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Abstract

A system of temperature and density dependent thermal-property-functions
has been developed and checked for the sodium, using all of the accessible
experimental data and the mutual relationships of the properties. In
extending these properties beyond the range of the measurements substance
independent physical relations have been used.

The property—descriptions are valid for all temperatures above the melting
point of the sodium and for all densities below the melting density of the
liquid.

The system consists of the following thermal properties: pressure, heat
capacity at constant volume, thermal conductivity.

Die thermophysikalischen Eigenschaften des fliissigen und gasfdrmigen
Natriums

Zusammenfassung

Die thermophysikalischen Eigenschaften des Natriums werden mit Hilfe eines
temperatur— und dichteabhidngigen Funktionssystems beschrieben. Dieses
Funktionssystem wurde aus den zur Verfiigung stehenden Natriumdaten
entwickelt durch Extrapolation der Eigenschaften mit stoffunabhidngigen
thermischen Relationen.

Die Zustandsdarstellungen sind gliltig fiir alle Temperaturen oberhald des
Schmelzpunktes und fiir alle Dichtewerte unterhalb der Fliissigkeitsdichte am
Schmelzpunkt.

Die dargestellten Eigenschaften sind der Druck, die spezifische Wdrme bei
konstantem Volumen und die Wirmeleitf&higkeit.
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Glossary
T temperature
p density
Vv =1/p specific volume
S entropy
U internal energy
H enthalpy

X
P, P v pressure, vapor pressure
PT = 3P/3T

temperature - resp. density
Pp = 3%/3 derivatives of the pressure
P = aP/apls
CV’ CP heat capacities at const. volume,
resp. pressure

T ap
T
QT thermal conductivity
Z = P/RepeT factor of reality
P.. = P_/Rep
T T . .
. pressure derivatives
Pp B PD/R.T in reduced form

g = PS/R°T
pL(T), pV(T) densities of the saturation line
F(L,T) = F(pL[T],T) property in the state of the saturated liquid
T 9

LT T ar

°L
CS(L) sonic velocity in the liquid
CV(L,T) = CV(pL—O,T) marginal heat capacities

~ - of the two-phase area
Cy(VsT) = Cylpy*o,T)

X

x X . . .
T = TL(p), ™ = Té(p) the i1nverted saturation line



T = 2508 K
[}
_ 3

P, = 0,23 g/em
PC = 256,46 bar
a, B, Y
x=1- T/Tc
w = p/pC
y = TC/T

R

-4 -

the critical temperature

the critical density

the critical pressure

the critical exponents

distance to the criticalvtemperatpre
reduced density

reduced temperature

the gas law constant



1. Introduction

The development of the sodium—cooled fast breeder reactors increased
naturally the interest for the thermophysical properties of this metal. It
is especially the safety analysis of the breeders, which requires a solid
knowledge of a variety of the thermal properties of the sodium in a broad
range of temperatures and densities - mainly for modelling the Fuel—~Coolant-

Interaction (FCI).

This phenomenon is a process of violent to explosive vaporisation,
resulting from inadvertent mixing of hot, molten fuel into the liquid
sodium. To describe the behaviour of this exotic mixture the pressure, the
heat capacity and the thermal conductivity must be available at tempera-—
tures as high as 3100 K and at densities near to the melting density of the

sodium.

Moreover, the space-dependent hydrodynamical FCI-codes = recently in use in
the safety analysis - assume these properties to be a thermodynamically
consistent set of smooth functions of both variables temperature and

denslity.

None of the thermal properties of the sodium had been measured at such high
temperatures so far, most of the experiments reached only just the vicinity
of 1650 K, so the construction of the required Sodium-Thermal-Property-
System (STPS) means a considerable extension of the measured data known at

present.

Many attempts have been made in the past to obtain a complete description
for the thermal properties of sodium. Stone et al. at the NRL developed a
STPS for the region T < 1650 K, which also includes a pressure—description
for the overheated vapor /8, 24/. Miller et al. /25/ estimated the critical
properties of the sodium and extrapolated the saturation line and some
other properties of the saturated liquid. A. Padilla developed a STPS for
the subcritical states using the Rowlinson—~Approximation (eq. (72)) beyond
the two-phase region. In the earlier version./26/ of his STPS he used the
critical data of D. Miller, later on /27/ he inéorporated the data of Bhise
and Bonilla /4/.



All these STPS bear common insufficiencies in calculating the FCI: the
thermal properties given do not include the conductivity, a description of
the heat capacity in the two—phase area 1is also lacking and none of these
STPS cover either the supercritical or the high-temperature overheated

vapor areae.

The following pages describe the STPS developed and in use in Karlsruhe.
The thermal properties included here are

the pressure P with both its derivatives Pp and Pq

the heat capacity at constant volume C, and

the thermal conductivity Qp. -

The STPS (Karlsruhe) describe these properties for all temperatures, ex-—
ceeding the melting point of the sodium (Ty = 371 K) and for all densities,

remaining below the density of the molten sodium at Ty (see Fig. 1).

The presented STPS is actually the second edition of the original one from
1975. It differs from its predecessor mainly by taking into account the
vapor pressure measurements of Bhise and Bonilla /4/ and by using more

recent thermal conductivity dates for the sodium vapor /13/.
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2. The Vapor Pressure of the Saturated Sodium

The saturation vapor pressure PX(T) is something like the backbone for the
whole STPS. On the saturation line (SL) and in the two-phase area it is the

sodium pressure

P(g,T) = PX(T) (1)
for
™M = T < To . IT) =2 3 = 3ylT)

In additiom it allows to extend the heat capacity C, along an isotherm in

the two-phase region via the equation (see e.g. /20/):

7 X
oC T d<P
v . . (2)
‘52 de

It can be also used to substitute the saturated vapor density QV(T) with

the numerically more convenient "factor of reality"

P(T)
R-Qy(T)-T

3

Zy(T) =

It is also needed to calculate one of the pressure derivatives Py or Py on

the saturation line using the mathematical relation

d Px d %i<
—— = PrlK) + PolK)—— . K =L,V ®
dT dT

Finally, the shape of the pressure-surface P(3,T) beyond the saturated area

depends directly on the values of P and Py on the SL.

The vapor pressure description of the STPS (Karlsruhe) 1is based on the
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vapor pressure data of Stone et al. /3/ (recommended in /12/) and on the P¥=
measurements of Bhise and Bonilla /4/. The temperature ranges are 1141 -
1666 K resp. 1255 = 2500 K. From /4/ the results of the Run 2 were not
used., To these data a Kirchhoff-type equation was fitted:

y 12153,
in PP= 11,919 - ——— _ 0,195.1n T , (5
T

P in bars, T in K.

Fig. 2 displays the deviations of the measured pressures from this

eq.

In /12/ a second Kirchhoff-equation /1/ is recommended for temperatures

below the boiling point
T B = 1154 K

Using two PX-equations would mean either to use more complicated formulas:
than eq. (5) (adding a TB-term to eq. (5), for example), or a jump in
d2p%/dT? and consequently in C,(V) too at the switching point (see eq.
(2))s To avoid both of these alternatives and since the deviations are not
large = the maximal departure of eq. (5) from the low—-temperature Makanski-
equation /2/ is only 2.75 % (at 700 K) = the vapor pressure is described in
the whole temperature range from the melting to the critical point with the

eq. {(5).
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3. The Saturation Line and the Critical Point of the Sodium

The shape of the saturation line in the "cold''-region

T < 1700 K

of the STPS (Karlsruhe) is also based on the measurements of the NRL-Group
already quoted /5,6/.

The density of the saturated liquid Sy (T) is described with the formula
given in /5/.

The density of the saturated vapor 3,(T) has been calculated via Z,(T) (eq.
(3)). To do this the derivative of Z was set to

1 dZvy 3 f
. = Y _ ap-T (6)
Zy dT n=0
ith Zy(33L,5K) = 1 .
Fig. 5 shows the shape of this derivative ( —— line) and the corresponding
Z,~function (--—-—). The polynomial in the eq. (6) was determined by

fitting Z, to the corresponding values, developed from the NRL-measurements
(A-signs in Fig. 5). The pressures, measured by this group for various
isochores in the overheated vapor displays Fig. 3 (signs 0 - Z). The dashed
curve represents the PX(T)-equation (5). The remaining dashed lines are

linear approximations for the pressure
P(T) = PUTY) + (T-T)-Pr(T)) 1)

using best fit Pp-values for each isochor (as the reduced pressure-
presentation - Fig. 4 - shows this equation is in fact not a good

approximation in this area, Py is in reality decreasing for increasing



_lo-

pressures}. From the eq. {(7) and (5) the saturation temperature of the

isochor, T* can be calculated. The saturation volume of the isochor

VIT) = 17 gy(T")

was corrected to T = TX by assuming that the measured volumina in each
experiment increase slightly but linearly with T. From PX, T¥ and V(TX) eq.
(3) gives Z,(TX). The correspondence between these "measured" Z,-values and

the calculation via eq. (6) is better than 0.2 .

N.B. Calculating Z,, from the virial-equation given in /8/ results in a non-
monotonous dZ,/dT with a local minimum at = 1000 K, leading to a Cy (V)=
maximum of =5 R at this point.

The high temperature part of the SL was constructed using the Hypothesis of
the Universality of the Critical Exponents (HUCE). This theory states (see
e.g. /15/), that the behaviour of a material with phase-transition is = in
the vicinity of the corresponding critical point -~ determined by a set of
universal numbers, the critical exponents. The values of these exponents

are

x =01 , 0B = 0,325 , I = 1,24 (8)

according to calculations using the 3D-Ising-model /16/ or to recent
measurements /15/. For the near-critical (T = T,.) saturation line of the

liquids HUCE gives the following shape:

g (T) = g¢c- (1 « b-xP) o
qulT) = gc- (1 - bxB
with x = 1 =T/ T - (10)

A comparison of the near-critical densities of the saturated cesium /7/
with these equations gives b = 2. Taking this b-value for the sodium too
results in the following high temperature SL:
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3 (T) = g¢-[1 +2'XB+X‘(QL+X-9L+x3-hL)]

(11)
3V(T) = Q)C[1 -Z'XB+X‘(Gv+X-gv+X3'hv) ]
for T =2 1700 K

The x—-polynomials, added in this equation serve for a smooth connection

with smooth first T-—derivatives at the switching point.
As a sodium critical temperature
Te = 2508 K (12)

is used. This value corresponds via eq. (5) to the critical pressure,

measured in f4/:

Pc = 256,46 bar a3

To achieve a smooth and monotonous density—connection at 1700 K a critical

density value of
¢ = 0,23 g/cm3 (14)
was needed in the eq. (11).

The complete saturation line is presented in Fig. 6.
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4. Heat Capacities of the Sodium in the Saturated Area.

Enthalpy, Internal Energy, Entropy

The caloric properties of the STPS (Karlsruhe) are based - in the sub-
critical region - on the heat capacity of the liquid with vanishing vapor

content:

CyiL,T) = Cylg -0,T)
-0 =g -&, &€ — 0

For other densities the C,~s can be calculated either with eq. (2) or with

dCy T  alp
—_— = - . (24)
K : 9,2 ,aTZ

or, at the crossing of the saturation line,. from the C,-jump at this place.

The fact, that C, jumps crossing the SL (see Figs. 30, 31, 33, 34) is not
broadly circulated in the thermal physics. The authors in /19/ - the single
quotation I found - declare the eq. (19) to be "a well-known relation"

without giving any further references.

The origin of this jump lies in the jump of the pressure derivative at this

same place:

X
Pl T ) o
3L, T ) # Pglgy-o, = —
T'SL T'SL 4T
In the immediate neighborhood of 3 it is
3S ds 3S  dg
by = T-— = T-— - T —  — (15)

3T dT 3g dT



dsS
Setting cC(L, T) = T———(Q,L(T),T)
dT
and using the thermostatic relation
Sq = -Pr/ g2
(see e.g. /20/) one has
T dg, dP”
Cvigp-0) = C + 5
3L dT dT
T dg
respe. Cv(gL) = C + 2 LPT(SL}
?[_ dT
These equations give a C,-rise of
. T dg, dP
Cy(L) - Cy(L) = - [ — - Pg(L)
?l_z dT dT T

at the crossing from the liquid into the saturated area.

Using the eq. (4) and with the reduced derivative

FL =

eq. (19) can be transformed to

Cy(L) - CylL)

T

d‘;L

-
s

3L

dT

rl-PglL) [ T

]

(16)

(17)

(18)

(19)

(20)

(21)
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The constant pressure head capacity Cp, can be expressed in a similar way
/20/:

Cp(L) - CylL) = rz-Pg(L)/ T (22)
T
with r = . °% (23)
] oT P

From the eq. (21) and (22) one has
CpiL) = EyiL) « (rZ2-rZ)-Poll)/ T .

Since for the "cold" liquid the SL is practically "vertical", i.e.

dsc LY
dT 3T
(see Fig. 7), so it is
Cy(L,T) = CplL,T) for T << Te - @5

On the other hand at near-critical temperatures the HUCE describes C, as

Cvige, T ) = C(O)'lxl_u for X << 1 . (26)

The C,(L,T)-shape, adopted in Karlsruhe (Fig. é) was suggested by these two

equations as follows:

CviL,T) = CpIL,T) + cl=)-[x~% - &(TY 1 . @an

For Cp(L)‘the formula of Ginnings et al. /11/ was taken (&-signs in Fig.

x

8). S(T) is a polynomial subtracted in eq. (27) to equalize the term x™° at

low temperatures:

S(T) = x~% for T < 1700 K
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The factor c{-) = 5,53R

was chosen to achieve a smooth and monotonous C,(L)-shape at near-critical

temperatures.

On the other side of the two-phase area the heat capacity of the vapor with
vanishing humidity

CyiV,T) = Cylgy+o,T)

(=== line in Fig. 8) can be calculated from Cy (L) with the eq. (2) to

dZp*
Cyiv) =  CylL) + AV.T — . (28)
2
| dT
Here is
AV = 11gy - 113, (29)
the volume=difference of the saturated states.
Actually, according to the eq. (2), for any volume
V = 1/4
inside the two-phase region the heat capacity is
. 1 1 d2p*
Cylg, T) = CylL, T) + (— = —).T. 5 (30)

3y < % < L .

The heat capacity of the saturated vapor C (V) is calculated from the C,-

step at this place:



_.16..

Cy(V) - Cy(V) = Cvigy +0 ) - Cvigyl) =

T dgy  dP”
5" = - Pq(V) 1 . aw
Sy dT dT

-

Cp(V) can be determined as on the liquid side. Fig. 9 displays the
saturated heat capacities C,(L) and C,(V), Fig. 10 gives the CP/CV-

relations.

The enthalpy of the saturated liquid can be integrated using the SL-

derivative
dH({L) dsS 1 d
—_— . = T - + S
dT dT g dT
- 1—PL dPx
= TylL) » - Y
ql_ dT
(see /20/ and eq. (16), (17)). For the internal energy, U, one has a
corresponding derivative
dulL) . . P dP¥
— = (y(L) + — A — - — ) . (32)
dT %L T dT

For the derivative of the entropy S a slightly transformed eq. (31) can
serve. At low temperatures (T < 1600 K) as H(L,T) and S(L,T) the respective
functions of the NRL-Group — cited in /12/ = can be used.

The properties H, U, and S in the saturated vapor are easier to determine
from the liquid properties than by using the derivatives. The equation of

Clausius—Clapeyron gives here

dP
AS = S(V)-S(L) = AV-dT = AHT T 33
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dp> P
resp. AU = T-AV ({— - —) . (34)
dT T

Fig. 11 shows the enthalpy of the saturated liquid and vapor.
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5. The Pressure Derivatives of the Sodium on the Saturation Line

In the following for the pressure derivatives reduced forms will be used:

PT = PT/RQ 3 (35)
dp™
t o= /] R-9 ’ (36)
dT
Pq = Pg/ RT , (37)
~ oP
PS T e | R-T . (38)
o I S

These are more convenient in having no dimensions, giving a simpler form to
the physical relations and varying in a more restricted version - mostly
near to the unity - as the not reduced properties (compare the Figs. 12 and
16 with Fig. 17). Moreover, by using the properties (34) - (37) all the

heat capacities are given iIn R—-units.

In the STPS (Karlsruhe) the pressure derivatives of the saturated liquid

are calculated - at low temperatures

T < 1700 K

=~ from the measured values of the veloecity of sound, Cg /9, 10/. This can

be done by using the relations /20/

_b_li = C52 (39)
33 I's
and
- Cp ..
PS = —-——--Pq . (40)
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With the equations (21)
Cy = Ev—rz-'ﬁg
and (24) CP = Ev + (l‘z - I'Lz)isg

One can eliminate C; and C, from the eq. (40):

Cp - Cy r2.Pq

Cv : Ev-rl_z-'lsg
With the relation /20/

V‘I"T /ﬁq = -
and with the reduced form of thé eq. (&)

1": 'ﬁT + I‘L-ﬁq

eq. (41) can be transformed to

Cp - Cy (t-r,-Bg)?Z

EV ﬁg'(EV"W?'ﬁg)

This equation and eq. (40) gives

) _ (-, -Pq)?
Pg = Pg *+ = 2.5
Cv—-rL-Pg
The inverted form of this relation
- 2
o . (t - r-Pc )
. = Po - _ L'"S
3 2

Cv- 2-t-r_ + %

(214)

(244)

(41)

(42)

(44)

(43)

(44)

(45)
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together with the eq. (39), (4A) and (21A) allows to calculate the thermal
properties §q: Pp, Cys Cp of the liquid from the sonic velocity, év(L), 34,
and PX(T).

In the "cold"-statre of the saturated vapor

T < 2320 K

the basic property is §T; §q and C, are determined by the eq. (4A) resp.
(214).

§T in this region is described with T-polynomials (--- line in Fig. 13)
fitted to satisfy the following conditions:

1. for low temperatures §T must converge to the ideal gas value
PT(V,T) ————— 1 for T e — TM )

2. iT must suffice the values gained from the PVT-measurements /6/ (0-signs
in Fig. 13),

3. both §T and the C,(V) calcualted from it (0-0 line in Fig. 9) must have
the simplest possible form compatible with 1. and 2.

In the fitting of the polynomials to the ﬁT—values only the first 8

best-fit Pp(T¥)~values (eq. (7)) were used. The latest one, corresponding
to the exp. 7 (Z-signs in Figs. 3 and 4) has been omitted for having a
value much too high:

PriT = 1674 K) = 1,86

At near-—critical temperatures, i.e. at

T =2 1700 K
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for the liquid and at
T > 2320 K

for the vapor Pq was chosen as basic property, since the HUCE prescribes
for this function a shape:

po-x2-qKlTI/gc . K = L,V

1

PglK,T)
(46)

for X — {

To have smooth connections with the respective low-temperature Pq-s form-
polynomials P(K,x) had to be included in the eq. (46). So the high-

temperature functions are:

Pg(L,T) = kp(L,x)poxlgL(T)/gc (47)
and
Po(V,T) = @IV, x)pextiq(T)ige (48)
with
IA
plK,x) = 1 + 21 falK)-x0 K = L,V . @9
N=

As p, the fitting at the switching points gave

Po = 7150,89 J/g
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6. The Thermal Conductivity of the Sodium on the Saturation Line

Thermal conductivity measurements of the sodium are scarce and the
temperature range of the data is very limited, T = 1100 K being the highest
temperature as well for the liquid as for the vapor. Correspondingly the

switching point between measured Qp—functions and extrapolated ones lies

also low at

T = 1280 K

for both saturated states.

For the thermal conductivity of the cold liquid the T-polynomial =
recommended by Golden and Tokar /12/ - is used in Karlsruhe.

The most recent data concerning the sodium vapor thermal conductivity has
been published by Timrot et al. /13/. This group measured the Qp of the
sodium in the overheated vapor along five different isotherms as functions
of the pressure (see [1 - x signs on the Figs. 20 and 21). They calculated
the thermal conductivity for the saturated vapor, Qp(V,T) (— line on Fig.

23) by extending the isothermal data up to the saturation points ( =lines

on the Figs. 20, 21) via the equation

X

P —= P (T)

Qp(P,T) = G(T)I-L1 + bIT)-P « e(T)p2] . &%

QT is here the conductivity of the monatomic vapor. The factors b and e had
been determined for each isotherm individually.

Since Qp(V,T) has a vanishing derivative at T = 1200 K, it is not practical
to use it as saturated conductivity, giving no help in the Q-extrapolaticn
to higher temperatures. To avoid this hindrance, a temperature—independent
description was developed, instead of the eq. (50) for the thermal
conductivity ( — lines on Figs. 20, 21):

2 (s1)

m>
=

Qr(P,T) = Qr(T)[1 + b 1 +
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using the reduced pressures

no= P(T)Y/ PY(T) (52)

and the isotherm-independent factors

L3

b = 08957 , & = -0,63353 . (53)

Fig. 22 displays the deviations of the measurements /13/ from the eq. (51)
ag a function of the reduced pressure . Since Timrot et al. estimate thelr
maximum error as about 5 % /13/, the T~independent description (50) is well
within the margins of the experimental uncertainties. From the equations

(513 = (53) one has the following saturation-conductivity:
OplV,T) = Ge(T)-1,5604 (543
(see ~o~o0—= line on Fig. 23).

There is a certain lack of ldeas about the shape of the near—critical

thermal conductivity beside the obvicus notion
(L, T) —= Qrlc) =— Q(V,T)
for T S— TC

One of the few non=trivial relations for the near—-critical conductivities
has been proposed by P. E. Liley /17/. He found that for many substances
the difference between the liquid and vapor conductivities vanishes as the

enthalpy difference:

QL) - Gq(V) = go- AH i¢ 0 < x < xg. 05

The T.~distance limit X is only 0.05 for the substances N and O but 0.14
for A and even 0.27 for water /[17/.

The eq. (55) suggest a density-like shape for the near—critical thermal
conductivity, for it is
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AH F-lgp - qy )

i

(see eq. (33)).

Hence the extrapolated thermal conductivities were designed as
O‘T( L ,T ) =

(56)
= QT(C)-[1 + 2-xB4-x%EL-+X-§L-PX3-HL)]

Tespe
O‘T( V,T) =
= QT(C)[1 —Z~XB+X.(EV+XT.§V+X3'HV) ] 7
The conditions

l. the linearity-limit, X; had to be as large as possible (see Fig. 25) and

2. the connections at 1280 K had to be smooth and monotonous

determined the parameters &y, aysees as well as the

critical conductivity:

Qpfc) = 0,05 W/em/K . (58)

Fig. 24 shows the reduced conductivities Qp(T)/Qp(C) in the 1/T-dependence.
The dashed lines indicate the extrapolated propertlies. The saturated vapor
function, given in /12/ resp. /14/ and used in the first version of the
STPS in Karlsruhe is also indicated here (x—signs).
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7. The Static Thermal Conductivity in the Two-Phase Region

In the two~phase area the substance consists of a mass of saturated liquid
(M;) dispersed in a mass of saturated vapor (M), both having beside the
common temperature, T, a common pressure, PX(T). The quality of this

mixture depends at a given T on the mass relation of the vapor:
£ = My/(My+ M) (59)
Since the specific volume of the mixture is
V.= £-Vy + (1-81)-V| (60)
with Vk = 1173k (61)

the mixture quality can be calculated directly from the densities:

V- Vi(T) Iy (T) LlT) -3
Ei1g.T) = = : (62)
AV ] Q’L(T) - Q)\/(T) '

The traunsfer of heat can proceed in this mixture in four different ways:
beside the radiation, convection and conduction heat can be also moved here
in latent form, i.e. by transporting and subsequently condensating

saturated vapor. As the static thermal conductivity only the conductive

heat transfer 1is considered.

For the calculation of the conductivity in the two-phase region the

following, very simple liquid-vapor-mixture concept was devised (see
sketch):
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The liquid is uniformly distributed in the vapor, as a number of little
cubes, each mixture volume D3 containing a liquid volume d3. In a D3-volume

there Is 9q two-phase substance and g, (1 - R3) saturated vapor, N being
the length-ratio of the liquid. The mixture-quality is therefore

3
E = 3y (1-n"1)173 )

giving with eq. (62) the following relation between length ratio and
mixture density:

g - gv(T)
nig,T) = —~ . (64)
QL(T) - gv(!)

To facilitate the calculation of Q(3) it is assumed, that the heat current
J crosses perpendicularly one D-layer of the mixture—lattice, on a surface
F. D is supposedly small enough to render Qp(L) and Qp(V) space-independent
inside of this layer. Further, since eVaporation and condensation had been

excluded, the heat currents in all three sub-layers must be the same and
equal to J:
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J . (65)

-
-

Jgp® = Jpa” = Jaa

Denoting the temperatures on the surfaces A, A',... as Ty, Tpt,... the

currents in the first and in the third layer are:

Ty - Ty

JA’A = 2- A A -F-QT(V) (66)
D-(1-n)
Tn - Tr’

resp. JB'B = 2 B ,B FQT(V) . (67)
D-(1-n)

In the second layer there are two different heat currents, one in the

liquid part of the layer

Tvr = T~
A B-F-QZ-QT(L)
D-n

b=

and one in the vapor part:

rendering the total layer—current to

Jgar = L o+ Jy o=

T ¢ T 2’ ’
28 Fuaptv) o+ nZoa0p) o
D-n

s
ey

AQp = Qp(L) - Qq(V) (69)

Here is
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The equivalent heat current for the total layer AB is

Ty - T
J = ”A”E—'&'F'QT(%) . (70)

The identity
Ta-Tg = Ta-Tp + Tp-Tg + Tpgr - Tg

and the equation (65) in connection with the eq. (66) - (68) and (70) gives

1/Q7(3) = (1-n)/7Qp(V) + n/(Q7(V) + n%.aQ7)

or

(lT'(V') + qu : [\ClT

2 (71)
Qr(V) + (1-n)n?-AQyg

Mixture conductivities, calculated with this equation for various isotherms

are displayed on Fig. 26 (—- lines).
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8. The Thermal Properties of the Sodium as a Compressed Liquid
In the state of the compressed liquid
T < Tc , 8 > 3L (T)
the sodium pressure is derived using a Pp-approximation recommended by

Rowlinson /18/. It is assumed that in the compressed sodium = as in many

other compressed liquids - Py depends practically only on the density:
X
Pr(g,T) = Pg(s) = Pq(L, T ) (72)

T¥ is here a “deﬁsity—temperature", the inverted form of the saturated

liquid density, i.e.
T = T L(g) resp. 3 = %L(Tx) . (73)

With this assumption the pressure of the liquid is

.
PIS.T) = PYTY) « [ dt-Prig,t) =
X
x
= PUTY) « (T =T )-Pr(L, T ) . o
As a density derivative eq. (74) gives:
P y
Pe(3,T) = [ (T*) - P(L,TH) +
dp | dg (75)
e (T =T ) — L, T ) 1 —E 7% .
dT dT

Since, due to the assumption (72) the second thermal derivative of P
vanishes in this state, the C,~derivative (eq. (2A)) vanishes too and the

heat capacity remains Cy(L,T) on the whole isotherm T in the compressed
liquid.
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In describing the thermal conductivity in this state = for the sake of

gimplicity - also a temperature~independence-assumption was used:

Qr(s,T) = Qg(g) = uT(L,T") . (76)
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9. The Thermal Properties of the Sodium as an Overheated Vapor

It is natural to try In this state
T < Tc , 3 < Ry (T)
too a pressure—description with T-independent Pr:
PT(?,T ) = pT(Q) = PT(V,TX) (77)
with " = Txv(q) resp. g = gv(Tx) . (78)

The assumption (77) would give here - as in the compressed liquid -

PIg,T) = PUT) + (T-T" )-PT(V,TX}, (79)
P .
with P%(Q),T) = [ (T) - PT(V,T )+
dT
dP dg
PUT =T —L v T 1 =T o
dT dT
and Cv(g,T)=CylV,T) . 81)

The approximation (77) is unfortunately not fully adequate in the whole
superheated vapor area; at low densities (rarified sub-region on Fig. 1)
the equations (77), (79) calculate too high values for Pp and P. At

dengities as low as

g = 10" g/cm3

(corresponding to TX¥ = 1050 K) the sodium could be expected to behave as an
ideal gas, especially far from the saturation line, on the critical
isotherm. So

Z(s,T) = 1, Prls,T) = 1
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were reasonable values here. As the Figs. 13 and 14 prove, the respective
calculated properties (~--- line on Fig. 13, -=:= line on Fig. 14) are too
high for these low density states.

There is also an experimental evidence for the insufficiency of the eq.
(77) as Pp~description in this sub-range. As the reduced representation of
the PVT-data of the NRL /6/ indicates, Py on an isochor is not comstant but

decreases markedly with increasing T from a maximum at T = T* (Fig. 4).

To achieve a better pressure-description in the rarified region, a (’,T)-

dependent correction-term was added here to the Pp-equation:

Prig,T) = Bp(V,TY) + G(s)H(u) . (82)

The T-dependence 1s included in the wvariable

Te - T7
ulg,T) = 0,2 ——— , (83)
T -1
s is only a function of the density:
s{g) = Inge/ In gy (84)
(s(3) has a similar shape to TX(3), but it is easier to calculate).
The selection of the functions
Hlu) = u/(eY - 1) (85)
and
H{u) = plu)-fu + p(u)l (86)

was dictated by the fact, that the necessary Pr— and P-corrections on the

critical isotherm are of the same size, i.e.

APTIT Tc) = APIT T/ (Tc =T ). (87)
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A polynomial term for the correction:

APT(8,T) = f()(T - T

would give

Using here a small m—value (m < 1) to suffice to the equation (87) would

render

O APT /3T = f-m (T - px)m-!

infinite at TX = T, giving an unphysical jump in the heat capacity (eq.
(24)) at this point, instead of a C,~shape, gradually decreasing with TX-0,

Integrating eq. (82) - the necessary derivatives are

— = - ——¢ (88)

and e —

i

d H
—(1-u-p) - (89)
U

the term G-H gives the following additional pressure:

:
AP(g,T ) = jdf-R-q.G(s)-H(u) =
TX

= R-q(T=-T%)G(s)-plu) . (90
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A comparison of H(u) with p(u) for T = T, results in a (87)-relation:

1 =0.9.

The pressure correction (90) gives, using

ou u 0,2

x X

3T T-T !

the following Py —correction:

d AP dG

—— = RII(T-T ) (G + g —)-p =+
03 dsg
T H-p
- ———(H-0,2 )-G ]
Fv(T) ]

To the heat capacity the Pp-correction supplies (eq. (24)):

ACy(],T) = Cylsg, T) - CylV, T) =
3 G(s) oH
. -R-T-f ds - :
Sy g oT
dH H |
With —_— = =—-[2-(pg-1) + u]
du u
this can be converted to ACV(Q,T) =

.
dt T

= R [ —- GoH[24p=1) + uleor,(t)
toT-t

TX

(91)

(92)

(93)

(94)
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The heat capacity, calculated by this equation for extremely low densities,

C,(0,T) is shown on Fig. 9 as a dashed line.

The boundary of the rarified sub-region of the overheated vapor in the STPS
(Karlsruhe) lies at

3g = 0,01 g/cm3 (95)

(see g -line on Fig. 18). This value corresponds to a density-temperature

of
TG = 1850 K

(on Figs. 13 and 14) or to

SG = 0,32

In the dense-area (3 > QG) P and C; are described with the equations (77,
(79), (80) and (81).

For the density-fitting of the correction-term in the rarified vapor a

Gis) = s2(0,32 -s)2.n(s) (96)

form was used. The function N{s) in this equation was shaped to give the
"right" P and Pp—functions on the critical isotherm and physically meaning-
ful Cy~values in the "vacuum". As a requirement for correcting P(3,T.) and
Pr(3,T.) a smooth crossing of the critical isotherm on the pressure-surface

is demanded:

|
P{g,T¢-0) = P(g,Tc + o] (97)
|
PT(‘!,Tc"O) = PT(Q,Tci'O) (98)
for 3 N %[3

(for the supercritical functions see the following chapter).
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As for the Cy(0,T) one expects this property not to descend below the

Cy-value for the monatomic vapor, and yet to lie — at low temperatures =
not much higher than this value, i.e.

Cy(0,T) > 3/2-R

cy(o, 7)) —= 372-R f. T —= 0 . (99)

Fig. 19 shows the compromise-n(s) chosen for the rarified vapor (— 1line).
The dashed lines on this Fig. correspond to n—s demanded by the eq. (97)
and (98). The maximal deviations in these equations - resulting from the
use of the actual n(s) instead of the needed functions — are 0.65 Z for the
pressure and 3.5 % for Py, The n—departure from the common prescribed shape
for low s-values (s < 0.12) is due to the heat capacity values in the
vacuum. Without this departure Cy(0,T) would be less than 3/2 R at T=900 K
(see Fig. 9) and even higher at T < 600 K than with the corrected n.
Actually, it is not Cu(0,T), which is too large at low temperatures, but

Cy(V,T) - since the density of the saturated state at low temperatures is
very low - and therefore

n

Cy(0,T) = Cyiv,T) e T 400 K

is not unreasonable. This overestimated Cy(V,T) results probably from the
incorrect description of the vapor pressure with the eq. (5) in the low
temperature area (see eq. (28) and (19A)). The dent in Cy(0,T) at T =1750 K
(Fig. 9) has no physical foundations and could have been eliminated with a
more complicated description of ﬁT(V,T).

The corrected functions P(3,T.) and Pp(3,T.) are shown on the Figs. 13 and
14 as solid lines,

The thermal conductivity of the overheated vapor has been set = as those of

the compressed liquid - temperature-independent:

Qr(s,T) = Qglg) = Qq(V,T7) . (100)
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10. The Thermal Properties of the Gaseous (Supercritical) Sodium

In the supercritical or gaseous area
T = T

of a non~ideal substance the easiest way to describe the pressure is to use

the equation of van der Waals /20/:
(P + q/VZ)(V-Vy) = RT . (101)

q and V, are the van der Waals constants representing the attractive forces
between the gas—particles resp. the self-volume of these. Unfortunately the

sodium is Iin the high—-density critical states

T = T¢ , 8 > 3¢

much softer than the "van der Waals'-gas. At the critical point, for

example the sodium has a reality of
ZPQQ (Q¢.T¢ ) = 0,123
whereas the equation (101) gives here

va(9c,Tc) = 3/8

i.e. at the same pressure the sodium requires only a third of the volume of

the van—der-Waals substance.

To derive from the eq. (10l) a more compressible P(V)=relation the self-

volume had been rendered density-dependent:

Vo —= Vo/ (1 + w2.B ]

with Ww = g/ %¢ . (102)

As a density-exponent in the denominator the smallest possible value, 2 was
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chosen, which is able to give a monotonous P(g,Tc)—function in the whole

range of the liquid densities

%c < ? < gL(TM) .
A further requirement for the pressure-shape in the gas state is, to become

with increasing temperature and with decreasing density more and more
ideal, 1i.e.

Llw,y) —= 1 f. w'y —= 0 . (103)
Here is y = -TC [ T . (104)

To comply with this behaviour the self-volume acquired a T-dependence:

A y
VO — VQ(W,Y) = : 2 . (105)
R¢c 1 + w®B

As for the coefficient of internal attraction, this property turned also
(q,T)-dependent, to allow a smooth crossing of the critical isotherm on the
P-surface in the region of moderate to high densities. The following form

was selected:

g —= qlw,y) = Q{w,y ) R-Tc/ 3¢ , (106)

5

with Qlw,y ) = 2:1 w1 -Fy(y) (107)
< n:

and F’n(y) = Gn - ()’-1)'Hn‘ ) (108)

These modifications of the self-volume and of the internal attractions

transforms eq. (101) into

Z{w,y) = 1 + wy [ A/S({w,y) - Q(w,y) ] (109)

)
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2

with S{w,y) = 1 -wyA +«+ w®B . (110)
The respective pressure derivatives are here
ﬁq = I + wW-Lly (111)
and
B - - . 112
with
2 2 > g
WZy = oWy Ao wEBIISE -y Wy
and
yZy = \a,/-y-/x-(1+\».'Z-B)/S2 +
5 (114)
- yZ Wn‘( Fﬂ + yHn) .
n=1

As a base-line for the Cj-calculation in the gas—area the critical isochor

was chosen

Cvige , T ) = cl+)-Ix] (115)
(see eq. (26)). The constant C(+) was gained from C,(L,T):

cl+) = lim x%.Cy(L,T) . (116)
X—= %0

Using here EV(L,T) would result in much too large supercritical C,~values
(see Figs. 30 or 32).

The density-derivative in this region is (see eq. (2A)):
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oCy R ) aZZ

a2

39 g 3y ?

| R 1 +w?.B 5

= -2 -—y2.0 (wA) 2. 3 - oW HL, D am
] S n=1

Hence the heat capacity beyond the critical isochor can be given as

Cvis, T ) = Cy(gQ¢,T) + ACy(g],T) , (118)
with
9
ACY(g, T = j dCy =
%c
9 5 wil - 1 2
= R-y '[2'21_“—"'Hn - AT AI{w,y) 1 19
n= n v

The integral

{1 + Ay — ) (120)

is evaluated in the Appendix I.

The coefficients of the gas-equation (109) A, B, Gj,+.., Hg had been
determined by adjusting the pressure to the subcritical values (see Fig.

18) and by demanding a "correct" pressure—shape at the critical point:



; ; ; alp 33p :
= C ) = ; = 0 . TS > (121)
K 3q 2 29 3

These four equations determine A, B, Gy and G,. The rest of the set Gj - Hg
were calculated to fulfill the requirements (97) resp. (98) in the domain

0,859 < g < 1,1-%¢

The remaining parts of the critical isotherm had been cut in four liquid
and four dense-vapor areas, and in each area the Gj-s and Hy-s had been
calculated (eq. (97), (98)) separately. The maximal deviations in P, and Pp
in these demse parts (8> 0.01) have the magnitude 0.1 Z.

For the description of the thermal conductivity of the gas the same
approximations were set as in the compressed liquid resp. in the overheated

vapor:

A\

Qpls,T) = Qp(L, T )  f. g ¢ a2

Qp(g,T) = Qp(V,T7)  f 3§ < Q¢ . (23)
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11. Conclusions

The shape of the thermal and caloric properties of the sodium - evaluated
in the foregoing chapters -~ are shown in the Figs. 27 ~ 41. The Figs. 27 =~
37 are property-surfaces, giving a complete account of the temperature-—
specific volume dependence. On the Figs. 38 ~ 41 one of the relationships

is given only in a parametric way.

The pressure surface of the STPS (Karlsruhe) is displayed on the Figs. 27,
28, 29, 38 and 39. Fig. 27 shows the pressure for temperatures above the
boiling point in logarithmic scale. Fig. 28 is a small, near—critical part
of the P-surface in linear scale. Fig. 29 presents the pressure in reduced
form, i.e. the factor of reality, Z. Fig. 39 is, for the benefit of a
customary PX(T)-picture, in the log P(1l/T)-dependence.

From all the sodium—properties given in this STPS it is the pressure, one
can most safely depend upon. Not only is PX(T) based in the whole range on
measurements, but so are also — in a smaller T-domain - the P—-derivatives
on the two-phase-border. Moreover the surface shows the correct, ideal-gas-—
behaviour for V- T -> o(see Fig. 29). Unappropriate P-values are expected

only in two areas:

= in the compressed, nearly-critical liquid far from the saturated state
and

- in the state of very hot gas.

The caloric equation of state is presented on the Figs. 30 — 36, 40 and 41.
The Figs. 30 - 32 show three different views of the C,~surface from the
liquid, vapor and from the gas side in logarithmic scale. Figs. 40 and 4l
are the corresponding (V,Cy)- resp. (T,C,)-projections. Figs. 33 and 34
show a blown-up part of this surface near to the critical point in linear
scale (the vertical walls on the Figs. 31 — 34 should indicate the
infiniteness of the C, on the critical isotherm). The internal energy and
the entropy - corresponding to this C, (eq. (22), (30)) are presented on
the Figs. 35 and 36.

The C,-surface of this STPS is secured by only one directly-measured data-
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set fl11/. It depends also heavily on the exact description of dsz/de,
especlally at low temperatures. So this surface is correct probably only in
a qualitative way. In any case the currently available measured C,—surfaces
(/21/ describes the C, of the CO; in the two—phase and in the gaseous area,
/22/ gives the two-phase C,-surface of the n-Heptane) shows great
similarities with the Figs. 30 - 34 (the Cy-ridge of the supercritical COy

lies much nearer to the critical isochore as it is on the Fig. 32).

As for the surface of the thermal conductivity (Fig. 37, for the (V,Qp)-
projection see Fig. 26), the greatest part of it is conjectural. Not only
the measured data are scarce for this property but also there are not any
cross-relations available with other thermal properties to check the
calculated values. Still, the electrical conductivity measurements of the
cesium /23/ disclose, that this property is also practically temperature-
independent at densities in the liquid range.

So an assumption of a proportionality between the two conductivities at
high temperatures too would give some support for the temperature-

independent description of the Qp at high densities.
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Appendix G

Fitting the gas—equation at the critical point.

For the reduced pressure the description of the critical point (eq. (121))
takes the following shape:

37 327 $7
Z = lc, —=-Ic . —— = 27, —= = 6-(A-Z¢)
dw W 3w
Zc 90 o3P
with A = .

Z and JZ/0W are defined with the eq. (109) and (113), the two other

derivatives are

2
3° 7 2-y-A
- g L yA-wB{3-wlB)] +
dw? S
2 2
- y-IZ ni{n-1)-Fy-wl"
n=1
and
632 6-y-A 2 5 )
= [ (yA-2wB)2- B(1-w2B)2] .
W S b y
5
-y IZ nin-1) (n-2)F_ -wn-3
n=1

To simplify the critical-description new variables are introduced for A, B,
Gl and G2:



- L8 =

5
- t-u =, : (n"1)'Gn - ZZC + 1
n=1?2

along with the abbreviations

5 n- 2
g = : (n-—'])' 'Gn + 32C - 1
n=3
and
5 n-2 n-3
h = & (n-1)- - G- AZ¢ + 1 o+ A
n=4 2 3

These equations turn the critical point description into the following

form:
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The first two of these equations give
x = 2/N with N = 2 + t -u

so A and B can be calculated from t and u:

A = 2-t/N

B = (t+ u)/N

The second two equations = from which t and u can be calculated - transform

by eliminating x and & to

t2 _teu-(2°u-1) + 2:g = 0 resp.

t202u-1)-tul2u? —hu + 1) -2(g+h) = 0

)

or in a simplified form

and
uZ 4+ u(t-2g/t) - 2hit = 0

To fit the gas equation at the critical point this system of coupled
quadratic equations was solved (by iterations) using the best fit
coefficients G3 - G5 in g and h. As A 0.0001 was used.

The solutions t and u give then beside A and B the coefficients G, and G;

via the equation for-t.u resp. for t.
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Appendix I

W dw-w W
The Integral Al = 2 J’ 7 (1 + a — )

S S

1

The abbreviations s and a are here
S = 1-aw + B-w 2

respe Q - y.A

To evaluate AI the following primitive functions are needed:

¥ dw 2 o S’ )
Jelw) = | — = ——-arc 1g{——
1 J’ S Vo Vo
) fdw 1 ( > 2-B-Jq)
J (w = — = —_ — +
2 52 s S 1
P J‘,”dw 1 S
Wl = — = + 3°B-J,4)
3 S o 2.52 2
with S = 2-Bw-a
and ¢ = 4B-a?
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With these functions the first term in AI turns to

Y odw-w 1 ( aw - 2 o
e e ——— . q-
J S2 o S 1

and for the second one get

J‘i"dw-w'2 1 1 3 5 (2-0-—&2)-w + 2-Qa
= | — a%), - )+
53 3B 2.0 z X
1 S"- w-o
J = —-( f-J * ) =
MR 2.B 2 552
1 1 ) S* - wo
= —[fJq + - £-S o+ ) ]
o 2:B-S S
with f = (a2 + 28B)/o .
so the complete primitive function to Al is
YV odw-w W 1
I(w) = 2 {1 + ao—) = — [ 28J4(w) + @lw) ]
j 52 S o !

with € = 6-aB/ Vo
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and plw) = — (S -0 + a0 — )
B-S S

The difference corresponding to a w-difference

Avw = w-1
1s in the first function
Aarc tg (S / Ve ) = .arc tg (AwVe [ u)
Here is
ulw) = 2-x + (2B -al)-Aw
with
x = 1 + B -a

Aw a
Ap = —-lg + 2-la +0)-Eu +—§-(c~w-u)]

with
giw) = [ao + B({bL-2a + og)-Aw ]/ x
so the integral AI turns out to be

1 Lg SR L
Al = —| -arc tg{ — ) + Al
g \/.0' U
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Appendix P

The sodium property subroutines KANAST and KANAPT.

For the benefit of potential users of the STPS-Karlsruhe the following

property-codes have been developed and tested:

KANAST calculates for givem T and 4 the properties P, Pq, Prs Cys Qp
and g , '

KANAPT calculates for given T and P the properties g, Pq, Py, Cps Qps
Px, C;L) Q:v‘

To accelerate the calculations KANAST uses not all the descriptions given
in Appendix C directly; the saturated properties Cys Pps Qr and the
saturated densities are stored in the code point for point, corresponding
to the temperatures 370 - 402 - 434 - ... - 2386 - 2418 K. For a tempera-
ture between these values the properties are calculated by cubic interpola-
tion. The use of the time consuming high-temperature property-formulas is

restricted to the remaining part of the SL.

Also for the reason of time-saving the integral AC, (eq. (94)) = needed for
the heat capacity in the overheated vapor - 1s pre—calculated and stored in
the code as a function of both variables T and T*/T (a typical running time
for this code is a half msec on the IBM 3033).

KANAPT calculates the sodium properties by iteration: the first density,
corresponding to a given T and P is estimated, then KANAPT calls KANAST to
check this value. If the corresponding KANAST-pressure does not agree with
P, the density is corrected using AP and Pq. On average one KANAPT run
gives rise to three KANAST calls.

All the property-surfaces and charts of the Figs. 26 — 41 have been
calculated with KANAST.





