). The potential consists of a real part $V(r)$ and an imaginary part $W(r)$. A coulomb term is not included, since only neutron-induced reactions are considered. Further a spin orbit term is not taken into account since this is hardly significant $/ 11$, $12 /$, except in the case of polarization being not considered here. The form of the optical model therefore is as follows:

$$
\begin{equation*}
U(r)=-V \cdot f(r)-i \cdot W \cdot g(r) \tag{2.21}
\end{equation*}
$$

Herein ∇ is the real and W the imaginary potential depth, $f(r)$ and $g(r)$ are the form factors giving the form and radial dependence of the potential. Especially $f(r)$ is of the Woods-Saxon form:

$$
\begin{equation*}
f(r)=\frac{1}{1+e \frac{r-R_{r}}{a_{r}}} \tag{2.22}
\end{equation*}
$$

where R_{r} is the real potential radius: $R_{r}=r_{r} \cdot A^{1 / 3}$ and a_{r} is the real diffuseness.

The imaginary form factor $g(r)$ is of a derivated Woods-Saxon form having its maximum at $\mathbf{r}=\mathrm{R}_{\mathbf{i}}$. This choice is based on the fact, that the absorption takes place mainly at the surface of the nucleus /11/.

$$
\begin{equation*}
g(r)=-4 \cdot a_{i} \cdot \frac{d}{d r} f(r)=\frac{4 \cdot e^{\frac{r-R_{i}}{a_{i}}}}{\left(1+e^{\frac{r-R_{i}}{a_{i}}}\right)^{2}} \tag{2.23}
\end{equation*}
$$

where R_{i} is the radius of the imaginary potential well: $R_{i}=r_{i} \cdot A^{1 / 3}$ and a_{i} is the imaginary diffuseness.

So the optical model parameters free for adjusting are in this case:

$$
V, W, r_{r}, r_{i}, a_{r}, a_{i}
$$

If the evaluation is performed over a large energy region, using a local potential, it is necessary to choose the potential depths ∇ and W energy dependent (cf. sect. 2.4), e.g.:

$$
\begin{aligned}
& V=V_{0}+V_{i} \cdot E+V_{2} \cdot E^{2} \\
& W=W_{o}+W_{i} \cdot E
\end{aligned}
$$

So the parameters V_{1}, V_{2} and W_{1} are to be adjusted additionally.

The optical model parameters, free for adjusting, clearly are "free" only within physically reasonable limits. So the real potential depth V must be of the order $40-50 \mathrm{MeV}$ (according to the Fermi gas model giving a Fermi energy of ca. 30 MeV , assuming a neutron separation energy of ca. 10 MeV , V is of the order of 40 MeV). The real radius parameter r_{r} must have a value near 1.2 fm , which is deduced from experiments.

Furthermore, there are so-called optical model ambiguities arising from the fact, that different values of certain parameters produce the same results. For instance, a real potential depth of ca. 47 MeV can yield $\sigma_{\text {tot }}{ }^{-v a l u e s}$ in good agreement with experimental values, but $\mathrm{V}=80 \mathrm{MeV}$ or $V \simeq 120 \mathrm{MeV}$ can also produce such agreement. Clearly, the last two potential depths are physically unreasonable. Another example is the $\nabla \cdot r^{n}$ ambiguity, where n is ca. 2. This means that the results from optical model calculations are not changed when changing V or r in such a manner that $\nabla \cdot r^{n}=$ const. So if the agreement is optimal for $V=V_{1}$ and $r=r_{1}$, the same agreement will be obtained choosing $V=V_{2}$ and $r=r_{2}$ with $V_{2}{ }^{\circ} r_{2}^{n}=V_{1} \cdot r_{1}{ }^{n}$.

Now adjusting optical model parameters, it is clear that several ambiguities are to be studied in order to gain the physically reasonable parameters.

However in the case of this work the physically well-established Wilmore/ Hodgson parameters (cf. sect. 2.4) are used as starting point in the adjusting procedure and finally they are only slightly changed (cf. sect. 3.1.1). Therefore a detailed ambiguity study is not performed here. A discussion of the optical model ambiguities is given e.g. by Hodgson $/ 11,12 /$, a detailed analysis in the case of ${ }^{3}$ He-scattering at light nuclei is given by Schelinsky et al. /29/.

2.4 Perey/Buck potential and Wilmore/Hodgson approximation

The optical potential can be derived from the microscopic many-bodyproblem, as was done by Feshbach /2/. There the potential sums up all the individual interactions of the incident particle with each nucleon of the target nucleus. Now in deriving an average potential, i.e. an optical potential, Feshbach showed this potential to be non-local in character. So the potential acting upon the incident particle not only depends on the distance r target nucleus-particle but is also influenced by the wave function $\psi\left(r^{\prime}\right)$ of the particle and therefore depends on both r and r^{\prime}. The potential thus becomes momentum-dependent.

In the Schrödinger equation the term:

$$
V(\vec{r}) \cdot \psi(\vec{r})
$$

describing the interaction particle - target nucleus changes into:

$$
\int V\left(\vec{r}, \vec{r}^{\prime}\right) \psi\left(\vec{r}^{\prime}\right) d \overrightarrow{\mathbf{r}}^{\prime}
$$

Hence the Schrödinger equation

$$
\begin{equation*}
\left\{\frac{\hbar^{2}}{2 m} \Delta+E\right\} \psi(\vec{r})=V(\vec{r}) \phi(\vec{r}) \tag{2.24}
\end{equation*}
$$

changes into the following integro-differential equation:

$$
\begin{equation*}
\left\{\frac{\hbar^{2}}{2 m} \Delta+E\right\} \phi(\vec{r})=\int \nabla\left(\vec{r}, \vec{r}^{\prime}\right) \psi\left(\vec{r}{ }^{\prime}\right) d \vec{r}^{\prime} \tag{2.25}
\end{equation*}
$$

Here $V\left(\vec{r}^{\prime} \vec{r}^{\prime}\right)$ is the non-local potential. Perey and Buck showed /14/, that in using this non-local potential no energy dependence of the potential is needed to reproduce neutron cross-sections. However the integrodifferential equation (2.25) is difficult to handle. It can be solved only with enormous effort by numerical integration and iteration. But Perey and Buck also showed that if certain conditions are fulfilled, there is an equivalent local potential $V_{L}(r)$ corresponding to the non-local potential $\mathrm{V}_{\mathrm{N}}(\mathrm{r})$ satisfying the following equation:

$$
\begin{equation*}
V_{L}(r) \exp \left\{\frac{m \beta^{2}}{2 \hbar^{2}}\left(E-V_{L}(r)\right)\right\}=V_{N}(r) \tag{2.26}
\end{equation*}
$$

where β is the range of the non-locality.

Wilmore and Hodgson solved this equation by iteration /15/. They showed that already the first approximation for $\nabla_{L}(r)$ is sufficient. The parameters gained by this procedure show the following energy- and A-dependence, being equivalent to the non-locality (2.25):

$$
\begin{align*}
& U=47.01 \mathrm{MeV}-0.267 \cdot \mathrm{E}-0.00118 \frac{\mathrm{E}^{2}}{\mathrm{MeV}} \tag{2.27}\\
& \mathrm{~W}=9.52 \mathrm{MeV}-0.53 \cdot \mathrm{E} \quad \mathrm{E} \text { in } \mathrm{MeV} \\
& \mathbf{r}_{\mathbf{r}}=1.32-0.00076 \cdot \mathrm{~A}+10^{-6} \mathrm{~A}^{2}-8 \cdot 10^{-5} \mathrm{~A}^{3}(\mathrm{fm}) \\
& \mathbf{r}_{i}=1.266-0.0037 \cdot \mathrm{~A}+2 \cdot 10^{-6} \mathrm{~A}^{2}-4 \cdot 10^{-5} \mathrm{~A}^{3}(\mathrm{fm}) \\
& \mathbf{a}_{\mathbf{r}}=0.66 \mathrm{fm} \quad a_{i}=0.48 \mathrm{fm}
\end{align*}
$$

With these parameters and the corresponding potential, using the WoodsSaxon form factors described in sect. 2.3, Wilmore and Hodgson succeeded in reproducing neutron cross-sections over a large A - and E-region. However in the actinide region, where $U-238$ was considered, the results were less successful. Nevertheless, the Wilmore/Hodgson parameters are used as a starting point in this work. As described in sect. 3.1.1, the parameters had to be changed slightly for the nuclei considered.

2.5 The basic formulae and the procedure for computing the optical model cross-sections

To obtain the cross-sections, the Schrödinger equation (2.24) must be solved with the potential (2.21). To do this, a partial wave analysis is performed yielding for the present assumed case of a spinless particle (no spin-orbit interaction) the following differential equation for the partial $u_{1}(r)(u(r)=r \cdot \psi(r)):$

$$
\begin{equation*}
\frac{d^{2}}{d r^{2}} u_{1}(r)+\left\{k^{2}-\frac{2 m}{n^{2}} \cdot v(r)-\frac{1(1+1)}{r^{2}}\right\} u_{1}(r)=0 \tag{2,28}
\end{equation*}
$$

with $k^{2}=\frac{2 \mathrm{~m}}{\mathrm{t}^{2}} \cdot \mathrm{E}$

The cross sections then are /16/:

$$
\begin{align*}
& \sigma_{t o t}=\frac{2 \pi}{k^{2}} \sum_{1}(21+1)\left(1-\operatorname{Re}\left[n_{1}\right]\right) \tag{2.29a}\\
& \sigma_{\mathrm{SE}}=\frac{\pi}{\mathrm{k}^{2}} \sum_{1}(21+1)\left|1-n_{1}\right|^{2} \tag{2.29b}\\
& \sigma_{\mathrm{abs}}=\frac{\pi}{\mathrm{k}^{2}} \sum_{1}(21+1)\left(1-\left|n_{1}\right|^{2}\right) \tag{2.29c}
\end{align*}
$$

Here the eigenvalue of the scattering natrix η_{1} describes the change in phase and amplitude of a partial wave scattered by the potential $V(r)$. The scattering amplitude $f(\theta)$ is associated with η_{1} according to the following Legendre expansion:

$$
\begin{equation*}
f(\theta)=\frac{i}{2 k} \sum_{1}(21+1)\left(1-\eta_{1}\right) p_{1}(\cos \theta) \tag{2.30}
\end{equation*}
$$

where $P_{1}(\cos \theta)$ is the Legendre polynomial of order 1 .

The differential cross-section therefore reads:

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}=|f(\theta)|^{2}=\frac{1}{4 k^{2}}\left|\sum_{1}(21+1)\left(1-n_{1}\right) p_{1}(\cos \theta)\right|^{2} \tag{2.31}
\end{equation*}
$$

The calculations were performed with the computer code HAUSER*4 / 17/. However the program had to be modified, since in its original version only reaction cross-sections could be calculated (cf. sect. 3.1).

The modified version, called HAUSER*4/MOD, is able to calculate η_{1} and according to eq. $(2.29 \mathrm{a}-\mathrm{c}) \sigma_{\text {tot }}, \sigma_{\mathrm{SE}}$ and σ_{abs}. Furthernore, a subroutine was implemented, which enables computing the differential shape elastic cross-section for spinless particles according to eq. (2.31).

The radial Schrödinger equation (2.28) with the potential (2.21) is solved numerically with the Cowell method $/ 18,19,20 /$. In this procedure the function $u_{1}(r)$ is obtained at the points r and Δr. Outside the range of the potential $\left(V(r)\right.$ is set equal zero for $r \geq r_{m}$, the matching radius r_{m} is chosen to be twice the value of the potential radius R) for $u_{1}\left(\rho_{m}\right)=u_{1}\left(k \cdot r_{m}\right)$ the following analytical term is obtained /12, $16,20 /:$

$$
\begin{equation*}
u_{1}\left(\rho_{m}\right) \sim F_{1}\left(\rho_{m}\right)+i \cdot G_{1}\left(\rho_{m}\right)+\eta_{1}\left[F_{1}\left(\rho_{m}\right)-i G_{1}\left(\rho_{m}\right)\right] \tag{2.32}
\end{equation*}
$$

$F_{1}(\rho)$ and $G_{1}(\rho)$ are Bessel resp. Neumann functions as being defined e.g. in Schiff p. $85 / 10 /$ or Messiah appendix B. $2 / 9 /$. Together with the values of $u_{1}\left(\rho_{m}\right)$ and $u_{1}\left(\rho_{n}\right)=u_{1}\left(\rho_{m}+\Delta \rho\right)$ gained by numerical integration of eq. (2.28), n_{1} is obtained from the ratio

$$
\frac{u_{1}\left(\rho_{m}\right)}{u_{1}\left(\rho_{n}\right)}=\frac{F_{1}\left(\rho_{m}\right)+i G_{1}\left(\rho_{m}\right)+n_{1}\left[F_{1}\left(\rho_{m}\right)+i G_{1}\left(\rho_{m}\right)\right]}{F_{1}\left(\rho_{n}\right)+i G_{1}\left(\rho_{n}\right)+n_{1}\left[F_{1}\left(\rho_{n}\right)+i G_{1}\left(\rho_{n}\right)\right]}
$$

yielding for η_{1} :

$$
\begin{equation*}
n_{1}=\frac{u_{1}\left(\rho_{m}\right) \cdot\left[F_{1}\left(\rho_{n}\right)+i G_{1}\left(\rho_{n}\right)\right]-u_{1}\left(\rho_{n}\right)\left[F_{1}\left(\rho_{m}\right)+i G_{1}\left(\rho_{m}\right)\right]}{u_{1}\left(\rho_{n}\right)\left[F_{1}\left(\rho_{m}\right)-i G_{1}\left(\rho_{m}\right)\right]+u_{1}\left(\rho_{m}\right)\left[F_{1}\left(\rho_{n}\right)-i G_{1}\left(\rho_{n}\right)\right]} \tag{2.33}
\end{equation*}
$$

Now knowing η_{1} the cross-sections (2.29a-c) can be evaluated. Furthermore the particle transmission coefficients are obtained according to

$$
\begin{equation*}
T_{1}=1-\left|\eta_{1}\right|^{2} \tag{2.34}
\end{equation*}
$$

and so can be used in the Hauser/Feshbach formula (2.16).

However to do the sum in the denominator of (2.16) besides the particle transmission coefficients, the capture, and in the high energy region, the fission transmission coefficients contribute an essential part. The procedure to obtain the capture transmission coefficients is described in sect. 2.6. The evaluation of the fission transmission cross-sections is described in the following only briefly because fission cross-sections are not considered in this work. The fission transmission coefficients used in (2.10) for calculating $\sigma_{C E}$ and $\sigma_{n, \gamma}$ are obtained according to Hill and Wheeler /21/:

$$
\begin{equation*}
T_{f}=\frac{1}{1+\exp \left\{\frac{E-E_{1}}{h \omega_{1}}\right\}} \tag{2.35}
\end{equation*}
$$

where the fission barrier is assumed to be an inverse oscillator potential of height E_{1} and width $\hbar \omega_{1}$. Taking into account the double-humped barrier is done by calculating the transmission coefficient T_{A} resp. T_{B} individually for each barrier and taking an average transmission coefficient according to:

$$
\begin{equation*}
\bar{T}_{f}=\frac{T_{A} \cdot T_{B}}{T_{A}+T_{B}} \tag{2.36}
\end{equation*}
$$

2.6 The capture cross-section

Besides optical model cross-sections capture cross-sections are considered in this work. The partial capture cross-sections $\sigma_{n, \gamma}\left(\varepsilon_{\gamma}\right)$, where ε_{γ} is the photon energy, are obtained from the Hauser/Feshbach formula (2.16) setting $T_{\beta}=T_{\gamma}$. The capture transmission coefficients are computed according to Holmes and Woosley /23/:

$$
\begin{align*}
T_{E 1}\left(\varepsilon_{\gamma}\right) & =2 \pi \cdot \frac{4}{3 \pi} \cdot \frac{N \cdot Z}{A} \cdot \frac{e^{2}}{\pi c} \cdot \frac{K_{E}}{M_{p} c^{2}} \cdot \varepsilon_{\gamma}{ }^{3} \cdot f_{E}\left(\varepsilon_{\gamma}\right) \\
& \simeq 5.185 \cdot 10^{-6} A \cdot K_{E} \cdot \varepsilon_{\gamma}{ }^{3} \cdot f_{E}\left(\varepsilon_{\gamma}\right) \tag{2.37}
\end{align*}
$$

for El-radiation and

$$
\begin{align*}
T_{M I}\left(\varepsilon_{\gamma}\right) & =15 \pi \cdot \frac{e^{2}}{\text { hc }} \cdot \frac{1}{M_{p}^{2} c^{4}} \cdot K_{M} \cdot \varepsilon_{\gamma}{ }^{3} f_{M}\left(\varepsilon_{\gamma}\right) \\
& \simeq 3.906 \cdot 10^{-7} K_{M} \cdot \varepsilon_{\gamma}{ }^{3} \cdot f_{M}\left(\varepsilon_{\gamma}\right) \tag{2.38}
\end{align*}
$$

for Ml-radiation. Only El and Ml radiation are assumed to contribute to the capture transmission coefficient, because higher polarities are very unlikely below $25 \mathrm{MeV} / 25 /$.

The constants in (2.37) resp. (2.38) are: $N=$ number of neutrons, $Z=$ number of protons, $A=N+Z, M_{p}=$ proton mass, $c=$ speed of light, $e=$ elementary charge. K_{E} and K_{M} are parameters free for adjusting at experimental data. Holmes and Woosley used 0.25 for K_{E} and 0.05 for K_{M}. However, as is described in sect. $3.4 \mathrm{~K}_{\mathrm{E}}$ had to be changed in this work.
$f_{E}\left(\varepsilon_{\gamma}\right)$ resp. $f_{M}\left(\varepsilon_{\gamma}\right)$ is the profile function reading in the case of $E I$ radiation according to the "giant dipole resonance model" /24, 25/ as follows:

$$
\begin{equation*}
f_{E}\left(\varepsilon_{\gamma}\right)=\frac{\Gamma_{G D R}{ }^{\bullet} \varepsilon_{\gamma}}{\left(\varepsilon_{\gamma}^{2}-\varepsilon_{G D R}^{2}\right)^{2}+\left(\Gamma_{G D R} \varepsilon_{\gamma}\right)^{2}} \tag{2.39}
\end{equation*}
$$

and in the case of MI radiation is reduced to a constant according to the Weisskopf model:

$$
f_{M}\left(\varepsilon_{Y}\right)=1
$$

For the width of the giant dipole resonance $\Gamma_{G D R}$ and the resonance energy $\varepsilon_{G D R}$ the values given by Holmes and Woosley /23/ are taken:

$$
\begin{align*}
& \varepsilon_{G D R}=\frac{35}{A^{1 / 6}} \\
& \Gamma_{G D R}=\frac{33}{A^{1 / 3}} \tag{MeV}
\end{align*}
$$

To calculate the total capture cross-section $\sigma_{n, \gamma}$ the transmission coefficients $T_{E 1, M 1}\left(\varepsilon_{\gamma}\right)$ must be summed up over all decay energies ε_{γ}, in the continumm $T_{E 1, M 1}\left(\varepsilon_{\gamma}\right)$ has to be weighted with the level density and integrated over the corresponding energy region:

$$
\begin{equation*}
T^{J^{\pi}}=\sum_{i} T_{i}^{J^{\pi}}+\int_{E_{1}}^{E^{*}} T_{E 1, M 1}^{J^{\pi}}\left(E^{*}-E^{\prime}\right) \rho\left(E^{\prime}\right) d E^{\prime} \tag{2.41}
\end{equation*}
$$

Here E^{*} is the maximum excitation energy of the compound nucleus composed of the incident neutron energy E_{n} and the neutron binding energy:

$$
\begin{equation*}
E^{*}=E_{n}+B_{n} \tag{2.42}
\end{equation*}
$$

E' is the excitation energy:

$$
\begin{equation*}
E^{\prime}=E^{*}-\varepsilon_{\gamma} \tag{2,43}
\end{equation*}
$$

and E_{1} the energy of the highest discrete level of the compound nucleus. The level density $\rho\left(E^{\prime}\right)$, needed in eq. (2.41) as in the Hauser/Feshbach formula above the known discrete levels, is represented according to Gilbert and Cameron /26/. For high energies $E>E_{x}\left(E_{x}\right.$ is defined below) the "back shifted Fermi gas formula" is used:

$$
\begin{equation*}
\sigma\left(E, J^{\pi}\right)=(2 J+1) e^{-\frac{J(J+1)}{2 \sigma^{2}}} \cdot \frac{e^{2 \sqrt{a(E-\Delta)}}}{24 \sqrt{2} a^{1 / 4}(E-\Delta)^{5 / 4}} \tag{2.44}
\end{equation*}
$$

For energies $E<E_{x}$ the "constant temperature formula" is adopted:

$$
\begin{equation*}
\rho(E)=\frac{1}{T} e^{\frac{E-E_{0}}{T}} \tag{2.45}
\end{equation*}
$$

The density parameters are computed following Gilbert and Cameron:

$$
\begin{equation*}
a=(0.00917 \cdot S+0.120) \cdot A \quad\left(\mathrm{MeV}^{-1}\right) \tag{2.46a}
\end{equation*}
$$

where $S=S(Z)+S(N)$ is a shell correction depending on the neutron number N and the proton number $Z . S(Z)$ and $S(N)$ are tabulated in the Gilbert/Cameron paper /26/.

The pairing energy is calculated from:

$$
\begin{equation*}
\Delta=P(Z)+P(N) \tag{2.46b}
\end{equation*}
$$

$P(Z)$ and $P(N)$ also are taken from /26/.

The spin cut-off parameter σ is given by:

$$
\begin{equation*}
\sigma^{2}=0.0888 \sqrt{a(E-\Delta)} \cdot A^{2 / 3} \tag{2.46c}
\end{equation*}
$$

The energy E_{x} at the matching point, where the formulae (2.44) and (2.45) are connected, is obtained by:

$$
\begin{equation*}
E_{x}=2.5+\frac{150}{A}+\Delta \quad(M e V) \tag{2.46d}
\end{equation*}
$$

The nuclear temperature T in (2.45) is given by:

$$
\begin{equation*}
\frac{1}{T}=\sqrt{\frac{a}{E-\Delta}}-\frac{3}{2(E-\Delta)} \tag{2.46e}
\end{equation*}
$$

Finally the referring energy E_{o} in (2.45) is obtained by:

$$
\begin{equation*}
E_{0}=E_{x}-T \cdot \ln \left\{T \cdot \rho_{\text {Fermi }}\left(E_{x}-\Delta\right)\right\} \tag{2.46f}
\end{equation*}
$$

where $\rho_{\text {Fermi }}$ is the Fermi level density given by (2.44).

The parameters calculated according to the formulae above are given in Tab. II. The capture cross-section calculations are described and discussed in sect. 3.4 .

```
3. Cross-Section Evaluation and Interpretation
3.1 U-238 cross-sections
```

3.1.1 Parameter adjusting and sensitivity analysis for $\sigma_{\text {tot }}$ of $\mathrm{U}-238$

For the optical model parameter adjusting the nucleus $\mathrm{U}-238$ is chosen for being that even-even nucleus with the highest mass number, for which still the most reliable experimental data of $\sigma_{\text {tot }}$ are available. The values of $\sigma_{\text {tot }}$ used for adjusting are those from the Kerndatenbibliothek Karlsruhe 3 KEDAK-3, where experimental data of several groups are taken into account /27/.

As a starting point, the Wilmore/Hodgson parameter (2.27) are used in HAUSER*4/MOD to obtain $\sigma_{\text {tot }}$. However the agreement to the KEDAK-3 data is very unsatisfactory. So a new parameter adjustment has to be performed.

The parameter adjusting is done in two steps. First the optical model code ABACUS /28/ is used to obtain a first set of improved parameters. The code ABACUS is able to do an automatic parameter search by varying simultaneously up to five parameters to minimize the quantity:

$$
\begin{equation*}
x^{2}=\frac{1}{N} \sum_{i=1}^{N}\left\{\frac{\sigma_{i}^{\text {th }}-\sigma_{i}^{\exp }}{\sigma_{i}^{\exp }}\right\}^{2} \tag{3.1}
\end{equation*}
$$

where $\sigma_{i}^{\text {th }}$ is the evaluated value of $\sigma_{i}, \sigma_{i} \exp$ is the experimental value and N is the number of values. So x^{2} is the square of the deviation of the theoretical from the experimental values and the square root of x^{2} represents the average error in $\sigma_{i}{ }^{\text {th }}$ referred to $\sigma^{\text {exp }}$. The new parameters obtained by this step are:

$$
\mathbf{V}=45.92 \mathrm{MeV} \quad \mathbf{r}_{\mathbf{r}}=1.22 \mathrm{fm} \quad \mathbf{r}_{\mathbf{i}}=1.298 \mathrm{fm}
$$

All other parameters are unchanged in this step. The total cross-section evaluated with these parameters is plotted in Fig. 2 together with the KEDAK data.

The second step is to use the adjusted parameters by ABACUS in HAUSER*4/MOD and to vary some dominating parameters systematically.

This step is performed for two reasons:
i) The optimal parameters gained by ABACUS must not necessarily be the optimal parameters for use in HAUSER*4/MOD.
ii) It is of particular interest to see how $\sigma_{\text {tot }}$ is sensitive to certain parameter variations.

The results from this sensitivity analysis can be seen from Fig. 3a to 3c. To discuss the results, we start with the variation of the real potential depth V. It is seen from Fig. 2 that the agreement to the KEDAK values in region below 100 keV is bad. This point is of particular interest and is discussed deeply in the following sect. 3.1.2. Nevertheless, if V is increased from 45.92 MeV to 47.01 MeV (the original Wilmore/Hodgson value) the agreement below 100 keV becomes better (see Fig. 3a), but above 100 keV $\sigma_{\text {tot }}$ becomes too high. If on the other hand V is decreased to 45.0 MeV , $\sigma_{\text {tot }}$ increases strongly below 100 keV simultaneously decreasing above 100 keV , however agreeing well with the KEDAK data in this region.

Now although $V=45.0 \mathrm{MeV}$ gives good agreement above 100 keV , the values below 100 keV are much too high. It is therefore attempted to use the Wilmore/Hodgson value 47.01 MeV yielding for $\sigma_{\text {tot }}$ relatively good agreement below 100 keV and to get better agreement above 100 keV by changing the real radius parameter r_{r}. This is shown in Fig. $3 b$. Decreasing r_{r} to 1.21 fm results in a satisfactory agreement above 100 keV , though $\sigma_{\text {tot }}$ is slightly increased below 100 keV . A further decreasing of r_{r} to 1.20 fm on one hand gives better agreement above 100 keV but on the other hand $\sigma_{\text {tot }}$ is increased too much below 100 keV .

From sect. 2.3 it follows that increasing V is compensated by decreasing r_{r} and vice versa. As it is clear from the variations in V_{r} and r_{r} described above, it is necessary to find a compromise in choosing the optimal values for V and r_{r}. So a high V value gives relatively good results above 100 keV but clearly the results below 100 keV are worse. On the other hand, a low value of V results in good agreement above 100 keV and a
high value of r_{r} gives good agreement below 100 keV . As can be seen from Fig. 3a and $3 b$ to choose $V=47.01 \mathrm{MeV}$ and $r_{r}=1.21 \mathrm{fm}$ is a satisfactory compromise.

A further improvement is achieved by decreasing the imaginary potential depth W from 9.52 MeV to 9.0 MeV , thus $\sigma_{\text {tot }}$ decreases slightly in the region 100 keV to ca.1 MeV and slightly increases below the giant resonance near 4 MeV , while the region below 100 keV is nearly unaffected (see Fig. 3c). Comparing Fig. 3c and Fig. 2 it is obvious that choosing the parameters $V=47.01 \mathrm{MeV}, r_{r}=1.21 \mathrm{fm}$ and $W=9.0 \mathrm{MeV}$ instead of the ABACUS parameters results in equal agreement above 100 keV , whereas the results below 100 keV are improved. So the choice of the final parameters is justified:

$$
\begin{array}{ll}
V=47.01 \mathrm{MeV}-0.267 \cdot \mathrm{E}-0.00118 \cdot \frac{\mathrm{E}^{2}}{\mathrm{MeV}} \\
\mathrm{~W}=9.0 \mathrm{MeV}-0.53 \cdot \mathrm{E} & \mathrm{E} \text { in } \mathrm{MeV} \tag{3.2}\\
\mathbf{r}_{\mathbf{r}}=1.21 \mathrm{fm} & \mathbf{r}_{\mathbf{i}}=1.298 \mathrm{fm} \\
\mathbf{a}_{\mathbf{r}}=0.66 \mathrm{fm} & \mathbf{a}_{\mathbf{i}}=0.48 \mathrm{fm}
\end{array}
$$

With these parameters a x^{2} of $2.15 \cdot 10^{-3}$ was achieved, yielding an average deviation of the evaluated $\sigma_{\text {tot }}$ values from the KEDAK data of ca. 5%.

It should be noted that in contrast to the Wilmore/Hodgson parameters (2.27) the new adjusted parameters r_{r} and r_{i} are chosen to be mass independent. This is done because the nuclei considered here are close together and the mass dependence of the potential radii R_{r} and R_{i}, given by the $A^{1 / 3}$ law, is sufficient.

3.1.2 Discussion of the evaluated total cross-section

The $\sigma_{\text {tot }}$ values of $U-238$ evaluated with the new adjusted parameters (3.2) are plotted in Fig. 4 a together with the KEDAK-3 data. Above 50 keV the agreement is satisfactory over a wide region, only in the giant resonance region the experimental data are underestimated resulting from the use of
a spherical potential, for the deformation is strongest in this region /1/.

However, as mentioned in the previous section, there is a discrepancy in the region below 50 keV . So the $\mathrm{KEDAK}-3$ value of $\sigma_{\text {tot }}$ at 10 keV is ca. 13.7 barn, whereas the evaluated value is ca. 16 barn. From the previous section it is obvious that this discrepancy can only be solved by using a new set of parameters below 50 keV , for V, yielding good results below 50 keV , has to be increased by an amount which would destroy the good agreement above 50 keV . But it was the intention of this work to cover a wide energy region with one global set of parameters.

However there were some good reasons to suspect that the KEDAK data below 50 keV are too low:
i) The work of Madland and Young /l/ yielded $\sigma_{\text {tot }}$ values for U-238 according to the results from this work using the global parameters (3.2). (see Fig. la).
ii) From Fig. la it can be seen that for nuclei with $232 \leq 1 \leq 239$ even the experimental data for $\sigma_{\text {tot }}$ have the same tendency for $10 \mathrm{keV} \leq \mathrm{E}$ $\leq 50 \mathrm{keV}$ as in the case of this work: with decreasing neutron energy $\sigma_{\text {tot }}$ is increasing to reach a value near 16 barn at 10 keV . This behaviour of each nucleus is of course in agreement with the A-massdependent behaviour of $\sigma_{\text {tot }}$ in the actinide region described in the introduction.
iii) Furthermore a literature search yielded the result that in the region 10 keV to 100 keV there are experimental $\sigma_{\text {tot }}$ data of $\mathrm{U}-238$ by Byoun and Block /30/. These data were higher than the KEDAK data.

Therefore a search was undertaken to see if the KEDAK data below 50 keV are correct, yielding, that raw instead of corrected transmission data were used for $\sigma_{\text {tot }}$. So the KEDAK-data below 50 keV were indeed too low.

Now at 10 keV the Byoun/Block value of $\sigma_{\text {tot }}$ is ca. 14.8 barn, the value of this work evaluated using the parameters (3.2) is ca. 16 barn, so is the Madland/Young value, but the KEDAK value is ca. 13.7 barn. So the
evaluated $\sigma_{\text {tot }}{ }^{-v a l u e}$ at 10 keV is still higher than the Byoun/Block value, the deviation however being smaller. Nevertheless, the new adjusted parameters being global parameters (3.2) were considered as suitable to reproduce optical model cross-sections in the region 10 keV to 15 MeV and to extrapolate to further transactinide nuclei: It must be kept in mind however that the cross-sections evaluated with the global parameters (3.2) are less accurate below 50 keV .

A further point confirming this $\sigma_{\text {tot }}{ }^{-e v a l u a t i o n ~ w a s ~ o b t a i n e d ~ b y ~ c o m p u t i n g ~}$ the s-wave strength function S_{o}. The strength function is a measure for the average width of the compound resonances per unit energy and is calculated in the resolved energy region from the ratio of the average neutron width $\bar{\Gamma}_{1, n}$ to the average resonance distance $\overline{\mathrm{D}}$. The s-wave strength function can be extrapolated to the unresolved energy region by the following formula /2, 12/:

$$
\begin{equation*}
S_{o}=\frac{\bar{\Gamma}_{o n}}{\bar{D}}=\frac{1}{2 \pi} \cdot T_{1=0, n} \cdot \sqrt{\frac{l e V}{E}} E \text { in } e V \tag{3.3}
\end{equation*}
$$

Therefore S_{o} can be obtained by the s-wave optical model transmission coefficients $T_{1=0, n}$. The s-wave strength function calculated according to (3.3) from the optical model using the parameters (3.2) is $S_{o}=1.18 \cdot 10^{-4}$, a value which is next to that calculated from the corrected Geel data giving $S_{0}=1.14 \cdot 10^{-4} / 31 /$ and also to the new ORNL value of $S_{0}=1.168 \cdot 10^{-4} / 46 /$, gained from the latest resonance data. In contrast, the KEDAK-3 value, gained by resonance analysis from experimental data in the resolved region, is $S_{0}=1.02 \cdot 10^{-4} / 31 /$.

3.1.3 Elastic Cross-Sections

In order to check further the evaluation performed, the elastic crosssection $\sigma_{e l}$ as well as the differential elastic cross-section is evaluated. To do this, first the compound elastic cross-section $\bar{\sigma}_{C E}$ is computed according to the Hauser/Feshbach formula (2.17) and following the semiempirical method described in sect. 2.2 b according to (2.18). The calculation of $\bar{\sigma}_{C E}$ according to (2.18) is done only in the case of $U-238$. Con-
cerning the other nuclei described in the following sections, there are no reliable $\sigma_{n e}$-data available.

From Fig. 5 it can be seen that up to ca. $1 \mathrm{MeV} \bar{\sigma}_{\mathrm{CE}}$ obtained from both methods agrees relatively well. Above 1 MeV however, $\bar{\sigma}_{C E}$ calculated according to the Hauser/Feshbach formula decreases rapidly, $\bar{\sigma}_{C E}$ calculated with the semi-empirical method contributing an amount up to 7 MeV . This discrepancy is not analysed further, since $\bar{\sigma}_{C E}$ contributes not much compared to $\sigma_{S E}$ in this region. Possible reasons are too low $\sigma_{n, e^{-d a t a} / 27 / ~}^{\text {/ }}$ as an inadequate level density description according to Gilbert and Cameron.

In the further calculations, $\bar{\sigma}_{C E}$ obtained by the Hauser/Feshbach formula is used, since this method is also applicable for the other nuclei. The elastic cross-section obtained now by

$$
\sigma_{e 1}=\sigma_{\mathrm{SE}}+\bar{\sigma}_{\mathrm{CE}}
$$

agrees well with the KEDAK-3 data (cf. fig. 6) confirming the validity of $\bar{\sigma}_{C E}$.

For U-238 there are several experimental data of the elastic differential cross-section available /42-45/, so the possibility is given to check the quality of the optical model parameters used as well as that of the $\bar{\sigma}_{C E}$ evaluation performed. With the use of the subroutine DIFF implemented in HAUSER*4, $\frac{\mathrm{d} \sigma \text { SE }}{\mathrm{d} \Omega}$ is computed according to eq. (2.31).

After this the differential compound elastic cross-section (2.19) being isotropic is added to $\frac{d \sigma S E}{d \Omega}$ according to eq. (2.20). The results obtained in this manner are compared in Fig. 7a-h to experimental values. The agreement is excellent, confirming the choice of the optical model parameters (3.2) and the evaluation of $\bar{\sigma}_{C E}$ according to the Hauser/Feshbach formula.
3.2 Pu-240 and $\mathrm{Pu}-242$ cross-sections

For $\mathrm{Pu}-240$ and $\mathrm{Pu}-242$ there are experimental $\sigma_{\text {tot }}$-data of Käppeler et al. $/ 32$ / in the range 10 keV to 400 keV , for $\mathrm{Pu}-240$ there are additionally
data of Smith et al. /33/for $\sigma_{\text {tot }}$ and $\sigma_{e l}$ in the range 100 keV to 1.5 MeV . In the region 10 keV - 100 keV the Käppeler data however deviate nearly 35% from measured $\sigma_{\text {tot }}-$ data of $U-238$, being in contradiction to the assumed mass-dependent behaviour of $\sigma_{\text {tot }}$ in the mass region $238 \leq \mathrm{A} \leq 244$, as was shown in the introduction. So the $\sigma_{\text {tot }}{ }^{-v a l u e}$ at 10 keV is for $\mathrm{Pu}-240$ 17.8 barn, for Pu-242 17.3 barn (Käppeler), however for $U-238$ this value is 13.7 barn (KEDAK-3) and 14.8 barn (Byoun and Block).

First an attempt was made to find optical model parameters being able to reproduce the Käppeler-data. In the case of $\mathrm{Pu}-242$ it is not possible to find physically reasonable parameters giving satisfactory agreement of $\sigma_{\text {tot }}$ with the Käppeler data. In the case of $\mathrm{Pu}-240$ satisfactory agreement in the region $10 \mathrm{keV}-100 \mathrm{keV}$ is achieved choosing the following parameters:

$$
\begin{equation*}
V=45.0 \quad W=8.0 \quad \mathbf{r}_{\mathbf{r}}=1.20 \tag{3.5}
\end{equation*}
$$

However, as is shown in the following, the parameters are hardly justified by physical arguments.

Assuming that the new adjusted parameters (3.2) reproduce $\sigma_{\text {tot }}$ of $\mathrm{U}-238$ satisfactory, being shown in sect. 3.1 .1 , there are two reasons for considering the parameters (3.5) as physically not justified: Firstly, going from U-238 to Pu-240 two nucleons are added, so the nuclear radius increases. According to (3.5) the real radius parameter is 1.20 fm , according to (3.2) r_{r} is 1.21 fm. So going from $A=238$ to $A=240$ by adopting the parameters (3.5) this would result in a smaller radius. Secondly, the potential depth V has to be mass-independent according to the Fermi gas model /e.g. 3/, adopting the parameters (3.5) would mean decreasing the potential depth from 47.01 MeV to 45.0 MeV .

A further reason not to use the parameters (3.5) is given by computing the s-wave strength function S_{o} according to eq. (3.3). Using the parameters (3.5) results in an extremely high value of $S_{0}=1.7 \cdot 10^{-4}$. On the other hand, s-wave strength functions in the actinide region have values near $1.0 \cdot 10^{-4}$ according to the resonance analysis /31/ (cf. Tab. I). Using the parameters (3.2) adjusted to $\mathrm{U}-238$ gives $S_{0}=1.15 \cdot 10^{-4}$ for $\mathrm{Pu}-240$ and
$S_{0}=1 \cdot 10 \cdot 10^{-4}$ for Pu-242. These are values near to those from the resonance analysis.

The reflections on the A-dependence of $\sigma_{\text {tot }}$ in the range $238 \leq A \leq 244$ (cf. introduction and sect. 3.1.2) furthermore show that $\sigma_{\text {tot }}$ should have a value between 15 and 16 barn at 10 keV , being achieved by using the parameters (3.2) adjusted to U-238. As can be seen from Fig. 8, the $\sigma_{\text {tot }}-v a l u e s$ of $\mathrm{U}-238, \mathrm{Pu}-240$ and $\mathrm{Pu}-242$, being evaluated with the parameters (3.2) which are considered to be valid, lie close together and furthermore they are close to the, experimental $\mathrm{U}-238$ data of Byoun and Block, whereas the $\mathrm{Pu}-240$ and $\mathrm{Pu}-242$ data of Käppeler are extremely high.

From the evaluations and reflections described above the conclusion has to be drawn that the parameters (3.2) adjusted to $U-238$ are able to reproduce neutron cross-sections satisfactorily for $A \geq 238$ in the range $10 \mathrm{keV} \leq \mathrm{E} \leq 15 \mathrm{MeV}$, whereas the data of Kappeler appear to be too high in the interval 10 keV to 100 keV .

After computing the compound elastic cross-section with the Hauser/Feshbach formula the elastic cross-section is computed for the isotopes Pu-240 and Pu-242. The values obtained for the total and elastic cross-sections are shown in Fig. 9 - 10 together with the available experimental data.

3.3 Am-241 and Cm-244 cross-sections

Originally it was intended to evaluate only optical model cross-sections for the even-even nuclei $\mathrm{U}-238, \mathrm{Pu}-240, \mathrm{Pu}-242$ and $\mathrm{Cm}-244$. In a later stage of the work it was decided to consider additionally the capture cross-section and, as the capture cross-section of Am-241 is of particular interest, the cross-sections for the odd-even nucleus Am-241 were also taken into account.

Based on the A-systematics the parameters (3.2) adjusted to U-238 are used to compute $\sigma_{\text {tot }}$ of Am-241 and Cm-244. Especially in the case of Cm-244 a set of parameters, being able to extrapolate, is necessary, for no experimental $\sigma_{\text {tot }}-$ data of $\mathrm{Cm}-244$ exist.

There are however several evaluations for Cm-244 /34/ showing large discrepancies. The present evaluated $\sigma_{\text {tot }}$-data are compared with those evaluations in Fig. 14. The present evaluation is considered to be valid because of its systematic A-dependence. It is satisfactory that the present evaluation lies approximately in the middle of the other evaluations. From Fig. 12, where the evaluated total cross-sections for all nuclei considered here are plotted, the systematic A-dependence of $\sigma_{\text {tot }}$, cited several times, is obvious.

In the case of Am-241 there are experimental $\sigma_{\text {tot }}$-data of Phillips and Howe /35/ in the range $3-20 \mathrm{MeV}$. These data are confirmed excellently by this evaluation. Here the validity of the parameters (3.2) to reproduce total cross-sections for $A \geq 238$ is evident at least for $E \geq 3 \mathrm{MeV}$.

The elastic cross-sections for $\operatorname{Am-241}$ and $\mathrm{Cm}-244$, obtained according to the procedure described in sect. 3.2, are plotted in Fig. $11 b$ and $13 b$. There are, however, no experimental $\sigma_{e l}-\mathrm{data}$.

3.4 Computing the capture cross-sections

The capture cross-section $\sigma_{n, \gamma}$ is calculated with the Hauser/Feshbach formula using the formalism described in sect. 2.6 to obtain the capture transmission coefficients. The level density is represented by the 'constant temperature formula' as well as the 'Fermi gas formula'. The density parameters are computed following the semi-empirical formulae according to Gilbert and Cameron described in sect. 2.6 and they are listed in tab. II.

For U-238 there are experimental $\sigma_{n, \gamma}$-data in the range 10 keV to 10 MeV , for $\mathrm{Pu}-240, \mathrm{Pu}-242$ and $\mathrm{Am}-241$ in the range 10 keV to ca. $300 \mathrm{keV} / 27,36-$ 39/. These data are processed in the nuclear data file KEDAK-3/27, 40/. Therefore it is tried to reproduce the KEDAK-3 capture data for the nuclei mentioned above. In the case of $\mathrm{Cm}_{\mathrm{m}}-244$ there are no experimental $\sigma_{\mathrm{n}, \gamma}$-data, only several evaluations exist.

As a starting point of the capture cross-section evaluation, the Holmes/ Woosley values for the parameters $K_{E}, K_{M}, \Gamma_{G D R}$ and $\varepsilon_{G D R}$, given in sect. 2.6,
are used and also the density parameters according to Gilbert and Cameron, given in Tab. II. However, using these parameters, the agreement in $\sigma_{n, \gamma}$ to the KEDAK-3 data is unsatisfactory. So it is tried to improve the agreement by adjusting the empirical constants K_{E} and K_{M}.
$\sigma_{n, \gamma}$ is hardly sensitive on changing K_{M}, therefore in the further evaluation the Holmes/Woosley value $K_{M}=0.005$ is used, on changing K_{E}, however, $\sigma_{n, \gamma}$ is very sensitive. The optimal adjusted K_{E}-values are listed in Tab. II for the specific compound nuclei.

As can be seen from Fig. $15-17$, the $\sigma_{n, \gamma}$-values, evaluated with these parameters, agree relatively well with the KEDAK-3 data. In the case of $\mathrm{U}-238$, where the experimental $\sigma_{\mathrm{n}, \gamma}$-data reach up to 10 MeV , it is shown that the representation of the level density according to Gilbert and Cameron is sufficient to reproduce capture cross-sections above 1 MeV . Concerning the other nuclei, the experimental data reaching only up to ca. 300 keV , the capture cross-section above 300 keV is less well established. It is assumed however, that it is relatively accurate as in the case of U-238.

In the case of Cm -244, where no measured $\sigma_{n, \gamma}$-data exist, the K_{E}-value 1.25 is used. From Fig. 20 it is seen that the present evaluation of $\sigma_{n, \gamma}$ agrees well with the other evaluations, whereas in the case of $\sigma_{\text {tot }}$ there are large discrepancies, as mentioned above.

Below the inelastic threshold, the possibility is given by the optical model to compute the capture cross-section $\sigma_{n, \gamma}$ by subtracting the compound elastic cross-section from the absorption cross-section $\sigma_{a b s}$. The reaction cross-section σ_{r} obtained by doing this subtraction agrees with the capture cross-section below the inelastic threshold since no further reactions take place in this energy range besides the sub-threshold fission, which can be neglected.

The reaction cross-sections evaluated are plotted in Fig. $15 b-19 b$ to gether with the KEDAK capture cross-sections. It is seen that the reaction cross-sections evaluated reproduce indeed the capture data below the inelastic threshold, lying between 40 and 50 keV for the nuclei considered.

Considering the progress of the reaction cross-section, the opening of the inelastic channels becomes obvious. σ_{r}, being given by $\sigma_{n, \gamma}$ below the inelastic threshold and therefore decreasing with increasing energy, decreases spasmodically when reaching the inelastic threshold. In this region the main part of σ_{r} is given by the inelastic scattering, whereas the fission becomes significant above $1-2 \mathrm{MeV}$.

4. Conclusion

Optical model cross-sections, especially $\sigma_{\text {tot }}$, show a systematic Adependence in the unresolved energy region and therefore should be evaluated under this aspect, however being often ignored in the past. Crosssection evaluations for individual nuclei without taking into account A-systematics, often yield discrepant results, especially if nuclei are considered for which no experimental data exist. This was demonstrated in the case of $C m-244$. Measuring total cross-sections, an analysis should be made to see if the measured data are consistent with the A-systematics.

The spherical optical model now being used for over 20 years was shown to be still the evaluator's most useful tool to obtain theoretically crosssections in the unresolved energy region. Furthermore it was shown, that the optical model is even able to criticize discrepant experimental data, which was demonstrated in the case of the inconsistent experimental $\sigma_{\text {tot }}{ }^{-}$ data of $\mathrm{Pu}-240, \mathrm{Pu}-242$ and $\mathrm{U}-238$.

The present work shows that a spherical potential is sufficient to obtain average neutron cross-sections in a satisfactory manner, even in the case of strongly deformed nuclei. A spherical potential, being approximately equally efficient, needs much less computing time than a deformed potential, since there the Schrödinger equation cannot be separated into partial waves, leading to a system of coupled differential equations. As long as no inelastic processes are considered, it seems to be sufficient to evaluate optical model cross-sections with a spherical potential. This can also be deduced from the work of Madland and Young /l/ (cf. Fig. la and 1 b).

Capture cross-sections can be obtained by adjusting with the simple giant dipole resonance model. The evaluated capture data of $\mathrm{U}-238$ show that the continuum is well represented by a level density according to Gilbert and Cameron. Further capture cross-section measurements in the future will be necessary to check the evaluated capture data above 300 keV for the other nuclei considered here.

Finally the optical model calculation was confirmed by computing the differential elastic cross-section of $\mathrm{U}-238$ showing excellent agreement with experimental data. Furthermore, this shows that angle distributions can be obtained satisfactorily, even neglecting the spin in the scattering process.

Fig. la Total cross-sections for some actinide nuclei evaluated by Madland and Young /1/
------ spherical optical model
—_ improved form of the spherical model (cf. /1/)

- - deformed optical potential

Fig. lb Total cross-sections for some actinide nuclei evaluated by Madland and Young /1/
------ spherical optical model
——improved form of the spherical model (cf. /1/)
_ - deformed optical potential

Fig. 3a Evaluated total cross-section of $U-238$ at several real potential depths

Fig. 3b Evaluated total cross-section of $U-238$ with $V_{r}=47.01 \mathrm{MeV}$ at several real radii

Fig. 3c Evaluated total cross-section of $U-238$ with $V_{r}=47.01 \mathrm{MeV}$ and $r_{r}=1.21 \mathrm{fm}$

Fig. 4b Evaluated and measured total cross-section of U-238

Fig. 5 Compound-elastic cross-section of U-238

- evaluated with the semi-empirical method
---- evaluated according to the Hauser/Feshbach formula

Fig. 6 U-238 Elastic cross-section

The curves signed with HAUSER4/MOD show the differential shape-elastic cross-section, those signed with SE+CE the total differential elastic cross-sections.

Fig. 7a-d Differential elastic cross-section of U-238

The curves signed with HAUSER4/MOD show the differential shape-elastic cross-section, those signed with SE+CE the total differential elastic cross-sections.

Fig. 7e-h Differential elastic cross-section of U-238

Fig. 8 Evaluated and measured total cross-sections for the nuclei U-238, Pu-240 and Pu-242
in the range 10 keV to 1 MeV

Fig. 9a Pu-240 Total cross-section

Fig. 9b Pu-240 Elastic cross-section

Fig. 10a Pu-242 Total cross-section

Fig. 11a Am-241 Total cross-section

Fig. 11b Am-241 Elastic cross-section

Fig. 12 Evaluated total cross-sections for the nuclei U-238, Pu-240, $\mathrm{Pu}-242$, $\mathrm{Am}-241$ and $\mathrm{Cm}-244$ in the range 10 keV to 15 MeV

Fig. 13a Cm-244 Total cross-section

Fig. 13b Cm-244 Elastic cross-section

Fig. 14 Evaluated $\mathrm{Cm}-244$ total cross-section compared to other evaluations /34/

Fig. 15a U-238 capture cross-section

Fig. 18a Am-241 capture cross-section

Fig. 19a Cm-244 capture cross-section

|Fig. 19b Cm-244 reaction cross-section

Fig. 20 Evaluated Cm -244 capture cross-section compared to other evaluations /34/

6. References

```
/1/ D.G. Madland, P.G. Young:
    Neutron-Nucleus Optical Potential for the Actinide Region,
    Los Alamos Report LA-UR-78-2510
/2/ H. Feshbach:
    The Optical Model and its justification,
    An. Rev. Nuc1. Sci. 8(1958), 49
/3/ M.A. Preston:
    Physics of the Nucleus, Addison-Wesley 1962
/4/ H.A. Bethe:
    Phys. Rev. 47(1935), 747
/5/ N. Bohr: Nature 137(1936), 344
    N. Bohr, F. Kalckar: Kg1. Videnskab. Selskab.,
    mat.-fys. Medd. 14(1937), 10
/6/ H.H. Barshall:
    Phys. Rev. 86(1952), 431
/7/ S. Fernbach, R. Serber, T.B. Taylor:
    Phys. Rev. 75(1949), 1352
/8/ H. Feshbach, C.E. Porter, V.F. Weisskopf:
    Model for Nuclear Reactions with Neutrons;
    Phys. Rev. 96(1954), 448
/9/ A. Messiah:
    Quantenmechanik Bd. 1, de Gruyter 1976
/10/ L.I. Schiff:
    Quantum Mechanics, Third Edition, Mcgraw-Hil1 }196
/11/ P.E. Hodgson:
    The Optical Model of Elastic Scattering, Oxford, 1963
```

```
/12/ P.E. Hodgson:
    Nuclear Reactions and Nuclear Structure, Oxford 1971
/13/ W. Hauser, H. Feshbach:
    Phys. Rev. 87(1952), 366
/14/ F. Perey, B. Buck:
    Nucl. Phys. 32(1962), 353
/15/ P.E. Hodgson, D. Wilmore:
    Nucl. Phys. 55(1964), 673
/16/ J.M. Blatt, V.F. Weisskopf:
    Theoretical Nuclear Physics, John Wiley & Sons }195
/17/ F.M. Mann:
    HAUSER*4, A Computer Code to Calculate Nuclear Cross Sections;
    HEDL-TME 76-80, UC-796
/18/ P.H. Cowell, A.C.D. Crommelin:
    Appendix to Greenwich Observatories for 1909, Edinburgh 1910
/19/ J. Fox, E.T. Goodwin:
    Proc. Cambridge Phil. Soc. 45(1949), 373
/20/ M.A. Melkanoff, T. Sawada, J. Raynal:
    Nuclear Model Calculations; Methods in Computational Physics 6(1966), 1
/21/ D.L. Hill, J.A. Wheeler:
    Phys. Rev. 56(1953), 1102
/22/ Y.A. El1is: Nucl. Dat. Sheets 21(1977), 549
    Y.A. Ellis, R.L. Haese: Nucl. Dat. Sheets 21 (1977), 615
    Y.A. E11is: Nuc1. Dat. Sheets 20(1977), 218
    Y.A. Ellis: Nucl. Dat. Sheets 23(1978), 132
    M.R. Schmorak: Nuc1. Dat. Sheets 17(1976), 391
    Y.A. E11is: Nuc1. Dat. Sheets 19(1976), 103
```

Y.A. Ellis: Nucl. Dat. Sheets 19(1976), 143
H.G. Börner, H.R. Koch, H. Seyfarth, T. Egidy; W. Mampe,
J.A. Pinston, K. Schreckenbach, D. Heck: Study of the Level

Structure of ${ }^{239} \mathrm{U}$ Using the Thermal Neutron Capture Reaction;
Zeits. f. Phys. A 286 (1978), 31
/23/ J.A. Holmes, S.E. Woosley, W.A. Fowler, B.A. Zimmermann:
Atomic and Nucl. Dat. Tabl. 18(1976), 306
/24/ P. Axel:
Phys. Rev. 126(1962), 671
/25/ II.M. Lane, J.E. Lynn:
Nuc 1. Fiys. 11(1959), 646
/26/ H. Gilbert, A.G.W. Cameron:
Can. Journ. of Phys. 43(1965), 1446
/27/ B. Goel, F. Weller:
Evaluation for the German Nuclear Data Library KEDAK-3, Part 2
Fissile and Fertile Materials; KFK 2386/III
/28/ M. Caner, L. Gitter:
Operating Instructions for the ABACUS/NEARREX Code; TNSD-R/419, Soreq Nucl. Research Centre, Israel
/29/ G. Schelinski, M. Strohbusch, B. Goel:
Nucl. Phys. A 153(1970), 97
/30/ T.Y. Byoun, R.C. Block, T. Semler:
National Topical Meeting on New Developments in Reactor Physics and Shielding 1972; Report CONF-720901 p. 1115
/31/ F.H. Fröhner: persönliche Mitteilung 1978/79
/32/ F. Käppeler: Report KFK-2223
/33/ A.B. Smith, P. Lambropoulos, J.F. Whal en:
Nuc1. Sci. Eng. 47 (1972), 19
/34/ H.F. Gianotti:
Nuc1. Sci. Eng. $65(1978), 164$
/35/ T.W. Phillips, R.E. Howe:
DOE-NDC-12, p. 110
/36/ L.W. Weston, J.H. Todd:
Nuc1. Sci. Eng. 63(1977), 143
/37/ K. Wisshak, F. Käppeler:
Nucl. Sci. Eng. 66(1978), 363
/38/ R.W. Hockenbury, W.R. Mayer, R.C. Block:
Nucl. Sci. Eng. 49(1972), 153
/39/ R.W. Hockenbury, A.J. Sanislo, N.N. Kaushal:
Proc. of Conference on "Nuclear Cross Sections and Technology", Washington (1975) NBS spec. publ. 425, Vol. II, p. 584
/40/
B. Goel:

Evaluation of High Plutonium Isotopes for the German Nuclear Data File KEDAK; contributed paper to BNL Specialist Meeting on Nuclear Data for High Plutonium and Americium Isotopes for Reactor Applications, Brookhaven/Upton, Nov. 20-22 1978
/41/ M. Caner, S. Yiftah: IA-1243 (1972)
M. Caner, S. Yiftah: IA-1275 (1973)
M. Caner, S. Yiftah: IA-1276 (1973)
/42/ W. Poenitz, E. Pennington, A. B. Smith, R. Howeston: ANL/NDM-32
/43/ E. Barnard, A.J.G. Ferguson, W.R. McMurray, I.J. van Hurden: Nuc1. Phys. 80(1966), 46
/44/ R. Batchelor, J. Towle:
Nuc1. Phys. 65(1965), 236
/45/ H.H. Knitter, M. Coppola, N. Ahmed, B. Jay:
Zeits. f. Phys. $244(1971), 358$
/46/ G. de Saussure, D.K. Olsen, R.B. Perez, F.C. Difilippo: Evaluation of the ${ }^{238}{ }_{U}$ Neutron Cross Sections for Incident Neutron Energies up to 4 keV ; ORNL/TM-6152 (ENDF-257)

I am very grateful to Priv.-Doz. Dr. H. Jahn for the animation of this work and his helpful support. I also wish to thank Dr. B. Goel for his aid and many stimulating discussions and Dr. F. H. Fröhner for useful discourses and comments.

Dipl.-Ing, C.H.M. Broeders is acknowledged for his friendly aid in using the computing facility, Fr. R. Heger for adapting the code HAUSER*4 to the IBM at KfK.

Last but not least I wish to thank Fr. Bunz for her patience in typing the manuscript.

