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NEUTRINO PHYSICS AT THE SPALLATION NEUTRON SOURCE

Abstract

The advantages which the new high intensity neutron spallation
sources will offer for neutrino physics are discussed. The
experimental area planned for neutrino measurements at the SNQ
(Spallations-Neutronen-Quelle) is presented. An experiment to
search for neutrino oscillations v ++ v is proposed.

~ e

NEUTRONENPHYSIK AN DER SPALLATIONS-NEUTRONEN-QUELLE

Zusammenfassung

Die Vorteile, welche die neuen hochintensiven Spallationsneu
tronenquellen für die Neutrinophysik bieten können werden dis
kutiert. Der geplante Experimentierbereich für Neutrinomessungen
an der SNQ (Spallations-Neutronen-Quelle) wird vorgestellt. Ein
Experiment zur Suche nach Neutrinooszillationen v~ ++ v e wird
vorgeschlagen.
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I. INTRODUCTION

During the last years interest in the physics of neutrinos
has substantially grown. Especially in the context of successful
application of gauge theories and quark models the new weak in
teraction theories have led to new questions concerning the
elementary properties of the neutrinos. The interest in possible
'llanomalousll properties of the neutrinos has been further stimu

lated by the discrepancy existing between the measured and the

calculated numbers of neutrinos from the sun.

An explanation of the deficit of solar neutrinos may be
possible by assuming that the neutrinos have a small but finite
mass. The second assumption is then plausible that this mass

differs for the different kinds of neutrino: (v ,v ,v).e 11 '[
However, this opens up the possibility that neutrinos transform
into each other. In principle. this transformation could be
either a reversible process by so-called oscillations or by

decay /1/.

If the interaction violates muon number conservation and if

the neutrinos of the electron and of the muon have different
masses, this leads e.g. to the oscillation: v ++ v and to the

e 11
decay v + v +y (assuming m > m ). The lifetime can be11 e v ve
estimated to '[ > 5.10 11 ye~rs11/1/. Therefore, the deca~ of

neutrinos cannot be observed in the laboratory.

The oscillation of particles to particles (and antiparticles

to antiparticles, respectively) has been recently termed also
IIflavour oscillation ll . The reason is that in the unified

theory of weak and electromagnetic interactions lepton flavours
have been introduced by analogy with quark flavours. According
to their helicity the leptons are combined into a doublet and

a singlet each:
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For exar.Jple:

(L = left handed; R =

R = e
R

right handed).

In total, this gives the following doublets:

( 1 )

C+) C~) C:)
u (~ ) has not y~t been unambiguously detected in the experi-

T T 2
ment, Moreover, the mass of the T-particle of 1.8 GeV/c lies beyond the

range of energies accessible at the spallation neutron source.
Therefore, only the particles of the first four doublets will
be considered in this paper.

For zero-mass particles mixing of different states of heli
city and different doublet assignments (lepton flavours) is
not possible. Also, besides the conservation of the lepton
number, there is aseparate conservation of the muon number.
In the weak interactions in vertical direction in (1) e.g. for
the v e - e coupling exchange of the so-called W~ boson is
assumed to take place. However, because of its great mass,
this boson could not yet been detected in experiment. The proof
of interactions by II neu tral currents ll (e.g. v - e--coupling)

]J

has been one of the great discoveries in the past years. As a
consequence, the existence of a (likewise very heavy) elec
trically neutral exchange particle Zo is predicted.Experiments aiming at
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the direct proof of the existence of W~ and Zo can be performed
only in high energy physics. However, quite a number of very
fundamental questions can be studied particularly well by means
of the very high neutrino fluxes to be genera ted at the planned
SNQ spallation neutron source.

In this context the interactions in the horizontal direction
in (1) will be of special interest. The interest at the time
being concentrates on studies of the transitions v ++ v ;

. e ~ve ++ v~ (flavour oscillations) but also on possible particle-
antiparticle oscillations: v ++ v ; v ++ V ; v ++ v etc ..

e e ~ ~ e ~

Such studies could provide information about possible mass
differences and violations of the conservation numbers. But
more accurate measurements on neutrino coupling to other leptons
continue to be equally important. For instance, measurements
with good statistics of elastic neutrino scattering from electron~

may serve this purpose, viz. v + e + v + e. A particularly in
teresting process is the elastic scattering of mu-neutrinos
from electrons: v + e + v + e or v + e + v + e-. Studying

~ ~ ~ ~

this fundamental reaction yields clear information about the
weak neutral coupling of the electron. The results allow to make
comparisons with theory in a very direct manner, e.g., the de
termination of the Weinberg angle /3,4,5,6/. The existence of
ve + e + ve + e could not be even proven until now.

Besides the study of neutrino interaction with other leptons,
coupling to hadrons offers some interest. Coupling constants
and form factors both for charged and neutral interactions
could be derived from suitable experiments /7,8/. An interesting
field of activities not covered so far by experiments is the de
fined excitation of nuclear levels by neutrino scattering. First
ly, the nucleus is used as a microscopic laboratory with a de
fined spin-isospin with a view to determine coupling constants
in a selective way and largely model independent. Secondly,

nuclear matrix elements can be measured for light nuclei. The
excitation by mu-neutrinos would offer particular interest.
The reason 15 that this interaction allows to excite the nuclei
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merely by neutral current coupling. The combination of the re
sults of such measurements with corresponding (in most cases
already known) numerical values fl"om ß-decay, electron scattering
and y-decay of energy levels of nuclei would allow detailed

testing of the unified theory of electromagnetic and weak in
teractions. If. however. this theory is supposed to be valid.
the nuclear matrix elements are obtained practically independent
of the model. A number of articles and proposals have been pub
lished during recent years about this field of "nuclear physics

i nv01 vi ng neu t r a 1 cu r ren t s ". A c0mpreh e ns i ve des c r i pt ion ha s

been furnished by T.W.Donnelly and R.D.Peccei /9/. The new high
intensity accelerators with a time structure suitable for se
paration of the mu-neutrinos will enable us for the first time

to perform such experiments. An interesting example would be
the inelastic excitation of the (1+.1) 15.11 MeV level in 12 C
by mu-neutrinos:

12 C(V .v , )12 C)I( (0+0 -+- 1+1, 15.11 MeV)
j.l j.l

Since the level in 12 C decays into the ground state by 95%.

the 15.11 MeV y-ray constitutes a clear signature for excitation
of a nucleus by neutral current. Since the spin and the isospin

are defined. measurement of the integral cross section for
this reaction would already be appropriate for the selective
determination of the isovector part of the neutral current.

The integral cross section at neutrino energies below approxi

mately 100 MeV is obtained as /9/:

where Ev is the neutrino energy in MeV. The reduced matrix ele
ment is the same as that occurring in the calculation of the

ß-decay rate (iee p.47 of /9/}:

( 3 )
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Introducing (3) into (2) and use of the measured ß-decay
rates gives independent of the nuclear model:

(jl = 1.08.10- 38
vv

(E -15.11)2
v ( 4 )

where c~ is a cD~pling constant for isovector axial coupling.
Very different values are obtained for this cross section for

different gauge theories. This is demonstrated in Fig.l.

Supposing that the WSGIM-model is correct, we have C~=I(C~={
for the b-quark model ). With this assumption, an integral
inelastic scattering cross section of a v' = 2.5.10- 42 cm 2

v j.l
j.l

is obtained for the mu-neutrinosfrom the SNQ spallation neu-
tron source (beam stop Ev = 30 MeV). With adequate shielding

and a suitable time structure this extremely small cross secti~n

could be measured within one week of measuring time at the
proposed SNQ spallation neutron source, the statistical accuracy

being better than + 10% (for 1 mA averaged proton current).

The desired extension of the unified theories of interaction
might lead to the postulation that light scalar gauge bosons
exist /10,11/. In the meantime, H.Faissner has reported about
first experimental indications of the existence of such semi-

weak interacting spin-zero particles having a mass ma = (300 i 50)KeV
/12,13/. Given an adequate time structure, investigations in-
cluding such particles could be performed at a high-intensity
spallation neutron source in parallel with neutrino physics in

vestigations and in the same experimental hall, using similar or
the same detectors /2/.

The importance of neutrino experiments at high-intensity pro
ton accelerators at medium energies have been discussed inten
sively by several authors in recent years; see /8,9,14/. During

the past months, detailed proposals have been submitted for ex
periments to be performed at LAMPF /6,15,16,17/.
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It is evident from all these publications that this type of
neutrino physics is on the way to become a field of research
for several working groups. Thanks to the extremely high neu
trino fluxes to be genera ted at the high-intensity proton
accelerators already under construction and planned, respectively,
work on the weak neutral currents nowadays considered as rather
exotic could develop into a standard discipline of modern nuclear
and particle physics.

The great advantages which the facility proposed in this study
would offer for neutrino physics, will be expl~tned by way

of example in the following chapters. The computations required
in this context, part of them very extensive, were carried out
as a collaboration of the Karlsruhe Nuclear Research Center and
the Oak Ridge National Laboratory by T.Gabriel (ORNL) and
J.Wilczynski (KfK). A comprehensive presentation of the methods
and results will be published soon /18/.

11. NEUTRINOS FROM THE SPALLATION NEUTRON SOURCE
(Beamstop Neutrinos)

The protons do not only give rise to the production of
neutrons in the spallation target. At the same time a considerable
number of pions n+ (and n-) is produced which emit neutrinos while
decaying. Fig.2 shows the calculated number of n+ particles pro
duced per stopped proton for different target materials as a
function of the proton injection energy /18/. It can be noted
that in our case with Ep = 1100 MeV and lead as the target ma

terial: Nn+/N p = 0.13(3).
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The pions are very quickly stopped (10- 10 s)
still in the target zone so that only a small fraction of about
5.10- 3 decay while on flight. Whilst the negative pions, when

at rest, are captured by nuclei and finally absorbed, the posi-·

tive pions, with a life time T = 26 ns, deeay into a positive

muon and a muon neutrino. This means that, praetieally, only

the positive pions and the positive muons playa role at the SNQ
spallation neutron source. The muon with a·life time T = 2.2 gs

subsequently decays into a positron and (beeause of eonservation

of the lepton and muon numbers) into an eleetron neutrino and
a muon antineutrino. Thus, we have

+ +
TI ~ ~ + v

~

+ +
~ ~ e + v + ve ~

T = 26.03x10- 9 s

-6
T = 2.197x10 s

( 5 )

( 6 )

Since the pion at rest decays into two particles, the muon

neutrinos from (5) have a constant energy E = 29.79 MeV.v
~

By contrast, continuous distributions with an end energy of
52.83 MeV are obtained for the neutrinos produced by the three

particle decay (6). Fig.3 shows the respective energy dist~i

butions. Sinee the deeays take place with the partieles at·rest,

the intensities of all three kinds of neutrino are equal and

isotropie in space. The souree strengths given in .Fig.3 were

caleulated for an averaged proton eurrent lp = 1 mA. For eaeh

kind of neutrino and the desired parameters of the spallation

neutron souree Ep = 1100 MeV and lp = 5 mA an averaged source

strength is obtained of

Q = 3x4.1x10 15 /s.v ( 7 )

This means that the facility would be the most powerful

source for the three kinds of neutrino v~,ve'v~.
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This source can be utilized for distances from about 6 m
on, where it will appear practically as a point source yielding

a flux of

(r in m).

10
~ _ 3 x 3. 2x 10

v - r2
-2cm -1s

( 8 )

( 9 )

However, in future experiments involving neutrinos not only
a high average flux but likewise a suitable time structure and
the highest possible peak flux will playa role. There are
three main reasons for this requirement:

1. Most of the experiments which will be of interest also after
some years need separation of the different kinds of neutrino.

For this purpose, the very different lifetimes of pion and

muon decay can be utilized provided a suitable time structure
of the beam. This problem will be treated more comprehensively
later in this paper.

2. On account of the very small cross sections in neutrino ex

periments, the number of background events originating from
continuous sources (cosmic rays, detector noise, etc.) must
be kept extremely low. Therefore, the smallest possible duty
cycle of the beam should be aimed at.

3. Background events from the source reaching the detector even
through a very thick shielding are produced mainly by neu

trons. The slow part of the spectrum of neutrons can be
eliminated by time of flight measurements .

•

11.1 Dependence on Time of theNeutrino Flux

For a rectangular pulse of the proton beam with the
pulse duration t p the time dependencies of the neutrino source

strengths indicated by the expressions (10) to (13) are obtained
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in accordance with the different 1 ifetimes T and T of the
TI ]J

pions and muons generated (cf. also /19/):
For the fl ux of the mu-neutrinos from the +source v TI -decay:

t ]J

T

\.P v = QO (1- e TI) t < t p ( 10)
]J

t t--.E.
TTI T

\.P v = QO ( e - 1 ) e TI t > t (11 )
]J P

For the source flux of the electron neutrinos ~ v
with that of mu-antineutrinoslp;-: ) we obtain in e

v
mation (T »T): ]J

]J TI

(identical
good approxi-

t <t +T
- P TI

(12 )

where

4J ve

t
T

]J t >t +T
- P TI

( 13 )

QO 0.133 6.24x10 15 -1 -1= mA sf·t p

f = pulse frequency i n Hz

t = pulse length of the protons i n s.p

( 14 )

Fig.4 shows this time dependence of the neutrino source

fluxes for the practical example of a pr~ton pulse length of

t p = 200 ns with arepetition frequency of 100 Hz, i.e. for
QO = 4.15x10 19 mA- 1 s-l. (The unit mA relates to the averaged

proton current).
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As has been expected, saturation of the mu-neutrino source
strengthlp is attained already after about t = 100 ns. Since

\>).1
the muons have a much longer lifetime, the fluxes of the elec-
tron- and muonantineutrinoslp andlp- are still much smaller

\>e \>).1
at that time. Thus, the optimum pulse length for the separation
in terms of time of \> is about 50 ns. However, for most of the).1
experiments the total intensity attainable is equally important
as the degree of separation. The ideal case of a pulse length
t p = 50 ns with the averaged proton current of 5 mA maintained
at the same time (at f = 100 Hz), would require a peak current
of 1000 A. However, since this would probably exceed the existing

technical and financial limits (see chapter dealing with the
storage rings), compromises must be made. A closer study of

the conditions prevailing in some interesting experiments shows
(see example of neutrino oscillation, chapter IV) that a pulse
length of about 200 ns with an averaged current of about 1 mA
would still be a good compromise. The source has to be compared

with the facilities planned for construction in the next years
at the Rutherford Laboratory in the Uni ted Kingdom and at LAMPF
in the USA.

Since the proton energies of these competing accelerators
lie at about 800 MeV, the neutrino intensities in these faci

lities will be lower by the factor 1.9 for the same current
level (see Fig.2). On the whole, it can be supposed that an
accelerator with an energy of E = 1100 MeV, a time structurep
of about t p < 200 ns for f = 100 Hz and, at the same time,
I p = 1 to 5 mA, will be an extremely interesting source of
neutrinos \> ,\> and v , even in about ten years. Since the high).1 e ).1
peak intensity will be of major importance, it can be assumed
that such a facility would be unrivaled for a long period of

time.

The desired time structure with the simultaneous conser

vation of the mean intensity can be attained only by bunc~ing

with a storage ring. Therefore, a storage ring would be of

particular interest for neutrino physics.
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In case a storage ring will not be available in the initial
phase, the required time structure of the be am could be achieved
in the meantime by a compromise associated with loss in inten
sity. One could, e.g., think of aprepulse group ahead of the
main pulse, as shown in Fig.5. Depending on the purpose of the
experiment, the pulse length t p could be varied from the ion
source of the accelerator. The minimum interval between two beam
pulses is about 10 ~s because of the necessary reduction in the

"number of ~-decays. With a good time structure (useful pulse:

t p = 200 ns, pulse interval t = 10 ~s) and a peak current of
100 mA (I = 5 mA for t = 0.5 ms) this would yield an averaged

-p p
current I = 100 ~A which could still be utilized for neutrinop
physics. Consequently, the facility would just be competitive

with the planned facility at the Rutherford Laboratory as re
gards its mean neutrino flux. The accelerator at the Rutherford
Laboratory will produce double pulses at a frequency

of 50 Hz. The duration of each single pulse will only be 100 ns.
However, the second pulse arrives as early as 250 ns after the
first. The averaged current will be

1p = 200 ~A at an energy of 800 MeV. This means that

the mean intensity which can be used for neutrino physics will
attain roughly the same level in both accelerators, even without
a storage ring. However, the duty cycle, which is very important
in suppressing the continuous cosmic background, is less favourable

in the proposed interim solution. For the experiments with mu
neutrinos to be performed at the Rutherford accelerator this duty
cycle will be 2.10- 5 as compared with 1.10- 3 in our interim so

lution. In experiments involving electron and muon antineutrinos
a duty cycle of about 1.10- 3 could be expected as compared with
5.10- 2 in our facility.

Here the advantages are evident which would be derived from
installation of a storage ring. The values of the duty cycle
oft heR ut her f 0 r d acce1e rat 0 r, i. e., 2· 10- 5 a nd 1. 10- 3 ,

respectively, could also be attained in our facility if the
storage ring were used. At the same time, the neutrino intensities

would be higher by nearly a factor 50.
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Obviously, a comparison of the interim solution proposed
by us with the proton storage ring (PSR) planned to be built
at Los Alamos in 1985 will lead to less favorable results. At
Los Alamos an averaged proton current I = 100 ~A is to be

-6 p
achieved for a duty cycle of 3·10 . The proton energy will
be 800 MeV. This means that the mean neutrino intensity in
our facility would be higher by a factor 2 already if the
interim solution were adopted. However, a disadvantage is that
the duty cycle would be poorer by a factor 1000 for mu-neu
trino experiments (500 for v and v experiments).

e ~

Another accelerator for planned neutrino physics.experi
ments is already under construction in Moscow. It is intended
to provide also a proton storage ring at some later date which
will deliver an averaged current of about 500 ~A, although at
600 MeV only. A comparison of our interim solution with the
facility in Moscow also shows that we would just be competitive
as regards the mean neutrino intensity, but not as regards the
duty cycle.

For a number of neutrino experiments still of some
interest, a larger duty cycle could be compensated initially
by better shielding and by extra expenditure for the neutrino
detectors. However, experiments on neutrino-electron scattering
would become very difficult. With respect to all experiments
the storage ring would result in an additional considerable
improvement of the quality of results. This will be demonstrated
in more detail in chapter IV by the example of measurement of
v ++ v oscillations.
~ e

The utilization of neutrinos genera ted during flight while
the pions decay has not been discussed here because this would
require an expensive decay channel provided at an external beam.
However, if such a beam was available for other purposes, above
all those experiments could be performed which require higher
neutrino energies. They i~clude neutrino disappearance experi
ments involving muons, e.g., v +12c+~-+12N etc. /8,15,16/. The

~

cross sections for inelastic neutrino scattering continue to
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grow by the square of neutrino energy up to about 100 MeV
(see Fig.1). However, the extent of practical utilization of
this advantage depends on many details of equipment and operation
oft he fa ci 1 i ty .

The great advantage offered by the utilization of the pions
stopped in the spallation source is that they are available
anyway so that the neutrino exp~riments can be performed simul
taneously over extended periods of time and without noticeably
impairing the solid state physics experiments.

111. PROPOSAL FOR AN EXPERIMENTAL AREA IN WHICH NEUTRINO
MEASUREMENTS COULD BE PERFORMED AT THE SNQ SPALLATION
NEUTRON SOURCE

Neutrino experiments are difficult mainly for the reason
that the probability of detecting strong or electro-
magnetic interacting background radiations are higher by 10 to
20 orders of magnitude than they are for neutrinos characterized
by weak interaction. The total cross sections listed in Table 1,
which are typical of beamstop neutrinos, have to be compared
with the total cross sections for capturing-thermalized background
neutrons from the source or also with that of muons originating
in cosmic rays. Therefore, a facility in which neutrino experi
ments are to be performed, must be very well shielded both
against the source and against cosmic rays. In addition,all sources
of continuous residual background radiation (cosmic rays, natural
radioactivity, noise, etc.) must be suppressed as much as possible
by a small duty cycle accompanied by a high peak intensity of
the neutrino source. The requirements on the time structure have
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Table 1: Cross Sections and Counting Rates Typical for
Neutrinos at the SNQ Spallation Neutron Source

Reaction Mean Energy
0" tot Counting Rate lK Remarks

MeV (cm 2 ) (day,mA,to)-l

v +d + p+p+e 37 5.10- 41 29e

+12 C - 12 37 1.5.10- 41 2.9 WSGIMve + e + N11ms
theory

v +e + v +e 37 6.10- 43 0.74 V-A theorye e

v +e + v +e 30 5.10- 44 0.062
)J )J

v +12 C + v , +12 Cl1f (15.1) 30 2.5.10- 42 0.48 WSGIM
)J )J theory

v +6 Li + v , +6Li-(3.56) 30 1.5.10- 41 5.7
)J )J

~counting rates at 12 m distance from the neutron source.

Target electrons per ton of organic scintillator.
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already been discussed in the preceding chapters. To achieve

also a sufficient separation in time, a be am pulse length

of less than about 200 ns must be realized with at least

about 10 ~s intervals between the pulses (see Fig.4).

In order to be able to measure the extremely small cross
sections listed in Table 1 within a reasonable period of time,
we need a correspondingly great target. The target nuclei or
target electrons should, if possible, also be part of the detec
tor for the respective signature of the neutrino reaction.
Depending on the problem, different types of detector will be

necessary in order to comply with these requirements. The large
detectors currently used today in elementary particle physics
cannot be simply taken over. The main reason is that the energy

available as a signature for beam stop neutrinos is much lower
than the energy in neutrino experiments at high-enery

accelerators. Related to electrons in the
detector the energies for interesting cases lie below about 20 MeV,

for the major part of nuclear physics signatures (y-transitions
and ß- (ß+) emissions) even well below 10 MeV. On the other hand,

the background both from the source and from cosmic rays in

creases roughly exponentially towards the smaller energies. For
these reasons neutrino experiments at the be am stop have been

performed until now only for energies between 25 and 50 MeV
/20,21/. Only going down to energies between 3 and 20 MeV offers
the possibility of nuclear physics signatures. This would allow
for the first time to perform a great number of interesting
experiments which could employ over a long period two to three

research groups.

The calculations of shielding and background already
mentioned above resulted in the proposal of' the two detector

regions shown in Fig.6. It can be easily seen that the shielding

conditions are most favourable for the detector region I (ring

bunker below the spallation source).

The calculated total background in that region is lower
by a factor of five than in the detector region 11. Therefore,
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source
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it is particularly well suited for measurements with low
y- or electron energies. To be able to study the situation
in quantitative terms we have selected a practical example of
a detector placed in the region I. The target is formed by the
12 C nuclei in an organic scintillator. The scintillator is

divided into segments consisting of elements of 1.5 m length
each with a square cross section of 20 x 20 cm. Each element

is supplied with one photomultiplier on both ends. This per
mits local resolution of about 10 cm along the element. More
over, the requirement of coincidence of the two photomulti
pliers acts as an additional noise suppression. To obtain re
asonable measuring time, about 50 tons of detector material are
necessary.

With these requirements fulfilled,the following numbers
of events are expectedper mA of averaged current (see also

Table 1):

v +12 C ~ v , +12 ct15.1 MeV):
~ ~

-v +e ~ v +e :e e

v +e ~ v +e
~ ~

145 events/day

35 events/day

3 events/day

Thus, if one wishes to study mu-neutrino-electron scattering,

the total background in an interval of about 10 to 25 MeV must
not exceed about one event/day. As shown by the computations,

this requirement can be fulfilled with a suitabele time struc

ture at the SNQ spallation neutron source:
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1. Background from the spallation neutron source

The background from the SNQ spallation neutron source at the
location of the detector I after having passed through 8 m
iron and 1 m borated high-density concrete is shown in
Figs. 7 to 9. Details will be presented in /18/. Within the
interesting range between approximately 10 - 25 MeV (related
to electron energies in the scintillator) a flux in the de
tector due to background events caused by fast neutrons of
about 2.10- 12 /(cm 2s mA)is obtained at the SNQ spallation neu
tron source~ For our 50 ton scintillator this means 0.02 event
per day per mA. Consequently, the background of the SNQ spalla
tion neutron source can be reduced to negligible values
through shielding.

2. The high-energy muon component of cosmic rays is much more
penetrating. It can be sufficiently reduced only by combina
tion of a passive with an active shielding. Therefore, in the
detector region I, two separate anticoincidence counters will
be provided in addition to a passive detector shielding con
sisting of 20 cm thick iron plates (or a similar lead shiel
ding). After a muon (or electron) has passed through these
counters, the whole detector is switched to be insensitive for
about 25 ~s. In addition it can be made insensitive by the
topmost segment layer and by about 10 cm surface layer at the
ends of the segments.

More detail~investigations /18/ have shown that a suppression
factor of about 10- 5 by anticoincidence should be possible. In
the proposal for an experiment at LAMPF, submitted by T.Y.Ling
et al. /16/, even a value of 3.10- 6 is assumed for a similar anti
coincidence shielding. Disturbing background from cosmic rays
is mainly produced by the bremsstrahlung of the muons' (or the
electrons following them) near the detector shielding. The neu
tral radiation (true neutrals) still passing through the detec
tor shielding (20 cm iron) is less intense by a factor 10 5 than
the bremsstrahlung generated there by muons. Therefore, further
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optimization of the geometry of the passive and active de

tector shieldings might be rewarding.

Fig.10 shows the bremsstrahlung background in the detector I

converted into electron energies in the scintillator, plotted

versus the energy. The individual components are discussed in

/18/. The background intensities are higher by approximately

the factor three for the detector region 11.

For our range of energies of 10 - 25 MeV the cosmic back

ground yields NU = 1.5.106 events per day, leaving out of con

sideration the anticoincidence and the duty cycle. With an anti

coincidence suppression factor of 10- 5 we, therefore,expect

NU = 15·DF per day (DF = duty factor). Consequently, even for
the proposed interim solution (DF = 5.10- 2 ) a background rate

of less than 1 everit per day can still be expected.

This would be comparable with the rate for neutrino-electron

scattering: From Table 1 a rate of 3.7/day is calculated for

ve+e ~ v +e and 0.3/day for v +e < v +e (based on thee ~ ~ .
averaged current 100 ~A attained in the proposed interim solution).
In the presence of a storage ring the expected counting rates

would be higher by a factor 50 while the background would still

be strongly reduced. It is worth mentioning in this context that

so far not even the existence of the reaction v +e ~ v +ee e
has been proved.
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IV. PROPDSAL FOR AN EXPERIMENT TO SEARCH NEUTRINO OSCIL
LATIONS v~ ++ v e AT THE SPALLATION NEUTRON SOURCE

To demonstrate the extraordinary possibilities

for neutrino physics at a high-intensity spallation neutron

source associated with a good time structure an experiment
will be proposed below for observation of neutrino oscil-

lations v ++ v .
~ e

If the physical neutrinos v and v are formed by super-
~ e

position of two fundamental neutri nos vI and v 2 having de-

fined masses m1 and m2 , oscillations v~ ++ v e can occur /1/.
v~ and v e in this case are no longer stationary states, nor
do they have defined masses.

The mixture is described by:

where 8 is the mixin~ angle still unknown. If at the time

t = 0 a pure beam Iv > orlv > starts, a combination of. e ~

both kinds of neutrino will be found at the time t = t. In this

case, the probability of transition in terms of quantum mechanics

can be calculated as usual /1/. For a constant energy, conver

sion is possible from time dependence into flight path de-
-pendence. This gives for the transitioll probability:

2
P() . 2 2 . 2 (TI' 8m )x = Sln 8'Sln ~.48.E·x

v

( 15)

FJI(x) = I-P(x)

where 8 = mixingangle, 8m 2 = Im1-m212 in eV 2 , Ev = neutrino

energy in MeV, x = distance from the source in m.
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We now assume a source pulsed according to Fig.4 i.e.,
a pulse length of t p = 200 ns.As shown by Eqs.(10) to (13),
the number of muon neutr inos at the source is much greater in
the range< 200 ns than the number of electron neutrinos, whilst
in the range> 200 ns we find almost exclusively electron neu
trinos (except for the muon antineutrinos). This fact can be
utilized to define a ratio of measurable counting rates which
reacts very sensitively to the oscillation v ~+ v but which,

]..J e

on the other hand, is insensitive to instabilities and other
systematic errors.

We firstly set up the following counting rates applicable
to the reactions with the 12 C nuclei in the 'detector I (50 t

scintillator):

N(12 C) = 2.51.10 30 (target nuclei in the detector)

The expected counting rates at the distance x in meters from
the source will then be:

cr v
N (X)=-t(N, (1)·(I-P(x))+N (1)·P(x))

v]..J x v]..J v e

(16 )
cr v

N ( x )=-1(N (1 ) . ( 1- P( x ) ) +N ( 1 ) . P( x ) )
v e x v e v]..J

the

cr v
]..J

For simplification the energy of the mu-neutrinos and of
electron neutrinos will be assumed to be <E > = 30 MeV,v
and cr are the total cross sections:

v e
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Assuming a proton puise duration of t p = 200 ns we now
make a distinction between two counting rates each. For the
time interval between t = 0 and t = t p = 200 ns we mark the
counting rates from (16) with the index <. For the neutrinos
genera ted after this time interval (200 ns to 8 ~s) the index>
is used. Inserting numerical values yields:

N< (x) 1 (3346(1-P(x))+345·P(x))= -2"v
~ x

N> (x) 1 (175(1-P(x))+3146'P(x))= 2"v
~ x

( 17 )
N< (x) 1 (2067(1-P(x))+20074'P(x))=

~2ve

N> (x) 1 (18875(1-P(x))+1049·P(x))- "2"ve x

The numerical values relate to 1 mA averaged current over
aperiod of one day (24 hours) and with 50 to of 12 C in the

target.

For <E > = 30 MeV it follows from Eq. (15):v

and assuming maximum mixing (sin 2 28= 1):

( 19)

From equation (19) follows that forÖ m2·x< 1 (e.g.
öm 2 = 0.1 eV 2 ; x=10 m)the transition probability gets proportional

to .Öm 4 ·x 2. Thus, the number of converted neutrinos at the distance
x ist approximately:

142 4NiV 2 . öm ·x = öm = constant.
x
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Using the counting rates in (17), the following ratio
can be defined:

R(x) =

<N (x)-
vlJ

<N (x) +v e
>+ N (x)v e

(20 )

>The number N (x) was not used because it is difficult to
vlJ

measure. Introducing (17) into (20) gives:

R(x) = 20154 - 39883'P~X)
20942 + 181.P(x ( 21)

It can be noticed that the denominator is practically inde
pendent qf x. Therefore, it can be determined with the smallest
possible statistical error for a small distance. If one intro
duces in addition (19) into (21), one obtains:

R(x) = 0.962 - 1.904 sin 2 (0.042·5 m2 .x) (22)

S . 1 . 2lnce - Sln a =

approximately:
cos2a, the following expression applies

R( x) ~ c 0 s (0. 084 ·5 m2. x ) (23 )

The expression (23) reflects the fact that T rr « TlJ' If the
number of mu-neutrinos abruptly became zero after the time inter

val t p ' (23) would apply exactly.·

Since in one detector the counting rates in (20) can be
measured simultanesously for the same number of target nuclei,
the ratio R(x) is relatively insensitive to systematic errors.
The statistical error of R(x) can be estimated by:

l:IR(x) ~ i. _1_ yR(x)'N(X)+N U'
N(x)

(24)
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where N(x) is the denominator of (21) which can be determined
with a small error and NU is the (cosmic) background rate
which can be measured conveniently during the beam intervals.
As has been shown in chapter 111, NU ~ l/day can be expected.

Fig.11 is a plot of R(x) (x = 12 m, 60 m and 120.m) versus
the square of the mass difference. The error bars represent
statistical errors to be expected for an averaged current of
1 mA and a duration of measurement period of one year (300 days).

A widely used reference variable is the smallest still measureable
mass difference for a maximum mixture. This minimum mass difference
can be read from Fig.12.

It appears that for an averaged current of 5 mA the lower
limit of the still measureable mass difference of n~utrinos

lies atBm 2 (min) = 0.03 eV 2. However, this extremely small value
can be attained only in the presence of a.storage ring. The
minimum values roughly depend o~ the square root of the averaged
proton current at the spallation neutron source. One obtains

e.g. Bm 2(min) = 0.06; 0.2 eV 2 for I = 1; 0.1 mA.
p .

These numbers must be compared with the limit ofB m2 ~ 1 eV 2

obtained from very lengthy and" difficult high-energy and reactor
experiments /15,22,23/. Even with the proposed interim solution
with I = 100 ~A, this value could be measured at the spallationp
neutron source within about ten days of measurement time with

an error of only about + 0.25 eV 2.
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