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ABSTRACT

Many measurement problems can be formulated as foliows: First, a cer­

tain linear relationship between two variables is to be estimated by using

pairs of input and output data; thereafter, the value of an unknown input

variable is to be estimated given an observation of the corresponding out­

put variable. This problem is often referred to as inverse regression or

discrimination.

In this paper first non-Bayesian approaches to the problem, thereafter

the Bayesian approach by Hoadley are presented. Third, a Bayesian approach

by Avenhaus and Jewell is discussed which uses the ideas of credibility

theory. Finally, a new Bayesian approach is presented. The advantages and

disadvantages of the various approaches are put together.

ANSÄTZE ZUR INVERSEN LINEAREN REGRESSION

ZUSAMt'1ENFASSUNG

Viele Meßprobleme können in folgender Weise formuliert werden: Es ist zu­

erst ein linearer Zusammenhang zwischen zwei Variablen mit Hilfe von Paaren

von Eingangs- und Ausgangsdaten zu schätzen, anschließend ist der Wert einer

unbekannten Eingangsvariablen zu schätzen, die zu einer beobachteten Aus­

gangsvariablen gehört. Probleme dieser Art werden oft als "Inverse Regres­

sionsprobleme" oder als "DiskriminierungsproblemeIl bezeichnet.

In dieser Arbeit werden zu Beginn Ansätze zur Lösung dieser Probleme ohne

Verwendung der Bayes'schen Theorie dargestellt. Im Anschluß wird der Bayes'

sehe Ansatz von Hoadley diskutiert. Weiter wird ein Bayes'scher Ansatz von

Avenhaus und Jewell dargestellt, der die Methoden der Credibility-Theorie

verwendet. Schließlich wird ein neuer Bayes' scher Ansatz präsentiert. Es

werden die Vorzüge und Nachteile der verschiedenen Ansätze zusammengestellt.
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FORMULATION OF THE PROBLEM

The relationship between an independent variable x and a response

variable y can often be described by the linear regression model

y. = a+ß·x.+cr·u. ,
1. 1. 1.

i=I, ... ,n,

where the u .. are independently and identically distributed random variables
1.

with means zero and variances one. Usually the u. are assumed to be normal­
1.

ly distributed, i.e.,

p(u.::;t)
1.

t

L
,2

exp(- _t_)dt'
2

i=I, ... ,n.

The problem is to estimate the unknown parameters a, ß and cr.

The inverse linear regression problem is an extension of the above:

here, in addition to the responses corresponding to the n known independent

xi' there are m further responses z], ••• ,zm' corresponding to a single un­

known x. The model is

y. = a+ß·x.+cr·u.
1. 1. 1.

z. = a+ß'x +T·V.
1. . J

i=l, ... ,n

j=l, •.. ,m

where u. and v. are independently and identically distributed random vari-
1. J

ables with means zero and variances one. The problem is to make inferences

about x.

Four examples of this class of problem are given below.

Ca libration and Indirect Measurement of Nuclear Materials

Nuclear materials, e.g. plutonium, are extremely difficult to

measure directly by chemical means. Therefore, one uses indirect

methods, based upon the heat production or the number of neutrons

emitted, in order to estimate the amount of material present. From

well-known physical laws, we have a general relationship between

these variables, but any measurement instrument based on these

principles needs first to be calibrated. Usually, this calibration

can be done with the aid of standard inputs, containing known

amounts of nuclear materials. However, these inputs (x.) are not
1.
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generally under our control, and in some cases, may have residual lm­

precisions in their values.

Measurement instruments often have longer-term drifts, during

which they tend to loose their original calibration. For this reason,

measurement of a given production run often consists of two distinct

phases: (re)calibration of the instrument, and actual indirect meas­

urement. With a fixed amount of time available, it is of interest to

determine how much time should be spent on the two phases, assuming

that additional time spent on each observation reduces observational

error.

Estimation of FamiZy Incomes by PoZZing

We wish to estimate, through a public opinion poIl, the distribu­

tion of family incomes in a certain city district. As the major part of

the population will not be willing to divulge their incomes, or will

give only a very imprecise figure, we look for adependent variable

which can be more easily determined. According to the literature (see,

e.g. Muth (1960)), housing expenses are strongly related to family in­

come, and, furthermore, it may be assumed that the population is less

reluctant to divulge this figure, even though they may not be able to

do so precisely. Clearly, to determine this relationship exactly, we

must have some families in this district who are willing to give both

their total income and their household expenses. On the other hand, we

have strong prior information on this relationship from similar sur­

veys, and may have general information on income distribution from

census and other sources.

Missing VariabZes in Bayesian Regression

In a paper with this title, Press and Scott (J974) consider a

simple linear regression problem in which certain of the independent

variables, x., are assumed to be missing in a nonsystematic way from
1

the data pairs (x.,y.). Then under special assumptions about the error
1 1

and prior distributions, they show that an optimal procedure for esti-
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mating the linear parameters is to first estimate the missing x. from
~

an inverse regression based only on the complete data pairs.

Bioassay

Using the methods of bioassay the effect of substances given ~n

several dosages on organisms is investigated. A problem of inverse re­

gression arises if first parameters of dosage response curves have to

oe estimated by evaluation of observations and later on an indirect as­

say is carried out to determine the dosage necessary for interesting

effect (see, e.g., Rasch, Enderlein, Herrendörfer (1973».

Problems of this kind are described in textbooks on the theory of meas­

urements and are sometimes called discrimination problems (Brownlee (1965),

Miller (J966». They differ from the subject of 'Stochastic Approximation'

(see, e.g., Wasan (1969» in that the regression function is assumed to be

linear. Stochastic approximation only requires some monotony, but this ad­

vantage is invalidated by the superiority of standard methods to the sto­

chastic approximation method in the case of linear regression functions. There­

fore the procedures of stochastic approximation will not be examined in this

report.

In the following first the non-Bayesian approaches to the inverse

linear regression problem are presented, especially the difficulty of the

infinite variances of all the estimates is outlined. Thereafter, the

Bayesian approach by Avenhaus and Jewell (1975) is discussed which uses the

ideas of credibility theory and which has been written down so far only ~n

form of an internal report. Finally, a new Bayesian approach is presented

here for the first time. In the conclusion the advantages and disadvantages

of the various approaches are put together. The present situation may be

characterized in such a way that there are promising attempts but that there

is not yet a satisfying solution to the admittedly difficult problem.
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NON-BAYESIAN APPROACHES

A well-known approach is first to estimate a and S. The max~mum like­

lihood and least squares estimates of a and ß based on YJ""'Yn are

n
L (x.-~)·(y.-y)

i=) ~ ~

n 2L (x.-~)
i=) ~

/\
a

- A­
Y - ß'x

where y and x denote the mean values of Y)""'Yn and of xJ"",xn respective­

ly. This leads to the 'classical' estimator

- /\
z-a

~

It can be seen immediately that ~C coincides with the max~mum likelihood
2 2estimator for 0 >0, T >0 and normally distributed u

i
' v

j
: The likelihood

function of a, ß, 0, T and x is given by

2(27f() )

2(2n )

n

2 ) n 2
'exp(- -, L (y.-a-ß·x.) )

202 i=1 ~ ~

m

2 1 m 2
'exp(- -2' L (z.-a-ß·x) )

2T j=1 J

The partial derivatives oL oL and oL d 1 zero yield the equa-3a' aß ox assume to equa

tions

- __1 .L(y.-a-ß'x.) - __1 ·L(z.-a-ß·x) 0
2. ~ ~ 2,'J

o ~ T J

- __1 'L(y.-a-ß·x.).x. - __I ·l(z.-a-ß'x)'x = 0
2. ~ ~ ~ 2. Ja ~ T J

- l-2· L(z.-a-ß·x)'ß O.
. J

T J
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By exclusion of ß=O one obtains L(z.-a-ß·x)=O. Hence the first two equa-
J

" ~.tions reduce to the usual equations for the last square estimators a and

The solution of the third equation is then given hy "xC'

One cannot judge this 'classical' criterion of minimizing the mean­

square deviations, however, because of

"and furthermore, because Xc has an undefined expectation value.

Krutchkoff (1967) proposed the inverse estimator ~I defined by

~ + ~.~ ,

where

f(Yi-Y)'(xi-i)
1

" - /).­y = X - o'y

are the least squares estimators of the slope and intercept when the x. 's
1"

are formally regressed on the Yi's. Although the mean square error of XI

is finite, Williams (1969) doubted the relevance of ~I' He showed that if

a 2 (=T2) and the sign of ß areknown, then the unique unbiased estimator of

X has an infinite variance. This result led hirn to the conclusion that since

any estimator that could be derived in a theoretically justifiable manner

would have an infinite variance the fact that Kruttchkoff's estimator had a

finite variance seemed to be of little account.

Williams suggested to use confidence limits which should provide what

is required for inverse linear regression. Hence the two papers of Perng

and Tong (1974 and 1977) could meet his approval. They treated the problem

of the allocation of n and m for the interval estimation of X so that the

probability of coverage is maximized when the total number of observations

n+m is fixed and is large.
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An independent discussion of the inverse linear regress~on problem

was given by Hoad1ey (1970) for O=T. Part of his resu1ts will be presented

in the fo110wing.

Without lass of genera1ity it is assumed

xx. 0.{ ~
~

The max~mum 1ike1ihood estimators of 0 based on y a10ne, z a10ne and both

y and z are

Vz = __I__.\(z._~)Z
m-I {. J

J

v

The F-statistic, defined by

!'.ßZn'F :=-­
v

where g is the maximum 1ike1ihood estimator of ß, is often used for testing

the hypothesis ß=O, as in fact under this hypo thesis F is F-distributed

with land n+m degrees of freedom.

In case of m=I a confidence set S ~s derived form the fact that

g. (~ -x)'
C

n
Zv· (n+I+x )

has at-distribution with n-Z degrees of freedom. If F ~s the upper a
a; I ,v

point of the F-distribution with and v degrees of freedom, one gets

{x: ~::;x::;~} if F>F
a;I,n-Z

S {x: x::;~}u{x: x~~} if n+I 'F <F<F= AZ
n+I+x

C
a;I,n-Z- a;I,n-Z

(-OJ., +(0) if F< n+I ·FAZ a;I,n-Zn+I+x
C
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where ~ and ~ are equal to

A
F'x

C
F-Fa; I ,n-I

I

{ A2 }2F I 2'[(n+I)'(F-F I 2)+F'xc]+ a; ,n- a; ,n-
F-Fa;I,n-2

A
with ~<~, A graphical display of S is given in Figure I for n=9, x=I.

As we see, this confidence set is not very helpful if

F< n+I 'F
I A2 a;1,n-2n+ +x

C

In this case ~ is not significantly different from zero, which may tempt

one to conclude that the data provide no information about x,
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Xu for F:> 5.59

xl forF>5.59

---Xufor 5.08<F<5.59

---Xl for 5.08<F < 5.59

Camparisan af 95 % Canfidence Set and 95 % Shartest

Pasteriar Interval (SPI) far n=9, ~=I (after Haadley

(1970)).
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THE BAYESIAN APPROACH BY HOADLEY

The situation is changed substantially if Bayesian rules are admitted.

Since Bayesian rules are usually biased, the absence of an unbiased estima­

tor for x with finite variance does not matter. Furthermore, whenever F>O

a shortest posterior interval can be obtained [rom the posterior distribu­

tion of x after the observation of Yl"'Yn and zl ... zn'

For the sake of completeness some properties of Bayesian rules will be

derived as given, e.g., by Ferguson (1967). Let 8EG denote the state chosen

by nature. Given the prior distribution ~ on G, we want to choose a non­

randomized decision rule d that minimizes the Bayesian risk

r(~,d) := f[f~(8,d(k))dFK(kI8)Jd~(8) ,

where ~(.) denotes the loss function and FK(. 18) the distribution function

conditional on the chosen 8. A choice of 8 by the distribution ~, followed

by a choice of the observation K from the distribution FK(. 18) determines in

general a joint distribution of 8 and K, which in turn can be determined in

general by first choosing K according to its marginal distribution

and then choosing 8 according to the conditional distribution of 8, given

K=k, ~(. !k). Hence by a change in the order of integration we may write

r(~,d)

Given that these operations are admitted, it is easy now to describe a

Bayesian decision rule. To find a function d(.) that minimizes the last

double integral, we may minimize the inside integral separately for each

k; that is, we may find for each k the decision, call it d(k), that mini­

mizes

f~(8,d(k))d~(8!k) ,

~.e., the Bayesian decision rule minimizes the posterior conditional ex­

pacted loss, given the observation.

In the case of the inverse linear regression problem let p(8) and

p(8Idata) denote the prior and posterior density of the unknown parameter 8,
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respectively. It is assumed that (a,ß,~n cr) has a uniform distribution, i.e.,

( 2) 1 • *)pa,ß,cr 0: 2cr

The most important results of Hoadley are given in form of the following

two Theorems.

Theorem 1

Suppose that, apriori, x is
2prior distribution of (a,ß,cr ) is

2independent of (a,ß,cr ), and that the

specified by

2
p(a,ß,cr )

1
0:-

2cr

Then the posterior density of x ~s g~ven by

where

and where

L(x)

m+n-3
n 2 2(1+ - +x )
m

R
F

F+m+n-3
[]

The function L(.) is a kind of likelihood function representing the

information about x obtained from all sources except for the prior distri­

bution of x. As it turns out L(.) has a lot of unpleasant properties. It

seems that a proper prior for x is aprerequisite to sensible use of the

Bayesian solution in the preceding theorem.

In the case m=1 the inverse estimator ~I can be characterized by the

following

*) In Bayesian inference, the notation uo:v indicates that the function u

is up to a proportional factor equal to v.
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Theorem 2

If, apriori,

~
+Ix=t ._-

n-3 n-3

where the random variable t 3 has at-distribution with n-3 degrees of free­
n-

dom, then, aposteriori, x conditional on Y1""'Yn ' zl"",zm has the same

distribution as

Ax + t •
I n-2 F+n-2

where t 2 has at-distribution with n-2 degrees of freedom.
n-

o

This Theorem provides a better understanding of the inverse estimator

~I as weil as of Bayesian estimators in general. It seems that this result

has not yet been extended to a broader class of informative priors due to

technical difficulties. The papers by Halperin (1970), Kalotay (1971) and

Martinelle (1970) treat other aspects and do not extend the Bayesian ap­

proach.

The following two approaches start from a Bayesian point of view, too.

By restriction of the class of admitted estimators they need only the know­

ledge of some moments instead of the whole apriori distribution of a, ß, cr,

T, and x.
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THE TWO-STAGE LINEAR BAYESIAN APPROACH ACCORDING TO

AVENHAUS AND JEWELL (J 975)

1
With the help of this approach the problem is solved in two stages. )

At the first stage estimators for a and ß, which are linear in

YI""'Yn' are constructed in such a way that a quadratic loss function is

minimized. At the second stage an estimator for x, which is linear in the ob­

servations zl ... zm is constructed in such a way that a second quadratic
2

funtional is minimized. Since the apriori expected value of the variance °
is not updated, only the apriori first and second moments of a, ß, o, T, and

x are needed.

Generally the procedure may be described as follows: Let 8EG denote

the state chosen by nature, and let ~ denote the prior distribution on G.

Using a quadratic loss function

2
~(e,d) = const.(8-d)

for the decision d, the posterior quadratic loss E(e(e,d) \K=k) for g~ven ob­

servation K=k is merely the second moment about d of the posterior distribu­

tion of e given k:

E(e(8,d) \K=k)

This posterior quadratic loss is minimized by taking d as the mean of the

posterior distribution of 8 given k. Hence the Bayesian decision rule ~s

d(k) = E(8IK=k) .

This procedure now will be applied to the Bayesian version of the in­

verse linear regression problem which will be presented once more for the

sake of clarity.

2m+2n+5 random variables

are considered which are defined on a probability space (Q,~P). It ~s as­

sumed that the random vectors (a,ß,0,T), x, u1 , ... ,un , vl, ... ,vm are stochas­

tically independent and that the following equations hold:

I) In the original paper by Avenhaus and Jewell (1975) only the case 0=T and

m=] was considered.
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y. a + ß·x. + Ci·U. i=I, .•. ,n
~ ~ ~

z. a + ß·x + T'V. j=I, ... ,m .
J J

It is assumed that the first and second moments of u. and v. are known:
~ J

E(u.) = E(v.) = 0,
~ J

2 2E(u.) = E(v.)
~ J

1•, i=l, ... ,n j=I, .•. ,m

In the model of decision theory the samp1e space is the (n+m)-dimen­

siona1 Euc1idean space; the statistician chooses adecision function d,

d: m+n
R --> R,

which gives for each observation of va1ues of Y1""'Yn ' zl, ••• ,zm an esti­

mate for x, in such a way that the Bayesian risk be10nging to a 10ss func­

tiona1 ~,

fI.,: R x R --> R

is to be minimized: Let ~ ß be the apriori distribution of a, ß, Ci, Ta, ,Ci,T,X
and x, and let P (. la,ß,Ci,T,X) be the conditiona1 distri-

y 1' ... , yn' z 1' ..• , zm

bution of Yl""'Yn' zl, ... ,zm given a, ß, Ci, T and x. Then the Bayesian risk,

defined by

r(~,d(.» fR(al,ßI,CiI,T',Xr,d(.»d~ ß (a',ß',Ci',T',X')a, ,Ci,T,X

2fI.,(x,d) = const.(x-d)

where R(.) is defined by

R(a' ,ß' ,Ci' ,T' ,x' ;d(.»

= ffl.,(x',d(sl'···'s ,t 1, ... ,t »dP (sl, ..• ,t la',ß',Ci',T',X') ,
n m Yl""'Yn,zl, ... ,zm m

is to be minimized.

It has been pointed out a1ready that in the case of a quadratic 10ss

function

the solution of the minimization problem is

z.
J

t. ,
J

i=I, ... ,n, j=I, ... ,m).
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The first theorem of Hoadley given in the preceding chapter highlights

the complexity of this conditional expectation. Therefore, Avenhaus and

Jewell (1975) use at the first stage of their approach the following approx­

imate estimate for x, which is extended here to arbitrary m,

The functions

c .: IRn --> IR
J

j =0,1, ... ,m ,

are determined in such a way that the mean square error of x, with z :=1o
and using the definition of the conditional expectation g1ven by

m 2
E(x- I c.(y., ... ,y )·z.) :=

j=O J J n J

is minimized. This is performed by first minimizing the conditional expecta­

tion of the mean square error, given by

m 2
E((x- l. c.(.)·z.) IY1=s1""'y =s )

j=O J J n n

m 2
= !(r- I c.(.)·t.) dP (r,tl, ... ,t IYI=sl""'y =s )

. 0 J J X'ZI""'Z m n nJ= m

Derivation with respect to the cO' cl, ... ,cm gives

m
f (r- I C.· t . ) dP

j=O J J

m
!(r- I c.·t.)'t dP

j=o J J Q.,

m

E(x)-cO- l. c"E(z.IYl=sl'···'y =s )
• 1 J J n n
J=

m
- I c.·E(z.·zo IYI=sl""'y =s ), Q.,=1, ... ,m

j=l J J 1v n n
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Putting these derivations equal to zero, we obtain the following necessary and

sufficient conditions for the c
O

,c
1

' ... ,cm:

m
E(x) - 1. c.(sl'·"'s )·E(z. IY1=sl'·"'y

j=1 J n J n
= s )

n

n
L c. (s 1' ..• , s ). cov (z . , zn! y 1=s 1' ... , y =s )

. 1 J n J JV n n
J=

s ) ,
n

2= I, ••• , m •

Actually it is not necessary to consider this system of m+1 unknown

cO,cl, •.. ,cm' since all relevant information of the sequence zl, ... ,zm ~s

contained in the mean value

1 m
z := -' I z ••

m • 1 JJ=

This can be proven as folIows: Let ~'(Sl""'s ),' j=O,I, denote the mini-
J n

mizing coefficients for the case m=l. If we write zl=:z, then the ~j' j=O,I,

are given by

s )
n

cov(x,~IYI=sl'···'Yn=sn)

var(~IY1=sl'···'Yn=Sn)

Now it can be verified easily that in the general case m>1

solve the system of equations given above. Hence it suffices to consider

z, which means that the estimator can be written as
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Explicitly the terms, which are contained in this solution, are given as

follows (for the sake of simplicity we write Yi=si instead of Yl=sl"'"

y =s ):
n n

E(i!y.=s.) = E(aly.=s~) + E(Sly,=s.)·E(x)
~ ~ ~ ~ ~ ~

-, Icov(x,zIY'=s.) = E(S y.=s,)·var(x)
~ ~ ~ ~

var(zl [y.=s.) = var(aly.=s.) + 2·E(x)·cov(a,Sly.=s.) +
~ ~ ~ ~ ~ ~

+ var(x)' ((E(Sly.=s.)2+var (Sly.=s.» +
~ ~ ~ ~

The remaining problem, which represents the second stage of this ap­

proach, is to determine the conditional expectations

E(aly.=s.), E(S!y.=s.), var(a!y.=s.), cov(a,S!y.=s.)
~ ~ ~ ~ ~ ~ ~ ~

var(Sly.=s.) and E(T2 Iy.=s. ) .
~ ~ ~ ~

Avenhaus and Jewell do not use the observations of y. in order to get a bet­
~

ter estimate for a2
, instead they replace E(a 2 Iy.=s .. ) by the apriori moment

2 ~ ~

E(a ). All other terms are estimated by means of linear estimators for a and

S,

n
SB := So + I S.·y.

i=1 ~ ~

in such a way that the expectation of the quadratic loss function,

E((a-a -Ia,·y.)2 + (S-S -\S.·y.)2)o : ~ ~ 0 f ~ ~
~ ~

~s minimized with respect to the unknown aO' a i , ßO and ßi , This leads to
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the following system of equations

n
aO = E(a) - I a.· (E(a)+E(ß·x.»

i~1 1 1

n
E(ß) - I ß.· (E(a)+E(ß·x.»

i~1 1 1

n
La..cov (y . , y . )

j=1 J 1 J
cov(a,a+ß·x.), i=I, ... ,n,

1

n
l. ß.·cov(y.,y.) = cov(ß,a+ß·x.), i=I, ... ,n.

j=1 J 1 J 1

It can be shown (Jeweil 1975) that the solution can be written as

where

T 2 T-1
M = C'X 'x'[I2'E(~ ) + C'x 'x]

C

x

(
var(a)

cov(a, ß)

cov(a, ß»)

var(ß)

(

y 1 \
T -I .

(x . x) . xT. :}

Yn
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Now, E(aly.=s.) and E(Sly.=s.) are estimated by aB(s], ... ,s ) and SB(s], ... ,
~ ~ ~ ~ n

s ) respectively. The second moments of a and S, i.e. the covariance matrix
n

(

var (a Iy . =s .)
~ ~

cov(a,Sly.=s.)
I ~ ~

cov(a,S !y.=s.))
~ ~

var(Sly·=s.)
~ ~

As already mentioned, the method does not use an aposteriori estimate
2for cr • This might easily be changed if one assumes that the apriori estimate

was derived from a trial with a known number N of observations YI""'YN' Also

1 '1 f b' b d h . . f 2. ha mu t~p e 0 0 servat~ons of z could e use for t e est~mat~on 0 cr ~n t e

case of cr=T. Furthermore the problem haB to be reconsidered whether or not the

loss function for the estimation of a and S is appropriate.



- 19 -

A QUADRATIC BAYESIAN APPROACH

This approach tries to maintain the property of linear Bayes estima­

tors insofar as only some moments have to be known and not an apriori dis­

tribution of a, ß, 0, T and x.

The idea is the following: Instead estimating the parameters a, ß and

T of the relation

z. = a+ß·x+T·V. ,
J J

the parameters of the transformed relation

j=I ...m ,

x = y+o·z.+w. , j=I ...m,
J ]

where

w.
J

T
- -rVj

are estimated by estimators which are linear in Yi' i=I ... n •

Explicitely the estimator for x is given by

A A ~ /:;
xQ = y+ L 0.' z .

j=1 J J

Awhere the estimators y and

A
Y

~.
J

~. ,
J

n

do]' + l. d .. •y .
i:::1 ~J ~

j=I. ..m ,

are determined in such a way that the Bayes risk, belonging to the quadrat­

ic loss,

f
A ~ /:; 2(-x+y+ L o,·z.) dP

j =1 J ]

m n 2
!(-x+ I l. d .. ·y.·z.) dP,

j=O i";O~] ~ ]

where zO=YO=I, is minimized. The solution yields a quadratic estimator

m n
~Q I l. d .. ·y"z.

j=O i~O ~J ~ J



- 20 -

the coefficients of which are the solution of the following system of equa­

tions

m n
!(-X+ L l. d .. ·y.·z.)·yk·zo dP = 0, k=O, ... ,n; ~=O, ... ,m,

j =0 i=O 1J 1 J N

which is obtained by differentiating the Bayes risk partially with regard

to the parameters dk~' In terms of the moments of Yi and z~ this system of

equations has the form

m n
L L d1·J··E(Y1··Yk·zJ.'zo) = E(x'Yk' zn ), k=O, .•. ,n; ~=O, ... ,m,

j=O i=O N N

which means that only the first four moments are needed.

RoZe oi Observations z.
J

It seems to be plausible that each observation z., j=l, ... ,m, should
J

have the same importance for a fbest f estimator of x. Therefore we replace

zl in the case of m=l by the mean value

1 m
z :=--l.' z.

m j=l J

and ask for the risk minimizing parameters d .. , i=O, ... ,n, j=O,I, of the
1J

estimators

for y and 0 of

x := y+o'z+w •

Since the risk is a convex and quadratic function of d .. the optimal d ..
1J 1J

are completely determined as solutions of

k=O, •.• ,n; ~=O, 1 ,
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-0
where z :=1. Since

where

j , 9,= 1, ••• , m •

x(j,~) :. { 0 for

we get

j =9,

where

2
E (y .• T )

~
i=I, ... ,m,

2 2E (y .• T )
~

i= I, ... , m ,

We show that the estimator

1 n .

L I d~J'· (~)J
j=O i=O .L

represents a solution of our original problem. Let

j=I, ... ,m, i=O, ..• ,n.

It is easily shown that these terms solve the original system of equations

therefore

I Ld .. ·E(y. ·Yk· z •• zn )
. . ~J ~ J N
J ~

E(x'y 'z )k 9,



- 22 -

m n
I L d .. ·y.·z.

j=O i=o ~J J J

is the risk minimizing estimator for x.

I

L
j=O

n .
\' - - J
L d .. (z)

i=o ~J

It should be noted that the mean value estimator ~s not always the

single solution.

Unbiasedness

The first equation (k=2=0) of the system of equations determining d .. ,
~J

m n
L L d .. ·E(y. ·z .. ) = E(x) ,

j=O i=o ~J ~ ~J

shows that the estimator is unbiased with regard to the apriori distribu­

tion.

One would regard the estimator as trivial if dOO=E(x) and

(i,j)#(O,O), i.e., if the estimator neglected the observations

zl, ... ,zm' By inspection of the equations determining the dij ,

if and only if

d .. =0 for
~J

of yl' ... , yn'

this holds

or equivalently if

2var(x)'E(a'ß+ß .~) = 0 , k=O, ... ,n ,

var(x) = 0 or E(ß2) O.

Hence these cases have to be excluded.

CorrrputationaZ Procedure

In the following we consider only the mean value z of observations

z., j=l, ... ,m. Therefore we write z instead of ~ for the sake of simplici­
J

ty. For the same reason we write d .. instead of d.. , i=O,I, ... ,n, j=O,I.
~J ~J

This can be interpreted as the description of the situation where one has

1 b . 'h h 12. d f 2on y one 0 servat~on zl w~t t e error m'L ~nstea 0 L.

In the case that the first four joint moments of Yl""'Yn and z can

easily be obtained, another system of equations can be used for the deter­

mination of the estimator. With the definitions
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n
A:= I d·o·Y' ,

i=1 ~ ~

n
B:= I d' l 'y.

i=1 ~ ~

the system of 2'n+2 equations for the coefficients diO' dil , i=O, ... ,n ,

has the following form:

dOO + E(A) + d01'E(z) + E(B'z) = E(x)

2 2
dOO'E(z) + E(A'z) + dOI'E(z ) + E(B'z ) = E(x'z)

Solving the first two equations for dOO and dOI ' we get

dOI va~(z) '[cov(x,z)-E((A+B'z)'(z-E(z))]

122
dOO = var(z) '[cov(x'z,z)-cov(x,z )+E((A+B'z)'(z'E(z)-E(z )))]

Inserting these formulae into the remaining equations we get with the map

f(.,.) defined for each pair of random variables U,V by

2f(U,V) := var(z)'E(U'V)-E(V)'(cov(U'z,z)-cov(U,z ))-E(V'z)'cov(U,z)

the following system of equations for diO' dil , i=I, .•. ,n:

Having solved these equations, we can determine dOI and dOO as folIows:

I n n
var(z) '[cov(x,z) - l. d·O·cov(y.,z) + L d·l·cov(y.,z,z)]

i~1 ~ ~ i=1 ~ ~
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! 2 n 2
dOO = ()'[cov(x'z,z)-cov(x,z) + l. d·O'(cov(y;'z,z)-cov(y;,z ))

var z i=! ~ ~ ~

n 2 2-l d.!,(cov(y.,z ,z)-cov(y.'z,z ))],
i=! ~ ~ ~

where the moments needed explicitely are given by

E(z) = E(a)+E(x)'E(ß)

2 2 2 2! 2E(z ) = E(a )+2'E(x)'E(a'ß)+E(x )'E(ß )+ -'E(T )
m

E(Yk' z2) =~,E(a' i)+~,~, E(ß' T2)+E (a3)+[2 'E(x)+xkJ' E(a2, ß)+

2 223
+[2'~'E(x)+E(x )J'E(a'ß )+~'E(x )'E(ß )

24.32
E(Yi'Yk'z) = E(a )+[xi+~+2'E(x)J'E(a 'ß)+[xi'~+2'(xi+xk)'E(x)+E(x)J'

222 3'E(a 'ß )+[(xi+~)'E(x )+2'xi 'xk 'E(x)J'E(a'ß )+

+X.' x, 'E (x2) , E(ß4)+ L E(a2, /)+(x .+x, ) ,1., E(a' ß' T2) +
~ K m ~ K m

! 22. 22 2 22
+xi'~'m'E(ß 'T )+X(~,k)'[E(a 'cr )+E(x )'E(ß 'cr )+

+2'E(x)'E(a'S'cr2)+ 1.'E(cr2 'T2)]
m

E (x' z) 2= E(x)'E(a)+E(x )'E(ß)

2 . 2 2 2E(x'Yk'z) = E(x)'E(a )+[E(x )+~'E(x)J'E(a'ß)+xk'E(x)'E(ß )



- 25 -

Specia Z Gase

Let us now assume that a and ß are exactly known, i.e.,

Then we get

E(a) = a, E(ß) = ß; var(a) = var(ß) = 0

var(z) = var(a+ß'x+T'V)

cov(x,z) = cov(x,a+ß'x) =

2 I 2ß 'var(x)+ -'E(T )
m

ß'var(x)

and therefore

2 I 2cov(x'z,z)-cov(x,z ) = -a·ß·var(x)+ -'E(T )'E(x)
m

-(a+ß'E(x»'ß'var(x)J = 0

2 2 • I 2= E(Yk)'[E(a'x+ß'x )·(ß 'var(x)+ m'E(T »+(a+ß'E(x»'(a'ß'var(x)

- !'E(T2)'E(x»-Cß2 'var(x)+ !'E(T2)+(a+ß'E(x)2)'ß'var(x)] O.
m m

As the system of equations for the diO ' dil , i=I, .•. ,n ~s homogeneous, the

system has the trivial solution

diO = dil = 0 for i=I, ... ,n.

This result ~s reasonable: If the parameters a and ß of the regression line

are exactly known, one does not need the y. for estimating these parameters.
~

With A=B=O we get

var(z)

d
00

2cov(x'z,z)-cov(x,z )

var(z)
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Therefore x is estimated by

1 2
-a·ß·var(x)+ -'E(T )'E(x)+ß'var(x)'z

m
2 1 2

ß 'var(z)+ -'E(T )
m

This estimate can be written ln the following intuitive form

1+ m'ß
2

'var(x)

E(T2
)

• E (x) + 1---;::--_
E(~2)

1+ ---,,-'---'---
m' ß

2
'var(x)

z-a
ß

which can be interpreted as follows: If the apriori information on x is
122much better than the measurement uncertainty, i.e., if -'E(T »>ß 'var(x) ,
m

then x is simply estimated by the apriori information. In the opposite case

x is estimated by inverting the regression line.
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CONCLUSIONS

Four estimators of practical importance were considered, the maximum

l 'k l'h d . A h' "A h~ e ~ 00 est~mator xC' t e ~nverse regresslon est~mator xI' t e two stage

estimator ~AJ' and the quadratic estimator ~Q' All of them are linear in the

mean value ~, i.e., all have a shape ~=cO+cl·z. The coefficients Co and cl

depend on the observation of Yl""'Yn and the apriori information. Since
A

the expectation value of Xc does not exist, its relevance as a point esti-

mator seems doubtful. All other estimators have their own merits and short­

comings. The estimator ~I is easily calculable but up to now justified as a

Bayesian estimator only for special a-priori distribution functions. ~AJ

uses only the first and second a-priori moments instead of the whole a­

priori distribution. The numerical expenditure is substantially higher as

with ~i' The estimator ~AJ however needs further theoretical investigation.

The quadratic estimator ~Q is the only one which has been derived as a solu­

tion of a risk minimizing problem. It is the only one which is linear in the

observation Yl""'Yn' Its confidence region and sequential properties have

not been investigated as yet. Furthermore even more computation effort ~s

needed as for the other estimators. In addition the required knowledge of

the third and fourth moments of the apriori distribution requires an in­

creased effort. Whether this problem can be circumvented by a similar "semi­

minimax" estimator using only the first, two apriori moments cannot be

answered as yet.

So far only a few numerical calculation have been performed. They in­

dicated that the four different methods led to not too different estimations

of x however, that the coefficients Co and cl of the linear form cO+cl'z dif­

ferent substantially depending on the apriori information. Thus it seems that

considerable numerical work is required in order to get a feeling for the use­

fulness of the various approaches under given circumstances.

Contrary to the fact that already a large amount of research effort

has been invested into the inverse regression problem, only a few results

have been obtained especially if more general nonlinear estimators are con­

sidered. It seems that the scope of the problem of inverse linear regression

has not yet been understood.
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