KfK 2996 B Juli 1980

## A Phenomenological Interpretation of the Production Cross Section for the Reaction $p + p \rightarrow \pi + d$

Ch. Weddigen Institut für Kernphysik

Kernforschungszentrum Karlsruhe

#### KERNFORSCHUNGSZENTRUM KARLSRUHE

#### KFK 2996 B

Institut für Kernphysik

,

# A PHENOMENOLOGICAL INTERPRETATION OF THE PRODUCTION CROSS SECTION FOR THE REACTION p + p $\rightarrow$ $\pi$ + d

by

Ch. Weddigen

Gesellschaft für Kernforschung m.b.H., Karlsruhe

Als Manuskript vervielfältigt Für diesen Bericht behalten wir uns alle Rechte vor

> Kernforschungszentrum Karlsruhe GmbH ISSN 0303-4003

#### Abstract

Using new data on the unpolarized differential cross section for the reaction pp→md, obtained by the NESIKA collaboration at SIN, the energy dependence of the anisotropy parameters  $\gamma_0, \gamma_2$ , and  $\gamma_4$  is interpreted phenomenologically. Especially the energy dependence of  $\gamma_4$ , which is stronger than predicted theoretically, could be understood as being due to the behaviour of a production amplitude with  $\ell_{\pi}$ =3 near threshold. Technical details are given in Appendix A,B, and C.

EINE PHENOMENOLOGISCHE INTERPRETATION DES PRODUKTIONSQUERSCHNITTS FÜR DIE REAKTION p + p  $\rightarrow \pi$  + d

#### Zusammenfassung

Unter Verwendung neuer Daten über den unpolarisierten differentiellen Wirkungsquerschnitt für die Reaktion pp $\rightarrow \pi d$ , die von der NESIKA Kollaboration am SIN gewonnen wurden, wird die Energieabhängigkeit der Anisotropieparameter  $\gamma_0, \gamma_2$  und  $\gamma_4$  phenomenologisch interpretiert. Insbesondere könnte die Energieabhängigkeit von  $\gamma_4$ , die stärker ist als theoretisch vorhergesagt, durch das Schwellenverhalten einer Produktionsamplitude mit  $\ell_{\pi}$ =3 verstanden werden. Technische Details sind in den Anhängen A, B und C beschrieben. At SIN the unpolarized differential cross section for the reaction  $p+p \rightarrow \pi+d$  between 514 and 583 MeV in the laboratory system has been measured by the NESIKA collaboration. The experimental method is described elsewhere<sup>1)</sup>. Preliminary data have been normalized using monitors measuring elastic pp scattering rates from the experimental target. The absolute normalization was obtained by using the calculated pp elastic cross sections of BUGG<sup>2)</sup>. The data were analysed to obtain the usual anisotropy parameters  $\gamma_i$  (Tab.I) as defined by

 $\frac{d\sigma}{d\Omega} = \frac{1}{32\pi} (\gamma_0 + \gamma_2 \cos^2 \Theta_{CM} + \gamma_4 \cos^4 \Theta_{CM}).$ 

| <u> Tabelle I:</u> | Anisotropy parameters $\gamma_{j}$ [mb/sr] for | the | reactio | n p+p-≁π | r <b>+d</b> . |
|--------------------|------------------------------------------------|-----|---------|----------|---------------|
|                    | Ep=proton lab. energy, Wp=kinetic ene          | rgy | of one  | proton   | in            |
|                    | the C.M.system.                                |     |         | ,<br>,   |               |

| Ep/MeV                                        | Wp/MeV                                                      | Υ <sub>ο</sub>                                                                        | Ŷ2                                                                                             | Y <sub>4</sub>                                                                                        |
|-----------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| 514<br>527<br>540<br>554<br>569<br>576<br>583 | 120.7<br>123.6<br>126.5<br>129.6<br>132.8<br>134.4<br>135.9 | 9.47±.11<br>9.96±.14<br>10.68±.12<br>11.11±.18<br>11.57±.14<br>11.57±.13<br>11.64+.14 | 34.81± .67<br>38.40± .99<br>40.91± .79<br>44.42±1.43<br>46.56± .91<br>47.87± .79<br>49.43+1 00 | - 3.67± .80<br>- 3.73±1.23<br>- 6.06± .94<br>- 8.03±1.84<br>- 9.39±1.08<br>-11.88± .89<br>-12.99±1.19 |
|                                               |                                                             | *****                                                                                 | 13.10-1.00                                                                                     | 11.0011.10                                                                                            |

Fig.1 shows the results together with a selection of data from other experiments<sup>3</sup> to <sup>9</sup>). The  $\gamma$  parameters, and especially  $\gamma_4$  show a much stronger energy dependence than predicted theoretically<sup>10,11</sup>) as can be seen from Fig.2.

In order to clarity whether such a strong energy dependence calls for a possible dibaryonic resonance in addition to the well known  $N\Delta$ 



<u>Fig.1:</u> Anisotropy parameters  $\gamma_i$  are in unities of  $\pi \lambda^2$  where  $\lambda$  in the wave length of one proton at the kinetic energy  $W_p$  in the C.M. system (see Appendix A). The curves are calculated using a Breit-Wigner formalism.

resonant production mechanism, the data was interpreted qualitatively by means of a Breit-Wigner energy-dependent width approximation<sup>12</sup>),

Only initial singlet states were taken into account: A  ${}^{1}D_{2}$  resonant state decaying via  $\ell_{\pi}$ =1 and 3, and a  ${}^{1}S_{0}$  non-resonant background. The corresponding Breit-Wigner amplitudes  ${}^{13}$  a  ${}_{2}(\ell_{\pi}$ =1) and a  ${}_{7}(\ell_{\pi}$ =3) from the  ${}^{1}D_{2}$  state had to have the same parameters for the resonant energy and total width but could have different phase and relative energy dependence due to different threshold behaviour with respect to the centrifugal barrier in the final state. The non resonant  ${}^{1}S_{0}$  contribution is described by an additional amplitude  $a_{0}$ .

In this simplified model,  $\boldsymbol{\gamma}_4$  is given by the expression

$$\gamma_4 = \frac{15}{2} |a_7|^2 - 15\sqrt{6} \text{ Re } a_2 a_7^*.$$

(The amplitudes  $a_i$  are defined as by MANDL and REGGE<sup>16</sup>).)





As shown in Fig.1, the sudden increase of  $\gamma_4$  as a function of energy can indeed be explained by this model. (Details for calculating the curves shown in Fig.1 and 2 using the MINUIT code<sup>14</sup>) are given in Appendix B and C.) It turns out that  $\gamma_4$  can be understood essentially as an interference between a predominant amplitude  $a_2$  and a small contribution of  $a_7$ . (The importance of  $a_7$  was first pointed out by J.A. NISKANEN<sup>10</sup>).) Their relative contributions can be seen in Fig.3, where two linear combinations of the  $\gamma$ 's have been used to better illustrate the amplitude behaviour.



Fig.3:  $\sigma_I$  and  $\sigma_{\Delta}$  as discussed in the text. The curves correspond to those in Fig.1.  $\gamma_0$  and  $\gamma_2$  are obtained from the relations

 $\gamma_{0} = \frac{1}{2} \sigma_{I} + \frac{1}{6} \sigma_{\Delta} + \frac{1}{15} \gamma_{4}, \quad \gamma_{2} = \frac{3}{2} \sigma_{I} - \frac{1}{2} \sigma_{\Delta} - \frac{4}{5} \gamma_{4}.$ 

The quantity  $\sigma_{\rm I},$  which is

$$\sigma_{I} = 2 (|a_{0}|^{2} + |a_{2}|^{2} + |a_{7}|^{2})$$
$$= \gamma_{0} + \gamma_{2}/3 + \gamma_{4}/5,$$

is proportional to the integral production cross section. Aratio of  $|a_7|^2/|a_2|^2 = 3 \cdot 10^{-3}$  at the resonance energy is sufficient to explain  $\gamma_4$ .

In Fig.3 the other quantity

$$\sigma_{\Delta} = 6 |a_0|^2 + 12 \text{ Re} (\sqrt{2} a_2 - \sqrt{3} a_7) a_0^*$$
  
=  $3\gamma_0 - \gamma_2 - \gamma_4$ 

is also shown. It has a typical interference pattern of a resonance amplitude near threshold with a non resonant background. This might be regarded as some kind of justification of the phenomenological approach.

Finally it should be mentioned, that the contribution of a small  $\gamma_6$  term can affect the results for  $\gamma_4$  dramatically. Indeed it has been shown recently<sup>15</sup> that  $\gamma_6$  is definitively not zero at higher energies. However, even if  $\gamma_6$  were present, it has been shown from this model that pronounced energy dependencies which are contradictory to theoretical predictions could be explained as a threshold effect from a purely phenomenological point of view.

The author would like to thank Prof. W. Haeberli, Dr. M. Simonius, Dr. P. Walden and Prof. H.A. Weidenmüller for helpful discussions. and the second second

#### References

- <sup>1)</sup> B. Favier et al., SIN Newsletter <u>12</u> (1979) 56
- $^{2}$ ) D. Bugg, private communication
- <sup>3)</sup> B.M. Preedom et al., Phys.Lett. 65B (1976) 31
- <sup>4)</sup> C.L. Dolnick, Nucl.Phys. <u>B22</u> (1970) 461
- <sup>5)</sup> D. Aebischer et al., Nucl.Phys. B108 (1976) 214
- <sup>6)</sup> C.R. Serre et al., Nucl.Phys. B20 (1970) 413
- <sup>7)</sup> B.S. Neganow et al., JETP Sov.Phys.<u>5</u> (1958) 528
- <sup>8)</sup> K.R. Chapman et al., Phys.Lett.<u>11</u> (1964) 253
- <sup>9)</sup> R.M. Heinz et al., Phys.Rev. 167 (1968) 1232
- <sup>10</sup>) J.A. Niskanen, Nucl.Phys. <u>A298</u> (1978) 417, and Technical Report HU-TFT-78-24, Helsinki (1978)
- <sup>11)</sup> O.V. Maxwell et al., University of Regensburg, Preprint.
- <sup>12)</sup> see e.g. K.W. McVoy, Fundamentals in Nuclear Theory, IAEA. Vienna (1967), p.419
- $^{13}$  Ch. Weddigen, Nucl.Phys. A312 (1978) 330 and unpublished extensions
- <sup>14)</sup> F. James and M. Roos, MINUIT Long Write-Up D 506/D 516, CERN (1974)
- <sup>15</sup>) R.C. Minehart, LAMPF Annual Report (1979) 58
- <sup>16</sup>) F. Mandl and T. Regge, Phys.R ev. <u>99</u>, 1478 (1955)



#### Some Useful Relations

In the Fig.1 and 3 the anisotropy parameters  $\gamma_i$  are given in units of  $\pi \lambda^2$ . This reduction compensates for the dependence of Breit-Wigner (W.-B.) amplitudes from the kinetic energy Wp in the C.M. system. One obtains  $\gamma_i$  in unities of  $\pi \lambda^2$  by

$$(\gamma_i)_{red} = \frac{\gamma_i}{\pi \lambda^2} = \frac{\gamma_i}{\pi} (\frac{pc}{\hbar})^2,$$
 (1A)

where pc is derived from the proton lab. kinetic energy Ep. In detail this is

Wp = Mp(
$$\sqrt{1-Ep/2Mp}-1$$
), and pc =  $\sqrt{Wp(Wp+2Mp)}$ 

with  $\hbar = 6.58 \cdot 10^{-22}$  MeVs,  $c = 3 \cdot 10^{10}$  cm/s, and Mp = .93826 GeV. With all these relations substituted into (1A), one gets the numerical relation

 $(\gamma_i)_{red} = (\gamma_i/mb/sr) \times (pc/GeV)^2 \times .81687.$ 

Another quantity needed for B.-W. calculations is the reduced momentum  $\eta = p_{\pi}/(m_{\pi}c)$  of the pion in the C.M. system. By replacing the deuteron mass with 2 Mp, the mass of two protons, and with the abbreviations  $w = Wp/m_{\pi}$  and  $m = Mp/m_{\pi} = 938.26 \text{ MeV}/139.57 \text{ MeV}$  one obtains

$$\eta = \frac{1}{w+m} \sqrt{(w(w+2m) - \frac{1}{4})^2 - m^2}.$$

الله المحمد ا المحمد المحمد

and the second states and the second states of the second states and the second states and the second states and

and the second second

### Appendix B

- 8 -

#### The Energy-Dependent Width Approximation and Parametrization

The amplitudes  $a_0$ ,  $a_2$  and  $a_7$  described in the text were parametrized in the following way:

$$\begin{aligned} a_{0} &= e^{i(\delta_{1}+\alpha_{0})} \Gamma_{0} P_{1} = |a_{0}| e^{i\phi_{0}}, \\ a_{2} &= e^{i\delta_{1}} \frac{\Gamma_{2}P_{1}}{(Wp-W_{res})+i\frac{\Gamma}{2}P_{1}} = |a_{2}| e^{i\phi_{2}}, \\ a_{7} &= e^{i(\delta_{3}+\alpha_{7})} \frac{\Gamma_{7}\cdot P_{3}}{(Wp-W_{res})+i\frac{\Gamma}{2}P_{3}} = |a_{7}| e^{i\phi_{7}}. \end{aligned}$$

The phase shifts  $\delta_{\ell}$  and the penetration coefficient  $P_{\ell}$  should be proportional to  $\eta^{2\ell+1}$  near threshold and become constant at large  $\eta$ . ( $\ell$  = pion angular momentum with respect to the deuteron.)  $\delta_{\ell}$  and  $P_{\ell}$  are model dependent. For  $\delta_{\ell}$  we used the phase shift of a hard sphere<sup>12</sup>) with a radius of one pionic unit (1.3 fm):

$$\delta_1 = -\eta + \arctan\eta,$$
  
 $\delta_3 = -\eta + \arctan(\eta \frac{1 - \frac{\eta^2}{15}}{1 - \frac{2}{3}\eta^2}).$ 

For the penetration coefficients  $P_{g}$  we used the following expression<sup>12</sup>:

$$P_{\ell} = \frac{1}{j_{\ell}^{2}(\eta R_{\ell}) + y_{\ell}^{2}(\eta R_{\ell})} \quad \frac{2\eta R_{\ell}}{\pi} .$$

where  $j_{\ell}$  and  $y_{\ell}$  are the regular and irregular spherical Bessel functions.  $P_{\ell}$  approaches unity for large  $\eta$ , but however for small  $\eta$  it is proportional to  $\eta^{2\ell}$  only. The resulting expressions are

$$P_1 = \frac{1}{1 + \frac{1}{(\eta R_1)^2}},$$

and

$$P_3 = \frac{1}{1 + \frac{6}{(nR_3)^2} + \frac{45}{(nR_3)^4} + \frac{225}{(nR_3)^6}}$$

where  ${\rm R}_1$  and  ${\rm R}_3$  were used as adjustable parameters.

The angles  $\alpha_0$  and  $\alpha_7$  are constant adjustable parameters in order to account for phase differences in the production mechanism. The energy dependence of the phases in the initial channel was neglected.

In total there were nine real parameters allowed to vary:

- $\Gamma_0$  reduced amplitude of a
- $\Gamma_2, \Gamma_7$  reduced partial widths for  $a_2$  and  $a_7$
- $\Gamma, W_{res}$  reduced total width and resonance energy of the B.-W. amplitudes
- $\alpha_0, \alpha_7$  constant phase differences as explained above
- $R_1, R_3$  effective 'ranges' in the penetration coefficients for  $\ell_{\pi}=1$  and 3

#### Appendix C

#### Fitting Procedure and Numerical Results

The curves shown in Fig.1 and 3 were obtained by a stepwise fitting procedure using the MINUIT code<sup>14</sup>).

4<sup>th</sup> step:  $\gamma_0, \gamma_2$ , and  $\gamma_4$  were fitted directly allowing all nine real parameters to vary.

In order to reproduce the sudden increase of  $\gamma_4$  it was necessary to increase the errors of the positive values of  $\gamma_4$  near Wp = 90 MeV by a factor of three and to reduce the errors of the two low lying  $\gamma_4$  points near Wp = 150 MeV



<u>Fig.4:</u> Absolute values and phase angles  $\phi$  for the amplitudes  $a_0, a_2$ , and  $a_7$  as a result of a Breit-Wigner interpretation of the differential cross section for p+p $\rightarrow \pi$ +d.

by the same factor. (The positive values of  $\gamma_4$  could easily be due to interferences between initial triplet state amplitudes with l=2, which are not taken into account in our approach.) The resultant numerical values are:

| = | 143.4 | ±                                                                        | .5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MeV                                                                                                                                                                           |
|---|-------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| = | 50.5  | ±                                                                        | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Me V                                                                                                                                                                          |
| = | 87.1  | ±                                                                        | 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MeV                                                                                                                                                                           |
| = | 4.6   | ±                                                                        | .2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Me V                                                                                                                                                                          |
| = | .10   | ±                                                                        | .01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MeV                                                                                                                                                                           |
| Ξ | 3.12  | ±                                                                        | .07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | rad                                                                                                                                                                           |
| = | -1.1  | ±                                                                        | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | rad                                                                                                                                                                           |
| = | 1.00  | ±                                                                        | .03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                                                                                                                                                             |
| 1 | 1.62  | ±                                                                        | .08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                               |
|   |       | <pre>= 143.4 = 50.5 = 87.1 = 4.6 = .10 = 3.12 = -1.1 = 1.00 = 1.62</pre> | $= 143.4 \pm \\ = 50.5 \pm \\ = 87.1 \pm \\ = 4.6 \pm \\ = .10 \pm \\ = 3.12 \pm \\ = -1.1 \pm \\ = 1.00 \pm \\ = 1.62 \pm \\$ | $= 143.4 \pm .5$<br>$= 50.5 \pm 1.5$<br>$= 87.1 \pm 2.4$<br>$= 4.6 \pm .2$<br>$= .10 \pm .01$<br>$= 3.12 \pm .07$<br>$= -1.1 \pm 0.1$<br>$= 1.00 \pm .03$<br>$= 1.62 \pm .08$ |

The corresponding absolute values and phase angles  $\phi$  for the amplitudes  $a_0, a_2$  and  $a_7$  are shown in Fig.4.

In this very crude phenomenological description, the sudden increase of  $\gamma_4$  at Wp = 140 MeV is due to two effects:

- A sudden increase of  $|a_7|$  and

- a change of  $(\phi_2 - \phi_7)$  from nearly  $\frac{\pi}{2}$  to zero between Wp=130 and 150 MeV.

Both effects are essentially caused by the threshold behaviour of  $a_7$ .