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Generalized Fault Tree Analysis Combined with State Analysis

Abstract

An analytical theory has been developed which allows one to
calculate the occurrence probability of the top event of a fault tree
with multistate (two or more than two states) components.

It ié shown that, in order to correctly describe a system with multi-
state components, a special type of boolean algebra is required, This is
called "boolean algebra with restrictions on variables'" and its basic rules
are the same as those of the traditional boolean algebra with some additional
restrictions on the variables. These restrictions areextensively discussed
in the paper. It is also shown that the boolean algebra with restrictions on
variables facilitates the task of formally combining fault tree analysis with state
analysis,

The definition of component has been generalized. A new classifica-
tion of components into priviledged and unprivileged is proposed. It is
shown that this classificationeases the calculation of the expectatien of

a stechastic booleanyariable especially in the case of statistical dependence,

The problem of statistical dependence has been solved either (1) by
removing it, that is by replacing in the fault tree the statistically
dependent primary variables by means of "ad hoc'" new defined primary
variables or (2) by evaluating separately (by means of the state analysis)
the conditional probabilities of the statistically dependent events. The
theory then provides the tools for correctly incorporating these conditional
probabilities in the fault tree analysis. Criteria to establish which one of
the two methods should be used are given in the paper,

A new definition of coherent boolean function is given in the paper.

Important features of the method are the identification of the complete
base and of an irredundant base of a boolean function which does not neces-
sarily need to be coherent, The identification of the complete as well as of
an irredundant base of a boolean function requires the "application of some
algorithms which are not used in today's computer programmes for fault tree
analysis. It is also shown that the knowledge of the complete base offers
the possibility to find out whether or not two fault trees of the same sy-
stem are equal, although they look apparently different.

The paper includes also  small demonstrative examplesto illustrate
the theory.

The computer program MUSTAFA 1 based on the above theory has been
developed. It can analyse fault trees of system containing statistically
independent as well as dependent components with two or more than two
states., MUSTAFA 1 can handle coherent as well as non coherent boolean
functions.



Kombination von Fehlerbaumanalyse und Zustandsanalyse

Kurzfassung

Es wurde eine analytische Theorie entwickelt, mit der die Eintrittswahr-
scheinlichkeit des Top-Ereignisses eines Fehlerbaums mit Komponenten, die
mehrere Zustdnde haben konnen (2 oder mehr als 2), berechnet werden kann.

Es wird gezeigt, daB eine spezielle Boolesche Algebra bendtigt wird, um
ein System mit solchen Komponenten richtig beschreiben zu kdnnen. Es ist
die sogenannte "Boolesche Algebra mit beschrdnkten Variablen'; ihre
Grundregeln sind die gleichen wie bei der gewbhnlichen Booleschen Algebra,
mit einigen zusdtzlichen Beschridnkungen beziiglich der Variablen. Diese
Beschriankungen werden im vorliegenden Beitrag ausfiihrlich diskutiert.
AuBerdem wird gezeigt, daB die Boolesche Algebra mit beschridnkten
Variablen die Aufgabe der formellen Kombination von Fehlerbaumanalyse

und Zustandsanalyse erleichtert.

Die Definition der Komponenten wurde allgemeiner formuliert. Es wird eine
neue Einteilung der Komponenten in privilegierte und nicht privilegierte
Komponenten vorgeschlagen und gezeigt, daB diese Einteilung die Berech-
nung der Erwartung einer stochastischen Booleschen Variablen, insbesondere
bei statistischer Abhidngigkeit, erleichtert.

Die Frage der statistischen Abhingigkeit wurde auf zwei Arten geldst:

(1) durch Ausschalten, d.h., die statistisch abhdngigen, primdren Variab-
len werden im Fehlerbaum ersetzt durch "ad hoc" neu definierte primidre
Variablen; oder (2) durch getrennte Ermittlung (mit Hilfe der Zustands-
analyse) der bedingten Wahrscheinlichkeiten der statistisch abhdngigen
Ereignisse. Die Theorie liefert dann die Moglichkeiten fiir eine korrekte
Beriicksichtigung dieser bedingten Wahrscheinlichkeiten in der Fehlerbaum-
analyse. Der Bericht enthdlt Kriterien dafiir, welche der beiden Methoden
benutzt werden sollte,

Eine neue Definition einer kohirenten Booleschen Funktion ist im Bericht
enthalten.

Wichtige Merkmale der Methode sind die Identifizierung der vollstzndigen
Basis und einer nichtredundanten Basis einer Booleschen Funktion, die
nicht unbedingt kohdrent sein muR. Die Identifizierung der vollstdndigen
sowie einer nichtredundanten Basis einer Booleschen Funktion verlangt

den Einsatz einiger Algorithmen, die in den derzeitigen Rechenprogrammen
fiir die Fehlerbaumanalyse nicht benutzt werden. Weiterhin wird gezeigt,
daB die Kenntnis der vollstindigen Basisg die Mdglichkeit liefert festzu-
stellen, ob zwei Fehlerbiume desselben Systems auch dann gleich sind, wenn
sie unterschiedliche Struktur haben,

Der Beitrag enthilt dariiber hinaus kleine Demonstrationsbeispiele zur
Erlduterung der Theorie.

Das auf der genannten Theorie beruhende Rechenprogramm MUSTAFA 1 wurde
entwickelt, Mit ihm kdnnen Fehlerbiume eines Systems analysiert werden,
das sowohl statistisch unabhdngige als auch abhingige Komponenten mit 2
oder mehr als 2 Zustdinden enthdlt, MUSTAFA 1 kann kohdrente wie auch in-
kohirente Boolesche Funktionen bearbeiten.
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INTRODUCTION

The evaluation of the occurrence probability of the top event
of a fault tree can be carried out by means of simulation methods
(Monte Cartlo-type methods) or by means of analytical methods.
Numerical simulation allows reliability information to be obtained
for systems of almost any degree of complexity. However, this method
provides only estimates and no parametric relation can be obtained.
In addition, since the failure probability of a system is usually
very low, precise results can be achieved only at the expense of
very long computational times.

Analytical methods give more insight and understanding because
explicit relationships are obtainable. Results are also more precise
because these methods usually give the exact solution of the problem.

In 1970 Vesely /1/ gave the foundations of the analytical method
for fault tree analysis.

Vesely's theory was improved by the author. A computer pro-
gram for fault tree analysis was developed based on this theory
/16; 8/. This computer program proved to be the best analytical
program for fault tree analysis in the Federal Republic of Germany

/17/.

Vesely's method can be applied only to coherent systems with
binary (two states) components. Another important limitation of the
method is that the boolean function which describes the top variable
of the fault tree must not contain negated variables.Finally the theory

does not give any indication on how to handle statistically de-
pendent components,

Since there are components (e.g. a switch) which have more than
two states, a theory was developed by the author in 1977 /2/ to handle
‘systems with multistate components. Here the basic idea to associate
the primary variables with the states of the primary components in-
stead than with the primary components was introduced. In addition
the basic boolean algorithms were described. In 1978 the author /3/
showed that the technique of multistate super~components can be used
to remove statistical dependencies from a fault tree. -

An interesting feature of the method proposed in /2/ and /3/ is
that the boolean function which describes the top variable of the fault
tree does not necessarily need to be coherent, In addition boolean
functions containing negated variables can be treated.

A formalization of the theory by means of the so called "boolean
algebra with restriction on variables" has been developed by the author
in /12/. The basic and important boolean operations of this special
type of boolean algebra are also described in this paper.



Hystorically two basic analytical tools have been developed to perform reliability
analysis of systems. They are the state analysis and the fault tree ana-
lysis. The method of the block diagrams can be considered basically similar
to that of the fault tree.

In the state analysis each individual elementary state of the system is
considered. Usually (but not necessarily) the stochastic process which
describes the system behaviour is Markovian. Since the number of elementary
states in a complex system is very large, this type of analysis cannot be
used in most practical cases. On the other hand, since the analysis is
carried out at the level of elementary states, the statistical dependence
among components can be easily incorporated in the model,

In the fault tree analysis, instead, the system is described by the so
called minimal cut sets, which can be considered practically as macrostates,
i.e. large sets of system elementary states. Since the number of minimal

cut sets in a complex system is orders of magnitude smaller than the number
of elementary states, the fault tree is in principle a more suitable tool

to analyze complex systems. However the treatment of statistical dependence
among components is not straight forward in this case.

We can say that in the state analysis the net of states considered is
characterized by a very fine mesh. The net used in the fault tree analysis
has instead a much coarser mesh. Since the problem of statistical dependence
among components (such as common mode failure) affects the fine structure

of a system, the coarse mesh used in the fault tree analysis is not suitable
to handle the problem of statistical dependence. On the other hand the fine
mesh used in the state analysis, although it would be suitable to cope with
statistical dependence, is much too fine to handle complex systems.

From the above discussion it is clear that an intermediate mesh size is
required for the analysis of statistical dependencies in complex systems.
This mesh must be fine enough to retain the basic properties of statistical
dependence and sufficiently coarse to still allow one to analyze complex
systems.

This can be obtained by properly combining fault tree analysis with state
analysis,

In the state analysis one deals with elementary states; in the fault tree
analysis, instead, with variables. This fact makes it rather difficult to
combine fault tree analysis with state analysis in a manageable way.

The boolean algebra with restriction on variables is the common language
which can be used in both types of analysis.

We want now to give a short summary of the contents of each chapter of

this paper with the purpose of offering some kind of guidance to the patient
reader.

In chapter 1 the basic properties of the boolean algebra with restrictions
on variables are described and the very close connection of this algebra

to the set theory is discussed. A new definition of fault tree is also
given.,

In chapter 2 the expectation of a stochastic boolean variable is defined.




The relationships between boolean variables and indicator variables are
also extensively discussed. Finally the normal disjunctive form of a
boolean function is defined.

In chapter 3 the concept of component has been generalized. This new de-
finition of component includes as a special case the primary component,
which is here intended as a component whose probability data are directly
available (e.g. from data banks). The differences between logical and
statistical dependence are discussed, The conditional expectation of a
boolean variable is defined and a theorem on these conditional expecta-
tions is given.

In chapter 4 the state analysis is introduced by using the notation of the
boolean algebra with restrictions on variables. The methods of the conden-
sation of two or more states into one state and of the expansion of one state
into two or more states are described and discussed. Components are classified
into privileged and unprivileged. This classification differs from that of
statistically independent and statistically dependent components and is of
basic importance for the proposed treatment of the statistical dependence
among components,

In chapter 5 the state analysis is applied to the primary components. The
main problem here is that of the state analysis of the dependent components.
Here only the components which are statistically dependent on each other are
considered. The remaining components of the system do not need to be con-
sidered. This means that the mesh size used in the analysis is defined by
the elementary states of only a part of the system(smallest privileged

super component)and is therefore much coarser than the mesh size defined

by the system elementary states., However the selected mesh size is fine
enough to retain the basic properties of statistical dependence.

In chapter 6 the state analysis of a bipolar switch (circuit breaker) is
developed.

In chapter 7 the fault tree symbology is introduced.

In chapter 8 a system with only a few primary components is described and
its fault tree is constructed.

In chapter 9 the occurrence probability of the primary events of the fault
tree of chapter 8 are calculated by making use of the theory developed in
chapter 6.

In chapter 10 the boolean operations to analyse a fault tree are extensive-
ly described. The theory is then applied to the example introduced in chapter
8.

In chapter 11 it will be shown how to calculate the occurrence probability
of the top event of a fault tree, Only here will 'it become fully clear how
the results of the state analysis are incorporated in the fault tree ana-
lysis. ) ‘

In chapter 12 a new definition of a coherent boolean function is given

and its properties are discussed.

Finally the concluding remarks about the proposed method are given in
chapter 13.



1. BOOLEAN ALGEBRA WITH RESTRICTIONS ON VARIABLES. DEFINITION
OF FAULT TREE

We consider a system at a fixed moment in time. Fach elementary state
of the system at a given time is obviously defined by the states occupied
at that time by each individual primary component belonging to the system.
A state of a primary component is called a primary state. The event of
the system occupying one of its elementary states is called an elementary
event. The event of a primary component occupying one of its states is
called a primary event. We shall call a state (of the system) any defined
set of elementary states (of the system).

The occurrence probability of a primary event is directly available
(e.g. from reliability data banks). This property of the primary event can
be taken as a basis for its definition

"A primary event is an event whose occurrence probability
is directly available."

Probability data associated with the failure of primary components (such as
a pump, a relay etc.) are in general directly available from reliability
data banks.

We now select a special set of elementary states of the system (e.g.
the set of all elementary failed states) and call it the top state of
the system (with small letters).

If we want to calculate the occurrence probablity of the event

{System is failed} = {System is in the top state}

we have first to express the occurrence probability of this event as a
sum of the occurrence probabilities of each elementary event.

n
P {System is in the top state} = iél P {System is in the elementary state si}
where
P {....} indicates the occurrence probability of the event

in brackets
and
n = total number of elementary events.

The occurrence probability of each elementary state of the system is
obtained by carrying out the state analysis of the system.

If the system is very complex, the number of its elementary states
is extremely large. In this case the procedure described above becomes
very cumbersome and cannot be applied in practice.

Another method is therefore needed.




We associate with the top state of the system a boolean variable
which we call TOP (with capital letters). The variable TOP will take
the value 1 (true) if the system occupies one of the elementary states
belonging to the selected top set and the value O (false) otherwise.

{System is in the top state} = {TOP = 1}

If all primary components of the system are binary, i.e: are
characterized by only two states (intact and failed), we-assign to
each primary component a boolean variable which takes the va}ue 1 if
the component is failed and the value O if the component is intact. '
These are called primary variables. The value taken by a primary variable
at a given time is a primary event.

If we want now to calculate the occurrence probability of the event
{rop = 1}

we must first dissect the TOP variable into combinations of primary
variables, that is to express the TOP variable as a proper function of
the primary variables. The occurrence probability of the event {TOP = 1}
can then be calculated as a function of the occurrence probabilities of

the primary events.

‘Due to the complexity of most systems, the operation of dissec-
tion of the TOP variable into combinations of primary variables is
in general carried out in steps. The TOP variable is first dissected
into combinations of simpler non-primary variables (intermediate
variables). These intermediate variables are in turn dissected into
combinations of even simpler intermediate variables and so on. The
process of dissection comes to an end when all combinations are
combinations of primary variables only.

The process of dissection can be carried out in a graphic form
by constructing a fault tree of the chosen TOP variable.

A fault tree is a logic model which shows in diagrammatic form
the connections between the TOP variable and the primary variables.

A more precise definition of a fault tree can be given by mak-
ing use of the graph theory.

"A fault tree is a finite directed graph without loops.
Each vertex may be in one of several states. For each
vertex a function is given which specifies its states
in terms of the states of its predecessors. Those ver-
tices without predecessors are considered the independ-
ent variables of the fault tree.' /4/

We are following the graphical terminology of Berge /5/here. In
the technical literature a vertex with predecessors is currently
called a gate. The output variable of a gate is called (improperly) an
output .event of the gate. An input variable to a gate 1is called @
predecéssor or (again improperly) an input event to the gate. In the
technical literature the improper terms TOP event, primary event
are also currently used. One should instead use the more correct
terms TOP variable and primary variable. In fact the word event is
used {in the set theory and in the propositional calculus) to indi-
cate a value or a set of values of a variable. We shall use the
correct mathematical terminology here.



Note that in the above definition of fault tree the term
"independent variable" is used and not "primary variable'". The word
indepdendent in this context means "logically independent'", that is
each input variable to the tree can take any value of its domain of
definition independently of the values taken by the other input vari-
ables,

In the case of a fault tree with only binary primary components, the
primary variables are the independent variables.

The truth table of the fault tree contains all possible combi-
nation among the values of the input variables. Each row of the truth
table represents an elementary state of the system.

If the fault tree has m binary primary components, that is m
input variables, the tyuth table of the fault tree has 2™ rows.

The function which links the output to the inputs of a gate
are boolean functions. The basic gates are the AND (conjunction),
OR (disjunction) and the NOT (negative) gates.

Let us first consider an AND gate with two inputs, namely
A and B (Fig. 1-1)

.AND Gate Truth Table
S Inputs| Output
Al B S
ol o 0
ol 1 0
A B 1] o 0
1 1 1
Fig. 1-1. AND Gate (S = AA B)

The truth table of Fig. 1-1 gives the value of the output S
for each pair of values of the two predecessors A and B. This truth
table can be expressed in words as follows

"Output takes the value 1 if and only if all predecessors
take the value 1, and the value O if at least one of its
predecessors takes the value 0."

We now order the values 1 and O in that we say, for instance
that 1 is larger than O



We can synthetize the AND operation as follows
S = min (A; B)
which means that S takes the smaller of the values of A and B.

Fig. 1-2 shows the OR gate with associated truth table.

OR Gate Truth Table
S
Inputs Output
Al B S
o} O 0
0 1 1
A 8
. 1 0 1
Fig. 1-2. OR Gate (S = AV B)
1 1 1
!

Also in this case the truth table of Fig. 1-2 can be expressed
in words as follows

"' Output takes the value 1 if at least one of the
predecessors takes the value 1 and the value O if and
only if all predecessors take the value 0."
If we put 1 > O, we can write in the case of the OR gate
S = max (A; B)
which means that S takes the larger of the values of A and B.

Fig. 1-3 shows the NOT gate with associated truth table.

NOT Gate S Truth Table

Inputs Output

A s
0 1
A 1 0

Fig. 1-3. NOT Cate (S = A)



In words

"Output takes the value 1 if predecessor takes the value O
and vice versa."

In a fault tree the truth tables of each gate are properly com-
bined to get the truth table of the TOP. We show this by means of an
example.

We consider the simple fault tree of Fig. 1-4 (Example No. 1).
Each one of the two OR gates will be characterized by a truth table
of the type of Fig. 1-2. The outputs of the two OR gates will be the
inputs to the AND gate, which has a truth table of the type shown in
Fig. 1-1. By properly combining the three truth tables one finally
gets the overall truth table of the fault tree. This truth table has
16 rows (Fig. 1-5).

We now consider an elementary state of the system. Each elementatry

state of the system can be expressed by the cartesian product of the

corresponding primary states. Consider, for instance, the row No. 7 of

the truth table of Fig. 1-5.

System elementary state No. 7 "s7" = {A1=O} X {B]=1} x {C1=1} X {A2=O} (1-0)

We now introduce the notation for the primary states (small letters).
We have

{A1=O} = a,
{B]=1} = b,
{C]=1} e ¢
{a,=0} = a,
Taking into account the above positions, Eq. 1-0 becomes
s, =a, xb, xc, Xxa

(1-0a)



Fig.

TOP

AN

N

1-4. Fault Tree - TOP = (C1 v A2) A (Al \') Bl)
Row Inputs Output
Number A B, | ¢ A, TOP
1 0 0 o 0o 0
2 0 0 0] 1 0
3 o) 0 1 0 o
4 0 0 1 1 0
5 0 1 0 (0] 0
6 0 1 0 1 1
7 0 1 1 0 1
8 0 1 1 1 1
9 1 0 (0] o 0
—_— 10 1 0 0 1 1
11 1 0 1 0 1
-_— 12 1 o 1 1 1
13 1 1 o 0 0
— 14 1 1 0 1 1
15 1 1 1 0 1
— 16 1 1 1 1 1
Fig. 1-5.
Complete truth table of the fault tree of Fig. 1-4 (Example

No.1l)
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In the previous example we have assumed that -all primary com-
ponents are binary. There are however primary components which are
characterized by more than two states, For instance an electrical
circuit breaker is characterized by at least three states, namely
(1) intact, (2) failed closed and (3) failed open.

One could in this case assign to each primary component a mul-
tivalued variable characterized by a number of values equal to the
number of states of the primary component. Each value of the vari-
able corresponds to a specific state of the primary component.

These multivalued variables are the primary variables. They are
pairwise mutually logically independent. Primary variables and
independent variables are also in this case identical. The function
which links the output to the input of a gate is a logic function
which is in general very complex. This way of thinking is consistent
with the definition of fault tree given above. There is however,

a considerable drawback, namely that a more complicated multivalued
logic must be developed. The basic gates are not any more simply

the AND, OR and NOT gates as in the case of the boolean binary'algebra.
New basic gates must be found.Some authors /6/ are following thisway
of thinking. We want to follow another path instead. We want to

have primary variables which are binary.

Let us consider the state space of a primary component. A
state belonging to the state space of a primary component is called
primary state. The event of the primary component occupying 4 given
state of its state space at a given time is called primary event.

A primary component will be indicated by the small letter c
followed by an integer positive number (cl; c2; ¢3 etc.). In
general we shall have cj with j=1;2...; m, where "m" is the total

number of primary components contained in the system.

A state of a primary component will be indicated by the same
notation of the primary component to which it belongs followed by
a positive integer number as an index. (cips cio; cjg etc.) In
general we shall have cj, with q=1;2;...nj, where nj is the total
number of states belonging to primary component cj.

We can now associate with each state cjq a boolean variable qu which
takes the value 1 (true) if primary component cj occupies state CJq and

the value C (false) if cj does not occupy ciq.

The event

Cj =1 = cj
.} a

indicates that primary component cj occupies state cj

Conversely, the event

U
Cij =0 e ¢ k#
{ 3q } Yooed q
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indicates that primary component cj does not occupy state ch and
therefore occupies one of its other possible states,

Note the one to one correspondénce between state cjq (small c)
and boolean variable qu (capital C) associated with it. We

have
j = C) =1 } and 3 { Cj3 = ] % = { C1 = O &

We shall say that the primary state c¢j, belongs to component
¢} (cj,&cj). The word "primary component' (with small c¢) is here
intended as the set of all possible states which the component can
occupy.

We shall also say that the variable Cj, belongs to Component
Cj (qué(ﬁ). The word "primary Component' %withlcapital C) means
here the complete set of variables associated with its states.

The binary variables Cj_. are the primary variables. They are
however not any more pairwise mutually independent,

Since a primary component must occupy one of its states and
can occupy only one state at a time, the variables qu must obvious-
ly satisfy the following two types of restrictions.

Restriction Type 1 The disjunction of all binary variables-associ-
ated with the same primaryComponent is always
equal to 1

nj

v ¢, = 1 (1-1)

q=1

The notation "1" in Eq. 1-1 means 'true'". Eq.l must be read as
follows. The proposition "at least one of the variables Cj (q=1;
;...nj) takes the value 1" is always true. q

Eq. 1-1 means that the variables qu are prohibited to be all equal
to O at the same time.

Restrictions Type 2 The conjunction -of two different: binary varia-
bles- associated with the same primary Component
is always equal to O.

qu/\ Cj =0 q # k (1-2)

The notation "O" in Eq. 1-2 means ''false'. Eq. 2 must be read
as follows. The proposition "both variables qu and Cjj (q#k) take
the value 1" is always false.

Eq. 1-2 can also be expressed in words as follows: "the variables
qu and Cjp are mutually exclusive."

Note that there is only one restriction type | and
restrictions type 2.

nj(nj-1)
2
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Note also that-Eqs- 1-=l--and 1-2 can be translated straight- for-

wardly into the equivalent equationsamong states. We have obviously

Restriction Type 1

\') ch =1 (1-1a)

and

Restrictions Type 2

. . = 1-2
¢y N cj, =0 q 7k (1-2a)

Egqs. 1-la and 1-2a have been obtained respectively from
Egs. 1-1 and 1-2 by carrying out the following simple operationms.

Capital C is replaced by small ¢
Disjunction operator \/ " " " Union operator WJ
Conjunction operator A " " " Intersection operator(}

Note that the notation "1" and "0" in Eqs. 1-1la and 1-2a have
a different meaning. They indicate respectively the "universal set"
and the "empty set'". Eq. 1-la means therefore that the union of all
states of a primary component constitutes an universal set, that is
its complete state space. Eq. 1l-1b means that the intersection of

two different states of a primary component constitutes an empty
set.

Since we have introduced primary variables which are not any

more pairwise mutually independent, we have to slightly modify the
definition of a fault tree. '

"A fault tree is a finite directed graph without loops.
Each vertex may be in one of several states. For each
vertex a function is given which specifies its states
in terms of the states of its predecessors. Those
vertices without predecessors are the primary variables
of the fault tree. The primary variables may satisfy some
conditions (called restrictions) which are associated with
the fault tree.-The. restrictions must be.such that they
ao not generate any loop in the fault tree'.

We shall limit ourselves to consider fault trees characterized
by a boolean TOP variable and by boolean primary variables which
satisfy restrictions of the types given respectively by the Egs.

1-1 and 1-2. These restrictions do not generate any loop in the
fault tree.

It is worthwhile to stress once more the point that the primayy
variables in the traditional fault trees are associated with the primary

components, In the fault trees proposed in this paper, instead, they
are assoclated with the states of the primary components.




We consider now the truth table of the TOP variable.

Restriction type 1 means that the primary events

(o5 0} ¢ fo e 0dss o, -0 }

cannot co-exist all together at the same time. This is equivalent to
saying that all the rows of the truth table in which the variables
Cjys Cigs Cjg... take simultaneously the value O are prohibited

and must be deleted.

The restrictions type 2 mean that the primary events
{qu=1} and {C_]k=1} s q#k

cannot co-exist at the same time. This is equivalentto saying that
all the rows of the truth table in which both the two input varia-
bles Cjq and Cj, take the value 1 are prohibited and must be
deleted.

The following two examples will make this point clearer.

Let us consider the fault tree of Fig. 1-4 and let us assume
that the primary variables &y and Apbelong both to the same primary
Component which is characterized by two states (Example No. 2).
Eqs. 1-1 and 1-2 become respectively

Al V Ar=1 (1-3)
A1 A Ap=0 (1-4)

Eq. 1-3 tells us that the events {A1= O} and £§2= q}
cannot co-exist. If we now look at the complete truth table of

the fault tree (Fig. 1-5) we notice that the rows 1; 3; 5 and 7
are prohibited because in these rowsAj and Ajhave both the value 0.
These rows must therefore be deleted.

Eq. 1-4 tells us that the events £A1= {} and { = 1.}
cannot co-exist. This is equivalent to saying that the row No. 103
12; 14 and 16 (Fig. 1-5) are also prohibited and must be deleted.
The truth table of the fault tree of Fig. 1-4 with the additional
conditions 1-3 and 1-4 will be reduced to that of Fig. 1-6 which
contains eight rows only.

The input (primary) variables of the truth table of Fig. 1-6
are not all pairwise mutually independent. In fact the eight rows
containing the combinations of values (0;0) or (1;1 ) for the
variablesAj and Apdo not appear in the truth table of Fig. 1-6.



Row Inputs Output

Number

TOP

=
._C‘d
2
N

(o I NI« T . I~ FURY G
= = = 0O O O ©
= O O = =0 O
= O = O = O = O
O O O O K+ =+ -
— O = O =~ = O O

Fig. 1-6. Truth Table of Example No.2

It is sometimes possible however to reduce the number of
the primary variables and to get the independent variables only.
In the case of example No. 2 this is possible.

We notice that Eqs. 1-3 and 1-4 can be reduced to the follow-
ing equation.

Eq. 1-5 means that, once a value has been assigned to the
variableA15 the variable Aztakes a defined value according to the
truth table of Fig. 1-3 (NOT Gate). For this reason the column
corresponding to the variableA2 in the truth table of Fig. 1-6
is redundant and can be deleted, The value of the TOP is in fact
completely determined if the values of the primary variables Ay; Bj;
Co havebeen previously chosen. The truth table of Fig. 1-6 can be
further reduced by deleting the column of the primary variable A
(Fig. 1-7). 2

Row Inputs Output
Number AL B Cq TOP
1 0 0 0 0
2 0 0] 1 0
3 0 1 0 1
4 0 1 1 1
5 1 0 0 0
6 1 0 1 1
7 1 1 0 0
8 1 1 1 1

Fig. 1-7. Truth Table of Example No. 2 (Final)
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Conversely one could keep the variableAj as independent varia-
ble and delete in Fig. 1-6- the column corresponding to the variable
Ay which would now be redundant.

Let us consider again the fault tree of Fig. 1-4 and let us
assume that the primary variablesA] and A belong both to the same
primary Component (as in example No. 2) but that this component is
characterized now by three states and that the primary variable
associated to the third state (call itAs) is not present in the
fault tree (example No. 3). In this case Eqs. 1-1 and 1-2 become
respectively

AVA VA =1 (1-6)
and

AIAA2= 0 (1-7a) ATAA3= 0 (1-7b) AZ/\ A3‘= 0 (1-7¢)

The rows 10; 12; 14; 16 of the truth table of Fig. 1-5 are
prohibited because the events A1=ﬂ and 7=1 cannot co-exist

at the same time (Eq. 1-7a). By deleting thése Tows one obtains
the truth table of Fig. 1-8 which contains 12 rows only.

Row Inputs Output
Number A By Cy Ay TOP
1 0 0] 0] 0] 0
2 0] (o) (0] 1 o
3 0 0 1 0 0
4 0 0 1 1 0
5 0 1 0 0 o
6 0] 1 0 1 1
7 0 1 1 o 1
8 0 1 1 1 1
9 1 0 0 0 0
10 1 0 1 0 1
11 1 1 0 0 0
12 1 1 1 0 1
Fig. 1-8. Truth Table of Example No. 3.

Note that in this case we don't make any use of the restric-
tions given by Eqs. 1-6; 1-7a and 1-7c¢ because the primary vari-
able Agis not explicitly contained in the fault tree.

The input variables of the truth table of Fig. 1-8 are not all
pairwise mutually independent. In fact the four rows which contain
the combination of values (1; 1) for the variables AjandA, do not
appear in the truth table of Fig. 1-8. In this case however it is
not possible to reduce the number of primary variables as in the
case of Example No. 2. In fact no column in the truth table of
Fig. 1-8 is redundant.



In conclusion the following rule can be stated (Rule No. 1)

"The truth table of the TOP variable of a fault tree can

be obtained from the complete truth table (in which all
primary variables present in the fault tree are assumed

to be pairwise mutually independent) by deleting the
prohibited rows and the redundant columns. The restric-
tions allow one to identify these prohibited rows and
redundant columns. Each surviving row corresponds to a
specific elementary state of the system. The surviving primary
variables may or may not be pairwise mutually independent.”

We notice that we have defined primary variables which are
binary as in the classical boolean algebra, but not necessarily
pairwise mutually independent. We shall therefore introduce the
term "boolean algebra with restrictions on variables” to indicate
an algebra in which the basic (primary) variables are boolean but
not necessarily pairwise mutually independent.The classical binary boolean
algebra can be considered as a particular case of this boolean
algebra with restrictions on variables in that the basic variables
are all pairwise mutually independent.

We now consider the elementary states of the top state,
Consider, for instance, the row 7 of the truth table of Fig. 1-8
(Example No. 3).

System elementary state No. 7 "s; = {B1=] } x {C]=1} X [{AI= ]r n{A2=O}] (1-8)

Note that Equation 1-8 is obtained (1) by grouping all events
which belong to the same component and linking them with the inter-
section operator f} and (2) by linking all groups with the cartesian
product operator x. In fact the events {A]=0} and {A2=0}belong to
the same component and must therefore be grouped together. Note that
this problem does not exist in the case of the classical fault trees
with binary components (Eq. 1-0)!

We now want to eliminate the groups.

Taking into account the boolean identities A VA
we get from Eqs 1-6, 1-7b and 1-7c¢

5= and AB/\A3=O’

From Eq. 1-9 we get
b} = Eage) = fiefofasd 109

We have the following identities

{K1=.1} {A1=O} (1-11)
{K2=1} {A2=0} (1-12)

i

i



Taking into account Eqs. 1-11 and 1-12, Eq. 1-10 becomes

ISy

Taking into account Eq. 1-13, Eq. 1-8 becomes

{Bf‘} x {cé} x {A3=]} (1-14)

Note that Eq. 1-14 does not contain any more the intersection
operator (\ and all events contain the symbol 1.

We now introduce the notation for the states of the primary com-
ponents (small letters). We have

{Bléﬁ b, (1-15)
{C1=l} = < (1-16)

{A3=§

Taking into account Eqs. 1-15, 1-16, 1~17, Eq. 1-14 becomes

aq (1-17)

System elementary state No. 7 "s_"= b, x c, x a (1-18)

7 1 3

The expression on the right side of Eq. 1-18 is called the smallest
form of system elementary state No. 7. :

1

Each elementary state of a system has only one smallest form.

We can now state the following definition

" The smallest formof an elementary state of a system is de-
fined by the cartesian product of the states occupied by each
single primary component belonging to the system."

We now go back to Eq. 1-14 which we can now write in a more

compact form. —1} { ‘} {A —1}

s =
! (1-19)
- @1A01AA3=1}
From Eqs. 1-18 and 1-19, we get
b1XC1X33 ={B]I\C]I\A3=l} (]—29)

Before discussing Eq. 1-20, we want to introduce some new terms.
A variable which results from the conjunction of primary variables
is called monomial, A monomial containing two or more primary variables
belonging to the same primary component is obviously equal to zero
(restrictions type 2). A non-zero monomial containing a number of
primary variables equal to the number of primary components present in
the system is called "complete monomial'. It is important to point out
that the primary variables of a complete monomial must not be negated.
For instance, the monomial B . ACjAA, of Example 3 is a complete monomial.
For a given system the number of complete monomials is equal to the
number of its elementary states.




Eq. 1-20 tells us that, given the complete monomial B]ACIAA , one
obtains the smallest form of the corresponding elementary state | ¥cyxag
by carrying out the following operation

B1 is replaced by b]

C] 1t " " C]
A3 " 1" 1" a3
conjunction
operator A " " " cartesian product operator x

We can now state the following rule (Rule No. 2).

"The smallest form of an elementary state of a system is
obtained from its corresponding complete monomial by re-
placing each primary variable by its associated primary
state and each conjunction operator (A) by the cartesian
product operator (x).

Conversely we have

"A complete monomial of a system is obtained from the
smallest formof its corresponding systemelementary state by
replacing each primary state by its associated primary
variable and each cartesian product operator (x) by the
conjunction operator (A )."

It is important to point out that the complete monomial B,AC.AA, can
be obtained from the truth table of Fig. 1-8 by applying a more straight
forward procedure, i.e. the rules of the traditional boolean algebra

and those due to the restrictions. We have from the truth table of
Fig. 1-8

s, = KIABIACI‘AKZ (1-20a)

Taking into account Eq. 1-9 , Eq,1-20a becomes

S5 = AqhB,AC, (1-20b)

Going back to the truth table of Fig. 1-18 (Example No. 3),
we select the rows for which TOP = 1. These are the rows No. 6,
7, 8, 10 and 12. Each selected row respresents an elementary state
of the system for which the equation TOP = 1 is satisfied. We now
find the smallest form of each row., In order to do that we must
introduce the states b, and cpwhich satisfy the restrictionms
respectively with b and c.

bjU by= 1 (1-21a) ; b by= 0 (1-21b)
and

cjU cp= 1 (1-22a) ¢} cp= 0 (1-22b)

The smallest forms of the rows 6, 7, 8, 10 and 12 are given in the
following table (Fig. 1.9).



System elementary Smallest form
state

6 b1 X Cy X 8y
7 b, xc, X a
1 1 3

8 b1 X ¢y X a,
10 a, x b, x ¢
12 ! b2 X c1
8 ) N

Fig. 1.9 Smallest form of system states (from the truth

table of Fig, 1.8),

By making use of the above table we can now write
top = (b]xczxaz)()(blxclxag)IJ(bIXCIXaZ)U@]xbzxc])l}(alxblxcl) (1-23)
Eq. 1-23 can be written as follows
{TOP = 1} = {BIACZAA2=13V{B1ACIAA3=1}V{BIAC]AA2=1} Y
v {AI/\BZAC1=]}V{A]ABIAC1=1} (1-24)
Eq. 1-24 can be written in a more compact form
{T0P=13 = {(BIACIAAZ)V(BII\CZAA3) v (B,ACAA) V (A AB AC )Y
V(AIAB]ACI) = l} (1-25)
From Eq. 1-25 we also get

TOP = (B,AC,A8,) V (BAC,AA;) V (B AC,AA,) v (4,AB,AC,) 4 (A,AB AC,) (1-26)

Eqs. 1-23 and 1-26 tell us that given the variable TOP as a
disjunction of complete monomials (Eq. 1-26) one obtains the
expression of the top set (Eq. 1-23) by carrying out the
following operations

TOP is replaced by top
" 1}

A] " a]

B " 1" " b

B; " it " b;

Cl " " 1" c]

CZ 11} " " C2

AL " 1] a

Ag " " 1] ag
conjunction operator A " " " cartesian product operator x
disjunction operator VY " " " union operator U

The disjunction of complete monomials of a boolean function is
called "disjunctive canonical form" of the function.

Now we can state the following rule (Rule No. 3)
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"If the variable TOP is given in its disjunctive canonical
form, the correspondingtop state is obtained by
replacing each complete mononomial by the corresponding
smallest form of system elementary state and each dis-
junction operator (V) by the union operator (U)."

Conversely we have

"If the top state is given in the form of union of

smallest forms of elementary states the corresponding
disjunctive canonical form of the variable TOP is obtained

by replacing each smallest formof elementary state by the corre-
sponding complete monomial and each union operator (UJ)

by the disjunction operator (V)."

We notice that the disjunction operator V is always replaced
by the union operatorl/. The conjunction operatorAinstead is re-
placed by the intersection operator()in the case of the restric-
tions type 2 (Eqs. 1-2 and 1-2a) and by the cartesian product opera-
tor x in the case of the complete monomials. This fact however does
not cause any problem. In fact any complete monomial is a non-zero
monomial which corresponds to a specific elementary state of the
system, A state is DY definition a non-empty set. Since the restric-
tions are only used to identify the zero monomials of a boolean
function,that is the prohibited rows of the corresponding truth
table, and these are always deleted, it is impossible to get smallest
forms of system elementary states containing the intersection operator,
and complete monomials which contain two or more primary variables

belonging to the same primary component.

In conclusion the boolean algebra with restrictions on varia-
bles allows us to operate on boolean variables in a way similar to
the classical boolean algebra, but with the additional complication
of the restrictions. Once that the boolean expression of the TOP
variable has been found, the rules No. 2 and 3 allow one to easily
identify the smallest form of the elementary statesbelonging to the
top state.

The advantage of using boolean variables instead of states is
obviously that of having a more flexible instrument to operate.

We show this point by developing Eq. 1-26. We notice that

i}

(BA GAAY V (BACAL)
(AA BAC) v (AN Bll\ Q)

(AA C) (1-28)

and

i

Taking into account Eqs. 1-27 and 1-28, Eq. 1-26 becomes
TOP = (B C -
0 ( ]/\Ag\/(A]/\ ])V(Bl/\Cl/\Ag (1-29)
We also notice that
Ay=-aAA, (1-30)

and therefore

(B]AAZ)\/(BL_A CIAAB) = B]A[AZV(clAKIAKﬂ = (B]/\AZ)V(B]/\C]AA? (1-31)



Taking into account Eq. 1-31, Eq. 1-29 becomes

TOP = (BAAYV (AA Q) V (BACAA) (1-32)
We have

(AA C)V (BACA KT)=C]A[A1V(B]/\K‘)]= (clAz\)V(c]/\Bl) (1-33)
Taking into account Eq. 1-33, Eq. 1-32 becomes finally

TOP = (B]/\AZ)V(A]/\ C?V(C]/\Bl) (1-34)

The top set is simply given by

top = {_(BIAAQV(AI/\ C})V(C(\B? = 1} (1-35)

Note that the expression of the top state given by Eq.
1-35 (i.e. by using the boolean variables) 1s much simpleér and much
more compact than the equivalent expression given by Eq. 1-23 (i.e.
by using the state analysis). In addition the expression 1-34 can
be obtained directly by solving the fault tree without considering
the complete monomials. This is the great advantage of using fault
tree analysis!

The fundamental rules of the boolean algebra with restrictions on
variables have been explained by the author in /24/. There it is
shown that the restricted variables can be understood as minterms
of an "ad hoc" defined filter function which allows one to sort out
the desired elements of a set. The relationships between the re-
strictions and the axioms of the boolean algebra are also illustrat-
ed in /24/. In particular it is shown that the complement of a pri-
mary variable (say A,) is equal to the disjunction of all remaining
primary variables beionging to the same primaty Component, that is

- n

A, = k!? A (k#1) (i=1,2,.00.,1) (1-36)
where

n = total number of primary variables belonging to the

primary Component A,

By complementing both sides of Eq. 1-36, one gets

j}

A, = A Xk (k#1) (i=1,2,:...,n) (1-37)

In the following we shall write the word component always with small "e".

x)

minterm = complete monomial



2. STOCHASTIC BOOLEAN VARIABLES. EXPECTATION OF A STOCHASTIC
BOOLEAN VARIABLE, NORMAL DISJUNCTIVE FORM OF A BOOLEAN FUNCTION.

In the preceeding chapter we have introduced boolean variables
which can take a value (either O or ‘l) and we have shown that the
state of the system at a given time can be described by these vari-
ables. This is like a photograph of the system at the chosen time.

The state of the system will change with time due to the fact
that e.g . some parts of it will fail and some other parts will be
repaired. This means that the TOP variable will change randomly with
time, The process which describes how this variable changes
with time is a stochastic process. This stochastic process is a
function of the stochastic processes of each individual primary
component, i.e., of the primary variables,

We shall speak therefore of stochastic boolean variables as
variables which can take at each time either the value O or 1, and
which can jump from one value to the other according to some pro-
bability laws which must be specified.

The theory of reliability has been traditionally developed by
introducing the so called binary indicator variables /14/. Each
primary component is given a stochastic binary indicator variable
which takes at a given time the value 1 if the component is failed
and the value O if the component is intact. Here the values | and
0 are real numbers. The behaviour of the system too is characteriz-
ed by a stochastic binary indicator variable, which can be express—
ed as a function (structure function) of the primary indicator
variables.,

The advantage of using binary indicator variables is that the
expected value of the variable is equal to the probability that the
variable takes the value 1, If we indicate with A' a stochastic
binary indicator variable, we have in fact

E { A'} 1.P {A'=l} + O°P {A'=O} =P {A'=l} (2-1)

where

E {----} = expectation (expected value) of the variable in
and brackets,

I’{‘ﬂ-- = occurtrence probability of the event in brackets.

Note the Eq. 2-1 holds only in the case that the indicator
variable is binary. If one uses multivalued indicator variables
to describe multistate components, Eq. 2-1 does not hold any more!

We want to use boolean variables instead of indicator variables,
because boolean functions are much simpler and more compact than



structure functions.

The problem therefore arises of the definition of the expecta-
tion of a stochastic boolean variable.

The definition of the expectation of a stochastic boolean
variable cannot be introduced straight-forwardly because the values
I and O that a boolean variable can take are not numbers. Accord~
ing towhat was said in the preceeding chapter | means true and O means
false.

In order to define correctly the expectation of boolean vari-
ables, we introduce the binary indicator variables (also stochastic)
which can take either the value 1 or the value O, where | and O are
now real numbers.

We can therefore associatewith each boolean primary variable
a primary binary indicator variable which takes the value 1 if and
only if the boolean variable takes the value 1 and the value O if
and only if the boolean variable takes the value O. Given a boolean
primary variable A, we shall indicate with A' its associated primary
indicator variable

N ——y Y (2-2)

Relationship 2-2 means that A and A' are equivalent to
each other.

Due to the above definition of indicator variable, the follow-
ing two identities among events hold

and{A 1} = ‘{A' - } (2-3)
{A o} {A' o} (2-4)

We take now the occurrence probabilities of both primary events
respectively of Egqs. 2-3 and 2-4 and we get the following two
equalities among probabilities

1 } (2-5)
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Note that the two probabilies defined respectively by Eqs, 2-5 and 2-6
must obviously satisfy the following equation

P{A=13+P{A=O}=l (2-7)

It seems logical now to define the expectation of a stochastic
primary boolean variable to be identical with the expectation of
its associated stochastic primary indicator variable, that is

E { ASde E {A} (2-8)

From Eqs. 2-1, 2-3 and 2-8 it follows

E{A}= P{A = 1‘} (2-9)

Either Eq. 2-8 or Eq. 2~9 can be used to define the expectation of
the stochastic primary boolean variable A,

For the sake of simplicity we drop fromnow on the attribute stochastic,

We want now to extend the validity of Eq. 2~8 also to the case
of boolean variables which are not necessarily primary. For this
purpose we must define the three basic arithmetical operations
among binary indicator variables which are equivalent respectively to
the three basic boolean operations of negation (NOT), conjunction
(AND) and disjunction (OR). An arithmetical operation is said to be
equivalent to a boolean operation if and only if the truth tables
of the two operations are formally identical. Formally identical
means that the arithmetical truth table is obtained from the boolean
one by replacing each boolean 1 with an arithmetical 1 and each O
with a O, In fact, since each row of the truth table is a state of
the output variable, formal identity of the two truth tables means
identity of the events, i.e. Eqs. 2-3 and 2-4 are satisfied for
each event of the truth tables,

The arithmetical operation which is equivalent to the boolean
negation is the complementation to unity.

Ae—se] - A (2-10)

In fact the truth tables associated to the two above operations
are formally identical (Fig. 2-1),

Taking into account Eq. 2-8 and relationship 2-10,we can write

E{K] =E{1—A'} =1—E{A'} =1—E{A] (2-11)

Note that Eq. 2-11 must be identical with the result which.one
would obtain by applying the definition given by Eq. 2-9 directly



Truth table of
the boolean negation (NOT)

Truth table of the arithmetical
complementation to unity

Input | Output Input Output
A A A 1 - A
0 1 0 1
1 0 1 0
Fig, 2-1: Truth tables of the boolean negation and of

the arithmetical complementation to unity.
to A. From Eq. 2-9 we get for A

E{K} = P{K=1}

On the other hand, taking into account Egs. 2-7 and 2-9 and the
truth table of the boolean negation, Eq. 2-11 becomes

E{K} =1-E{A} =1-P{Nﬂ} =P{Nﬂ} =P{Kﬂ} (2-13)

which is identical with Eq. 2-12.

(2-12)

The conjunction of two boolean variables A and B has as equi-
valent operation the product of the two associated binary indica-
tor variables, namely A' and B',

ANB t——s A'". B

(2-14)

The truth tables associated to the two above operations are in fact
formally identical (Fig. 2-2)

Truth table of
the boolean conjunction (AND)

Truth table of the
arithmetical product

Inputs Output Inputs Output
A B AANB A' | B A"+ B
0 0 0 0 0 0
0 1 0 o 1 0
1 0 0 1 o 0
1 1 1 1 1 1
Fig. 2-2: Truth tables of the boolean conjunction and

of the arithmetical product.



Taking into account Eq. 2-8 and relationship 2-14 we can write

E{A/\B} = E{A'-B'} (2-15)

It is easy to verify that Eq. 2~15 is identical with the result

which one would obtain by applying the definition of expectation
(given by Eq. 2-9) directly to the boolean variable AAB. In the
particular case that A = B, we have (idempower law)

AAA = Ae—e A" A' = (A")2 = A (2-16)

The disjunction of two boolean variables A and B has an equi-
valent operation between the associated binary indicator variables
A' and B' which is directly deducible from the already introduced
arithmetical operations of complementation to unity (correspondent
to NOT) and of product (correspondent to AND).

We have

AVB = AAB (2~17)

By applying relationships 2-10 and 2-14 we have obviously the
following equivalence between boolean variables and indicator
variables

AANB =——=1~-(1=-A")": (1 -B") (2-18)
From Eq., 2-17 and relationship 2-18 it follows

AVB <=———=1-(1-A"): (1 -B") (2-19)
Since we have

l1-((-A"Y)Y+« (1 -B"'"Y = A" +B' -A'.B' (2-20)
relationship 2-19 can also be written as follows

AVB —=—-s A' +B' - A'. B! (2-21)
The truth tables associated with the two above operations (boolean
%;;g?ngfi;? and arithmetical disjunction) are formally identical

Taking into account Eq, 2-8 and relationship 2-21 we can write
E{A VB} E{A'+B'—A"B'} = E {A'} + E {B'} - E {A'-B}=
E{A}+E{BJ—E{A/\B} (2-22)

If the two boolean variables A and B are mutually exclusive (re-
striction type 2) we have

AAB = 0 (2-23)
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Truth table of Truth table of the
the boolean disjunction (OR) arithmetical disjunction
Inputs Output Inputs Output
A B AV B Al B' A'+B'-A'. B'
0 0 0 0 0 0
0 1 1 0 1 1
1 0 1 1 0 1
1 1 1 1 1 1

Fig. 2=3: Truth tables of the boolean disjunction and of the
arithmetical disjunction

This means that the last row of the truth table of the boolean con-
junction (Fig. 2-2) and of the boolean disjunction (Fig. 2-3) must
be deleted. In order to gave the formal identity between the

two truth tables of Fig, 2-2 and between the two truth tables of
Fig. 2-3, the last row of the truth table of the arithmetical pro-
duct (Fig., 2-2) and of the arithmetical disjunction (Fig. 2-3) must
be also deleted. This is equivalent to saying

A'+ B'" = 0 (2-24)
In this case relationship 2-21 becomes simply
AV Be——= A' + B' (2-25)

Egs. 2-15 and 2-22 become respectively

E {AAB} =E{A"B'} = 0 (2-26)
E{AVB} = E {A'+B'} = E {A'} + E {B'} = E{A} + E{B} (2-27)

We are now in the position to write the restrictions type | and 2
for the primary indicator variables.,

and

1
We indicate with Cj, the primary indicator variable equivalent
to the primary boolean vgriable Ciq

1]
qu N —— qu (2-28)

The restrictions type 2 are (Eq. 1-2)

ch/\ Cj = 0  a#k qk=1,2,...,n

5 (2-29)



The equivalent equations for the primary indicator variables are

obtained by making use of relationship 2-14 and of Eqs. 2-23 and
2-24, We get

«+ C. =0 qfk q,k=],2,...,nj (2=30)

The restriction type 1 is (Eq. 1-1)

]
C. = 1 (2_31)

—

q=

Taking into account relationships 2-28 and 2-25, we can write

V c ZJ c, (2-32)
. . 2-32

Finally (by taking into account Eq. 2-31) the restriction type 1
can be written as follows

n.
]
§:l C: = 1 (2-33)

In conclusion the restrictions type 1 and 2 in the case of the
primary indicator variables are the following

Restriction type |

n.
: ; (2-34)
C:. = 1 -
EE:. Iq

q=1
and

Restrictions type 2

Cj, = 0  afk  qk=1,2,...,m (2-35)

The restrictions type ! and 2 can also be written in the form of
relationships among expectations. We have obviously
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Restriction Type 1

i " '
Z E{qu§= Z E {ch} = 1 (2-36)
q=1 g=1

and

RestrictionsType 2

{ A c } { . . oc }
E{C. .V = Ef{c - c. b= 0
Jq Jk Jq Ik

q#k q,k=1,2,....,nj

(2-37)

It is known that a complex boolean variable (TOP) can be ex-
pressed as a combination of basic operations (NOT, AND, OR) among
primary boolean variables. If we associate a primary indicator
variable to each primary boolean variable and replace each basic
boolean operation by its equivalent  arithmetical operation, we
get an arithmetical expression for the binary indicator variable
TOP' associated with the boolean variable TOP. The complete truth
table of TOP' is formally identical with that of TOP.

The restrictions type 1 and 2 (Eqs. 1-1 and 1-2) allow us to
identify the prohibited rows and the redundant columns of the
truth table of the boolean variable TOP, Eqs. 2-34 and 2-35 allow
us to identify the prohibited rows and the redundant columns in
the truth table of the indicator variable TOP' in a similar way
to that shown inchapter 1 in the case of the primary boolean

variables.

Due to the way in which Eqs. 2-34 and 2-35 have been derived,
these prohibited rows and redundant columns are formally identical
with the equivalent prohibited rows and redundant columns of
the complete truth table of the boolean variable TOP.

The prohibited rows and the redundant columns are now deleted
in both truth tables. The surving rows and columns in the resulting
truth tables are formally identical. This is the same as saying
that TOP and TOP' are equivalent

TOP «&—== TOP' - (2-38)



Taking into account relationship 2-38, we can write the following

equat

Since

ion

E {TOP}
E{TW}

E { TOP'} (2-39)
P { TOP' = l}~: P { TOP = 1 } (2-40)

we have finally

The £

Rule

E { TOP} P { TOP = 1 } (2-41)

ollowing two rules can now be stated

No, 1

Given a boolean function TOP the equivalent arithmetical
function TOP' is obtained from the TOP by replacing (1) each
primary boolean variable with the equivalent primary indi-
cator variable, (2) each operation of boolean negation with
the arithmetical complementation to unity, (3) each operation
of boolean conjunction with the arithmetical product, (4) each
operation of boolean disjunction with the arithmetical dis-
junction and (5) each restriction among primary boolean vari-
ables with the equivalent restriction among primary indi-
cator variables,

No. 2

Rule

examp

Each

The expectation of a boolean function TOP (i.e. the occurrence
probability of the event {TOP = |{)is equal to the expectation
of the corresponding arithmetical function TOP'.

In order to illustrate the two above rules, we consider now an
le. We have

TOP = G, V (F,AG,) V(L,AGy) V(L AG)V(FAGYV L AF)

(2-42)

of the primary components L and F has three states, The com-

ponent G has four states,

the c
ponds

The following table (Fig. 2-4) shows the various steps for
alculation of the arithmetical function TOP' which corres-
to the TOP, The content of the table is selfexplanatory.




Step Boolean Expression Equivalent Agithmetical
No. Expression
1
1 G1 G1
TR, ot
2 GIV (FZAGZ) G1+F2 G2
LRl ol el . of
3 GIV(FZAGZ)V(LZAGB) G1 F2 G2+L2 G3

g, Ol Y oY o'l VL Y. OF
4 le(FZAG2>V(L2AG3)V(LJAG2) G1+F2 G2+L2 G3+LJ G2 L1 F2 G2

[ R -8 Bl | i,V [ UK 28 IR nl BAYal |
GIV(FZAGZ)V(LZAGB)V G1+F2 G2+L2 G3+Ll G2 L1 F2 G2 +

1, ol ot 10,0t
V(LIAGZ)V(FIAGB) +FI G3 F1 L2 G3

1 t, ot 1.0 Lot T ' Y. Y
GIV(FZAGZ)\/(LZAG&)V G1+F2 G2+L2 G3+Ll G2 L1 F2 G2+
t,otpt. 7 v, LI 3 B L R 3L P
6 V(LIAGZ)V(FIAG3)V(L1AF1) +F1 G3 F1 L2 G3+Ll F1 Ll FI G1
<LYF' Q=LY T )
L1 F1 G2 L] Fl G3

Fig. 2-4. Table of equivalence between boolean expression and
arithmetical expression (Example).

From the table of Fig. 2-4 we get

Ve Ul Ot O T e O T L T Q'Y O
TOP G1+F2 GZ+L2 G3+Ll G2 L1 F2 G2+F1 G3

PN T e aT Ve T g F ol OV T VBl VT R )
By GatL*Fy=Ly F G =L Fy- Gyl ¥+ Gy

(2-43)

The expression 2-43 is called structure function of the TOP,

By taking the expectations of both sides of Eq. 2-43 and by
taking into account Eq. 2-39, we get

= P .ot 1, ot t,ar( -
E{TOP} E{G1}+E{F2G2}+E{L2G3}+E{Ll Gz}
- EJL'-F!-G'}+ E F'~G'}—E{F'-L'-G'} +

172 2} 173 1'72°73 (2-44)

Vot - t.et.av( R et -
E{Ll FI} E{L1 P! GI} E{Ll ! (;2}

1. pt, At
E{Ll F Gs}

+

Going back to the primary boolean variables, Eq. 2-44 finally be-
comes
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E{TOP} = E{Gj}-kEszl\Gz} L/\03+ L/\GS
-E{LII\‘FZI\GZ} vefr re} -z fr AL nc ]+
re{1,AF,] —E{L]AFII\GI} efr arnc,| -

—E{L]AFJI\GB} (2-45)

Eq. 2-45 can also be obtained by taking the expectation of
both sides of Eq. 2-42 and by applying systematically either the
rule given by Eq. 2-22 in the general case or the rule given by
Eq. 2-27 if the two variables are mutually exclusive.

One important point is that the boolean function must be first de-
veloped in a normal disjunctive form,

We first define what we understand by normal disjunctive
form of a boolean function. In the following primary variables
will be also called literals, A boolean function can be expressed
in the form of a disjunction of conjunctions of literals (disjunc-
tive form). A conjunction of literals belonging to a disjunctive
form of a boolean function will be called shortly "monomial". A
monomial X of a disjunctive form of a boolean function (TOP) is
said to be an implicant of the boolean function because it implies
it., If X is an implicant of the TOP, it must satisfy the follow-
ing boolean identity.

TOPA X = X (2-46)
Let X, and be two monomials. We say that subsumes X.

if every 1iteral of X. is contained in X;. This is the same as
saying that Xk is an 1mp11cant of XJ, that is

Xj /\xk = X (2-47)

We can give now the definition of normal disjunctive form of
a boolean function

"A disjunctive form of a boolean function will be called
normal disjunctive form if its monomials satisfy the follow- .
ing four properties.

1. Each monomial (X) must be a non-zero monomial (X#0, i.e.
no pair of mutually exclusive literals must be contained
in it).

2. Each monomial must not contain any literal
more than once (no repeated literals).,




3. Monomials must not subsume pairwise each other.
X, X,
(X, # XN # X))
4, Monomials must not contain negated literals."
If a boolean function contains a negated literal (say A.), this

must be replaced by the disjunction of all remaining literals be-
longing to the same primary component, that is (Eq. 1-36).

n
A =V kéi (i=1,2,...,0) (2-48)
A

where n = total number of literals belonging to primary component A.

A boolean function can have in general many normal disjunctive
forms. For a given fault tree, there is a particular normal disjunc-
tive form of its TOP variable which is associated with that fault
tree. We shall call it "associated normal disjunctive form."

We notice that Eq. 2-42 satisfies the requirements of the de-
finition of normal disjunctive form.

We can therefore state the following rule (Rule No. 3)

"If a boolean function (TOP) is given in a normal disjunctive
form, that is

N
TP =V X,
j=1

(2-49)
j

where

the X. are non zero monomials with no repeated literals and
with fo negated literals and which do not subsume pairwise
each other,

and

N = total number of monomials

its expected value is given by the following equation



Note that Eq. 2-50 is equivalent to the very well known equation
of the probability of the union of events / 21 /.

Note that the boolean expressions under brackets are all mono-
mials because they are generated from conjunctions of monomials.

The original non zero monomials X. will be called first order
monomials, The other monomials will be called second order, third
order monomials etc., if they are generated respectively from the
conjunction of two, three etc. monomials of the first order.

One important point is that a monomial of order greater than
one may be a zero monomial. This happens if the monomial contains
at least one pair of mutually exclusive literals. In this case the
monomial is deleted because its expectation is equal to zero.

We can now apply the rule given by Eq. 2-50 to Eq. 2-42,
We have

E{TOP}= E{G]} +E{F2AG2} +E{L2AG3}+ E{LIAG2}+
+E{F1AG3}+E{L1"F1} '[E{GlALlAFI} '
+E{F2ALI/\G2}+E{L2/\FJA G3}+E{L1/\G2AF1}+
re{r AL AG) (2-51)

Eq. 2-51 is identical with Eq. 2-45.



3. COMPONENTS AND CONDITIONAL EXPECTATION OF BOOLEAN VARIABLES,

3.1 Definition of component, Logical and statistical independence.

In section 1 we have defined primary components and primary
variables. We want now to give a more general definition of compo-
nent.

A2; ..} A constitute a

"A set of boolean variables Al; .
atisfy the two restriction

component, if the variables s
types, namely

Restriction type |

n
vV oA, = 1 (3-1)

and

Restrictions type 2

A, AN Aj = 0 i#] (3-2)
(l’J = 1’2"'sn)

If all variables A, belonging to a component are primary variables,
the component is a primary component.

In the following primary variables will also be called literals,

"Two boolean variables (say Ai and B, ) are said to be
mutually logically independenit if each variable can take
each value of its domain of definition independently of

the value previously assigned to the other variable."

Taking into account the restrictions among literals belonging to
the same primary component, it follows (corollary)

"Two literals (primary variables) are logically independent
of each other if they belong to two different primary com-
ponents"

Taking into account the above definition and associated corollary
on logical independence, one can also state the following

"Two boolean function (say A; and By) are said to be
logically independent of each other if the literals con-
tained in the first function belong to primary compo-
nents which are different from the primary components
whose literals appear in the second boolean function."



In ot?er words the primary components appearing in the first boolean
function must all be different from those appearing in the second
boolean function,

We come now to the definition of logical independence among
components,

"Two components are said to be mutually logically indepéndent
if the boolean variables belonging to the first component
are pairwise mutually logically independent of the boolean
variables of the second component."

We introduce now the definition of conditional expectation of
a boolean variable with respect to another variable.

We consider the contitional probability of the event { B, = 13
given the event {Ai = 1% . Taking into account the definition
of the expectation of a stochastic boolean variable given in chapter
2, we can write

p{n.=1a =1} S {oin] |- {s a3
k i

— (3-3)

I T

We consider now the truth table of the variable BkAAi and we delete
all the rows for which.{Ai=()} . We call this the reduced truth
table, In addition we associate with each survived row a normalized
occurrence probability which is equal to the occurrence probability
of the elementary event associated with the row devided by the
occurrence, probability of the event-{Ai= 1¢ . The conditional prob-
ability P Bk=1|Ai=1} is obviously equal to the sum of the normalized
occurrence probabilities associated with the elementary events for
which ?B;=11, On the other hand the reduced truth table with associated
normalized probabilities can be understood as the truth table with
associater. probabilities of a new stochastic boolean variable which
we indicate with the notation By|A; and which we call conditioned
variable. Since the sets {Bk=1| A;=1} and {(Bkl A;)=1 }contain

the same elementary events we obviously have

{Bk=1|Ai=13 = {(BkIAi)=1’}' (3-4a)

P {Bk= 1 , Ai=1} =P{(Bk, Ai) = 1} (3-4b)

and
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We recall now the definition of a stochastic boolean variable
given in chapter 2 and we can write

E{BkgAi} = P {(Bk'Ai) = 1] (3-4¢)
From Eqs. 3-4b and 3-4c we get

E{BklAi} = P{Bk=1’Ai=1} (3-5a)
Eq. 3-5a is equivalent to the following statement

"The expectation of the conditioned variable B lAi is
equal to the conditional probability of the event ka=13
given the event {Ai=l} ",

From Eqs. 3-3 and 3-5ait follows

E {Bk/\ Ai}

R kaI Ai} - ki (3-5b)

5 s ]

Eq. 3-5b is equivalent to the following statement

"Given two stochastic boolean variables (say A, and Bk)
the expectation of the conditioned variable BkIAi is
equal to the ratio between the expectation of the con-
junction of the two variables (B, A Aj) and the expectation
of the variable Ai"°

In the following we shall use the more convenient expression
"conditional expectation of By given A;" instead of the expression
"expectation of the conditioned variable B, | AiEL

We can now introduce the definition of statistical independence
among stochastic boolean variables,

"Two stochastic boolean variables (say A; and By) are said
to be mutally statistically independent if the expectation of
their conjunction is equal to the product of the expectations of
each variable."

This is equivalent to writing

E{AiABk}=E{Ai} 'Ein} (3-6)
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From Eqs.3-5a and 3-5bit follows immediately that, if two boolean
functions Aj and By are mutually statistically independent, the
conditional expectation of one variable given the other is equal
to the expectation of the same variable. This is equivalent to
writing

E{BklAi} =E{Bk} (3-7a)
E{AilBk} E{Ai} (3-7b)

It is important to point out that a necessary condition for two
variables to be mutually statistically independent is that they
are already mutually logically independent.

and

We come now to the definition of mutual statisticdal independ-
ence among components.

"Two components are said to be mutually statistically inde-
pendent if the boolean variables of the first component
are pairwise mutually statistically independent of the
variables of the second component.”

If two components are mutually statistically independent, they are
also mutually logically independent. However, if they are mutually
logically independent, they are not necessarily mutually statisti-
cally independent,

We give now the definition of statistically independent component

"A component is said to be statistically independent if it is
pairyise mutually statistically independent of each primary
component of the system, whose literals do not appear in the
variables of the component".

A component which is not independent is said to be
dependent,

3.2 A theorem on the conditional expectation,

Three boolean variables namely Zj’ I and XS are such that

k

(1) a variable Y exists which satisfies the following boolean
equation

YqA L, = XS/\Ik ( 3-8)




_39_

(2) Y_ is statistically independent of I, as well as of

z? that is

E{XSAIk} = E{Yq/\lk} = E {Yq}' E {Ik} (3-9)
and

E{Zj/\Yq } = E{Yq} . E{Zj} (3-10)

If the Eqs. 3-8 te 3-10 hold, the expectation of Z: given I /\ XS
This 1s equivalent t©

is equal to the expectation of Zj given Ik'
writing
\ _. "
E{zjllk/\xs} E{Zjllk} (3-11)

To demonstrate that Eq.3~11 holds, we start by making the conjunc-
tion of both sides of Eq., 4-1 with Zj' We get

Z. Y L = Z, X I 3-12)
ANy A = 2 Ax A (
By taking the expectation of both sides of Eq.3-12 we get

E{ZjAYq/\Ik} =E{zj/\xs/\1k} (3-13)

Taking into account Eqs.3-9 and 310 and the definition of condi-
tional expectation (eq. 3-3), we have

E{ZJ.AYqAIk} = E{Yq} . E{Zj , Ik}-E {Ik} (3-14)

In addition we have obviously
E{ZJ.AXSAIk} =E§Zj,XSAIk}-E{XSAIk} (3-15)

Taking into account Egs. 3-14 and 3-15, Eq. 3-13 becomes

E{Zj | Ik} ~E{Yq} E {Ik} - E{zj] XS/\Ik}-E {stlk} (3-16)

Taking into account Eq. 3-9 Eq.3-16 finally becomes
= 3-17
E{Zjllk} E{Zjlxs/\]ﬁk} (3-17)

which is identical with Eq. 3-11,



4.

STATE ANALYSIS.

4.1 Generalities, State Diagrams. Product of components.

The most direct way to calculate the occurrence probability of

the event {TOP = 1} is the state analysis.

Fig. 4-1 shows a fault tree which is identical with that of

Fig. 1-4. Its truth table is shown in Fig. 4-2 and is idential with
that of Fig. 1-8. Each row of the truth table is an elementary state
of the system under consideration.

In chapter 1 we have seen that each elementary state of the
system can be represented by the cartesian product of the states
occupied by each individual primary component (smallest form of system
elementary state)., In addition we have also seen that there is a
one to one correspondence between smallest forms of elementary
states and complete monomials,

Fig. 4-3 shows the so called table of system elementary states
with the corresponding values of the TOP variable in the last column.
Each row of the table corresponds to an elementary state of the system. Let us
consider for instance the row number 7., The plus sign in the column
A3 means that primary component A occupies state aj, that is

a3 = {AB = 1} (4-1)

Let us indicate with s; a generic elementary state of the system and with S;
its associated boolean variable. From the row number 7 of Fig. 4.2
we get

s; T a5 x blx ¢ (4-2)

and therefore

s, = A3/\B1/\Cl (4-3)

It is important to point out that the set of the variables S
(i=1,2,..,n) constitute a component because thevariables §; satisfy the re-
strictions. The complete set of states (state space) can be repre-
sented in a diagramatic form by a state diagram, Fig. 4~4 shows a
state diagram in the case of the system whose table of states is
given in Fig., 4~3 (n=12). Each circle indicates a state. The symbol
of the variable associated with a particular state is marked inside
the circle corresponding to the state under consideration. A line
connecting two circles indicates the transition from one state to
the other. The arrow on the line indicates the direction of the
transition.,

Two states are said to be mutually communicable (or mutually
accessible) if each one of the two states is directly accessible



TOP Primary Number
Component | of States
A 3
B
C
TOP = (C,VA,)) A (A, V3B)
Fig, 4-1., Fault Tree,
Tnputs Qutput
Row
Number A.l B1 C1 A2 TOP
1 0 0 0 0
2 0 0 1 0
3 0 0 1 0 0
4 0 0 1 1 0
5 0 1 0 0 0
6 0 1 0 1 1
7 0 1 1 0 1
8 0 1 1 1 1
9 1 0 0 0 0
10 1 0 1 0 1
11 1 1 0 0 0
12 1 1 1 0 1
Fig. 4~2., Truth Table of the fault tree of Fig, 4-1,




Primary Components
Ni;:?; A B ¢ ToP
A A2 A3 B1 B2 CI 02

I + + + 0
2 + + + 0]
3 + + + 0
4 + + + 0
5 + + + 0
6 + + + 1
7 + + + 1
8 + + + 1
9 + + + 0
10 + + + 1
11 + + + 1
12 + + + 1

Fig. 4-3, Table of system elementary states. (Fault tree of Fig. 4-1)




- 43 -

Fig.4-4: State Diagram (Fault Tree of Fig.4-1)



from the other by means of only one transition. In this case the
corresponding circles in the state diagram are linked to each other
by two lines (one for each directionm).

Two states are said to be unidirectionally communicable (unidirection-
ally accessible) if only one of the two states is directly accessible
from the other by only one transition. In this case the corresponding
circles in the state diagram are linked to each otherby only one line
with an arrow indicating the direction of the only possible transition.

Finally two states are said to be mutually incommunicable (or
mutually inaccessible)if neitherof the two states is directly access—
ible from the other by means of only one transition. In this case
the corresponding circles in the state diagram are not directly
connected by any line,.

In the state diagram of Fig. 4-4 the states s, and s, are
mutually inaccessible and the states s, and s,, are unidifectional-
ly accessible (s,. is directly accessigle from’s but, sg is not
directly accessigge from SIO)' Finally the states s; and sj, are
mutually accessible.

Note that there are transitions (like that from state s, to s
in Fig. 4-4) in which only one primary component changes its state
and transitions in which more primary components change their state
simultaneously. For instance, in the transition from s, to 510 all
three primary components change their state simultaneously.

In the above example we have assumed that the components A; B
and C are primary components. This assumption is however not necessary.
We can also assume that A; B and C are in general not primary components,
We shall say that component S is obtained by multiplying the components
A; B and C and we shall write

S = Am BmwC (4-4)

where the symbol 7 indicates the operation of product among components.
The operation of multiplication (product) among components means in
practice to generate the state diagram of a new component (super
component) from the state diagrams of some given components, which

are called factor components. Each state of the new state diagram is
characterized by a variable which is a non zero monomial containing

a number of factor variables equal to that of factor components.

The total number of states of the super component is equal to the
product of the number of states of all factor components.

With reference to the state diagram of Fig. 4-4 state 510 of
component S is associated with the variable Sy, which is a monomial
obtained by the conjunction of the parent variables Al; B2 and Cl

S10 = A AB NG, (4-5)
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In the following we shall indicate a:state of a component by
means of its associated variable. In saying that, we mean that the
state is equal to the value 1 of its associated variable. We can
therefore completely forget the set theory and handle our problems
by using only the boolean algebra with restrictions on variables.
This formalism facilitates enormously the possibility to combine
fault tree analysis with state analysis.

In accordance with the new formalism, the occurrence probability
of a state will be replaced by the expectation of the corresponding
boolean variable. For instance we have:

P7(t) =]?{(kmmonent S occupies state s, at t } = P{8,=1 at t} =

=P { S7(t) = 1} = E{S7(t)} = E{A3A Bll\ ¢, at t} (4-6)

We shall call the stochastic process the set of probability
laws governing the transitions from each state to any other state
of the state space. These probability laws must be specified in such
a way that the occurrence probability of each event as a function
of time can be uniquely calculated.

We shall limit ourselves to the case of Markow processes con-
tinuous in time and with a finite number of states /13,15/. This
process is completely defined if the so called instantaneous tran-
sition rates are known functions of time and the occurrence proba-
bilities of each event at the initial time (t = 0) are also known.
The instantaneous transition rate XA;:(t) from state s; to state s,
(i#j) can be defined by the following eqation

Aij(t) = lim é% P {Component S occupies state 5 at t +dt

dt—=o0
System occupies state s, at t-} (4-7)
By using the new notation, Eq. 4-7 can be written as follows
Ay T limgg E{Sj(t+dt) 8,(t) (4-8)
dt-=o

If states s; and s; are mutually inaccessible the two corresponding
transition rates are equal to zero, that is

A, = A, = 0 (4-9)
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If states sj and sj are unidirectionally accessible and exactly sj
is directly accessible from s; but not s; from Sj’ we have instead

ji (4-10)
and

Aij # 0 , (4-11)

In a state diagram (e.g. Fig. 4-4) the transient rates {4 are written
near their corresponding connecting lines., If a transition rate is
equal to zero, its corresponding line in the state diagram can be
deleted.

With reference to state s, we shall say that the transition
rate Aij is a departure transition rate and the failure rate Aij
is an arrival transition rate.

In the following we shall assume that the transition rates can
take only finite values and that they are regular functions of the
time (without discontinuities). It is known from the literature /13,15/
that under the above hypothesis a system of n first order linear
differential equations linking the occurrence probabilities of the
states to the transition rates can be written.

We first introduce the shorter symbol Ei defined as follows

Ei = E{Siz i=l,2,..,n (4_12)

The n first order linear differential equations can be written as
follows

n
-E. % A.. (i#3) i,j=1,2,...,nm (4-13)

Eq. 4-13 refers to state s,. Note the particular way in which Eq.
4-13 is written. The derivative of E; is given by the difference
between two terms. The first term is equal to the sum of the
expectations of the other variables of the state diagram, each
expectation being multiplied by the corresponding arrival transition
rate X:;. The second term is simply given by the expectation of the
variabie associated to the state s; multiplied by the sum of all
departure transition.rateskij.
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Note that only n-1 out of n equations are independent. In fact

the expectations E, must also satisfy the first type restriction
(Eq. 2-36), that id

(4-14)

e

[{ine =]
=
i
Pt

The system of equations made of Eq. 4-14 and of n-1 out of n differ-
ential equations (Eqs. 4-13) can be uniquely solved if the initial
values E;, at time t=0 of each E; are also known. The methods of
solving a systemof first order linear differential equations are
well known in the literature especially in the usual case in which
the transition rates are constant with time (homogeneous Markow
process). In this last case the Laplace transformation method can
be applied. The general solution can be expressed as a sum of ex-
ponential functions. We shall not go into detail here because these
are very well known methods which the reader can learn from the
usual textbooks on linear differential equations.

We shall only point out that the asymptotic values Ej ()
can be directly obtained (without solving the system of differential
equations) by putting in Eqs.4-13 all dE;/dt=0 and all AMi = Mije
(t»~), In this case the system of £ipst order linear differentiai
equations is reduced to a system of first order algebraic equations.
The roots of the system of algebraicequations can be found by means
of Cramer's rule (with the determinants). This method is also
very well known and therefore will not be discussed here. Note that
the initial values E;j are not needed if one is interested in the
asymptotic solution only.

State analysis is a very general method which can be used in
principle to calculate the occurrence probability of any event
associated with a complex system. However, due to the enormous number
of elementary states (which a complex system usually has), it cannot
be applied in practice. It is instead applied to calculate the ex-
pectation of the primary variables of a fault tree because the number
of states of a primary component is usually very small.

Eq. 4-13 can be written as follows

dE, 2 |

— —Z -5, A i) i;3= ; (4-15)

TR in E, i i i;3= 1,2...3n

j=1

where

in = Aji Ej = inlet flow to s; from sj (4-16)
and

n
A -2 A.. = total departure transition rate from s. (4-17)
1 j=]_ 1] 1

Pt

it
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Note that the quantity J.. is called outlet flow from s. to s
if we refer to the equation of state sj. J

Another way of writing Eq. 5-13 is of course the following

dE,

n
1 = - 1 v 1= . . -
T ?Ea (in Jij) i#] i=1; 2...;5n (4-18)

where the quantity in is called net inlet flow to s; from

“J .
sj. The quantity Jij —in]fs called net outlet flow from s; to Sj'
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4.2 Condensation and expansion of state diagrams. Parent primary components,
Definition of the arbitrary bindry component.

We want to discuss first the operation of condensation. The
operation of condensation consists in lumping together in a single
state some states of a state diagram. The new state generated by the
condensation of these states is called macrostate. The condensation
laws are very simple. If s and sq are two states which have to be
condensed, the macrostate S replaces the two old states in the
new state diagrgm. The transition rates qu and Aqk do not appear in
the new state diagram,

The arrival transition rates of the two states St and sq from
the same state s; must be lumped (summed) together to give the
transition rate Irom state sj to state Sk+q’ namely

A, = A, + A, -
§(k+q) ik * g (4-19)
The departure transition rate of the new state Si4q O State s, is
given by the following equation 9 J

A E.+ A B
ki k 93 g

Mirrq)j © B * B

(4-20)
k

It is easy to prove that if one applies the Eqs. 4-19 and 4-20,
the new system of linear differential equations is of order n-1 and.
is consistent with the original one. This means that both systems
give the same solution for the occurrence probabilities of each state
with the exception of course of the two states which have been con-
densed. It can also easily be shown that the occurrence probability
of the macrostate sy,, is equal to the sum of the occurrence probab-
ilities of its predecessors, that is

E =E +E (4-21)

Eq. 4-21 can be understood as a relationship between the expectation
of the variable associated with the macrostate and the expectations
of thevariables associated with the old states. The boolean relation-
ship between the new variable and the old variables is obviously the
following

sk+q = sk_v sq (4-22)

Eq. 4-20 tell us that the new transition rate *(k+ i is in general
a function of the quantities E; and E; which are ug%nown. It follows
that the method of condensation of states can be profitably applied
in the cases in which the unknown Ey and Eq can be eliminated from
Eq. 4-20. For instance in the special case
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A, .= A, = A (4-23)

Eq. 4-20 gives simply
A(k+q)j = A = known quantity (4-24)

Another example is that in which, due to a symmetry in the state
diagram, it is possible to deduce that

E,_=E (4-25)

Taking into account Eq. 4-25, Eq. 4-20 becomes
A o= (A, . + A . = i -26
(k+q) ; ( Kj qJ)/2 known quantity (4-26)

In this case too it is convenient to condense the states Sy
and s

The condensation rules can be expressed in terms of equations
among flows. Egs. 4-19 and 4-20 become respectively

Jj(k+q) = ij + qu (4-27)

and

=J, +J ., -
J(k+q)3 ik 4 (4-28)

We consider now the case of the condensation of m states with mz2.

We can indicate with s; (i = 1;2...;m) the states of a state
diagram which we want to condense in a single macrostate (Sl+2 '+m)
and with s: (j=m+l; m+2,..;n) the remaining states. The boolean ’

variable associated with the macrostate is given by the disjunction
of the variables associated with the states which are being condensed.
We have the first condensation rule:

S1aze, som = V s, (4-29)
i=1

The inlet flow to the macrostate from state s. is given by the sum
of the inlet flows from state s: to the stated which are being con-
densed. This is called the second condensation rule and is written
as follows.

m

J5(1424,  54m) ~ Z i (4-30)

i=1
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Finally the outlet flow from the macrostate to state 83 is equal
to the sum of the outlet flows from the condensing states towards
state 85 (third condensation rule)

m

= Z J.. (4-31)

J
( i=1 M

142, .. ;+m)j

In conclusion, by condensing the states of a system S, one can generate
new state diagrams. Each one of these state diagrams can be thought of as
the state diagram of a component whose variables are in general boolean
functions of some of the primary variables of the gystem. The variables
of this component obviously satisfy the two restriction types (Eqs. 3-1
and 3-2).

Let us now consider the boolean expression of a variable of a component.
A literal appearing in the boolean function is said to be parent to the
variable, and the primary component to which the literal belongs is said
to be parent to the component under consideration.

If we recall the definition of mutual logical independence (section
3.1), we can state the following

"Two mutually logically independent components have no primary
parent component in common."

The operation of expansion is complementary to that of conden-
sation. Here a macrostate is dissected (expanded) into two or more
states. In the case of the expansion of a state into two states,

Eqs. 4-27 and 4-28 must also be applied but in the reverse direction.
Note that in this case the problem is not completely defined. In
fact, given a value for J'(k+ ) there is an infinite number of pairs
of values for J: and quJ Q¢hich satisfy Eq. 4-27. The same can
be said for Jy: and Jqj in the case of Eq. 4-28, Since Eq. 4-22
must also be satisfied, the new boolean variables can be expressed
as follows

Sl = Siaq A x, (4432)
and

Sq = Sirq A x, (4-33)
where Xy and X2 must obviously satisfy the two boolean identities

xl\/x2 =1 (because skv sq = Sk+q) (4-34)
and

XlA X, =0 (because Sk/\ Sq = 0) (4-35)

This means that X; and X belong to a binary component. If we want
to expand a macrostate into '"m" states, we have first to define a
new component, characterized by m variables. Each new state is
characterized by a variable which results from the conjunction
between the variable associated with the macrostate and one of the
variables of the new component. The new flows must be chosen in
such a way that, by recondensing the m states again into the macro-
state, one finds again the original state diagram (with the same

flows).
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From the above discussion we can state the following rule for
the operation of expansion.

"To expand a variable A:(associated to a state aj of s given

state diagram) with re3pect to a component X means to generate

a number of new states equal to the number of variables of
component X, each new state being characterized by a variable
given by the conjunction of the original variable A. with one
variable of component X. The stochastic properties of component

X must be such that by recondensing the new variables into the
original variable A:(i.e. the new states intq the macrostate)

one finds again the original state diagram (with the same flows)."

We want to give an example now.

The state diagram 1 of Fig. 4-6 refers to the binary component
A. The state diagram 4 of Fig. 4-6 is the original state diagram 1
expanded into four states. The expansion can be carried out in one
step alone, However, in order to better illustrate the method, we
shall carry out the expansion in two successive steps. Two path are
possible, namely the path 1-2-4 and the path 1-3-4. Both paths are
shown in Fig. 4-6. We shall follow the path 1-2-4.

By comparing the state diagrams 1 and 2, one can write the
following two equations

o' + o' =g (by applying Eq. 4-30) (4-36)
and (by applying Eq. 4-31)

0'E {All\xl} + p" E {AIAXZ} =pE {Al,} (4-37)

By applying the same procedure between the state diagrams 2 and
4, we get

Ayy E {Azl\xl} * A, E AN X2} = p'E {A,} (4-38)
Ajg * Ay =0 (4-39)
Ayg + Ay, = 0" (4-40)
Ayg E A AX L+ A E{A A X} = 0"E{A2} (4-41)




direction of .
expansion 1
—
| direction of direction of
3 ‘ expansion 4 ‘ expansion
7\2

direction of
expansion

Fig. 4-6: Method of Expansion. An Example,
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By adding Eq. 4-41 to El. 4-38 and by taking into account Eq.
4-36, we get

(A +>\32) E{Azl\ xl} + ()\41 * X0 )E {Azl\ Xz} =6E {Az} (4-42)

31

By repalcing in Eq. 4-37 p' and p" by means of Eqs. 4-39 and
4-40, we get

(A +}\41)E {All\ x1}+(>\23 +)\24)E{A1/\ X2}=p E {Al} (4-43)

13

Egs. 4-42 and 4-43 are the only conditions which the transition
rates of the state diagram 4 must satisfy because of the ex-
pansion,

Let us consider now the state diagram of Fig. 4-7 which has been
derived from the gtate diagram of Fig. 4-4 by lumping together
condensing) some states. Here the binary component X has been intro-
duced which is characterized by the two variables defined as follows

X, =B,AC) (4-44)

and

>
]

The state diagram of Fig. 4-7 has 6 states whose variables are:

8., = A/AX, (4-46)
Spatoenn T S1V810VS1 T AAK, (4-47)
5g = AZAX1 (4-48)
Sorting = 32V SAVS6 =A2AX2 (4-49)
8, = AjA X : (4-50)
814345 = slv s3V Sg = Ay AX, (4-51)

One could of course get another state diagram by using twoe

equations for Xl and X2, different from Eqs. 4-44 and 4-45,
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Fig.4-7: State Diagram Obteined by Condesation
from that of Fig.4-4 with Xy =ByACy
and XZ:_)('| :BZVCZ
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Component X is called arbitrary binary component. The word arbitrary
is here understood in the sense that component X can be any of the
binary components which multiplied by A gives a super component

Am X whose state diagram can be obtained from that of S by properly
condensing it.

In other words an arbitrary binary component simulates the rest
of the system,

We can state now the following definition of arbitrary binary

component,

"Given a system S and a component A, we call an arbitrary binary
component any arbitrarily chosen binary component X, which
satisfies the only condition that the state diagram of the
super component generated by multiplying A and X (A7 X) can
be obtained from that of S by proper condensation",

Given a component A and an arbitrary binary component X, two possi-
bilities exist: either they are mutually logically independent or
they are mutually logically dependent. In the case that A gnd X
are mutually logically independent, they have no parent primary
component in common,
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4.3 Privileged and Unprivileged Components

Let us go back now to the state diagram of Fig. 4-7. Here the tran-
sition rates in which component A is involved are shown. We assume now
that A is a primary component. We consider the two pairs of transition

1 t " "
rates (vlz,, 0‘12) and (\)]2‘., 012,)’.

With reference to the state diagram of Fig. 4-7 and taking into
account the definition of transition rate given in section b-1,
we can write the following equation

Vi, * Oy, =
_ lim 1 E{(AZAX1a~tt+dt)A(A1A X,at t)} +E{(AZAXZatt+dt)/\(A1/\x1at t)}
dt=+0 dt

E {AlA X, att}

(4-52)

Since we obviously have

E{(AZI\X1 at t+dt)l\(A1A X1 at t)} + E {(AZI\X2 at t+dt)/\(A1AX1 at t) =

E {EAZA X, at t+dt)V(A2/\ X, at t+dt):,A(All\X1 at t)} =

E{[AZI\(X1VX2) at t+dt] A (AIA X, at t)} =

= E{ (A, at t+de) A(A, A X, at t)} (4-53)
2 1 1 )
Eq. 4-52 becomes
lim ]
v+ o! = — E {A, at t+dt |A,AX, at t}  (4-54)
127 %127 4.0 dt 2 1N
By applying the same procedure to v;z and Ofé we can write

1" g" = 1im _l_ E {A_ at t+dt |A X at t} (4-55)
V12 12 qt=0 gt 2 | 1A%,
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We introduce now the transition rate n from state aq to
state a, of primary component A, This transition rate is defined
by the Tollowing equation

_ lim 1
Ny = deso Tp F 4, at t+dt | A, at t} (4-56)

We have

E {(A2 at t +dt)/\(A1 at t)}
E {A2 at t+dt | A, at t} = =

E {A1 at t}

E {(4, at t+dt) A (A AX VA AX, at ©)} _

E {Al at t}

E {(A2 at t+dt)A(All\X1 at t)} +E{(A2at t+dt)A(A1AX2 att)}
(4-57)

E {Al at t}

Taking into account Eqs. 4-54 and 4-55 and 4-57, Eq. 4-56 becomes

1 1] 1" 1"
. (\’1‘2 *+0,)) E{AlA X, at t} + (\)12 + 012)E {AI/\ X, at t}

12 (4-58)
B {A1 at t}

Eq. 4-58 is practically the equation that one would get by condensing

the states whose variables are AjAX; and AJA Xy into a macrostate (A,)
and the states whose variables are AZA(X and A,A X, into another macro-
state (A%), and by applying the condensa%ion rule f6r the transition from

the first macrostate to the second one (Fig. 4-8).

If we have for all arbitrary binary components X which are mutually logi-
cally independent with A

' [ " 1"
Vig * Ty T V12t 9pp

(4-59)
Eq. 4-58 gives

= 1 (- ' "
M2 T V12 T 99 T Vip t 9 (4-60)
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A

Oun

Fig. 4-8: State Diagram Obtained by
Condensation from that of Fig.4-7
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Taking into account the meaning of the quantities v; + 0'2 (Eq. 4-54)
and v"2 + 0"2 (Eq. 4-55) and the fact that n,, is ingepen&ent of the
choice of tﬂe arbitrary binary component X which is mutually logically
independent with A, Eq. 4-60 tells us that the transition rate from
state a, to state a, of primary component A is invariant with respect
to the states occupled at any time by all other primary components of
the system. In this case we say that the transition rate from state a,
to state a, is a privileged transition rate,

If all transition rates of A are privileged we say that primary
component A is privileged.,

We can state now the two following definitions

Ist Definition (privileged transition rate)

"If the transition rate from one state to another of a primary
component is invariant with respect to the state occupied at
any time by all other primary components of the system, the
transition rate is said to be privileged."

2nd Definition (privileged primary component)

"If the transition rates of a primary component are all privileged,
the primary component ig said to be privileged."

Note that the latter definition does not exclude the possibility that
the state occupied by the privileged primary component influences some
transition rates of some other primary components of the system. In

this case, according to the definition of statistical independence

given in chapter 3 (Eq. 3-6), the privileged primary component is sta-
tistically dependent (because its variables are statistically dependent).
If instead the privileged primary component does not affect any transi-
tion rate of any other primary component of the system and, by having a
transition, does not cause any other primary component to have a tran-
sition simultaneously, the privileged primary component is also statisti-
cally independent.

A more general definition of privileged primary component is the following:

"A primary component whose performance at each time is independent
of the state occupied by all other primary components (belonging
to the system), as well as from their past history, is said to be
privileged."

The privileged primary coemponents have the following important property

"The expectation of a stochastic literal belonging to a privi-
leged primary component can be calculated by using only the
probability data of the primary component to which it belongs.
No knowledge about the system or about the other primary com-
ponents is required",
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We come now to the definition of privileged component

"If the expectations of all variables of a component can
be calculated by using only the probability data of its
parent primary components, the component is said to be
privileged."

A component which is not privileged is said to be un-
privileged.

The classification of components into privileged and un-
privileged is directly linked to the method for the calculation
of the expectation of the conjunction of two boolean variables,
say A; and By. We can split the expectation of A; A By into the
product of the expectation of one variable and the conditional
expectation of the other variable given the first. Two equivalent
expressions can be written, namely

E {Ai/\Bk} = E {A;} - E (B | ALl (4-61)
and

E{ANB Y} =E (B} - E{A; [B.} (4-62)

One would obviously choose Eq. 4-61 if component A is privi -
leged (and B is unprivileged) and Eq. 4-62 if component B is
privileged (and A is unprivileged).

In fact, if A is privileged and B is not privileged, the quantity
E{Ai} can be calculated by considering the state diagram of
component A alone. This state diagram is certainly smaller than
that of the super component ATB, It is instead not possible to
calculate E {By} by considering the state diagram of B alone.

The variables of a privileged component are called privileged
variables., The variables of an unprivileged component are called
unprivileged variables.

Finally, by taking into account the definition of logical and
statistical independence, we can state the following

"If two mutually logically independent components are both
privileged, they are also mutually statistically independent."
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4.4 Primary components. Master and slave components. Inhibitors.
Smallest privileged super component associdted with au un-
privileged primary component.

Primary components are classified into two categories:
privileged primary components and unprivileged primary components
(see section 4.3). Since the set of probability laws governing the
behaviour of a privileged primary component (i.e. the transition
rates) is unique and known, the state diagram of the primary component
can be drawn immediately according to the procedure shown in section
4.1 and the corrgsponding system of linear differential equations
can also be written.

Finally the expectation of each individual primary variable
of the primary component can easily be calculated by solving the
system of linear differential equations.

In the case of an unprivileged primary component, on the other hand, all
primary components upon which the primary component under consideration
is statistically dependent must also be taken into account.

The stochastic behaviour of an unprivileged primary component is
governed by more than one set of probability laws. In general one
can identify an universal set of pairwise mutually exclusive events
(master events) and can associate with each of these master events
a particular set of transition rates governing the stochastic be-
haviour of the unprivileged primary component. In addition, since a
transition from a master event to another master event may cause a
transition from one state to another state of the unprivileged com-
ponent,one can define the conditional probability that a specific
transition in the master event space (conditioning transition) causes
a specific transition in the state space of the unprivileged primary
component (conditioned transition). In general one can also asso-
ciate with each conditioning transition a set of conditional proba-
bilities, each of them being related to a specific conditioned tran-
sition,

We now associate with each of these master events a stochastic
boolean binary variable which takes the value 1 if the event occurs
and the value O otherwise. The set of these variables constitute a
component (master component). The unprivileged primary component is
calldd the slave of the master component. The variables belonging to
a master component are called master variables,
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A master component can be either privileged or unprivileged.

A privileged master component is called an Inhibitor. The vari-
ables belonging to an Inhibitor are called inhibiting variables.

We can make the following two statements.

"If a privileged primary component is not parent to the master
component of an unprivileged primary component, the two primary
components are mutually statistically independent."

and
"A statistically independent primary component is a privileged
primary component which is parent to none of the master com-
ponents of the system."

We want to introduce now the very important concept of smallest
privileged super component associated with an unprivileged primary
component.

In the case that the master component is privileged, the smallest
privileged super component is the super component which results from
the product of the unprivileged primary component and its Inhibitor.

If the master component is unprivileged, at.least one of its
parent primary components is unprivileged. The unprivileged primary
components, which are parent to the master component, have their own
master components, which in turn can be either privileged or unprivi-
leged, and so on. These master. components, too, influence indirectly
the stochastic behaviour of the unprivileged primary component under
consideration, In this case the smallest privileged super component
is the super component which results from the product of the unprivi-
leged primary component with its own master component and with all
other concerned master components.
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4.5 The well designed and well maintained technical system.

The state diagram of a complex system is usually very large, so
that the calculation of the occurrence probability of the top state obtained
by summing up the occurrence probabilities of the elementary states
belonging to the top is in practice impossible. For this reason one
is bound to carry out the fault tree analysis of the system. How-
ever, the fault tree analysis alone can be applied only if the
primary components are all privileged. If a primary component is un-
privileged one is compelled to carry out at least the state analysis
of the smallest privileged super component associated with the unprivi-
leged primary component., The states of this super component
can be considered as macrostates obtained by a proper condensation
of the elementary states of the system.

The problem now arises whether or not the probabilities calcul-
ated by analysing the state diagram of the super component alone
can be directly incorporated in the fault tree analysis. One has
first to satisfy himself that the most important effects due to the
statistical dependence have been taken into account and that one
does not need to consider the rest of the system, because in this
case one would be compelled to analyse the state diagram of the
elementary states of the system.

One has to demonstrate that either the effect of the rest of
the system can be neglected or that this effect can be properly
accounted for by calculating some correction coefficients., This
result must of course be obtained without analysing the state
diagram of the elementary states of the system. For this reason
we have introduced in the preceeding section the arbitrary binary
component which simulates the behaviour of the rest of the system.

It is clear that it would be extremely difficult (if not im-
possible) to carry out any analysis if we are not able to reduce
the degree of arbitrariness of this arbitrary binary component.
This can be done by considering some properties of symmetry or of
asymmetry that the system has. By considering these properties, the
analyst can then impose some restrictive conditions on the degree
of arbitrariness of the arbitrary binary component.

Since the variety of technical systems is very large, it is
not possible to set general rules on how to proceed. For instance
some systems can be characterized by some parts which are duplicated,
but not all systems have this type of symmetry.

There are however some properties which are common to all
systems which are supposed to have been well designed, well con-
structed and are being well maintained.
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We want now to list some of the properties that a system must
satisfy in order to receive the attribute of '"well designed and
well maintained,’

The first property is.that the occurrence probability of the
top (failed state) is a very small number (1073; 10-5). This is due
to the fact that the transition rates of a component can be of two
types: either they are related to a transition from an intact to a
failed state or vice versa. In the first case we speak of failure
rate and in the second case of repair rate.

For a given component repair rates are orders of magnitude larger
than fdailure rates. All well designed and well maintained technical
systems satisfy the above requirement.

The second property is that the statistical dependence among
components is the exception and not the rule. In other words the
aim of the designer is to design a system in which most components
are pairwise mutuaIly’statistically independent If a common mode fai-
lure is discovered, one tries by appropriate measures either to eli-
minate it, or at least to strongly reduce the failure rate due to the
common cause,

A third property is that the designer usually tries to reach
an high performance (low unavailability) of the system by making
its parts to have comparable reliability. For instance, if a system
consists of two mutually statistically independent subsystems (1 and
2) and the system fails if at least one of the two subsystems fails,
the system unavailability U is simply given by

U=U1+U2-U1'U2

a
1

unavailability of subsystem 1

[o=)
1

unavailability of subsystem 2

Nobody would designe subsystems such that U1—10‘ and U —10
well designed and well maintained technical system is a%so usually
well balanced, that is one tries to design the various parts of

the system in such a way that they have comparable unavailabilities.

Finally a hierarchy among components exists: there are
components which have a main task in the system and components which
assist the main components to perform their task. Take for instance
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the case of an electric generator and of a circuit breaker associated
with it. The electric generator has the function to generate electric
power which is the main function of the system (the electric power
supply system) to which the generator belongs. The circuit breaker
has a subordinate role, namely that of connecting or disconnecting
the generator from the bus bars. The electric generator is a complex
and heavy machine, the circuit breaker instead is much less complex.
Due to this difference in complexity, one should reasonably expect
that the time required to repair a failed electric generator is
usually much larger than that required to vepair or to replace a
failed circuit breaker. In addition nobody would couple a very
reliable electric generator with a circuit breaker which fails often.
In other words one should reasonably expect that, in a well designed

and-well maintained electric power supply system, the contribution to
the total system unavailability due to the electric generator is

probably higher than that due to the associated circuit breaker.

In conclusion, one can classify components into two categories:
main components and subordinate components. The main components per-
form the main function of the system to which they belong. Electric
generators, pumps are usually main components. The subordinate com-
ponents have a minor and simpler task, namely that of assisting the
main components to perform their function. A main component is usually
much more complex than a subordinate component associated with it. It
is reasonable to expect that in well designed and well maintained
systems the repair rate of a main component is smaller than that of
the subordinate component associated with it. It is also reasonable
to expect that the failure rate of a main component is larger than
that of the subordinate component associated with it.
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5. STATE ANALYSIS OF AN UNPRIVILEGED PRIMARY COMPONENT

5.1 Generalities

In order to carry out the state analysis of an unprivileged
primary component, one must consider also all the other primary
components upon which the unprivileged primary component is
statistically dependent.

Two methods are suggested here., They are

1, The method of the substitution of the primary variables,
2. The method of the conditional expectation.

The first method is rather general and is applied especially in
the case in which the master component is unprivileged.

The second method is less general and can be applied only in

the case in which the master component is privileged, i.e. it is an
Inhibitor.

5.2 The method of the substitution of the unprivileged primary variables

According to what said in section 4.4, we have to identify the small-
est privileged super component G assoc1ated with the unpr1v1leged primary
component. In general the smallest privileged super component is the super
component which results from the product of the unprivileged primary com-
ponent with its master component and with all other master components which
influence indirectly the stochastic behaviour of the unprivileged primary

component. We consider now the state diagram of the smallest - -privileged
super component G,

We can associate with each of these states a stochastic
binary boolean variable which takes the value 1 if G occupies the
associated state and the value O otherwise. We can also write the
system of linear differential equations and calculate the ex-
pectations of the variables associated with G. The literals con-
tained in the variables of G are now expressed as functions of the
variables of G which now become the new primary variables. Finally
the old literals are replaced by the new primary variables in the
fault tree, In this way the statistical dependence among the old
literals is removed from the fault tree and is replaced by the
logical dependence among the new literals (those of G).
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We shall illastrate the method by means of an example. In a
fault tree there are two primary components (A and B) each being
characterized by two states (intact and failed). Each component
can fail either alone or together with the other component at
exactly the same time (common mode failure). We shall indicate
with a| and by respectively the failed states of A and B and with
ap and by the intact states. The failure rate of A failing alone
is Ap' if B occupies state by and A," if B occupies state bj. The
failure rate of B failing alone is Ag' if A occupies state aj and
A" if A occupies state aj. The failure rate associated with the
common mode failure is App The repair rates of A and B are respec-
tively pp and pg. We can say that A is the master of B and B is
the master of A,

We introduce the super—component G (characterized by four states),
which one obtains by multiplying the components A and B. The states
of G are shown in Fig. 5-1 with associated transition rates among
the various states.

According to the state diagram of Fig.5~1 , we define the new
primary variables

6, = A AB (5-1)
G, = A, AB, (5-2)
63 = Al A B, (5-3)
G, = 4, A B, (5-4)

Eqs. 5= 1 to 5~ 4 can be solved to get Ay, Ay, B; and B,. We have

A, = 6, Ve, (5-5)
4, = Ve (5-6)
B, = 6 Ve, (5-7)
B, = 6V ¢, | (5-8)

Eqs.5-5 to 5-8 can be used to replace in the fault tree the old
primary variables Aj,A,,B; and By by means of the new primary vari-
ables Gl’Gz’G3 and G4.

In this way the statistical dependence between the failures of
A and B has been removed from the fault tree, and has been replaced
by the logical dependence among the literals of G, It is important
to point out that the new primary component G is privileged.
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We want to solve the state diagram of Fig, 5-1 in the asymp-
totic case (tow),

We introduce the symbol Ej defined as follows

Ej = E { Gj } j=192’3,4 (5-9)

With reference to Fig. 5-1 we can write the following equations

1 = E; + Ep + E5 + E4 (5-10)

Fig., 5-1. State diagram of super-component G.
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0 = u E = Q"+ pp) By + A" Ey (5-11)

0 = W, E - (AB" + pA) Ey + AA' E, (5-12)
t -

0 = ug By +py Eg- (xA' +Agh AAB) E, (5-13)

Eqs. 5-11; 5-12 and 5-13 refer respectively to the states
gos g3 and g4 of the state diagram of Fig. 5—1.'0ne can solve

of course the system of Egs. 5-10 to 5~13 by using thg Cramer's
rule. We use here another method. We solve Eq. 5-13 with respect

to E4. We get

H H
E, = E 2 +E A (5-14)
4 2 3 ! + A f + 1
B

1 )
A Y ARt Mg M AB

We replace E4 in Eqs. 5~11 and 5-12 by means of Eq. 5-14. We get

H u
“AEI + E2 ___LB___ - (}\A"+HB) + __E__é__ E3 = 0 (5-15)
Ay TEAL A Ay TR A
."A "B "AB A "B "AB
and
Ay A
uBEl +E, AB + Eq A4 (AB"+uA) =0 (5-16)
A TR THA A THEA T
B "AB A "B "AB

We multiply Eqs. 5~15 and 5-16 respectively by u_ and My and we
subtract one equation from the other. We get finally

E o
—2— = -—2- (5_17)
E

%3

W

where

oy = Wy L AR Gyt ¥R O A A O ) T (5-18)
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and
= = " ' { 1] 7 _

We can now condense together the states gy and g3 of the state dia-

gram of Fig.5-1into a macrostate. We get the state diagram of Fig.
5-2.

Ha+ Hp

Fig. 5-2. State diagram of super-component G obtained from that
of Fig. 5-1 by condensing the states g, and g3 into
a macrostate.

In the state diagram of Fig. 5-2 the transition rates A and
u are given respectively by the following equations

" " "
AA"E2+AB E3 QZXA +a3AB

A= = N (5-20)
E2+E3 “2 a3
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and

I Y S T 7 TR
H (5-21)

E2+E3 0. + o

Eqs. 5-20 and 5-21 are obtained by applying the two condensation
rules (Eq. 4-20).

We can write now the asymptotic equations for the state diagram
of Fig. 5-2, We have

0 = = (u*tup)E; + A(E *EQ) + AjgE, (5-22)
_ - 1

0 = (pA+uB)E1 (A+y) (E2+E3) + (AA'+AB )E4 (5-23)

E1 + (E2 + E3) + E4 = 1 (5-24)

The solution of the system of equations 5-22 to 5-24 is the following

1] 1
AAB(A+u) + (AA +AB A

E, = T (5-25)
A
uCu, + )
E4 = __A__E (5—26)
A
and
t 1]
E o4 E = (uptug) (A " +Ag"+A,p)
2 3 (5-27)
A ‘
i
where |

= ] 1] - R
A KAB(A+u+uA+uB)+(AA +Ag )(A+uA+uB)+u(uA+uB) (5-28)
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From Eq. 5-17 we get

2 _ . 2 (5-29)
E2+E3 a2+a3
and E
3 . 9%
B (5-30)
EgtEy 0y * 04
By replacing in Eqs. 5-29 and 5-30 the term (E2+E3) using
Eq. 5-27, we get respectively
o (i) 0, AL T+, D)
E2 - 2 A B’YA B "AB (5-31)
a2+a3 A
and
o (uytug) (A, A T+4, 1)
o, + o A

2 3
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5.3 The method of the conditional expectation

The method of the substitution of the primary variables (sect.
5.2) can in principle always be applied. There is however a simpler
method which can be applied in some cases frequently met in practice.

The problem of statistical dependence in fault tree analysis
can be reduced to the calculation of the following expression

E {DJ- /\XS} (5-33)

where

D.
1

s

literal belonging to the unprivileged primary component D

generic boolean variable

We indicate with I the Inhibitor of D.

We make the conjunction between the variables D:, X  and the
disjunction of all the variables Ik (k=1,2,,..,m) beionging to the
Inhibitor I. We have

m
E{DjI\XS} =kE1E{DjAXSAIk} (5-34)

The problem is reduced to the calculation of expressions of the
type

E{Dj/\XS/\Ik} (5-35)

We have

E {DjI\XSA Ik} = E { xSA I } E { D; I IkAXS} (5-36)
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In some cases it is possible to demonstrate that
E{DjA XSI\Ik} = E{XSAIk} E{Dj lIk} (5-37)

Eq., 5-37 tells us that only the conditional expectations

E §D; 'Ik} need to be known. These expectations are obviously

much easier to calculate than the expectations E {Dj | Ik /\XS}

In addition their total number is lower. In fact, in the case

that Eq. 5-37 is satisfied, only the supercomponent G generated

by multiplying D with I needs to be considered. From the state
analysis of G one can derive the required conditional expectations.
Super component G is the smallest privileged super component associ-
ated with the unprivileged primary component D. Instead, in the case
in which Eq. 5-37 is not satisfied, a larger super component must

be considered because also the variables of component X must be
taken into account. We recall the discussion on the mesh size

made in the introduction. We can say that the mesh size required

to handle the problem of statistical dependences in the case in
which Eq. 5-37 is satisfied is coarser than that required to

handle the same problem in the case that Eq. 5-37 is not satisfied.

The problem now arises to find out when Eq. 5-37 is satisfied.
A special case is that in which a variable Y. exists which
is statistically independent of Iy as well as of ﬂj and is such

that Yq.AIk = Xg AIp (theorem of chapter 3).

If Eq. 5-37 is satisfied for any variable of the fault tree,

we say that the variable Dj is homogeneously dependetn of I.

5.4 Homogeneous dependence

We introduce the definition of homogeneous dependence.

“An unprivileged literal D; is said to be homogeneously
dependent on one of its inhibiting variables I, if the
conditional expectation of D: given any arbitrary im—
plicant of Ik (which does not contain any literal of D)
is equal to the conditional expectation of D3 given Ip."

If we indicate with Xg an arbitrary boolean variable which
does not contain any literal of D, the boolean variable generated
by the conjunction between Ij and X, is an implicant of I. The
primary variable Dj is homogeneously dependent of Iy if Eq. 5-37
is satisfied.
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The problem now arises how to find out that an unprivileged
component can be treated as homogeneously dependent on its In-
hibitor I. We shall illustrate this problem by means of an example.

Let us assume that a binary component I is mounted in a system
"S" in such a way that it is not allowed to change its state if
a binary primary component D is in its failed state. If instead D
is in its intact state the failure and repair rates of I are
respectively Ay and py. The failure and repair rates of D are
assumed to be respectively oy and p; if I is failed and.op and p2
if I is intact. The other primary components which are not parent
to I are assumed not to affect the stochastic behaviours of I and of D.

We consider the super-component G obtained by multiplying
the two components I and D,

We introduce the following symbols:

Il and D, are the variables associated with the failed states
respectively of I and D.

I, and Dy are the variables associated with the intact states
respectively of I and D.

The state diagram of the super-component G is shown in Fig.
5.3.

H1

Fig. 5-3. State diagram of a super—component G made of two
components;
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The meaning of the other symbols used in Fig. 5-3 is the following:

AI = failure rate of I given that D is not failed.
Wy = repair rate of I given that D is not failed.
o = failure rate of D given that I is failed

Py = repair rate of D given that I is failed

g, = failure rate of D given that I is intact

Py = repair rate of D given that I is intact.

With r?ference to the state diagram of Fig. 5-3, we can write the
following two boolean identities

G, \/ Gy = I, (5-39)

and

G =
) v G, I, . (5-40)

In the following we shall limit ourselves to consider the asymptotic

case (tre . i ' i i i
cas Séate)%g?ly We can also write the following equation (Fig.5-3)

Py E Gl} B E{%} =0 (5-41)

Taking into account Eq.5-39, one can also write

E{Gl} +E{G3} = E{Il} (5-42)
From Eqs.5-41 and5-42 it follows

E{Gl} o

E {Gs} _ M

E {Il} p1 + O’l (5-44)

and



- 78 =

A\

We notice that

E 3G } E{D Az }
_{__1._ L M E{Dl, 11} (5-45)
e {1} E{Il}
and
E{Gs} ) E{DZAII} _E{D E
E {1 } ) E{I} Stz (5-46)
1 1
From Eqs. 5-43and 5-451it follows
| } 9
E{Dl Ly = TEXT (5-47)
From Eqs. 5-44and 546 it follows
E{D I} LS N
2‘ 1 - Py *+ 0, (5-48)
By applying a similar procedure to G2 and G4, one obtains
efo |21 - E{Gz} _ %
1172 (5-49)
E {I } P, + O
2 2 2
and
2fo)
- bt _ 2
E {Dz , 12} = = (5-50)
E {Iz + 0

Py 2

We now condense the state G, and G, on one side and the states
G2 and G4 on the other side. We get the state diagram of Fig.5-4.
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i

Fig. 5~4. State diagram of component I.

By applying the condensation rules given in section 4.2 (Eq. 4-20),
on gets

Eq{G
A=A ——i;iij = A E {Dzl I, } (5-51)

oot e

I

and

' E{G3} - E{Dz | Il} (5-52)

" B e =
* * E{II}

Taking into account Egs.5-50 , Eq.5-5] becomes
! = [
At M (5-53)

Taking into account Eq. 548, Eq. 5-52 becomes

Pl

M M ——
I 1 oy 7, (5-54)

In well designed and maintained technical systems (section 4.5)
repair rates are orders of magnitude larger than failure rates.
This is equivalent to writing
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Py >> 0, (5-55)
and
pl >> 01 (5‘56)
Eqs. $-55 and 5-56 can also be written as follows
p ~
2 (5-57)
P, + 0,
and
p
L2 (5-58)
p1 + 01

Taking into account Eqs. 5-57 and 5-58, Eqs.’5-53 and 5-54 become

respectively
A b s
and
w' Fowg

From the state
5-59 and 5-60

E {11}

ne

e

E{12}

(5-59)

(5-60)

diagram of Fig.,5-4 and taking into account Eqgs.
we can write

A
L (5-61)
Ap Mg
n
L (5-62)
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Eqs. 5-61 and 5-62 .tell us that the expectations of I and
I, are almost equal to the expectations that one would calculate
by assuming that the failure and repair rates of I are invariant
also with respect to the state occupied by D. In other words we
would not make any appreciable error if we assumeé that I is
privileged. On the other hand, since the conditional expectations
of the variables of D (Eqs. 5~47 to 5-50) clearly indicate that D
depends on I, we can conclude that I is a privileged master com-
ponent (i.e. an Inhibitor) and D is its slave.

According to what is said in section 4.2 let us consider an arbitrary
binary component X. The two variables of X are assumed not to contain
any literal of D. The state diagram of Fig. 5-5 has been obtained
from that of Fig. 5-3 by expanding the variables of G with respect

to X. Component X is either privileged or unprivileged. In the latter
case we shall make the hypothesis thdat the system 1g such that the

assumption means that the stochastic behaviour of all other primary
components of the system which are not parent to I is not influenced
by the state occupied by component D, Under the above hypothesis

it seems reasonable to assume that the following equalities among
transition rates approximately hold (Fig. 5-5).

. 1
lim -— E{D AT AX, at t+dt|DAI AX, at t}
dtmo At 1M A%y ARIAA

t-# o0

ol lim
dt—+0

t-»

1 , _
7 E (D,ATAX, at t+dt ] DAL AX, at t} =

z lim 1
dt-+=0 dt

t==c

E{I,AX, at t+dt | I, Ax, at £} = (5-63)

lim ]
dtw0 3¢ & (DAL AX, at t+dt|D AT AX, att} =

t—=x

~ 1im 1
dt-= 0 dt

t —® o0

E {D,AT AX at t+dt|DyAI AX, at t} =

e

lim 1 = -
ats0 3 E{I,AX, at t+dt|I AX, at t} =2, (5-64)
t-
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Fig. 5-5: State Diagram Obtained from that
ot Fig.5-3 by Espanding it with
Respect to the Binary Component X.
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. 1 -
lim E{D,AL,AX, at t+dtlD2A12;\xz at t} =
dt=0

t=8=

lim 1
dt+ 0 dt

%

113

E{D,AI,AX, at t+dt|D AL, AX, at t} =

= 1im 1 -
dteo ¢ E UL, AX, at t+adt ] I,AX, at t} = Asg (5-65)

== 0o

and

lim 1
dt=0 dt
t-*

E {D,NI,NX, at t+dt |D, NI, AX, at t} =

[ Kd

lim 1 ‘
dte0 3 E{D]/\IZI\X2 at t+dtID1/\IZI\X1 at t} =

=00

lim 1
dt=0 ar F {I,AX, at t+dt|I,AX, at t} =2

t=B

e

65 (5-66)

The same hypothesis (i.e. the master variables of X do not
contain any literal of D) allows us to deduce that D and X cannot
change their states at exactly the same time due to a common cause.
This is equivalent to writing that the following diagonal transition
rates (Fig. 5=5) are equal to zero

My = A1 T Mag™ AgpThsg T Ags T gy =Ry =0 (5-67)

In addition, since the stochastic behaviour of D depends only on
its Inhibitor I, the following equalities must hold (Fig. 5-5)
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M3 = Rgg T oey (5-68)
A3] = )\42 = o, (5-69)
A5 = Agg = 0y (5-70)
A7 = Reg = 9y (=71

Finally it is reasonable to assume that the repair rate ug
of I is invariant with respect to X. By taking into account the above
assumption and by applying the condensation rules (Eqs. 4-30 to 4-31)
betweeu the two state diagrams of Fig. 5-5 and Fig. 5-3, the following
relationship holds

Aqe * Age = AL+ A, =

35 ¥ A3e T A5t A Tl (5-72)

We now condense the states 5; 6; 7 and 8 of the state diagram of
Fig. 5-5 into a macrostate. We get the state diagram of Fig. 5-6.
Due to the condensation laws, the transition rates Arj’' and AIf
must obviously satisfy the following relationship

= ' = -
AI] + AIZ = AI AI (5-73)

It is easy to demonstrate (by applying the condensation rules and
Eq. 5-72) that the two transition rates in Fig. 5-6 from state 3 to
state 5 and from state 4 to state 5 are both equal to My

With reference to the state diagram of Fig.5~6 , we can write the
following equation

(o *A;,) E{DIAIlI\Xl} = clE{DZAIII\X]} g E{DIAIII\XZ} (6-74)
We have obviously
9y E{Dzl\I]AXI} =

=0, [E {IIAXI} - E {DIAIIAX1§—7 (5-75)
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Fig.5-6: State Diagram Obtained from that
ot Fig.5-5 by Condensing the
States 5,6,7and 8 of Fig.5-5 into
One Single Macrostate(Nr.5)



- 86 =

We can obviously write
E{DIAIlAXZ} = E{DJAII} - E{DIAIIAXJ} (5-76)

Taking into account Eqs.5-75 and5-76 , Eq.5-74 becomes

g
E{DAII\X}= l E{IAX} +
1M1 171
01+p1+x +A

1221
(5-77)
Aol
+ E{D]AI1
ol+p1+A]2+A21
We divide both terms of Eq.5~77 by E {I )\Xl} . Taking into
account Eq. 5-47 also, we get from Eq. 5-77
g _ A E {I }
E{DIIIIAX]} - 1 [+ = i; 1P 7 (5-78)
ol+p1+A12+A21 171 E {Ileﬁ

We want to calculate now an upper bound for the term

\iE{T } /E{1,AX } in Eq.5-78.

For this purpose we condense the two pairs of states (1 and 3)
and (2 and 4) respectively into two macrostates we get the state

diagram of Fig, 5-7.

With reference to the state diagram of Fig. 5-7, we can write
the following equation (state 1)

(}\12 + up) E {I]/\X]} =X, E {I]/\Xz} * A B {12} (5-79)

2
We have obviously

E {IIAXZ} = E {I]} - E {I]AX]} (5-80)
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Fig. 5-7. State diagram derived by condensation from that
of Fig. 5-6.

From Eqs. 5-61 and 5-62 one gets

u
E (I} = X}" E (1} (5-81)

I

Taking into account Eqs. 5-80 and 5-81, Eq. 5-79 becomes

BALT At hy g (5-82)
E {I,A X} Ay ¥ g Apy/3 g
From Eq. 5-82 we get
v {I} Ao+ At
1” 2721 s (5-83)
E {Ilel} Y
Taking into account Eq. 5-83, Eq. 5-78 becomes
g AratA,  +
1 - 127721
E{Dl\ Ilel} 13 CIET D) [ 1+ ——=—=/ (5-84)

1 12" %21 g +p

11
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Eq. 5-84 can be written as follows

o _ "
E{Dlllll\xl} < — 1+ L
01+pl ol+pl+A]2+A21

i
~.

(5-85)

Finally by neglecting the term A, +),, in Eq. 585 we can write

127721
g M
1 - I -
E{Dl \ IIAXI} < 5 L1+ : 7 (5-86)
01 pl lepl
Eq. 5-86 can be written as follows
o'
E{D, [T, AX }<—r (5-87)
O]'+p]

where

o, =9, (5-88)

We go back now to the state diagram of Fig. 5-5 and we condense
now the states 1; 23 3 and 4 into a simple macrostate. We get the
state diagram of Fig. 5-8. We apply now to the state diagram of Fig.
5-8 the same procedure already applied to that of Fig. 5-6 and we
take into account that in well designed and well maintained technical
systems (section 4-5), failure rates are orders of magnitude smaller
than repair rates, that is

Xla << p2 (5—89)

By taking into account Eq. 5-89 and by applying the same procedure
used in the case of the state diagram of Fig. 5-6, it is easy to de-
monstrate that

E{DII/\X}:——————OZ E 0 |13 (5-90)
102 T 1t "2 ,

9t Py

By looking at Eqs. 5-87 and 5-88, we notice that we overestimate
the expressions of E {D1| I]AIXI} and E {D]' Il} by setting

E{D, |1} =E {n,| ILAX} = —— (5-91)
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Flg 5-8: State Diagram Obtained from that
ot Fig.5-5 by Condensing the
States 1,2,3 and 4 of Fig.5-5 into
One Single Macrostate (Iy)
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It is important to point out that the above assumption is conser-
vative .because Eq. 5-91 overestimates the occurrence probability
of a failed state.

The expressions E {AD ' Il} ; E {Dz,l 123; E {Dz 'II/A\ X }and )
E={D2| 12£§X1} must be calculated respectively from the relationships

E{Dll 1A xl} + E{Dzl I, A XI]

E{Dll 11}+ E{DZII]}= 1 (5-92)

and

E{Dl | 12}+ E{DZ}IZ}: I (5-93)

E{Dll IZAXI‘} + E{Dzl Izl\xl}

In conclusion the following set of equations can be used for the
conditional expectations :

'

g, .
E {D1|I]} =E{D1[Ill\X1} = ! (5-94)
o+,
P
E {D, | I} =E{D2|I]/\Xl} = (5-95)
o'+ ey
9
E{ I} =e{ [I,AX} = (5-96)
9y F Py
and
)
E {D,|1I,} =E {D,| IL,AX} = - (5-97)
9y * Py

where 01' is given by Eq. 5-88.
The use of Egs. 5-94 to 5-97 offers the great advantage that
these expressions do not contain any transition rate of the arbitrary
binary component X. This is equivalent to saying that the variables
of D are homogeneously deépendént upon the variables of I. Eqs. 5-94
to 5-97 tell us in fact that Eq. 5-37 is satisfied for all variables
of D with respect to any arbitrary implicant of the variables of I.
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6. THE BIPOLAR SWITCH

The bipolar switch is a statistically dependent component
characterized by two positions (bipolar) and by three states.
The two positions are those which the switch is
asked to take depending upon the value of the input signal. They
are closed and open., The three states are: intact, failed closed
and failed open. Note that the position indicates the required
position of the switch which is identical with its effective
position only if the switch is intact.

|

Fig. 6— 1. Schematic diagram of an electrical bipolar switch
(circuit breaker).

Fig. 6~ 1 shows the schematic diagram of an electrical bipolar switch
(circuit breaker). The signal may be é.g. the state of another com-
ponent. Fig. 6-2 shows a system consisting of an electrical genera-
tor I connected to the grid through a circuit breaker D,

T
l

) e

Grid

Fig. 6—2, System consisting of a generator I connected to the
grid through a circuit breaker D.

The operating state of the system of Fig. 6-2 is: electrical
generator I is supplying electrical power to the grid through the
closed contacts of circuit breaker D, If 'the generator I fails,
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circuit breaker D will open and the generator will be disconnected
from the grid. In this case the input signal to D is the state of
the generator and exactly position closed corresponds to generator intact
and p?sition open to generator failed. The two Boolean variables
associated to the generator (corresponding respectively to genera-
tor failed and generator intact) will constitute therefore the
master component of D.

The master component I will contain two boolean variables,
namely

I1 associated with state i1 (generator failed)

I, associated with state i2 (generator intact)
Since the switch D has three states, there will be three

primary variables, namely

D, associated with state d, (failed open)

D, associated with state d2 (failed closed)

D3k associated with state d3 (intact).

We consider now super-component G obtained by multiplying
switch D and master component I. Super-component G is characterized
by the six states which one obtains by carrying out the cartesian
product of the states of D and I in all possible ways. The six
booleanvariables associated with super-component G are:

¢ = L A D, (6-1)
6, = I,AD, : (6-2)
63 = I AD, (6-3)
6, = LAn, (6-4)
6; = I,AD, (6-5)
G = I,AD, (6-6)

The state diagram of super-component G is shown in Fig. 6-13,
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Required Position: Open Required Position: Closed
Component I Component I
failed intact

Failed open

Failed closed
g —
A1

Fig., 6-3. State diagram of super-component G made of master com-
ponent I and switch D,

The state diagram of Fig. 6-3 depends upon some details of
the design of the electrical circuit and upon the repair strategy
of the system(generator + switch).

(a) The state of normal operation is g,. The failure of generator
I is accounted for by means of the transition from state g, to 8,
(transition rate XI).



(b)

(c)

(d)

(e)
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Electrical circuits are usually provided with additional con-
tactors. When the generator fails, the circuit breaker will

open the circuit. However the additional contactors will be

opened before starting to repair the generator, so that

the generator windings will remain disconnected from the grid

also in the case in which the circuit breaker closes inadver-—
tently. This means that when the switch is already in the open
position and the generator is being repaired the two types of
failure namely switch fails open and switch closes inadver-—
tently, have exactly the same effect, that is the generator

remains disconnected in both cases., The two types of failure

can be lumped together is state g, (Fig.6-3 ). The failure

rate v, and the repair rate oy properly account for both

types of failure and repair.. If instead during the repair of

the generator the additional contacts are closed (because of a
failure or of an operatingmistake) and the switch closes inadvertent-
ly, the generator windings will be connected to the grid (transition

from g3 to gg). The failure rate 0y accounts for this type of
failure.

When the repair of the generator I has been completed, the
circuit breaker will be tested (in order to check that it is
intact) before closing the additional contactors. After having
verified that the circuit breaker is functioning, the generator
I will be started, the additional contactors will be closed and
finally the circuit breaker will be closed. This means that the
return to the operating conditions (i.e. to the closed position)
can only take place from the state g3 of the state diagram of
Fig.6-3 (transition rate uI).

When the switch is intact in the closed position (state g, in
Fig.6-3) and fails open, two possibilities exist:

(i) the failure of D causes I to fail, i.e. transition from
gy to gy with failure rate ov)where vy is the failure
rate of D opening inadvestently and o is the conditional
probability of I failing due to the failure of D.

(ii) the failure of D does not cause I to fail, i.e., transition
from g, to g, with failure rate (1-u)v2.

When the switch fails open in the closed position (i.e. opens
inadvertently, state g, in Fig.6-3 ) the following actions will
take place: (1) the gefierator I will be immediately stopped, the
switch will be driven in the open position and the additional
contactors will be opened, (2) the switch will be repa%red and
(3) the generator will be started again. The three actions are
ptoperly lumped together in the repair rate Py
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(f) When the switch is in the closed position and fails closed
(stgte gg in Fig.6- 3), the failure will remain undetected
until either the next inspection occurs or the generator I

fails. For this reason two transitions are possible from state
8 and exactly:

(i) If the generator fails before the failure of the switch is
detected and repaired, there will be a transition (transi-
tion rate A;) from state g, to state gg (Fig. 6-3), i.e.
the switch changes its position (from closed to open) but
it remains failed closed. As soon as the switch is in state
g-, the failure will be immediately detected and the switch
will be repaired first (transition from g5 to 83> transi-
tion rate wl).

(ii)The failure of the switch is detected before the generator
I fails. In this case the generator will be immediately
disconnected from the grid and stopped. Since this type of
failure has the same effect as that of switch failed open
with I intact, we can lump it together with the latter
into state g,. We shall have therefore a transition rate
W, from g to g,

With reference to the state diagram of Fig.6-:3 , we can write the
following equation,

o} e e{ad ode} - +{n3

We consider here only the asymptotic solution (t»«), With reference
to Fig.6-3 , we can write the following two equations(states g, andgz)

95
E{G6} s E {G4 } (6-8)
A+ mz

I
and
(1—00v2 w,
E{Gz} E{G4 -—__F+E{G6}—— (6-9)
) P2

Taking into account Eqs. 6- 8 and 6-9, Eq. 6-7 becomes

- w o _
E‘{G } [ie 00,025 2 7. E{I } (6-10)
b ) P2 Aptuy” 2
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and

T

E {12} ('1'04)\)2 u)z g,
1 e (14 =2 ) o2
Py Py © Aptu,

From Eqs., 6— & and 6-11 we get

{ } { }- 02/,()\1-&» )
E
{I (l—a)\) 22- )

2 p2 )\I+w2

(6-12)

From Eqs. 6= 9 6-11 and 6-12, we get
(]- OL)\) wz 0'2

} Ar + 0w
oy 1]- 28 £ -
E{ 2} (1 oc)\) *(l X w_z 7,
R2 ) I 72

With reference to Fig., 6- 3 we can write the following equations

E{Glj E{G:%} ' E{Gs} il E{Il} (6=14)
E{Gl} E{G3} +;‘l)_2. E{G4} (6-15)

Eafod et o fe]
—_— —— -16
E {GS} y E{G6} + 5 E G3 (6-16)

The system of Eqs. 6~12 to 6-16 can be solved to give the three

quantities E G3} R E{G } , and E{Gl}

<+
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We have )
E{G3}
E{D, |11} = - =
E{1.}
1
E{1,.} A av
2 I 2 . :
U T [ ~= E {D2|12} + 7;F E{D3!I2}
_ 1 1 1
= . (6-17)
\)1 vO'l
1+ — + —
P19
E {GS}
E(p, | 1,} = =
E {1}
o E{1.} A v o, av
1 2 I 1, )
— 4 — (1+—=)E {p, |1,} -— —=E{D,|I,}
wl E]Ilf wl pl 2 2 wl 1 372
v (o)
1 +——1— + Z)—l-
Py 1
and
E {Gl}
E {D, !11} = =
E {I.}
1
Vv E {1.} | av o v, A
L. 2 2 (1+-1) & {D3!12} -1 51 E{DZ!IZ}
P E{1,} | P1 “1 P1 ¥
_ 1 1
\Y) g
1+ L + -w—l
P1 1

(6-18)

(6-19)
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With reference to Fig. 6-3 we lump now the states g,, g, and g
together on one side, and the states gp, g4 and gg on thé other
side. We get the state diagram of Fig. 6-4

Fig. 6-4, State diagram of the super—component G of Fig. 6-3
with the states lumped into two groups.

The failure rate )\i and the repair rate p! are given respectively

by: I
A = AI[E {DBAlz} vE {Dzmz}] +°“’2E~{D3“2}
o E{DII\IZ} +E{D2A12} +E{D3/\12} )
= A ['E {D3|12} + E{DZI 12i7+ v, E{DBIIZ} (6-20)
and E{D3AII}
HI' = Y L E{D3|11} (6-21)

{1}
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Taking into account Eqs, 6-11 and 6-12, Eq. 6~ 20 becomes

A [ 1 +0./(0 + w i] +0 v
I
A 2/ M1 2 2 (6-22)
(1-oc)v2 o o W
]_+ K 2 + _—2- ° .—.—-2-_—
02 AI+w2 p2 AI+w2

We point out that in well designed and well maintained technical
systems (sect. 4.5) the repair rates (uI;pl;p s;w,;and w,) are orders
of magnitude larger than failure rates (g} vi;Vp,01 and 09). This
means that the following four relationships hold

02/()\I + wz) <<1 (6-23)

0ylp, << 1 (6-24)
(l-oc)\)z/p2 << 1 (6-25)
and

wz/(kI + wz) 21 (6-26)

Taking into account Egs.6-23 to 6-26 .,Eq.6-22 becomes simply

'z
XI AI + avz (6-27)

With reference to the state diagram of Fig.6~4 we can write

k4

E{I 3 u ! ul
I
2 - L 1 (6= 28)
] .
E{I1} AL At oov,
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In addition we have also (according to the requirements of sect.4.5)

AY

1. 1 (6~29a)
Y
1
1y
wl (6-29b)
and
uvz
5 << 1 (6-29¢)
1

Taking into account Fgs.6-29a to 6~29c it is easy to check that

Eq. 6~17 gives a value of E{D3lll} very near to 1. For this reason,
from Eq. 6-21 we simply get

Hy My (6-30)
Taking into account Eqs. 6-27 and 6-30 we can write
A tav
E{Il} -—1 2 (6-31)
HpFAptov,
and
u
I
E{I } T e (6-32)
2 uI+AI+aV2

Eqs. 6-31 and 6-32 tell us that the expectation of I _ and of I, are
almost equal to the expectations that one would calculate by aSsuming
that the failure and the repair rates of I are invariant with respect
to the state occupied by D, provided that its failure rate has been
previously properly corrected (Eq. 6-27). In other words we would not

We point out that

Ao+ oy, << w

I ) 5 (6-33)

Taking into account Eq. 6-33, Egqs. 6-11, 6-12 and 6-13 become
respectively

B{D,|1,} 2 1 (6-34)
(1-06)\>2 g o
1 + +_£ + ._g.
Pr Yy Py
o,/w
~ 272
E{D, |1} = -
21T (T-o)v, 0, o, (6-35)
1+ =t—
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and v 5
(1‘a)ag r 2
E(D |1} & 2 2 (6-35)
1772 1P-ay, 5 o
1+ +— + —
Pa Y2 Py
‘We consider now in Eq. 6-~19 the term
E {I,} v, A
2 1 1y o, |1, (6-37)

ALY oy oy

Taking into account Eqs. 6-31; 6-32 and 6-35 we can write

ETI JERY)

1 M vy U o,/ w A
~2z 11 E{D, II y=-L11 22 —L  (6-38)
E{I 1 Py W 0, W (1-o)v, o© g, A. tov
]‘ 1 1 1+ ..__2_.,._2. + _Z.. I 2
p2 w Y

2 2

In well designed and well maintained technical systems (section
4.5) the time required to repair a main component (the generator)
is usually much larger than that required to repair its associated
subordinate component (the circuit breaker). We have therefore

uI/w1 <1 (6-39)

and
;,1:[/p1 <1 (6-40)

From Eq. 6-39 it follows that the term given by Eq. 6-38 is very
small. We observe that we overestimate the value of E{D1|I 1
if we delete in Eq. 6-19 the term glven by Eq. 6-38. We point out
also that the deletion of this term in Eq. 6-19 is a conservative
assumption because we overestimate the conditional expectation of
a variable associated with a failed state. In conclusion we set

(vy +av,u /A )/p
E{bll 11} =L 2L 1 (6-41)
1+ vllp1 + ol/w1
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We consider now in Eq. 6-18 the term

E{I_.} o, oav u av,. .o
2 1_2 (D, ' 1} & ——1 2 1 (6-42)

E{Il} w; Pyq AI +ov

2 P

Taking into account Eq. 6-40 and that in well designed and well
maintained technical systems we certainly have

av, << AI (6-43)

we can conclude that the term 6-42 is small. We point out also
that the deletion of this term in Eq. 6-18 is a conservative
assumption because we overestimate the conditional expectation of
a variable associated with a failed state. In conclusion, taking
into account Egs. 6-12, we set

(0. +u_o./w)/w
E‘{D2 |Il} = 1 12 2" 1 (6-44)

L+ v loy + o, /ug

Eqs. 6-41 and 6-44 can be written as follows

vl'/pl
E {D, [Il} = (6-45)
1
1+ vl/p1 +<f1/w1
and [ Gi/wl
= 6-
E D, 1.} (6-46)
] 1
1 vy /p1 *o, /w1
where
v, + ov, u. /A
voro 1 M1/ (6-47)

1- uIcz/w]wz—uvzuI/AIpl
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and

o, +u.0, /w
o = L Lz 2 (6-48)

1 1 - -
upo,/wyw,=avous /A0,

The conditional expectation E {DBlII} can be calculated from
the following equation

E{D1|Il} + E {D,|I,} + E{D,[I,} =1 (6-49)

Taking into account Eqs. 6-45 and 6-46, we get from Eq. 6-49

1
EJD,|I, = (6-50)
{ 3| 1} 1 + \)'1/p1 + o'llwl

In conclusion the state diagram of Fig. 6-3 can be approximatively
replaced by that of Fig. 6-5,

We recall the theory of section 5.4 on homogeneous dependence.
If we assume that the bipolar switch is parent to none of the master
components of the system to which it belongs, we can say that the
bipolar switch is approximately homogeneously dependent. We have
to correct the failure rates v! and ¢! by introducing a correcting coeffi-
cient similar to that of Eq.5-88.The corrected failure rates are vf'
and of', which are given by the following equations.

v'+ p. .+ 1
SR 1 1 1 (6-51)
Vit ey Ty upley
and
1
oM = g ! 1 ety (6-52)
1 1 01'+ wy - ol’uI/wl

The tables of Fig. 6-6 and Fig. 6-7 give a synthetic overview
of the equations of the bipolar switch.
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Required Position:Open Required Position:Closed
Component I Component I
Failed Intact

Failed open

Failed closed

viooo= 1 21 T A o= AL+ av
1 U o /W w,— av /A I I 2
I Oy /W 0y= avoly/Ae,
o, + p.o,/w
o! = 1 L2 2 v,! =o.+ (1-a)v
L 1 - po./w -av /A Z 2 2
M0/t Wy oM/ 1Py

Fig.6-5: State Diagram Equivalent to that
ot Fig.6-3.
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vyt oavoup /Ay

1 - uloz/wlml- avzuI/klwzpl

+
oy quz/w2

1 - -
HpOp/wqwyavy 1 /Apw,py

o, +
Vi TPy T

—_ 1
vi' ey vyt ougleg

'tw, +oq

1 1
' =
A M
' 3
Yy %
Fig. 6-6.

', -0, UI/wl

+ (1-q) v,

1st Table of the equations of the bipolar
switch

(1)

(2)

(3)

(4)

(5)

(6)
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\)H /p
E {D, | I} = L 1 (7)
1 +v1" /p1+01" /wl
O"/ w
B D, |1,) = 11 (8)
]_+\)"/p +O‘"/UJ
1 P17 ™
E {D3 l 11} = 1 (9)
1+v1" /p1 + ol" /m1
v,"/p
E (D, | 1,} = 2__2 (10)
1+\)2' /p2 + 02/w2
o./w
E {D, | I} (11)
1+ \)2'/p2 + 02/w2
E {D, | 1,1 = 1 (12)
1 + v2'/p2 + oz/w2

Fig. 6-7. 2nd Table of the equations of the bipolar switch.
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7. FAULT TREE SYMBOLOGY

The graphical symbology of a fault tree which is being used
here is derived from that proposed by Fussell /7/ with some modifica-
tions and some additional symbols.

The symbols have been organized in two tables, namely

A. Table of Variables (Fig. 2-1)
B. Table of Basic Gates (Fig. 2-2)

The two tablesareself-explanatory so that only a few additional
comments are needed for a correct use of the symbols contained in
them,

1. The House (Table of Variables) is used to modify the structure
of the fault tree. This is obtained by properly assigning to the
House either the constant value 1 or O.

2, Transfer IN and Transfer OUT (Table of Variables) are used in
the case in which a variable is at the same time an output
(Transfer OUT) from a gate and input (Transfer IN) to some
other gates which are located (in the drawing of the fault
tree) far away one from the other.

3. If an input to a gate (Tables of Basic Gates) is marked with
a point, it means that the input variable is complemented
(negated) before entering the gate.

For instance we have

B

B=AAAAA

A1 Ay A3
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No. Symbo1l Denomination Meaning
1 Rectangle Variable Description
2 Circle A primary Yarlable belonging
to a privileged component.
A primary variable belonging
3 Octagon to an unprivileged component.
A non-primary variable which
4 Diamond would require dissection into
more basic variables, but
that for some reasons has
not been further dissected.
A variable whose domain of
definition contains only one
5 House value , that is a variable
which is constant and always
takes either the value 1orO.
A connecting or transfer
6 Transfer IN symbol indicating a variable
entering the fault tree,
7 z{fis_ Transfer A connecting or transfer
ouT symbol indicating a variable
if going out from the fault tree.
Fig. 7-2. Table of variables



No Svmbol Denomination Boolean Output/Inputs Rules for the Generation of the
) ym Notation Relationship Truth Table
B
1 NOT B=A B=1- A Output takes the value 1 if
predecessor takes the value 0 and
A vice versa.
n Output takes the value 1 if and
2 AND . only if all predecessors take the
B= /\a. | B= AL :
i=1A1 B_mln(éi’Az ’Ah) value 1, and the value O if at least
one of the predecessors takes the
value O.
.n v Output takes the value 1 if at
3 OR B= QJ’A. B=max(A1;A2.;Ah) least one of the predecessors takes
i=1 * the value 1, and the value O if
and only if all predecessors take
the value O.
AMAy A,
Note: A marked point at the input of a gate means that the input variable is

Fig.

negated before entering the gate.

7-2. Table of Basic Gates.

- 607 -
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8.  CONSTRUCTION OF A FAULT TREE. AN EXAMPLE

Fig. 8~1 shows a very simplified electric power supply system
(EPSS) consisting of the bus bars C which are supplied either by
the grid B or by the electric generator A. Grid and electric genera-
tor are connected in parallel to the bus bars respectively through
the electrically operated circuit breakers F and L. The dotted lines
(with arrows) indicate that the position (open or closed) of each
circuit breaker depends upon the state (failed or intact) of the
component with which the circuit breaker is associated.

The circuit breakers in Fig. 8-1 are shown in the position
open (coil deenergized). In normal operating conditions both cir-
cuit breakers F and L are closed (coil energized) and the generator
A supplies electric power to the bus bars C as well as to the grid
B. If the generator A fails the circuit breaker L opens and the
grid feeds the bus bars C. If the network B fails the circuit
breaker F opens and the generator A feeds the bus bars C only.

The function of each circuit breaker is that of disconnecting its
associated component (master component) when this failsiIf the circuit
breaker fails to open, no electric voltage will be available at

the bus bars C,

The circuit breaker L has also the additional function of dis-
connecting the generator A in the case that the grid B fails and
the circuit breaker F fails to open the circuit. This is in order to
avoid that a failure of the grid causes the generator to fail. For
a similar reason the circuit breaker F will open in the case in
which the generator A fails and the circuit breaker L
fails toopen the circuit. In addition, also in the case in which
both circuit breakers open the circuit (but e.g. not fast enough),
the possibility exists that A by failing may cause the failure of
B and vice versa(a failure of B may cause A to fail).

One can account for these cross correlated failures of A and
B by assuming that when A fails there is a probability that B fails
too (andviceiversa). This is equivalent saying that A is the master
of B and B is the master of A,

For the sake of simplicity it will be assumed in our example
that the bus bars C by failing do not cause any secondary failure
of A as well as of B,

The primary components with associated states are shown in
the table of Fig. 8-2., Here for each primary component the inhi-
bitors are listed in the corresponding column, The master component
(in our example A and B), are also shown.
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3
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Fig. 8-1. Schematic diagram of a simplified electric power supply
system (EPSS).

Primary
Component State
Denomination|Symbol gz;tsf Denomination [Symbol of]
P rimary
nent .
variable
Generator A B failed A1
intact A2
Network B A failed B1
intact B2
Bus bars C failed C1
intact C2
Circuit failed open F1
Breaker F B
F failed closed F2
intact F3
Circuit failed open L1
Breaker L A
L failed closed L2
intact L3

Fig. 8-2., Table of the primary components of the EPSS.
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Note that in our example the master components of F and I are
also primary components. However, in general the master components
are not primary (i.e. the variables belonging to them are not
primary). In this case additional information must be given to
identify these master components.

We can now proceed to define the TOP variable. The EPSS is
failed if no electric voltage is available at the bus bars C. We
have therefore

TOP = ©No voltage at bus bars C

We observe that the absence of voltage at the bus bars C is caused
either by the failure of the bus bars C or by the fact that no
voltage arrives at C. In this way we have dissected the TOP vari-
able into the disjunction of two other variables namely 'bus bars
C failed" and "no voltage at the input of bus bars C". This dis-
section is graphically shown in Fig. 8-3, where the OR gate GOl
has the TOP as output and the other two above defined variables

as inputs,

We point out that the probability data associated with the
variable "bus bars C failed" are available from reliability data
banks, This variable is therefore a primary variable. We call it
C; and we draw a circle in Fig. 8-3 because C is a privileged
primary component (see table of Fig. 8-2).

We now dissect the variable "No voltage at the input of bus
bars C",

ﬁe notice that the absenceofvoltage at the input of bus bars C can
be caused either by a "non-disconnected failure or by an "inter-
ruption of the continuity of the electric circuit". This dissec-
tion is shown graphically in Fig. 8-4.

The process of dissection can be carried further on until all
variables are primary variables. The complete fault tree is shown
in Fig, 8-5. Note that the variables A;, By, L;,L2,L3, Fy, Fp and
Fg are all represented by octagons because they belong to unprivileged
components.

The fault tree of Fig. 8-5 has been redrawn in simplified form
in Fig. 8-6 without rectangles (i.e. without variable descriptions).

Since there are different possible ways of dissecting the
variables, different fault trees of the same TOP can be drawn.
The fault tree of Fig. 8-7 has exactly the same TOP variable of
that of Fig., 8-6. In general different people generate different
fault trees for the same TOP variable.



Fig. 8-3.

Fig. 8-4.
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TOP
No voltage at
bus bars C

A2N

Bus bars C
failed

l

No voltage at
the input of
bas bars C

Partial fault tree of the EPPS (lst step)

TOP
No voltage at
bus bars C

AN

-

Bus bars C
failed

|

No voltage at

the input of

bus bars C

Non disconnec.
failure

Circuit
interrupted

Partial fault tree of the EPPS (2nd step)
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TOP
No voltage at
bus bars C
I 1
Bus bars C No voltage at
failed the input of
bus bars C
I 1
Non Circuit
disconnected interrupted
failure
| l |
Non Non Circuit Circuit ]
disconnected disconnected interrupted in interrupted in
failure of failure of the network the generator
network B generator A section secftion
Network B] [Circuit GeneratorA| | Circuit Failed Circuit Failed Circuit
failed ?&f&ﬁer F1 ltailed ?&ﬁgﬁer L network B| |breaker F | lgenerator A] | breaker L
closed closed disconnected] |failed open| |disconnected] | tailed open
Network B] |Circuit Generator A] [ Circuit
failed breaker F failed breaker L
intact intact

&6 6 0

Fig. 8-5. Fault Tree of the EPSS.
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TOP

_
gy
“ ) () () ()

Fig. 8-6. Fault tree of the EPPS (without variable descriptions)

TOP

/6N

(GaT

son__abe

oo

Fig. 8-7. Fault tree of the EPPS (Alternative)
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9. MODIFIED FAULT TREE. OCCURRENCE PROBABILITY OF THE PRIMARY
EVENTS

The probability data related to the primary variables of the
system described in the previous section are given in the table of
Fig. 9-1. These data have only the purpose to illustrate the method:
they do not refer to any particular existing EPSS, Here we assume
that all failure and repair rates of the primary components are
constant., The transition rates are identified as follows. The primary
variable of the row refers to the state before the transition (state
of departure). The number of the column identifies the state after
the transition (state of arrival). The two primary components A and
B are characterized by two states (intaet and failed). The failure
of each of the two above primary components is assumed to be caused
either inherently or by the failure of the other primary component.
We shall indicate with a; and b; respectively the failed states of
A and B and with aj and by the intact states. The inherent failure
rates are respectively AA and Ap (both constant). If A fails first
there is a constant probability Ky that this causes the failure of B.
In this case the transition bp—=b] is the conditioned transition and
the transition ag—a; is the conditioning transition. If instead B
fails first (conditioning transition by—=b,) there is a constant
probability KA that this causes the failure of A (conditioned
transition ag—='a;). Both primary components A and B are assumed
to be repairable independently. The repair rates pp and up are
assumed to be both constant.

We recall the theory of the bipolar switch of chapter 6. We
refer to Eq. 5 of the table of Fig. 6-6 which tells us that the
failure rate of the generator I must be increased to account for the
failure of the generator caused by the associated circuit breaker
opening inadvertently (transition from g4 with failure rate avy
in Fig. 6-3). The numerical values of Ap and Ap given in the table
of Fig. 9-1 are assumed to have already been corrected for this
additional induced failure.

Since A is the master component of B and B is the master
component of A, the smallest privileged super component associated
with both of them is the super component G which results from the
product of A and B.

The state diagram of super-—component G is shown in Fig. 9-2.
With reference to the state diagram of Fig. 9-2, we can now

express the primary variables of components A and B as functions
of the primary variables of G. We have

A, = G,VG, (9-1)
A, = G,VG, (9-2)
B, = G,VG, (9-3)
B, = G,4V6, (9-4)

We now replace in fault tree of Fig. 8-6 the primary variables
A; and B, with the new primary variables Gy. Gy; Gg and G4 by
making use of Eqs.9-1 and 9-3. The new fault tree is shown in
Fig. 9-3.
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Fig. 9-2, State diagram of the smallest privileged super~component
G associated with A and B.

In the fault tree of Fig. 9-3 the primary variables A, and Bj
have been replaced respectively by the OR Gates GO7 (inputs G; and
G3) and GO6 (inputs Gy and G,). Note that the primary variables
Gl; Gy and G3 are represented by circles because they belong to a
privileged component. In fact their expectations can be calculated
by solving the state diagram of Fig. 9-2. The new primary variables
have been introduced also in the fault tree of Fig. 8-7 (see Fig.9-4).

We point out the G is a privileged primary component. Due to Egs.
9-1 to 9-4, we can say, that A and B have become now privileged com-
ponents. They are however not any more primary. We can therefore say
that B is the Inhibitor of the circuit breaker F and A is the Inhibitor
of the circuit breaker L.

In other words in the fdult trees of Figs. 9-3 and 9-4 the
survived unprivileged primary components (namely F and L) have only
master components which are privileged, i.e. Inhibitors.

The expectation of the primary variables Gps Go3 Gy and G4 can
now be calculated. We point out that the state diagram of Fig. 9-2
and that of Fig. 5-1 are the same provided that
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Fig. 9-3. Modified fault tree of the EPPS




- 120 -

TOP

/60

@ T
A A
W
olckm

Fig. 9~4. Modified fault tree of the EPPS [Alternative)
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Mg = Ky Ag * Kg A, (9-5)
A=Ay (1 - KA) (9-6)
Ao, (- kD) (9-7)
A = A (9-8)
W=y (9-9)

We can therefore apply the theory developed in section 5.2, We
consider here the asymptotic (t— =) solution only. Taking into
account Eqs. 9-5 to 9-9, Eqs.5-18 and 5-19 become respectively

—

Gy = Hy _ABO\A-P Agt Myt uB) *Rp A, By T Ky Agug ] (9-10)

and
"

= + - -
@3 = Mg LAA(AA’" At My foug) T Ky hymy KAy “B] (9-11)

We take the numerical values of Table 9-1. We get

= uf3ty5%10'4+1o'5+1o’3+1o'3)+ o.1-10'4-10'3-0.1.10'5.10‘3] =

|23
|

2
= 3,01 - 10'11 (hours_3) (9-12)
and
oy = 1073 [ 10'4(10"4+1o'5+1o'3+1o'3)-o.1.10'4110'3+o.1-10’5-10'%]
= 2,02 - 10-10 (hours)-3 (9-13)

From Eqs. 9-12 and 9-13, we get

o1l -
5 10

2 3011 0.13 (9-14)

Gp*ly 932 .1
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and

= 1 - 0.13 = 0.87 (9-15)

We write now Eqs.5-20 and 5-21 We get

o o
2 3 -5 -1
A= AL+ A= 2.17 - 10 hours (9-16)
u2-+a3 A a2-+a3 B
and
o o
2 3 -3 -1
u= U, + v, =10 hours (9-17)
u2-+a3 B a2-+u3 A

We can now calculate A (Eq.5-28). Taking into account Eqs. 9-5,
to 9-9, Eq. 5-28 becomes

A= (AA + AB)(A tou, ot uB) + 1 (uA + uB+K AB +KB AA) (9-18)

A

Taking into account the numerical values of the table of Fig. 9-1 and
Eqs. 9-16 and 9-17, we get

A= (107% + 107°)(2.17 + 107+ 107+ 1073) «
+1072 (1073 1073 0.1 - 107+ 0.1 - 107 =
-6
= 2.233 * 10 . (9-19)

Taking into account Eqs. 9-5 to 9-9, Egs. 5-25 ,5-31 and 5-32
become respectively

A(AA+ AB)+u(KAAB+ KBAA) i

1

E{G,)
1 A

4 4

2.17-107° (10 %+107°)+10 3(0.1- 10 ?+0.1-10™%)

2

2.233 - 10°°
~ -3

6 « 10 (9-20)
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(G} = — 2 (uyt ) Oy* Ap) - 0.13 (107341073) (1074107 _
2" oy tog A 2.233 . 1070
_ -2 -2
= 0,13 - 9.85 « 10 “= 1.28 - 10 (9-21)
(o p ) (A +2) -
E{G,} = 3 '33 A B A B _4.87.9.85-10°2 =
273 A
= 8.57 - 102 (9-22)
We have also
E{Gh} =1 - E{Gl} - E{Gz} - E{G3} =
_ -3 -2 -2
= 1 - 6’10 _1028']0 —8557']0 = 0'8955 (9-23)

We go back now to the table of Fig. 9-1 and we consider the
circuit breagker F. The circuit breaker F is a bipolar switch with
Inhibitor B. The theory of the bipolar switch has been developed in
chapter 6. By using this theory we can therefore easily calculate
the conditional expectations of the primary variables of F.

We shall use the equations 7 to 12 of Fig. 6-7 and we shall assume
that the numerical values of the transition rates given in the table
of Fig. 9-1 have already been properly corrected according to the

' theory of the bipolar switch developed in chapter 6.

We have
Yy //y.
- 1 i
E F - = = —
1{ 1} E{F1 lBl} E{Fllclv(;z} 5, & =
14+ — + Y R
fl 1
-6 -2
10 ~ -
= 6/ = ; = 107 (9-24)
10 10~
1+ = + =
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E,{F,} =E{F,[B } = E{F |6, VG,} =
9 /w1
y G,
]_ +_1 +__];
£1. “
1.5 +107°/1072
1078 1077
1 + =5 + =
10 10
s ‘3
1.5 .10 (9-25)
E {F,} = E{F3|B1} = E{F3]G1\IG2} =1 - E{F1|Bl} - E{FZIBl} =
_ -4 -3
=1-10 " -1.5+ 10" = 0.9984 (9-26)
vy /0y -
E,{F } = E{F,[B,} = F{F1| G,VG,} = =
V) 6, 9
1 +—+—= + =
£, @ 5
~ -3
£1.5 - 10 (9-27)
6,/ w, .
E,{F,} = E{F2|B2} = E{F2|G3\7G4} = =
) 6, G,
1+ = + — + ==

b w, P,
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(9-28)
E,{F} = E{F3|B2} = E{F3|GB\JG4} =

1 - E {F|B,} - E{F,|B,} = 0.998 (9-29)

The conditional expectations of the primary variables of the

circuit breaker L can be calculated in a similar way as we have
shown in the case of F.

The table of Fig. 9-5 shows the conditional expectations of
all primary variables of the fault tree of Fig. 9-3.
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Expectation
Primary Inhibiting Primary
Component Variable Variable Symbol Value
-3
6 * 10
G1 E {Gl}
G E {G,} 1.28-10"2
2 2 )
G -2
Gy E {Gy} 8.5710
G4 E {G4} 0.8955
c E {C.} 2 - 107
1 1
C
<, E {CZ} 0.99998
-4
F1 El{Fl} 10
G, VG -3
1'%9 F2 El{FZ} 1.5 - 10
F3 El{FS} 0.9984
F 3
F1 Ez{Fl} 1.5 « 10
G,VG 5.107
3 F2 EZ{FZ}
F, E,{Fy) 0.998
-4
L1 El{Ll} 10
G, ve, L, E {L,} 1.5 - 1072
L3 El{LB} 0.9984
L 3
Ll Ez{Ll} 1.5 10
G VG L E_{L,} 5‘10—4
2 A 2 22
L3 EZ{L3} 0.998
Fig. 9-5. Table of the expected values of the primary

variables.
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10. BOOLEAN OPERATIONS

10.1 Generalities

The reader must become acquainted with some terms which are
currently used throughout this paper.

We say that a monomial X: is a "prime implicant" (minimal cut
set) of the boolean function %OP if (1) X. implies the TOP (X.A TOP=X.)
and (2) any other monomial Y subsumed by ¥. (i.e. obtained from X byJ
replacing one of its literals with 1) does”not imply the TOP
(YATOP # Y).

We shall call any disjunction of prime implicants, which is
equivalent to the function TOP, a 'base of the function TOP". The
disjunction of all prime implicants has this property. We shall call
it the "complete base'. We shall describe as an '"irredundant base" a
base which ceases to be a base if one of the prime implicants occurring
in it is removed (deleted). Boolean functions may have many irredundant
bases. We shall call "smallest irredundant base' the irredundant base
having the smallest number of prime implicants. There may be more than
one base with the smallest number of prime implicants.

The identification of an irredundant base (or one of the
smallest irredundant bases) of the boolean function TOP of a fault
tree is carried out in three steps:

Step No. 1 Identification of the associated normal disjunctive form.
Note that the associated normal disjunctive form has been
already defined in chapter 2.

Step No. 2 Identification of the complete base starting from the
associated normal disjunctive form.

Step No. 3 Extraction of an irredundant base (or one of the
smallest irredundant bases) from the complete base.

After having identified an irredundant base of the TOP variable,
some other transformations are carried out to get the boolean func-
tion in a form more suitable for probability calculatioms.For this
purpose we have first to introduce the concept of simple boolean
function.

"A boolean function in said to be simple if it is possible
to express it as a conjunction between a monomial (keystone
monomial) and a normal disjunction of monomials, all monomials
(including the keystone monomial) being pairwise mutually
logically independent'.
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According to the above definition we have that a simple boolean
function Y& is expressed as follows:

n,

L
Yi =M, A (S\ﬁ1 P..) (10-1)

where the M; and the Pj, are non zero boolean monomials satisfying
the following two conditions

- the monomials P;  are pairwise logically independent, that is
if a literal A appears in a monomial P;ss no other literal belong-
ing to the same€ component will appear in any other monomial P,
(r # s rys = 1;2...;ni).
- each monomial P, is logically independent of M..
is

The last two conditions can be expressed in the following way

If Aq/\ P, =P,
then 0 # Aq/\Mi # Mi and
o#a AP #7, (r#s)
AND
If A, /\Ml =M,
then 0 # 4 Ae,_ #2..

In other words a primary component A can appear only once in a
simple function Y.: either in the monomial M, or in one of the
monomials P,

is

We can now specify the step No. 4.

Step No. 4 Expression of the TOP as a disjunction of pairwise
mutually exclusive simple boolean functions.

This means that we want to get an expression of the TOP of the type

Q
TOP = V Y; (10-2)

1=1
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The monomials Yi must be pairwise mutually exclusive, that is
v, Ny, =o ifk ik =1;2...5Q) (10-3)

Taking into account Eq. 10-1, it follows from Eq. 10-3 that the
keystone monomials must be pairwise mutually exclusive, that is

Mi/\ M =0 (10-4)

The purpose of step No. &4 is to get an expression of
the TOP which facilitates the operation of expectation. This will
become clear in section 11 of this paper.

In order to calculate the conditional expectations of the
unprivileged primary variables, it is necessary to identify
for each unprivileged primary variable its associated inhibiting
variable. We come therefore to the last boolean operation, that is
to the step No. 5,

Step No. 5 TIdentification of the inhibiting variables to be

associated with each simple function.

10.2 Step No., 1 - Identification of the Associated Normal
Disjunctive Form

The variables of the fault tree are ordered in a list
(table of variables). The literals are first listed. The acceptance
criterion of a variable (gate) in the list is the following: the
variable is accepted if and only if the input variables to the
gate have already been accepted. If the gate satisfies the acceptance
criterion itis written in the list. The ordering process comes to an
end when all variables have been written in the list.

By simple inspection of the fault tree of Fig. 9-3 we get the
table of variables of Fig. 10-1,

The algorithm to identify the monomials of the associated normal
disjunctive form is the so called "downward algorithm" which is based
on the principle already described in /7/ by Fussell and in /8/. Some
additional features have been incorporated in the original downward
algorithm so that the NOT gate and the multistate components can be
handled. The algorithm begins with the TOP and systematically goes
down through the tree from the highest to the lowest variable, that
is from the bottom to the top of the ordered list of variables. The
fault tree is developed in a table (table of monomials). The elements
of the table are variables. Each row of the table is a monomial. The
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2;i§;;2§ Variable Re?ggigzzhip Predecessors Successors

1 C1 - - GO1

2 G1 - - G06;G07
3 G2 - - GO6

4 G3 - - GO7

5 L1 | - - GO5

6 L2 - - GA3

7 L3 . - - GAS5

8 F1 - - Go4

9 F2 - - GA2
10 F3 - - GA4
11 GOb6 OR Gl;G2 GA2 ;GA4
12 GO7 OR G1;G3 GA3;GAS5
13 GA5 AND GO7;L3 GO5
14 GA4 AND GO6;F3 GO4
15 GA3 AND L2;G07 GO3
16 GA2 AND GO6;F, Go3
17 GO4 OR Fl;GA4 GAl
18 GO5 OR L1 ;GAS GAl
19 cAal AND GO4 ;GO5 GO?2
20 Go3 OR GA2;GA3 GO2
21 GO2 OR COB 3GAL GO1
29 G01(TOP) OR C,3602 -

Fig. 10-1. Table of variables of the fault tree of Fig. 9-3.
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number of elements contained in a row is called the length ot the
row. Each time an OR gate is encountered new rows are produced (as
many as the number of input variables to the gate). Each time an
AND gate is encountered the length of the rows (in which the gate
appears) is increased. Each time a NOT gate is encountered the
input variable to the gate receives a negation mark. If a negated
non primary variable is dissected, the gate type is replaced by
its dual type (AND is changed into OR and vice versa) and the
negation mark is transmitted to all input variables of the gate.
If a primary variable is negated, it is replaced by an OR gate
which has as' input variables all the remaining primary variables
belonging to the same primary component.

The process of dissection comes to an end when all the elements

of the table of monomials are primary variables (literals).

In addition the three following simplification rules are applied:

Delete zero monomials, that is rows which contain at least one
pair of mutually exclusive literals.
quI\Cjk =0 for q # k (exclusion law).

Delete the repeated literals of a monomial (row).
quAqu = qu (idempower law).

Delete any subsuming monomial, that is any row which contains

all elements of another row.
XaV X, =X if Xa/\Xb = X (absorption law).

At the end of the process each row of the table of monomials

is a monomial and the disjunction of all monomials is the normal
disjunctive form of the TOP associated to the fault tree under
considerations.

We now apply the above described procedure to the table of
variables of Fig.10-1. The example is self explanatory. We have

Ordering Boolean Identity Table of
Number Monomials
TOP = GO1 Go1
22 GOl = €, VGO2 <,
GO2
21 G02 = GO3VGAlL Cl
GO3
GAl




Ordering
Number

20

19

18

and so on.
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Boolean Identity

GO3 = GA2 V GA3
GAl = cos N\cos
GO5 = L, VGAS

Table of

Monomials

GA2

GA3

GAl

GA2

GA3

GO4 GO5

GA2

GA3

GO4 Ly

GO4 GA4

At the end of the process the table of monomials will

Fig. 10-2,

We can therefore write the following boolean identity
TOP (we indicate from now on the conjunction
multiplication symbol ".'").

by means of

be that of

for the
the simpler

TOP = Cl\/ F2~G1VF2~G2VLZ-GIVLZ'GB\/Gl-F3-L1VG2-F3-L1\/

VFl-Gl-L3VFl-G3°L3VF1~L1\/G1-F

3

‘L

3

(10-5)
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If we now apply the above precedure to the fault tree of
Fig. 9-4, we get

ToP = ¢,V Ll-Fl\/Fl-G3VG3'L2VL1'G2VG1VF2-G2 (10-6)

¢y

Bl &

L, | ¢

Lyl G

1| F3fl I

S P3| &y

oo | L

Fol 63 B3

Fi| L,

6, | Faf 1,

Fig. 10-2. Table of monomials of the fault tree of Fig. 9-3.

The two expressions 10-1 and 10-2 look very different. However
they are the same boolean function. This will be shown in the next
section. Here we can say that it is not possible to prove whether or
not two boolean functions are equal by making use only of algorithms
which calculate normal disjunctive forms of boolean functions.
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10.3 Step No. 2 - Identification of the complete base

Various algorithms for the identification of the complete base of
a boolean function (step No. 2) are available from the literature /9/.
An algorithm due to Nelson /10/ is particularly convenient. This algorithm
consists simply in complementing (negating) a normal disjunctive form of
a boolean function TOP (which_ from now on we also call ) and then in
complementing its complement¢ . After each of the two complement operations,
the three simplification rules (section 10.2) are applied to the result.

Nelson's algorithm can be described as follows

1. Complement i’ s expand 4) into normal disjunctive form and call
the result F,

2, Complement F, expand F into normal disjunctive form and call the
result K,

The disjunction of the monomials of K is the complete base of
the boolean function

We now apply the Nelson algorithm to our case, that is to Eq. 10-5.
By complementing Eq. 10-5, we can write

ToP = C.(F,VG ) (F,VE,) (L

(G1V F,VID @GVFVIDN(FVEVI)

-(flv G,V I (F, VLGV FVLy) (10-7)

Now we have
El =c, (10-8)

_ 4
G, = q\=/1 Gq k#q (k=1; 2; 3; 4) (10-9)

3
F, = \/ F  k#q (k=1; 2; 3) (10-10)

k q=1 q
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and

3
L=V L, ko (k=15 25 9) (10-11)
g=1

By taking into account Eqs. 10-7 to 10-11, Eq. 10-6 becomes

TOP = ¢, (F,VF,VG,VG, VG,): (F,V F3VG1VG3\/G4)'
(L,V 1L,V G6,VEVE6,) (L,V LV E V6, VG, )
*(6,V6,Ve, VF,VF VL VI (GVGYV 6 VFVFVLVL):
(FNVFVEVe Ve VLV L) (FVFVEVEVeVL VL)
((FVFVLVL) (6,VE, Ve VFVF VL VL) (10-12)

We execute the operations of Eq. 10-12 and we apply the three
simplification rules. We get

TOP = C.:G -Fl-LZVC °F

2" C9 'LyV )Gy F L, VCyeCy FyrLy V

2°Cy'Fy

\Y; C2~G3-F2'L1V C,"G4'F,

~L3VCZ~G3-F3-L1V C2-‘G3-F3-L3\/
V C,6, F,VC, 6, FV 6, LV CG, Ly (10-13)

We now complement TOP and we execute all operations including the
application of the three simplification rules. We get finally

TOP = Ll-Flv Fl-GBV G3-L2V Ll-sz le F2'G2\/Cl (10-14)
Eq. 10-10 is the complete base of the TOP.

We point out that Eq. 10-14 and 10-6 (that is the fault trees of
Figs. 9-3 and 9-4) have the same TOP. The knowledge of the complete
base of a boolean function is important also because it offers the possibility ef
finding out if two or more fault trees have the same TOP.
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We can state the following criterion

"If two boolean functions have the same complete base they
are identical'.

Nelson's algorithm was improved by Hulme and Worrell /11/ to
reduce the computing time. A modified Nelson's algorithm which allows one
to handle multistate components has been developed at Karlsruhe /3/.
The execution times of the three algorithms .are compared in the table
of Fig. 5-3. The examples have been taken from /11/.

Number of CPU time (sec)
prime impli-
Example cants in Nelson Sandia Karlsruhe
complete base algorithm algorithm algorithm
(CDC6600) (CDC6600) (1BM370/168)
1 4 0.158 0.156 0.11
2 0.367 0.182 not performed
3 15 221.418 0.391 0.26
4 15 1413.580 0,388 0.26
5 32 53001 3,868 0.42
6 61 46001 303. 657 1.03
7 87 6000 1) 417.371 1.12
(l)These entries indicate times at which execution was
terminated without completing the algorithm.

Fig. 10-3. Computational times of different types of
Nelson Algorithms.

10.4 Step No. 3 - Extraction of an Irredundant Base (or one of the
Smallest Irredundant Bases) from the Complete Base.

Various algorithms for the extraction of the smallest irredundant
base of a boolean function from its complete base are available from
the literature /9/.
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A method, which is called the method of the expansion co-

efficients, has been developed at Karlsruhe. The basic principles
of this method have been described in /3/.

A fast algorithm based on this principle has been developed at

Karlsruhe /3/ which allows one to identify the smallest irredundant
base of a boolean function. The table of Fig. 10-4 gives the required
execution times for the examples 3 to 7 of the table 10-3,

Number of Number of prime CPU time needed
Example prime impli- implicants in to identify
P cants in smallest irredun- smallest irredun-
complete base dant base dant base (secs)
3 15 7 0.24
4 15 8 0.23
5 32 12 0.49
6 61 17 6.07
7 87 19 19.51
Fig. 10-4, Computational times of the algorithm for the

extraction of the smallest.irredundant base.

An even faster algorithm for the extraction of an irredundant base

(which is not necessarily the smallest) has been developed at Karlsruhe.

The algorithm can be described as follows

1.

Select a prime implicant (say X:) from a base of the TOP and call
oy the boolean function which résults from the disjunction of the
rémaining prime implicants,

Delete from oy all prime implicants which are mutually exclusive
with Xj. In each of the survived monomials replace by 1 all literals
which dre contained in X:. Delete sqbsuming monomials. Call Bj the
boolean function which results from the disjunction of the monomials
which have been generated by means of the above operatioms.
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3, Complement B Iﬁ;Ej # 0, the prime implicant X:; is kept in the

base. If instead Bj = 0, Xj is deleted from the base.

The steps 1; 2 and 3 of the algorithm are repeated for each prime
implicant X. of the base. The starting base can be any base of the TOP.
In our case”the starting base is' of course the complete base,

We apply now the algorithm to our example, that is to Eq, 10-14.
We have

Xl = Ll . Fl (10-15)
and

o, = F "G,V G, L VL, c;2V<;1\/F2~G2\/c1 (10-16)

We delete now from a, the prime implicants G3-L, and F2-G2 because
they are both mutually exclusive with X,. In addition we replace by
means of 1 the literal F; in the prime implicant F;-G3 and the literal
Ly in the prime implicant Ly+Gy because both Fy and L; are contained
in X,.

1

We get

g, = 16,V1cVe Ve =6V Ve Ve (10-17)
We complement now Bl and we get simply

By = G,°C, # 0O (10-18)

Since El¢0, Xy is kept in the base. If we repeat the same procedure
for all the other prime implicants of Eq. 10-14, we shall find out that
all prime implicants must be kept in the base. This means that in our
example the complete base is irredundant, (see chapter 12 on coherent
boolean functions),

10.5 Step No. 4 - Expression of the TOP as a Disjunction of
Pairwise Mutually Exclusive Simple Boolean Functions,

We have the TOP as disjunction of the prime implicants ”Xj"
(irredundant base).
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N
TOP = \/

X. (10-19)
j=1 7
where

N = total number of prime implicants belonging to the
irredundant base.

We now want to transform Eq. 10-19 in an expression of the type
Q

op = \V ¥, (10-20)
i=1

where Y; are simple boolean functions (defined in section 10.1) which
are pairwise mutually exclusive, that is satisfy the conditions (Eq.10-3)

Y. ¥ =0 i#k (i;k=1; 2...;Q) (10-21)
In addition each Yi is of the form (Eq. 10-1)
st
Y, =M, o ;!& P (i =1; 2...;Q) (10-22)

where the M, and the Pis are non-zero boolean monomials. The monomials
Mi are called keystone monomials and satisfy the following conditions

M,ocoM = 0 i#k ({i; k=1;2...;Q) (10-23)
Q

V u =1 (10-24)
" 1

i=1

A fast algorithm has been developed to identify the keystone monomials.

One starts by selecting a literal of the most frequent primary
component in the expression of the TOP (Eq. 10-19). In the case of our
example (Eq. 10-14) the most frequent primary component is G. We select

therefore Gl.
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We have

M, = G (10-25)

We carry out the operation of conjunction between M, (Eq. 10-25)

and the TOP (Eq. 10-14). We get

G, - TOP = G (10-26)

1 1

From Eq. 10-26 it follows

n
V »? =1 (10-27)

s=1 1s

and therefore

Y. =G (10-28)

M. =G (10-29)

From Eqs. 10-29 and 10-14 we get

G2 - TOP

G, (L1~F1\/ LIVszcl)

G, (le Fz\/Cl) (10-30)

Since each primary component enters in Eq., 10-30 not more than once,

we can write

2
By applying the same procedure we identify also Y3 and Y4

Y, = G3-(ClVF1VL2)

Yy, = G2'(L1V Fz\/Cl) (10-31)
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and

Y, = Ga‘(Cl\/Ll-Fl) (10-32)

At this point we observe that Eq. 10-24 is satisfied. We have
in fact.

4

V M, = (10-33)
1

i=1

A<
[}
}—I
i
ot

Eq. 10-33 tells us that all simple boolean functions have been
identified. We can write therefore

4
TOP = \/ Y. (10-34)
N L
1=1
where
- (10-35)
¥, =6
Y, = Gz'(CIVLl\/FZ) - (10-36)
Y, = G3'(Cl\/F1\/L2) (10-37)
Y, = G4'(Cl\/L1'F1) (10-38)

10,6 Step No. 5 - Identification of the Inhibiting Variables to
be associated with each Simple Function.

Since the primary variables belonging to a dependent primary
component have different conditional expectations (table
of Fig. 9-5) depending upon the inhibiting variable from which they
depend,it is necessary to identify the inhibiting variables associated
witheach simple function before proceeding to calculate its occurrence
probability,

A simple algorithm is the following.
Let us assume that the simple function Y; contains a literal of the
dependent primary component D, Let us indicate with L (k=1; 2...;n) the
inhibiting variables of D.
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The following test is carried out

1.

If a literal of D is contained in P;  and an inhibiting variable I

exists for which the relation k

M, -P, T = Mi~Pis (10-39)

holds, the simple function Yi receives the mark L

If a literal of D is contained in the keystone monomial Mi and an
inhibiting variable Iy exists which satisfies the equation

Y.L, = Y. (10-40)

the simple function Y, receives the mark I

In all other cases the simple function Y; is replaced by the
following set of simple functions

Yi-I1 with mark I1
. 1" "
Yl I2 IZ
Y 'I " 1"t I
1 n n

Note that at least two of the above newly generated simple
functions must be different from zero.

By applying the above algorithm to our example (Eqs. 10-35 to 10-38),
we get the table of Fig. 10-5,

The last column of the table of Fig. 10-5 indicates the conditional

expectations which must be used in the calculation for each simple
function and for each unprivileged primary variable.
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Simple Inhibiting Expected value
Function Unprivileged Primary Variable of unprivileged
Variable (Mark) Primary Variable
¥, - - -
L, ¢,Ve, E, (L}
Y2
F, G, VG, B {F,}
Fl G3VG4 EZ{FI}
Y3
L, G VG, B, {L,}
L, 6, VG, E,{L}
Y4
Fl GB\/G4 EZ{F]}

Fig, 10-5. Table of the inhibiting variables to be
associated with each simple function.
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11. CALCULATION OF THE OCCURRENCE PROBABILITY OF THE EVENT {Top =1}

We now want to calculate the expectation of the TOP variable, that
is the occurrence probability of the event {TOP = 1}.

E {TOP} =P {TOP = 1} (11-1)
Taking into account Eqs. 10-20 and 10-21 we can write
Q
E {TOP} = EE: B {Y,} (11-2)
i=1

Taking ‘into account Eq. 10-22 and the fact that all monomials contained
in a simple boolean function are all pairwise mutually logically in-
dependent, we can write for each Yi

n, s~1
1
E {Yi} = E {Mi} S_Zl E {Pis} ql=1| [1 —E{Piq}] (11-3)

Note the remarkable simplicity of Egs. 11-2 and 11-3, This is due
to the properties of the pairwise mutually exclusive simple boolean
functions Yi. Note that the functions Mj andiP;g are monomials. The
expectation of a monomial is given by the product of the expectations
of the primary variables contained in it. For the unprivileged primary
variables one uses the conditional expectations which are identified
by the corresponding marks associated with the simple function Y;
(section 10.6).

We have shown in chapter 6 that the bipolar switch (circuit breaker)
can be handled as an homogeneously dependent primary component. We
recall the theory of section 5-3. Given yn homogeneously dependent
primary variable D,, an inhibiting variable Iy and a variable X, which
does not contain aﬂy literal of the primary component D, the fol%owing
relationship holds

ng

X} TE{D, |L} (11-4)

E {D.|I
{Jlkq j'k

Eq. 11-4 tells us that only the conditional expectation E {DjIIk} needs
~ to be calculated.
In our example (Eqs. 10-35 to 10-38 and table of Fig. 9-5) we can
write

-3 | (11-5)

[
N
o

E {Yl} =E {Gl}
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Taking into account the expression of Yzl(Eq.10—36Land the conditional
expectations of the variables L; and F, indicated in the table of Fig.
10-5 in correspondence of the simple function Y,, we can write

E {Yz} = E{G2} [E{C1} + (1'E{Cl}) E, {Ll} +

+ (1 -E{C1})(l —Ez{Ll}) El{Fz} ] (11-6)

By introducing in Eq., 11-6 the numerical values of the table of Fig.
9-5, we get

E{y,} = 1.28.10"2 [2.10'5+(1 -2.107°) 1.510°° +

5

+ (1-2:107°)(1-1.5-10"2) 1.5-10'3] =3.9.10° (11-7)

By applying the same procedure to Y, (Eq. 10-37) and to Y, (Eq., 10-38)
we get respectively

E {Y3} = E{G3} [E{cl} + (1-E {cl}) E, {Fl} +
v -4 _
+ (l-E{Cl}) (1-E2{F1}) E; {Lz}:‘ = 2,6-10 (11-8)
and
E {Y4} = E{G4}[E{Cl}+(1'E{Cl})E2 {Ll} E, {Fj%
29 . 107 (11-9)
By applying Eq. 11-2 to our example we get finally.
E{ToP} = E {Yl} + E {Yz} + E {YB} + E {Y4} =
6:107343.9°10°242.6-10 %+2:107° % 6.32.1073 (11-10)
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12, Coherent boolean functions

In the literature great importance is given to the concept of
coherence. Some authors /14/ argue that most technical systems are
coherent in the sense that the TOPs of the fault trees of such sy-
stems are coherent boolean functions.

In the case of systems with binary components, a boolean func- '
tion is said to be coherent if it is monotonic with respect to all its
basic variables. In /9/ it is shown (1) that no prime implicant of
a coherent boolean function contains negated literals (i.e. no in-
tact state of the primary components) and (2) that a coherent boolean
function has only one base which is complete and irredundant at the
same time. Note that it can be shown that the property number 2 is a
consequence of the property Nr. 1.

The problem of defining a coherent boolean function in the case
of systems with multistate components is not straight forward.

Some authors /22/ extend the concept of a monotonic boolean func-
tion to the case of multistate components by introducing an ordered
set of values for each primary component. This type of ordered logic
can be applied only to problems in which a decreasing scale of values
can be assigned to the states of the primary components (from the in-
tact state which is the least failed to the complete failed state
which is the most failed). Many technical systems however cannot be
treated by using an ordered logic. It would be in fact very hard to
decide whether or not the state "failed closed" of a circuit breaker
is more failed than the state '"failed open'". We have used in our paper
a non~ordered logic which can be applied in principle to any type of
problem, For this reason it is difficult to extend the concept of
monotonic boolean function to the case of the boolean algebra with
restrictions on variables. We can however define a coherent boolean
function by referring to a special property of its complete base.

The following definition is proposed

"A boolean function is said to be coherent if at least one
literal of each primary component does not appear in the
complete base of the function"

Note that the proposed definition is based on an extension of
the property Nr. 1 of the binary case. The above definition tells
us that each primary component must appear in the complete base of
the function with a number of literals lower than its total number
of states. For instance in the complete base of our example (Eq. 10-
14) the literals associated with the intact states of all primary
components (G,,C,,F,,L ) do not appear in the complete base. Accord-
ing to the deélnltlon proposed above, we can therefore say that our
TOP (Eq. 10-14) is a coherent boolean function. In addition it is
not difficult to demonstrate that a coherent boolean fupction hag
only one base which is at the same time complete and irredundant/23/.
This is the same as property 2 in the binary case. In the case of
our example (Eq. 10-14) we have verified that the complete base is
also irredundant (see section 10.3).
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The concept of coherency is very important because, if it is known
in advance that a boolean function is coherent, one can enormously
simplify the algorithm for the identification of the complete base
(section 10.2). It is in fact possible to demonstrate that the follow-
ing rule holds

"The complete base of a coherent boolean function can be ob-
tained from any of its normal disjunctive forms by replacing

by 1 all literals which are known not to appear in the complete
base and by applying the absorption rule among the monomials",

We apply now the above rule to our example., We write again the associated
normal disjunctive form (Eq. 10-5)

0P = C,VF, - GIVF2~ ¢,VL, - G1VL2- c,Ve, - Fyo Ly V4
(12-1)
\/GéFéLl\/FiGiLB\/FiGéLBVFleVGiFéL3

Let us now assume that, due to some technical considerations, we already
know that the literals associated with the intact states of the primary
components will not be present in the complete base. These literals are:

G4;F3;L3 and C2. We replace now by 1 the above literals in Eq. 12-1. We
get
0P = ¢, VFs6 VFs6, V156 Vise Ve - 1.1, V6, . 1L,V (122
VF6{1VFiG,1 VFiLl \/Gl- 1.1
Eq. 12-2 can be written as follows
TP = ¢, V56, VFs6,VLis6 VLG, \,/GiLl\/GéLl\/
(12-3)

VF»IGI\/FiGS\/Fl-L] Ve,

Eq. 12-3 contains the monomial G, which is implied by the monomials F3G,;
L:iG.3 G:L, and F:G, . These monomials can therefore be deleted (absorption

rule).Eé.IIZ—B bécémes finally

= ] . » . F L -
TOP CIVF2G2\/L2G3\/G2L]\/F1G3\/G]\/ Ly (12-4)

We point out that Eq. 12-4 is identical with Eq. 10-14 which has been
shown to be the complete base of the TOP.

An extensive and exhaustive treatment of coherent boolean functions
in the case of multistate components goes beyond the limits of this paper.
The problem of coherency will be treated in another paper which is being
prepared /23/. It is important to point out at this stage that the greatest
problem is that of recognizing in advance whether or not a boolean function
is coherent and of identifying in advance which literals will not appear in
the complete base. Whilst most technical systems appear to be coherent, to
the best knowledge of the author there exists no general mathematical rule
which allows one to establish "a priori" the coherence of any system, except
of course in the case in which the intact literal of each primary component
does not appear in the associated normal disjunctive form of the fault tree.
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CONCLUSIONS
The following conclusions can be drawn:

The theory described in this paper is a powerful tool for the
analysis of fault trees containing multistate (two or more than
two states) primary components which can be statistically in-
dependent as well as dependent., This means that a very wide
spectrum of problems (which are met in practice) can now be
solved analytically by applying this theory.

A new definition of fault tree has been suggested. In contrast
to the old definition the basic boolean variables are not any
more associated with the primary components but with the states
of the primary components.

A special type of boolean algebra has been developed: this is
the boolean algebra with restrictions on variables.

In contrast with the multivalued logic approach /6/, the basic
rules of the boolean algebra with restrictions on variables are
the same as those of the traditional boolean algebra with some
additional rules due to the restrictions.

In addition, due to the fact that the variables are binary, the
operation of expectation of variables can be used for the calcula-
tion of the occurrence probability of events.

In the state analysis the net of states considered is character-
ized by a very fine mesh. The net used in the fault tree analysis
has instead a much coarser mesh. Since the problem of statistical
dependence among components (such as common mode failure) affects
the fine structure of a system, the coarse mesh used in the fault
tree analysis is not suitable to handle the problem of statistical
dependence. On the other hand the fine mesh used in the state
analysis, although it would be suitable to cope with statistical
dependence, is much too fine to handle complex systems.

It is therefore clear that an intermeidate mesh size is required
for the analysis of statistical dependencies in complex systems.
This mesh must be fine enough to retain the basic properties of
statistical dependence and sufficiently coarse to still allow
one to analyze complex systems, It has been shown that this

can be obtained by properly combining fault tree analysis with
state analysis. The boolean algebra with restrictions on variab-
les is the mathematical tool which allows this synthesis.
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The definition of component has been generalized. A new classifi-
cation of components into two groups privileged and unprivileged
has been proposed., It has been shown that this classification
eases the calculation of the expectation of a stochastic boolean
variable especially in the case of statistical dependence.

The problem of statistical dependence has been solved either (1)
by removing it, that is by replacing in the fault tree the
statistically dependent primary variables by means of "ad hoc"
new defined primary variables, or (2) by evaluating separately
(by means of the state analysis) the conditional expectations of
the dependent variables. The theory then provides the tools for
correctly incorporating these conditional expectations in the
fault tree analysis.

Criteria to establish which one of the two methods should be
chosen have been given in the paper.

A new definition of coherency has been put forward in this paper.
We recall it again

"A boolean function is said to be coherent if at least one literal
of each primary component does not appear in the complete base of

the function'.

In chapter 12 it has been shown that the above definition is consi-
stant with the old definition which applies only to systems with
binary components. A simplified algorithm for the identification of
the complete base is also given in chapter 12, Since the use of this
simplified algorithm is limited to the case of coherent systems only,
one is bound to use in the general case more complex algorithms like
the Nelson algorithm (section 10.3).

The method uses also an expression of the TOP variable as a
disjunction of pairwise mutually exclusive simple boolean
functions. This eases the calculation of the occurrence probability
of the top event.

The analytical computer code MUSTAFA 1 based on the above theory
has been developed. It can handle fault trees of systems containing
statistically independent as well as dependent components with

two or more than two states.

MUSTAFA 1 can handle coherent as well as non coherent boolean
functions.
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A sample problem ahs been analysed by using MUSTAFA 1. The
problem contained three different types of dependencies which
are commonly met in practice, namely (1) common mode failure,
(2) components characterized by failure rates which take values
which depend upon the occurrence of some non-primary events, and
(3) the case of a component whose repair affects the operation
of another component,

MUSTAFA 1 solved the problem successfully.

An important feature of MUSTAFA 1 is that of allowing the iden-
tification of the complete base of a boolean variable. This
gives the possibility of comparing different reliability analy-
ses of the same system at the level of events,

The comparison among different reliability analyses of the same
system must be carried out not only at the level of probabilities
(as it is usually done) but also at the level of events. In fact
two TOP events, although they are different, could have the

same occurrence probability. On the other hand two fault trees

of the same system, although they look different, are equal if
they have the same complete base. This has been shown in this
paper.

In addition a system was given to three different persons. Three
different fault trees were generated for the same TOP variable.
The three associated normal disjunctive forms (output from the
downward algorithm) were calculated and they looked remarkably
different from each other (large differences in the total

number of monomials as well as in their composition). However,

it was possible to verify that the three functions were identical
by calculating the complete base which proved to be exactly the
same for all three fault trees /20/.

It is not possible to carry out in general this type of comparison by
using the conventional analytical programs (e.g. /7/) because
these programs, in addition to the limitation of handling fault
trees with only binary components, cannot handle negated variables.
In other words the use of these programs allows one to handle

only a very special class of fault trees, namely those fault

trees in which the associated normal disjunctive form is identical
with the only base which is at the same time complete and irredun-
dant.

The problem of comparison among fault trees is becoming more
important because the confidence in the reliability analyses
of systems will increase if the analyses are carried out by
different and independent organizations.
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11. The knowledge of the complete base eases also the identification
of the primary components which most contribute to system un-
availability. This has been shown in the analysis of the
emergency core cooling system of the nuclear fast reactor SNR
300 /20/.

12.

Finally it is worthwhile to point out that the adoption of
computer programs for automatic fault tree construction /18/
will require the use of the boolean algebra with restrictions
on variables. These programs in fact generate non-conventional
fault trees which cannot be in general analyzed by the conven-

tional computer programs for fault tree analysis which are
being used today.

A computer program is being developed at Karlsruhe /19/ to
properly couple the basic theory of automatic fault tree
construction with the theory developed in this paper. The
use of this computer program will allow one to identify the
complete base of a boolean function without even drawing a
fault tree of the system. This is the same as saying fault
tree analysis without fault treel
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