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Abstract

In the framework of the 'Project of Reprocessing and Waste Treatment'

of the Karlsruhe Nuclear Research Center, some time aga an activity has been

initiated, the aim of which is to detect in time disturbances of production

processes of nuclear installations with the help of process-signal analysis.

In this paper, the present state of this activity is described. The

basic approach will be discussed: using two special cases, by means of ap­

propriate process models it is demonstrated which behaviour of the process

will lead to which signals; vice versa, the investigations oI these signals

by decision theoretical methods will provide information on possible dis­

turbances of the process. Special attention will be paid to the influence of

process variations on the decision procedure.

Implementation of this procedure in the GWK reprocessing plant, Karls­

ruhe, is underway.

Analyse von Prozeßsignalen einer Wiederaufarbeitungsanlage

Zusammenfassung

Im Rahmen des Projektes "Wiederaufarbeitung und Abfallbehandlung" des Kern­

forschungszentrums Karlsruhe wurde vor einiger Zeit eine Untersuchung begon­

nen, deren Ziel es ist, Betriebsstörungen kerntechnischer Anlagen unter Ein­

satz der Prozeßsignalanalyse rechtzeitig zu entdecken.

Diese Arbeit beschreibt den gegenwärtigen Stand dieser Untersuchung. Unter

Verwendung zweier Spezialfälle wird die grundlegende Vorgehensweise disku­

tiert: mittels geeigneter Prozeßmodelle wird gezeigt, welches Prozeßverhal­

ten zu welchen Signalen führt; umgekehrt liefert die Prüfung dieser Signale

mit Methoden der Entscheidungstheorie Hinweise auf mögliche Betriebsstörun­

gen. Insbesondere wird der Einfluß von Prozeßschwankungen auf die Entschei­

dungsprozedur behandelt.

Mit der Implementierung bei der GWK Wiederaufarbeitungsanlage, Karlsruhe,

wurde begonnen.



Contents

1. Introduction 1

2. Anomalous hydraulic states in the 2nd uranium cycle of the WAK

reprocessing plant 3

2.1. First example 5

2.2. Second example 7

2.3. Procedure for the early detection of anomalous process states 8

3. Mathematical analysis 10

3.1. Analysis of the first exarnple 10

3.2. Outline of the analysis of the second example 28

4. Availability considerations 31

5. Numerical illustration 34

References 38

ANNEX: The common distribution of two measurements with independent,

normally distributed measurement errors and a common, normally

distributed calibration error 39



- 1 -

1. Introduction

It is the objective of any control of complex industrial production

processes to run the production lines in. such a way that a high availability,

i.e., a high productivity, is maintained. Such a control demands careful ob­

servation of relevant process signals as well as comprehensive plant experi­

ence. These requirements will be aprerequisite above all of the large German

facility for reprocessing spent nuclear fuels. Therefore, it seemed to be

meaningful to study methods and to propose tools which hopefully will support

these objectives. The WAK reprocessing plant is used for demonstration pur­

poses in this study.

As regards similar demands on nuclear power plants, considerable efforts

have been spent for a long time. For example, the Halden Programme /1/, /2/

represents a well known investigation to this effect: It deals with the poten­

tials of computer-based on-line analysis of process and component behavior

within the frame of nuclear power plant surveillance systems; emphasis is laid

on a combination of technological, methodological and procedural factors. This

system of analysis has been installed in the Grafenrheinfeld nuclear power

plant /3/. However, compared with the conditions encountered at reactor sta­

tions, the process behavior at a reprocessing facility is quite different.

Just for illustration it might be mentioned that reprocessing is essentially

related to chemical procedures which, in case of anomalous behavior, leave

more time for counteraction compared to a similar situation at a nuclear reac­

tor.

The following idea underlies the approach presented here: In the central

control room of the plant under consideration all kinds of signals are avail­

able which describe the state of the production lines. Instead of continuous­

ly checking all these signals independently, it is tried to organize observa­

tion of these signals by process models such that, on the one hand, process

disturbances are quickly recognized, and on the other hand, the number of

false alarms is minimized.

The investigation carried out so far was confined to the anomalous pro­

cess behavior induced by hydraulic disturbances in the so-called '2nd uranium

cycle'; it should be pointed out that this analysis can be applied in general.
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The methodological tools used for this investigation are taken from

mathematical statistics, more specifically from the theory of hypothesis

testing. As this presentati0n has been written for practitioners who might

not always be very familiar with these tools, the analysis has been explained

in great detail, although, hopefully, in such a manner that the findings can

be generally understood. Especially ANNEX serves this purpose: Its contents

do not provide new information for statisticians; however, it can hardly be

found in the usual statistical textbooks.

Implementation of the procedures on a process computer is aprerequisite

of successful use of the methods described: in a special report /4/ the in­

terested reader will find the relevant details.
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2. Anomalous hydraulic states in the 2nd uranium cycle of the WAK reprocess­

ing plant

As demonstrated in figure 1, the 2nd uranium cycle represents an essen­

tial part of the process branch responsible for purification of the uranium

product. A more detailed description of this cycle is given by figure 2: In

the 2D mixer-settler the uranium is transferred from the 2DF-stream (aqueous

solution) to the 2DX-stream (organic solution); the fission products remain

in the stream while entering the container '42.01.1/2' as the 2DW-stream. In

the 2E mixer-settler the uranium is retransferred into the aqueous solution

(2EU-stream). As indicated, the fluids are usually transferred by airlifts,

for example the 2DF-stream is transferred from the container '41.11' to the

2D mixer-settler through the airlifts Al13 and A131.

NUCLEAR FUEL

1. EXTRACTION
b

CYCLE

2. URANIUM 2.PLUTONIUM
CYCLE CYCLE

SILICA GEL
ION EXCHANGERCOLUMN

URANIUM WASTE PLUTONIUM

Fig. 1: Main process units of the WAK reprocessing plant.
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- 5 -

The most currently used method.of liquid transfer control consists in re­

cording the change in terms of time of the container filling levels by means

of dip tubes. In certain pipes the liquid flow can be measured directly; fur­

thermore, the air flow of the airlifts and the level between the aqueous and

organic solutions in the mixer-settlers can be observed.

2.1. First example

The process state illustrated in figure 3 will serve as an example of

mathematical analysis: If the transfer of the 2DW-stream is disturbed, the

liquid level in the container 42.01.1 will vary less than it should. Further­

more, the separating layer in the 2D mixer-settler will be increased until

MIXER

SETTLER

20 KW
KEROSIN

20 W
HN01
':,Pu v

SEPARATING ,----'----,
LAYER

Fig. 3: Process section of the 2nd uranium cycle used for mathe­

matical analysis.
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the level is reached of the point where the 2DK-stream leaves the mixer-sett­

ler. Then, together with the 2DKW-stream, that part of the DW-stream will also

leave the mixer-settler, which cannot enter the container 42.01.1 because of

the disturbance. The consequence is ·that the variation of the liquid level in

the container 47.14 is greater than it should be.

On account of the restricted measurement devices available at the time

being, three types of information can be used to diagnose disturbances: the

variations of the liquid levels in the containers 42.01.1 and 47.14, and the

position of the separating layer - the latter will be an indication of the be­

ginning of a disturbance, expressed by a steady increase from its regular po­

sition. Due to technical circumstances, this disturbance may have three causes:

either a wrong adjustment of the air pressure, which influences the flow rate

of the 2DW-stream, or a blocking of either the outlet of the 2D mixer-settler

or of the airlift 141/151 (see also figure 4).

MEASUREMENT

VAlUES

tON TROL OF
- AIR PRESSURE
- BLOCKING OF

AIRLIFT 141/151
- BLOCKIHG OF 2D

Fig. 4: Scheme of anomalous process state related to the process

section of figure 3.
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2.2. Second example

For demonstration figure 5 presents another process state which is relat­

ed to the operation of the 2EU vaporizer belonging to the 2nd uranium cycle.

This vaporizer concentrates the purified uranium product, whose density d must

be kept at a constant value cd' For instance, if this density is too high, the

following reasons might contribute to this anomalous process behaviour:

- The 3EU feed flow is too small.

The removal of the 2UC concentrate is too slow.

The temperature 'T 'of the pipes carrying the 2UC-stream is too low.
2UC

- The temperature 'T 'within the vaporizer has a moderate value only.
2EU

2UC

2EU

3EU

HN03
U

'"VAPORIZER

Fig. 5: Process section of the 2nd uranium cycle used for demonstra-

tion of a process state.
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These disturbances can be induced by blocking of the corresponding air­

lifts and/or tubing as weil as by wrong adjustrnents of the heating systems

(electric and steam heating). The relations are presented in figure 6.

CON TROL OF
-AIRLIFT 311/541

CONTROL OF
- AIRLIFT 551/101/102
- BLOCKING OF PIPE

COHTROL OF
- STEAM THROUGH:=

PU T

Fig. 6: Scheme of anomalous process state related to the process

section of figure 5.

2.3. Procedure for the early detection of anomalous process states

If the operator in the central control room recognizes that the signals

deviate from their nominal values, and he, consBquently, has to decide wheth­

er or not he shall take an action, he must consider two aspects:

- The signals could deviate from their nominal values just because of meas-
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urement errors or process fluctuations not involving difficulties; thus,

a shutdown would be false (' error of the first kind') and reduce the avail­

ability of the plant.

- Because of this possibility of a false alarm the operator could hesitate

and take no action even if there were a disturbance ('error of the second

kind'); too late an action, however, would cause major technical difficul­

ties and again reduce the availability of the plant.

Therefore, the problem arises to choose appropriate significance thresh­

olds for signal deviations from their nominal values, above which the opera­

tor must take an action. These thresholds are determined by the choice of ap­

propriate false alarm probabilities (probability of error of the first kind)

which, ultimately, must be determined with the help of availability consider­

ations. A schematical representation of these relations is given in figure 7.

NUCLEAR FUEL

I

1. EXTRAC TION -CYCLE

2. URANIUM 2.PLUTONIUM
CYCLE CYCLE

SILlCA GEL ION EXCHANGER
COLUMN

URANIUM WASTE PLUTONIUM

Fig. 7: Procedural model for the early detection of anomalous

process states.
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3. Mathematical analysis

In the following paragraphs a detailed mathematical analysis will be given

using the first example in chapter 2; the analysis of the second example in

chapter 2 will just be outlined at the end of this chapter.

3.1. Analysis of the first example

Let us make the following assumptions:

i) The 2DF-stream has a fixed value and must not be checked at all.

ii) The 2DW-stream may be disturbed; it can, however, not be checked direct­

ly.

iii) The 2DK-stream, now called Xl' is subject to process variations which

are, however, not considered to be disturbances; we write

X := 2DK = ~ +e +d
1 DK DK

where ~DK is the nominal value, e
DK

the measurement error, and d the pro­

cess variation; furthermore

2var(e ) =. (JDK . DK' var(d) o .

iv) A process variation of 2DK influences directly 2DKW, now called X
2

. We

write for the normal state (null hypothesis HO)'

X2 := 2DKW = ~DKW+eDKW+d under HO

A decrease of the true value of 2DW by the value ß leads to an in­

crease of the true value of 2DKW by the same value ß (alternative

hypothesis Hj )

X
2

:= 2DKW

In both cases we write

2
=: (JDKW cov(eDKW,d) o

v) The position of the separating layer LT, now called X
3

, is proportional­

ly influenced by process variations. We write for the normal state
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x = ~ +e +a·d under
3 LT LT

Furthermore, we assume that in case 2DKW is increased by ~, X
3

in­

creases proportionally:

x = ~ +b·~+e+a·d under
3 LT

In both cases we write

o .

vi) The random variables e
DK

, e
DKW

' e
LT

and d are normally distributed with

zero expectation values and known variances.

Because of these aqsumptions the random variables Xl' X
2

, X
3

are normal­

ly distributed, i.e.,

Xl

= f f x (t)dt
-(X) 1

1 l exp [ t· (t-E i (X2))2J
-(X) 2 2

0DKW+0P

dt

1 j X 3 [1 (t-E i (X3))2J
. exp - _. dt

2
-(X) 2 2

0
LT

+0p

i=O,l,

where the expectation values of X
2

and X
3

under Ho are

and,furthermore, under H
l

,

Using the weil known' symbol ~ ( .) for the normal distribution function,
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we write this as follows

</lex) :=
1

fiIT

x t2
f exp(- '2)dt

-00

i=O,1

Because of the process variation the random variables X
1

, X
2

and X
3

are not

independent. The joint density f
i
(~) of the random vector ~'=(X1,X2,X3) under

the hypotheses H., i=O,1, defined by
1

dt
3

f. (t), i=o,1 ,
1 -

is given by the expression
1

)

f. (x)
1 -

3

(21T) 2·III ; [1 I-1 ~. exp - -(x-].l.) , . . (x-].l. )
2 - -1 - -1

i=O,1 ,

where the covariance matrix r is given by

1) In ANNEX it has been shown that the common distribution of two normally

distributedrandom variables with non-vanishing correlation is a general

bivariate normal distribution. For three normally distributed random

variables with non-vanishing correlations similar considerations can be

made which.leads to the expression given here.
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where the matrix elements are defined as follows

2
var (Xl)

2 2 cov(X
1

,X
2

)
2

0'1 := O'DK+O'P P12 °0'1°0'2 := O'p

2
var (X

2
)

2 2 cov(X
1

,X
3

)
2

0'2 := O'DKW+O'P P13 °0'1°0'3 := a 0O'p

2
:=var(x

3
) 2 2 2 cov(X

2
,X

3
)

2
0'3 = O'LT+a oO'p , P23 °0'2°0'3 := = a 0O'p ,

and where the expectation vectors V. under the hypotheses H" i=o,l, are
-l l

given by

Elementary Test Procedure

Let us assume that we use only the measured value of the 2pKW-stream in

order to decide whether or not there is a disturbance of the 2DKW-streamo

This is an intuitive approach and it can be proven formally that the best de-

cision procedure in decision making is:

2DKWS;s: no disturbance

2DKW>s: disturbance

We call s the significance threshold of the testo

We call the statement 'no disturbance' the null hypothesis HO and de­

scribe it according to our assumptions' by

Furthermore, we call the statement 'disturbance' the alternative hypothesis

H
1

and describe it by

H
1

: E (DKW)



- 14 -

where ß is a parameter of the problem.

If we call the region 2DKW~s the acceptance region A and the region

2DKW>s the rejection region K, we can represent the test procedure as follows

2DKW~s: HO correct

2DKW>s: H
1

correct

In this way two errors may be committed: We call the error that we de­

eide 'H
1

to be correct' if in fact HO is correct, the error of the first kind,

and the error that we decide 'HO to be correct' if in fact H
1

is correct, the

error of the second kind. The corresponding probabilities

are generally called probabilities of the first and second kind. In our case,

we call for intuitive reasons a the false alarm probability and 1-ß the prob­

ability of detection. In total, four outcomes are possible the probabilities

of which are listed in the following table

~
H H

10

decision correct correct

HO 1-a ß
correct

H
1 a 1-ß

correct

For example, if in reality H is correct, then the decision 'H correct' will
o 0

be made with probability i-ai however, if in reality B
1

is correct, then the

decision 'H correct' will be made with probability ß.
o
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It is common practice to fix the value of the significance threshold s by

postulating a value of the false alarm probability ai we get

s

where U. is the inverse of the normal distribution function.

In the simple case discussed here the test is completely determined by

postulating the value of ai in fact, we get the following expression for the

probability of detection if we eliminate s with the help of a:

l-ß .( aL+o; -u1_.)

The probability of detection as a function of ß, cr~KW+cr; and a describes the

efficiency of the test procedure. As can be seen immediately, 1-ß increases

'th ' 'A" d d' d ' h ' . 2 2Wl lncreaslng D an a, an lt ecreases Wlt lncreaslng crDKW+crP '

Neyman Pearson Test

The optimal test in the sense of guaranteeing the highest probability

of disturbance detection for a fixed false alarm probability is given by the

Neyman Pearson test /5/. The critical region K of this test, i.e., that re­

gion of ~-values whose realization leads to an acceptance of the alternative

hypothesis H
1

, is defined by the set

where k has to be determined in such a way that the false alarm probability

defined by

a := probIxEK!H }L 0

does not exceed a given value.

Explicitly, the critical region of the Neyman Pearson test is determined

as foliows: As the inequality

is equivalent to
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1. t-1 1 I-1- -. (x-]l )" • (x-]l ) + _. (x-Jl )'. • (x-]l ) > Q,n k ,
2 - -1 - -1 2 - -0 - -0

which is, furthermore, equivalent to

which is, finally, equivalent to

2-1x' . . (]l -Jl )
- -J -0

where k' is given by

> k' ,

the critical region of the Neyman Pearson test with

is given by the region

\,-1,Using the explicit form of L we get the following critical region:

where k" differs from k' by a constant factor only. As this set does not

contain the value of ~, this test is a uniformZy most powerfuZ test.

On the basis of our assumptions the test statistics defining the criti­

cal region is a normally distributed random variable; therefore, it would not

be difficult,·in principle, to determine the relation between the false alarm
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probability a and the significance threshold k". As the determination of the

variance, however, leads to long algebraic formulas, we will discuss here

only the special case a=b=l which in practice might be achieved by appropriate

scale transformations.

Returning to the process related nomenclature, the test statistics in this

case is reduced to

According to our assumptions, the expectation value of this statistics is

under HO

and furthermore

under H
1

.

The variance of Z can be written conveniently as

var (Z)

which leads to the following expression:

var(Z)

According to the definition of the critical region we have

lZ-Eo(Z) ::; k'-EO(Z)!
1-a = prob

~var(z) ~var(z)

and furthermore,

~(k' -EO(Z) )

~var (Z)
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1
Z-El (Z) k 1 -Ei CZ) ~

ß = prob ---- ~

vvar (Z) vvar (Z)

Using the relation

(

Ei (Z) -EO (Z) )
cf> U -

1-a y''-v-a-r-(-z-)

we therefore finally get the following expression for the probability 1-ß of

detecting a disturbance ~ with a given false alarm probability a

1-ß = cf>(-2--=--~-2 -u ,_.\ .

uLT 2 up 2 ~
2 2 ·uDKW+ 2 2 ·uDK

U +U U +U
LT DKW P DK

Let us consider some special cases.

If the uncertainty of the position of the separating layer is much greater

h l'f 2 2 tt an the uncertainty of themeasurement of 2DKW, i.e., uLT»uDKW' we ge

the following expression for the detection probability

Now, as we have

2
u DKW+

this means that the Neyman Pearson test statistics is given by

2DKW-

If we compare this probability of detection with that for the test which

uses only the 2DKW signal, we see that the latter is smaller than the first

because of
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2 2
crDKW+crP

although the disturbance of the 2DKW-stream does not have any influence on the

2DK-stream. The reason for this is the process variation of the 2DK-stream

which influences also the 2DKW-stream: The use of the 2DK-signal allows a

sharper discrimination between process variation and disturbances of the 2DKW­

stream.

Furthermore, because of

2 2 2 2
2 crDKW+crDK cr «cr

DK p
2

crp 2
forcr

DKW
+

2 2
·cr

DK
crP+crDK 2 2 2 2

crDKW+crP
cr »cr

DK p

we get the following intuitive result:

i) In case the measurement error of 2DK is small compared to the process

variation, we use the difference 2DKW-2DK as test statistics; in this

way the process variation is completely eliminated.

ii) In the opposite case simply 2DKW is taken as test statistics.

If the process variation is large compared to the measurement uncertain­
2 2

ty of 2DK, i.e., if cr »cr , we get for the detection probability
P DK

1-[5 = ~(-2-=------ß -u 1_a) ,

crLT 2 2
2 2 ·crDKW+crDK

crLT+crDKW

which means that in this case the Neyman Pearson test statistics is given

by

2 2 ·2DKW+

crLT+crDKW

2
cr

DKW
- 2DK
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MUltivapiate Te~t

The Neyman Pearson test does not give any information about significant

deviations of the single process signals from their nominal values. There

may be reasons, however, to get this information which is obtained - at the

expense of the overall probability of detection - by performing tests on the

single signals. We will analyse this multivariate test procedure for the case

of the 2DK- and the 2DKW-stream, thus neglecting the separating layer signal

LT in this section.

The test procedure is defined by the following requirement. If

or 2DKW~sDKW A 2DK<sDK

or 2DKW>sDKW A 2DK~sDK

then it is decided that there i8 no disturbance, otherwise, i.e., if

2DKW>SDKW A 2DK<sDK '

it is decided that there is a disturbance.

The two significance thresholds sDKW and sDK are related to the single

false alarm probabilities a
1

and a
2

according to

f I}
(

SDK-).lDK )
l-a

2
:= prob 2DK > s H = 1-~

DK 0 _~

"crDK+crp

The total false alarm probability a, which is defined by

a := probfDKW>s A DK<s IH},
DKW DK 0

is related to the single false alarm probabilities by
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Da
1

1 -J dt
1

CI, =

2'IT·P -00

2 2]t l -2pt1:2+t 2

2(1-p )

where p stands for the negative correlation of the 2DKW- and the 2DK-stream:

p := -
cov (2DKW , 2DK)

~ var (2DKW) . var (2DK)

Before going on, let us consider some special cases to which this rela­
2

tion applies. For a vanishing process fluctuation, i.e., 0 p=0 we have

In addition the properties of the bivariate distribution (s. also /6/) yield

the limits:

p~O

for

p<O

(our purposes are only served by the second pair of inequalities).

Finally, we have

a 1 a =1
2

a = for

a
2

a =1
1

Figure 8 gives a graphical representation of the relation between a, a
1

, a
2

and p for a totalfalse alarm probability a=O.l and selected values of the

parameter p.

For a disturbance ~ the probability of detection l-ß(~) is defined by

which leads to the following expression
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i-OO

0-60

/'
= -1.0

-0.45p =

0,50
/'

<
/p = -0.17

a 2

O-~O \/<
. ~

0,20 I

I

~
I
I

I
I

I I

0,20 O,~O 0,50 0·60 1,,00

CI, 1

Fig. 8: Presentation of the relation between a, a
l

, a
2

, and p

false alarm probability a=O.l and selected values of the

parameter p.
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/':, -u ua
21-a

~rr~KW+0;
1

J Jdt2 ex+ 2 2]
1-ß(/':,)

1
dt

1

t
l
-2pt

1
t

2
+t

2

21T'P 2' O_p2)
_00 -00

2
we obtainFor o =0

P

1-ß(f'» (ß )~ -U 'a
~ 2 + 2 i-ai 2

0
DKW

0 p

In addition the foliowing limits are valid:

mint( : 2 -u1- nJ- n2)
~ 1-ß ({-,) ~ .( ß -u ) On p~O

~0~KW+0;
1-a 2

~0DKW+0p
1

for

Finally, we have

-u )1-a
1

~ 1-ß(f'» ~ ~ ( f'> -u) +a -1
AI 2 2 1-al 2

" crDKW+0p

p:O;O ,

Um 1-ß({-,)
{-,-+oo [

1 t~-2Ptlt2+t~]
exp - -'

2 2
1-p

In the attempt to get an optimal availability of the process for a given

value of the overall false alarm probability a, the values of the single false

alarm probabilities a
1

and a
2

have to be chosen in such a way that the overall

probability of detection is maximized; i,e, the values of a
1

and a
2

must be

obtained as solutions of the problem of maximization

max (1- ß (a 1 ' a 2) )a 1 ,a2
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where a
1

and a
2

are subject to the boundary condition of a fixed total false

alarm probability"

We shall eliminate now a
2

by the total false alarm probability relation

and look for the maximum of the overall probability of detection with respect

to a 1 "

Using for the derivation of a function of the type

g (x)

F(x) J dt f(t,x)

the well-known formula

g(x)

Jd
dx F(x)

d
f(g(x) ,x)"dx g(x) +

-00

d
dt dx f(t,x) ,

we get with the definition

!1----=--- =: a
J 2 21 <JDKW+<Jp

the following expression for the derivation of 1-ß with respect to a
1

:

d
( 1-ß)

da
1

d r 1da 1 2
21f"P

a+ua1 ua2

j at l jat2

-00 -00

ua
2

1 2" j dt2 exp [- ~
21f" P -00

2 2 ](a+uo,) -2" <a:uo l ) t 2+t2

1-p
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1

2'IT o P

1

~

oexp [ _(a_+_ua--=1=-)_2J 0 cf> (ua2-p 0 (a+ua 1) ) o_du_a_1 +

l 2 P da 1

Using the relation

we get

(1-ß)

By implicit differentiation of the total false alarm relation we get

(

ua -poua) ~a -poua) da 2cf> 2 1 + cf> 1 2 0- = 0

P P da 1

therefore, we finally get

[
a2 ] (ua2- p

0 ca,+u(1 ))
exp - -- -a,oUa ocf>

2 1 ~~
l' l-p



- 26 -

For p=O we get with a=a
l
·a

2

a2 -a.ua).a
21 2

Now it can be shown that

o and
d
-- f (a ) < 0
da

l
1

which means that the optimum value Gf a
l

is given by the smallest possible

value of a
l

, which is

and therefore a = 1
2

This can be understood immediately: p=O means no process variation implying

that the 2DK-stream has nothing to do with the 2DKW-streami therefore, a

disturbance of the 2DKW-stream is detected best by concentrating the testing

efforts on the 2DKW-stream alone.

In the case p<O numerical calculations indicate that the optimum value

of a
l

again is given by the smallest possible value of a
l

, i.e., a
1

=a, a
2

=1.

This result cannot be understood so easilYi in the case of the Neyman Pearson

test we found that the use of the 2DK signal improved the total probability

of detection. Nevertheless, as already mentioned, there may be reasons not to

use those a
l

and a
2

values which maximize the total probability of detection.

Discussion

Table summarizes the testing procedures discussed in some detail above.

With respect to the efficiency, i.e. the probability of detecting a disturb-



Table 1 Summary of testing procedures discussed

Procedure
Probability to detect an
anomalous process state

1-ß(1I) 1)

False alarm
probability

Advantages . Disadvantages

Checking of 2DKW

Checking of 2DKW-2DK

N
-.J

Provides no separate
information on 2DK and
2DKW

Data intense as weil as
arithmetically labouri­
ous procedure

Provides no separate
information on 2DK and
2DKW

Provides no information
on 2DK

Simple procedurei
efficient if

2 2
erp«erDK

With respect to the
probability of detec­
tion the best 'paral­
lel' procedure

Relatively simple pro­
cedurei efficient, if

2 2
erDK«erp

Provides separate in­
formation on 2DK and
2DKW

0.

0.

0.

B (U , U , p)
0.

1
0.

2

2)

1I

!S. )-U

2 2 er 2 1-0.

(}DKW+er . P
DK 2 2

erDK+erp

!S.

1I

J 2 2,1 erDKW+erp

-' 2 21 erDKW+erp

<P

<P. ~ 2 2
. erDKW+erDK

·2DK
2 2

erDK+erp

(Neyman Pearson)

Checking of
2

erp
2DKW-

Parallel checking of
2DKW and 2DK

1) e.g. blocking of 2DW results in an increase by !S. of the 2DKW flow.

1
2) B(x,y,p) := .r.--:2

21T· "l-p

x

.j
-00

dt
1

Y

jdt2

-00

[

1
exp - 2

2· (1-p )
2 2J. (t
l
-2pt

1
t

2
+t

2
) .
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ance (for a given probability of error), the Neyman Pearson procedure is much

better than the other testing procedures mentioned. For demonstration, the

next ch~pter will present some results obtained with numerical exercises.

The qualitative advantages and disadvantages are discussed in the last

two columns of table 1. It should be pointed out that generally, the proce­

dures of checking separately, the 2DKW- and the 2DK-stream provide specific

information on the two streams. Finally, it should be mentioned that all pro­

cedures might be generalized. Of course, the first two as well as the Neyman­

Pearson test benefit by a generalization to be performed quite easily. A

generalization of the fourth procedure could induce arithmetic difficulties

because multivariate distributions must then be used.

3.2. Outline of the analysis of the second example

Without giving the full analysis of the second example presented in the

second chapter (2.2.) we will outline it below in order to point to the new

aspects arising in a situation where more than one cause of a deviation from

nominal values may exist.

Let us make the following assumptions

i) Under HO we have

Xl := 3EU = ~3EU + e 3EU + d

X
2

:= 2UC ~2UC + e 2UC + d

~ + e + a·d
p p

~ + e + dT2UC T2UC

where 3EU, 2UC, p, and T are the measurement values and where ~, e,
2UC

d, and a represent the nominal value, the measurement error, the process

variation, and a constant factor, respectively.



- 29 -

ii) As already described for the second example (section 2.2.), an anomalous

process behaviour might be induced through blocking of the airlifts

311/541 related to the transfer of the 3EU-stream. This blocking may re-'

sult in a decrease of 3EU by ~1: therefore, under H~l) we have:

Xl 3EU 113EU - .6 1
+ e

3EU
+ d ,

X
2

2uc 112UC - L\1 + e
2UC

+ d ,

X
3 P IIp + b·L\l + e + a·d ,

p

X
4

T llT2UC - c·L\ + e 2 + d .
2UC 1 T UC

iii) Anomalous process behaviour might also be induced through blocking of

the airlifts 551/101/102 as weil as of the piping carrying the 2UC-stream.

This may result in a decrease by L\2 of 2UC: therefore, under H~2) we have:

Xl 3EU 113EU + e 3EU + d (same as under HO) ,

X
2

2UC 112UC - L\2 + e 2UC + d ,

X
3 P IIp + f·L\2 + e + a·d ,

p

X
4

T
2UC llT2UC - p.L\ + e

T2UC
+ d .

2

Among others, the following test procedures seem to be reasonable: Firstly,

we perform an overall check (Neyman Pearson test) using all data (X
1
... X

4
)

available. In this case we have to make adecision about the alternative hypoth­

esis H
1

: Either we take the combination of H~l) and H~2) or we take only

H~l) or H~2). In the first case the test is not optimal, if, in fact, only one

disturbance is given, in the second case vice versa. Furthermore, it should be

mentioned that in case the test result is significant, we cannot make out which

cause led to the significance.
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To avoid these two difficulties, separate tests (Xl and X
3

, on the one

hand, and X
2

, X
3

and X
4

, on the other hand) can be performed. However, such

a procedure has also two disadvantages:'First, it is not optimal for any

alternative hypothesis, i.e., the overall probability of detecting any dis­

turbance is lower than for the procedure described before. Second, in order

to guarantee a given overall false alarm probability, we have to use the

rather complicated formalism described before.

The quantitatiye evaluation of these two procedures will be the subject

of a forthcoming paper.
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4. Availability considerations

In the study presented so far the false alarm rate has been introduced

as a parameter of the problem. In the following paragraphs it will be described

in which way the value of the false alarm rate can be determined by means of

availability considerations.

Evidently, the availability will decrease if too many errors of the

operator result in unnecessary shutoffs of the process; vice versa, the avail­

ability will possibly decrease even more seriously if one hesitates to inter­

rupt the process in case there is a disturbance. Therefore, an optimal value of

this false alarm rate must exist at least from the viewpoint of an optimal

availability of the process.

Let us assume, e.g., that the Neyman Pearson test is performed at equi­

distant times, and furthermore, that at such a time the process is disturbed

in the way described above with the probability p. The losses in production

time in case of a shut-down are

a if there is no ~isturbance,

b if there is a disturbance and no action is taken,

c if there is a disturbance and no action is taken.

Here, we assume O<a<b<c. Then the expected loss in time is

a·a+O· (i-a) if there is no disturbance,

b· (1-ß)+c·ß if there is a disturbance.

Therefore, the (unconditional) expected loss in time E(a) is

E(a) = a·a·(1-p)+((b-t:(c-b)·S))·p

The optimal value of a is the value which minimizes the expected loss in time.

It is determined by the relation

a· (1-p)+(c-b) .p.(3' (a) = 0 .

As the derivative ß' (~) of (3 with respect to a is a negative, monotonously

increasing function of a with

ß' (0) -00 , ß'(1)=O,

there exists exactly one optimum value a with the following properties
opt
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ii)
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0. decreases with increasing a for fixed values of b, c and p: If the
opt

time loss in case of a false alarm is high, one should be careful with

shut-downs.

0. increases with increasing c-b for fixed values of a and p: If the
opt

time loss in case of a not detected disturbance is relatively high, one

should not hesitate to shut down the cycle.

iii) 0. increases with increasing p for fixed values of a, band c: If the
opt

frequency of disturbances is great, one should not hesitate to shut down

the cycle.

Figures 9 and 10 display in a qualitative way the dependence .on 0. of

E(a) and Er (0.), respectively.
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o
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;

Fig. 9: E(a) as a function of a.
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o

-(c-b). ß'(a)·p
/

a(l-p}

a. aopt

Fig. 10: E' (a) as a function of a.
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5. Numerical illustration

For simplicity we only consider the case that the uncertainty of the

position of the separating layer is much greater than the measurement uncer­

tainties and the process variation. We assume

~2DK = 1[2/h]

Experience shows that the process variation is of the order of 10 %; we
2 2 2 2

shall consider now the two cases 0 p=0.10 and 0.15 [(2/h) ].

Figures 11 and 12 show the results of the determination of the power of

the test procedure as a function of the disturbance. One can see in which way

the process variation influences the probability of detection. Furthermore, it

is shown that isolated checking of the 2DKW-stream results in a detection

probability, which is considerably higher than that obtained by parallel

checking (a
1

=a
2

) of the 2DK- and 2DKW-streams. Application of the Neyman

Pearson test gives the highest detection probability.

A difficulty with respect to the determination of the optimal values of

the false alarm probability lies in the fact that it depends upon the value

~ of the disturbance. For illustrative purposes we assume

and furthermore a=l resp. 2[h], b=6[h] and c=12[h]. The result of the calcu-

lation is shown in figure 13 which proves the qualitative discussion above.

*) It should be noted that the 2DKW-stream alone has a lower value; this

stream, however, is measured together with three further kerosine streams,

which leads to the value indicated.
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Fig. 11: Probability of detection as a function of the disturbance!:. with a false alarm rate

a=O.l for different test procedures and a process variation 0 =0.10.
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Fig. 12: Probability of detection as a function of the disturbance 1'1 with a false alarm rate

a=O.l for different test procedures and a process variation crp=O.15.
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tion time in case of shutdown if there is no disturbance) .
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ANNEX:

The common distribution of two measurements with independent,

normally distributed measurement errors and a common, normally

distributed calibration error

Let us assurne that there are two measurements Xl and X
2

which can be

written as

where ~l and ~2 are the true values, e
l

and e
2

the independent, normally dis­

tributed random measurement errors and d is the normally distributed random

calibration error which is the same for both measurements. Let usfurthermore

assume that the first two moments of these errors are known:

var(e
1

) 2
°1

var(e
2

) 2
°2

var (d)
2

0
d

E(d) = 0

cov (ei' d) cov(e
2

,d) o .

This means that the common density of e
l

, e
2

and d is given by

f d(U
l

,U
2

,U
3

)e
l
,e

2
,

1
3

( 21T) 2

In order to determine the common density of Xl and X
2

, we define the fol­

lowing transformation
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the inverse transformation of which is given by

e 1 X1-X3-)l1

e 2 X2-X3-)l2

d X
3

•

According to the transformation law of random variables /7/ the cornmon densi-

(21f)- %._l_._l_._l_._l_.
exp

[ 1. [(X 1-X3-)l1)2 +

°1 °2 °3 IJI l 2 o~

where IJ[ is the absolute value of the Jacobian determinant of the transfor­

mation, defined by

dX
1

dX
1

3X
1

dei 3e
2

3d

J

dX
2

3X
2

3X
2

3e
1

3e
2

3d

dX
3 3X~ 3X

3
3e

1
3e

2
3d

1

o

o

o

1

o

1

1

1

1

The density of (X
1

,X
2

) therefore is given as the marginal density of (X
1

,X
2

,

X
3
), Le.,

00

f
-00

3
2 1 1 1'-.-'_'

°1 °2 °3
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Now, because of

where a is a constant, and where

is the correlation between Xl and X
2

, we get

3
2
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As can be seen immediately, this can be written as

3
2 \ -1 1 \-1

(27f) , (det(L.» 'exp(- 2' (~-~) " L. (~-J:l.»

where the covariance matrix I ' defined by

is given by

2 2
°1+°3

and where the vectors x and J:l. are given by

2 2
°2+°3

x (:: ). ].l




