KfK 3052 Oktober 1980

Untersuchungen über das Erscheinungsbild und die kinetischen Folgen gestörter Deckschichtbildung bei der Zircaloy 4 / Wasserdampf-Hochtemperatur-Oxidation.

B. Bennek-Kammerichs, J. Franz, S. Leistikow, G. Schanz Institut für Material- und Festkörperforschung Projekt Nukleare Sicherheit

Kernforschungszentrum Karlsruhe

.

.

.

KERNFORSCHUNGSZENTRUM KARLSRUHE

Institut für Material- und Festkörperforschung Projekt Nukleare Sicherheit

KfK 3052

Untersuchungen über das Erscheinungsbild und die kinetischen Folgen gestörter Deckschichtbildung bei der Zircaloy 4/ Wasserdampf-Hochtemperatur-Oxidation.

•

B. Bennek-Kammerichs, J. Franz, S. Leistikow, G. Schanz

Kernforschungszentrum Karlsruhe GmbH, Karlsruhe

Als Manuskript vervielfältigt Für diesen Bericht behalten wir uns alle Rechte vor

.

Kernforschungszentrum Karlsruhe GmbH ISSN 0303-4003

Zusammenfassung

Im Hinblick auf einen Kühlmittelverlust-Störfall von längerer Dauer (Small Break LOCA) des Druckwasserreaktors wunde die isotherme Oxidation des Brennelement-Hüllwerkstoffs Zircaloy 4 bei 900 - 1100^OC in Wasserdampf untersucht. Dabei wurde die Expositionsdauer - aufgrund der mit der Reaktionszeit zunehmenden Instabilität der sich bildenden, schützenden Deckschichten und aller sich daraus ergebenden kinetischen Auswirkungen - auf 360 min ausgedehnt. Im übrigen wurden die in vorausgegangenen Untersuchungen bewährten Versuchs- und Auswertungsmethoden beibehalten.

Dem bei 900 und 950[°]C nach Ablauf von 50 - 80 min langsam einsetzenden, beschleunigten Verlauf der Gewichtszunahme trägt der Übergang von einem anfänglich kubischen auf ein parabolisch-lineares Zeitgesetz Rechnung. Bei 1000[°]C wird der anfänglich über 30 - 40 min parabolische Verlauf durch einen kräftigen linearen Anstieg abgelöst, während bei 1100[°]C im Versuchszeitraum ein parabolisches Zeitgesetz beibehalten wird.

Die Messung des Wachstums der einzelnen Teilschichten erlaubte es, durch Vergleich der ZrO_2 - und α -Zr(O)-Schichtwachstumsfunktionen das Einsetzen und das Ausmaß der Aufhebung schützender ZrO_2 -Schichteigenschaften zu erkennen und die gewonnenen Werte in das Gesamtbild der bisherigen Messungen von O₂-Aufnahme und ZrO₂-sowie α -Zr(O)-Schichtwachstum einzuordnen.

Experiments on the Morphology and Kinetic Consequences of Defect Scale Formation during Zircaloy 4/Steam High Temperature Oxidation.

Abstract

With reference to a PWR-Small Break LOCA the isothermal oxidation of Zircaloy 4 in steam at 900 - 1100[°]C was tested. The time of exposure was extended up to 360 min to evaluate the growing mechanical instability of the oxide scale and its consequences on oxidation kinetics. The experimental procedure was equal to that of previous tests.

At 900 and 950°C a change from cubic to parabolic-linear rate law, at 1000° C from parabolic to linear indicated the occurrence of a primarily moderate, but at the higher temperature stronger breakaway of the former protective $2rO_2$ -scale. At 1100° C a constant parabolic rate law governed the whole time of exposure which signalized the integrity of a protective $2rO_2$ -scale.

All changes of rate laws could be correlated with the microstructure of the oxide scales which was evaluated by metallography. The growth of the $2rO_2$ -and α -2r(0)-layers were measured as function of time and temperature. Besides the weight gain, these results were used for further extension and improvement of kinetic functions, suitable for calculating the oxidation during longer accidental exposure.

Inhaltsverzeichnis

		Seite
1.	Einleitung	1
2.	Versuchsdurchführung und Auswertung	1:
3.	Versuchsergebnisse	2
3.1	Gravimetrische Ergebnisse	2
3.2	Metallographische Ergebnisse	3
3.2.1	Beschreibung des Oberflächen- und Gefügezustands	3
3.2.2	Teilschicht-Dickenmessungen	4
4.	Diskussion und Zusammenfassung	5
5.	Danksagung	<u>6</u>
6.	Literatur	7
	Tabellen	8
	Abbildungen	

1. Einleitung

Im Hinblick auf Reaktorstörfälle längerer Dauer wurden die kinetischen Untersuchungen der isothermen Wasserdampf-Oxidation von Zircaloy 4 wieder aufgenommen. Entsprechende Untersuchungen im Temperaturbereich 700 - 1300° C und Oxidationszeiten bis 15 min hatten ergeben, daß die Oxidation bei 1000 - 1300° C mit parabolischer Zeitabhängigkeit fortschreitet und bei niedrigerer Temperatur ein allmählicher Wechsel zum kubischen Zeitgesetz zu verzeichnen ist, das bei 700 - 800° C mit guter Näherung erfüllt ist /1/.

In einer Parameterstudie war festgestellt worden, daß bei 1000°C nach ca. 30 min Oxidationszeit ein drastischer Wechsel der Kinetik eintritt. Untersuchungen bis 90 min Dauer hatten ergeben, daß die integrale Sauerstoffaufnahme und die Dicke der ZrO₂-Schicht im weiteren Verlauf der Oxidation rasch und zeitlich etwa linear anwachsen, während die Dicke der α-Zr(0)-Schicht nach Überschreiten eines Maximalwertes abnimmt. Die metallographische Untersuchung hatte nachgewiesen, daß die kinetischen Befunde mit dem Begriff Breakaway-Effekt bezeichnet werden können, da sie als Folge eines Verlusts der Schutzwirkung des Oxids zu verstehen sind /2/. Der im Tieftemperaturbereich wohlbekannte und bei Reaktorbetriebstemperatur des Zircaloy erst nach mehr als 1005Tagen auftretende Breakaway ist somit offenbar im Hochtemperaturgebiet mit ähnlichen kinetischen Konsequenzen bereits nach wesentlich kürzerer Oxidationszeit zu erwarten. Angesichts der Bedeutung für einen entsprechenden, postulierten Reaktorstörfall wurde die Oxidationskinetik des Zircaloy 4 bei 900 - 1100°C und Reaktionszeiten bis 360 min untersucht.

2. Versuchsdurchführung und Auswertung

Als Zircaloy 4-Proben wurden 30 mm lange Abschnitte von DWR-Hüllrohren bzw. 25 mm lange Stücke aus Stangen (12 mm \emptyset) verwendet. Die Proben wurden entfettet, 2 min gebeizt (47 % HNO₃, 3 % HF, 50 % H₂O), mit dest. Wasser gespült und 15 min ausgekocht und anschließend ausgemessen und ausgewogen. Die Oxidationsversuche fanden in einem geschlossenen, drucklosen Dampfkreislauf bei ca. 1 m/sec Strömungsgeschwindigkeit statt. Die mit einem Pt/PtRh-Thermoelement versehene Probe wurde, auf einem Quarzschlitten liegend, in den bei Versuchsbeginn vorgeheizten Rohrofen eingeschoben. Eine Überhitzung der Probe durch die einsetzende exotherme Oxidationsreaktion wurde vermieden. Nach Ablauf der vorgesehenen Reaktionszeit wurde die Probe der Teststrecke entnommen und erneut gewogen.

Als Massenzuwachs wurde damit bei vernachlässigbarer Wasserstoffaufnahme die Aufnahme von Sauerstoff als integrales Maß für den Reaktionsumsatz der Probe registriert und auf die Oberflächeneinheit bezogen. Die metallographische Untersuchung eines Querschliffs der Probe ergab Aufschluß über die Verteilung des aufgenommenen Sauerstoffs und über die oxidationsbedingte Veränderung des Werkstoffgefüges. Im polierten Schliffzustand wurde das Oxid mikroskopisch untersucht und die ZrO_2 -Schichtdicke lokal vermessen. Im geätzten Schliffzustand war die sauerstoffstabilisierte α -Zr(O)-Schicht von der je nach Reaktionstemperatur zweiphasigen (α + β -Zircaloy) bzw. einphasigen (β -Zircaloy) Matrix zu unterscheiden.

3. Versuchsergebnisse

3.1 Gravimetrische Ergebnisse

Die Sauerstoffaufnahme der insgesamt 85 untersuchten Zircaloy 4-Proben ist in Tab. 1 zusammengestellt; die Mittelwerte der jeweiligen Parallelproben zu einem Temperatur-Zeit-Paar sind in Abb. 1 linear und in Abb. 2 doppelt logarithmisch gegen die Zeit aufgetragen. Insbesondere Abb. 2 erlaubt eine Beurteilung der Kinetik. Danach folgt bei 900°C die Kinetik bis ca. 70 min näherungsweise dem kubischen und danach dem parabolischen Zeitgesetz. Bei 950⁰C ist schon bei ca. 40 - 50 min das kubische Gesetz nicht mehr erfüllt. Die weitere Oxidation folgt einem Gesetz, das zwischen parabolisch und linear einzuordnen ist. Für 1000°C ist bei Einbezug und in Bestätigung früherer Ergebnisse /1/ festzustellen, daß ein zunächst kubischer bis annähernd parabolischer zeitlicher Verlauf der Oxidationsreaktion nach ca. 30 - 40 min in einen annähernd linearen übergeht, der sich bis 360 min noch über das lineare Gesetz hinausgehend beschleunigt hat. Bei ca. 220 min schneidet die Kurve die 1100[°]C Funktion, da diese im gesamten untersuchten Zeitintervall mit guter Näherung parabolisch ist. Damit ist die zunächst überraschende Tatsache nachgewiesen, daß die sich beschleunigende Oxidation bei der tieferen Temperatur (1000°C) den Umsatz der sich weiterhin verlangsamenden Oxidation bei der höheren Temperatur (1100°C) erreicht und übersteigt. Noch ausgeprägtere Effekte dieser Art beschrieben Pawel und Campbell /3/ im Fall der Sauerstoff-Oxidation einer Ta-10 W Legierung bei 550 - 800°C. Auch wird auf andere Fälle mit steigender Temperatur abnehmender Oxidationsgeschwindigkeit von Kubaschewski

und Hopkins /4/ hingewiesen. Damit konnte die Kinetik -trotz der nur integralen Bedeutung der Sauerstoffaufnahme und ihrer komplexen Temperatur-Zeit-Abhängigkeit im untersuchten Gebiet - zumindest bereichsweise, noch durch einfache kinetische Zeitgesetze beschrieben werden.

3.2 Metallographische Ergebnisse

3.2.1 Beschreibung des Oberflächen- und Gefügezustands

Wie in Tab. 1 vermerkt, wurde aus der Gruppe von Parallelproben meist eine typische Probe stellvertretend für ein Temperatur-Zeit-Paar zur metallographischen Untersuchung ausgewählt.

Die Abb. 3 und 4 zeigen <u>für $900^{\circ}C$ </u> eine Serie von Aufnahmen des Oxids. Die mittlere Oxidschichtdicke wächst mit der Reaktionszeit. Darüberhinaus wird deutlich, daß der zunächst ungestörte Schichtaufbau zunehmend beeinträchtigt wird. Die Schädigung der Oxidschicht setzt offenbar lokal ein und bleibt entweder auf enge Bereiche begrenzt oder greift mit zunehmender Oxidationszeit auf größere Oberflächenanteile der Proben über. Selbst nach 360 min sind jedoch noch ungestörte Oxidbereiche vorhanden (Abb. 4). Unter der genannten Schädigung des Oxids ist hierbei zu verstehen:

- die Bildung welliger, oberflächenparalleler Risse,
- das Abheben äußerer von inneren Oxid-Teilschichten bzw. des Oxids von der darunterliegenden α -Zr(O)-Schicht,
- das Aufreißen der Oxidoberfläche in radialer Richtung,
- das Ausbrechen und Abblättern von Oxidschollen.

Die Gefügeaufnahmen im geätzten Probenzustand (Abb. 5 und 6) zeigen, daß die α -Zr(0)-Schicht zwischen dem Oxid und der (α + β)-Zircaloy-Matrix dort vergleichsweise dünner ist, wo das Oxid am stärksten geschädigt wurde und im schnellsten Wachstum begriffen war. Dadurch wird die α -Zr(0)-Phase von außen her umgewandelt, während sie sich nach innen wachsend weiterhin verstärkt.

Die für 900[°]C beschriebenen Erscheinungen sind metallographisch auch <u>für 950[°]C</u> nachgewiesen (Abb. 7-10). Die zunehmende Schädigung des bei der höheren Temperatur schneller wachsenden Oxids setzt schon nach kürzerer Oxidationszeit ein. Bereits frühzeitig hebt sich eine dünne, äußere Oxid-Teilschicht stellenweise vom Rest des nach innen weiter wachsenden Oxids ab. Im Verlauf dieses Wachstums bilden sich als Folge oberflächenparalleler Risse weitere Oxid-Teilschichten aus (Abb. 7 und 8). Die Schädigung der Oxidschicht ist nach 135 min bereits auf der gesamten Probenoberfläche nachweisbar. Wie auch für 900° C beschrieben, ist die α -Zr(0)-Schicht dort relativ dünn, wo das Oxid stark geschädigt und entsprechend rascher gewachsen ist. Im Vergleich zu 900° C ist das Dickenverhältnis von ZrO₂ zu α -Zr(0) bei 950° C im Mittel zugunsten des Oxids verschoben (Abb. 9 und 10).

Der metallographische Befund bestätigt insgesamt das gravimetrische Resultat einer mäßigen Oxidationsrate für 900 und 950[°]C trotz deutlicher und langsam mit zunehmender Zeit und Temperatur fortschreitender Oxidschichtzerstörung.

Abb. 11 und 12 zeigen die Oxidschicht und das Gefüge von Proben, die <u>bei 1000°C</u> oxidiert wurden. Nach 20 min ist die Wachtumsfront des ansonsten noch ungeschädigten Oxids wellig geworden, nach 60 min ist ein Rißsystem im Oxid zu erkennen. Die α -Zr(0)-Schicht ist für diese Oxidationszeiten noch etwa so dick wie die ZrO₂-Schicht (Abb. 11). Nach 360 min ist das Oxid von einer Vielzahl von Rissen durchzogen (Abb. 12). Diskrete oberflächenparallele Rißsysteme wie bei 900 und 950°C sind kaum mehr zu unterscheiden, da das Oxid örtlich sehr unterschiedlich schnell gewachsen ist. Insbesondere an Stellen, an denen die Oberfläche des Oxids in radialer Richtung tief angerissen ist, konnte es besonders rasch wachsen. Daher wurde die α -Zr(0)-Schicht, insbesondere unter aufgerissenem, dickem Oxid, nahezu aufgezehrt (Abb. 12).

Im Gegensatz zu 900 - 1000° C ergab die metallographische Untersuchung <u>für 1100°C</u> ein ungestörtes Oxidschichtwachstum (Abb. 13). Selbst nach 360 min, nach denen die Zircaloy-Matrix des Hüllrohrmaterials bereits vollständig aufgezehrt worden wäre, zeigt die Probe aus Vollmaterial eine haftfeste, über den Umfang gleichmäßig dicke Oxidschicht und eine α -Zr(0)-Schicht vergleichbarer Stärke. Bei dieser und höherer Temperatur ist somit das für kurzzeitige (< 15 min) Oxidation typische Bild des Schichtwachstums ohne auftretende Schädigung /1/ auch bis zu langen Oxidationszeiten gültig.

3.2.2 Teilschicht-Dickenmessungen

Die Ergebnisse der mikroskopischen Messung der ZrO_2^- und der α -Zr(0)-Schichtdicken sind in Tab. 2 zusammengestellt. Für ein Zeit-Temperatur-Paar sind jeweils die Extrem- und die Mittelwerte für die vermessenen Proben angegeben. Als Abgrenzung der α -Zr(0)-Schicht von der Matrix wird die Sauerstoffdiffusionsfront definiert, bei der keine β -Phasenanteile des Matrix-

- 4 -

gefüges mehr nachweisbar sind; stellenweise tiefere Einwachsungen in die Matrix werden somit nicht berücksichtigt. Die Mittelwerte und ihre Streuung sind in Abb. 14 und 15 gegen die Zeit aufgetragen. Es zeigt sich, daß die α -Zr(0)-Schicht bei 900°C dicker und bei 1100°C dünner als die Oxidschicht ist. Bei 950°C und wesentlich früher bei 1000°C wird die zunächst dickere α -Zr(0)-Schicht vom Wachstum der ZrO₂-Schicht überholt. Bei 1000°C nimmt die α -Zr(0)-Schichtdicke nach Überschreiten eines Maximums allmählich ab und verschwindet bei 360 min fast völlig.

4. Diskussion und Zusammenfassung

Die gravimetrischen und metallographischen Ergebnisse der Kinetik der isothermen Oxidation bei 1000°C haben die für Versuchszeiten bis 90 min bisher bekannten Ergebnisse bestätigt und den Effekt mechanischen Schichtversagens (Breakaway-Effekt) bis 30 min weiterverfolgt. Sein Auftreten äußert sich in der Bildung von Rissen, der Trennung des Oxids in Teilschichten und schließlich dem Abblättern bzw. Herausbrechen von Oxidschollen. Mit dieser Schädigung verliert die Oxidschicht zunehmend ihre Schutzwirkung, so daß die Geschwindigkeit der Sauerstoffaufnahme mit dem weiteren Schichtwachstum nicht mehr abnimmt. Die örtlich weitgehende Zerstörung der Schicht hat insgesamt eine im Zeitbereich bis 360 min etwa lineare Oxidationskinetik zur Folge. Für 900 und 950°C ist festzustellen, daß eine entsprechende Schädigung des Oxids örtlich und mit abnehmender Temperatur später einsetzt, und daß die Erscheinungen des Breakaway-Effekts milder und in langsamerer Folge auftreten. Daraus ist auf eine der Zerstörung entgegenwirkende Verheilungstendenz des Oxids zu schließen.

Die primären Ursachen des beobachteten Werkstoffyerhaltens sind weiterhin ungeklärt. Möglicherweise ist ein Zusammenhang mit der metallischen α/β -Umwandlung des Zircaloy (Temperaturbereich 820 - 970°C), wahrscheinlicher ein solcher mit der oxidischen Umwandlung monoklines/tetragonales ZrO₂ gegeben /2/. Damit wäre zu verstehen, daß bei 1100°C, im Stabilitätsbereich des tetragonalen Oxids, der Breakaway-Effekt nicht auftritt und die Langzeitoxidation geringer als bei 1000°C ist. Darüberhinaus ist denkbar, daß die Hochtemperaturplastizität des Oxids bereits bei 1100°C eine Zerstörung der Oxidschicht verhindert.

- 5 -

Ergänzt man die bereits vorhandenen Darstellungen der Oxidationskinetik (Sauerstoffaufnahme, Wachstum von ZrO_2^- und α -Zr(0)-Schicht) durch die hier beschriebenen Ergebnisse, so zeigt sich, daß eine parabolische bzw. kubische Extrapolation von Kurzzeitresultaten sich bereits bei 900 und 950°C als fehlerhaft andeutet, besonders aber bei 1000°C zu einer wesentlichen Unterschätzung des Oxidationsausmaßes bei langen Reaktionszeiten führen würde (Abb. 16-18). Entsprechende Vorsicht ist bei Anwendung der vorhandenen Computer-Codes geboten.

5. Danksagung

Die Autoren danken Frau S. Heger, Herrn H. v. Berg und Herrn D. Jennert für wertvolle Mitarbeit.

6. Literatur

- /1/ S. Leistikow, G. Schanz, H. v. Berg: Kinetik und Morphologie der isothermen Dampf- Oxidation von Zircaloy 4 bei 700 - 1300^oC, KfK 2587 (März 1978).
- /2/ G. Schanz, S. Leistikow:
 Experimentelle Ergebnisse zu den Ursachen mechanischer Instabilität oxidischer Deckschichten (Breakaway) auf Zirkonium-Legierungen.
 Vortrag DGM-Tagung Den Haag, Niederlande Juni 1979, IKK K 90250685.
- /3/ R.E. Pawel, J.J. Campbell: Some Oxidation Characteristics of Ta-10W and Ta-10W-2.5 Hf Alloys, Proc. TMS-AIME Symp. Detroit, Michigan (USA) 21 - 24.10.74 S. 330-351.
- /4/ O. Kubaschewski, B.E. Hopkins:Oxidation of Metals and Alloys. Butterworth, London 1962, S. 51.

<u>Tab. 1:</u> Sauerstoffaufnahme bei der isothermen Oxidation von Zircaloy 4 Einzel- und Mittelwerte von insg. 85 Versuchen v = Vollmaterial, sonst. Rohrmaterial

x = Proben wurden metallographisch untersucht

Temperatur	Zeit	Sauerstoffaufnahme	[mg/dm ²]
[°c]	[min]	Einzelwerte	Mittelwerte
900	15	245, 255, 265	255
	30	263, 264 [*] ,265	264
	40	290 ^x , 295	293
	50	314, 317, 344, 368	336
	60	340 ^x , 340	340
	90	408, 410, 435	418
	135	446, 507, 521, 532, 538 ^x	509
	180	566, 573	570
	270	642, 648	645
	360	746 ^x ,790	768
950	30	410, 428, 429, 436, 460, 460, 461 ^x	441
	40	454, 503 [*] ,507, 525, 535	505
	50	522, 529, 597	549
	60	571, 591 [×]	581
	90	641, 737, 810	729
	135	930 ^v , 985, 986 ^x , 989	973
	180	1080, 1127 ^v , 1255 ^x	1154
	230	1379	1379
	270	1341,1489,1598	1476
	360	1666,1725 ^v ,1946 ^x	1779
1000	20	630 ^x , 656	643
	30	734 [×] , 734	734
	40	812 ^x , 848, 864	841
	60	1203,1253 [*]	1228
	90	1728 ^x ,1751	1740
	135	2492	2492
	360	8176 ^{v,x}	8176

Tab. 1, Fortsetzung:

ŧ

Temperatur [^o C]	Zeit [min]	н С	Sauerstoffaufnahme Einzelwerte	[mg/dm ²] Mittelwerte
1100	20	1194, 1254 ^x		1224
	30	1482, 1582 ^x		1532
	40	1722, 1808 ^x		1765
	60	2216, 2248 [×]		2232
	135	3447		3447
	360	5104 ^{v,x}		5104

.

Tab. 2: Wachstum der ZrO₂- und der α-Zr(0)-Schicht bei der isothermen Oxidation von Zircaloy 4. Mittelwerte und örtliche Streuung der metallographisch untersuchten Proben aus Tab. 1.

Temperatur [⁰ C]	Zeit [min]	ZrO ₂ -Schicht [µm] Min. / Mittelw. / Max.	α-Zr(O)-Schicht [µm] Min. / Mittelw. / Max.
900	30	11,2 / 13,1 / 17,3	29,2 / 30,0 / 30,8
	40	12,4 / 14,3 / 20,2	28,8 / 33,6 / 35,6
	60	14,8 / 17,2 / 25,3	34,7 / 42,3 / 45,5
	135	13,8 / 22,0 / 28,8	63,3 / 65,3 / 66,7
	360	19,4 / 39,0 / 66,7	84,8 / 98,9 / 108
950	30	17,9 / 22,3 / 31,8	32,9 / 37,4 / 43,3
	40	15,2 / 26,1 / 31,5	31,5 / 37,5 / 44,7
	60	22,0 / 26,2 / 34,1	48,0 / 53,7 / 56,8
	135	46,2 / 49,8 / 53,0	62,1 / 65,2 / 69,7
	180	36,4 / 63,6 / 83,3	59,1 / 70,6 / 89,4
	360	80,3 / 113 / 156	69,7 / 86,7 / 98,5
1000	20	30,3 / 31,8 / 34,1	35,6 / 37,4 / 40,2
	30	32,6 / 35,6 / 37,9	47,0 / 48,6 / 50,0
	40	37,9 / 39,8 / 41,7	51,5 / 55,5 / 59,1
	60	59,1 / 69,1 / 78,8	48,5 / 64,2 / 81,8
	90	103 / 109 / 112	28,8 / 36,1 / 42,4
	360	370 / 678 / 1050	≃ 6 / 16 / 50
1100	20	60,6 / 63,2 / 65,2	63,6 / 66,5 / 68,2
	30	78,8 / 84,5 / 93,9	77,3 / 83,6 / 89,4
	40	87,7 / 89,4 / 92,6	97,5 / 102 / 107
	60	116 / 117 / 119	105 / 117 / 125
	360	259 / 276 / 293	241 / 254 / 272

Isotherme Zircaloy 4/Wasserdampf-Hochtemperatur-Oxidation

Isotherme Zircaloy 4/Wasserdampf-Hochtemperatur-Oxidation

Zircaloy4/Dampf-Hochtemp.-Oxidation, dünnere œ-Zr(O)-Schicht untergeschädigtem Oxid <u>950°C</u>, 360 min

Abb.10 Zircaloy 4/Dampf-Hochtemp.-Oxidation; Rißsysteme im Oxid, α - Zr(O)-Schicht, (α + β) - Grundgefüge

Abb.12 Zircaloy 4/Dampf-Hochtemp.-Oxidation, laterale Rißsy – steme und Oberflächenanrisse im schnell wachsenden Oxid, dünne œ-Zr(O)-Schicht <u>1100°C</u>, 60 min

360 min

Abb.13 Zircaloy 4/Dampf-Hochtemp.–Oxidation, intakter Schichtaufbau und langzeitige Schutzwirkung des Oxids

Zircaloy 4/Dampf-Hochtemperatur-Oxidation. Zeitliches Wachstum der ZrO_2 -und der α -Zr(O)-Schichten

Zircaloy 4/Dampf-Hochtemperatur-Oxidation. Zeitliches Wachstum der ZrO₂-und der α -Zr(O)-Schichten

Zircaloy 4/Dampf-Hochtemp-Oxidation.Kinetik des Wachstums der ZrO2-Schicht

