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ABSTRACT

The analysis of inelastic scattering of strongly interacting par-

ticles from nuclei suffer~ from the model dependence introduced when specifying

the form factors (coupling potentials) e.g. in the frame work of a vibrational

model. Moreover, the relation between strength and shape of the coupling

potentials and corresponding quantities of the transition densities is not

weIl established, and the interpretation in terms of transitioof rates and

nuclear moments introduces additional uncertainties. In

of ·inelastic scattering of 104 MeV alpha-particles from

the present studies
50 . 52Tl and er we

remave the constraints due to pre-chosen forms of the coupling potentials

by applying the Fourier-Bessel method which is more flexible. It allows

quite generalshapes and provides realistic estimates of the uncertainties

of the potentials and derived quantities (moments). Using the identities

between the integral moments of a folded potential distribution and of the

underlying nuclear matter distribution isoscalar transition rates have been

derived.

Eine Methode zur Analyse der inelastischen Streuung von Alpha-Teilchen

Die Analyse der inelastischen Streuung stark wechselwirkender Teilchen

mit Atomkernen leidet gewöhnlich unter der Modellabhängigkeit, die durch

einfache mathematische Formen für die Formfaktoren (die Form der Kopplungs­

potentiale) - Z.B. im Rahmen des Vibrationsmodells als Ableitung des Diago­

nalpotentials - eingeführt wird. Darüberhinaus ist die Relation zwischen

Kopplungspotential und Ubergangsdichte nicht klar. Die Deutung der Ergebnisse

im Hinblick auf Ubergangsraten und Momente der Materieverteilung bringt

daher zusätzliche Unsicherheiten. In den vorliegenden Untersuchungen der

inelastischen Streuung von 104 MeV Alpha-Teilchen von 50Ti und 52cr werden

die Einschränkungen durch vorgewählte Formen der Kopplungspotentiale durch

Anwendung der Fourier-Bessel-Methode vermieden. Diese Methode ist recht

flexibel, erlaubt recht allgemeine Formen und liefert realistische Abschätzun­

gen der Unsicherheiten. Unter der Annahme, daß ein Faltungsmodell Potential

und Ubergangsdichte verknüpft und unter Gebrauch mathematischer Identitäten

für die Momente gefalteter Verteilungen werden aus den Resultaten Werte

für isoskalare Übergangsraten gewonnen.
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1. INTRODUCTION

There is a considerable interest in comparing transition rates

of collective nuclear excitations induced by different kinds of particles.

Although the correlation between nuclear and electromagnetic excitation

is weil established and readily understood by the overall similarity

of the transition operators, there remain interesting differences. In

the picture of the collective model the shapes of the charge - and total

matter distribution of a particular nucleus may differ so that electromagnetic

and hadronic probes may feel different (permanent or dynamical)

deformations thus revealing different collectivities of protons

and neutrons. Moreover, due to different spin - and isospin structures

of the interactions of different particles with nuclei, we have to expect

that, in general, the transition strengths are dependent on

inducing the transitions. With those aspects in mind Madsen

the external
1et al.

field

have discussed electromagnetic, (p,p') and (n,n') excitations and have

related possible differences to the isovector part of the transition

amplitudes. The inelastic scattering of alpha-particles involves only

the isoscalar component, so that the corresponding rates might be an

interesting source of independent information.

(r )
CI

factor V.
~f

folding ofresult of a

with an effective alpha-

Basic difficulties, however, are present in all analyses of nuclear

excitations since inevitably reaction models are involved and the

interesting matrix elements are not specified in a model-independent way.

transitionAll procedures (see ref. 2) proposed for the extraction of isoscalar

rates from inelastic alpha-particle scattering are implicitely3 or
4

explicitely based on the assumption that the (real) form

(coupling potential) can be understood as the

the transition density Pif(r) = <ilo(1-1') If>

particle-bound nucleon interaction Veff

(1)

An explicit folding model approach requires the specification of the transition

density in addition to the alpha-particle-bound-nucleon interaction. If not

taken from a microscopic structure model the collective model has been invoked

for parametrizing Pif' e.g., as derivatives of the ground state density

distribution ("vibrational model"). Even when explicit folding model calcu-
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as provided by an extended optical potential having

radial shape of the potential and its derivatives.

the strength:

lations are avoided and only the coupling

related to P
if

by rescaling

relies on the shapes of Vif

various simple forms for the

potentials are determined (lateran

Bernstein procedure 3), the analysis

Although the parametrization of the transition densities and potentials

as provided by the collective model appears to be rather consistent 3,5 with

the dependence of these quantities near the nuclear surface as given by microscopic

structure calculations, the simple functional farms introduce strang con-

straints on the radial shape of P
if

and Vif' respectively. These constraints

may affect the extracted values of the isoscalar transition rates, they may

distort the uncertainties and speil systematic studies of differences

between proton and neutron collectivities. It is, therefore, quite important to

overcome such deficiencies and to have a method which is additionally able

to give realistic estimates of the uncertainties of the extracted results.

6
There are rather similar problems in standard optical model analyses

of elastic scattering when using prechosen functions for the shape of the

potentials. In recent years, a significant progress has been made by introducing

so~called model-independent techniques describing the optical potential

(usually its real part) by a Fourier-Bessel series or other flexible sets

of adequate functions 7 . In the present paper we apply a variant of the Fourier­

Bessel (FB) method to the description of the coupling potentials for inelastic
50 . 52scattering of 104 MeV alpha-particles from T1 and er. For these cases suf-

ficiently accurate experimental data are available
B

, both of elastic and

inelastic scattering, extending to large scattering angles, which is an important

feature when introducing of the more advanced methods into the analysis where

an increased sensitivity to details of the shapes of the potentials is observed.

The transition moments and transition radii derived from the resulting

potentials can be translated into corresponding quantities of the nuclear

density distribution by use of Satchler's theorem
9

for radial moments of

folding integrals, thus enabling a reliable and quantitative analysis in terms

of "model independent 11 transition rates.
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2. METHOD AND PROCEDURES

The present studies emphasize the methodical aspects which will be

demonstrated by.applying the procedures to 104 MeV alpha-particle scattering
+ 50 . 52

from the ground- and the first 2 states of. T1 and Cr (recently measured
8

by the Karlsruhe group ).

DWBA or coupled channels calculations of the differential cross sections

require the specification of the diagonal part U
Di

(r )of the complex
ag "

interaction potential as weIl as of the non-diagonal part U 1 providing the
, coup

coupling of different nuclear states. Usually, in the framework of the collective

(vibrational) model both parts are deduced from an extended optical potential
+

U(r) deformed by the angular dependence of the half-way radius, e.g.

"
(2)R RO (1 + z: "A~ YA~ (r,,)'

t 10
and expanded into powers (t) of L "A~ YA~ (r,,)' The coupling potentials

A~

between various channels (where DWBA is restricted to coupling to the ground

state) enter by matrix elements

<lIlu 11'1'> = 2 [A(l,I,l'I,L,J)
coupl L

t (t)
L UL
t

( 3)

where 1, l' denote the partial waves of the incoming and scattered particle,

I, I' the spin of the nuclear states, J the total channel spin and L the

multipolarity. The factor A(l,I,l'I'; L,J) is purely geometrical and the reduced
( t)

matrix elements of the operators QL (operating only on target coordinates

and built up by products ("A~"A')L coupled to multipolarity L) represent

the strength of the transition, while u~t) are the radial form factors*. The

sum of products

(r) <IIIQ(t)III'>
" L

(4a)

*The standard DWBA procedure takes into account only the first order term (t=l)
in eq. 3 which is consistent with the neglect of multiple excitation. As in a
further step of simplication strength and shape of the optical potential is
approximated by the result extracted fram elastic scattering alone, the
standard DWBA extracts only the transition strength <0 I IQ(l) II=L> from
inelastic scattering data. L
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-1/2corresponds - apart from a factor (2I'+1) . - to the transition density

of multipolarity L (there.written in the special expansion of the vibrational

model) and, for example,

~ ß (pot) ö
L LI

(4b)

is just the familiar "deformation" parameter. The superfix (pot) is introduced

since we have to distinguish between deformation
4-

of the nuclear matter distribution p(r).

4-
of the potential U(r ) anda

In general the real as weil as

are assumed to be nonspherical, and

the. imaginary part

it has been shown
4

of U(; ) ~ V(; )+i W(; )
a a a

that complex coupling

is important for inelastic alpha-particle scattering. In the following procedure

W(; ) will be conventionally described by a Woods-Saxon form (WS) with geometry
a

(R
W

' aw) independent from the real potential and deformed by

( 5)(r ) <IIIQ (t) III'>
CI L

handled in the way of a second order (t~2) vibrational model. The real part,

however

v (r ) ~ L v (t)
L a t L

of the coupling potential is replaced by a more flexible parametrization,
6

similar to the Fourier-Bessel method in elastic scattering analyses

It consists of adding to a conventional form (say, the familiar

derivative of a Woods-Saxon) an extra-potential given by a Fourier

Bessel series*:

v (r ) ~ ß(pot~(Vo (r) +
L a L coupl a

N

L
n~l

b
n

(6a)

The quantities j1 are spherical Bessel functions, q ~ nn/R t and R t is an cu cu
suitably chosen cut-off radius beyond which the extra-potential vanishes.

*Model independent analyses 11 of inelastic electron scattering introduce
the charge density of multipolarity L as a Fourier-Bessel series with j •

L
This representation is based on the approximate validity of the Born
approximation, which is obviously a sitatuion different from alpha-particle
scattering. In the present work the choice of j1 in eq. 6 is just a matter
of convenience because the form factor apparently has to vanish at r a O.
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y O

coupl
0, the

After fixing the ß~pot} •

from a best-fit with b _
n

by a least-square fit to the

term by a first guess or a shape resulting

correction coefficients bare determined
n

data. Within the framework of the FB procedure

the mean-square uncertainty of vL(r
a

} at the distance r
a

is given by

<6b 6b> jl(a r )jl(q r )
m n av in a n a

( 7)

with

(see

<6b 6b >
m n av

e.g. ref. 6

m,n
being the correlation matrix between the coefficients b

n
for more details of the error determination). Two important

points of the procedure should be emphasized:

a. the method considers shapes of v (r ) which are more general than
L . a

those provided by the vibrational model. The residual model dependence

is due to the finite number N of Fourier-Bessel terms and due to the

In the course of theradius R t.cu
(see below) •

of y l(r) is considered to be
coup a.

Y
d

, (r). In this case ß looses its traditional
1~ a L

meaning as a surface deformation parameter, and only the complete pro-

,
specific choice of the cut-off

analyses N and R t are variedcu
The relation and coupling betweeen the diagonal part of the potential

oY. (r) and v (r las given by the collective model is abandonned.
d1ag a L a

Even with b =0 in eq. 6 the shape
n

independent from

b.

duct in eq. Ga is of relevance. Apriori, a derivative form is

chosen for y
O (r )
coupl a

y O

coupl

a
Rtr

•
ov a

Y
trans

R
ov

(6b)

as suggested by the usual collective model, but with a shape of

Y not necessarily identical to that of Vdiag . In order to guarantee
trans 20

general requirements for the transition densities the extreme inner

part is parametrized by a polymial with zero value at r ~ 0 and

smoothly adjusted to expression (6b) at an inner radius R.(~2 fm).
1

Principally, the above method can be'used in DWBA as weil as in

coupled channels calculations. In view of the simplifications in DWBA and in

order to avoid effects due to the neglect of multiple excitation, the present

results are based on coupled channels calculations. Thereby we generally

fit elastic and inelastic scattering simultaneously.



studied in extensive
, 12,13

technlques . In

-6-

The real diagonal part V has been recently
diag

elastic scattering analyses using model independent
13particular, it has been shown that the radial shape is very well approximated

by a squared Woods-Saxon form (WS2) with parameter values which prove to be

fairly well determined by the elastic scattering. Small readjustments due to

coupling to the excited states have been taken into account by results of

coupled channels calculations on the basis of the usual vibrational model (see

line 2 of tab. 1). Therefore, for sake of simplicity the shape of V
d

' (r)
l.ag a

has not been varied simultaneously with the b -coefficients of v (r ). Only
n L CI

the imaginary part has been readjusted when fitting the cross sections.
. ,(pot)

Complex coupling is taken into account via the deformat~on ß
L

of the

imaginary part. Coulomb excitation is included by a deformed Coulomb potential.
14

All calculations used a modified version of the coupled channels code ECIS .

3. RESULTS

Table 1 presents the parameters of the real potentials, of the squared

Woods-Saxon potential shape taken either from the analysis of elastic

scattering only - ref. 12 - or from a coupled channel analysis on the basis

of the usual vibrational model. Also shown are parameters of

the first derivative of which serves as a first guess to the

Vtrans'
FB coupling

independent geometriespotential. We reiterate that V and V
d

' have
trans l.ag

and that the factorization of the transition potential by eq. 6a is

only areminder to the vibrational model. Therefore, after fixing

ß(pot). Rtr av laRtrbya first fit (with vtrans vdiag so that ß (pot)
L -v trans v 0 0 L

for itself becomes consistent with the features of the vibrational model) ,

ß(pot) has been kept fixed in the further procedure when varying the b
L n

coefficients.

Fig. 1 displays the experimental data and the calculated differential

cross sections, and Fig. 2 compares the obtained FB coupling potentials with

the best-fit derivative shapes corresponding to the V parameters quoted
trans

in Table 1. The value of Rand N have been increased up to convergence
cut

of x2/F and of the errors of the integral quantitles (radial moments) .

The error bands of the FB potentials result from averaging several

single fits with different choices of the cut-off radius Reut and of the

number of FB terms. This procedure is expected to remove the remaining model

dependence (see ref. 15). It is interesting to see how well the derivative



-7-

form approximates the resulting FB potentials. This result may be regarded as

an a-posteriori-justification for using "vibrational model" shapes for the

particular transitions considered here.

Table I Parameters of the real potentials used in the analysis

V R a ß (pot) X!/F
Shape

0 v v 2
(MeV) (fm) (fm) Tot 0+ 2+ and

Procedure

V 147.2 5.190 1.20 1.8 (WS) , elastic..... diag
scatteringE-o

0

'"
V
diag

144.0 5.249 1.19 0.122 3.2 2.4 3.9 (WS) , CC-calc.

V 144.0 5.066 1.26 0.146 3.1 2.4 3.8 (WS) , Deriv.trans

V N=11-13 R =11-13 0.146 2.8 2.3 3.3 (WS)' Deriv.+FB
trans cut

V 156.9 5.1 1.2 1.7 (WS) , el- sc.
diag

V 154.0 5.2 1.2 0.130 2.1 1.7 2.7 (WS) , CC-calc.
I-< diag
u

N

'" V 154.0 5.2 1.2 0.130 2 .1 1.7 2.7 (WS) , Deriv.
trans

V N=11-13 R =11-13 0.130 2.1 1.7 2.7 (WS) , Deriv.+FB
trans cut

4. ANALYSIS OF RADIAL MOMENTS

The analysis described in the preceding sections results in "model

independent" transition potentials and the problem remains to interpret

them in terms of the transition densities of the probed nucleus. There are

simple mathematical relationships between the radial moments of two folded

distributions when one is generated by folding a scalar function into the
9other as assumed for Vif by eq. (1). Applying these relationships to the

nonspherical optical potential we are ahle to deduce the transition moments
2 16

of the nucleon distribution from the coupling potentials ' via

f L+2
v (r ) r dr =

L a a
( 8)

The alpha-bound-nucleon interaction which need not to be specified, enters

(implicitely) by its volume integral Jo(Veff). This quantity is related

to the volume integrals of the monopole (diagonal) parts of the potential and

of the density distribution, respectively,
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Fig. 1 Elastic and inelastic scattering of 104 MeV alpha-particles by
50 . 52
T~ and Cr: Experimental cross sections and results of coupled

channels calculations.

10 rg.ltmJ

- - DeriYalive Form
- FB ~ Errot Band

•

"Cr 10+- 2tl
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Fig. 2 + + , 50 52Transition potentials for the 0 - 2 transit~on in Ti and Cr

induced by 104 MeV alpha-particles.



Jo(Vdiag) = A • J
O

(Veff) •

With these relations we write the isoscalar transition rates*

B(IS,Ii....I f ) = 21:+1["* f PL(r) r
L

+
2 d~2

(9)

(10)

directly as

r L+2 dr l2

" ~
( 11)

9Using another relation of folded potentials the squared transition radius

(12a)

of the potential v
L

can be related to the corresponding quantity of the

transition density P
L

by

2<r >
eff

(12b)

the alpha-particle nucleus

potential, <r
2
>eff is

potential and of the under-

the real part of

of the effective interaction potentialthis the ms radius <r
2
>eff

to be known. Assuming that

optical potential can be understood as a folded

just the difference between the ms radi i of the

lying matter distribution.

Table 2 presents the results which are based on such an implicit folding

has

For

model interpretation (RMA) of the real potentials found in the analysis of

the experimental data. The values of the ms radius and the volume integrals

the elastic scatte-
. It 13prev10us resu 5

of the diagonal part have been adopted from FB analyses of
. 12 2 1/2

r~ng • The value of <r >eff = 2.6 fm can be deduced from

of elastic alpha-particle scattering on 40ca , for which the matter radius is

believed to be known. Alternatively, neglecting small differences of
2<r > and of the ms radii of the charge distributions (known from ref. 17) we

m 2 2
may extract <r > f from <r >. for every particular case (these values

ef d~ag

are given in table 2). There is an additional uncertainty. If the effective

alpha-bound nucleon interaction is density-dependent and if the elastic and
. 2

inelastic scattering probe different parts of the nucleus then <r >eff may

slightly differ. The transition rates are represented by the enhancement

factors G
2

= B(IS; 0+ .... 27)/B
sp

(USing the radius parameter r
o

= 1.2 fm

in the definition of the single particle unit). In addi-

*The factor Z/A is introduced just for convenience' when comparing
with electromaqnetic transition rates.
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Volume integrals, rms and transition radii, and transition rates

for the 0+ + 2; transitions in 50Ti and 52cr

Procedure

Jo(Vdiag)
(MeV fm')

306 + 6 303 + 4

< 2> 1/2
reff

(fm)

4.47+ 0.12 4.48 + 0.09-
FB-analysis

2.68+ 0.16 2.61 + 0.13 ref. 15

6.58+ 0.14 6.91 + 0.03-

5.1 + 0.3

7.1 + 0.3

6.5

6.1

6.3+0.4

5.60 + 0.15

8.8 + 0.1

8.0

7.9

11. 6+0.5

RMA of

FB-potEmtials

RMA of (WS)'

derivative

BP

Electromagn.

ref. 18.

coupling potential v
2

in the usual (WS)' derivative

1) have been considered in a radial moment

tion to the FB potentials the

form (just of V
t

in Table
rans

analysis (RMA) as weIl as with the Bernstein (BP) procedure (slightly modified

since the shape of

errors only in the

V
t

is not identical with the shape of Vd ' ). We quoterans 1ag
cases of FB potentials (see appendix) as constraints

in the shapes of v
L

might underestimate the real uncertainties.

The original Bernstein procedure, which has been extensively used

in the past for determination of isoscalar transition rates, is essentially

based on a parametrization of Vif and P
if

as a first derivative of the diagonal

potential or of the ground state density with woods-Saxon (V 'f(r ,R»o a
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or Fermi (p 'g(r,c» shapes, and the half-way radii Rand c, respectively
o

= ß (pot)
L

• R • v
o

o f' (r )
a

(13a)

= ß (p) • c • P • g' (r)
L 0

As the shapes of f' (r ) and g' (r) do not differ very much and asa

eqs. 10 and 11 lead to the approximate identity

(13b)

ß (pot) • R ~ ß(P)
L L

• c

The scaling relation (first suggested by Blair
19

) is used in the procedure

introduced by Bernstein and can approximately provide values of the transition

rates. But obviously these rates have to be regarded as model dependent.

The Fourier-Bessel method, however, removes, the model dependence

of the real coupling potentials and enables realistic estimates of the uncer­

tainties of the extracted quantities. The analysis of radial moments avoids

the difficulties of explicit folding model calculations and replaces doubtful

and less justified scaling recipes.

5. CONCLUDING REMARKS

The two advantages of the Fourier-Bessel method in analyzing inelastic form­

factors are the possibility to consider quite general shapes and the resulting

realistic estimates of uncertainti~s. For the two cases considered here

the method reveals that the experimental inelastic scattering cross sections,

even measured to large angles determine mostly the surface region of

the coupling potential. In that region it can indeed very weil be parametrized

by somewhat generalized collective model form-factors. Most likely, these are

the reasons why the Fourier-Bessel method does not significantly improve

the goodness of the fits (X
2
/F), once V

O
1 is fixed as the derivative ofcoup

a best-fit form of V . The present results demonstrate what has been
trans

argued before on the basis of the overall-similarity between collective
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model for factors and microscopically calculated form-factors and by
19 21 .inspecting the radial weight of the transition operators ' . The flnding

that the values of the partial X2/F for the inelastic cross sections

(see Table 1) cannot be reduced below 2 may be a consequence of some

simplifications, in particular the neglect of multiple excitation from

higher lying excited states. It is,of course, a matter of increasing

complexity to incorporate consistently couplings to other excited states.

The observation that the surface region dominates the transition

strengths suggests that a folding model, with density-independent interaction is
9 16quite a reasonable description. Exploiting the identities' between the

moments of a folded potential distribution and the underlying nuclear density

distribution we avoid the problem of specifying the effective alpha-particle

bound nucleon interaction and extract the isoscalar transition rates in

a procedure (~adial ~oment ~nalysis) which is less doubtful and much better

justified than other methods widely used in literature.

We would like to thank Professor Dr. G. Schatz for his stimulating

interest, Professor Dr. D.F. Jackson for useful comments and Mrs. K. Feißt

for her help in the computer work.
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APPENDIX

~~~~~~~~!~~~_~~_~~~~~~_~!_!~~_~~~~!~~:~~~~~~_r~!~~!~~~ ~_~~~_~~_~~E~~~~

~~!~~~~!_9~~~!~!~~~~

The error analysis follows the procedures described in

detail in refs. 6 and 15. The variances of the potentials v (r ) are defined
L a

by eq. (7), rewritten as

2·f ,
m1n

N

L
m,n=1

(A-l)

Here,

which

f, is the value of X2/F at the minimum and M- 1 the covariance matrix
m1n

is obtained numerically by performing the X
2

fit. In addition to the

potentials themselves some integral quantities are of physical interest, in

particular, the radial moments of the transition potentials
ro

f v (r ) r
K+2

dr <rKJ >
K 0 L a a a 0

(A-2)<r >
2 JO(vL)f v (r ) r dr

L a a a

for L ~ 0 and K = L,L+2 and the transition radius

r L+2/ L,I/2
~<r > <r :::.J (A-3)

ro

The volume integral J (v ) = 4n f v (r ) r
2

dr of the transition potentials
oL LCl Cl a.

plays a minor part than J (V
d

, )owhich has been shown to be an
o ~ag

interesting characteristic quantity of the optical potential.

The B(IS) values are determined by the square of the moment

1
4n

.2
<r > (A-4)

The determination of the unce~tainties

K

K --l- O<K
r

J o >o<r >
<r J >

o

+ (A-5)

l
-o L+21 <r >

2 1/2
<r >

o<rLj+ • R
L tr<r

(A-6)



K

[

6<r J >
= 0 +

K<r J >
o

6Jo(Vdiag)

J (V
d

, l
o lag

AZ

(A-7)

requires the evaluation of the errors of the integrals

Kwhich enter by <r

A straight-forward

J > (J representing the special case for K=O) •
o 0

application of the Gaussian error propagation law gives

together with eq. (A-1)

6<r
K
J> [I c

o = m,n=l mn
o V K

m
(A-8)

The terms C are defined by
mn

and

C = <6b
mn m

6b >
n

-1Zof , o(M l
ml.n mn

R K+ZvK r ut (~
-+

r 0 j1 °r l dr
n R a a

0 cut

4 RK+3
mr K+2cut J j1 (p) dp= PK+3 K+2

n 1f 0

(A-9)

Here R t is the cut-off radius of the Bessel-functions. Finally, partial
cu

integration results in the expressions:

V~ = (K+2) 0 [(_On+1

for K ~ 0

k Zl-ZI k ~ K

K

L
1=1

(_01+1 K! (n1f)K-kl] __z
(K-k) !

(A-10)

(A-11 )

even

odd

As in the present studies V
d

' (r l is not described by a Fourier Bessel
lag a

potential, we have adopted the results from a FB analysis of the elastic



A3

scattering data (ref. 12) for estimating oJ (V
d

, )/J (Vd , ) in eq. A-6.
o ~ag 0 1ag

In all cases the values and uncertainties finally quoted are averages of a

large number of results with different cut-off radii R t and numbers N of
cu

Fourier-Bessel terms.




