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Abstract

The method of direct numerical simulation is used to study heat transfer

and statistical data for fully developed turbulent liquid metal flows in
plane channels and annuli. Subgrid scale models using one transport equa-
tion account for the high wave—number turbulence not resolved by the finite
difference grid. A special subgrid-scale heat flux model is deduced together
with an approximative theory to calculate all model coefficients. This model
can be applied on the total Peclet number range of technical liquid metal
flows. Especially it can be used for very small Peclet numbers, where the

results are independent on model parameters.

A verification of the numerical results for liquid sodium and mercury flows
is undertaken by the Nusselt number in plane channels and radial temperature
and eddy conductivity profiles for annuli. The numerically determined Nusselt
numbers for annuli indicate that many empirical correlations overesti-

mate the influence of the ratio of radii. The numerical results for the

eddy conductivity profiles may be used to remove these problems. The sta-
tistical properties of the simulated temperature fluctuations are within

the wide scatter-band of experimental data. The numerical results give
reasonable heat flux correlation coefficients which depend only weakly

on the problem marking parameters.



Numerische Simulation turbulenter Fliissigmetallstromungen

in Plattenkanilen und Ringspalten

Zusammenfassung

Die Methode der direkten numerischen Simulation wird zur Untersuchung des
Wirmetransportes und statistischer Daten voll entwickelter Fliissigmetall-
stromungen in Plattenkandlen und Ringspalten benutzt. Mit Feinstrukturmodel-
len, fiir die eine zusitzliche Transportgleichung geldst wird, werden die hoch-
frequenten Turbulenzanteile beriicksichtigt, die nicht von den Maschen-

netzen aufgeldst werden kdnnen. Die Koeffizienten des vereinfachten Tem—
peraturfeinstrukturmodells werden mittels einer Ndherungstheorie berechnet.
Das Modell kann auf dem gesamten Peclet-Zahlen-Bereich technischer Fliissig-
metallstrdmungen angewandt werden. Besonders vorteilhaft ist die Anwendung

bei kleinen Peclet-Zahlen, weil dort die berechneten Temperaturfelder un-

abhingig von Modellparametern sind.

Die numerischen Ergebnisse fiir die Fluide Natrium und Quecksilber werden
anhand der Nusselt-Zahlen fiir einen Plattenkanal, und anhand der radialen
Profile der Temperatur und der turbulenten WarmeaustauschgrdBe fiir Ring-
spalte verifiziert. Weiterhin zeigen die numerisch bestimmten Nusselt-
zahlen fiir Ringspalte, daB die meisten existierenden empirischen Bezie-
hungen den EinfluB des Radienverhiltnisses iiberschitzen. Die numerischen
Ergebnisse fiir die Profile der turbulenten Wiarmeaustauschgrofe in diesen
Kanilen konnen zur Beseitigung dieses Problems benutzt werden. Die statisti-
schen Eigenschaften der simulierten Temperaturfluktuationen befinden sich
innerhalb der weiten Streubinder experimenteller Daten. Die numerischen
Ergebnisse liefern, im Gegensatz zu den meisten existierenden experimentel-
len Daten fiir Fliissigmetallstrdmungen, realistische Widrmestromkorrelations-—

koeffizienten, die zudem nur schwach von den Problemparametern abhdngen.
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Nomenclature

Nu

Pe
Pex
Pr

Pr

Do

Vol

1,2

Re

Re

tsd

constant thermal diffusivity

constant specific heat capacity

subgrid scale heat flux coefficients
channel width, R2 - R1

turbulence energy, power spectral density

grid surface, V/Axj

Nusselt number

pressure

Peclet number, Re Pr

friction Peclet number, Re Pr
Prandtl number, v/a

turbulent Prandtl number, enl/eH

radial heat flux
specific volumetric heat source

inner, outer wall positions (Fig. 1)

Reynolds number, V<u]>2D/v
friction Reynolds number, uD/v
time

temperature

universal temperature, T/T"

heat flux temperature, iw/(p ¢, u™)

typical relative standard deviation
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u, velocity component, indices refer to Fig. 1
e friction velocity, /{;ﬂ;

v grid volume, Ax1 Ax, Ax3

X s ¢ periodicity lengths, see Fig. 1

Axi grid widths

y wall distance, mostly y = R - R

1

Greek symbols

Gj central finite difference operator

€ turbulence dissipation

€y eddy diffusivity for heat, -<u3'T'>/<8T/3x3>

€ eddy diffusivity for momentum, -<u3'u1'>/<3ur/ax3>
v kinematic viscosity

o) constant specific density

Yr correction factor in the subgrid scale heat flux model, Yo
T radial shear stress

Indices

i,] space indices, Fig. 1

t turbulent

T temperature

w wall
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operator for any quantity Y

<Y > time mean value
ey > channel volume mean value
vy ' mesh cell volume mean value, o Y dv
Iy mesh cell surface mean value, J Y de
Ip
Y average over both walls, cart. k=0, cyl. k=1,
k k k k:
(le R] + sz R2 ) / (R1 + R2)
¥J average value over two neighbouring grid values,
Tx) = (V) + Yx, )2 j=1,2
-3 k k
J(x.) = (¥(x., ) Ax.(x. ) R (x.. ) + ¥(x, ) Ax.(x, ) R (%, ))
(g A R AR ;R R j-

k k .
Ax.(x. ) R (x. ) + Ax.(x. ) R (x. )) =3
[(oxs (g j+ i3 j- J
with x., = x. + Ax./2 and x._ = x.- Ax./2
+ J J J J J

Y fluctuating part of Y' =Y - <Y >, and Y' = Y-7%



1. Introduction

Working conditions in heat generating fuel elements of liquid metal fast
breeder reactors extend from high Reynolds>number turbulent flow for
normal operation down to laminar flow in case of decay heat removal.

Thus the models used to calculate the detailed temperature fields with—
in the fuel elements have to account for the molecular and turbulent

heat transport. Usually statistical turbulence models are applied which
are based on the Reynolds equations. In most cases the unknown turbulent
heat fluxes are modeled by the eddy diffusivity concept. The experimental
determination of the eddy diffusivity for heat ( = eddy conductivity)

€., is a hard job due to many problems in using liquid metals. The

H
theoretical way of applying formulations for the turbulent Prandtl
number Prt = em/eH, €n = eddy diffusivity for momentum, suffers from
the same problem because the models have to be fitted by using experi-

mental data.

Even after recent publications on the subject of eddy conductivities in
liquid metal flows many open problems remain. In the paper of Kader &
Yaglom /1/ a large number cf experimental data are summarized for the
Nusselt number Nu, the universal logarithmic temperature profile T' and
for the turbulent Prandtl number. In the region where both, the velocity
and temperature profiles, follow its logarithmic laws, the data show a
constant turbulent Prandtl number which depends neither on the wall
distance y nor on the molecular Prandtl number Pr. This cannot be used
for low Reynolds number flows because there the conductive sublayer ex-
tends from the wall to almost the center of the channel. Consequently,
no region of a logarithmic temperature profile exists. Reynolds /2/

discusses and classifies 30 different methods for the prediction of

-~



turbulent Prandtl numbers. Some methodical problems become evident, for example
a missing or wrong functional dependence on wall distance, on molecular Prandtl
number, or on Reynolds number. In the work by Dutt /3/ some discrepancies are
noted between experimental and theoretically predicted data, but here the
experimental data are put in doubt. Thermal contact resistance, incomplete
wetting, and longitudinal conduction appear to be the main reasons. This
conclusion may be confirmed using the publication by Lawn /4/. He develops

a specfral theory to predict turbulent temperature fluctuations in liquid
metals. In attempting to check this theory by summarizing experimental data
for the turbulent Prandtl number, for the turbulent heat flux, for the rms
(root mean square) value of temperature fluctuations and of the cross

stream velocity fluctuations, and for the heat flux correlation coeffi-

cients, he had to conclude that many of the published data are in error

because they show correlation coefficients greater than one.

In this work, the method of direct numerical simulation is used to calculate
turbulent liquid metal flows in plane channels and annuli. The method is
based on a finite difference formulation of the complete time dependent
and three-dimensional mass, momentum, and energy equations for the gross
scale part of turbulence. The small scales, which are not directly re-
solved by the finite difference grid, are represented by special subgrid
scale models. Such a method was firstly applied to the momentum transport
in channels by Deardorff /5/ for inviseid flows, and by Schumann /6/ for
flows at finite Reynolds numbers. The author of this work developed a
model which is also applicable for low Reynolds number flows, and which
includes heat tranmsport at different Prandtl numbers /7,8/. The subgrid
scale model coefficients are calculated by the theory of isotropic turbu-
lence. In the first part of this work those pecularities of the model and

of the theory to calculate the coefficients are discussed, which correspond



to applications to low Prandtl numbers. Then the model is applied to the simu-
lation of liquid metal flows. It is the purpose of this work to predict sta-
tistical data for temperature fluctuations in some exemplary flows by use

of the cited method and model. The results can be used instead of experimen-
tal data for the development of statistical turbulence models. In contrast

to most experimental data, the numerical results confirm the spectral theory

of Lawn cited above.

2. Numerical simulation method

In this chapter only a brief description of the principles of the method of
direct numerical simulation and of the computer model used is given. The
reader, who is interested in more details on the subject of deducing and

solving numerically the basic equations is referred to /7,8/.

2.1 Volume averaged basic equations

The method of direct numerical simulation of turbulent flows is based on
the complete three-dimensional non-stationary equations for the conserva-
tion of mass, momentum and heat. For an application of finite difference
schemes these basic equations are transformed to a finite difference form
for the mesh cell averaged variables Y (Yany quantity) by formal integra--
tion over the volume V = Ax, Ax, Ax_, of one mesh cell. In case of volume

1 2773

averaging of partial space derivatives the Gaussian theorem leads direct-

]

ly to finite differences Gj J; for the surface averaged values ;, where

j denotes the normal of the respective mesh cell surface JF. The resultant

averaged equations for mass, momentum and thermal energy read as follows

(for simplicity Cartesian coordinates are used here; application to cylindri-

N

cal coordinates is shown in /7/):



§. u, = 0

1 1

3 V- j i- 1 jau' .

- u, = -8 uu, -8, p+S (— —L) i=1,2,3 (1
ot J Jr J Re ox

9 V= ] 1 jaT

— T = -3 u,T +68, (—¢ — ) +Q

at J J 3 pe ax

The summation convention is used for repeated lower indices. These equations
are made dimensionless by means of the channel width D, the friction velocity
i3 .

u = VT;?D (TW = time mean wall shear stress averaged over both walls,

e

p = constant density), the time scale t* = D/ux, and the heat flux tempera-

ture T= = ﬁw/(p e ut ), where dw = time mean wall heat flux, cp = constant

P

specific heat capacity. Consequently, the Reynolds number is defined as

Re® = uT D/v (v = kinematic viscosity), and the Peclet number is defined

as Pe" = Re” Pr = u® D/a (a = thermal diffusivity). Q is the specific volu-

metric heat source.

In the computer code TURBIT-2 /7/ applied here the partial derivatives which
still remain in eq. (1), andlthe quantities not defined on the staggered grid
used are approximated in a linear second order manner. For time integration
an explicit mixed Euler - leap frog scheme is used in combination with
GCalilean transformations of the mean velocity and temperature fields to
maximize the permissible time step widths. The calculation of the pressure
field follows the well-known method of solving a Poisson equation by use of

the fast Fourier transformation.

The geometries considered in the computer model are infinite plane channels
and infinite annuli with different ratios of radii RI/RZ (R1 = radius of

inner wall, R, = radius of outer wall). The infinity is due to the periodi-
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city in the mean flow direction X and spanwise direction Xy The periodi-
city lengths X‘ = IM Ax, and X2 = JM sz (see Fig. 1) are prescribed via the
corresponding numbers of mesh cells IM and JM, and via the respective grid

widths Ax, and Ax, . Due to periodicity, axial gradients in the temperature

1
field can not be recorded easily. A possible transformation is given in

/7/, but is not used here.

The wall conditions are mostly formulated exactly. An important exception

is the wall shear stress T, = l/Rexv 3u178x3 and the normal wall heat
flux ﬁw = - 1/pe" BT/ax3 . In turbulent channel flows with Pr > 0.7,

both gradients show strong changes near the wall which cannot be resolved
with the grids used in this work. Therefore these wall fluxes are approxi-
mated in a manner which is consistent with the universal velocity and tem-—
perature profiles. The method accounts for influences from wall roughness,
Reynolds number, Prandtl number, and grid resolution capabilities. For
liquid metal flows, no wall functions need to be used for the wall heat
flux because of the large spatial extension of the conductive sublayer,
which is directly resolved by the grids used. Thus, a valid approximation

for the wall heat flux in case of liquid metal flows is

q =~-~— — v —T—(VEI‘TW) (2)
Pe 8x3 Pe” Ax

where ?T] is the temperature in the wall adjacent grid cell, and TW is the

wall temperature.

2.2 Subgrid scale heat flux model for_ liquid metals

The basic equations (1) contain averaged products of velocities and tempera-

ture, which cannot be calculated from these equations. In a first step we split



the unknown terms by splitting the dependent variables in a large scale part
J?directly resolved by the grid and in a subgrid scale part Y', which re-
presents the unresolved fluctuating part of Y = J¥ + Y'. This results in

the still exact equations:

J5.u, = Ju. JET + 4G

J1 J 1 ] 1
(3)

Ju.T = J';‘— J"'f + Ju.,.,'T'

Only for the subgrid scale parts of the total fluxes model assumptions have
to be introduced. The models used in the present code have been described,
and extensively tested elsewhere over a wide range of Reynolds numbers,
Prandtl numbers, ratios of radii, and space dependent wall roughnesses
/7-9/. Therefore, here the discussion is restricted to the strong influence
of molecular conduction on the subgrid scale heat flux model in case of

liquid metal flows. The model for such flows is the following:

|
1
—
)
(o]
~~
W
|
A
<
-3
v
N

LT (4a)
J

j=1,2,3

1/2

b - F PO T,
a, CT2 CT (‘'F E' ) (4b)

This means that we assume gradient diffusion proportional to an effective

eddy conductivity J

a and to the local gradient of the temperature fluctua-
tions. The unknown eddy conductivities are modeled by a kind of Prandtl-
energy-length-scale model. JF]/2 is the characteristic length scale. The

characteristic energy scale is the subgrid scale kinetic energy JE' within

the area JF:



Fo- (u, - o) (5)
This energy is also needed in the momentum subgrid scale model. It is cal-
culated from an additional conmservation equation which is solved simultaneous-
ly with egs. (1). Both scales account for the fact that the subgrid scale

heat fluxes are strongly dependent on the spatial resolution capabilities

of the grids. The influence of the model correctly tends to zero with in-

creasing spatial resolution.

The factor JCT in eq. (4b) is introduced to correct for geometrical amiso-
tropies of the grid. It depends only on grid parameters and is of order one;
in case of isotropic mesh cells JCT = 1. The dominating coefficient for our

special application is CTZ' It has to be determined so that the production

of subgrid scale temperature variances caused by this model

production = < Pp> = < Juj'T' 6j IT s (6)

is equal in the statistical mean to its subgrid scale dissipation 'e'T=

dissipation = < eT' >= < egp >~ < —l; Sj IT Sj IT > (7)

These equations are taken from a formally deduced conservation equation for

E.' =1/2 TV 2

the subgrid scale temperature variances T . The overbar

denotes linear averaging over two in the j directionm neighbouring values.

From eqs. (4), (6) and (7) we get:

—]
R
T2 . _ (8)
P . J .

<jCT2 g Igv I aj T S Yo

1/2 <.
]



The denominator has been split into two parts to replace the triple corre-

lations introducing a correction factor of order one ( > 1).
8 \C, Yr 2

We may assume that subgrid scale turbulence, which is mostly associated with
high wave numbers in the energy spectra of velocity and temperature fluctua-
tions, is nearly independent on boundary conditions etc. and can therefore
be regarded as locally isotropic. So the theory of isotropic turbulence,

as givén for example in /10/ can be used to calculate all two-point corre-
lations contained in (8) on the basis of the well-known Kolmogorov-spectrum
for the total kinetic energy of turbulence E(k) (k = wave number) and on

the basis of the Batchelor-spectrum for twice the total energy of tempera-

ture fluctuations ET(k):

>2/3 k-5/3

E (k) o < g

- - 9)
> 1/3 <g.,.> k 5/3

T

Ep (k) B <e
For fhe constants in the spectra we use a = 1.5 and B = 1.3 determined in a
literature review. The complete theory to calculate all terms contained in
(8), and similarly for J.CT,is very extensive and complicated. In the follow—
ing schematic result, the functions fi(ij)’ which have to be evaluated

by numerical integration, are of order one and depend only on grid para-

meters. The dissipation g, of temperature variances cancels out -

T

-8 £ (Ax,) peX ! Y49 (713
C = (10)

T2
1/2
o fZ(Axi)

Yr B

The second terms of the numeratorg of (8) and (10) represent the dissipa-
tion in the directly resolved tempevature field. For large Peclet numbers

and coarse grids it may be neglected. In such cases CT2 is dominated by
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the denominator and can be calculated without any further empirical input

data.

The second term of the numerator of eq. (10) become only in those cases im
portant in which the Peclet number and mesh cell volume is small. That
means that in all cases, in which the turbulent temperature fluctuations
are almost totally contained in the directly resolved large scale structure,
the coefficient CTZ,‘and with it the total subgrid scale heat flux model,
tends to zero as expected. In this transition range of the model the un-
known dissipation <e> has to be calculated in addition. A useful approxi-
mation for turbulent channel flow purposes is deduced from the assumption
of equality of production = — < ul'u3' > 3< u; > /8x3, and dissipation of
kinetic energy, wherein the total turbulent shear stress < u]'u3' > is
calculated by use of the Prandtl mixing length model, and the velocity

gradient by use of the universal logarithmic velocity profile. This re-

sults in:

[}

(11)

We use ¥ = 0.4 for the Karman constant. By eq. (11) the subgrid scale coef-
ficient CT2 (eq. 10) becomes, in addition to the dependence on the grid
parameters, dependent on the wall distance y. In accordance with the

higher turbulent temperature fluctuations near the wall, and the correspohd—
igg 1érger extension of the spectra of the temperature fluctuations to
higher wave numbers, the model shows increasing values of CT2 for de-

creasing wall distance.

A numerical evaluation of eqs. (8 to 11) is shown in Fig. 2 for an equi~-

distant Cartesian grid with Ax; = Ax, = 1/8 and Ax, 1/16, denoted later
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on as grid K7. For very low Prandtl and Reynolds numbers Cro is zero. For
increasing Prandtl numbers a trangition range follows in which CT2 increases
with increasing Prandtl and Reynolds numbers, and with decreasing wall distance.
For Prandtl numbers greater one QTZ gets iﬁdependent of all parameters for the
coarse grid under consideration. In this region the conductive sublayer is no
longer resolved by the grid; consequently, no influence of Pe® is found in the

subgrid scale heat flux model.

The correction factor Yo > 1 included in eq. (8) has to be determined numero-
empirically. It was tried in /7,8/ to adjust Yo by using the complete heat
flux model, as is used for Pr > 0.1, together with the coarse grid K7, for

the simulation of a high Reynolds number flow with Pr = 0.7; this is a case in
which the subgrid scale heat flux model should be important.. Nevertheless,

Yo showed very weak influences ohiy. Obviously, the resolution capabilities
of the grids with this Prandtl number are better for temperature fluctuations
than for velocity fluctuations. Indeed, the recentbpublication by Hishida &
Nagano /11/ shows in the temperature fields relatively more energy associated
with low wave numbers than in the velocity field, and vice versa with high
wave numbers. Therefore, and due to the wide scatter of éxperimental data,

we could not adjust Yoq+ In érder to use an unchanged turbulent subgrid

scale Prandtl number, the same value Yp = 1.4 was chosen as in the subgrid

scale model for the momentum fluxes.

The high insensitivity to changes in Yo is even more pronounced for lower
Prandtl numbers. In Fig. 3 some results for five simulations of the flow of
liquid sodium with different Yp are shown . Theoretically, one expects

Yo > 1. For this region approximately no influence can be detected although

Yo extends over two orders of magnitude and although the coefficients CT2 are

only in the inner third of the channel equal to zero. Thus, nothing contra-

dicts to use the same value of Yo for all Prandtl numbers under consideration.



-13~

*sayryoad Teieje] 9yl woijy uslel aie ‘UTW pue ‘xew { I/ = Ll
*/¥ PTA8 €3uaIOTIIS00 XNJ IBAY O[OS pridqns ayl Jo Ly 1030®BJ UOT}D8IA0D Y JO

so8ueyo 03 suorlenionyj 2anjersdwe] JuaTnqinl JOo BIBP [EBOIISTIRIS JO AITAT3TSuasul :¢ 31§

oo 1 0l o1 )

[ T T T | | ) ) I O O O S T | 1 1111 & 1 1 1 1 O

L00°0
000.08¢

id b wm.@r

o9y 0




-14-

3. Case specifications and initial conditions

The specifications of the cases under consideration have been compiled in
Tab. 1. For the Prandtl number of liquid sodium under reactor conditionms,
Pr = 0.007, several calculations with different arbitrarily chosen Reynolds
numbers have been carried out for a plane channel and an annulus. The re-
sulting Reynolds number Re is linked to Re™ prescribed, to the channel
average of the calculated mean velocity Ve U >, and to the friction coef-

ficient Cgt
Re® = Re/(2 v<u1>) = Re/2 ch78 (12)

The calculations for the flow of liquid mercury in an annulus, Pr = 0.0214,
refer to the experiments by Dwyer et al. /12/. The calculations for air,

Pr = 0.7(1), have been added to show the steadiness of numerical results.

The thermal boundary conditions for the annuli are comparable to those of
most experiments. We use adiabatic outer walls and by prescribed uniform
wall heat fluxes heated inner walls. The plane channel flows of sodium are
heated by volumetrical heat sources within the fluid, and cooled at the
walls by prescribing equal wall temperatures. By this type of boundary con-—
ditions the temperature profiles in the plane channels become directly com-—
parable to the profiles in uniformly cooled or heated pipes. The plane
channel flow of air is cooled at wall wlby prescribing a constant wall tem—

perature, and heated at wall w2 by a constant heat flux.

The parameters of the finite difference grids used are listed in Tab. 2.
The Cartesian grids K use 2048 or 8192 mesh cells; the cylindrical grids Z
use 4096 or 16384 mesh cells. The periodicity lengths ¢ chosen for the circum

ferential direction in the annuli allow to record a quarter or a half of the
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Tab. 1: Case Specifications. The grid specifications follow Tab. 2

1 g 1 T

Pr Re Pe RI/RZ grid thermal boundary q
conditions
.007 46 000 322 .25 29 qW]=1, qw2=0 0
50 000 350 1. K2.2 T .=T =0 2
wl w2
100 000 700 .25 22.2 qw1=l{ 45" 0
280 000 1 960 1. K7 T =T =0 2
wl w2
2 ¢ = s
.0214 100 000 2 140 479 22.2 qw] 1, qwz 0o 0
145 300 3110 479 22.2 qw1=1,-qw2=0 0
.7 50 000 35 000 .25 22.2 qw1=1, qw2=0 0
71 50 000 35 500 1. K2.2 Tw1=0’ qw2=~1 0

Tab. 2: Grid specifications and typical computing times.

IM, JM and KM denote the number of mesh cells in the three space

directions
Grid Specifications K7 K2.2 zZ9 Z2.2
M (x], Z) 16 32 16 32
M (x,,¥) 8 16 16 32
KM (x3, R) 16 16 16 16
X, : 2 3.2 2 3.2
X2, o 1 2 w/2 n
no. of time steps 2690 1875 3080 2625

CPU-time, IBM 370/168 47 min 2.5h 2h 7h
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channel, which seems to be appropriate for the ratios of radii under con-
sideration /7/. The assignment of the given equidistant but not equally sided

grids to the several cases is given in Tab. 1.

The radial profiles of all coefficients of the total subgrid scale model
have to be calculated. For example using the complete theory indicated in
eqs. (8 to 11) to calculate the coefficient CT2 leads to the results listed
in Tab. 3. For the three cases with the lowest Peclet numbers Pe = Re Pr the
coefficient is zero everywhere in the channels. This means, no subgrid scale
heat flux model is necessary in these cases. As expected from Fig. 2 for in-
creasing Peclet numbers CT2 becomes non-zero predominantly near the walls,
in the annuli especially near the outer walls. For the two highest Peclet
numbers the subgrid scale heat flux coefficient is approximately constant
all over the channels. For these two cases the complete subgrid scale heat

flux model has been used as given in /7,8/, whereas the simpler model, given

in eq. (4) has been used for all liquid metal flows.

To start the numerical time integration of egs. (1), three dimensional ini-
tial data for the three velocity components and for the temperature are re-—
quired. In principle, nearly arbitrary data can be used; but in order to
shorten the computer time necessary to reach a fully developed flow the
statistical properties of the initial fields should be very near to those
of fully developed flow. Therefore, we use the universal logarithmic laws
for the mean of uy and T and zero for the mean of u, and ug. By use of a
pseudo random number generator these mean values are superimposed by random
fluctuations with amplitudes corresponding to the expected rms-value pro-
files. Better initial data have been deduced for the case with Pe = 350,
which uses the unchanged numerical results for the velocity fields of the

case with Pe = 35 500.
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4. Numerical results

Typical computing times for an IBM 370/168 and numbers of time steps NT
needed to reach fully developed flow and an>additional time interval Atav
for evaluation are given for each grid in Tab. 2, and for each case in

Tab. 4. A typical computing time per mesh cell and time step is 580 usec.
Comparing this time to those of simulations without any subgrid scale model
with nearly the same‘code /13/ shows only a 30 Z enlargement of the computing
time by the subgrid scale models. The channel lengths 1 covered are in all

cases greater than 50 channel widths, and are, therefore, sufficient to

reach fully developed flow.

4.1 _Phenomenological results

Contourline plots of the resolved instantaneous turbulent temperature fluctua-
tions are shown iq Fig. 4 for different annular flows with different molecular
Prandtl numbers. The isolines of all of the three cases show larger tempera-
ture fluctuations near the lower heated wall than near the upper adiabatic
wall. With increasing Prandtl number the amplitude of the fluctuations in-
creases, and the location of its maximum moves nearer to the wall. The
patterns show a predominant inclination from the walls in the direction Z

of the mean velocity to the center of the channel. The spatial extension of
these structures decreases with increasing Prandtl number. In case of liquid
sodium only very‘few small scale structures appear, the dominant structures
are much more spatially extended than the typical grid width._For this simu-
lation of liquid sodium flow it appears that the most important part of the
temperature fluctuations is contained in the directly resolved field and

that the éubgrid scale part is of negligible importance. This behaviour is

in accordance with the numerical results for the subgrid scale coefficients.
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Fig. 4: Contour line plots of the instantaneous resolved temperature
fluctuations T'=T - <T> for annular flow of air, mercury, and
liquid sodium. Sections along the mean flow direction Z.
A = contour line increment. Dashed lines correspond to negative

values.
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Fig. 5: Contour line plots of the instantaneous resolved temperature
fluctuations for annular flow of mercury and liquid sodium.

Sections perpendicular to the mean flow direction.
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The same behaviour can equally be detected in cross sections perpendicular
to the mean flow direction (Fig. 5). In addition, the section for the liquid
mercury case seems to show predominant large scale structures in the center
of the channel, whereas the scales are smaller near the heated wall. Thus we
find temperature fluctuations with higher wave numbers in the main productive
region near the heated wall, and with lower wave numbers in the inner part of
the channel where the mean temperature gradient is smaller. This qualitative
result'agrees with the importance of the temperature subgrid scale model as
given by the theoretical result for C., in Tab. 3.

T2

4.2__Profiles_of temperature statistics

For the quantitative evaluation of the time dependent numerical results mean
values are taken as averages over planes parallel to the walls. This is possible
due to the periodic boundary conditions along these plames. In addition these
mean values have been averaged over 21 to 43 different time steps, which are
equidistantly distributed within the final time intervals Atav (Tab. 4). In

the same table some results calculated from the velocity fields are iﬁcluded,
which will be used here for normalization purposes. Moreover, these data allow
the interested reader to judge on the quality of the calculated velocity

fields. No verification of the calculated velocity and pressure fields will

be given in this work. Those results, which do not depend on the molecular

Prandtl number, have been verified in /7 to 9/.

Cross stream profiles of temperature statistics evaluated from the plane channel
flow simulations of liquid sodium are given inFig. 6. In correspondence to the
prescribed boundary conditions all profiles are more or less symmetric to the
center of the channel. The typical relative standard deviation tsd is between

0.5 Z and 7 % for the directly evaluated temperature rms values and heat
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Fig. 6:

Cross stream profiles of temperature sta-
tistics for plane channel flows of liquid
sodium. From top to bottom: time mean tem—
peratures normalized by the respective
maximum temperature differences AT:;ax with-
in the channel; large scale part of the rms-
temperature values and their normalized
maximum values; large scale part of the
cross stream turbulent heat flux; heat

flux correlation coefficient; eddy diffu-
sivities for heat and their normalized
maximum values. tsd = typical relative

standard deviation.
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fluxes, and between 8 % and 12 % for the heat flux correlation coefficients
and the eddy diffusivities for heat, which are both by definition composed
of different single results. The nearly parabolic temperature profiles are
typical for most conduction controlled flows. With increasing Reynolds or
Peclet number the importance of turbulence increases and, therefore, the
gradient near the wall becomes steeper. Accordingly, the rms values of the
turbulent temperature fluctuations become higher and the positions of the
maxima move nearer to the wall. The turbulent heat flux <u3'T'> is also
higher for the larger Reynolds number. The turbulent heat flux correlation
coefficient shows nearly constant values in the outer parts of the channel
with the higher Peclet number. In case of the lower Peclet number no con-—
stant region is indicated. The absolute value of the correlation coeffi-
cient increases by approaching the walls. The eddy diffusivity for heat
shows increasing tendency with increasing Reynolds number. Their maximum
values, normalized by the thermal diffusivity a, confirm the very low contri-
bution of the turbulent heat flux to the total one in case of the lower
Peclet number flow. Thus, both cases may be attributed to the transition

range from molecular to turbulent heat transfer.

The results of the evaluation of the annular flow simulations are contained

in Fig. 7. All profiles tend to zero near to the adiabatic outer wall: the
radial gradients of the temperature profiles are zero near the outer wall;

the rms temperature values, as well as the turbulent radial heat fluxes tend
to zerb there; the radial heat fiux correlation coefficients behave similar-
1y, but there seems to be an indication for two approximately constant regions
with different heights in the inner and outer halfs of the channels. Again,
the correlation coefficients for the lower Peclet numbers show a pronounced
increase near the heated wall. The eddy diffusivity profiles are obviously

not affected by the special thermal boundary conditions. The profiles show
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Radial profiles of temperature statistics
for annular flows of liquid sodium and
liquid mercury. From top to bottom:

time mean temperatures normalized by

the respective maximum temperature

. + e s
differences ATmax within the channel;
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higher peaks near the outer wall, especially in case of the small ratios of
radii of both low Peclet number flows. The high Peclet number profiles are
not very different. One may conclude that these results are near to the

limiting profile for high Reynolds number flow of liquid mercury.

In addition to these evaluations of the numerical time and space dependent
results a lot of evaluations of other correlations are possible, predominant-
ly those which are mainly governed by the resolved large scale structure

of turbulence. Some examples included in /7/ are the temperature-tempera-
ture, the energy-temperature, and the pressure-temperature cross correla-
tions. A complete plot—output from the computer code is given in the Appendix
for the annular flow with Pe = 700.

5. Discussion of numerical results

To get an integral judgement on the simulated temperature fields we compare
in Fig. 8 the evaluated Nusselt numbers with some empirical formulations
from the literature /14-18/. The numerical data of the plane channels, which
have two non-adiabatic walls, are in accordance with the respective formulae
by Griber /14/ and Dwyer /15/. For the annular flows with adiabatic outer
walls, the empirical data scétter largely, partly depending on the molecular
Prandtl number and on the ratio of radii. Only the correlation by Barthels
/18/ follows the numerical results for liquid mercury. The numerical re-
sults for liquid sodium flows, which are for a ratio of radii of 0.25, are
below most results of the formulae. The only curve, which follows all numerical
annular flow results, but which gives slightly lower Nusselt numbers, is

the curve by Griber for a plane channel with one adiabatic wall. The large
discrepancies with the empirical curves seem to be due to the problems with
formulating even radial eddy diffusivity profiles for annular channel flows,
whereas in case of plane channel flows, no comparable difficulties appear

because the eddy diffusivity and eddy conductivity profiles may be approxi-
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Nu Ry/R2 heated walls Pr
] 1 Grdber 1970 1. 2
- 2 Dwyer 1965 1. 2
3 Grdber 1970 1. 1
7 4 Kays,Leung 1963 2 1 01
- 5 Kays,Leung 1963 5 1 .03
6 Dwyer 1963 .25 1
- 7 Dwyer 1963  .479 1 8
- 8 Barthels 1967 .25 1
i 9 Barthels 1967 479 1
. o annulus '
- 4 plane channel }TURBIT-2 1%
2
5/
Pe
1b2 | I T 171 l|1103 | I I T TT1 l1101. | | R l1|05
Fig. 8: Comparison of Nusselt numbers Nu = (dconv + dcond)/dcond

evaluated from the numerical results to empirical formula-

tions. Where necessary, a turbulent Prandtl number of

v

< > =
Prt

1 has been used for plotting the empirical curves.
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Fig. 9: Temperature- and eddy conductivity profiles evaluated
from the numerical simulation, case Pe = 3110, compared

to the measured and deduced annular flow data by Dwyer et al.

/12/.
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mated by using the direct analogy to the better investigated pipe flows.

A more detailed comparison of the numerical results to temperature profiles
measured by Dwyer et al. /12/ in an annular channel is given in Fig. 9.
Both results are nearly identical. The numerical annular flow results are
also confirmed by comparing the eddy conductivity profiles. The numerical
results are somewhat higher than the original and smoothed data, calculated
by Dwyer et al. from the measured temperature profile. This difference is
due to the somewhat higher Reynolds number resulting in the numerical simu-
lation. The typical standard deviation indicates comparable uncertainties

of the numerical and experimental results.

Some further results for the eddy conductivity for the other Peclet numbers
have been plotted over the Peclet number in Fig. 10. The plane channel data
follow in the chosen log-log-presentation a single straight line independent
on the Reynolds and Prandtl number. The line is parallel to that through the
experimental pipe data by Fuchs /19/. The distance between both lines corresponds
to a difference in Peclet number by approximately a factor of two. The differ-
ence comes from the different numbers of thermal boundary layers in both
channels. The data of the annular flows follow none of these lines: The

eddy conductivity for the sodium flows with R]/R2 = 0.25 increases steeper
with increasing Peclet number than the plane channel data, and for the mercury
flows with RI/RZ = 0.479 somewhat flatter. The numerical results for the mér—
cury flows follow nearly exactly the smoothed experimental data by Dwyer et al.
/12/. The eddy conductivities in the outer halfs of the channels are for both
fluids higher than in the inner halfs. The difference between both values
vanishes when the ratio of radii approaches one. These results give an im-
pression on the rather complicated influence of the Reynolds number, Prandtl
number, of the ratio of radii, and of thermal boundary conditions on the eddy

conductivity.
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——- pipe 0.25 Fuchs 1973 o
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Fig. 10:

1 LI 1 I L L L ! I L

103 104 Pe

The influence of the Peclet number on the eddy conductivity
normalized by the thermal diffusivity. The data are for

the centers of the inner and outer halfs of the channels.

10°
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Similar pointwise support can be given to the development of those statisti-
cal turbulence models which use additional transport equations for some of

the unknown turbulence quantities. As an example the maxima of the radial
temperature rms-value profiles are plotted in Fig. 11 over the Peclet number.
The qualitative behaviour is largely comparable to that of the eddy conduct-
ivity. One important difference becomes evident from the air flow results, which
lie far away from the connection lines of the other numerical results. The
experimental pipe data for air included in the figure let us assume that for
constant Prandtl numbers the rms values at large Peclet numbers does not depend
on the Reynolds number. At medium and low Peclet numbers the rms-values seem

to depend mainly on the Peclet number but not on the Prandtl number. Further
influences come for all cases also from the ratio of radii and from the thermal

boundary conditions,

The experimental results for pipe flows /19-24/ included in Fig. 11 scatter
widely. This has alsc been found in the review by Lawn /4/ for the rﬁs-

values at a fixed point in the channel. Following the analogy to the behaviour
of the eddy conductivity, especially the data by Fuchs /19/ and by Rust &
Sesonske /21/ should be higher. And the decrease in the air data by Lawn &
White /24/ causes at least sbme astonishment. It is true, any decreases of

the rms maximum values have also been detected at higher, but comnstant,

Prandtl numbers in an overview by the author in /7/.

One reason for the decrease in the experimental high Prandtl number data

is the limited spatial resolution capability of the thermal sensors used:

The maximum of the rms temperature fluctuation prbfiles moves in non—-normalized
coordinates with increasing Prandtl numbers. and Reynolds numbers nearer to the
walls and looses thereby radial spatial extension. Thus the narrow peak of the
temperature fluctuations can be reduced By sensors with insufficient spatial

resolution capabilities. This reason holds also for the numerical air data,
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but it canot be applied to interpret the wide scatter of the experimental
data for small Peclet numbers because there the spatial extension of the

peak in the rms temperature profile is very broad (see Figs. 6 and 7).

Another reason for the decrease in the experimental high Prandtl number

data is the limited frequency range of the sensors and electronics used:

With increasing Reynolds numbers the energy in the high frequency range of
the spgctra of the temperature fluctuations increases, but will be filtered
off by too slow sensors. Even for the Prandtl number of air the correspond-
ing differences are about 10 to 20 7 /8/. Obviously, this argumentation can
also be applied to the existing liquid sodium experiments: Fuchs /19/, for
example, used due to hum and noise disturbancies an electronic with a low
pass filter at 10 Hz; Bunschi & Seifritz /25/ used in the same channel and
same Peclet number range, and therefore in the same frequency range a faster
thermocouple and got considerable temperature fluctuation contributions up

to 45 Hz; Bunschi /26/ used again in the same channel a band pass filter at
50 Hz and low pass filter at 100 Hz, and found temperature rms-values 30 7
higher than those of Fuchs ; finally, Benkert /27/ shows for a comparable
channel and Reynolds number range considerable temperature fluctuations

up to 1 kHz?‘A further open problem is the low frequency cutoff used with

all of these experiments. Thus we can only conclude that the data by Fuchs /19/
included in Fig. 11 are surely too low, and that its dependence on the Peclet

number is probably not correct,

By the discussion of these uncertainties of experimental temperature fluctua-
tion results it gets evident why Lawn /4/ could not verify his spectral theory
to calculate the heat flux correlation coefficient. The corresponding experi-
mental results must scatter widely because they contain the uncertain rms

temperature fluctuations by definition. Whereas Lawn cites values for the

*For Fuchs' measurements a high frequency cutoff of about 600 Hz can be deduced
from the recent paper by Genin et al. /28/.
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correlation coefficient (at y = 0.25) from 0.15 up to 2.3, the numerical data
at the position of the maximum rms temperature values, taken from Figs. 6 and
7 and gathered in Fig. 12, are around 0.45. The numerical results show for
each Prandtl number a uniform decrease with-increasing Peclet number. The
reason for this decrease comes mainly from volume averaging the basic equa-
tions (eq. 1) over finite grid volumes: The air data by Hishida & Nagano /11/
show a sharp peak of the heat flux correlation coefficient very near to the
wall, near to the outer edge of the conductive sublayer; this maximum is not
resolved by the grids used here for air flows. The numerical results given

in Figs. 6 and 7 show an increase of the correlation coefficient near the
wall when the Peclet number decreases, or when the conductive sublayer grows
in thickness. The correlation coefficients react less sensitive on changes

in the Peclet number in the inner parts of the channels. Thus, the numeri-
cal data confirm the results of Lawn's theory that the heat flux correla-
tion coefficient is, if at all, a weak function of the Peclet number, except
for the very low Peclet number cases with eH/a < 1 for which the convective
turbulent heat flux is insignificant compared to the pure conductive heat

flux.

6. Conclusions

The method of direct numerical simulation was applied in this work to calcq—
late turbulent liquid metal flows together with a theory to calculate all
coefficients of the subgrid scale models. The numerical results for the tem-
perature fields react very insensitive .on changing the theoretically determined
coefficients for the subgrid scale heat flux model. The temperature fluctua-
tion fields resulting from the low Peclet number simulations do not depend

on any coefficients in the temperature equations; the spatial structures in

these fields follow qualitatively the tendencies of the results for larger
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Peclet numbers, for which the subgrid scale heat flux model is relevant. The
Nusselt numbers in case of plane channel flows; and some temperature and eddy
conductivity profiles in case of annular flows agree with published experimen-
tal data. From this we conclude that the théory to calculate the subgrid scale
coefficients gives adequate results over the total Peclet number range under

consideration.

The turbulent heat flux data deduced from the numerical results indicate com—
plex dependence on Reynolds number, Prandtl number,'Peclet number, thermal
boundary conditions and on the ratio of radii. The large scatter of the empiri-
cal correlations for the Nusselt number in annular flows 'is mainly due to
problems in formulating appropriate eddy conductivity profiles accounting

for all cited parameters. The deduction of reasonable eddy conductivities or
turbulent Prandtl numbers still remains an open problem for all liquid metal
flows in annuli and other complicated channels. The numerically deduced eddy
conductivity profiles for liquid metal annular flows added in this work are

the first directly determined data in the literature. These results can give

pointwise support to the development of better models.

Existing statistical data oﬁ turbulent temperature fluctuations in liquid
metal flows show also large uncertainties. The main reasons in this context
are the limited spatial and time resolution capabilities in most experimen;s.
The numerical results for the rms temperature fluctuations are within the
range of experimental data; they furtheron show qualitatively comparable
functional dependence as the eddy conductivity. The evaluated radial heat
flux correlation coefficient is for all cases near to post published data
for air flows; it is a very weak function on the Peclet number etc. Thus,

these numerical results confirm Lawn's theory.
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The method of direct numerical simulation seems to be rather expensive due to
its computer storage and computing time requirements; but, compared to experi-
ments with liquid metals it is comparable or even less expensive, and covers
less problems. Especially with respect to turbulence model development for
very small Peclet numbers it is easier to insure clean conditions by use of

a numerical model than by experiments.
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8. Appendix: TURBIT-2 - Plotoutput for an annular flow of sodium
with Pe = 700.

To complete the numerical results given in chapter 4 a profile - plotoutput
of the analyzing part of the TURBIT-2- program is included here for the
annular flow of sodium with Pe = 700. The case specifications are given

in Tab. 1 and 2 (p.15). From-Tab. 3 (p.17) follows that no-:subgrid scale

heat flux model is used.

The numerical results given in Tab. 4 énd in the following computer plots
are averaged over the time dependent three-dimensional results for 43
different time steps within a time interval of Atav = 1.25 at the end of
the simulation. Typical relative standard deviations tsd for this case

are 3 to 10 % (see Fig. 7, p. 25).

The nomenclature used is as given on page V. Application of the averaging
operatoraiJ has not been indicated on the figures; this operator has been
used in all cases in which data have been correlated not defined on the same
place in the staggered grid. The following symbols have been introduced in

additions
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Aij constants in the Rotta-pressure strain model (i,j = 1,2,3),
for Ref. see /7/
Bu'i du'. €
] _J. > = = V.- <u' . ' - - P
<P (Bx. * A ) A13 E (<u i" 3 613 Etot)
J 1 tot
B constant in the proposal by Fulachier, Dumas /A3/
2<E > 1/2 5§ <'T>
B = tot I 3 |
<V"'1‘.'2> 63<1T1'1>
CiT constant in the Launder-pressure scrambling model, for
Ref. see /7/ '
[ a<u.>
<p" 32;3= -C, —— <u'.,T'> +C,_ <u'.T'>
1T 3 2T 1
9%, ot 93X,
3 i
Eii energy spectra, calculated from the space-dependent data
Etot total turbulence energy
_ L, 2, Vep
B, (0 = (T, ()2 /2+"E(®)
K1 one—dimensional wave number
Lij,k correla;1on length of Rij(zk) in the x -direction
k/2
2
=% b Ry &)
Pr s turbulent Prandtl number recalculated from B /A3/
1—, 3- 3~
< L} ) >, 1 ) -—
pr = | il Sl M el S /<2 1/213
tB 3— V=, o ' '
<uiz T 2<Eiot”
Rij (Ek) two-point correlation

<U'i(§)u'j(§f§k)>

<u'i(5)u'j(§)>



(vz,vP,VR)

g g

—lyly-

velocity vector

= (u1’ u2’ u3) = (u, Vv, W) = 2

translation vector

(xl, 0, 0) j=1
(o, X, 0) j=2
(o, 0, x,) j=3

3

subgrid scale value for any quantity Y
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The radial velocity profiles (Fig. 1-3) follow the logarithmic law indicated.
The numerical data tend to larger values near the maximum of the outer wall
profile and to smaller values in the inner wall profiles. This is also ob-
served in experimental data /Al/. The radial distribution of the turbulent

pressure fluctuations is comparable to that in other annular flows /7, p.99/.

The negative values of the averaged radial temperature profile given in Fig. 5
are due-to-a Galilean transformation to maximize the permissible time step
width. In the semilogarithmic presentation the temperature profile largely
follows the Kirillov law /19/:

oyt Pr (Y+ Pr < 1)
™ = 4.31 1og(Y'Pr+1)+0.065Y Pr~0.36 (1 < Y'Pr < 11.7)
™ =5.75 log (Y'Pr) - 1 (11.7 < Y'Pr)

To the directly evaluated rms-values of the large scale velocity fluctuations
(Fig. 8) and to the turbulence energy (Fig. 22) a subgrid scale part has

been added resulting from the subgrid scale kinetic energy equation.

The rms-values of pressure fluctuations (Fig. 9) and temmerature fluctuations

(Fig. 10) contain no subgrid scale parts.

Two-point correlations calculated at the center of the channel and the cor-
responding correlation lengths are shown in Fig. 11 to 13 for the three
velocity components. Similarly, several auto-and cross-correlations for

the resolved fluctuations of temperature, pressure and turbulence energy

are shown in Fig. 14 to 17. Especially from R__ may be concluded that a

TT

larger periodicity length X. would be more appropriate. The X1 value

1
chosen is more appropriate for larger Peclet numbers /7, Fig. 37/).

The skewness of the velocity and temperature fluctuations show considerable
scatter (Fig. 18-19). Nevertheless, the skewness-profile for u'3 is typical
for all calculated annular flows. The flatness indicates nearly Gaussian

distribution of velocity and temperature fluctuations (Fig. 20-21).

Fig. 22 to 24 show evaluationsof the additional transport equation for the
subgrid scale energy VET. The total subgrid scale energy dissipation VEI;t
is described in terms of a Rotta-type model /7,8/. In this model the low

Reynolds number part (no. II) is important near the walls.
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Evaluations for the total turbulence energy equation are given in Fig. 25 to
28. The dissipation is mostly contained in the unresolved subgrid scale
structure. Subgrid scale parts for the turbulent diffusion (TUDI, Fig. 27

and 35) have to be neglected with the present model.

The evaluated pressure strain correlations (Fig. 29) appearing in the tur-
bulent shear stress equations have been used to calculate the coefficients
Aij (Fig. 30) of the Rotta model (see nomenclature on p. 43). The values
agree qualitatively with the sequence found for plane channel flows [A2/:
A33 < A11 < A22. The pressure scrambling correlatioms (Fig. 31) appearing
in the turbulent heat flux equations have been used to calculate the coef-
ficients C.. (Fig. 32) of the Launder model (see nomenclature on p. 43).

As for higher Prandtl numbers /7/ the coefficient C1T is constant

only in regions where the temperature field is nearly homogeneous.

The radial turbulent shear stress is dominated by the directly re-

solved part (Fig. 33). The radial turbulent heat flux evaluated needs not
to be completed by a subgrid scale part because the subgrid scale heat flux
model is zero (Fig. 34). The radial profile of the pressure-temperature
cross correlation (Fig. 36) is comparable to that for higher Prandtl
numbers. In /7, p. 101/ it is discussed that this term which cannot be
determined experimentally is not appropriately accounted for in some exist-

ing statistical turbulence models.

The cross correlation coefficients given in Fig. 37 and 38 show nearly
horizontal distributions in the inner and outer zone of the channel. A
comparable behaviour can not be found with the pressure—temperature cross-—

correlation coefficient (Fig. 39).

The profiles of the radial eddy diffusivities for momentum and heat are

shown in Fig. 40. The scatter of €n leads to a widely scattering turbulent
Prandtl number (Fig. 41). The proposal of /A3/ to replace the assumption

Pr_ = comstant by B = constant (see nomenclature, p. 43) for turbulent
boundary layers has been tested in Fig. 42 for the annular flow under con-
sideration. As can be seen B is not constant, and the turbulent Prandtl number
recalculated from the profile of B is mot in agreement with the directly
calculated profile. (One possible reason for this disagreement may be that
each term appearing in B and PrtB itself has been time averaged independently

from each other).
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In the following figures energy spectra are given, which are calculated for

several distances from wall 1 from the space~dependent results. The
spectra for the velocity components lﬁ'l to 35"3 (Fig. 43 to 47) show the
well known behaviour: At low wave numbers K1 most of the energy is asso-
ciated wifh/gl, and at high wave numbers with u
By~ K,
each component, but not within the same wave number range. Therefore,

9 An inertial subrange

) can be identified nearly at each wall distance and for

none of the spectra of E_ . (Fig. 48 to 52) shows an inertial subrange. As
found experimentally /A4/ the Reynolds number is too small to get local
isotropy in the high wave number range of the directly resolved velocities.
The spectra of the pressure fluctuations partly show an inertial subrange

(E__~ K -7/3

pp 1 /A5/, Fig. 53 to 59) in the inner zone of the chanmel.

The spectra of the temperature fluctuations (Fig. 60 to 64) show in the
-5/3
1

an inertial diffusive subrange (ETT" K1_3/A6/) is indicated néar the center

total channel an inertial convective subrange (ETTA'K ). In addition
of the channel. All the spectra decrease monotonically with increasing
wave numbers, even in the high wave number range. Experience with direct
numerical simulation shows that this result is the most important evidence
which let us conclude that indeed no subgrid scale heat flux model is

necessary for this simulation.
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