KfK 2978/II April 1981

Materialien zum Optimierungsmodell für das Energieversorgungssystem von Baden-Württemberg

B. Fürniß, D. Hoch, V. Schulz, H. Stehfest Abteilung für Angewandte Systemanalyse

Kernforschungszentrum Karlsruhe

KERNFORSCHUNGSZENTRUM KARLSRUHE Abteilung für Angewandte Systemanalyse

KfK 2978/II

Materialien zum Optimierungsmodell für das Energieversorgungssystem von Baden-Württemberg

B. Fürniβ, D. Hoch, V. Schulz,H. Stehfest

Kernforschungszentrum Karlsruhe GmbH, Karlsruhe

Als Manuskript vervielfältigt Für diesen Bericht behalten wir uns alle Rechte vor

Kernforschungszentrum Karlsruhe GmbH ISSN 0303-4003

Materialien zum Optimierungsmodell für das Energieversorgungssystem Baden-Württembergs

Zusammenfassung

Im vorliegenden Bericht werden die methodischen, rechentechnischen und numerischen Grundlagen zum KfK-Bericht 2978/I "Optimierung des Energieversorgungssystems von Baden-Württemberg bei mehrfacher Zielsetzung" gegeben. Der erste Teil gibt die Grundlagen zur Berechnung der Zielerreichungsgrade aus den Werten der Entscheidungsvariablen, die das jeweilige Energieversorgungssystem definieren. Im zweiten Teil wird die Schätzung der Nutzenfunktionen, die als Zielfunktionen bei der Optimierung dienten, erläutert. Im dritten Teil schließlich wird das Programmsystem dokumentiert.

Background Materials to the Energy Supply Optimization Model of Baden-Württemberg

Summary

This report is a supplement to KfK-Report 2978/I "Optimization of the Energy Supply System of Baden-Württemberg with Multiple Objectives" and gives the methodological and numerical details of the optimization model. The first part describes how the attributes, which measure the degree to which the various objectives are achieved, are calculated as functions of the decision variables. The second part is devoted to the assessment of the multi-attribute utility functions, which served as objective functions of the optimization model. The program package used is documented in the last part.

Inhaltsverzeichnis:

Teil I : Berechnungsgrundlagen zum Zielsystem

(V. Schulz, H. Stehfest)

Teil II : Bestimmung der Nutzenfunktionen

(D. Hoch, V. Schulz, H. Stehfest)

Teil III: Numerische Realisierung des Optimierungsmodells

(B. Fürniß, V. Schulz, H. Stehfest)

$\mathsf{TEIL}\ \mathsf{I}$:

BERECHNUNGSGRUNDLAGEN ZUM ZIELSYSTEM DES OPTIMIERUNGSMODELLS FÜR DAS ENERGIEVERSORGUNGSSYSTEM BADEN-WÜRTTEMBERGS

V. Schulz

H. STEHFEST

Zusammenfassung

Zweck des Modell's ist die Ermittlung der optimalen Kombination von Energieumwandlungsoptionen bei vorgegebener, sektoral gegliederter Endenergienachfrage. Dabei wird einerseits allein nach den Kosten optimiert, andererseits werden auch Problemstellungen betrachtet, die neben den Kosten weitere Zielsetzungen enthalten, wie z.B. Umweltbelastung, Energieeffizienz, Versorgungssicherheit. Gegenstand des vorliegenden Berichts ist der quantitative Zusammenhang zwischen den verschiedenen Zielerreichungsgraden (Attributen) und den Energieumwandlungsprozessen (Entscheidungsvariablen).

Den größten Raum nehmen hierbei die Herleitungen der Immissions-Emissions-Beziehungen für die verschiedenen Schadstoffe und Emittentengruppen ein. Um ein Maß für die Gesamtwirkung der Emissionen zu bekommen, wird dabei zwischen den Wirkungen auf Gemeindeebene sowie regionalen und globalen Wirkungen differenziert. Diese drei Komponenten müssen naturgemäß auf unterschiedliche Art berechnet werden. Bei der Wirkung auf Gemeindeebene, die nur bei niedrigen Emissionshöhen zu betrachten ist, wird wiederum zwischen drei Gemeindegrößenklassen unterschieden.

Relativ umfangreich sind auch die Erläuterungen zur Beschreibung der Angebotsvielfalt durch einen entsprechenden Index. Weitere Attribute, deren Berechnung aus den Entscheidungsvariablen beschrieben wird, sind: Verdunstungsverluste der Gewässer, Landschaftsverbrauch, Unfallträchtigkeit, Gesamtwirkungsgrad, Vorratshaltungskosten, Importabhängigkeit.

Inhaltsverzeichnis

				Seite				
1.	Einle	eitung .	•••••••••••••••••••••••••••••••••••••••	1				
2.	Ermittlung der Schadstoffimmissionen für Schwefeldioxid, Feinstaub, Stickoxide und Kohlenmonoxid							
	2.1		ng der Schadstoffimmissionen für Schwefeldioxid, b, Stickoxide und Kohlenmonoxid					
	2.2	Die Kenngröße zur Beschreibung der Immissionssitua- tion						
		2.3.1	Charakteristische Eigenschaften	9				
		2.3.2	Ausbreitungsmodell	10				
		2.3.3	Gemeindegrößenstruktur Baden-Württembergs	22				
		2.3.4	Emissionsfaktoren und Beispielrechnungen	27				
	2.4	Immiss	ionen durch Kfz-Verkehr	28				
		2.4.1	Charakteristische Eigenschaften	28				
		2.4.2	Emissionen des innerörtlichen PKW-Verkehrs	31				
		2.4.3	Beziehungen zu den Entscheidungsvariablen des Optimierungsmodells	33				
		2.4.4	Emissionsfaktoren und Beispielrechnungen	35				
	2.5	Immissionen der großindustriellen Emittenten						
		2.5.1	Charakteristische Eigenschaften	36				
		2.5.2	Ausbreitungsmodell	37				

				Seite
		2.5.3	Emissionsfaktoren und Rechenbeispiel	38
		2.5.4	Zurechnung von Immissionen durch Energieumwand- lungsanlagen außerhalb Baden-Württembergs	39
	2.6	Untergr	rund-Anteil der Hausbrand- und Kfz-Immissionen	40
3.	Ermit	tlung de	r radiologischen Belastung	42
4.	Indika	ator für	die Konsequenzen der CO ₂ -Produktion	48
5.	Gewäss	serbelas	tung durch Verdunstungsverluste	50
6.	Landir	nanspruc	hnahme durch Anlagen der Energiewirtschaft	52
7.	Erläut	terungen	zum Indikator "Gesamtwirkungsgrad"	55
8.	Index	zur Bes	chreibung der Angebotsvielfalt	57
9.	Indika	ator für	die Unfallträchtigkeit des Energiesystems	61
10.	Indika	atoren f	ür das Ziel "Versorgungssicherheit"	68
11.	Litera	atur		71

1. Einleitung

Energiepolitische Probleme werden i.a. nicht ausschließlich im Hinblick auf Kosten behandelt, sondern es werden dabei auch Kriterien wie Umweltbelastung, Importabhängigkeit usw. mit bedacht. Daher wird im Rahmen des Vorhabens "Optimierungsmodell für das Energieversorgungssystem Baden-Württemberg" neben der Kostenminimierung auch die Optimierung bei mehrfacher Zielsetzung betrachtet /FORNISS et al. (1980)/. Insbesondere wird auch bezüglich mehrdimensionaler Nutzenfunktionen optimiert. Die unabhängigen Variablen dieser Nutzenfunktionen sind Indikatoren dafür, inwieweit die verschiedenen, i.a. konträren energiepolitischen Ziele erreicht werden (Zielerfüllungsgrade oder Attribute). Durch die Werte der Nutzenfunktion werden die (subjektiv determinierten) Präferenzen zwischen den Kombinationen von Indikatorwerten festgelegt, im Falle von Unsicherheit bei den Indikatorwerten ist der Erwartungswert der Nutzenfunktion maßgebend. Auf die Verwendung des nutzentheoretischen Ansatzes bei der Optimierung eines Energieversorgungssystems ist ausführlich in /STEHFEST (1976)/ und /FORNISS et al. (1980)/ eingegangen worden. Der Ansatz wird in /FIALA und STEHFEST (1979)/ anderen Möglichkeiten zur Lösung mehrdimensionaler Entscheidungsprobleme gegenübergestellt, während in Teil II die Schätzung der Nutzenfunktion im konkreten Fall beschrieben wird.

Die Ziele, anhand derer verschiedene Möglichkeiten für die Energieversorgung Baden-Württembergs beurteilt werden, sind zusammen mit den zugehörigen Indikatoren in Abb. 1.1 aufgelistet. Sie wurden in einem Gespräch mit einem an der Energieplanung des Landes maßgeblich beteiligten Ministerialbeamten identifiziert. Die Erfahrung zeigte allerdings, daß der Zielkatalog bei anderen sachkundigen Personen nicht wesentlich anders aussieht, wohingegen die Form der Nutzenfunktion überlicherweise stark personengebunden ist. In Teil II sind, soweit für die Schätzung der Nutzenfunktion erforderlich, die Ziele definiert und gegeneinander abgegrenzt, sowie die Indikatoren erläutert.

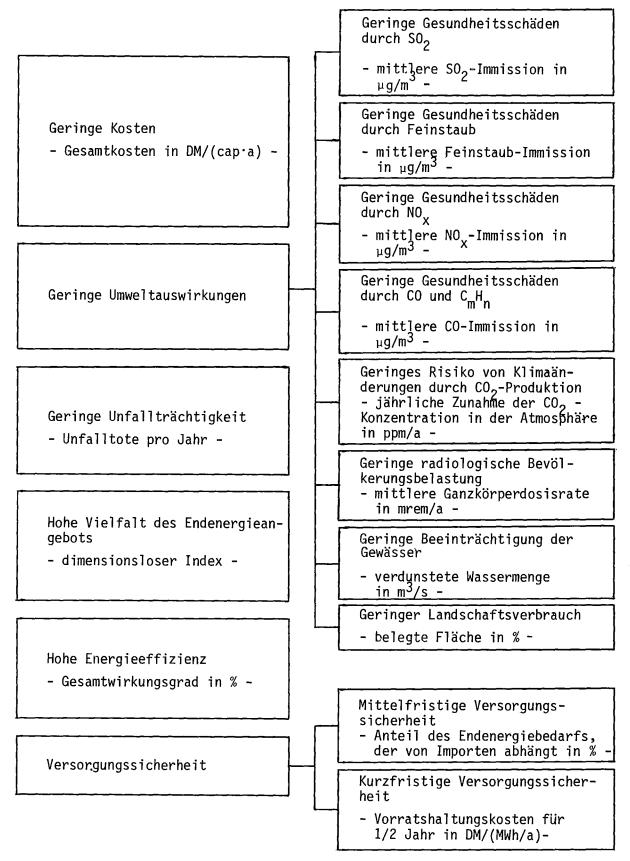


Abb. 1.1: Ziele und Indikatoren für das Energieversorgungsmodell Baden-Württemberg

Zweck dieses Teils ist es, detailliertere Informationen über die Indikatoren zu geben. Im Vordergrund stehen dabei die Verfahren, nach denen die Indikatorwerte aus den Werten der Entscheidungsvariablen berechnet werden. Die Entscheidungsvariablen des Modells sind die jährlichen Energieflüsse und die entsprechenden Installationen für die verschiedenen Energieumwandlungsoptionen. Die Umwandlungsoptionen sind durch das Restriktionssystem des Optimierungsproblems bestimmt, das in /FORNISS et al. (1980)/ ausführlich beschrieben ist. Die Berechnung der Indikatorwerte aus den Werten der Entscheidungsvariablen ist besonders problematisch bei den Indikatoren für Umweltbelastungen durch Luftschadstoffe, weil dabei der Zusammenhang Emission-Immission erfaßt werden muß. Daher nehmen die Erläuterungen zu diesen Indikatoren einen wesentlich breiteren Raum ein als die übrigen Abschnitte. Das Berechnungsverfahren für den Indikator "Kosten", der eine Sonderstellung einnimmt, ist in /FORNISS et al. (1980)/ hinreichend genau beschrieben, die Werte der dabei verwendeten Koeffizienten finden sich in Teil III.

- 2. Ermittlung der Schadstoffimmissionen für Schwefeldioxid, Feinstaub, Stickoxide und Kohlenmonoxid
- 2.1 Zur Beziehung zwischen Ziel und Indikator bei den Luftschadstoffen

Der Zusammenhang zwischen der Energiebedarfsdeckung und gesundheitlichen Schäden durch Schadstoffimmissionen besteht schematisch aus folgender Ursache-Wirkungs-Kette:

- Energieumwandlung;
- Schadstoffemission;
- Schadstoffimmission;
- Gesundheitsschäden.

Die Beziehung zwischen Energieumwandlung und Schadstoffemission hat praktisch deterministischen Charakter, die Beziehungen zwischen Emission und Immission sowie zwischen Immission und Gesundheitsschäden sind demgegenüber von probabilistischer Natur.

Zwischen den beiden letzten Beziehungen bestehen gravierende Unterschiede, weil die probabilistischen Beziehungen zwischen Emission und Immission weitgehend bekannt sind, während beim Übergang von Immissionen zu Gesundheitsschäden noch große Unsicherheiten bestehen. Insbesondere über die Langzeitwirkung von relativ geringen Immissionskonzentrationen ist der derzeitige Kenntnisstand nur unbefriedigend. Selbst bei statistisch abgesicherten Effekten ist oft unklar, ob zwischen einem bestimmten Schadstoff und den festgestellten Gesundheitsschäden eine echte Ursache-Wirkungs-Beziehung besteht, oder ob diese Wirkung anderen, gleichzeitig auftretenden Schadstoffen zuzuschreiben ist. Solange eine Ursache-Wirkungs-Beziehung nicht erwiesen ist, hat der entsprechende Schadstoff den Charakter eines Indikators für gewisse Arten von Gesundheitsschäden. Vom Standpunkt des Immissionsschutzes ist das Arbeiten mit Indikatoren (Festlegung von Emissions- und Immissionsgrenzwerten) von großer Bedeutung, da die meßtechnische Überwachung des Risikos von Gesundheitsschäden mittels Immissionsmessungen von geeigneten Indikator-Schadstoffen erheblich vereinfacht bzw. erst ermöglicht wird.

Seitens des Immissionsschutzes sind für viele Schadstoffe Immissionsstandards aufgestellt worden, die prinzipiell die Grenzen der Unbedenklichkeit von Schadstoffkonzentrationen darstellen sollen, z.B. die Grenzwerte der TA-Luft /BMI (1974)/, WHO-Standards /WHO (1972)/. Dennoch sind diese Werte nicht als "harte" Zahlen zu verstehen. Sie dokumentieren in erster Linie den derzeitigen Erkenntnisstand über den Ursache-Wirkungs-Zusammenhang. Sofern Standards für Genehmigungsverfahren von Bedeutung sind (TA-Luft), haben zudem technische und wirtschaftliche Möglichkeiten der Emissionsbegrenzung Einfluß auf die Festlegung der zulässigen Werte. Je größer die objektiven Unsicherheiten bezüglich der Ursache-Wirkungs-Relation sind, desto größer ist auch der Spielraum für subjektive Einschätzungen des anstehenden Sachverhalts. Daher wird beim Optimierungsmodell für das Energieversorgungssystem Baden-Württembergs davon abgesehen, die Auswirkungen des Energiebedarfs auf die Gesundheit der Bevölkerung direkt darzustellen. Vielmehr wird es dem Entscheidungsträger überlassen, seine Einschätzung der Beziehung "Immission-Gesundheitsschäden" bei der Bewertung des Indikators "Immission" mit zu berücksichtigen. Es ist aber festzuhalten, daß diese Einschätzungen pseudo-subjektiver Natur sind, weil die gesamte Ursache-Wirkungs-Kette im Prinzip objektiviert werden kann. Die Bestimmung des Optimalitätskriteriums (Zielfunktion) für das Energiemodell beinhaltet jedoch auch rein subjektive Momente, z.B. die Abwägung zwischen unterschiedlichen Gesundheitsschäden (Krebserzeugung gegenüber Erkrankungen der Atmungsorgane). Es erscheint plausibel, zu unterstellen, daß die Nutzenfunktionen durch die rein subjektiven Komponenten in weitaus größerem Maße geprägt werden als durch die Unsicherheiten hinsichtlich der Immission-Wirkungs-Relationen. Daher sollte das Problem des Informationsdefizits bezüglich der Ursache-Wirkungs-Kette für die Aussagefähigkeit des Energiemodells nicht überbetont werden.

In diesem Zusammenhang ist zu erwähnen, daß vergleichbare Modelle oft nur die Schadstoffemissionen als Indikator für die Gesundheitsschäden enthalten. Abgesehen davon, daß die Relationen zwischen Emission und Gesundheitsschäden direkt schwer einzuschätzen sind, sind hier die Emissionen als Indikator prinzipiell ungeeignet, weil für einige Modellalternativen die Emission-Immissions-Beziehungen beim selben Schadstoff sehr unterschiedlich ausfallen.

2.2 <u>Die Kenngröße zur Beschreibung der Immissionssituation</u>

Schadstoffemissionen unterliegen tages- und jahreszeitlichen Schwankungen, entsprechend den Lebens- und Arbeitsgewohnheiten und den klimatischen Bedingungen. Die gesundheitsschädigende Wirkung der resultierenden Immissionen hängt von der räumlichen und zeitlichen Verteilung der Immissionskonzentration ab. Dadurch stellt sich die Frage nach der geeigneten Kenngröße zur Charakterisierung der Verteilungsfunktion. Folgende zwei Anforderungen sind durch das Energiemodell gegeben:

- Anknüpfung an das Energiemodell möglichst ohne Einführung zusätzlicher Entscheidungsvariablen
- Enger Bezug zum Ziel "geringe Gesundheitsschäden".

Die räumliche Verteilung hat im wesentlichen Einfluß auf die Anzahl der Betroffenen. Die Zeitabhängigkeit ist maßgeblich für die Höhe der gesundheitsschädigenden Wirkung, sowohl entsprechend dem Verlauf der Immission-Schadens-Beziehung als auch hinsichtlich synergistischer Effekte. Zum Beispiel ist der Photosmog sowohl an bestimmte Schadstoffkonzentrationen als auch an die Sonneneinstrahlung gebunden.

Oblicherweise wird eine Einteilung in Langzeit- und Kurzzeitwirkung vorgenommen. Die entsprechende statistische Kenngröße für den Langzeitwert beinhaltet eine Aussage über mittlere Konzentrationen, i.a. ist dies der arithmetische Mittelwert (IW_1 -Wert der TA-Luft, /BMI (1974)/), üblich ist aber auch der 50 %- bzw. 60 %-Wert der Summenhäufigkeit (VDI-Richtlinie 2450, Entwurf der Neufassung 1977 /VDI (1977)/). Die Wirkungen von hohen Konzentrationen, die nur kurzfristig innerhalb eines Jahres auftreten, werden durch %-Werte der Summenhäufigkeit (Perzentile) charakterisiert, die über 90 liegen (IW_2 -Wert der TA-Luft: 95-Perzentil, Kenngrößen der Raffinerierichtlihie Nordrhein-Westfalen: 94-99-Perzentil /MAGS NORDRHEIN-WESTFALEN (1975)/).

Zwischen den Kenngrößen für Langzeit- und Kurzzeitwirkung lassen sich emittentenspezifische Beziehungen herstellen, üblicherweise durch die Annahme einer log-Normalverteilung der Immissionskonzentration über der Zeit. Im Rahmen des Energiemodells erscheint jedoch die Beschränkung auf eine Kenngröße ausreichend. Hierbei sind die Kenngrößen für den Langzeitwert, insbesondere der arithmetische Mittelwert, unempfindlich gegenüber Annahmen über den Emissionsrhythmus und die zeitliche Abhängigkeit der meteorologischen Ausbreitungsbedingungen, so daß im folgenden diese Kenngröße zur Charakterisierung der Verteilungsfunktion bei fixierten Ortskoordinaten herangezogen wird.

Zur Behandlung der räumlichen Verteilung der Immissionskonzentration im Energiemodell ist aufgrund der Zielvorstellung der mittlere Wert zu bilden, dem eine Person der Bezugsregion (hier das Land Baden-Württemberg) ausgesetzt ist. Dieser bevölkerungsbezogene Mittelwert ergibt sich prinzipiell durch die Überlagerung der räumlichen Verteilung der Bevölkerung mit derjenigen der (zeitlich gemittelten) Immissionskonzentration. Im Rahmen des Energiemodells wird aber nur eine grobe geographische Differenzierung von Energieumwandlung und -verbrauch vorgenommen (vgl. /FÜRNISS et al. (1980)/. Angesichts dieser einfachen räumlichen Struktur des Modells werden die Emissionen in die folgenden zwei Kategorien eingeteilt /STEHFEST (1976)/:

- Emissionen, die unmittelbaren räumlichen Bezug zur Bevölkerungsverteilung haben. Hierunter fallen die Emittentengruppen Hausbrand, Kfz-Verkehr innerhalb geschlossener Ortschaften sowie gewerblicher Endenergieverbrauch.
- Emissionen, die in keinem direkten räumlichen Bezug zur Bevölkerungsverteilung stehen, sei es, daß der Standort nicht siedlungsgebunden ist, sei es daß die Emissionshöhe so groß ist, daß die
 Hauptwirkung der Immissionen nicht einer bestimmten Gemeinde zugerechnet werden kann. Hierzu zählt die Emittentengruppe der großindustriellen Energieumwandlungsanlagen: Kraftwerke, Heizkraftwerke,
 Heizwerke und Raffinerien. Auch die industriellen Energieverbraucher
 fallen in diese Kategorie.

Für die erste Kategorie lassen sich relativ genaue Beziehungen zwischen Emission und mittlerer Immission (bezüglich der Bevölkerung) ableiten. Für die zweite Kategorie sind nur globale Aussagen möglich. Aufgrund des unterschiedlichen Ausbreitungsverhaltens von großindustriellen Emissionen im Vergleich zu bevölkerungsbezogenen Kleinemittenten ist die Nichtberücksichtigung konkreter Standorte bei den Großemittenten aber nicht sehr gravierend (vgl. Abschnitt 2.5).

Der bevölkerungsbezogene Immissionsmittelwert $\overline{\mathbf{I}}_{\mathrm{BW}}$ lautet formelmäßig:

(2.1)
$$\bar{I}_{BW} = \frac{1}{N_{BW}} \int p(x,y) \cdot \bar{I}_{T}(x,y) dF$$

$$F_{BW}$$

N_{RW}: Einwohnerzahl Baden-Württembergs

p(x,y): räumliche Verteilung der Bevölkerungsdichte

 $\bar{I}_{T}(x,y)$: räumliche Verteilung des Jahresmittelwerts der Immissionskonzentration

F_{BW}: Fläche Baden-Württembergs

Aus Formel (2.1) ist ersichtlich, daß die totale Schadenswirkung W sich i.a. nur dann anhand von $\overline{\mathbf{I}}_{BW}$ aus der Dosis-Wirkungs-Beziehung w $(\overline{\mathbf{I}}_{T})$ direkt ablesen läßt, wenn w $(\overline{\mathbf{I}}_{T})$ eine lineare Funktion ist. Nur dann gilt nämlich

$$W \equiv \int_{F_{BW}} p(x,y)w(\bar{I}_{T}(x,y))dF=N_{BW}\cdot w(\bar{I}_{BW})$$

2.3 Immissionen durch Hausbrand und Gewerbe

2.3.1 Charakteristische Eigenschaften

Hausbrandemissionen haben den Charakter von Flächenquellen mit niedriger Quellhöhe (ca. 15 m). Die Emissionen gewerblicher Endergieverwender werden hier den Hausbrandemissionen zugerechnet, obwohl die Quellhöhen z.T. erheblich höher liegen. Die hieraus resultierenden Ungenauigkeiten werden als vernachlässigbar angesehen. Die Immissionskonzentration innerhalb einer Gemeinde setzt sich zusammen aus den

- Immissionen durch Hausbrand innerhalb dieser Gemeinde und den
- Immissionen durch Hausbrand in den übrigen Gemeinden der Bezugsregion.

Da eine entsprechende geographische Differenzierung im Modell nicht vorgesehen ist, muß der letztgenannte Beitrag so errechnet werden, wie die Immissionen von großindustriellen Emittenten. Seine Ermittlung erfolgt daher erst im Anschluß an die Darstellung des entsprechenden Berechnungsverfahrens.

Die Berechnung der Immissionen I durch den Hausbrand in der eigenen Gemeinde erfolgt in der Art, daß eine funktionale Abhängigkeit von der Emissionsdichte q, der Windgeschwindigkeit u sowie der Ausdehnung des Siedlungsgebietes ermittelt wird. Nach üblichen Ausbreitungsmodellen ist die Beziehung zwischen Immission, Emissionsdichte und Windgeschwindigkeit durch

 $I \sim \frac{q}{u}$

gegeben. Die Bestimmung der Abhängigkeit von der Ausdehnung des Sied-

lungsgebietes ist jedoch vergleichsweise aufwendig, da hierbei die weiteren meteorologischen Ausbreitungsbedingungen (Ausbreitungsklassen) erheblichen Einfluß haben. So ist es aufgrund der gegenseitigen Abhängigkeiten von q, u und den Ausbreitungsklassen recht kompliziert, die repräsentative Ausbreitungsklasse zu bestimmen. Demjenigen, der an derartigen Details weniger interessiert ist, ist ein Überspringen des folgenden Abschnittes zu empfehlen.

2.3.2 Ausbreitungsmodell

Zur Ableitung des funktionalen Zusammenhangs wird vom Ausbreitungsmodell der Raffinerierichtlinie des Landes Nordrhein-Westfalen /MAGS NORDRHEIN-WESTFALEN (1975)/ ausgegangen. Dieses Modell ist von den Ausbreitungs-modellen, die in der Bundesrepublik Deutschland für Genehmigungsverfahren von Bedeutung sind, dasjenige jüngsten Datums. Obwohl es dem Namen nach insbesondere für Großemittenten gilt, werden auch für hausbrandähnliche Emissionen spezielle Aussagen getroffen. Ein ähnliches Problem wird von Dennis /DENNIS (1978)/ mit einem unterschiedlichen Modellansatz behandelt. Es wird dabei eine einfache empirische Formel mithilfe eines aufwendigen Ausbreitungsmodells geeicht. Da diese Eichung jedoch nur an sehr großen Siedlungsgebieten vorgenommen wird, scheint für die vielen, relativ kleinen Gemeinden Baden-Württembergs das Modell aus der Raffinerierichtlinie adäquater, dies um so mehr, als es sich leicht analytisch ableiten läßt.

Die Ausbreitungsrechnung der Raffinerierichtlinie basiert auf dem Diffusionsmodell von Pasquill (zweidimensionale Gaußverteilung):

(2.2)
$$I(x,y,z) = \frac{0}{u \cdot 2\pi\sigma_y(x)\sigma_z(x)} \cdot e^{2\sigma_y^2} \cdot \left[\frac{(z-H)^2}{e^{2\sigma_z^2}} + e^{2\sigma_z^2} \right]$$

mit

I: Immissionskonzentration in $\mu g/m^3$

x) Aufpunktkoodinaten relativ zur Quelle in m,

z fraction x-Koordinate in Windrichtung, z-Koordinate vertikal

Q: Emission (Quellstärke) in µg/s

u: mittlere Windgeschwindigkeit im Bereich [z,H] in m/s

H: effektive Quellhöhe (Kaminhöhe zuzüglich Überhöhung) in m

 $\begin{pmatrix} \sigma \\ \sigma_z \end{pmatrix}$: Diffusionskoeffizienten in m

Diese Formel beinhaltet keine Inversionsobergrenze, keine Sinkgeschwindigkeit von Schadstoffpartikeln und keine chemischen Reaktionen. Am Erdboden wird Totalreflexion angenommen.

Die Diffusionskoeffizienten sind Funktionen der x-Koordinate:

(2.3a)
$$\sigma_V = (F \cdot x + F_0)^f$$

$$(2.3b) \sigma_z = (G \cdot x + G_0)^g$$

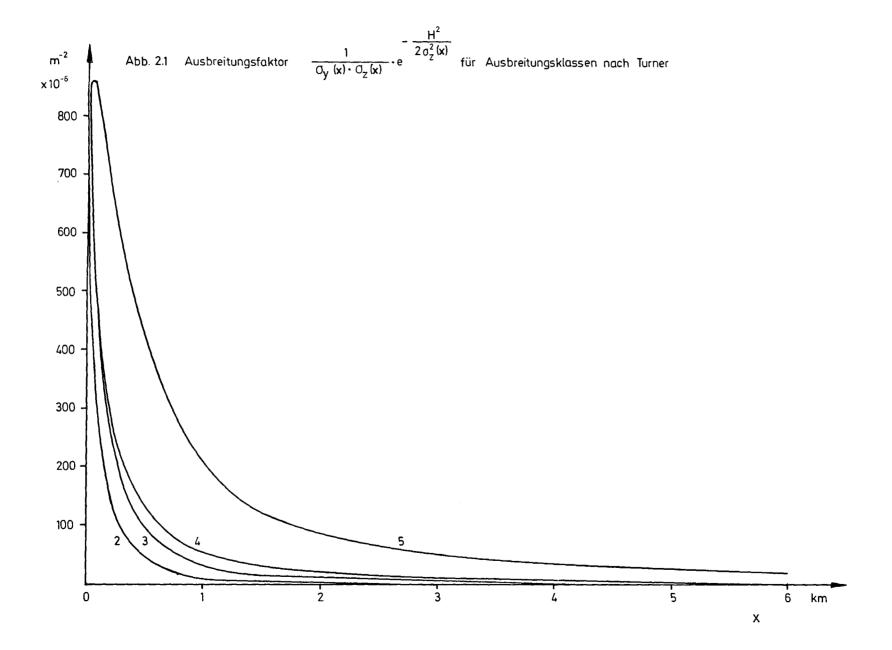
Die Parameter F, F_0 , f, G, G_0 , g hängen von der Ausbreitungsklasse, der Quellhöhe sowie der x-Koordinate ab.

Die Einteilung der meteorologischen Ausbreitungsbedingungen in Ausbreitungsklassen erfolgt nach Turner /s. MAGS NORDRHEIN-WESTFALEN (1975)/. Die Einordnung hängt von folgenden Einflußgrößen ab:

- Tageszeit
- Bedeckungsgrad
- Wolkenhöhe
- Sonnenhöhe
- Windgeschwindigkeit

Die Wetterstatistik unterteilt in 8 Ausbreitungsklassen (AK) nach Turner, in dem hier angewandten Ausbreitungsmodell werden jedoch nur die Klassen 2 (labil) bis 5 (stabil) verwendet. Die Parameterwerte, die bei diesen Ausbreitungsklassen für Quellhöhen \leq 20 m zu nehmen sind, gibt Tabelle 2.1 wieder.

<u>Tabelle 2.1</u>: Parameter für Diffusionskoeffizienten für Quellhöhen < 20 m.

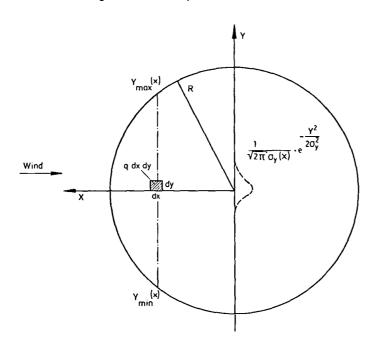

(Bei zwei Werten gilt der erste für Entfernungen $x \le 600$ m, der zweite für x > 600 m).

	AK 2	AK 3	AK 4	AK 5
F	0.94/1.22	0.82/1.15	1.19/1.78	0.25/0.54
Fo	168/0	198/0	354/0	194/0
f	0.76	0.74	0.67	0.72
G	0.08/0.10	0.09/0.11	0.60/0.67	0.69/0.77
G_{o}	12/0	12/0	42/0	48/0
g	1.28	1.11	0.74	0.59

Als Quellhöhe für den Hausbrand wird H = 15 m angenommen. Auf eine differenzierte Berechnung der Quellhöhe und der mittleren Transportgeschwindigkeit, wie sie nach der Raffinerierichtlinie vorzunehmen wäre, wird verzichtet. Für die Immissionshöhe z= o lautet die Entfernungsabhängigkeit der Immission-Emissions-Beziehung (des sogenannten Ausbreitungsfaktors) in Windrichtung:

(2.4) I/Q
$$\sim \frac{1}{\sigma_y(x)} \frac{1}{\sigma_z(x)} \cdot e^{-\frac{H^2}{2\sigma_z^2}}$$

Mit den Werten aus Tabelle 2.1 ergeben sich für die vier Ausbreitungsklassen die in Abbildung 2.1 dargestellten Kurven.


Zur Charakterisierung der Immissionskonzentration innerhalb einer Gemeinde wird die zu erwartende Immissionskonzentration im Mittelpunkt errechnet. Die Annahmen, die bei dieser Berechnung gemacht werden, sind:

- kreisförmige Ausdehnung der Gemeindefläche
- isotrope Verteilung der meteorologischen Einflußgrößen
- Gleichverteilung der Quellstärke pro Flächeneinheit (diese Annahme ist nicht ganz identisch mit einer konstanten Einwohnerdichte, da bei geringer Einwohnerdichte mit Ein- bzw. Zweifamilienhausbebauung eine höhere Emission pro Einwohner zu erwarten ist)
- Beschränkung auf eine repräsentative Ausbreitungsklasse und Transportgeschwindigkeit.

Die Kennzeichnung durch die Konzentration im Mittelpunkt hat den Vorteil der Vergleichbarkeit mit Ergebnissen von Immissionsmessungen, die üblicherweise im Stadtzentrum durchgeführt werden.

Die Konzentration im Mittelpunkt ergibt sich durch folgende Überlegungen (s. Abbildung 2.2):

Abbildung 2.2: Berechnung der Immission im Mittelpunkt einer kreisförmigen Flächenquelle

Pro Flächenelement dx dy ergibt sich die Emission zu g dx dy mit

$$q = \frac{Q}{\pi R^2}$$

Die Konzentration im Mittelpunkt (x = o, y = o) für die Bezugshöhe z = o lautet:

$$R \begin{bmatrix} y_{max}(x) & -\frac{y^2}{2\sigma y^2} \\ \int & \sqrt{y_{min}(x)} & e^{\frac{1}{2\sigma y}} \end{bmatrix} \frac{-\frac{H^2}{2\sigma z^2}}{\frac{2 \cdot e^{-2\sigma z^2}}{\sigma z^2}} dx$$

Weil $\sigma_{v}(x)$ klein gegenüber dem Bereich [y_{min} , y_{max}] ist, stellt die Ausdehnung des Integrals über y auf das Intervall (-∞, +∞) keine merkliche Ungenauigkeit dar. Somit geht die obige Formel über in

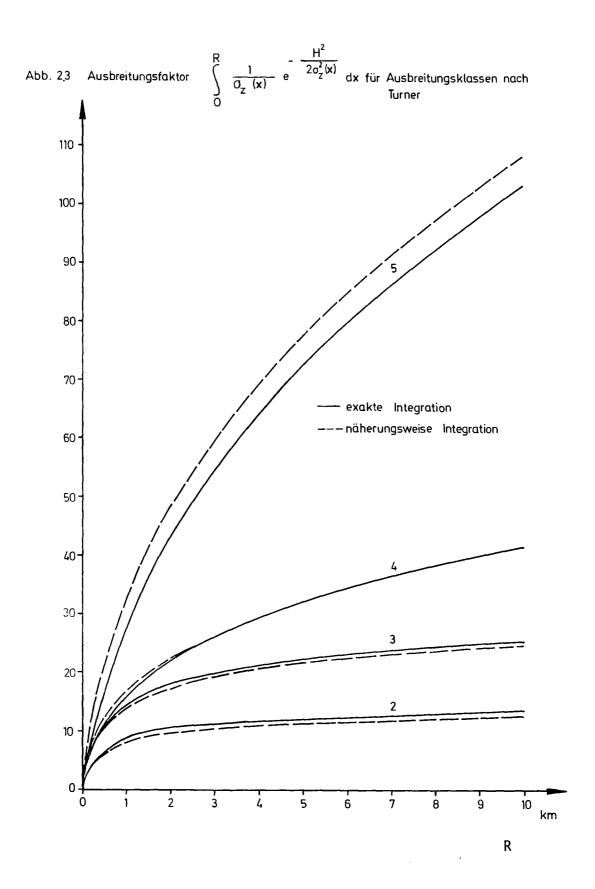
(2.6)
$$I_{M} = \frac{q}{u} \cdot \frac{2}{\sqrt{2\pi}} \cdot \int_{0}^{R} \frac{1}{\sigma_{Z}(x)} \cdot e^{-\frac{H^{2}}{2\sigma_{Z}^{2}}} dx$$

$$= \frac{q}{u} \cdot \frac{2}{\sqrt{2\pi}} \cdot AF(R, AK)$$

Der Verlauf des Integrals AF (R, AK) ist für die verschiedenen Ausbreitungsklassen in Abbildung 2.3 dargestellt. Die durchbrochenen Linien stellen Näherungslösungen dar, die durch folgende Vereinfachungen erzielt worden sind:

- Nichtberücksichtigung des Faktors $\exp(-H^2/(2\sigma_z^2))$. Dieser Faktor bewirkt eine Unterdrückung der Immissionskonzentration in unmittelbarer Nähe der Ouelle aufgrund des Unterschieds zwischen Ouellhöhe und Bezugshöhe für die Immissionskonzentration. Da diese Differenz bei Hausbrandemissionen im Vergleich zu großindustriellen Emittenten gering ist, ist es plausibel, daß die Nichtberücksichtigung des Faktors nur geringfügigen Einfluß hat.

- Darstellung von $\boldsymbol{\sigma}_{\boldsymbol{Z}}(\boldsymbol{x})$ (ohne Unterteilung des Gültigkeitsbereichs) durch


(2.7)
$$\sigma_z(x) = (G_{x>600} : x + G_{0} |_{x \le 600})^g$$

mit

 $G_{x>600}$: Parameter G nach Tabelle 2.1 für x>600m

 $G_{x<600}$: Parameter G_0 nach Tabelle 2.1 für $x\leq600$ m

Diese Darstellung stimmt für x=o und x>>600m mit der exakten Formel (2.3b) überein. Bei kleinem x ist $\sigma_z(x)$ nach der Näherungsformel zwar geringer, für den Wert des Integrals AF(R, AK) wirkt sich hier aber die Nichtberücksichtigung des Faktors $\exp(-H^2/(2\sigma_z^2))$ kompensierend aus.

Die Abweichungen in Abbildung 2.3 bei den Ausbreitungsklassen 2 und 3 ergeben sich vor allem dadurch, daß $\rm G_{0}$ auch für Werte x > 600 m im Verhältnis zu G·x einen nicht-vernachlässigbaren Beitrag liefert. Bei der Ausbreitungsklasse 5 wirkt sich die Nichtberücksichtigung des Dämpfungsfaktors $\exp(-{\rm H}^2/2\sigma_z^2)$) aus. Bei der Ausbreitungsklasse 4 erfolgt praktisch eine Kompensation dieser Effekte.

Die zeitlich gemittelte Immissionskonzentration ergibt sich durch

(2.8)
$$\overline{I}_{M} = \frac{2}{\sqrt{2\pi}} \sum_{n} \frac{q}{u} \cdot AF (R, AK_{n}) \cdot h(AK_{n}, u,q) dudq$$

 $h(AK_n, u,q)$: relative Häufigkeit für das Auftreten der Ausbreitungsklasse n, der Wingeschwindigkeit u und der Emissionsdichte q.

Maßgeblich für die Immissionskonzentration von Hausbrandemissionen sind die Häufigkeiten im Winterhalbjahr, da während dieser Zeit der Großteil der gesamten Jahresmenge ausgestoßen wird. Die exakte Ermittlung der Häufigkeitsverteilung h ist sehr aufwendig, da die Einflußgrößen q, u, AK miteinander gekoppelt sind. Näherungsweise kann nach dem Emissionskataster Köln /MAGS NORDRHEIN-WESTFALEN (1972)/ der Quotient q/u als konstant angenommen werden. (Die Emissionen sind tagsüber etwa doppelt so hoch wie nachts, jedoch gilt das gleiche im Mittel auch für die Windgeschwindigkeit.) Mit dieser Näherung gilt:

(2.9)
$$\overline{I}_{M} = \frac{2}{\sqrt{2\pi}} \cdot \frac{\overline{q}}{\overline{u}} \cdot \sum_{n} AF(R, AK_{n}) \cdot h(AK_{n})$$

mit

q: Jahresmittelwert der Quellstärke pro Flächeneinheit

ū: mittlere Windgeschwindigkeit im Winterhalbjahr.

h(AK_n): Häufigkeit der Ausbreitungsklassen im Winterhalbjahr

Für Karlsruhe liegen im Winterhalbjahr labile Ausbreitungsbedingungen zu 15 %, neutrale zu 48 % und stabile zu 37 % vor /s. FAUDE et al. (1974)/. Die Zuordnung der AK nach Turner zu diesen Ausbreitungsverhältnissen ergibt (ungefähr) für AK 2 labiles, für AK 3 labil-neutrales, für AK 4 neutral-stabiles und für AK 5 sehr stabiles Verhalten. Angesichts dieser Häufigkeiten und der Größenverhältnisse der AF(R, AK) nach Abbildung 2.4 lassen sich die Parameter für die Ausbreitungsklasse 4 als repräsentativ für die Immissionsbestimmung ansehen.

Somit läßt sich die mittlere Immissionskonzentration im Mittelpunkt in folgender Form darstellen:

(2.10)
$$\overline{I}_{M} = \frac{\overline{q}}{\overline{u}} \cdot 4.58 \left[(0.67.R+42)^{0.26} - 2.64 \right]$$
(R in m)

Die mittlere Windgeschwindigkeit im Bereich $0-15\,\mathrm{m}$ Höhe wird zu $2\mathrm{m/s}$ angenommen.

Der Vergleich mit Immissionskonzentrationen in Städten mit relativ gesicherter Emissionsstatistik (Karlsruhe, Köln) zeigt, daß diese Formel zu deutlich geringeren Werten führt. Eine Kalibrierung anhand der Karlsruher Verhältnisse ergibt einen Faktor von 2.8, so daß die endgültige Formel lautet:

(2.11)
$$\bar{I}_{M} = \frac{\bar{q}}{\bar{u}} \cdot 12.82 \left[(0.67 \cdot R + 42)^{0.26} - 2.64 \right]$$
(R in m)

Dieser Verlauf ist in Abbildung 2.4 dargestellt. Zusätzlich sind die Immissionskonzentrationen von drei weiteren Ortschaften eingetragen. Es ist allerdings anzumerken, daß die Werte $\overline{\mathbf{I}}_{\mathsf{M}}$ bzw. $\overline{\mathbf{q}}$ für Köln /s. MAGS NORDRHEIN-WESTFALEN (1972)/ und Völklingen /LAHMANN et al. (1972)/ nicht direkt ermittelt werden konnten, sondern zusätzliche plausible Annahmen enthalten. Die Werte für Eggenstein sind ebenso wie die für Karlsruhe dem Bericht /FAUDE et al. (1974)/ entnommen.

Für die Diskrepanz zwischen der theoretisch abgeleiteten Immissionskonzentration (Formel 2.10) und den tatsächlichen Werten gibt es mehrere mögliche Erklärungen. Hier soll auf die drei als wesentlich anzusehenden näher eingegangen werden. Die verwendeten Ausbreitungsparameter in Tabelle 2.1 (p. 12) gelten für die Ausbreitung über unbebauten Flächen. Durch den Einfluß der Bebauung ergibt sich jedoch tendenziell eine höhere Immissionskonzentration. Eine zu geringe Immissionskonzentration könnte sich auch dadurch ergeben haben, daß bei der Auswahl der repräsentativen Ausbreitungsklasse 4 die Ausbreitungsklasse 5 mit ihrem großen Ausbreitungsfaktor zu wenig Gewicht erhält. Eine Klärung dieses Problems wäre nur möglich aufgrund einer detaillierten Wetterstatistik auf der Basis der Turnerschen Klassifizierung, die jedoch für Baden-Württemberg bisher nicht zusammengestellt wurde. Eine weitere Fehlerquelle besteht schließlich in der Annahme einer Gleichverteilung der Emissionsdichte. Wäre ein bei Null beginnender linearer Anstieg der Emissionsdichte vom Rand zum Zentrum hin angenommen worden (bei gleicher Gesamtemission), so hätte sich nach dem hier dargestellten Berechnungsverfahren etwa eine Verdoppelung der Immissionskonzentration im Zentrum ergeben (in Übereinstimmung mit den Berechnungen von /DENNIS (1978)/.

Da die Annahme einer zur Innenstadt hin zunehmenden Emissionsdichte realistischer ist als eine Gleichverteilung und auch bei angenommener Gleichverteilung die Immissionskonzentration im Zentrum über dem Flächenmittel

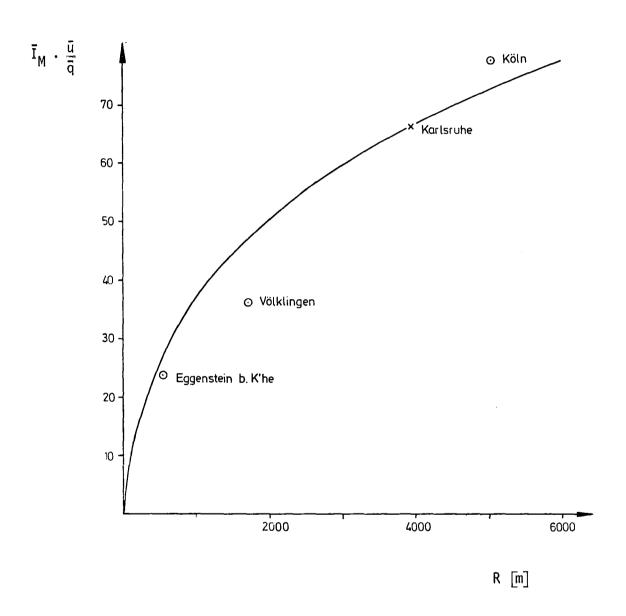


Abbildung 2.4: Vergleich des Ausbreitungsmodells (2.11) mit Immissionswerten verschiedener Städte

liegt /DENNIS (1978)/, erhebt sich hier die Frage, wie repräsentativ die Immissionskonzentration in der Stadtmitte für die Bevölkerungsbelastung in der gesamten Stadt ist. Für die Beibehaltung dieses Immissionswertes als Kenngröße lassen sich, neben den schon genannten, folgende Gründe anführen: Das Maximum der Immissionskonzentration in der Stadtmitte ist i.a. ziemlich flach (s. z.B. /FAUDE et al. (1974)/). Außerdem ist die Bevölkerungsdichte im Zentrum höher als am Rand, wobei auch zu berücksichtigen ist, daß Personen mit Wohnsitz am Stadtrand einen großen Teil ihrer Zeit im Zentrum verbringen. Auf jeden Fall ist aber bei der Schätzung der Nutzenfunktion (s. Abschn. 1) dem Befragten klarzumachen, daß die zu bewertenden Immissionskonzentrationen Obergrenzen für die tatsächlich auftretenden Konzentrationen darstellen.

2.3.3 Gemeindegrößenstruktur Baden-Württembergs

Gemäß Abschn. 2.3.3 ist für jede Gemeinde die Immissionskonzentration im Mittelpunkt zu bestimmen. Die mit der Einwohnerzahl zu gewichtende Mittel-wertbildung ergibt die mittlere Belastung der Bevölkerung. Charakteristische Größen einer Gemeinde sind die Einwohnerzahl und die Fläche. Zur Umgehung der Einzelbestimmung dieser Größen wird folgendes Verfahren angewandt:

- Die Abhängigkeit der Ausdehnung einer Gemeinde von der Einwohnerzahl wird durch empirische Ansätze ermittelt.
- Die Gemeinden werden gemäß der Einwohnerzahl in Gemeindegrößenklassen unterteilt.

Zwischen der Einwohnerzahl N und der flächenhaften Ausdehnung wurde von Tobler /TOBLER (1975)/ folgende empirische Beziehung ermittelt:

(2.12)
$$R_T = \alpha \cdot N^{\beta}$$
 (R_T: Radius der Gemeinde nach Tobler)

mit den Werten

 $\alpha = 0.035$

 $\beta = 0.44$

Im Vergleich zur tatsächlichen Ausdehnung von verschiedenen Städten Baden-Württembergs ergibt sich mit diesen Koeffizienten keine befriedigende Übereinstimmung. Daher werden die Koeffizienten den hier vorliegenden Verhältnissen angepaßt. Die Zusammenstellung der Tabelle 2.2 zeigt für eine Auswahl von Gemeinden Baden-Württembergs

- die Radien R_V gemäß der Fläche des jeweiligen Verwaltungsgebiets (nur für kreisfreie Städte) /STATISTISCHES LANDESAMT BADEN-WÜRTTEM-BERG (1972)/
- die Radien R_B gemäß der Fläche der Gebiete, die verkehrstechnisch als geschlossene Ortschaften ausgewiesen sind und sich dementsprechend durch verdichtete Bebauung auszeichnen (Werte aus Kartenmaterial)
- die Radien R_T nach der Formel von Tobler
- das Verhältnis R_B/R_T

Aus nachfolgender Tabelle ist zu entnehmen, daß keine signifikante Abhängigkeit zwischen dem Verhältnis $R_{\rm B}/R_{\rm T}$ und der Einwohnerzahl besteht. Daher wird im folgenden mit der Formel (s. Gl. (2.12))

$$(2.13) R = 0.016 \cdot N^{0.44}$$

gerechnet.

Tabelle 2.2: Gemeinderadien nach verschiedenen Verfahren

Gemeinde	Einwohnerzahl N in Tausend (1971)	R _V (km)	R _B (km)	R _T (km)	R _B /R _T
Stuttgart	633	8.1	5.5	12.5	0.44
Karlsruhe	262	6.5	4.0	8.5	0.47
Heidelberg	122	5.5	2.5	6.1	0.41
Heilbronn	102	4.5	2.7	5.6	0.48
Pforzheim	93	4.5	2.7	5.4	0.50
Bruchsa1	34	-	1.5	3.5	0.43
Rastatt	32	-	1.8	3.3	0.55
Weingarten	19	-	1.0	2.6	0.38
Eppingen	13	-	1.0	2.3	0.43

Mittelwert für R_R/R_T : 0.45

Die Einteilung der Gemeinden in Gemeindegrößenklassen ist in Tabelle 2.3 enthalten. Die Einwohnerzahlen in der dritten Spalte beziehen sich auf den Stand vom 31.12.1971 mit einer Gesamteinwohnerzahl von 9.055·10⁶ Einwohnern. Für das Jahr 2000 wird nach dem DIW-Gutachten /DOLINSKI und ZIESING (1974)/ mit einer Einwohnerzahl von 10⁷ Einwohnern gerechnet. Da dieser Anstieg nur gering ist, werden die Radien der Gemeinden auf diese Gesamteinwohnerzahl bezogen, unter der Annahme proportionalen Wachstums für sämtliche Gemeindegrößenklassen. Die entsprechenden Einwohnerzahlen sind in der vierten Spalte angegeben.

Weiterhin zeigt die Tabelle 2.3 die spezifischen hausbrandbedingten Immissionskonzentrationen im Zentrum der jeweiligen Gemeinde sowie deren

Verhältnis zu der Immissionskonzentration, die sich durch Mittelung über alle Gemeinden ergibt. Dabei wird unterstellt, daß die pro-Kopf-Emission überall gleich ist.

Tabelle 2.3: Gemeindegrößen- und Immissionsstruktur für Baden-Württemberg

Gemeindeklasse	Anzahl ^f j	Einwohr in Taus 1971	nerzahl N send 2000	Radius [km]	BevDichte $\left[10^3 \text{EW/km}^2\right]$	I/q [s/m]	I/Ī _{BW}
Stuttgart	1	633	699	6.0	6.2	38.6	2.68
Mannheim	1	331	366	4.5	5.7	34.7	2.24
Karlsruhe	1	262	289	4.1	5.5	33.3	2.06
Freiburg	1 .	168	186	3.3	5.5	30.9	1.87
Heidelberg	1	122	135	2.9	5.2	29.2	1.67
Heilbronn	1	102	113	2.7	4.9	28.3	1.57
(50-100)·10 ³	11	72.9	80.5	2.3	4.7	26.6	1.45
$(20-50) \cdot 10^3$	36	29.6	32.7	1.6	4.1	22.5	1.04
(5-20).10 ³	280	8.9	9.8	0.9	3.6	17.6	0.73
(2-5)·10 ³	501	3.1	3.4	0.6	3.1	14.0	0.52
<2·10 ³	1873	0.8	0.9	0.3	2.9	10.1	0.30

Die Entscheidungsvariablen des Energiemodells erlauben keine so weitgehende Differenzierung der Emissions- und Immissionsstruktur wie in Tabelle 2.3. Im bisherigen Ausbaustand wird lediglich eine Unterteilung in drei Gemeindegrößenklassen /FÜRNISS et al. (1980)/ vorgenommen. Der jeweilige Faktor zur Charakterisierung der Immissionsstruktur für diese gröbere Gemeindegrößenstruktur ergibt sich durch mit der Bevölkerung gewichtete Mittelung über die spezifischen Immissionen I/q.

Die mittlere Immissionskonzentration für Baden-Württemberg wird also berechnet entsprechend

(2.14)
$$\overline{I}_{BW} = 31.71 \cdot \sum_{J=1}^{3} \sum_{k=1}^{m} S_J \cdot e_k \cdot EB_{Jk} \left[\mu g/m^3 \right]$$

 $\begin{array}{ll} \text{mit e}_k \colon & \text{Emissionsfaktor für die Energieart k} \\ & & \left[\text{kg/Energieeinheit} \right] \end{array}$

EB_{Jk}: Verbrauchte Energieeinheiten der Art k in der Gemeindeklasse J [Energieeinheiten/Jahr] (Entscheidungsvariable des Energiemodells, siehe Abschnitt 1)

31.71: Umrechnungsfaktor von kg/a in μ g/s

 S_J : Strukturfaktor für Gemeindeklasse J $\left[s/m^3\right]$

Der Faktor S_J ergibt sich durch folgende Beziehung aus den Größen von Tabelle 2.3:

$$(2.15) S_{\mathbf{J}} = \frac{1}{N_{\mathsf{BW}}} \cdot \sum_{\mathbf{j} \in \mathsf{K}, \mathbf{j}} (\frac{\mathbf{I}}{\mathsf{q}})_{\mathbf{j}} \cdot \frac{1}{\pi R_{\mathbf{j}}} \cdot \mathsf{f}_{\mathbf{j}} \cdot \mathsf{N}_{\mathbf{j}}$$

wobei die Summation über die zur Klasse J gehörenden j zu erstrecken ist.

Für die Einteilung der Gemeindegrößenstruktur gemäß dem Energiemodell Baden-Württemberg lauten die S_1 :

Großstädte
$$S_1 = 20.4 \cdot 10^{-9} \frac{s}{m^3}$$

Mittelstädte
$$S_2 = 10.2 \cdot 10^{-9} \frac{s}{m^3}$$

Landgemeinden
$$S_3 = 4.9 \cdot 10^{-9} \frac{s}{m^3}$$

Hieraus ist z.B. zu entnehmen, daß der Verbrauch einer bestimmten Energiemenge in Großstädten eine doppelt so hohe mittlere Bevölkerungsbelastung erzeugt, als wenn die gleiche Menge in Mittelstädten verbraucht worden wäre.

2.3.4 Emissionsfaktoren und Beispielrechnungen

Die Schadstoffe des Hausbrandes, die im Energiesystem berücksichtigt werden, sind

- Schwefeldioxid (S0₂)
- Feinstaub
- Stickoxide (NO_x)

Die Energieträger für den Hausbrand sind

- Heizöl leicht
- Erdgas.

Die Anteile von Kohleprodukten zur Bedarfsdeckung werden nicht berücksichtigt, da dieser Anteil bereits gering ist und zukünftig weiter abnehmen wird. Die Emissionsfaktoren werden dem Emissionskataster Köln /MAGS NORDRHEIN-WESTFALEN (1972)/ entnommen und sind in Tab. 2.4 aufgeführt.

Tabelle 2.4: Emissionsfaktoren für Hausbrand in kg/t SKE

Energieträger	so ₂	Feinstaub	$NO_{\mathbf{x}}$
Heizöl leicht	5.7	92.4·10 ⁻³	1.61
Erdgas	_	-	1.05

Bei verbrennungsmotorisch angetriebenen Erdgaswärmepumpen ist mit einem höheren NO_{X} -Ausstoß, bezogen auf die eingesetzte Gasmenge, zu rechnen. Mangels hinreichender Informationen würde dieser Effekt bei den Modell-rechnungen nicht berücksichtigt. Vielmehr wurde bei den Modelllösungen geprüft, ob die zu gering angesetzten NO_{X} -Emissionen zu wesentlichen Veränderungen geführt hatten, dies war aber in allen Fällen zu verneinen.

In der Quelle ist lediglich der Gesamtstaubauswurf angegeben. Der hier dargestellte Emissionsfaktor für Feinstaub ergibt sich dadurch, daß 88-Gewichtsprozente des Gesamtstaubes als Feinstaub angenommen werden /vgl. LASKUS (1977)/.

Zu den Emissionsfaktoren insgesamt ist zu bemerken, daß entsprechende Angaben in anderen Literaturquellen /FAUDE et al. (1974), /GEIGER et al. (1974)/ z.T. erheblich abweichen.

Als Rechenbeispiel seien die mittleren Schadstoffkonzentrationen bei vollständiger Deckung des Raumheizungsbedarfs durch leichtes Heizöl angeführt. Mit dem Bedarf von 1975 ergeben sich

22.1
$$\mu g$$
 SO_2/m^3
0.4 μg Feinstaub $/m^3$
6.2 μg NO_x/m^3

Die entsprechenden Konzentrationen in den einzelnen Gemeindegrößenklassen lassen sich unter Zuhilfenahme von Tabelle 2.3, letzte Spalte, bestimmen.

2.4 Immissionen durch Kfz-Verkehr

2.4.1 Charakteristische Eigenschaften

Der Kfz-Verkehr zeigt das Emissionsverhalten von Linienquellen. Die Zusammenfassung sämtlicher Linienquellen einer Gemeinde zu einer Flächenquelle mit entsprechender Emission pro Flächeneinheit ist jedoch unproblematisch, solange die zu bestimmende Immissionskenngröße aus der mittleren pro-Kopf-Belastung besteht. Es ist aber anzumerken, daß im Vergleich zu den Immis-

sionen des Hausbrandes die kleinräumigen Schwankungen der Immissionskonzentration um Größenordnungen höher liegen, bedingt durch Unterschiede des Verkehrsaufkommens in den einzelnen Straßenzügen. Anders als bei der vorher behandelten Emittentengruppe ist es daher nicht möglich, die rechnerisch ermittelten Immissionswerte mit entsprechenden Meßwerten zu vergleichen. Meßwerte z.B. für CO-Immissionen des Kfz-Verkehrs liegen nur für Straßenzüge vor und zeigen eine deutliche Abhängigkeit von der Verkehrsdichte /vgl. SCHULZ und SCHUCH (1978)/.

Offentlichtlich gibt es zwei Wege, die Immissionskenngröße des Kfz-Verkehrs für eine Gemeinde zu bestimmen, und zwar

- 1. Die Linienquellen des Kfz-Verkehrs werden für eine Region als Flächenquellen zusammengefaßt. Die Immission-Emission-Beziehung entspricht dann prinzipielle derjenigen für den Hausbrand.
- 2. Für den Kfz-Verkehr als Linienquelle geht man von den hierfür vorliegenden Emission-Immissions-Beziehungen aus. Derartige Beziehungen gelten aber nur für einen bestimmten Aufpunkt bezüglich der Linienquelle (horizontaler und vertikaler Abstand). Die Ermittlung einer mittleren flächenbezogenen Immissionskonzentration analog zur Immissionskenngröße für den Hausbrand ist aus diesen Angaben nur unter Hinzuziehung weiterer Annahmen über das seitliche Ausbreitungsverhalten möglich.

Die Schwäche des 1. Verfahrens besteht darin, daß keine gemessenen Werte von Immissionen des Kfz-Verkehrs einbezogen werden können. Die Schwachstelle des 2. Verfahrens liegt in den zu treffenden Annahmen, wie aus den Immissionskenngrößen für einen definierten Aufpunkt eine mittlere, flächenbezogene Immissionskenngröße abzuleiten ist.

Solange die Informationsbasis für diese Umrechnung so dürftig ist wie zur Zeit, erscheint das erstgenannte Verfahren für den vorliegenden Zweck als

methodisch abgesicherter und wird daher für die Bestimmung der Immissionskenngröβe benutzt.

Im Vergleich zu den Hausbrandemissionen ist die Bindung von Emittenten und Betroffenen bei den Verkehrsemissionen schwächer. Näherungsweise wird angenommen, daß zur Belastung der Bevölkerung nur diejenigen Emissionen beitragen, die im Innerortsverkehr entstehen. Diese Emissionen werden der Einfachheit halber den in der Gemeinde gemeldeten Kraftfahrzeugen zugerechnet.

Die Abhängigkeit der bevölkerungsbezogenen Immissionen von den Entscheidungsvariablen des Energiemodells wird anhand der Ergebnisse des Emissionskataster Köln /MAGS NORDRHEIN-WESTFALEN (1972)/ ermittelt:

Aus Verkehrszählungen wurde die gesamte Jahresfahrleistung im Untersuchungsraum bestimmt. Zusätzlich erfolgte eine Zuordnung zu gewissen Fahrrhythmen,
charakterisiert durch die entsprechende mittlere Fahrgeschwindigkeit.
Mittels des PKW-Bestandes im Untersuchungsgebiet können dann folgende
Größen errechnet werden:

- Fahrleistung im Innerortsverkehr pro PKW und Jahr
- Treibstoffverbrauch im Innerortsverkehr pro PKW und Jahr
- Emissionen im Innerortsverkehr pro PKW und Jahr

Eine direkte Übertragung dieser Ergebnisse auf Gemeinden mit bedeutend geringerer Einwohnerzahl führt zu erheblichen Verfälschungen, da die Fahrleistungen pro PKW in Großstädten erheblich höher liegen dürften. Gründe hierfür sind sowohl die größere Flächenausdehnung als auch die Attraktivität der Großstädte für Bewohner umliegender Gemeinden (Berufspendler, Einkaufsfahrten). Da vergleichbare Untersuchungen für kleinere und mittlere Gemeinden nicht durchgeführt worden sind, muß eine plausible Annahme über die Fahrleistung im Innerortsverkehr in Abhängigkeit von der Einwohnerzahl erfolgen. Mit diesen Informationen ist es dann möglich, den Energieverbrauch

sowie die Emissionen von PKW im Innerortsverkehr für Baden-Württemberg zu bestimmen.

Durch die Einbeziehung des LKW-Verkehrs ist es dann möglich, eine Beziehung zwischen den Entscheidungsvariablen und den Kfz-Immissionen aufzustellen. Diese Vorgehensweise wird im einzelnen erläutert, dabei wird zunächst allein auf den PKW-Verkehr Bezug genommen.

2.4.2 Emissionen des innerörtlichen PKW-Verkehrs

Nach dem Emissionskataster Köln /MAGS NORDRHEIN-WESTFALEN (1972)/ ergeben sich folgende Daten:

PKW-Bestand der untersuchten Region (10^6 Einwohner): 250 000 (eigene Schätzung)

Jahresfahrleistung von PKW im Stadtgebiet ohne Verkehr auf Autobahnen: $2099 \cdot 10^6 \text{ km/a}$

Mittlere Fahrgeschwindigkeit: 31.4 km/h

Treibstoffverbrauch pro 100 km bei v = 31.4 km/h

Benzin: 10.25 1

Diesel: 7.5 1 (eigene Schätzung)

mittl. Fahrleistung pro PKW und Jahr im Innerortsverkehr: 8400 km

Die letzte Zahl bezieht sich auf ein zusammenhängendes Gebiet mit etwa 10^6 Einwohnern. Sicherlich liegt die innerörtliche Fahrleistung für solche PKW niedriger, deren Zulassungsgemeinde nicht in Ballungsgebieten liegt. Da über diese Abhängigkeit keine quantitativen Erkenntnisse vorliegen, wird der Verlauf der innerörtlichen Fahrleistung in Abhängigkeit von der Gemeindegröße geschätzt. Wegen des Durchgangsverkehrs (der den in der Gemeinde zugelassenen PKW zugerechnet wird) ist es sinnvoll, bei abnehmender Gemeindegröße die innerörtliche Fahrleistung pro PKW nicht gegen Null gehen zu lassen. Als unterster Wert wird vielmehr 2000 km /(PKW·a) unterstellt. Zwischen diesem Wert und der für Köln ermittelten Größe

wird in Abhängigkeit von der Einwohnerzahl linear interpoliert, so daß die Fahrleistung F folgenden Verlauf aufweist:

$$(2.16) \quad F = 2000 + 6.4 \cdot 10^{-3} \cdot N \quad km/(PKW \cdot a)$$

Unter Zugrundelegung der Gemeindegrößenstruktur Baden-Württembergs (Abschn. 2.3.3) ergibt sich eine mittlere innerörtliche Fahrleistung von 2600 km/(PKW·a). Die Gesamtfahrleistung beträgt zum Vergleich 15 000 km/(PKW·a) /s. DOLINSKI und ZIESING (1974)/.

Die Immissionskonzentration wird über die gleiche Immission-Emissions-Beziehung wie beim Hausbrand errechnet. Wegen der niedrigeren Quellhöhe der Kfz-Emissionen ist aber mit einer geringeren Transportgeschwindigkeit zu rechnen. Die Umrechnung von 2 m/s im Bereich 0-15 m Höhe auf den Bereich 0-3 m Höhe ergibt ungefähr den Wert von 1 m/s, so daß die Immissionen des Kfz-Verkehrs bei gleicher Flächenquellstärke doppelt so hoch sind wie beim Hausbrand. Die resultierende Immissionsstruktur für Baden-Württemberg zeigt Tab. 2.5.

Tabelle 2.5: Emissions- und Immissionsstruktur des PKW-Verkehrs für die Gemeindegröβenklassen Baden-Württembergs

Gemeindeklasse	Einwohnerzahl N in Tsd. (Jahr 2000)	Fahrleistung (km/(PKW·a))	I/q (s/m)	I/Ī _{BW}
Stuttgart	699	6453	77.1	5.2
Mannheim	366	4328	69.3	2.9
Karlsruhe	289	3843	66.6	2.4
Freiburg	186	3182	61.7	1.7
Heidelberg	135	2858	58.4	1.4
Heilbronn	113	2717	56.5	1.3
$(50-100) \cdot 10^3$	80.5	2557	53.2	1.1
$(20-50) \cdot 10^3$	32,7	2208	44.9	0.7
$(5-20) \cdot 10^3$	9.8	2063	35.3	0.5
$(2-5) \cdot 10^3$	3.4	2022	28.0	0.3
<2·10 ³	0.9	2006	20.2	0.2

2.4.3 <u>Beziehungen zu den Entscheidungsvariablen des Optimierungs-</u> modells

Die Einbeziehung des LKW-Verkehrs erfolgt aufgrund folgender Überlegungen: Laut Emissionskataster Köln /MAGS NORDRHEIN-WESTFALEN (1972)/ beträgt die Jahresfahrleistung im Innerortsverkehr (ohne Benutzung der Autobahnen im Stadtgebiet) für LKW $161.5\cdot10^6$ km, dies sind 7.7 % der PKW-Fahrleistung. Der Treibstoffverbrauch pro 100 km beträgt 23.9 1 Diesel. Unter der Annahme, daß der LKW-Verkehr in Abhängigkeit von der Gemeindegröße ein identisches Verhalten wie der PKW-Verkehr hat, kann also der LKW-Verkehr durch

(2.17)
$$I_{LKW} = 0.25 \cdot I_{PKW}$$
 (Diesel)

berücksichtigt werden. Dies heißt, daß die Immissionen des LKW-Verkehrs 1/4 der Immissionen des PKW-Verkehrs betragen, wenn letzterer ausschließ-lich Dieselkraftstoff benutzt. Zu beachten ist, daß der obige LKW-Treibstoffverbrauch repräsentativ für den innerörtlichen Verkehr, nicht jedoch für den Gesamt-LKW-Verkehr, ist.

Zur Anbindung an die Entscheidungsvariablen, die mit der Nachfragekategorie "Nutzenergie für Kfz-Verkehr" verbunden sind /FÜRNISS et al. (1980)/ ist weiterhin eine Aussage über den in letzterer enthaltenen PKW-Anteil notwendig. Nach /DOLINSKI und ZIESING (1974)/ kann mit einem Anteil von 63 % am Gesamtbedarf gerechnet werden.

Zusammengefaßt ergibt sich die mittlere Immissionskonzentration für die Bevölkerung Baden-Württembergs in Abhängigkeit von den Entscheidungsvariablen EB_{Benzin} und EB_{Diesel}, die den Verbrauch an Benzin bzw. Dieselöl pro Jahr darstellen, durch folgende Beziehung:

(2.18)
$$I_{BW} = S_{BW} \cdot \left[e_{Benzin} \cdot E_{Benzin} \cdot \eta_{Benzin} + e_{Diesel} \cdot (0.63 \cdot E_{Diesel} \cdot \eta_{Diesel} - 0.37 \cdot E_{Benzin} \cdot \eta_{Benzin}) + 0.25 \cdot e_{Diesel} \cdot 0.63 \cdot (E_{Diesel} \cdot \eta_{Diesel} + E_{Benzin} \cdot \eta_{Benzin}) \right]$$

mit

e_{Benzin}, e_{Diesel}: spezifische Emission in (g/km) für Benzin bzw.

Dieselkraftstoff

ⁿBenzin^{, n}Diesel: Umwandlungswirkungsgrade für Benzin bzw. Diesel-

kraftstoff

Der erste Term steht für den Benzinverbrauch, der zweite für den Dieselverbrauch des PKW-Verkehrs, der letzte Term für den LKW-Verkehr (nur Dieselverbrauch). Der Faktor S_{BW} dient, ähnlich wie beim Hausbrand, zur Charakterisierung der Immissionsstruktur und hat die Einheit km/m $^2\cdot$ s/m. Er berechnet sich gemäß

$$(2.19) \quad S_{BW} = 31.71 \cdot 10^{-3} \cdot \frac{1}{E_{T}} \cdot \frac{1}{N_{BW}} \cdot \sum_{j=1}^{n} \left[f_{j} \cdot N_{j} \cdot (\frac{I}{q})_{j} \cdot \frac{1}{\pi R_{j}^{2}} \cdot C \cdot N_{j} \cdot (2000 + 6.4 \cdot 10^{-3} \cdot N_{j}) \right]$$

mit

 E_T : Nutzenergiebedarf für PKW-Verkehr in Baden-Württemberg

im Jahre 1972

C: PKW pro Einwohner

Die übrigen Größen sind in Abschn. 2.3 erklärt.

Diese Formel setzt sich folgendermaßen zusammen:

Die in einer Gemeinde der Größenklasse j zurückgelegten Kilometer betragen $\text{C}\cdot\text{N}_j\cdot(2000+6.4\cdot10^{-3}\cdot\text{N}_j)$ (bezogen auf ein Jahr). Die Multiplikation mit der spezifischen Emission (g/km) ergibt die Gesamtemission. Durch den Faktor $1/\pi\text{R}_j^2$ bestimmt sich die Emissiondichte \textbf{q}_j , durch Multiplikation mit (I/q) $_j$ erhält man die Immissionskonzentration. Die Wichtung mit der Einwohnerzahl $\textbf{f}_j\cdot\text{N}_j$ und Division durch die Gesamteinwohnerzahl \textbf{N}_{BW} ergibt die mittlere bevölkerungsbezogene Immissionskonzentration. Der Faktor $31.71\cdot10^{-3}$ steht für die Umrechnung der Emission von (g/a) in (μ g/s.). Der Faktor $1/\text{E}_T$ bewirkt in Verbindung mit den Größen $EB_{Benzin}\cdot^nBenzin$ sowie $EB_{Diesel}\cdot^nDiesel$ in Formel (2.18), daß die Immissionskonzentration lediglich von den relativen Anteilen dieser Energieträger bei der Bedarfsdeckung abhängt. Wenn im

Modell ein von E_{T} verschiedener Nutzenergiebedarf vorgegeben wird, ist die entsprechend Gleichungen (2.18) und (2.19) berechnete Immission so, als ob sich die innerörtliche Fahrleistung im selben Verhältnis geändert hätte wie der Nutzenergiebedarf.

2.4.4 Emissionsfaktoren und Beispielrechnungen

In Anlehnung an das Emissionskataster Köln ergeben sich die Emissionen/km Fahrweg in Tab. 2.6.

Tabelle 2.6: Emissionsfaktoren für Kfz-Verkehr in g/km Fahrweg

Energieträger	s0 ₂	Staub	NO_{x}	CO
Benzin	0.04 ⁺⁾	0.04 ⁺⁾	0.97	21.60
Diesel	0.31	0.11	0.59	2.41

⁺⁾ Diese Werte können unter Berücksichtigung von Immissionen anderer Emittentengruppen vernachlässigt werden.

Beispielrechnungen:

Bei einem Bestand von 0.3 PKW pro Einwohner werden folgende mittlere Immissionskonzentrationen errechnet:

Fall a: Versorgung des PKW-Verkehrs mit Benzin, des LKW-Verkehrs mit Diesel

so ₂	Staub	$^{NO}_{X}$	CO	
0.4	0.2	6.4	126.7	$(\mu g/m^3)$

Fall b: Versorgung des gesamten Kfz-Verkehrs mit Diesel

so ₂	Staub	^{NO}x	· CO	
2.2	0.8	4.2	17,3	(µg/m ³)

2.5 Immissionen der großindustriellen Emittenten

2.5.1 Charakteristische Eigenschaften

Industrielle Großemittenten haben den Charakter von Punktquellen. Aufgrund der hohen Quellhöhe liegt das Maximum der Schadstoffkonzentration meist mehrere Kilometer von der Quelle entfernt, mit entsprechend hoher Verdünnung. Die weitere Abnahme der Schadstoffkonzentration mit der Entfernung ist erheblich geringer als bei Hausbrand-Immissionen. Wie schon in Abschn. 2.2 erwähnt, ist die detaillierte Ermittlung der räumlichen Verteilung der hier zu behandelnden Immissionen allein schon aufgrund der Unkenntnis über die Standorte der Schadstoff-Quellen (im Rahmen des Energiemodells) nicht möglich.

Sowohl diese Unkenntnis als auch die großräumige Verteilung legen es nahe, in erster Näherung eine gleichmäßige Verschmierung der Immissionen über die Fläche Baden-Württembergs anzunehmen. Auf die Berücksichtigung von Emissionen, die bekanntermaßen außerhalb Baden-Württembergs erfolgen, z.B. Braunkohlenverstromung, wird in Abschn. 2.5.4 eingegangen.

2.5.2 Ausbreitungsmodell

Die Berechnung der Immissionskonzentration aus den Emissionen orientiert sich an grundsätzlich anderen Parametern als die Rechnungen zum Hausbrand. Maßgeblich ist die mittlere Dicke H der Durchmischungsschicht über Baden-Württemberg sowie die mittlere Aufenthaltszeit $1/\lambda$ der Schadstoffe in der Atomsphäre, bedingt durch chemische Umwandlung oder Auswaschung. Mit diesen Einflußgrößen ergibt sich die Immission-Emissions-Beziehung durch das Box-Modell:

$$(2.20) I = \frac{Q}{F \cdot H} \cdot \frac{1}{\lambda}$$

mit

Q = Emission

F = Bezugsfläche für die Ausbreitung

H = Ausbreitungsobergrenze (Dicke der Durchmischungsschicht)

 λ = Zeitkonstante für den Aufenthalt des Schadstoffs in der Troposphäre

Diese Formel unterstellt, daß die Schadstoffemissionen im Volumen F·H bis zum dynamischen Gleichgewichtszustand akkumulieren. Als Grundfläche F wird die Fläche Baden-Württembergs genommen. Hierdurch ergibt sich zwar eine Überschätzung der Immissionskonzentration, jedoch stellt diese Überschätzung genau die Belastung dar, die durch die Energieumwandlungs-anlagen Baden-Württembergs in den angrenzenden Gebieten entsteht – unter der Annahme identischer mittlerer Bevölkerungsdichte. Denn auch wenn man eine Bezugsfläche F'>F annimmt mit einer nicht notwendig konstanten Immissionskonzentration I' gilt jedenfalls

(2.21)
$$\int_{F'} I' dF = \frac{Q}{H} \cdot \frac{1}{\lambda} = I \cdot F$$

wenn vertikale Homogenität vorausgesetzt wird.

Als Ausbreitungsobergrenze H wird 1000 m angenommen; zum Vergleich ergibt sich nach /FAUDE et al. (1974)/ für Karlsruhe der repräsentative Wert von 760 m. Für $1/\lambda$ wird in Anlehnung an verschiedene Literaturangaben /RODHE (1972), STRAUSS (1972), FAUDE et al. (1974), HUSAR et al. (1978)/ für alle Schadstoffe der einheitliche Wert von 48 h gewählt; er ist mit großen Unsicherheiten behaftet. Für den Ausbreitungsfaktor ergibt sich demnach $4.8\cdot10^{-9}\,\mathrm{s/m}^3$.

2.5.3 Emissionsfaktoren und Rechenbeispiel

Die Emissionsfaktoren für industrielle Großemittenten zeigt Tab. 2.7. Sie wurden vor allem der Quelle /FAUDE et al. (1974)/ entnommen, und zwar für die Energieträger Steinkohle, schweres Heizöl (jeweils ohne Rauchgaswäsche) und Erdgas. (Diese Werte beziehen sich auf die Angaben für Kraftwerke, die geringen Abweichungen bei Verfeuerung in Industriekesseln wurden als vernachlässigbar angesehen.) Für Braunkohlenkraftwerke wurden die Emissions÷ werte in Anlehnung an /GEIGER et al. (1974)/ bestimmt. Bei der Rauchgasentschwefelung in fossil befeuerten Großkraftwerken stellte sich das Problem, daß bezüglich der SO₂-Reduzierung auf zwischenzeitlich erlassenen Verordnungen zurückgegriffen werden konnte, während die damit verbundene Reduzierungen des Staub- und NO_x-Gehalts als vergleichweise unsicher anzusehen sind. Unter Bezugnahme auf mehrere Beiträge in /VGB (1975)/ konnte hierfür eine als vorläufig anzusehende Abschätzung durchgeführt werden. Die CO-Emissionen werden, wie auch beim Hausbrand, als vernachlässigbar angesehen.

Tabelle 2.7: Emissionsfaktoren für industrielle Großemittenten in kg Schadstoff /t SKE

Einsatzenergie	S0 ₂	Feinstaub ⁺⁾	NO _×
Steinkohle ohne Rauchgasentschwefelung	21	3.6	7
Steinkohle mit Rauchgasentschwefelung	8.5	0.2	4
Braunkohle	21	4.0	7
Heizöl schwer ohne Rauchgasentschwefelung	20	0.4	6
Heizöl schwer mit Rauchgasentschwefelung	8.5	0.1	3
Erdgas	-	-	4

^{+) 88} Gewichtsprozente der in der Quelle angegebenen Gesamtstaubemission

Für ein 700 MW_e-Steinkohlekraftwerk im Grundlastbetrieb (8000 Benutzungsstunden pro Jahr, $_{\eta}$ = 40 %) ergibt sich mit der beschriebenen Berechnungsmethode beispielsweise eine mittlere SO₂-Immissionskonzentration von 2.3 $_{\mu}/m^3$, unter Berücksichtigung der Rauchgasentschwefelung.

2.5.4 Zurechnung von Immissionen durch Energieumwandlungsanlagen außerhalb Baden-Württembergs

Einige Optionen des Energiemodells Baden-Württembergs beinhalten die Umwandlung von Energie für Baden-Württemberg außerhalb dieses Bundes-landes (z.B. Braunkohleverstromung). Die hierdurch entstehenden Schadstoffbelastungen sind dem Energiesystem Baden-Württembergs zuzurechnen. Die entsprechende Beziehung lautet:

$$(2.22) I_{BW} = I_{BW}^{X} \cdot \frac{P_{E}}{P_{BW}}$$

I_{RW}: zuzurechnende Immissionskonzentration

I^X_{BW}: Immissionskonzentration, die sich mit einem Boxmodell ergibt, bei dem die Grundfläche so groß ist wie Baden-Württemberg, während die Dicke H der Ausbreitungsschicht dem Umwandlungsstandort entspricht.

 P_{BW} : Einwohnerdichte von Baden-Württemberg

P_E: Einwohnerdichte der Region, in der die Energieumwandlung erfolgt.

Als Fläche, die zur Bestimmung von P_{E} heranzuziehen ist, wird ein Kreis von der Größe Baden-Württembergs genommen.

2.6 Untergrund-Anteil der Hausbrand- und Kfz-Immissionen

Die Formel für das Box-Modell (2.20) zur Immissionsbestimmung beinhaltet keine emittenten-spezifischen Größen wie Quellhöhe oder Ausdehnung der Emissionsfläche. Daher lassen sich hiermit auch diejenigen Immissionen des Hausbrandes bestimmen, die außerhalb der Entstehungsgemeinde auftreten. Das Problem besteht offenbar darin, die Informationen über die Immissionskonzentrationen innerhalb der Entstehungsgemeinden (s. Abschn. 2.3) in geeigneter Weise mit dem Box-Modell zu verknüpfen. Diese Immissionen lassen sich mittels des Box-Modells formal in ein Emissionsäquivalent Q^X umrechnen:

(2.23)
$$\frac{Q^{X}}{H \cdot \lambda} = \sum_{j=1}^{n} f_{j} \cdot I_{j} \cdot \pi \cdot R_{j}^{2}$$

Die Untergrund-Immissionen ergeben sich dann durch

(2.24)
$$I_{A} = \frac{Q - Q^{X}}{F_{BW} \cdot H \cdot \lambda} = \frac{Q}{F_{BW} \cdot H \cdot \lambda} - \frac{1}{F_{BW}} \cdot \sum_{j=1}^{n} f_{j} \cdot I_{j} \cdot \pi R_{j}^{2}$$

Wegen

(2.25)
$$q_j = \frac{\frac{Q}{N_{BW}} \cdot N_j}{\pi R_j^2}$$

läßt sich der negative Term umformen in

$$(2.26) \quad \frac{1}{F_{BW}} \quad \sum_{j} f_{j} \cdot I_{j} \cdot \pi R_{j}^{2} = \frac{Q}{N_{BW}} \cdot \frac{1}{F_{BW}} \sum_{j} f_{j} \cdot N_{j} \cdot (\frac{I}{q})_{j}$$

Mit den Werten für $(I/q)_j$ aus Tab. 2.3, Abschn. 2.3.3 ergibt sich dann für den Ausbreitungsfaktor:

(2.27)
$$\frac{{}^{1}_{A}}{Q} = \frac{1}{F_{BW}} \left(\frac{1}{H \cdot \lambda} - \frac{1}{N_{BW}} \sum_{j} f_{j} \cdot N_{j} \cdot (\frac{I}{q})_{j} \right)$$
$$= 4.3 \cdot 10^{9} \text{ s/m}^{3}$$

(Man beachte, daß für alle Schadstoffe aus dem Hausbrand eine einheitliche Lebensdauer von 48 h angenommen wird, s. Abschn. 2.5.2)

Zum Vergleich lautet der Ausbreitungsfaktor für den bevölkerungsbezogenen Mittelwert der Immissionskonzentrationen, die durch Emissionen innerhalb der jeweiligen Entstehungsgemeinde erzeugt werden:

(2.28)
$$\frac{\overline{I}_{BW}}{Q} = \frac{1}{N_{BW}^{2}} \sum_{j} f_{j} \cdot N_{j}^{2} \cdot (\frac{I}{q})_{j}$$
$$= 9.0 \cdot 10^{-9} \frac{s}{m^{3}}$$

Insgesamt ergibt sich durch den Hausbrand die mittlere Bevölkerungsbelastung unter Einbeziehung des Untergrunds zu (vgl. Formeln 2.14-15):

(2.29)
$$\bar{I}_{BW} = 31.71 \sum_{J=1}^{3} \sum_{k=1}^{m} (S_J + \frac{I_A}{Q}) \cdot e_k \cdot EB_{Jk}.$$

In genau derselben Weise ließe sich der Untergrundanteil der verkehrsbedingten Immissionen berücksichtigen. Wegen der für die Ausbreitung der Verkehrsemissionen maßgebenden geringen Windgeschwindigkeit ist das Verhältnis zwischen Untergrund und lokal erzeugter Immission aber wesentlich kleiner, so daß auf diese Korrektur hier verzichtet wird.

3. Ermittlung der radiologischen Belastung

Eine ins einzelne gehende Beschreibung der durch das Energiesystem Baden-Württembergs zu erwartenden radiologischen Belastungssituation wird im Rahmen des Optimierungsmodells für die Energieversorgung nicht angestrebt. Denn dazu wären für alle wichtigen Organe die Dosisraten zu ermitteln, wobei jeweils eine Vielzahl von Nukliden, Belastungspfaden und Emissionssituationen berücksichtigt werden müßten. Vielmehr wird als Indikator für die radiologische Belastung die über die Bevölkerung gemittelte Ganzkörperdosisrate bei Normalbetrieb genommen. Bei der Abwägung dieses Indikators gegen andere ist also zu beachten, daß er für die verschiedenen Organdosisraten steht und eventuelle Störfallemissionen mit zu bewerten sind. Nicht zuletzt soll dieser Indikator auch die nichtmonetären Aspekte des Abfallproblems mit erfassen. Mit ihm werden also, grob gesprochen, alle Umweltrisiken, die typisch für die kerntechnische Energiegewinnung sind, bewertet. Aus diesem Grund wird die radiologische Belastung durch konventionelle Kraftwerke bei der Indikatorberechnung außer acht gelassen. Angesichts dieser Bedeutung des Indikators würde der Indikator "installierte Kernkraftwerksleistung" praktisch denselben Zweck erfüllen.

Die Berechnung der dem Energiesystem Baden-Württembergs zuzurechnende radiologische Ganzkörperbelastung wird näherungsweise als aus zwei Komponenten bestehend angesehen: der regionalen Belastung bei der unmittelbaren Verbreitung der Radionuklide über Baden-Württemberg (oder einer gleich großen Region bei einem Standort außerhalb Baden-Württembergs) und der globalen Belastung durch die langlebigen Nuklide. Dieses Vorgehen entspricht genau dem Vorgehen in Abschnitt 2.6 bei der Berechnung der Hausbrandimmissionen, nur in vergrößertem Maßstab: Auch in Abschnitt 2.6 wurde zu den Immissionen, die beim "ersten Durchgang" in der Emissionsgemeinde entstehen, eine Untergrundimmission addiert, die sich aus der Verteilung der Emissionen über die ganze Region ergibt. Die globale Wirkung brauchte darüberhinaus wegen der relativ kurzen Aufenthaltsdauer der Schadstoffe in der Atmosphäre nicht berücksichtigt zu werden. Andererseits ist bei der Berechnung der radiologischen Belastung eine Rechnung

auf Gemeindeebene nicht sinnvoll, da die Emissionen etwa die gleichen Charakteristika haben wie die industriellen Großemissionen in Abschnitt 2.5.

Bei der Berechnung der regionalen Belastung kam wegen der Vielzahl von Nukliden und Belastungspfaden die Entwicklung eines eigenen Rechenverfahrens nicht infrage. Vielmehr wurde auf die Ergebnisse in /HALBRITTER (1978)/ zurückgegriffen. Leider sind in dieser Studie (wie auch in der übrigen Literatur) weder über größere Flächen gemittelten Dosisraten noch Dosisraten für größere Abstände angegeben. Daher mußte die regionale Ganzkörperdosisrate aufgrund folgender Angaben abgeschätzt werden:

- Ganzkörperdosisrate im Aufpunkt mit dem größten Ausbreitungsfaktor, aufgeschlüsselt nach den drei Beiträgen: Belastungen, die mit dem Lufttransport von Nukliden zum Aufpunkt zusammenhängen, γ-Submersion (wobei die gesamte Abluftfahne Beiträge liefert), Belastung über den Wasserpfad. (Als Standort wurde Hannover angenommen.)
- meteorologischer Ausbreitungsfaktor für den eben erwähnten Aufpunkt sowie mittlere Ausbreitungsfaktoren für eine 10 x 10 km² und eine 50 x 50 km² große Fläche um das Kernkraftwerk. Die Ergebnisse liegen für verschiedene Standorte vor, einige davon liegen in Baden-Württemberg.

Bei der erwähnten Ganzkörperdosisrate handelt es sich um die sogenannte Ortsdosis, d.h. die Dosis, die zustande käme, wenn ein Mensch am Aufpunkte lebte, da seinen Wasserbedarf deckte und nur Nahrung zu sich nähme, die am Aufpunkt gewachsen ist. Es wird dabei davon ausgegangen, daß die kerntechnische Anlage seit 50 Jahren in Betrieb ist. Der meteorologische Ausbreitungsfaktor berücksichtigt weder Sedimentation, noch Auswaschung, noch radioaktive Zerfallsprozesse.

Bezogen auf die elektrische Leistung von 1000 MW mit einem Lastfaktor von 0.7 wird für Leichtwasserreaktoren die Ganzkörperdosis zu $6.22 \cdot 10^{-2}$ mrem/a

bei einem meteorologischen Ausbreitungsfaktor von $2.2\cdot 10^{-7}$ s/m 3 angegeben (bei 100 m Quellhöhe, unter Zugrundelegung der Wetterstatistik von Hannover). Davon entfallen $1.15\cdot 10^{-2}$ mrem/a auf die Belastung durch Nuklide, die durch die Luft zum Aufpunkt gelangen, $3.31\cdot 10^{-2}$ mrem/a erfolgen durch γ -Subermsion, $1.76\cdot 10^{-2}$ mrem/a gelangen über den Wasserpfad in den menschlichen Körper.

Für die Wiederaufarbeitung von LWR-Brennstoff ergibt sich analog, bezogen auf eine LWR-Kraftwerksleistung von 1000 MW, eine Ganzkörperbelastung von $5.16\cdot10^{-2}$ mrem/a, bei einem meteorologischen Ausbreitungsfaktor von $4.0\cdot10^{-8}$ s/m 3 und der Annahme einer fortgeschrittenen Rückhaltetechnik für Aerosole. Die unterschiedlichen Ausbreitungsfaktoren von LWR und WAA ergeben sich durch die unterschiedlichen Quellhöhen von 100 bzw. 200 m.

Ausbreitungsfaktoren sind bei 100 m Quellhöhe für die baden-württembergischen Städte Stuttgart und Karlsruhe angeführt:

Stuttgart: $3.85 \cdot 10^{-7} / 6.48 \cdot 10^{-8} / 12.7 \cdot 10^{-9} \text{ s/m}^3$

Karlsruhe: $4.45 \cdot 10^{-7} / 6.64 \cdot 10^{-8} / 12.8 \cdot 10^{-9} s/m^3$

Hierbei gilt der erste Wert für den ungünstigsten Aufpunkt, der zweite für das 10 x 10 km²-Gebiet, der letzte für das 50 x 50 km²-Gebiet. Es wird nun vereinfachend angenommen, daß das Verhältnis der über Baden-Württemberg gemittelten Ganzkörperdosisrate zur obengenannten Ganzkörperdosisrate am ungünstigsten Aufpunkt (für Standort Hannover) durch das entsprechende Verhältnis der Ausbreitungsfaktoren gegeben ist. Die Extrapolation der Ausbreitungsfaktoren ergibt unter Berücksichtigung des zugrundegelegten Ausbreitungsmodells einen mittleren Ausbreitungsfaktor von etwa $4\cdot10^{-9}$ s/m³ für die Fläche Baden-Württembergs (35 750 km²). Da bei großen Entfernungen der Einfluß der Quellhöhe auf den Ausbreitungsfaktor nur gering ist, wird dieser Wert auch für die Emissionen der Wiederaufarbeitungsanlage genommen. Somit ergibt sich die regionale radiologische Belastung pro 1000 MWe zu:

LWR: $0.09 \cdot 10^{-2} \text{ mrem/a}$ WAA: $0.52 \cdot 10^{-2} \text{ mrem/a}$ Der Wert des repräsentativen Ausbreitungsfaktors ist in derselben Größenordnung wie der, mit den bei den Großemittenten in Abschnitt 2.5 gerechnet
wurde. Eine Übereinstimmung ist dabei nicht zu erwarten, da in Abschnitt 2.5
einerseits die Abbauraten berücksichtigt wurden, weswegen der Ausbreitungsfaktor kleiner sein müßte, andererseits aber durch Verwendung des
Boxmodells Belastungen außerhalb der Region mit erfaßt werden, weswegen der
Ausbreitungsfaktor größer sein müßte.

Die zusätzliche rechnerische Belastung durch die globale Ausbreitung von Radionukliden ergibt sich durch konsequente Anwendung der Überlegungen von Abschnitt 2.5:

- Bezüglich der Umweltauswirkungen des Energieversorgungssystems wird die Region als abgeschlossenes System betrachtet, d.h. ein in der Realität vorhandener Transfer von Umweltbelastungen in andere Regionen drückt sich durch eine erhöhte rechnerische Belastung für Baden-Württemberg aus.
- Sofern eine bevölkerungsbezogene Gesamtwirkung zu ermitteln ist, ist bei der zuzurechnenden pro-Kopf-Belastung für die Bevölkerung Baden-Württembergs das Verhältnis der Bevölkerungsdichten entsprechend zu berücksichtigen (vgl. Abschnitt 2.5.4).
- Als Ausbreitungsmodell wird das Box-Modell (Formel 2.20) unterstellt. Als Bezugsvolumen F·H gilt dabei das Volumen des Ausbreitungs- bzw. Anreicherungsmediums, das der Fläche Baden-Württembergs zuzurechnen ist.

Formelmäßig lautet die Belastung B durch die globale Ausbreitung eines langlebigen Nuklids:

(3.1)
$$B = \frac{Q \cdot g}{AM_{BW}} \cdot \frac{1}{\lambda} \cdot \frac{P_W}{P_{BW}}$$
$$= \frac{Q \cdot g}{AM_W} \cdot \frac{1}{\lambda} \cdot \frac{N_W}{N_{BW}}$$

mit Q: Emission pro Zeiteinheit (Ci/a)

g: Dosisfaktor (rem/a)·(m³/Ci)

 AM_RW : Volumen des Ausbreitungsmediums, das Baden-Württemberg

entsprechend seiner Fläche zuzurechnen ist

AM_u: Volumen des Ausbreitungsmediums weltweit

P_{IJ}: Bevölkerungsdichte weltweit (bezogen auf die Landoberfläche)

P_{RM}: Bevölkerungsdichte Baden-Württembergs

1/λ: mittlere Lebensdauer des Radionuklids

N_M: Weltbevölkerung

 N_{RW} : Einwohnerzahl Baden-Württembergs

Diese Formel läßt sich auch in der Art interpretieren, daß sie die weltweit zu erwartende Belastung unter der hypothetischen Annahme darstellt, daß die Emissionen pro Person weltweit im Mittel ebenso hoch wie in Baden-Württemberg sind. Streng genommen müßte man, in Analogie zum Vorgehen in Abschn. 2.6, von der Quellstärke Q in Gleichung (3.1) den auf die vorher untersuchte Region entfallenden Emissionsanteil abziehen, um die Massenbilanz zu erfüllen. Wegen der großen Halbwertzeit und weil das regionale Ausbreitungsvolumen klein gegen das globale ist, fällt diese Korrektur hier überhaupt nicht ins Gewicht.

Die Nuklide, für die wegen der Lebensdauer und ihres Ausbreitungsverhaltens eine globale Betrachtung sinnvoll ist, sind H-3, Kr-85 und C-14 (von den langlebigen Aktiniden und den ebenfalls langlebigen Spaltprodukten Sr-90, J-129 und Cs-137 wird angenommen, daß sie in der Region bleiben, da sie in der festen Phase vorliegen).

Tritium geht relativ schnell in den Wasserkreislauf ein /vgl. NIEHAUS (1975)/. Aufgrund der hohen weltweiten Wasservorräte ergibt sich ein vernachlässigbarer globaler Anteil für die radiologische Belastung gemäß obiger Formel.

Das Ausbreitungsmedium von Kr-85 ist vor allem die Atmosphäre. Das Volumen AM_{BW} der Atmosphäre, das der Fläche Baden-Württembergs zuzurechnen ist, ist aufgrund des Verhältnisses von gesamter Erdoberfläche zur Festlandsoberfläche dreimal so groß, wie unter alleiniger Zugrundelegung der Fläche dieses Bundeslandes. Bei einer emissionsseitig angestrebten Rückhaltung von 95 % ergibt sich durch die obige Formel eine Ganzkörperbelastung von $0.07 \cdot 10^{-2}$ mrem pro 1000 MW $_{a}$.

C-14 gelangt über den CO₂-Kreislauf praktisch ausschließlich durch Nahrungsaufnahme (Ingestion) in den menschlichen Körper. Da angenommen werden kann, daß die Konzentration in den Pflanzen proportional zum meteorologischen Ausbreitungsfaktor ist (s. /HALBRITTER (1978)/), läßt sich die globale Belastung durch C-14 analog zu derjenigen von Kr-85 bestimmen, wobei folgende Besonderheiten zu berücksichtigen sind:

- Die Lebensdauer von C-14 ist sehr groß gegenüber dem Planungszeitraum für ein Energieversorgungssystem, bzw. der zu erwartenden Betriebsdauer von kerntechnischen Anlagen. Daher wird der Wert für $1/\lambda$ in Formel (3.1) beim C-14 durch den Planungszeitraum ersetzt. In Übereinstimmung mit den behördlichen Vorschriften zur Bestimmung der akkumulierten regionalen Belastung durch langlebige Aktiniden und Spaltprodukte (s. die obige Definition der Ortsdosis) wird hierfür 50 Jahre angenommen.
- CO₂ wird z.Zt. in erheblichem Ausmaß in den Weltmeeren absorbiert (vgl. auch den folgenden Abschn.). Überschlägig wird deshalb angenommen, daß nur 50 % der C-14-Emission zur Anreicherung in der Atmosphäre beitragen.

Mit diesen Modifikationen ergibt sich nach der gleichen Berechnungsweise wie beim Kr-85 (und unter Zugrundelegung der entsprechenden Ergebnisse in /HALBRITTER (1978)/) die globale Belastung durch C-14, die der Bevölkerung Baden-Württembergs zuzurechnen ist, zu $1.73\cdot10^{-2}$ mrem/a pro installierte elektrischer Leistung von 1000 MW_a.

Abschließend soll noch einmal auf die recht großen Unsicherheiten bei der Berechnung gerade dieses Indikators hingewiesen werden. Zwar gibt es inzwischen gute Modelle für die Berechnung der verschiedenen Dosisraten in der Umgebung von Einzelanlagen. Aber wenn man, wie hier, ein Maß für die Gesamtbelastung durch eine kerntechnische Anlage haben möchte, kommt man wegen der langlebigen Nuklide in große Schwierigkeiten, denn diese Nuklide erfordern die Untersuchung weiträumiger Ausbreitungsvorgänge. Befriedigende Modelle dafür gibt es noch nicht.

4. Indikator für die Konsequenzen der ${\rm CO_2 extstyle - Produktion}$

Im Vergleich zu den bisher behandelten Umweltbelastungen weist das Problem der Anreicherung von ${\rm CO}_2$ in der Atmosphäre folgende Besonderheiten auf:

- Die CO₂-Konzentration hat in dem Bereich, der im Rahmen des Energiesystems zu erwarten ist, keinen direkten Bezug zu Gesundheitsschäden.
- Die Wirkungen der ${\rm CO_2}$ -Emission lassen sich sinnvoll nur im Weltmaßstab diskutieren. Wegen der Komplexität des Kohlenstoffkreislaufs, der die gesamte Biosphäre umfaßt, ist die Berechnung der atmosphärischen ${\rm CO_2}$ -Konzentration global jedoch nur sehr unvollkommen möglich.
- Die Konsequenzen einer erhöhten atmosphärischen CO₂-Konzentration sind selbst qualitativ umstritten.

Mit einer Erhöhung der ${\rm CO_2}$ -Konzentration in der Atmosphäre wird die atmosphärische Gegenstrahlung verstärkt, mit der Folge einer Temperaturerhöhung der unteren Luftschichten. Bei einer Verdoppelung der jetzigen ${\rm CO_2}$ -Konzentration wird i.a. mit einer Temperaturerhöhung von etwa ${\rm 2^OC}$ gerechnet /vgl. NIEHAUS (1975)/. Globale Temperaturerhöhungen beinhalten das Risiko von Klimaänderungen im globalen Ausmaß, ohne daß dieser Einfluß bisher quantitativ faßbar wäre.

Für die Darstellung der Konsequenzen des Energiesystems bezüglich der ${\rm CO_2}$ -Produktion ergibt sich, daß eine grobe Abschätzung der ${\rm CO_2}$ -Konzentration

der vorliegenden Aufgabenstellung am ehesten entspricht. Hierbei wird die ${\rm CO}_2$ -Konzentration durch Verteilung der Emission auf das der Fläche Baden-Württembergs zuzurechnende Volumen der Atmosphäre bestimmt (vgl. hierzu die Ausführungen für die globale Wirkung von Radionukliden in Abschn. 3). Eine Absorption in den Weltmeeren sowie in der Biomasse wird außer Betracht gelassen, da die quantitativen Auswirkungen dieser Mechanismen sehr umstritten sind /vgl. STUMM (1976)/. Da somit keine Abbaumechanismen berücksichtigt werden, ist die Bestimmung einer Gleichgewichtskonzentration, wie für die Radionuklide, nicht möglich. Der Indikator stellt vielmehr die maximal zu erwartende jährliche Zunahme der ${\rm CO}_2$ -Konzentration dar, unter der Annahme, daß weltweit die gleiche Emissionsdichte vorliegt wie in Baden-Württemberg.

Die Formel lautet:

(4.1)
$$\dot{c} = \frac{Q}{M_{BW}} \cdot \frac{MG_{Luft}}{MG_{CO_2}} \cdot \frac{1}{3} \cdot 10^6 \text{ (ppm/a)}$$

mit Q: CO_2 -Emission in t/a

M_{BW}: Masse der Lufthülle über Baden-Württemberg in t

MG_{Luft}: Molekulargewicht der Luft (27)

 MG_{CO_2} : Molekulargewicht von CO_2 (44)

Der Faktor 1/3 ist das Verhältnis der Festlandoberfläche zur gesamten Erdoberfläche.

Die heizwertbezogenen Emissionsfaktoren sind nach /NIEHAUS (1975)/:

Rhein. Braunkohle 3.38 t $\mathrm{CO_2/t}$ SKE Steinkohle 2.75 t $\mathrm{CO_2/t}$ SKE Erdöl 2.19 t $\mathrm{CO_2/t}$ SKE Erdgas 1.88 t $\mathrm{CO_2/t}$ SKE

Bei der Verbrennung von 10^7 t SKE Steinkohle errechnet sich z.B. eine Steigerungsrate von 15.7 ppm/a. Zum Vergleich betrug der Primärenergieverbrauch in Baden-Württemberg 1975 etwa $4\cdot10^7$ t SKE.

Die Indikatorwerte wären etwa um den Faktor 10 kleiner, wenn man den Baden-Württemberg "zustehenden" Anteil der Atmosphäre nicht entsprechend der Fläche sondern entsprechend der Bevölkerungszahl bestimmte.

Der tatsächliche Anstieg der ${\rm CO_2}$ -Konzentration in der Atmosphäre liegt gegenwärtig bei etwa 0.7 ppm/a. Bei Annahme einer Akkumulation in der Atmosphäre läge er bei 1.7 ppm/a /NIEHAUS (1975)/.

5. Gewässerbelastung durch Verdunstungsverluste

Im Rahmen des nutzwertanalytischen Verfahrens zur Bestimmung der Präferenzstruktur bezüglich verschiedener Konfigurationen eines Energieversorgungssystems wird vereinfachend angenommen, daß die Höhe der Schäden infolge Abwärmefreisetzung (s. Abschn. 7) unabhängig davon ist, welches Medium (Atmosphäre oder Gewässer) erwärmt wird. Damit reduzieren sich die gewässerspezifischen Auswirkungen des Energiesystems im wesentlichen auf die Verdunstungsverluste infolge Kraftwerkskühlung.

Verdunstungsverluste erniedrigen die Wasserführung der Flüsse, wobei folgende Auswirkungen denkbar sind:

- Konzentrationserhöhung von Schadstoffen
- Erniedrigung der Fließgeschwindigkeit mit der Folge der räumlichen Verlagerung von Reaktionsmechanismen in Fließgewässern
- Beeinträchtigung der Schiffahrt auf nicht-gestauten Wasserwegen.

Eine detaillierte Ermittlung derartiger Auswirkungen erfordert die Einbeziehung potentieller Standorte für Kraftwerke, daher ist im Rahmen des Optimierungsmodells die Angabe von Kenngrößen, die wirkungsbezogener sind als die Kenngröße "Verdunstungsverluste", nicht möglich.

Vom Modellansatz her ist der End- bzw. Nutzenergiebedarf vorgegeben /vgl. FÜRNISS et al. (1980)/. Somit ergibt sich eine Variation der Verdunstungsverluste durch

- unterschiedliche Wirkungsgrade der Kraftwerke (in Abhängigkeit vom eingesetzten Brennstoff)
- Vermeidung von Abwärme durch Kraft-Wärme-Kopplung
- unterschiedliche Kühlverfahren (Naβ- oder Trockenkühlung)
- Umfang der Elektrizität für Raumwärme und Warmwasser.

Im Prinzip hängt die Größe der Verdunstungsverluste auch von der Art der Naßkühlung ab, jedoch sind die Unterschiede nicht sehr groß, wie die folgende Aufstellung aus dem Wärmelastplan Main /HESSISCHER MINISTER FÜR LAND-WIRTSCHAFT UND UMWELT (1973)/ zeigt:

Art der Kühlung	Verdunstungsverlust pro 1000 MW _e		
	konv. Kraftwerk	Kernkraftwerk	
Frischwasserkühlung [*]	350 1/s	500 1/s	
Ablaufkühlung	450 1/s	600 1/s	
geschl. Kreislaufkühlung	550 1/s	700 1/s	

Diese Werte sind selbstverständlich nur als überschlägige Angaben zu verstehen.

Zur Bestimmung der Verdunstungsverluste wird angenommen, daß die geschlossene Kreislaufkühlung durchgehend angewendet wird. Unter Einbeziehung der Wirkungsgrade der Kraftwerkstypen ergibt sich eine Proportionalität zwischen den Verdunstungsverlusten und der abzuführenden Wärmemenge. Diese Größe beträgt

3.945
$$\cdot$$
 10⁻⁸ $\frac{\text{m}^3}{\text{s}}$ Verdunstungsverlust pro jährlich abzuführenden Wärmemenge in MWh.

Bei reiner Elektrizitätserzeugung ergibt sich die abzuführende Wärme durch Multiplikation der entsprechenden Flußvariablen mit dem Faktor $(1-\eta_{\dot{1}})$, da die Flußvariable als Inputgröße definiert ist.

Bei der Kraft-Wärme-Kopplung wird die abzuführende Wärme vermindert. Der quantitative Zusammenhang zwischen dieser Verminderung und der zugehörigen Fernwärmeerzeugungsvariablen ist durch den Ausdruck $(1-\eta_{i})$. $\frac{\beta_{i}}{\alpha_{i}}$ gegeben. Zur Definition der Größen α_{i} , β_{i} , η_{i} s. /FÜRNISS et al. (1980)/, Gln. (2.2) und (2.3).

Ein Beispiel möge das Ausmaß der Verdunstungsverluste verdeutlichen: Sofern die gesamte Elektrizität für Baden-Württemberg im Jahr 1975 durch Kernenergie erzeugt worden wäre, hätte sich (bei geschlossener Kreislaufkühlung) ein Verdunstungsverlust von $2.7~\text{m}^3/\text{s}$ ergeben. Der niedrigste Abfluß (NNQ) des Neckar beträgt zum Vergleich $13~\text{m}^3/\text{s}$, der mittlere $148~\text{m}^3/\text{s}$.

6. <u>Landinanspruchnahme durch Anlagen der Energiewirtschaft</u>

Energieumwandlungsanlagen stellen allein durch ihre Anwesenheit eine Umweltbeeinträchtigung dar. Sie läßt sich, wenn auch nur sehr grob, durch die in Anspruch genommene Fläche beschreiben. Der Flächenbedarf ergibt sich anhand der folgenden Einflußfaktoren:

- a) Installierte Leistung von Kraftwerken: Bei gegebener Elektrizitätsnachfrage ist eine Variation der installierten Leistung nur in beschränktem Umfang möglich, und zwar einerseits durch den Umwandlungswirkungsgrad, zum anderen durch das Auffangen von Lastspitzen durch Pumpspeicherwerke. Die Pumpspeicher stellen aber ebenfalls einen Eingriff in die Landschaft dar. Zwar ist es u.U. möglich, durch landschaftsgestalterische Maßnahmen eine Verbesserung des Landschaftsbildes sowie der Landschaftsnutzung zu erreichen (z.B. Schluchsee-Werk), jedoch ist dies nicht zwangsläufig der Fall. Angesichts dieser Unwägbarkeiten wird von einem Flächenbedarf für die Kraftwerke ausgegangen, der sich aus der zu installierenden Leistung ohne Pumpspeicherwerke ergeben würde. Als Flächenbedarf für ein Kraftwerk wird die Fläche innerhalb des Kraftwerkszaunes genommen. Der Bedarf für Zufahrtswege sowie die Nutzungseinschränkung in der unmittelbaren Umgebung (Verbot von Wohnbebauung) wird somit nicht erfaßt. Ferner wird unterstellt, daß der Flächenbedarf für eine gewisse Kraftwerksleistung unabhängig von der Art des einzusetzenden Brennstoffs ist.
- b) Installierte Leistung von Heizkraftwerken und reinen Heizwerken:
 Für Heizkraftwerke gilt sinngemäß das gleiche wie für die Kraftwerke.
 Zusätzlich ist aber zu beachten, daß aufgrund des verminderten elektrischen Wirkungsgrades die installierte Leistung entsprechend zu erhöhen ist, so daß hierdurch eine zusätzliche Beeinflussung des Flächenbedarfs erfolgt. Bezogen auf die maximale elektrische Leistung wird gleicher Flächenbedarf für Heizkraftwerke und Kraftwerke unterstellt.

Reine Heizwerke stellen einen zusätzlichen Flächenbedarf dar. Dieser wird über die der Wärmeleistung entsprechenden elektrischen Leistung abgeschätzt.

- c) Raffinerien und Crackanlagen: Während ein gewisser Bedarf an Raffinerieanlagen durch den Energiebedarf für den Transportsektor fest vorgegeben ist, ergeben sich durch die Versorgungsalternativen für die anderen Bedarfssektoren Variationsmöglichkeiten für den Flächenbedarf. Der Flächenbedarf für Crackanlagen wird, bezogen auf den Energiedurchsatz, als genauso groß angenommen wie für die Rohöldestillation. Im übrigen gilt für die Bestimmung des Flächenbedarfs das gleiche wie bei den Kraftwerken.
- d) Für die Alternative der Braunkohlenverstromung wird auch der Flächenbedarf für den (oberirdischen) Abbau berücksichtigt. Da die Braunkohlenfelder außerhalb Baden-Württembergs im dichter besiedelten Bundesland Nordrhein-Westfalen liegen, ist die resultierende Beeinträchtigung entsprechend höher einzuschätzen. Das heißt, der Flächenbedarf des Braunkohlentagebaus geht mit dem Verhältnis der Bevölkerungsdichten gewichtet in die Indikatorberechnung ein (das gleiche gilt bei Standorten von Umwandlungsanlagen außerhalb Baden-Württembergs, vgl. Abschn. 2.5.4).

Bei der Bestimmung des Flächenbedarfs für die Braunkohlenförderung ist zu beachten, daß

- ein Braunkohlenfeld schrittweise abgebaut wird (damit ist z.B. beim Beginn der Kohleförderung nur ein geringer Teil des Feldes anderen Nutzungen entzogen),
- eine Rekultivierung des Gebiets erfolgt, die aber erst einige Zeit nach Beendigung der Förderung abgeschlossen wird (damit ist eine Nutzungseinschränkung auch über den Zeitraum des Kohleabbaus hinaus gegeben).

Nutzungseinschränkungen vor dem Aufschluß eines Braunkohlenfeldes (insbes. Einschränkung von baulichen Maßnahmen) sowie landschaftsgestalterische Maßnahmen im Rahmen der Rekultivierung gehen in die Berechnung des Indikatorwerts nicht ein.

Der Flächenbedarf für die Gewinnung der übrigen Primärenergieträger wird außer acht gelassen. Dies gilt insbesondere für die Sonnenenergienutzung zu Heizzwecken, da die Kollektoren i.a. auf Dächern installiert sind. Desgleichen wird die Landinanspruchnahme durch Transportanlagen, z.B. Stromleitungen, nicht einbezogen. Bei der Einführung der Stromerzeugung mittels Solarenergie in das Modell müßte der Landbedarf dieser Option berücksichtigt werden.

Der Berechnung des Flächenbedarfs werden folgende Werte zugrunde gelegt:

- Kraftwerke, Heizkraftwerke, Heizwerke: 100 m² pro MWe (Dieser Wert wurde aus Meßtischblättern abgelesen.)
- Raffinerien und Crackanlagen: 11400 m^2 pro $10^6 \text{ t Jahresdurchsatz}$ (/HALBRITTER (1978)/, Tab. 7.1).
- Braunkohlentagebau: 0.37 km² pro 10⁶ t SKE/a (Berechnet als zeitlich gemittelte Flächeninanspruchnahme aus den Angaben für den Tagebau Bergheim in /ANONYMUS (1978)/: Kohleinhalt: 229·10⁶ t, Beginn des Aufschlusses: Ende 1984, Ende der Förderung: 1995, Ende der Rekultivierung: 2001.)

7. Erläuterungen zum Indikator "Gesamtwirkungsgrad"

Das Optimierungsmodell für das Energieversorgungssystem Baden-Württembergs geht von vorgegebener Nutz- bzw. Endenergienachfrage aus /FORNISS et al. (1980)/. Daher ist der Gesamtwirkungsgrad des Energiesystems sowohl ein Indikator für das Ziel "Geringe Abwärmebelastung" als auch für das Ziel "Geringer Primärenergieverbrauch". Anzumerken ist, daß der Wirkungsgrad selbst nicht durch eine Linearkombination der Entscheidungsvariablen darstellbar ist (wie es für die Optimierung wünschenswert wäre /FORNISS et al. (1980)/), wohl aber der reziproke Wert:

$$\frac{1}{n} = \frac{\sum_{i}^{x} xP_{i}}{\sum_{j}^{x} D_{j}}$$

- XP; jährlich umgesetzte Energiemenge des Primärenergieträgers i (z.B. Steinkohle für Elektrizitätserzeugung)
- D_j : Vorgegebene Nachfrage pro Jahr für die End- bzw. Nutzenergiekategorie j (z.B. Energiebedarf für Raumheizung)

Das Ziel "Geringer Primärenergieverbrauch" beschreibt pauschal das Bestreben, sparsam mit den natürlichen Energieressourcen umzugehen. Daß die Aussagekraft des Indikators im Hinblick auf dieses Ziel jedoch nicht überschätzt werden darf, zeigt das Beispiel des Schnellen Brutreaktors (der zur Zeit noch nicht im Modell enthalten ist): Der Indikator könnte bei Realisierung dieser Option denselben Wert annehmen, wie bei der Verwendung von Leichtwasserreaktoren an ihrer Stelle. Offensichtlich ist aber die Reichweite der Ressourcen im ersten Fall wesentlich größer als im zweiten. Andererseits bleibt natürlich auch im Falle des Leichtwasserreaktors das Uran 238 (das im Brutreaktor verwertet wird) als potentielle Energieressource erhalten.

Der Verbrauch regenerierbarer Ressourcen wird bei der Indikatorberechnung nicht als Primärenergieverbrauch gewertet. Dies ist sinnvoll sowohl im Hinblick auf die Ressourcenschonung als auch im Hinblick auf die Abwärmebelastung (die unabhängig von der Nutzung der regenerierbaren Ressourcen ist). Zusätzliche Isoliermaßnahmen wirken sich nicht bedarfsmindernd im Sinne dieses Indikators aus, d.h. sie erhöhen den Gesamtwirkungsgrad.

Zur Beurteilung der globalen Folgen von Abwärmebelastung gilt sinngemäß das gleiche wie beim Ziel "Geringes Risiko von Klimaänderungen durch CO₂-Anreicherung in der Atmosphäre". Lokale Auswirkungen der Abwärmebelastung sind zwar beobachtbar, sie hängen aber überwiegend von den lokalen Gegebenheiten ab.

8. Index zur Beschreibung der Angebotsvielfalt

Ein eigenständiges Ziel der Energiepolitik ist eine möglichst große Angebotsvielfalt für den Endenergieverbraucher. Dadurch wird nicht nur dem Verbraucher die Annehmlichkeit der Auswahl geboten, sondern es wird dadurch wegen des Konkurrenzprinzips für effizientes Wirtschaften bei der Energie-erzeugung gesorgt. Ein zusätzlicher Grund, eine möglichst große Vielfalt an Energieträgern zur Deckung der Endenergienachfrage anzustreben, ist dadurch gegeben, daß kurzfristige Versorgungsstörungen bei einigen wenigen Energieträgern in ihren Auswirkungen leichter abgefangen werden können.

Das Optimum der Versorgungsstruktur ist bei alleiniger Betrachtung der Vielfältigkeit des Endenergieangebots offensichtlich dann gegeben, wenn zur Deckung der jeweiligen Bedarfskategorie alle hierfür vorgesehenen Energiearten mit gleichem Anteil beitragen. Eine Abweichung von dieser optimalen Angebotsstruktur läßt sich durch den folgenden Vielfältigkeitsindex I_{V} beschreiben, der sowohl die Zahl der wahrgenommenen Versorgungsoptionen als auch deren Anteile berücksichtigt:

(8.1)
$$I_{V} = \frac{1}{n} \cdot \sum_{i=1}^{n} \frac{m_{i}}{2(m_{i}-1)} \cdot (\sum_{j=1}^{m_{i}} | \eta_{ji} \cdot X_{ji} - \frac{D_{i}}{m_{i}} |)$$

mit

D_i: End- bzw. Nutzenergienachfrage der Kategorie i

n: Anzahl der End- bzw. Nutzenergiekategorien, bei denen mehr als eine Möglichkeit zur Deckung vorgesehen ist

 $\rm m_{\rm i}$: Anzahl der möglichen (d.h. vom Energieversorgungssystem her vorgesehenen) Energieträger zur Deckung der Bedarfskategorie i ($\rm m_{\rm i}{>}1)$.

X_{ji}: jährlicher Energiefluß des Energieträgers j für die Bedarfskategorie i.

n_{ji}: Wirkungsgrad des Energieträgers j bezüglich der Bedarfskategorie i. Der Index hat den Wert $I_v=0$ bei optimaler Angebotsstruktur. Bei Monopolstruktur, bei der jede Bedarfskategorie durch jeweils nur eine Energieart versorgt wird, beträgt $I_v=1$.

Der Verlauf des Index $I_{\rm V}$ in Abhängigkeit von der Angebotsstruktur läßt sich am übersichtlichsten an Beispielen zeigen, wo nur eine Nachfragekategorie vorliegt:

$$I_{V}^{(1)} = \frac{1}{D} \cdot \frac{m}{2(m-1)} \sum_{j=1}^{m} |\eta_{j} \cdot x_{j} - \frac{D}{m}|$$

Mit

$$x_{j}' = \frac{x_{j} \cdot \eta_{j}}{D}$$

und Ordnung der $x_j^{'}$ in absteigender Reihenfolge läßt sich der obige Ausdruck umformen zu:

rmen zu:
$$I_{v}^{(1)} = \frac{m}{m-1} \begin{bmatrix} m' \\ \sum_{j=1}^{m} x_{j} \end{bmatrix} - \frac{m!}{m} \end{bmatrix}$$

mit

m': Anzahl der
$$x_j' \ge \frac{1}{m}$$

In dieser Formulierung tauchen nur die Anzahlen m und m' sowie die Summe der $x_j \ge \frac{1}{m}$ auf. Folgende Fälle lassen sich durch einfache Ausdrücke darstellen:

a) Sämtliche $x_j' < \frac{1}{m}$ sind Null.

Dann gilt

$$I_{V}^{(1)} = \frac{m-m'}{m-1}$$

b) Es gibt nur ein $x_j' \ge \frac{1}{m}$ (wegen der Ordnung der x_j' in absteigender Reihenfolge ist dies x_1'):

$$I_{V}^{(1)} = \frac{m}{m-1} (x_{1}^{'} - \frac{1}{m})$$

Bei vorgegebenen m und m' stellt dieser Ausdruck die untere Grenze des Vielfältigkeitsindex dar.

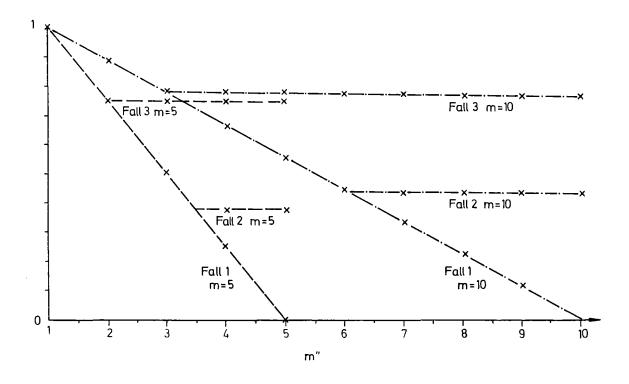
Für die Fälle m = 5 und m = 10 zeigt Abb. 8.1 den Verlauf des Vielfältigkeitsindex als Funktion der Anzahl m" von Energieformen, die einen von Null verschiedenen Beitrag zur Bedarfsdeckung leisten. Folgende Konstellationen wurden untersucht:

1. Alle m" Anteile mit $x_j^{'} \neq 0$ tragen in gleichem Umfang zur Bedarfsdeckung bei, d.h.

$$x'_{j} = \frac{1}{m}$$
 für j=1, ..., m"

$$x_{i}' = 0$$
 für $j = m''+1, ..., m$

2. Ein x_j decke den Bedarf zu 50 %, die restlichen $x_j \neq 0$ decken den verbleibenden Bedarf zu gleichen Anteilen:


$$x_{1}^{'} = 0.5$$
 $x_{j}^{'} = \frac{0.5}{(m^{"}-1)}$ für $j = 2, ..., m^{"}$
 $x_{j}^{'} = 0$ für $j = m^{"}+1, ..., m^{"}$

3. Entsprechend Fall 2, jedoch mit 80 %-Bedarfsdeckung durch $x_1^{'}$, d.h.

$$x_{1}' = 0.8$$
 $x_{j}' = \frac{0.2}{(m''-1)}$ für $j = 2, ..., m''$
 $x_{j}' = 0$ für $j = m''+1, ..., m$

Die Fälle 2 und 3 sind natürlich nur sinnvoll für m" \geq 2.

Abbildung 8.1: Verlauf des Vielfältigkeitsindex für ausgewählte Fälle

Die Verwendung des nichtlinearen Indikators (8.1) in der Zielfunktion eines linearen Optimierungsprogramms bereitet keine Schwierigkeiten, da sich die Betragsfunktion |x-a| durch den Ausdruck $(-x_1 + x_2 + a)$

mit
$$x_1 + x_2 = x$$

 $x_1, x_2 \ge 0, x_1 \le a$

ersetzen läßt, wenn ein möglichst kleiner Wert der Betragsfunktion angestrebt wird. Das heißt, das nichtlineare Problem kann man in ein lineares mit einigen zusätzlichen Nebenbedingungen transformieren.

9. Indikator für die Unfallträchtigkeit des Energiesystems

Auswirkungen des Energiesystems auf die menschliche Gesundheit sind bereits durch die Schadstoff- und radiologischen Belastungen erfaßt worden (Abschn. 2 und 3). Diese Arten der Gefährdung zeichnen sich insbesondere dadurch aus, daß

- die Belastungen als unfreiwillig anzusehen sind,
- die Folgen relativ gleichmäßig über die Bevölkerung verteilt sind,
- die Folgen i.a. nicht in einem unmittelbaren zeitlichen Zusammenhang zur Immissionskonzentration stehen (Langzeitwirkung).

Durch die vorgesehenen Alternativen des Energiesystems ergibt sich zusätzlich eine mehr oder minder große Gefährdung durch Unfälle und Berufskrankheiten der in der Energiewirtschaft Beschäftigten. Jedoch ist hierbei die Schwankungsbreite relativ gering im Vergleich zur Unfallträchtigkeit, die bereits dadurch fest vorgegeben ist, daß eine Alternative zum Individualverkehr im Modell nicht vorgesehen ist /FÜRNISS et al. (1980)/.

Als Indikator für die Unfallträchtigkeit wird die zu erwartende Zahl der Unfalltoten sowie der Berufskrankheiten mit tödlichem Ausgang herangezogen. Hierdurch ergibt sich ein deutlicher Kontrast zu den gesundheitlichen Folgen von Umweltbelastungen, die ganz bewußt nur durch eine verursachende

Größe (die Immissionskonzentration) charakterisiert werden (s. Abschn. 2.1). Die Zahl der Unfalltoten eignet sich hier deshalb gut als Indikator, weil sie für verschiedene Unfallursachen aus den entsprechenden Statistiken entnommen werden kann und so eine Vergleichbarkeit bezüglich der verschiedenen Modellvarianten begünstigt wird.

Bei der Bewertung des Ziels "Geringe Unfallträchtigkeit des Energiesystems" gegenüber anderen Zielen mittels des nutzwertanalytischen Verfahrens (s. Teil II) geht es trotz des Indikators "Unfalltote und Berufskrankheiten mit tödlichem Ausgang" nicht darum, Todesfälle gegen andere Auswirkungen des Energiesystems abzuwägen (z.B. Umrechnung eines Todesfalles in Geldeinheiten). Vielmehr sollen unterschiedliche Ausprägungen der Unfallträchtigkeit (inklusive nichttödliche Unfälle) und der Arbeitsplatzbelastung gegenüber denen von anderen Zielen bewertet werden.

Eine Beeinflussung des Indikators erfolgt hauptsächlich durch

- Unfalltote und Berufskrankheiten mit tödlichem Ausgang im Steinkohlenbergbau
- Unfalltote im Straßenverkehr durch Heizöltransporte

Demgegenüber bewirken Substitutionen in anderen Bereichen des Energiesystems nur geringfügige Anderungen des Indikatorwertes.

Diese Aussage ist in Übereinstimmung mit einer ausführlichen Untersuchung des Battelle-Insituts /BATTELLE (1976)/ über die Gesundheitsgefährdung am Arbeitsplatz bei verschiedenen Technologien der Stromerzeugung. Sie nennt folgende Werte für die zu erwartenden Unfalltoten und Berufskrankheiten mit tödlichem Ausgang:

Tabelle 9.1: Arbeitsunfälle und Berufskrankheiten mit Todesfolge für eine Stromerzeugung von 1 TWh in einem 1200 MW_e - Kraftwerk (nach /BATTELLE (1976)/).

Arbeitsprozeß	Primärenergieträger				
	Steinkohle	Braunkohle	Erdöl/Erdgas	Kernbrennstoff	
Gewinnung	0.654	0.04	0.004	0,028	
Aufarbeitung	-	-	0.001	0.0002	
Transport	0.112	-	0.052	0,0001	
Kraftwerksbau	0.014	0.014	0,010	0.017	
Kraftwerksbetrieb	0.005	0,005	0.004	0.0014	
Wiederaufarbeitung	-	-	-	0.0002	
Abfallbeseitigung	0.020	0.024	_	0.0003	
Summe	0.805	0.083	0.071	0.047	
%	100 %	10 %	9 %	6 %	

Will man diese Zahlen für die Indikatorberechnung benutzen, müssen sie zunächst in Beziehung gesetzt werden zu

- der Arbeitsintensität für die Stromerzeugung bei den verschiedenen Primärenergieträgern,
- dem Unfallrisiko, das im Mittel in der gewerblichen Wirtschaft herrscht.

Die in der Tabelle aufgeführten Werte sind die Produkte aus der Arbeitsintensität (geleistete Arbeitsstunden) und der Unfallquote (Unfalltote pro
geleisteter Arbeitsstunde) für die jeweiligen Arbeitsprozesse und Energieträger. Betrachtet man zwei unterschiedliche Konfigurationen eines Energieversorgungssystems, mit gleicher Unfallquote aber unterschiedlicher Arbeitsintensität, so wäre bei einfachem Vergleich der Unfallzahlen offenbar
das mit der niedrigeren Arbeitsintensität das günstigere. Nun ist aber

zu bedenken, daß ein Teil der Beschäftigten, die im arbeitsintensiveren Fall in der Energiewirtschaft einen Tätigkeit ausüben, im anderen Fall in den übrigen Wirtschaftssektoren beschäftigt, und somit auch einem Unfallrisiko ausgesetzt wäre. Läge dieses Risiko nun höher als das in der Energiewirtschaft, ware unter gesamtwirtschaftlichen (wie auch unter individuellen Gesichtspunkten) das arbeitsintensivere Energiesystem zu bevorzugen (wobei arbeitsmarktpolitische Aspekte in Zeiten von Arbeitsplatzmangel noch nicht einmal berücksichtigt sind).

Aus diesem Grunde ist es sinnvoller, den spezifischen Beitrag eines Umwandlungsprozesses i zum Indikatorwert durch folgenden Ausdruck festzulegen:

$$(9.1)$$
 $(q_i - q_0) \cdot I_i$

mit

q; gemittelte Unfallquote für die Umwandlung eines Energieträgers in Elektrizität (Tote/Arbeitsstunde)

q_o: mittlere Unfallquote aller gewerblichen Berufsgenossenschaften

I;: Arbeitsintensität (Arbeitsstunden/MWh_e)

Anhand der in /BATELLE (1976)/ auch angegebenen Arbeitsintensitäten läßt sich errechnen, daß die Unfallquoten für die Stromerzeugung durch Braunkohle, Erdöl/Erdgas und Kernbrennstoff praktisch gleich der mittleren Unfallquote \mathbf{q}_0 im Vergleichsjahr 1973 sind /BMAS (1977)/. Daher ist bei der Stromerzeugung nur im Fall des Primärenergieträgers Steinkohle ein erhöhtes Unfallrisiko zu beachten.

Eine Aufschlüsselung der Unfallzahlen für die Steinkohle nach Tabelle 9.1 zeigt, daß die Arbeitsprozesse ohne Förderung einen Beitrag von 19 % liefern. Dieser Wert entspricht der zu erwartenden Zahl von Unfalltoten in der gewerblichen Wirtschaft, wenn er auf sämtliche Arbeitsstunden für die Strom-

erzeugung aus Steinkohle bezogen wird, also inclusive derjenigen für die Förderung. Insofern ist das zusätzliche Risiko durch die Unfalltoten und Berufskrankheiten mit tödlichem Ausgang für die Steinkohlenförderung bestimmbar. Aus den Daten für das Jahr 1976 ergibt sich eine Unfallquote von 1.83 Toten pro 10⁶ t geförderter Steinkohle.

Für eine Einschätzung der bisher aufgeführten Zahlen und Sachverhalte sind folgende Angaben von Interesse:

- Knapp 30 % der Unfalltoten, für die die Berufsgenossenschaften Entschädigung zahlen, entfallen auf Wegeunfällle, d.h. Unfälle, die auf dem Weg zur bzw. von der Arbeitsstätte erfolgen und somit keinen unmittelbaren Bezug zur ausgeübten Tätigkeit haben. Dieser Anteil ist sinnvollerweise in den obigen Zahlen nicht enthalten.
- Aus dem Unfallverhütungsbericht 1976 /BMAS(1977)/ geht u.a. hervor, daß die Bergbau-Berufsgenossenschaft eine Zahl von 813 Arbeits-Unfalltoten und Berufskrankheiten mit tödlichem Ausgang pro Mio. Vollarbeiter und Jahr aufweist. Diese Quote wird nur von der Binnenschiffahrts- und der See-Berufsgenossenschaft übertroffen (1237 bzw. 823 Tote pro Mio. Vollarbeiter und Jahr). Mit deutlichem Abstand folgt die Tiefbau-Berufsgenossenschaft an der vierten Stelle mit 411 Toten, die Quote für die gewerblichen Berufsgenossenschaften insgesamt beläuft sich auf 117 Tote pro Mio. Vollarbeiter und Jahr. Dieses zeigt, daß der Untertagebergbau trotz erheblicher Anstrengungen für Sicherheitsvorkehrungen auch heute noch als vergleichweise gefahrenträchtiger Arbeitsbereich anzusehen ist (wobei die Quote von 813 Toten den weniger gefahrenträchtigen Bereich des Braunkohlenbergsbaus mit enthält und somit eine Unterschätzung darstellt).

Angesichte dieser Tatbestände für das Unfallrisiko am Arbeitsplatz erscheint es gerechtfertigt, die zusätzlichen Unfallrisiken für sämtliche Arbeitsprozesse bis auf die der Steinkohlenförderung zu vernachlässigen. Weitere Unfallrisiken sind im Zusammenhang mit dem Energiesystem durch die Risiken bei der Endenergienutzung sowie bei der Verteilung von Mineralöl-produkten gegeben. Im letztgenannten Fall besteht das Risiko praktisch ausschließlich aus Verkehrsunfällen, so daß zwar als Ursache ein "Energieumwandlungsprozeß" anzusehen ist, die Folgen jedoch nur zum geringen Teil unter Arbeitsunfällen aufgeführt sind.

Der Beitrag der Mineralölverteilung zum Indikatorwert läßt sich aus folgenden Daten überschlägig ermitteln (Bezugsjahr 1976, soweit nichts anderes vermerkt, sind sie der Quelle /STATISTISCHES BUNDESAMT (1977)/ entnommen):

Verkehrsunfalltote in der

Bundesrepublik Deutschland:

14 804

Unfallbeteiligung an Unfällen mit

Personenschäden:

Motorfahrzeuge gesamt:

576 056 Unfälle

davon Güterkraftfahrzeuge:

46 977 Unfälle

Geleistete Tonnenkilometer des LKW-Verkehrs

(Nah- und Fernverkehr, 1970)

79 491 · 10^b

davon für Mineralöltransport

/STATISTISCHES BUNDESAMT

5 684 · 10⁶

(1972, 1973)/:

Verbrauch an Mineralölprodukten (1970): 105.4 · 10⁶ t

Hieraus ergibt sich die Quote von 0.81 Tote/10⁶ t Mineralölverbrauch.

Da leichtes Heizöl im Vergleich zum schweren Heizöl und zum Benzin- bzw. Dieselkraftstoff häufig in kleineren Fahrzeugen transportiert wird, dürfte die Unfallquote hierfür deutlich höher liegen. Mangels entsprechend aufgeschlüsselter Daten für den Transport von Erdölprodukten wird angenommen, daß bei allen Mineralölprodukten der gleiche Prozentsatz per Straße transportiert wird. Ferner werden die Verkehrsunfalltoten für Mineralöltransporte allein den Transporten von leichtem Heizöl zugerechnet, d.h. die

Unfallquote für Kraftstoff- und Heizöl-S-Transporte wird als vernachlässigbar angesehen. (Durch diese Annahmen ergibt sich eine eher pessimistische Abschätzung für die Toten pro Heizöl-EL-Verbrauch). Entsprechend dem Anteil von Heizöl-EL an der Produktausbeute von Rohöl in Höhe von 33 % errechnet sich eine Quote von 2.4 Tote pro 10^6 t entsprechend 0.21 Tote pro 10^6 MWh Heizöl-EL-Verbrauch. (Dieser Wert gilt nur für die Verteilung von leichtem Heizöl zur Deckung des Niedertemperaturbedarfs. Bei teilweiser oder vollständiger Deckung des Hochtemperaturbedarfs (industrielle Verbraucher) ist die Unfallquote ebenfalls als vernachlässigbar anzusehen.)

Das weitaus überwiegende Unfallrisiko bei der Endenergienutzung besteht aus Verkehrsunfällen, die jedoch durch Entscheidungsvariable des Modells (beim gegenwärtigen Ausbaustand) nicht beeinflußbar sind. Die Zahl der Verkehrsunfalltoten im Jahre 1976 lautete für Baden-Württemberg 2 148 Tote /STATISTISCHES BUNDESAMT (1977)/.

Hiervon ist, entsprechend dem Verbrauch an leichtem Heizöl /MINISTERIUM FÜR WIRTSCHAFT, MITTELSTAND UND VERKEHR DES LANDES BADEN-WÜRTTEMBERG (1977)/ die Anzahl von 14.4 zu subtrahieren (siehe oben). Bei Variation des Nutzenergiebedarfs für den Sektor "Verkehr" wird im Modell ein proportionales Verhalten für die Zahl der Verkehrsunfalltoten unterstellt. Die obige Zahl bezieht sich auf einen Nutzenergiebedarf von $15\cdot10^6$ MWh (nach /Fürniss et al. (1980)/).

Die Unfälle mit Todesfolgen im häuslichen Bereich sind für Baden-Württemberg zwar aufgeschlüsselt worden /STATISTISCHES LANDESAMT BADEN-WORTTEMBERG (1972, 1973)/ jedoch gestattet die Klassifizierung keine eindeutige Zu-ordnung zu Energieträgern. Am ehesten ist dies noch für Elektrizität möglich, wobei aber Brände infolge defekter Geräte bzw. Installationen nicht enthalten sind.

Vereinfachend wird daher angenommen, daß der Beitrag zm Unfallrisiko, der durch das Energiesystem manipulierbar ist, sich durch Todesfälle beim Umgang mit Elektrizität sowie durch Erdgas ergibt. Beim Erdgas dürfte dabei aufgrund von Undichtigkeiten im Leitungsnetz gegenüber anderen Energieträgern für die Raumheizung (wie Heizöl oder Fernwärme) ein erhöhtes Risiko zu erwarten sein. Es wird, mangels verfügbarer Unterlagen zur Bestimmung dieses Risikos, unterstellt, daß Erdgas das gleiche Risiko aufweist wie die Elektrizität, bezogen auf einen gleich großen Nutzenergiebedarf. Die Unfallquote errechnet sich aufgrund der Angaben in /STATISTISCHES LANDESAMT BADEN-WÜRTTEMBERG (1972, 1973)/ sowie der Energiebilanz Baden-Württemberg /MINI-STERIUM FÜR WIRTSCHAFT, MITTELSTAND UND VERKEHR DES LANDES BADEN-WÜRTTEMBERG (1977)/ zu 0.53 Unfalltoten pro 10⁶ MWh.

10. Indikatoren für das Ziel "Versorgungssicherheit"

Das Ziel "Versorgungssicherheit", das sich auf die Versorgung mit Primärenergieträgern bezieht, wird unterteilt in

- kurzfristige Versorgungssicherheit (Sicherstellung der Primärenergieversorgung für ca. 1/2 Jahr)
- mittelfristige Versorgungssicherheit (Sicherstellung für einen Zeitraum der ungefähr den Lebensdauern der Energieumwandlungsanlagen entspricht, dies sind etwa 20-30 Jahre).

Die langfristige Versorgungssicherheit ist bereits durch den Indikator "Gesamtwirkungsgrad" (s. Abschnitt 7) abgedeckt. Hierunter fallen die Aspekteeiner globalen Verknappung an Energieträgern.

Das Ziel der mittelfristigen Versorgungssicherheit läßt sich dadurch abgrenzen, daß die zu erwartenden Auswirkungen einer Importabhängigkeit bzw. einer Aufzehrung von einheimischen Energieträgern in dieses Ziel eingehen müssen. Als Indikator dient der prozentuale Anteil des End- bzw. Nutzenergiebedarfs, der von Importen abhängt. Die Berechnung dieses Indikators aus den Entscheidungsvariablen des Energieversorgungsmodells /s. FÜRNISS et al.

(1980)/ erfolgt unter der Annahme, daß 100 % des Kohlebedarfs (Stein- und Braunkohle) und 50 % des Gasbedarfs durch einheimische Energien gedeckt werden. Kernbrennstoff und Erdöl werden als vollständig zu importierende Primärenergieträger behandelt. Die Solarenergie, die von Wärmepumpen genutzte Umweltenergie und die durch zusätzliche Isolierung eingesparte Energie werden als einheimische Energien gewertet. Dies erschwert etwas die Einschätzung der Konsequenzen, die mit einem bestimmten Indikatorwert verbunden sind, denn eine Erniedrigung des Indikatorwerts durch zusätzliche Isolierung wird i.a. anders bewertet als eine Erniedrigung, die z.B. durch Substitution von 01 durch Kohle erreicht wird. Ähnliche Probleme ergeben sich aber auch bei anderer Definition des Indikators (z.B. als Importanteil am Primärenergieverbrauch).

Eine gewisse Schwierigkeit bei der Indikatorberechnung bringen die Verluste bei Pumpspeicherwerken mit sich, weil die Variablen, die den Strom für die Pumpspeicherwerke beschreiben, nicht erkennen lassen, ob die entsprechende Primärenergie importiert wurde (s. FÜRNISS et al. (1980), p. 54). Diese Schwierigkeit ließe sich zwar durch Einführung neuer Variabler beheben, angesichts der geringen Bedeutung dieser Umwandlungsoption (s. FÜRNISS et al. (1980)) wurde jedoch einfach angenommen, daß bei der gespreicherten Energie die Hälfte aus Importen stammt.

Die kurzfristige Versorgungssicherheit für Primärenergieträger läßt sich durch die wirtschaftlichen Risiken einer kurzfristigen Verknappung, z.B. durch Embargos oder Streiks, quantifizieren. Als Indikator dienen die Vermeidungskosten für dieses Risiko, das sind die Kosten für die Bevorratung von Energieträgern, um einen gewissen Zeitraum überbrücken zu können. Als Basis des Bevorratungszeitraums wird 1/2 Jahr zugrundegelegt (die gesetzlichen Bestimmungen für Erdöl-Bevorratung gehen von 1/4 Jahr aus).

Als Bevorratungskosten (für 1/2 Jahr) gehen die folgenden Werte in das Optimierungsmodell ein: /SCHMIDT (1975), BRACHETTI (1977)/

Erdöl: 12.5 DM / t SKE Rohölbedarf.

Gas: 0.96 DM / t SKE Gasbedarf.

(Beim Wert für die Gasbevorratung ist berücksichtigt worden, daß der nicht zu bevorratende Anteil an einheimischer Energie 50 % beträgt.) Bevorratungskosten für die weiteren potentiellen Energieträger, Kohle und Uran, werden nicht in Betracht gezogen. Für Kohle deshalb nicht, weil sie als einheimischer Energieträger unempfindlich gegen Embargos ist (die Kohlehalden existieren in erster Linie wegen Absatzschwierigkeiten). Für Uran sind die Bevorratungskosten pro Energieeinheit als vernachlässigbar gegenüber den oben aufgeführten Energieträgern anzusehen.

11. Literatur

ANONYMUS

Von den Unternehmen: Rheinische Braunkohlenwerke A.G., Köln Energiewirtschaftliche Tagesfragen 28, (1978), S. 525-529

BATTELLE

Untersuchungen über die technischen, organisatorischen und gesellschaftlichen Voraussetzungen für Risikostrategien im Bereich technologischer Entwicklung. Vergleich der Gesundheitsgefährdung bei verschiedenen Technologien der Stromerzeugung
BF-R-62.530, Zwischenbericht 200/1, Batelle-Institut Frankfurt/Main 1976

BMAS (BUNDESMINISTER FÜR ARBEIT UND SOZIALORDNUNG)

Bericht der Bundesregierung über den Stand der Unfallverhütung und das Unfallgeschehen in der Bundesrepublik Deutschland (Unfallverhütungsbericht) Bundestagsdrucksache 8/1128 Bonn 1977

BMI (BUNDESMINISTER DES INNERN)

Erste Allgemeine Verwaltungsvorschrift zum Bundesimmissionsschutzgesetz (Technische Anleitung zur Reinhaltung der Luft-TA-Luft-) Gemeinsames Ministerialblatt, Ausgabe A, 24, S. 425-452 Bonn 1974

BRACHETTI, H.

Untertagespeicher Frankenthal GWF-Gas/Erdgas 118 (1977), S. 472-476

DENNIS, R.L.

The Smeared Concentration Approximation Method: A Simplified Air Pollution Dispersion Methodology für Regional Analysis Research Report 78-9, International Institute for Applied Systems Analysis Laxenburg, Österreich 1978 DOLINSKI, U. und ZIESING, H.J.

Die Entwicklung des Energieverbrauchs in Baden-Württemberg und seinen 12 Regionalverbänden bis zum Jahre 1990 Gutachten im Auftrag des Ministeriums für Wirtschaft, Mittelstand und Verkehr des Landes Baden-Württemberg DIW, Berlin 1974

FAUDE, D., BAYER, A., HALBRITTER, G., SPANNAGEL, G., STEHFEST, H. und WINTZER, D.

Energie und Umwelt in Baden-Württemberg Bericht KfK 1966 UF Kernforschungszentrum Karlsruhe 1974

FIALA, P. und STEHFEST, H.

Überblick über Methoden der linearen Vektoroptimierung Bericht KfK 2795 Kernforschungszentrum Karlsruhe 1979

GEIGER, B., LAYER, G., PETER, U., RUDOLPH, M., SCHAFER, H.

Energiewirtschaft und Umweltbeeinflussung in der BRD Forschungsstelle für Energiewirtschaft und Institut für Energiewirtschaft und Kraftwerkstechnik der TU München 1974

FORNISS, B., SCHULZ, V. und STEHFEST, H.

Optimierung des Energieversorgungssystems von Baden-Württemberg bei mehrfacher Zielsetzung Bericht KfK 2978/I Kernforschungszentrum Karlsruhe 1980

HALBRITTER, G. (Hrsg.)

Konsequenzen des großtechnischen Einsatzes der Kernenergie in der Bundesrepublik Deutschland, Teil IV: Umweltauswirkungen von Kernkraftwerken und Anlagen des kerntechnischen Brennstoffkreislaufs Bericht KfK 2704 Kernforschungszentrum Karlsruhe 1978 HESSISCHER MINISTER FÜR LANDWIRTSCHAFT UND UMWELT (Hrsg.)

Wärmelastplan Main Hessischer Minister für Landwirtschaft und Umwelt Wiesbaden 1973

HUSAR, R.B. et al. (Hrsg.)

Proceedings of the Conference "Sulphur in the Environment" Dubrovnik (Yugoslavia), 7.-14. Sept. 1977 Atmospheric Environment 12 (1978), S. 1-796

LAHMANN, E., SANKOWSKY, G. und FETT, W.

Gutachten über die lufthygienischen Auswirkungen der geplanten Erweiterung der Raffinerie der Oberrheinischen Mineralölwerke in Karlsruhe (im Auftrag des Regierungspräsidiums Nordbaden) Institut für Wasser-, Boden- und Lufthygiene Berlin-Dahlem 1972

LASKUS, L.

Untersuchung der Korngrößenverteilung des atmosphärischen Staubes in Bodennähe Staub-Reinhaltung der Luft 37 (1977), S. 299-306

MAGS (MINISTER FOR ARBEIT, GESUNDHEIT UND SOZIALES) NORDRHEIN-WESTFALEN (Hrsg.)

Emissionskataster Köln MAGS Nordrhein-Westfalen Düsseldorf 1972

MAGS NORDRHEIN-WESTFALEN

Verwaltungsvorschriften zum Genehmigungsverfahren nach §§ 6, 15 Bundesimmissionsschutzgesetz für Mineralölraffinerien und petrochemische Anlagen zur Kohlenwasserstoffherstellung - Raffinerie-Richtlinie -MAGS Nordrhein-Westfalen Düsseldorf 1975 MINISTERIUM FÜR WIRTSCHAFT, MITTELSTAND UND VERKEHR DES LANDES BADEN-WÜRTTEMBERG

Energiebilanz 1975 Ministerium für Wirtschaft, Mittelstand und Verkehr Stuttgart 1977

NIEHAUS, F.

Langzeitaspekte der Umweltbelastung durch Energieerzeugung: ${\rm CO_2}$ und ${\rm H^3}$ Bericht Jül-1165 Kernforschungsanlage Jülich 1975

RODHE, H.

A study of the sulphur budget for the atmosphere over Northern Europe Tellus XXIV (1972), S. 128-138

SCHMIDT, F.

Die Grenze der Belastbarkeit ist erreicht Oel 13 (1975), S. 223-225

SCHULZ, V. und SCHUCH, P.G.

Untersuchung der Einflußgrößen auf die Kfz-bedingten Kohlenmonoxid-Immissionen in Dortmund Staub-Reinhaltung der Luft 38 (1978), S. 146-150

STATISTISCHES BUNDESAMT

Statistisches Jahrbuch für die Bundesrepublik Deutschland 1973 Kohlhammer, Stuttgart und Mainz 1973

STATISTISCHES BUNDESAMT

Statistisches Jahrbuch für die Bundesrepublik Deutschland 1977 Kohlhammer, Stuttgart und Mainz 1977

STATISTISCHES LANDESAMT BADEN-WÜRTTEMBERG

Statistisches Taschenbuch 1972 Baden-Württemberg Statistisches Landesamt Baden-Württemberg Stuttgart 1972 STATISTISCHES LANDESAMT BADEN-WÜRTTEMBERG
Statistisches Taschenbuch 1973 Baden-Württemberg

Statistisches Landesamt Baden-Württemberg Stuttgart 1973

STEHFEST, H.

A Methodology for Regional Energy Supply Optimization Research Memorandum 76-57 International Institute for Applied Systems Analysis Laxenburg, Österreich 1976

STRAUSS, W. (Hrsg.)

Air Pollution Control Wiley-Interscience, New York 1972

STUMM, W. (Hrsg.)

Global Chemical Cycles and Their Alterations by Man. Report of the Dahlem Workshop Berlin 1976, Nov. 15.-19. Dahlem-Konferenzen, Berlin 1976

TOBLER, W.R.

City Sizes, Morphology, and Interactions Working-Paper 75-18 International Institute for Applied Systems Analysis Laxenburg, Österreich 1975

VDI

VDI-Richtlinie 2450: Messen von Emission, Transmission und Immission luftverunreinigender Stoffe (Entwurf der Neufassung) VDI, Düsseldorf 1977

VGB TECHNISCHE VEREINIGUNG DER GROSSKRAFTWERKSBETREIBER E.V. VGB-Konferenz Kraftwerk und Umwelt 1975 Essen 1975

WHO (WORLD HEALTH ORGANISATION)
Health Hazards of the Human Environment
WHO, Genf 1972

TEIL II:

Bestimmung von Nutzenfunktionen für ein regionales Energieversorgungssystem

D. Носн

V. Schulz

H. STEHFEST

Zusammenfassung

Im Rahmen des Vorhabens "Optimierungsmodell für das Energieversorgungssystem von Baden-Württemberg" werden aus der Vielzahl möglicher Versorgungsstrategien anhand unterschiedlicher Zielfunktionen optimale Strategien ausgewählt. Ein dabei betrachteter Zielfunktionstyp ist die sog. Nutzenfunktion, die die Präferenzen über den Konsequenzen energiepolitischer Entscheidungen quantifiziert. Da die Präferenzordnungen subjektiv bedingt sind, sind die zugehörigen Nutzenfunktionen nur durch Befragung zu gewinnen. Dieser Schätzungsprozeß durch Befragen ist Gegenstand des vorliegenden Berichts.

Nach einer Übersicht über die axiomatischen Grundlagen der Nutzentheorie werden die Attribute, mit denen die Konsequenzen der verschiedenen Versorgungsstrategien charakterisiert werden, beschrieben. Ihre Auswahl ist in wesentlich geringerem Maß subjektiv bedingt als die Nutzenfunktion selbst. Danach wird die Befragung und die Bestimmung der analytischen Form der Nutzenfunktion ausführlich diskutiert. Dabei wird weitgehend auf die konkrete Befragung einer Person Bezug genommen, die am energiepolitischen Entscheidungsprozeß des Landes Baden-Württemberg direkt beteiligt ist. In Anhängen werden beispielhaft zwei weitere Nutzenfunktionen mitgeteilt. Abschließend werden einige Einwände gegen den nutzentheoretischen Ansatz bei der Entscheidungsfindung erörtert.

Inhaltsverzeichnis

			Seite	
1.	Ei	nleitung	1	
2.	Νυ	tzentheoretische Grundlagen und Voraus-		
	se	etzungen	2	
3.	Mu	ltikriteriale Nutzentheorie	12	
4.	Αυ	swahl und Detailbeschreibung der Attri-		
	bu	ite	19	
5.	Kc	nkrete Ermittlung der Nutzenfunktion	46	
5.1	Üb	ersicht und Klärung der Voraussetzungen	46	
5.2		stimmung der Präferenzstruktur des Ent-		
	sc	heidungsträgers und Überprüfung der Prä-		
	fe	renzunabhängigkeit	50	
5.3	Вє	stimmung der Einzelnutzenfunktionen und		
	Üb	erprüfung der Nutzenunabhängigkeit	55	
5.4	Di	e Form und Eigenschaften der Gesamtnutzen-		
	fυ	nktion	58	
5.5	Вє	stimmung der Skalierungskonstanten	73	
5.6	Zτ	ır Überprüfung der Konsistenz	88	
5.7	Κυ	rvenanpassung der Einzelnutzenfunktionen		
	un	d impliziertes Risikoverhalten bei bestimm-		
	te	m Nutzenfunktionsverlauf	92	
6.	Kr	ritische Erörterung	98	
7.	Li	teraturverzeichnis	102	
- 1	_			
Anhang	A:	Berechnung der Attribute aus den Entschei-		
		dungsvariablen	105	
Anhang	В:	Indifferenzpaare und Mengen präferenzabhän-		
		giger Attribute	108	
Anhang	C:	Einzelnutzenfunktionen sowie Lotterien zu		
		ihrer Bestimmung	113	
Anhang	D:	Beziehung zwischen Attribute-"Synergismus"		
		und dem Vorzeichen der Skalierungskonstan-		
		ten c in der multiplikativen Nutzenfunk-		
		tion	118	

Anhang	E:	Gleichungssystem und Lösungsalgorithmus	
		zur Bestimmung der Skalierungskonstanten	
		c, in der multiplikativen Nutzenfunktion	
		für maximal 14 Einzelattribute	11 9
Anhang	F:	Bestimmung der Skalierungskonstanten	121
Anhang	G:	Rangfolge der Attribute und Konsistenz- prüfungen	124
Anhang	н:	Nutzenfunktion von V. Schulz	126
Anhang	I:	Nutzenfunktion von H. Stehfest	128

1. Einleitung

Im Mittelpunkt des Vorhabens "Optimierung des Energieversorgungssystems von Baden-Württemberg bei mehrfacher Zielsetzung" steht ein lineares Vektoroptimierungsproblem (Fürniß et al. (1980)).

$$\min \{\underline{z} \mid \underline{z} \in \mathbb{R}^k, \underline{z} = C \cdot \underline{x}, \underline{x} \in \mathbb{R}^n, A \cdot \underline{x} \leq \underline{b}, \underline{x} \geq 0\}$$
 (1.1)

In ihm beschreiben die Komponenten von \underline{z} die verschiedenen Aspekte, nach denen das Energiesystem beurteilt wird; sie werden Attribute oder Kriterien genannt. Die Komponenten von \underline{x} sind die Entscheidungsvariablen des Modells. Sie stellen die für die verschiedenen Energieumwandlungsoptionen installierten Leistungen und die durch diese Installationen fließenden jährlichen Energiemengen dar.

Für die Lösung eines solchen Vektoroptimierungsproblems gibt es verschiedene Möglichkeiten, s. Fiala, Stehfest (1979). Eine davon, die für das o.a. Vorhaben ausgewählt wurde, besteht darin, eine sogenannte Nutzenfunktion $u(\underline{z})$ über dem Attributeraum zu bestimmen und dann das "Ersatzproblem"

$$\max \{u(z) \mid z \in \mathbb{R}^k, z = C \cdot x, x \in \mathbb{R}^n, A \cdot x < b, x > 0\}$$
 (1.2)

zu lösen. Die skalarwertige Funktion $u(\underline{z})$ wird im folgenden immer als streng monoton fallend angenommen. Das bedeutet, daß die Lösung des Ersatzproblems (1.2) immer eine effiziente Lösung des Problems (1.1) ist, s. Fiala, Stehfest (1979).

Die Nutzenfunktion, deren Erwartungswert ein Maß für die konsistente Entscheidungsfindung liefert (s.u.), spiegelt die Präferenzordnung zwischen den Attributen wider, sie ist also subjektiv bedingt. Das bedeutet, daß zu ihrer Bestimmung individuelle Befragungen erforderlich sind. Im vorliegenden Bericht soll dieser Schätzprozeß für die Nutzenfunktionen des eingangs erwähnten energiepolitischen Entscheidungsproblems

beschrieben werden. Dabei wird im Hauptteil ausschließlich auf die Befragung eines am energiepolitischen Entscheidungsprozesses des Landes Baden-Württemberg direkt Beteiligten Bezug genommen. In den Anhängen H und I werden beispielhaft zwei weitere Nutzenfunktionen mitgeteilt. Der vorliegende Bericht ist zum großen Teil identisch mit Kapitel 3 der Diplomarbeit "Mehrfache Zielsetzung bei der Optimierung eines regionalen Energieversorgungssystems" von D. Hoch. Dies erklärt die Ausführlichkeit der Darstellung.

2. Nutzentheoretische Grundlagen und Voraussetzungen

Für die axiomatische Grundlegung der Nutzentheorie gibt es zahlreiche Ansätze, die alle mehr oder weniger auf dem ursprünglichen Konzept von Neumann und Morgenstern aufbauen. Eine Auswahl dieser Ansätze bieten folgende Arbeiten: Luce, Raiffa (1957); Fishburn (1964, 1970); Schneeweiß (1967); Pfanzagl (1968); Krelle (1968); Menges (1969); Gäfgen (1974); Gottinger (1974); Bühlmann et al. (1975); Ferschl (1975); Bamberg, Coenenberg (1977); Kirsch (1977).

Um im folgenden eine möglichst anschauliche und einfache Beschreibung der Nutzenaxiomatik geben zu können, betrachten wir zunächst nur eine auf $Z_1 \subseteq \mathbb{R}$, $l \in \{1, \ldots, k\}$ definierte Nutzenfunktion. Die Nutzenfunktion u ordnet also jedem Zielkriterium bzw. Ergebnis z (skalarwertig!) einen Nutzen u(z) zu. Die Aussagen lassen sich allerdings auf Ergebnisvektoren z übertragen (vgl. spätere Ausführungen).

Definition 2.1:

Ein einfaches Wahrscheinlichkeitsmaß P auf der Menge \mathbf{Z}_1 ist eine reellwertige Funktion, die auf allen Untermengen von \mathbf{Z}_1 definiert ist und folgende Eigenschaften besitzt:

- (W1) : $P(A) \ge O$, für jedes $A \subseteq Z_1$.
- $(W2) : P(Z_1) = 1.$
- (W3): $P(A \cup B) = P(A) + P(B)$, wenn $A,B \subseteq Z_1$ und $A \cap B = \emptyset$.
- (W4): Es gibt eine endliche Menge $H \subseteq Z_1$, so daß P(H)=1 ist.

Unter dem Wahrscheinlichkeitsmaß versteht man also ein Maß für die Neigung eines möglichen Ergebnisses, wirklich einzutreten. (W1) und (W2) sind reine Normierungsvereinbarungen. (W3) ist die sogenannte Additivität von P: Die Wahrscheinlichkeit der Vereinigung zweier disjunkter Teilmengen aus \mathbf{Z}_1 ist gleich der Summe der Einzelwahrscheinlichkeiten. (W4) qualifiziert P gerade als einfaches Wahrscheinlichkeitsmaß. Wir haben ja keine Voraussetzungen über die Endlichkeit der Anzahl der Elemente von \mathbf{Z}_1 gemacht. Es wird allerdings gefordert, daß es im Falle der Nichtendlichkeit der Elementeanzahl von \mathbf{Z}_1 wenigstens eine Teilmenge H von \mathbf{Z}_1 gibt, die alle 'relevanten' Ergebnisse enthält, also solche mit p > 0.

Definition 2.2:

Sei $H = \{z_1, z_2, \dots, z_h\}$ die zum Wahrscheinlichkeitsmaß P gemäß Definition 2.1 gehörige endliche Menge. Dann können wir für das Element P aus der Menge W der einfachen Wahrscheinlichkeitsmaße schreiben:

$$P = \begin{vmatrix} z_{1}, z_{2}, \dots, z_{h} \\ p_{1}, p_{2}, \dots, p_{h} \end{vmatrix} \text{ mit } \sum_{i=1}^{h} p_{i} = 1$$
 (2.1)

P heißt Lotterie, die mit Wahrscheinlichkeit p $_1$ Ergebnis z_1 mit Wahrscheinlichkeit p $_2$ Ergebnis z_2 ... mit Wahrscheinlichkeit p $_h$ Ergebnis z_h

liefert.

Einfache Wahrscheinlichkeitsmaße können durch konvexe Linearkombination verknüpft werden:

Definition 2.3:

Seien α_1 , α_2 ,..., α_k reelle Zahlen mit $\sum_{i=1}^k \alpha_i = 1$; $\alpha_i \ge 0$ und P_1 , P_2 , ..., P_k einfache Wahrscheinlichkeitsmaße, dann sei

$$P = \alpha_1 P_1 + \alpha_2 P_2 + \dots + \alpha_k P_k$$
 (2.2)

das Wahrscheinlichkeitsmaß, das einer Teilmenge A \subset Z₁ die Wahrscheinlichkeit

$$P(A) = \alpha_1 P_1(A) + \alpha_2 P_2(A) + ... + \alpha_k P_k(A)$$
 (2.3)

zuordnet.

Das durch (2.3) definierte Wahrscheinlichkeitsmaß heißt zusammengesetzte Lotterie. Jedes nach Definition 2.3 gebildete Wahrscheinlichkeitsmaß stellt ein einfaches Wahrscheinlichkeitsmaß auf \mathbf{Z}_1 dar; d.h. durch (2.2) und (2.3) wird tatsächlich eine Verknüpfung in der Menge W der einfachen Wahrscheinlichkeitsmaße definiert.

Mit diesem Begriffsinstrumentarium sind wir nun in der Lage, eine kardinale Messung des Nutzens zu definieren. Das folgende Axiomen- oder Annahmensystem stellt die Bedingungen dar, unter denen eine den Nutzen messende Abbildung u: $P \rightarrow u(P)$ existiert, die bis auf positive lineare Transformationen bestimmt, also kardinal ist.

- (N1): Auf der Menge der Lotterien W existiert eine schwache
 Präferenzrelation "≤". Es sei die zur Relation "≤"
 gehörige strikte Präferenz mit "⟨" bezeichnet.
- (N2): Es seien P, Q, R Lotterien und O < $\alpha \le 1$, dann gilt:

$$P \triangleleft Q \rightarrow \alpha P + (1 - \alpha)R \triangleleft \alpha Q + (1 - \alpha)R. \qquad (2.5)$$

(N3): P, Q, R seien Lotterien und P \langle Q \langle R, dann gibt es Zahlen α , β mit O \langle α , β \langle 1, so daß gilt.

$$\alpha P + (1 - \alpha) R < Q < \beta P + (1 - \beta) R$$
 (2.6)

Häufig findet man (N1) aufgespalten in

(N1a): Für jedes Lotteriepaar P, Q gilt entweder

$$P > Q, Q < P \text{ oder } P \sim Q$$
. (2.4a)

(N1b): Für je 3 Lotterien P, Q, R gilt stets:

Aus
$$P > Q$$
 und $Q > R$ folgt $P > R$. (2.4b)

Dies sind gerade die Eigenschaften - Vollständigkeit und Transitivität - einer Präferenzrelation, die notwendig sind, um zu einer sinnvollen Rangfolge der Lotterie zu kommen. Axiom(N1) heißt auch ordinales Prinzip.

Das sog. Substitutions- oder Unabhängigkeitsaxiom (N2) garantiert die Eindeutigkeit der Transformation von Lotterien in z.B. reelle Zahlen. Es besagt, daß in der Relation $\alpha P + (1 - \alpha)R < \alpha Q + (1 - \alpha)R$ jede Lotterie R', die zu R indifferent (~) ist, den Platz von R einnehmen kann (daher die Bezeichnung: Substitutionsaxiom), ohne daß sich α irgendwie verändern würde (daher die Bezeichnung: Unabhängigkeits-axiom), also unter vollem Erhalt der Präferenzstruktur.

Die Annahme N3 wird häufig als Stetigkeitsaxiom bezeichnet. Sie stellt, grob gesagt, sicher, daß man durch geeignete Wahl der Gewichte bei der konvexen Kombination zweier Lotterien präferenzmäßig beliebig nahe an jede der beiden Lotterien herankommt.

Nach Einführung des Axiomsystems (N1) - (N3) können wir nun folgende Definition angeben:

Definition 2.4:

Eine Funktion u: $W \rightarrow \mathbb{R}$ P \mapsto u(P)

heißt Erwartungsnutzen oder kardinale Nutzenfunktion, wenn sie folgende Eigenschaften erfüllt:

(E1): Ordnungstreue (Monotonie): $P \leq Q \Leftrightarrow u(P) \leq u(Q)$

- (E2): Linearität (vgl. zusammengesetzte Lotterie: $u(\alpha_1^P_1 + \alpha_2^P_2 + \dots + \alpha_k^P_k) = \alpha_1 u(P_1) + \alpha_2 u(P_2) + \alpha_k u(P_k).$ (Wegen Eigenschaft (E2) heißt die Funktion auch Erwartungsnutzen.)
- (E3): Eindeutigkeit bis auf positiv-lineare Transformationen: Seien u, v zwei Funktionen, welche (E1) und (E2) erfüllen. Dann gilt: u(P) = av(P) + b a, b ϵR ; a > 0.
- (E3) ist die Eigenschaft einer Intervallskala (s. Pfanzagl (1968, S. 27f)). Nutzentheorie auf Intervallskalen nennen wir kardinale Nutzentheorie.

An dieser Stelle soll ausdrücklich darauf hingewiesen werden, daß es eine zweite Art kardinaler Maße auf sog. Verhältnisskalen gibt, die bis auf proportionale Transformationen (x' = ax) eindeutig sind. Praktische Beispiele für Verhältnisskalen sind Angaben für Länge oder Gewicht. Der sehr wichtige Unterschied zwischen beiden Skalen läßt sich leicht veranschaulichen. Der Nutzen zweier Alternativen sei u,=0.1 und $u_{\rm p}$ =0.5. Daraus kann man nun <u>nicht</u> schließen, ein Entscheidungsträger habe B 'fünf mal lieber' wie A, denn die Wahl der Maßeinheit ist willkürlich: Dieselben Präferenzen werden auch durch $u_A^{-0.2}$ und $u_B^{-0.6}$ beschrieben. Dadurch unterscheiden sich Nutzenwerte beispielsweise von Gewichtsangaben, denn man kann sehr wohl feststellen, daß ein Gegenstand fünfmal soviel wiegt wie ein anderer. Die Differenzen zwischen den Nutzenwerten sind jedoch von Bedeutung. Das kann man daran sehen, daß die relative Größe der Differenzen zwischen Nutzenwerten in bezug auf positiv lineare Transformationen invariant ist.

Zusammenfassend können wir nun formulieren:

Satz 2.1 (Hauptsatz der kardinalen Nutzentheorie): Auf einer Menge von Lotterien W,

- 1. die die Axiome (N1) (N3) erfüllt,
- 2. in der es mindestens ein Elementepaar P,Q mit P 〈 Q gibt, existiert eine kardinale Nutzenfunktion (Erwartungsnutzen) (Beweis vgl. Ferschl (1975, Anhang A3)).

Mit diesem Satz haben wir auch die Grundlagen für das sog. Bernoulli-Prinzip gelegt, das lautet:

Für den Entscheidungsträger existiert eine kardinale Nutzenfunktion u mit der Eigenschaft, daß die verschiedenen Alternativen aufgrund des zugehörigen Nutzenerwartungswertes beurteilt werden. Man spricht häufig statt vom kardinalen Nutzen auch vom Bernoulli-Nutzen. Betrachten wir hierzu als einfaches Beispiel zur Veranschaulichung die Zweipunktverteilung P auf \mathbf{Z}_1 :

$$P = \begin{bmatrix} z & z & z \\ p & 1-p \end{bmatrix}.$$

Hierbei können wir nun zwei Zufallsgrößen betrachten (i= 1,2; $p_1 = p$; $p_2 = 1-p$).

- 1. Z ist eine Zufallsgröße, die mit Wahrscheinlichkeit p $_{i}$ den Ergebniswert z $_{i}$ annimmt.
- 2. u(z) ist eine Zufallsgröße, die mit Wahrscheinlichkeit pi den Nutzen $u(z_i)$ annimmt. und entsprechend die beiden Erwartungswerte

$$E(z) = z_1 p + z_2 (1 - p)$$
, (2.7)

$$E(u(z)) = u(z_1) \cdot p + u(z_2) (1 - p)$$
. (2.8)

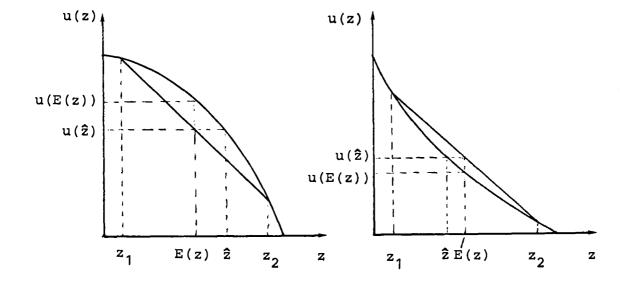
Satz 2.1 besagt im Grunde nichts anderes, als daß

$$u(P) = E(u(z))$$

ist, unter der Voraussetzung:

u:
$$\mathbb{R} \to \mathbb{R}$$

$$z \mapsto u(z) .$$


Das Gleichheitszeichen gilt i.a. nur, wenn die Funktion u(z) als reelle Funktion selbst linear ist, was jedoch meist nicht der Fall ist. Man kann im Falle der Nichtlinearität von u(z) jedoch versuchen, einen Wert \hat{z} zu finden, so daß

$$u(\hat{z}) = u(P) = E(u(z)) = u(z_1)p + u(z_2)(1 - p)$$
;

2 nennt man das Sicherheitsäquivalent der Verteilung P, das zur Beschreibung zwei spezieller Phänomene herangezogen wird: Sofern u(z) eine in z monotone Nutzenfunktion ist, gilt:

- u(z) konkav $\rightarrow u(\hat{z}) < u(E(z))$: Risikoaversion,
- u(z) konvex $\rightarrow u(\hat{z}) > u(E(z))$: Risikoneigung.

Graphisch veranschaulicht für eine in z streng monoton fallende Nutzenfunktion:

Die theoretischen Entwicklungen um das Bernoulli-Prinzip befassen sich freilich nicht nur mit hier angeführten diskreten Wahrscheinlichkeitsverteilungen (z.B.: P), sondern mit allgemeinen Verteilungen Φ . Die Frage nach dem Sicherheitsäquivalent lautet dann: "Welchen sicheren Wert $\hat{\mathbf{z}}$ sieht man einer Verteilung Φ mit der Verteilungsfunktion $\mathbf{F}_{\Phi}(\mathbf{z})$ als gleichwertig an?" Nach Satz 2.1 kann die Verteilung Φ wie folgt bewertet werden:

$$u(\phi) = E(u(z)) = \int_{-\infty}^{+\infty} u(z) dF_{\phi}(z)$$

$$= \int_{-\infty}^{-\infty} u(z) f_{\phi}(z) dz ; f_{\phi}(z) = \frac{dF_{\phi}(z)}{dz}.$$
(2.9)

Die hier skizzierte Theorie reicht allerdings nicht aus um (2.7) für beliebige stetige Verteilungen zu erhalten. Eine Einführung in die allgemeine Theorie des Erwartungsnutzens gibt Fishburn (1970), vgl. auch Schneeweiß (1967).

Ohne in die sehr breite Diskussion über die Annahmen, die der kardinalen Nutzentheorie zugrundeliegen, allzuweit einzusteigen, sei hier grundsätzlich folgendes bemerkt. Es handelt sich bei den Axiomen (N1) - (N3) nicht um unumstößliche Wahrheiten, sondern um den Versuch, Erfahrungssätze und Gesetzmäßigkeiten, die bei der Untersuchung von rationalen Entscheidungsvorgängen festgestellt wurden, zu einer Theorie des rationalen Verhaltens zu entwickeln, die allerdings im Einzelfall auch durchbrochen werden kann. In unübersichtlichen Entscheidungssituationen ist es durchaus möglich, daß tatsächliches Verhalten mit gewissen Postulaten des rationalen Handelns im Widerspruch steht. Nach Ferschl (1975) wird man dies aber nicht zum Anlaß nehmen, die Verhaltenspostulate aufzugeben, sondern den Begriff "Irrtum" einführen. So kann man im täglichen Leben bereits in mäßig komplizierten Situationen immer wieder Abweichungen von den Gesetzen der Logik finden, und dennoch würden solche empirischen Befunde von niemandem zum Anlaß genommen, die betreffenden Gesetze der Logik aufzugeben; vielmehr erfolgt die Aufforderung, man möge seine Gedanken noch einmal überprüfen, um den logischen Irrtum ausfindig zu machen.

Ganz analog hierzu erfolgen sog. Inkonsistenz-Bereinigungen im Rahmen von interviewartigen Ermittlungen von Nutzenfunktionen, die a.a.S. noch ausführlicher besprochen werden. Die einschlägige Literatur (vgl. Schneeweiß (1967, S. 79f) und Fishburn (1970, S. 109)) führt hierzu das hochinteressante und berühmte Beispiel von Allais an, das fast zwangsläufig in einem Irrtumseingeständnis endet.

Eine wichtige Erörterung der Leistungsfähigkeit dieses Konzepts des sog. Bernoulli-Nutzens sei hier noch angeführt.

Schneeweiß (1967, S. 69ff) unterscheidet zwischen psychologischem Nutzen und dem hier eingeführten Bernoulli-Nutzen. Der Erwartungswert des Bernoulli-Nutzens ist eine Zahl, die jenen Wert zum Ausdruck bringt, den das Entscheidungssubjekt der gesamten Wahrscheinlichkeitsverteilung eines Ergebnisses bestimmter Art beimißt. Nach Schneeweiß (1967) bietet der Bernoulli-Nutzen keinen Ersatz für die Messung des psychologischen Nutzens, die dann erforderlich wird, wenn das Individuum mehrere Ziele verfolgt, die Entscheidungsergebnisse also jeweils durch einen Vektor repräsentiert werden. Im Sinne von Kirsch (1977) kann einer derartigen Deutung nicht zugestimmt werden. "Zwar ist es in der modernen Nutzentheorie üblich, der Einfachheit halber davon auszugehen, daß die Ergebnisse lediglich in einer Dimension gemessen werden. Dies entspricht der Annahme nur eines Zieles. Man kann dies jedoch auch dahingehend interpretieren, daß die Ergebnisvektoren bei Annahme mehrerer Ziele bereits auf einen Skalar, d.h. auf eine "Nutzenzahl" und damit auf eine Dimension reduziert wurden. In diesem Fall wird in der Tat eine (ordinale) Nutzenfunktion unterstellt, die die Ergebnisvektoren ordnet. Sie würde den psychologischen Nutzen im Sinne von Schneeweiß repräsentieren. Daraus ist jedoch nicht der Schluß zu ziehen, daß die kardinale Nutzentheorie voraussetzt, daß die Ergebnisse lediglich in einer Dimension gemessen werden. Die Überlegungen gelten auch für den Fall mehrerer Ziele.

Es werden dann den einzelnen Ergebnisvektoren kardinale Nutzenzahlen zugeordnet, die sowohl die Ordnung dieser Ergebnis-

vektoren beschreiben als auch die Basis für die Bestimmung von Erwartungswerten des Nutzens bei Wahrscheinlichkeitsverteilungen solcher Ergebnisvektoren dienen, so daß die Ordnung der Wahrscheinlichkeitsverteilung gleich der Ordnung dieser mathematischen Erwartungswerte ist. Die kardinale Nutzenmessung im Sinne eines Bernoulli-Nutzens ist folglich eine umfassende Konzeption, die nicht die Ermittlung 'psychologischer Nutzen' voraussetzt. Der Bernoulli-Nutzen ersetzt in der Tat die alte Nutzenkonzeption vollständig" (Kirsch (1977, S. 39, 40)).

In vereinfachter Form läßt sich dies wie folgt formal darstellen:

Die Nutzenfunktion u hat die folgende hervorstechende, charakteristische Eigenschaft, daß für zwei gegebene Wahrscheinlichkeitswerte A und B über den als unsicher erachteten Ergebnisvektoren \tilde{z} ϵ Z gilt:

Wahrscheinlichkeitsverteilung A ist mindestens gleich wünschenswert wie Wahrscheinlichkeitsverteilung B, dann und nur dann, wenn:

$$E_{A} \left[u\left(\underline{\tilde{z}}\right)\right] \ge E_{B} \left[u\left(\underline{\tilde{z}}\right)\right] \tag{2.10}$$

mit E = Erwartungswert-Operator bzw.:

$$\int_{\mathbb{R}^k} u(\underline{z}) \ f_A(\underline{z}) \ d\underline{z} \ge \int_{\mathbb{R}^k} u(\underline{z}) \ f_B(\underline{z}) \ d\underline{z} \ ,$$

sofern die Verteilungen durch ihre zugehörigen Wahrschein-lichkeitsdichtefunktionen $f_A(\underline{z})$, $f_B(\underline{z})$ im $\mathbb{R}^k \supseteq Z$ gegeben sind.

Ein besonders interessanter Entartungsfall von (2.10) lautet: Ein Ergebnisvektor \underline{z}^A ist mindestens gleich wünschenswert wie ein anderer \underline{z}^B , dann und nur dann, wenn:

$$u(\underline{z}^{A}) \geq u(\underline{z}^{B}). \tag{2.11}$$

3. Multikriteriale Nutzentheorie

Wir kommen nun zu unserem Ausgangsproblem zurück. Wir bestimmen eine effiziente Energieversorgungsstrategie \underline{x} , indem wir einen funktional-effizienten Zielkriterien-, Attribute-, Ergebnis- oder Konsequenzenvektor \underline{z} ermitteln. Dies geschieht, indem man die Präferenzstruktur des Entscheidungsträgers unter o.a. Voraussetzungen als Nutzenfunktion über dem Zielkriterienraum Z darstellt und diese als Zielfunktion eines klassischen (skalarwertigen) Maximierungsproblems verwendet, was bedeutet, diejenige Energieversorgungsstrategie \underline{x}^1 zu wählen, deren zugehöriger Zielkriterienvektor \underline{z}^1 zum maximalen erwarteten Nutzen $\underline{u}^1(\underline{z}^1)$ führt.

Häufig, insbesondere bei den Attributen (Zielkriterien), die ein Energieversorgungssystem beschreiben, sind die Attributwerte einerseits zwar unsicher, andererseits ist aber über deren Wahrscheinlichkeitsverteilung nichts Genaueres bekannt. In einem solchen Fall würde für die Auswahl zwischen verschiedenen Attributwertevektoren auch eine Präferenzfunktion (= ordinale Nutzenfunktion; d.h. eine Nutzenfunktion, die bis auf monoton wachsende Transformationen eindeutig ist, vgl. Keeney, Raiffa (1976)) genügen; obgleich natürlich ohnehin jede (kardinale) Nutzenfunktion auch als eine spezielle Präferenzfunktion verstanden werden kann und - wie wir noch sehen werden - der Ermittlungsaufwand der gleiche ist.

Dennoch erscheint es auch in diesem Fall sinnvoll, mit einer kardinalen Nutzenfunktion zu arbeiten.

Zwar wird bei der Optimierung kein Nutzenerwartungswert mit Hilfe einer Häufigkeitsverteilung über dem Attributraum errechnet, aber man kann immer den Nutzenfunktionswert in einem Punkt als Erwartungswert der um den Punkt linearisierten Nutzenfunktion bzgl. einer Gleichverteilung um den Punkt auffassen. Dementsprechend kann man bei Verwendung einer

kardinalen Nutzenfunktion durch Sensitivitätsanalyse ermitteln, ob sich Anstrengungen lohnen, Unsicherheiten hinsichtlich der Attributwerte zu beseitigen oder Häufigkeitsverteilungen zu bestimmen.

Demgegenüber legt eine beliebige ordinale Nutzenfunktion nur Präferenzen zwischen Alternativen fest, ein Maß für die Stärke der Präferenz, wie es für Sensitivitätsanalysen notwendig wäre, hat man nicht.

Sowohl die Bestimmung einer kardinalen Nutzenfunktion mittels bestimmter Befragungstechniken (Kap. 5) als auch ihre Verwendung als Zielfunktion eines Optimierungsproblems kann bei einer größeren Attributzahl - die freilich bei der Befragung ebenfalls noch zur Disposition steht - sehr aufwendig werden. Aus diesem Grunde ist man gehalten, auf die Auswahl der Attribute (Kap. 4) große Sorgfalt zu verwenden, um möglichst einfache Nutzenfunktionsgestalten zu erhalten bzw. überhaupt zu ermöglichen.

Ein Hauptanliegen der multikriterialen Nutzentheorie ist denn auch die Formulierung von Voraussetzungen, unter denen eine mehrdimensionale Nutzenfunktion durch möglichst einfache algebraische Ausdrücke spezifiziert werden kann. Dieses Anliegen ist mit verschiedenen Unabhängigkeitskonzepten verbunden, die hier in starker Anlehnung an Keeney (1974) und Keeney und Raiffa (1976) wiedergegeben werden.

Sei $Z:=Z_1\times Z_2\times \ldots \times Z_k$ der Ergebnis-, Attribute- oder Zielraum, $Z\subseteq \mathbb{R}^k$. Ein spezifisches Ergebnis (vektoriell!) sei als $\underline{z}=(z_1,z_2,\ldots,z_k)$ bezeichnet, wobei z_i die spezielle Höhe des Wertes des Attributes Z_i darstellt. Unser Interesse gilt der Bestimmung einer Nutzenfunktion $u(z_1,z_2,\ldots,z_k)$ über Z, wobei jedes Attribut Z_i einen wohlbekannten Einfluß auf die Präferenzen ausübe. Es wird angenommen, daß die Präferenzen über Z beschränkt sind und man bezeichnet mit z^1 die wünschenswerteste sowie mit z^0 die am wenigsten wünschenswerte Attributausprägung; kurz z^1 ist das beste, z^0 das schlechteste Ergebnis.

Schließlich bezeichne $\overline{Z}_{ij} := \overline{Z}_1 \times \ldots \times \overline{Z}_{i-1} \times \overline{Z}_{i+1} \times \ldots \times \overline{Z}_{i+1} \times \ldots \times \overline{Z}_{i-1} \times \overline{Z}_{i+1} \times \ldots \times \overline{Z}_{i+1} \times \ldots$

Grundsätzlich gilt, daß Z_i sowohl ein skalares Attribut als auch ein Vektor von skalaren Attributen sein kann; also Z_i könnte wieder aus Einzelattributen unterdefiniert sein und als sog. Schlüsselattribut auf einer höheren Ebene der Attribute-Hierarchie für größere Komplexe von Entscheidungskonsequenzen stehen.

Definition 3.1:

Wir sprechen von <u>Präferenzunabhängigkeit</u> zwischen $Z_i \times Z_j$ und \overline{Z}_{ij} , wenn die Präferenzordnung der Konsequenzen bzw. Ergebnisse $(z_i, z_j, \overline{z}_{ij})$ bei konstantem \overline{z}_{ij} nicht von der Höhe des Wertes des konstantgehaltenen \overline{z}_{ij} abhängt. Dies impliziert, daß die Indifferenzkurven über $Z_i \times Z_j$ unabhängig vom Wert \overline{Z}_{ij} sind.

Definition 3.2:

Wir sprechen von <u>Nutzenunabhängigkeit</u> zwischen Z_i und \overline{Z}_i , wenn die Präferenzordnung für Lotterien bzgl. Z_i , bezeichnet als $(\tilde{z}_i, \overline{z}_i)$, bei konstantem \overline{Z}_i nicht von dem konstant gehaltenen Betrag \overline{z}_i abhängt. Das impliziert, daß die bedingte Nutzenfunktion über Z_i bei gegebenen konstantem \overline{Z}_i stets eine positive lineare Transformation der bedingten Nutzenfunktion über Z_i bei gegebenem, jetzt auf einen anderen Wert fixierten \overline{Z}_i ist.

Mit diesen zwei Unabhängigkeitskonzepten läßt sich der folgende wichtige Satz formulieren (Theorem 1 in Keeney (1974, S. 23) Beweis s. ebenfalls dort).

Satz 3.1:

Sei $Z:=Z_1\times Z_2\times \ldots \times Z_k$ der eingangs definierte Attributraum, $k\geq 3$. Gilt für ein Z_i , daß $Z_i\times Z_j$ präferenzunabhängig von \overline{Z}_{ij} ist für alle $j\neq i$ und gilt weiterhin, daß Z_i

nutzenunabhängig von \overline{z}_i ist, dann ist entweder

$$u(z_1, ..., z_k) = \sum_{i=1}^{k} c_i u_i(z_i) \text{ mit } \sum_{i=1}^{k} c_i = 1$$
 (3.1)

oder

$$1 + c \cdot u(z_{1}, ..., z_{k}) = \prod_{\substack{i=1 \ k \\ \text{mit } \sum_{i=1}^{k} c_{i} \neq 1,}}^{k} (1 + c c_{i}u_{i}(z_{i}))$$
(3.2)

wobei c > -1 nichttriviale Lösung von

$$1 + c = \prod_{i=1}^{k} (1 + c c_i)$$
 (3.3)

ist.

Dabei gilt

- 1. Die u_i sind die bedingten Nutzenfunktionen für Einzelattribute Z_i normiert durch $u_i(z_i^0) = 0$ und $u_i(z_i^1) = 1$, i = 1(1)k, also $0 \le u_i \le 1$. (3.4)
- 2. Die Funktion u ist normiert durch

$$u(z_1^0, z_2^0, ..., z_k^0) = 0 \text{ und } u(z_1^1, z_2^1, ..., z_k^1) = 1$$
(3.5)

3. Die Skalierungskonstanten c_i haben eine ganz bestimmte Bedeutung, nämlich

$$c_i = u(z_i^1, \overline{z}_i^0)$$
 (3.6)

$$= u(z_{1}^{0}, z_{2}^{0}, \dots, z_{i-1}^{0}, z_{i}^{1}, z_{i-1}^{0}, \dots, z_{k}^{0}), i \in \{1, \dots, k\},$$

$$\overline{z}_{i} \in \overline{z}_{i} = z_{1} \times z_{2} \times \dots \times z_{i-1} \times z_{i-1} \times \dots \times z_{i},$$

d.h. sie entsprechen gerade dem Gesamtnutzenanstieg für Attribut Z_i von seinem schlechtesten auf den besten Zu- stand, während alle anderen Attribute \overline{Z}_i auf ihrem jeweils schlechtesten Wert sind. Zwei häufig vorkommenden Miß-interpretationen der c_i soll gleich hier begegnet werden:

- a) in o.a. Bedeutung ist eindeutig zu erkennen, daß $\sum_{i=1}^{k} c_{i} = 1$ keine stets zu erhaltende Normierung darstellt, sondern der Wert der Summe von den Präferenzen des Entscheidungsträgers abhängt (Näheres hierzu a.a.S.).
- b) Die Skalierungskonstanten sind kein Indikator für die relative Bedeutung eines Attributes (vgl. hierzu Keeney, Raiffa (1976, S. 272 f) und diese Arbeit a.a.S.).
- 4. Die Skalierungsgröße c, die sich als Lösung von Gleichung (3.3) ergibt, stellt nach eigenen Mutmaßungen und Erfahrungen (vgl. Kap. 5) ein wichtiges Merkmal für die Einstellung des Entscheidungsträgers zu bestimmten Situationen dar, und es gilt, wie von Keeney, Raiffa (1976, S. 347 f) bewiesen wird:

$$\begin{array}{cccc}
c & \varepsilon & (-1,0) & & & \text{falls} & \sum\limits_{i=1}^{k} c_{i} > 1 \\
c & > 0 & & & \text{falls} & \sum\limits_{i=1}^{k} c_{i} < 1 \\
\end{array}$$
(3.7)

Für $c \rightarrow 0$ geht die sog. multiplikative Form (3.2) in die additive Nutzenfunktion (3.1) über.

Sind die Voraussetzungen für Satz 3.1 erfüllt - wie dies überprüft wird, ist in Kap. 5 ausgeführt - ist es natürlich von Bedeutung, ein Kriterium zu kennen, das Auskunft gibt, ob die Nutzenfunktion nun additiv oder multiplikativ ist. Ein solches Kriterium stellt der folgende Satz 3.2 zur Verfügung (vgl. Keeney (1974, S. 24)).

Satz 3.2:

Für ein beliebig ausgewähltes \overline{z}_{ij} seien zwei Attributwerte des Attributs Z_i , zwischen denen der Entscheidungsträger Präferenzen hat, z_i und z_i '. Analog seien z_i und z_j ' bestimmt. Betrachten wir nun die Einschätzung des Entscheidungsträgers bezüglich einer Lotterie, die sowohl $(z_i, z_j, \overline{z}_{ij})$ als auch $(z_i', z_j', \overline{z}_{ij})$ zu gleichen Wahrscheinlichkeiten (also jeweils p = 0.5) ergibt und einer anderen Lotte-

rie, die $(z_i, z_j', \overline{z}_{ij})$ ebenso wie $(z_i', z_j, \overline{z}_{ij})$ zu gleichen Wahrscheinlichkeiten ergibt. Es gilt nun folgendes:

Wenn die Voraussetzungen von Satz 3.1 erfüllt sind und zusätzlich der Entscheidungsträger zwischen den beiden oben beschriebenen Lotterien indifferent ist, so ist die Nutzenfunktion additiv; hat er hingegen Präferenzen zwischen beiden Lotterien, ist die Nutzenfunktion multiplikativ.

Man kann zeigen, daß die Indifferenz- oder Präferenzbeziehung zwischen den Lotterien für alle \overline{z}_{ij} gilt, sofern sie nur für ein \overline{z}_{ij} gilt. Dies trifft zu, weil bereits aus den Voraussetzungen für Satz 3.1 folgt, daß $z_i \times z_j$ nutzenunabhängig von \overline{z}_{ij} ist.

Satz 3.1 würde natürlich auch unter der Voraussetzung gelten, daß alle Attribute \mathbf{Z}_1 , ..., \mathbf{Z}_k gegenseitig nutzenunabhängig sind, was gleichbedeutend damit ist, daß jede Attributuntermenge von $\mathbf{Z} = \mathbf{Z}_1 \times \ldots \times \mathbf{Z}_k$ nutzenunabhängig von ihrem jeweiligen Komplement ist. Diese Eigenschaft ist nach Keeney, Raiffa (1976, S. 292) allerdings äquivalent zu den Prämissen von Satz 3.1.

Dieser wichtige und zentrale Satz der multikriterialen Nutzentheorie wurde aber gerade unter solchen Voraussetzungen formuliert, die am einfachsten empirisch nachzuweisen sind (vgl. Kap. 5).

Neben dieser Art der Operationalität liefert uns Satz 3.1 Bedingungen, unter deren Gültigkeit der Umfang an Information, die durch Befragung des Entscheidungsträgers ermittelt werden muß, auf ein Mindestmaß beschränkt bleibt. Der Aufwand, um eine o.a. Voraussetzungen genügende Nutzenfunktion eindeutig zu spezifizieren, wächst lediglich linear mit der Anzahl der Attribute.

Auch wenn die Voraussetzungen von Satz 3.1 nur näherungsweise erfüllt sind, lassen sich mit etwas schwächeren Annahmen über Präferenz- und Nutzenunabhängigkeit noch wesentliche Problemvereinfachungen erreichen. Für derartige Fragestellungen sei auf Keeney, Raiffa (1976) verwiesen. Meistens hängt die Anwendbarkeit von Satz 3.1 stark von einer geeigneten Wahl der Attribute ab.

Diese in der Literatur viel diskutierte Frage nach der Auswahl der zu betrachtenden Attribute oder Ziele und deren detaillierte Beschreibung für unser konkretes Entscheidungsproblem soll Kernstück des nächsten Kapitels sein.

4. Auswahl und Detailbeschreibung der Attribute

Bei der praktischen Anwendung der Entscheidungstheorie kann man gerade im Zuge des mehr oder weniger kreativen Prozesses der Entwicklung von Zielsystemen und der Auswahl von Attributen zur Messung der einzelnen Ziele beträchtliche Interdependenzen beobachten. Dennoch steht bei der analytischen Untersuchung von komplexen Entscheidungsproblemen zunächst immer die Frage nach den Zielen und danach erst die nach den zu ihrer Messung geeigneten Indikatoren, sprich Attributen.

In der einschlägigen Literatur sind Regeln oder Anleitungen für das Aufstellen von Zielen fast ausschließlich auf den Gültigkeitsbereich von Einzeluntersuchungen beschränkt. Grundsätzlich kann aber festgestellt werden, daß es häufig nützlich ist, eine Gruppe sachverständiger Experten zur Aufstellung von Zielen aus dem jeweiligen Problembereich zu befragen. Ein solches Vorgehen erscheint um so mehr erwünscht, je mehr Wert auf intersubjektive Übereinstimmung über den Zielkatalog gelegt wird; d.h. mit unserem Ziel- und auch Attributesystem sollten auch sehr unterschiedliche Präferenzstrukturen von verschiedenen Individuen beschreibbar sein, ohne daß ein neuer Zielkatalog vereinbart werden müßte.

Weil die Systemanalyse oft die ursprünglichen Ziele des Politikers verändert hat, folgert Quade (1964, S. 156 - 157), würde es einer Selbstvernichtung gleichkommen, dessen Ansicht zu dem Problem ohne Untersuchung zu übernehmen, letztlich also vom Auftraggeber allein die Ziele bestimmen zu lassen. Dennoch scheint auch Quade der Meinung zu sein, daß ein konstruktiver und kritischer Dialog zwischen Entscheidungsträger und beratendem Analytiker sehr sinnvoll und fruchtbar für die Aufstellung eines Zielkatalogs ist.

Unter diesem Aspekt betrachten wir auch die fruchtbaren Diskussionen zwischen Mitarbeitern der Abteilung für Angewandte Systemanalyse und Vertretern des Ministeriums für Wirtschaft, Mittelstand und Verkehr des Landes Baden-Württemberg. In Anlehnung an Keeney, Raiffa (1976, S. 50 f) und Bamberg, Coenenberg (1977, S. 28ff) beschreiben wir die Anforderungen, die an ein Zielsystem und die zugehörige Attributmenge gestellt werden. Die kritische Überprüfung des im folgenden detailliert beschriebenen Zielsystems für das Energiesystem von Baden-Württemberg anhand dieses Anforderungskatalogs sei dem Leser Überlassen.

Die Menge der Ziele (und Attribute) sollte sein:

- vollständig, so daß alle bedeutenden Aspekte des spez.
 Problems abgedeckt werden;
- operational, um unmißverständlich, präzise und einfach verwendet werden zu können;
- <u>zerlegbar</u>, so daß bestimmte Teilaspekte im Bewertungsprozeß vereinfacht werden können (bzw. auf Bedarf vereinfacht werden könnten);
- redundanzarm, möglichst gar nicht redundant, um Mehrfachdiskussionen ein und desselben Aspekts zu vermeiden;
- minimal, damit die Dimension des Problems in 'möglichst kleinen' Grenzen gehalten wird.

Die dritte dieser Anforderungen besagt in unserem Fall im wesentlichen:

Die Ziele sollten so definiert sein, daß für ihre zugehörigen Attribute die Voraussetzungen des Satzes 3.1 erfüllt sind.

Bei unserem speziellen Entscheidungsproblem der Bestimmung einer 'optimalen' Energieversorgungsstrategie kommt als wei-

tere Forderung hinzu, daß die Attribute als Linearkombination der Entscheidungsvariablen (Energiefluß- und Kapazitätsvariablen) darstellbar sein sollen. Wie bei der folgenden Beschreibung des Zielsystems und in Anhang A deutlich werden wird, läßt sich diese Forderung zwanglos erfüllen.

Die schon allein aus Gründen der Übersichtlichkeit geforderte Minimalität der Attributeanzahl bedingt, daß die Attribute durchaus größere Komplexe von Entscheidungskonsequenzen repräsentieren; man denke etwa an die vielfältigen Formen der Gewässerbeeinträchtigung, die allesamt durch ein Attribut vertreten werden.

Im folgenden befassen wir uns mit der praktischen Bestimmung unseres Zielsystems. In einem Basisschritt werden wir uns relativ unbeeinflußt von der o.a. Liste wünschenswerter Eigenschaften eines Zielsystems mit der zunächst wahllosen Zusammenstellung eines Katalogs von Ansprüchen an ein regionales Energieversorgungssystem befassen. Dieser Katalog wird systematisch überarbeitet und kategorisiert. Am Ende erhält man das Zielsystem in Form einer verbalen Fixierung aller Ziele und Attribute, anhand derer mögliche Energieversorgungssysteme beurteilt werden sollten.

Es ergaben sich zunächst die folgenden Zielvorstellungen:

- Z1 Geringe Kosten
- Z2 Geringe Umweltauswirkungen
- Z3 Hohe Vielfalt des Endenergieangebots
- Z4 Hohe Energieeffizienz
- Z5 Hohe Energieversorgungssicherheit
- (Z6 Entwicklungsneutralität)

Dabei stellen einige dieser 5(6) Ziele nur eine Komprimierung verschiedener Einzelaspekte (Unterziele) dar, nämlich Z2:

- Z.2.1 Geringe Gesundheitsschäden durch SO₂
- Z.2.2 Geringe Gesundheitsschäden durch Feinstaub
- z.2.3 Geringe Gesundheitsschäden durch NO_x
- z.2.4 Geringe Gesundheitsschäden durch CO und $C_{m}^{H}H_{n}$
- Z.2.5 Geringe radiologische Bevölkerungsbelastung
- Z.2.6 Geringe Unfallträchtigkeit
- Z.2.7 Geringes Risiko von Klimaänderungen durch CO2-Produktion
- Z.2.8 Geringe Beeinträchtigung der Gewässer
- Z.2.9 Geringer Landschaftsverbrauch

und Z.5:

- Z.5.1 Mittelfristige Versorgungssicherheit
- 2.5.2 Kurzfristige Versorgungssicherheit.

Das Ziel 6 wurde nach ausführlicher Diskussion gestrichen, da man übereinkam, daß dieses Ziel bereits durch bloße Umverteilung via Subventionen, unabhängig von den Kosten des Energieversorgungssystems, erreicht werden kann und somit keiner modellinternen Berücksichtigung bedarf. Ebenso wurde ein weiteres Unterziel zu Z.2, nämlich 'Geringe optische Beeinträchtigung' nicht in den Zielkatalog aufgenommen, da man übereinstimmend der Meinung war, daß eine bestimmte Anzahl Kühltürme, verbunden mit einem sonst rundum befriedigendem Energieversorgungssystem, die "optimale Politik" nicht beeinflussen würde; zumal eine Energieerzeugungsart, die tatsächlich zu stärkerer optischer Beeinträchtigung führen könnte, nämlich die Windenergienutzung, im Modell nicht berücksichtigt wird.

Analog wird unterstellt, daß weitere, mehr psychologische Aspekte betreffende Ziele, etwa 'hohe Zufriedenheit der Bevölkerung mit dem Energieversorgungssystem' nicht explizit berücksichtigt werden müssen, da eine nach rationalen Gesichtspunkten entstandene 'optimale' Energieversorgungspolitik auch solchen Zielen genügen dürfte.

Dieses Zielsystem erschien allen Beteiligten anschaulich, vollständig, wenig redundant und vor allem nicht zu umfangreich, weshalb man dann an die Ermittlung eines Indikators oder Attributs für jedes Einzelziel ging. Da durch die Indikatoren die Zielerfüllungsgrade der Einzelziele sowohl gemessen als auch (in der Optimierungsrechnung) gesteuert werden, muß jeder Indikator eine eindeutige – bzw. lineare – Zuordnung der Indikatorwerte zu den Modellvariablen (d.h. den jährlich umgesetzten Energiemengen und den zugehörigen Umwandlungskapazitäten) gewährleisten. Dies dient letzten Endes der Sicherstellung einer eindeutigen Beziehung zwischen Indikator und Zielerfüllungsgrad für alle betrachteten Entscheidungsalternativen des Modells.

Eine Ursache-Wirkungs-Beziehung zwischen Indikator und Ziel ist dabei nicht unbedingt notwendig und des öfteren kommt man um die Einführung sog. Hilfsindikatoren (engl. proxy attribute) gar nicht herum, da eine direkte Messung der Erreichung bestimmter Ziele nicht möglich ist.

Das bei der Indikatorenauswahl auftretende Problem, wie eng ein Indikator entweder an die Modellvariablen oder an den Zielerfüllungsgrad gekoppelt sein soll, ist nicht allgemein zu lösen. Hat man beispielsweise das Ziel "geringe Gesundheitsschäden durch SO_2 ", könnte man als Indikator die SO_2 -Emission nehmen. Sie ließe sich leicht aus den Modellvariablen, die dem Verbrauch fossiler Brennstoffe entsprechen, berechnen, aber es wäre schwer zu sagen, inwieweit das Ziel bei einem bestimmten Emissionswert erreicht ist. Andererseits könnte man als Indikator die Zahl der Krankheitstage wegen SO2-bedingter Krankheiten nehmen, die sicher ein gutes Maß für den Zielerreichungsgrad ist, aber ihre Berechnung aus den Modellvariablen wäre sehr unsicher. Bei der Lösung dieses Konfliktes folgt man am besten der Maxime, den Indikator so nahe am Ziel zu wählen, daß er gerade noch einigermaßen sicher aus den Modellvariablen berechnet werden kann. Beim Beispiel der SO2-Belastung entspricht dies dem Indikator ${\rm SO}_2$ -Immission. Die verbleibenden Unsicherheiten über den Zusammenhang zwischen Ziel und Indikator müssen direkt vom befragten Entscheidungsträger eingeschätzt werden.

Im folgenden erläutern wir im Detail die Ziele, Indikatoren und deren Wertebereiche, so wie sie vom Modell des Energieversorgungssystems von Baden-Württemberg vorgegeben sind. Wie bei der realen Durchführung des Projektes orientiert sich der Umfang der Darstellung an der Maxime, daß für eine konsistente Bestimmung der Nutzenfunktion (vgl. Kap. 5) die Konsequenzen, für die die Indikatoren stehen, klar bezeichnet und die Ziele deutlich gegeneinander abgegrenzt sein sollen. Eine ausführliche Beschreibung der Berechnungsgrundlagen zu den Indikatoren wird in Teil I gegeben. gegeben.

1. Ziel: Geringe Kosten

Indikator: Gesamtkosten des Energiesystems in DM/(cap·a)

(Preisbasis 1975)

Schwankung: 1800 - 2500 DM/(cap·a)

Erläuterung: Hohe Kosten beinhalten den Verzicht der

Energieverbraucher auf andere Güter und

Dienstleistungen.

Die Schwankungsbreite dieses Indikators läßt sich folgendermaßen nachvollziehen: Ein bestimmter künftiger Gesamtendenergiebedarf, der etwa um das Jahr 2000 vorliegen könnte führt bei kostenminimaler Deckung zu jährlichen Gesamtkosten i.H.V. ca. 1800 DM/(cap·a). Die Berechnung der Gesamtkosten zur Dekkung des o.a. Endenergiebedarfs unter Heranziehung der modellmäßig denkbar kostenungünstigsten Energieversorgungsstrategie ergibt eine Indikatorobergrenze. Dabei wird freilich unterstellt, daß nur soviel Umwandlungskapazitäten installiert werden, wie Energiemengen zur Nachfragebefriedigung umgesetzt werden müssen und natürlich nur soviel Energie erzeugt wie nachgefragt wird. Ohne diese Voraussetzungen wären die Gesamtkosten unbeschränkt.

2. Ziel: Geringe Umweltauswirkungen des Energiesystems Erläuterung:

Die Umweltauswirkungen des Energiesystems werden durch die folgenden Unterziele und deren Indikatoren beschrieben. Die

Umweltindikatoren werden, soweit dies im Rahmen des Energiemodells möglich ist, als wirkungsspezifische Kenngrößen dargestellt. Dies bedeutet, daß die mit den Modellvariablen
direkt verbundenen Emissionen gemäß den jeweiligen Ausbreitungsbedingungen in Immissionskonzentrationswerte transformiert und anschließend über die Betroffenen gemittelt werden.
Eine zusätzliche Belastung durch Beiträge Baden-Württembergs
zur Energiebedarfsdeckung anderer Regionen wird nicht berücksichtigt. Sofern Umweltauswirkungen des Energiesystems von
Baden-Württemberg außerhalb dieser Bezugsregion auftreten
(z.B. Braunkohleverstromung in Nordrhein-Westfalen, Wiederaufarbeitungsanlage in Niedersachsen) werden diese Belastungen
unter Berücksichtigung der Zahl der Betroffenen auf BadenWürttemberg umgerechnet.

Analog zu den Erläuterungen für Ziel 1 lassen sich für jedes einzelne Umweltattribut modellbezogen Ober- und Untergrenzen ermitteln. Die bzgl. des jeweils betrachteten Attributs günstigste bzw. ungünstigste Energieversorgungsstrategie dient hierbei als Richtschnur.

Von Null verschiedene Indikatoruntergrenzen deuten auf modellunabhängige, aber vom Energieversorgungssystem unmittelbar oder mittelbar herrührende Mindestwerte hin.

2.1 Ziel: Geringe Gesundheitsschäden durch Schwefeldioxid

Indikator:

Mittlere Immissionsbelastung der Bevölkerung durch SO_2 in $\mu g/m^3$

Schwankung:

 $0 - 100 \, \mu g/m^3$

Erläuterung:

SO₂ entsteht bei der Verfeuerung schwefelhaltiger Brennstoffe. Ein vielzitiertes Beispiel für die Wirkung von SO₂ (in Verbindung mit Feinstaub) ist die Londoner Smogkatastrophe im Winter 1962 mit einer deutlichen Erhöhung der Todesfälle durch Erkrankungen der Atmungsorgane. Wenngleich erhebliche

Zweifel an der ursächlichen Wirkung der ${\rm SO_2}$ -Konzentration für Gesundheitsschäden bei Smogwetterlagen berechtigt erscheinen, so gilt dennoch eine Beeinträchtigung der Atmungsorgane bei hohen ${\rm SO_2}$ -Konzentrationen als erwiesen. Die Langzeitwirkung von ${\rm SO_2}$ – und der damit verbundenen atmosphärischen Schadstoffe – auf die menschliche Gesundheit bei geringen Konzentrationen ist bisher kaum erforscht.

Die geltenden SO₂-Standards sind so zu interpretieren, daß nach derzeitigen Erkenntnissen die Risiken von Gesundheitsschäden als vernachlässigbar angesehen werden können, wenn die Konzentrationswerte unterhalb des Standards liegen. Diese Formulierung beinhaltet weder, daß bei höheren Werten Gesundheitsschäden zwangsläufig auftreten, noch, daß bei niedrigeren Werten gesundheitliche Schäden völlig auszuschließen sind. Standards (für Langzeitwert)

nach TA-Luft: 140 μ g/m³ nach WHO: 60 μ g/m³

Hierbei ist anzumerken, daß in diesen Standards das gleichzeitige Auftreten von Feinstaub (siehe Ziel 2.2) berücksichtigt ist. Zur erheblichen Diskrepanz dieser Werte ist ferner zu bemerken, daß der WHO-Standard als langfristig anzustrebendes Ziel formuliert ist, während der derzeitige Standard nach TA-Luft als maximal zulässiger flächenbezogener Mittelwert in Genehmigungsverfahren eingeht. Diese Bedeutung des TA-Luft-Standards zeigt auch, daß ein unmittelbarer Vergleich des Indikators (als bevölkerungsbezogener Mittelwert) mit den SO2-Standards nicht durchführbar ist. Diese sollen nur als Anhaltspunkte dienen. Bei einem Mittelwert von 100 $\mu \text{g/m}^3$ ergibt sich gemäß der angewandten Ausbreitungsbeziehungen für Stuttgart der Maximalwert der lokalen Immissionkonzentration mit 150 $\mu \text{g/m}^3$.

2.2 Ziel: Geringe Gesundheitsschäden durch Feinstaub

Indikator: Mittlere Immissionsbelastung der Bevölkerung

durch Feinstaub in µg/m³

Schwankung: $0 - 12 \mu g/m^3$

Erläuterung:

Feststoffe werden bei der Verbrennung von festen und flüssigen Brennstoffen emittiert, ihre Menge hängt ab von der Art des Verbrennungsprozesses und der Rückhaltemaßnahmen (Filter). Als Feinstaub werden Feststoffe mit Korngrößen ≤ 10 μm bezeichnet, lungengängiger Feinstaub umfaßt den Anteil mit Korngrößen ≤ 5 μm. Emissionsbegrenzende Maßnahmen sind für industrielle Emittenten zwingend vorgeschrieben. Diese Maßnahmen bewirken vor allem eine Verminderung des Grobstaubes. So ergaben neuere Immissionsmessungen in verschiedenen Städten der Bundesrepublik einen Gewichtsanteil von 88 % Feinstaub, während man bei der Abfassung der TA-Luft von 1974 noch von einem Anteil von maximal 50 % ausgehen konnte.

Die Wirkungen von Stäuben in hohen Konzentrationen sind aus dem Bereich der Arbeitsmedizin recht gut bekannt. Staublunge (Silikose) ist die typische Berufskrankheit für den Untertagebau. Eine direkte Extrapolation auf niedrige Konzentrationen, wie sie in der Atmosphäre vorliegen, ist - ebenso wie beim SO₂ - mit erheblichen Unsicherheiten behaftet. Ein Synergismus zwischen Feinstaub und SO₂ wird für möglich gehalten, wie schon bei der Erläuterung des Zieles 2.1 angedeutet wurde.

Standard nach TA-Luft für Langzeitwert: 100 $\mu g/m^3$ (Korngröße \leq 10 μm).

Der lokale Maximalwert (für Stuttgart) beträgt 17 $\mu g/m^3$. Da hierin ein Anteil von etwa 40 % verkehrsbedingter Immissionen enthalten ist, sind kleinräumige Überhöhungen in Hauptverkehrsstraßen in der Größenordnung des 10-fachen des lokalen Maximalwertes als realistisch anzusehen.

2.3 Ziel: Geringe Gesundheitsschäden durch Stickoxide

Indikator: Mittlere Immissionsbelastung der Bevölke-

rung durch NO $_{\rm x}$ in $\mu g/m^3$ Schwankung: 5 - 40 $\mu g/m^3$

Erläuterung:

Stickoxide entstehen bei sämtlichen Verbrennungsprozessen unter Luftzufuhr. Sie sind wesentlich beteiligt bei der Bildung des photochemischen Smogs (Los Angeles), der durch die Einwirkung von Sonnenstrahlung auf ein Gemisch von reaktiven Kohlenwasserstoffen und Stickoxiden entsteht. Auswirkungen dieses Smog-Typs sind Augen-, Nasen- und Halsreizungen, asthmatische Anfälle sowie Vergrößerung der Atmungsbeschwerden bei Atmungserkrankten. Bei Einwirkung von Stickoxiden in hohen Konzentrationen konnten an Versuchstieren Lungenschäden festgestellt werden. Bezüglich der Langzeitwirkung von geringen Konzentrationen und der Festlegung der Standards gilt das gleiche wie für den Indikator "SO2-Immissionsbelastung".

Standards (für Langzeitwert) nach TA-Luft:

 NO_2 : 100 $\mu g/m^3$

NO : $200 \, \mu g/m^3$

Bei einem mittleren Mischungsverhältnis NO₂/NO = O,5 ergibt sich für NO_x der Standard von 300 $\mu g/m^3$. Der lokale Maximalwert (für Stuttgart) ist beim Maximum des bevölkerungsbezogenen Mittelwerts etwa doppelt so hoch. Da etwa 1/3 dieses lokalen Maximums vom Straßenverkehr herrührt, muß, ebenso wie beim Feinstaub, mit erheblichen kleinräumigen Überhöhungen gerechnet werden.

2.4 Ziel: Geringe Gesundheitsschäden durch Kohlen-

monoxid und Kohlenwasserstoffe

Mittlere Immissionsbelastung der Bevölke-Indikator:

rung durch CO in μg/m³

Schwankung: $10 - 190 \, \text{ug/m}^3$

Erläuterung:

CO entsteht bei unvollständiger Verbrennung von fossilen Brennstoffen. Dieser Sachverhalt trifft vor allem für Verbrennungsmotoren und Einzelofenheizungen zu. Aufgrund des Rückgangs der Einzelofenbeheizung kann deren Anteil jedoch vernachlässigt werden. Mit der CO-Emission sind weitere Kfz-Abgase verbunden, insbesondere Kohlenwasserstoffe. Da zwischen beiden Emissionen eine recht gute Korrelation besteht, ist der Indikator "CO-Immission" geeignet, die Schäden sowohl durch CO als auch durch Kohlenwasserstoffe zu charakterisieren.

Die Wirkung von CO beruht auf der Erniedrigung des Sauerstoffgehalts im Blut und bedingt hierdurch Konzentrationsschwäche, Ermüdungs- und Ermattungserscheinungen. Nach bisherigen Erkenntnissen wirkt CO nicht akkumulativ, d.h. nach Beendigung der Exposition stellt sich innerhalb kurzer Zeit der Normalzustand wieder ein. Die Wirkung der Kohlenwasserstoffe ist sehr vielfältig entsprechend dem breiten Spektrum an Verbindungen, das dieser Begriff umfaßt. Erwähnt seien die kanzerogene Wirkung von Stoffen wie Benzpyren und die Rolle der Kohlenwasserstoffe bei der Bildung des Los Angeles-Smogs.

Standards:

TA-Luft: 10 mg/m³ als Langzeitwert

WHO: 10 mg/m³ als 8-h-Mittelwert

Bezüglich der Vergleichbarkeit der Standards gilt das gleiche wie für die SO₂-Immissionskonzentration. Der lokale Maximal-wert für Stuttgart beträgt das fünffache des maximalen Mittelwertes. Kleinräumige Überhöhungen in Hauptverkehrsstraßen bis zum 20-fachen des Stuttgarter Mittelwertes erscheinen realistisch.

2.5 Ziel: Geringe radiologische Bevölkerungsbelastung Indikator: Mittlere Ganzkörperdosisrate in 10⁻² mrem/a

Schwankung: $0 - 50 \cdot 10^{-2}$ mrem/a

Erläuterung:

Die radiologische Belastung ist charakteristisch für Elektrizitätserzeugung in thermo-nuklearen Kraftwerken. Allerdings sind die radioaktiven Emissionen von Kohlekraftwerken auch nicht unbeträchtlich, bleiben aber in diesem Indikator unberücksichtigt. Das Gebiet der radiologischen Umweltbelastungen ist derart komplex, daß die Kennzeichnung durch die Ganzkörperdosisrate allein eine grobe Vereinfachung darstellt, die sich lediglich durch den Indikatorcharakter der Größe rechtfertigen läßt.

Dabei ist die Ganzkörperdosisrate ebenso als organspezifische Dosisrate anzusehen wie z.B. Schilddrüsen- oder Leberbelastung, d.h. sie ist nicht als Mittelwert über die einzelnen Organbelastungen zu interpretieren.

Mögliche Gesundheitsschädigungen bestehen in einem erhöhten Auftreten von Leukämie und anderen Krebserkrankungen. Daneben sind genetische Folgen (Mißbildungen) zu befürchten. Analog zu den Auswirkungen der chemischen Schadstoffe ist auch bei radiologischen Belastungen das Ausmaß der Langzeitwirkung von geringen Dosen umstritten.

Die zu bewertende Ganzkörperdosisrate setzt sich in diesem Modell aus regional wirksamen kurzlebigen Radionukliden und global wirksamen langlebigen Radionukliden zusammen. Im ersten Fall werden die radioaktiven Immissionen analog zum Verfahren der SO₂-Immission bestimmt. Bei langlebigen Nukliden, wo sich ein nicht-vernachlässigbarer Anteil erst durch die Berücksichtigung der Akkumulation ergibt, wird zunächst analog zum CO₂ (Ziel 2.7) verfahren. Aufgrund der Kenntnis der Zerfallsprozesse der radioaktiven Substanzen wird dann die Steigerungsrate in die resultierende Gleichgewichtskonzentration umgerechnet, S. Teil I. Die Addi-

tion der Ganzkörperdosisraten für kurzlebige und langlebige radioaktive Substanzen ergibt den Wert des Indikators.

In die Berechnungen der Ganzkörperdosisrate gehen die gesamten Emissionen des Brennstoffkreislaufs ein (Kernkraftwerke und Wiederaufarbeitungsanlagen). Dabei wird für Leichtwasserreaktoren vom heutigen Stand der Technik, für andere Kernkraftwerktypen und die Wiederaufarbeitungsanlagen von den angestrebten Rückhaltefaktoren ausgegangen.

Bei der Abwägung dieses Indikators gegen andere ist auch zu beachten, daß er eventuelle Störfallemissionen ebenso wie nichtmonetäre Aspekte des Abfallproblems mit repräsentiert. Der Indikator steht also stellvertretend für, grob gesprochen, alle bei kerntechnischer Energiegewinnung typischerweise auftretenden Umweltrisiken. Deshalb werden bei der Indikatorberechnung radiologische Belastungen durch konventionelle Kraftwerke außer acht gelassen, obwohl sie nach Halbritter (1978) durchaus in derselben Größenordnung wie die von Kernkraftwerken bei Normalbetrieb liegen können.

2.6 Ziel:

Standard nach der Strahlenschutzverordnung: 30 mrem/a

durch Energieerzeugung und -verbrauch

Geringes unmittelbares Gesundheitsrisiko

Indikator: Tödliche Unfälle und Berufskrankheiten

mit tödlichem Ausgang in Tote/a

Schwankung: 2600 - 2800 Tote/a

Erläuterung:

Auswirkungen des Energiesystems auf die menschliche Gesundheit sind bereits durch die Schadstoff- und radiologischen Belastungen erfaßt worden. Durch die vorgesehenen Alternativen des Energiesystems ergibt sich zusätzlich eine mehr oder minder große Gefährdung durch Unfälle und Berufskrankheiten der in der Energiewirtschaft Beschäftigten. Jedoch ist hierbei die Schwankungsbreite relativ gering im Vergleich zur Unfallträchtigkeit, die bereits dadurch fest

vorgegeben ist, daß eine Alternative zum Individualverkehr im Modell nicht vorgesehen ist.

Als Indikator für die Unfallträchtigkeit wird die zu erwartende Zahl der Unfalltoten sowie der Berufskrankheiten mit tödlichem Ausgang herangezogen. Hierdurch ergibt sich ein deutlicher Kontrast zu den gesundheitlichen Folgen von Umweltbelastungen, die ganz bewußt nur durch eine verursachende Größe (die Immissionskonzentration) charakterisiert werden (s. Ziele 2.1 - 2.5). Die Zahl der Unfalltoten eignet sich hier deshalb gut als Indikator, weil sie für verschiedene Unfallursachen aus den entsprechenden Statistiken entnommen werden kann und so eine Vergleichbarkeit bezüglich der verschiedenen Modellvarianten begünstigt wird.

Eine Beeinflussung des Indikators erfolgt hauptsächlich durch

- Unfalltote und Berufskrankheiten mit tödlichem Ausgang im Steinkohlenbergbau
- Unfalltote im Straßenverkehr durch Heizöltransporte

Demgegenüber bewirken Substitutionen in anderen Bereichen des Energiesystems nur geringfügige Änderungen des Indikatorwertes.

Rechnet man die Schwankungsbreite des Indikators in eine Verminderung der mittleren Lebenserwartung der Bevölkerung Baden-Württembergs um, so beträgt dieser Wert ca. 5 h pro Einwohner.

Zur Bewertung dieses Indikators ist anzumerken, daß die materiellen Folgen von Unfällen (ärztliche Behandlung, Hinterbliebenenversorgung) im Bereich der Energiegewinnung und -versorgung prinzipiell bereits in den Gesamtkosten enthalten sein müßten, und zwar über Beiträge zu Berufsgenossenschaften. Da die überwiegende Zahl der Unfallopfer diesen Bereichen zuzuordnen ist, ist mit diesem Indikator also vor

allem eine zusätzliche ethische Bewertung der Gesundheitsschäden verbunden; es geht also trotz des Indikators "Unfalltote und Berufskrankheiten mit tödlichem Ausgang" nicht
darum, Todesfälle gegen andere Auswirkungen des Energiesystems abzuwägen (z.B. Umrechnung eines Todesfalles in Geldeinheiten). Vielmehr sollen unterschiedliche Ausprägungen
der Unfallträchtigkeit (inklusive nicht-tödliche Unfälle)
und der Arbeitsplatzbelastung gegenüber denen von anderen
Zielen bewertet werden.

2.7 Ziel: Geringes Risiko von Klimaänderungen durch

Kohlendioxid-Produktion

Indikator: Erhöhung des CO2-Gehaltes der Atmosphäre

in ppm/a

Schwankung: 10 - 150 ppm/a

Erläuterung:

CO₂ entsteht bei der Verfeuerung fossiler Brennstoffe. Es ist zwar nicht als Schadgas anzusehen, jedoch werden Auswirkungen auf das globale Klima bei einem erhöhten CO₂-Gehalt aufgrund der verminderten Durchlässigkeit der Atmosphäre für Wärmestrahlung befürchtet. Als Indikator wird eine fiktive jährliche Erhöhung der CO₂-Konzentration unter folgenden Annahmen ermittelt:

- Die gesamte CO₂-Emission pro Jahr durch das Energiesystem Baden-Württemberg verteilt sich gleichmäßig auf die Lufthülle über dem Bundesland.
- Aufgrund des Verhältnisses der Landoberfläche zur gesamten Erdoberfläche wird ein Faktor 1/3 berücksichtigt.
- Eine Verminderung der Konzentration durch Absorption von CO₂ in den Weltmeeren wird außer Betracht gelassen, da dieser Prozeß wesentlich durch die Dynamik des Energiesystems bestimmt wird. Die Beschreibung der Absorptionsdynamik ist überdies nicht zufriedenstellend geklärt.

Die gegenwärtige CO₂-Konzentration beträgt etwa 350 ppm, davon sind ca. 65 ppm anthropogen. Zur Zeit ist die jährliche Steigerung ca. 30 % geringer, als bei vollständiger Akkumulierung zu erwarten wäre, jedoch ist zukünftig mit einer Abnahme der Absorptionsfähigkeit der Weltmeere zu rechnen. Bei der Bewertung dieses Zieles ist zu beachten, daß durch das Energiesystem Baden-Württembergs eine direkte Beeinflussung der Steigerung des CO₂-Gehalts nur in dem Ausmaß möglich ist, das dem Anteil am globalen Energieverbrauch entspricht. Daher ist die Bewertung des Zieles vor allem am möglichen Beispielcharakter des Energiesystems von Baden-Württemberg zu orientieren.

M.a.W.: Der Entscheidungsträger in Baden-Württemberg verhält sich quasi stellvertretend für andere Länder.

2.8 Ziel: Geringe Gewässerbelastung

Indikator: Verdunstete Wassermenge in m³/sec

Schwankung: 0 - 10 m³/sec

Erläuterung:

Vereinfachend wird bei der Bewertung verschiedener Konfigurationen des Energieversorgungssystems angenommen, daß die Höhe der Schäden infolge Abwärmefreisetzung unabhängig davon ist, welches Medium (Atmosphäre oder Gewässer) erwärmt wird. Damit reduzieren sich die gewässerspezifischen Auswirkungen des Energiesystems auf die Verdunstungsverluste infolge Kraftwerkskühlung.

Verdunstungsverluste erniedrigen die Wasserführung der Flüsse, wobei folgende Auswirkungen denkbar sind:

- Konzentrationserhöhungen von Schadstoffen
- Erniedrigung der Fließgeschwindigkeit mit der Folge der räumlichen Verlagerung von Reaktionsmechanismen in Fließgewässern.
- Beeinträchtigung der Schiffahrt auf nichtgestauten Wasserwegen.

Die detaillierte Ermittlung derartiger Auswirkungen kann nur bei Einbeziehung potentieller Standorte für Kraftwerke erfolgen; weshalb im Rahmen unserer standortunabhängigen Untersuchung eine wirkungsbezogenere Kenngröße als "Verdunstungsverluste" nicht angewendet werden kann.

Eine Verminderung oder Ausschaltung von Verdunstungsverlusten ist durch den Einsatz von kostenaufwendigeren Trockenkühltürmen oder durch Nutzung der entstehenden Abwärme möglich.

Der Maximalwert der verdunsteten Wassermenge entspricht dem niedrigsten Abfluß des Neckar an der Mündung, der mittlere Abfluß beträgt zum Vergleich 148 m 3 /s. Die mittlere Gesamtniederschlagsmenge über Baden-Württemberg beträgt rund 1100 m 3 /s, von der etwa 50 % als Oberflächenwasser abfließen.

2.9 Ziel: Geringe Landinanspruchnahme durch Anlagen

der Energiewirtschaft

Indikator: Flächenbedarfsanteil der Energieumwand-

lungsanlagen an der Gesamtfläche Baden-

Württembergs in %

Schwankung: 0 - 0.05 %

Erläuterung:

Die Umweltbeeinträchtigung, die Energieumwandlungsanlagen allein durch ihre bloße Anwesenheit darstellen, läßt sich, wenn auch sehr grob, durch die in Anspruch genommene Fläche beschreiben.

Faktoren, die den Flächenbedarf beeinflussen, sind insbesondere die installierte Leistung von Kraftwerken, Heizkraftwerken oder reinen Heizwerken und die von ihnen näherungsweise proportional zur Leistung beanspruchte Fläche.

Auch der Flächenbedarf für den Braunkohleabbau in Nordrhein-Westfalen wird bei der Energieversorgungsalternative 'Braunkohleverstromung' - gewichtet mit dem Verhältnis der Bevölkerungsdichten - in der Indikatorberechnung berücksichtigt.

Ohne Berücksichtigung dieser Alternativen ist die Landinanspruchnahme nur in sehr geringem Umfang durch die Modellvariablen beeinflußt. Da durch den Bau von Pumpspeicherwerken evtl. landschaftsgestalterische Maßnahmen zur Verbesserung des Landschaftsbildes sowie der Landschaftsnutzung erreicht werden können - dies jedoch nicht zwangsläufig der Fall sein muß - wird von einem Flächenbedarf für Kraftwerke ausgegangen, der sich aus der zu installierenden Leistung ohne Pumpspeicherwerke ergeben würde.

Landinanspruchnahme durch Transportanlagen, z.B. Stromleitungen, wird nicht berücksichtigt, ebensowenig der Flächenbedarf für lokale Sonnenenergienutzung zu Heizzwecken, da Kollektoren i.d.R. auf Dächern installiert werden. Der Landbedarf einer Alternative 'Stromerzeugung mittels Sonnenenergie' in sog. Sonnenfarmen größeren Umfangs müßte freilich bei (bislang noch nicht erfolgter) Einführung in das Modell explizit mit einbezogen werden.

3. Ziel: Hohe Vielfältigkeit des Endenergieangebots Indikator: Vielfältigkeitsindex des Endenergieangebots als dimensionslose Zahl zwischen O und 1

Erläuterung:

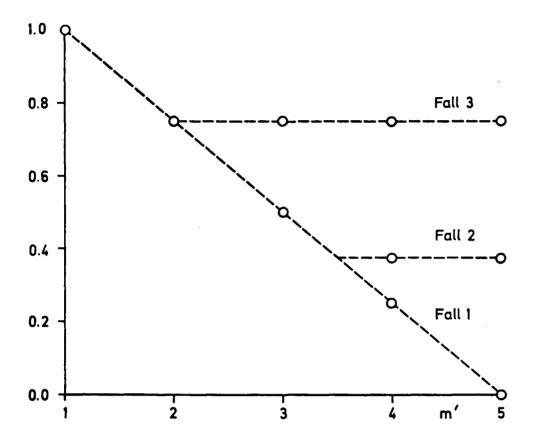
Dieser Indikator beinhaltet die Eigenschaft des Energiesystems, dem Endverbraucher eine mehr oder weniger große Auswahl an Endenergiearten zur Deckung seines Bedarfs anzubieten. Gleichzeitig ist hiermit die Eigenschaft des Energiesystems verbunden, gegenüber Störungen im Energiesystem mehr oder weniger stabil zu sein.

Eine Meßgröße für das vorliegende Ziel läßt sich durch folgende Überlegungen ableiten:

Für eine bestimmte Bedarfsart mit Index i (z.B. Niedertemperaturwärme) existieren vom Modellaufbau her m mögliche Endenergieformen. Es werden D Energieeinheiten nachgefragt. (Dabei ist, wie auch bei den Erläuterungen zu Ziel 4., zu beachten, daß die Endnachfrage hier nicht immer Nachfrage nach Endenergie bedeutet, sondern sich, je nach den betrachteten Umwandlungsoptionen, auf Endenergie, Nutzenenergie oder

auch eine Zwischenform bezieht.) Eine optimale Angebotsstruktur ist dann vorhanden, wenn sämtliche der $\mathbf{m_i}$ möglichen Endenergieformen, bei denen mehr als eine Möglichkeit zur Deckung vorgesehen ist, mit dem gleichen Anteil $\mathbf{D_i/m_i}$ auftreten (ggf. unter Einbeziehung unterschiedlicher Wirkungsgrade). Die Anzahl der tatsächlich angebotenen Energieformen allein ist offenbar kein sonderlich geeigneter Indikator zur Beschreibung der Angebotsvielfalt, da er lediglich die qualitativen Aspekte der Vielfalt berücksichtigen würde.

Die Abweichung der Angebotsstruktur von der skizzierten optimalen Struktur läßt sich durch den folgenden Index formelmäßig beschreiben:


$$I = \frac{1}{\sum_{i=1}^{n}} \sum_{i=1}^{n} \frac{\sum_{i=1}^{m_{i}} \frac{m_{i}}{2(m_{i}-1)} (\sum_{j=1}^{m_{i}} |\eta_{ji} x_{ji} - \frac{D_{i}}{m_{i}}|) , m_{i} > 1$$
(4.1)

n = Anzahl der Nachfragekategorien

η_{ji} = Wirkungsgrad des Energieträgers j bzgl. der Bedarfskategorie i.

Der Faktor $\rm m_i/2(m_i-1)$ ist eingefügt worden, damit im Falle der Bedarfsdeckung durch jeweils nur eine Endenergieart der Index den Wert 1 annimmt; im optimalen Fall hat der Index den Wert 0.

Zur Veranschaulichung dieses Indikators sind in der folgenden Abbildung die Indikatorwerte für eine einzige Bedarfsart, die mit fünf Endenergieformen befriedigt werden kann, beispielhaft dargestellt.

Aufgetragen ist der Wert von

$$\frac{m}{D \cdot 2 (m-1)} \quad \sum_{j=1}^{m} |X_{j} - \frac{D}{m}|$$
 (4.2)

X_j = Endenergiemenge der Art j zur Deckung der Nachfrage D pro Jahr unter Einbeziehung des Wirkungsgrades

in Abhängigkeit von der Anzahl m' der Endenergiearten, die einen von Null verschiedenen Beitrag zur Bedarfsdeckung liefern.

Um die Auswirkung der Verteilung über die Energieträger zu verdeutlichen, sind folgende Fälle skizziert:

$$x_j = \frac{D}{m}$$
.

- Fall 2: Eine der Endenergieformen hat den Wert O.5 · D, der verbleibende Bedarf wird, falls m' > 1 ist, gleichmäßig auf die restlichen X, mit X, ‡ O aufgeteilt.
- Fall 3: Eine der Endenergieformen hat den Wert 0.8 · D, der verbleibende Bedarf wird entsprechend Fall 2 aufgeteilt.

Aus der Grafik ist zu entnehmen, daß bei einer Gleichverteilung der Index linear mit der Anzahl m' abnimmt, bei einer Ungleichverteilung eine Abnahme aber nur bis zu einem bestimmten Wert erfolgen kann. Letzterer Wert liegt um so höher, je mehr eine einzelne Form der Bedarfsdeckung überwiegt.

Bei Bürk, Gehrig (1978, S. 7) findet sich ein als "relative mean deviation" bezeichneter Index, der mit dem Ausdruck (4.1) eng verwandt ist und zur Messung der Einkommens-Ungleichverteilung herangezogen wird.

(4.1) keine rein lineare Funktion der Modellvariablen ist, verwendet man später in der Optimierung statt einer Betragsfunktion

$$|x - a|$$
 den Ausdruck $(-x_1 + x_2 + a)$

$$mit x_1 \le x 0 \le x_1 \le a$$

und
$$x_2 \ge x - x_1$$
 $0 \le x_2$

Man ersetzt also einen nichtlinearen Ausdruck durch einen linearen mit zusätzlichen linearen Nebenbedingungen.

4. Ziel: Hohe Energieeffizienz

Indikator: Gesamtwirkungsgrad n des Energiesystems in %; da n nicht als Linearkombination der Entscheidungsvariablen darstellbar, wählt man den Reziprokwert des Gesamtwirkungsgrades • 10⁴ in %

Erläuterung:

Der als Indikator gewählte Reziprokwert des Gesamtwirkungsgrades

$$\frac{1}{\eta} = \frac{\sum_{i}^{\sum_{j} D_{i}}}{\sum_{j}^{D_{j}}}$$

- XP,: Energiemenge pro Jahr des Primärenergieträgers i (z.B. Steinkohle für Elektrizitätserzeugung)
- Vorgegebene Nachfrage pro Jahr für die End- bzw. Nutzenergiekategorie j (z.B. Energiebedarf für Raumheizung)

gibt - wenn man ihn in $10^4/\eta$ in % ausdrückt - an, wieviel % Primärenergie man einsetzen muß, um 100 % Endenergie verbrauchen zu können.

Die Schonung der Energiereserven ist angesichts der fühlbar werdenden Verknappung der Rohstoffe ein bedeutsames energiepolitisches Ziel. Ferner beinhaltet eine hohe Energieeffizienz eine geringe Abwärmebelastung. Da dem Optimierungsmodell die Endnachfrage extern vorgegeben wird, ist eine Steuerung des Primärenergiebedarfs offenbar nur über den Gesamtwirkungsgrad möglich. Bei der Bewertung dieses Ziels ist zu beachten, daß bezüglich der Schonung der Energiereserven wie auch der möglichen großklimatischen Veränderungen infolge Abwärmebelastung die Schlußbemerkung von Ziel 2.7 gilt.

Das Ziel "Geringer Primärenergieverbrauch" beschreibt pauschal das Bestreben, sparsam mit den natürlichen Energieressourcen umzugehen. Daß die Aussagekraft des Indikators im Hinblick auf dieses Ziel jedoch nicht überschätzt werden darf, zeigt das Beispiel des Schnellen Brutreaktors (der zur Zeit noch nicht im Modell enthalten ist):

Der Indikator könnte bei Realisierung dieser Option denselben Wert annehmen wie bei der Verwendung von Leichtwasserreaktoren anstelle von Schnellen Brutreaktoren. Offensichtlich sind aber die Ressourcen im zweiten Fall wesentlich früher erschöpft als im ersten. Andererseits bleibt natürlich auch im Falle des Leichtwasserreaktors das Uran 238 (das im Brutreaktor verwertet wird) als potentielle Energieressource erhalten.

Der Verbrauch regenerierbarer Ressourcen (Sonne, Wasser-kraft) wird bei der Indikatorberechnung nicht als Primär-energieverbrauch gewertet. Dies ist sinnvoll sowohl im Hinblick auf die Ressourcenschonung als auch im Hinblick auf die Abwärmebelastung (die unabhängig von der Nutzung der regenerierbaren Ressource ist).

5. Ziel: Versorgungssicherheit

Erläuterung:

Unter diesem Ziel sind im Rahmen des Zielsystems solche Auswirkungen zu verstehen, die sich durch die Abhängigkeit des Energiesystems von Primärenergielieferungen ergeben. Unter dem Gesichtspunkt der Praktikabilität bietet sich folgende Aufspaltung in Unterziele an:

- mittelfristige Versorgungssicherheit
- kurzfristige Versorgungssicherheit.

Das an dieser Stelle zu erwartende Ziel der langfristigen Versorgungssicherheit ist Bestandteil des 4. Zieles "Hohe Energieeffizienz".

5.1 Ziel: Mittelfristige Versorgungssicherheit

Indikator: Anteil der Endnachfrage, der von Importen

abhängt, in %

Schwankung: 10 - 100 %

Erläuterung:

Unter mittelfristiger Versorgungssicherheit verstehen wir die Sicherstellung der Primärenergieträger über die Lebensdauer der zugehörigen Energieumwandlungsanlagen, im allgemeinen 20 - 30 Jahre. Wie schon aus dem Indikator deutlich wird, ist das zu bewertende Ziel allerdings weiter zu fassen als allein unter dem Gesichtspunkt der direkten Versorgungssicherheit. Die Abhängigkeit von Energieimporten ist einerseits mit dem Risiko einer mittelfristigen Versorgungs-

lücke verbunden, aber auch andere Aspekte, z.B. Zahlungsbilanzprobleme, sind zu berücksichtigen. Schließlich ist zu beachten, daß ein niedriger Importanteil mit einem erhöhten Verzehr an einheimischen Energieträgern verbunden ist. Daher wäre es denkbar, daß ein sehr niedriger Importanteil negativ beurteilt wird.

Die Berechnung dieses Indikators aus den Entscheidungsvariablen des Modells erfolgt unter der Annahme, daß 100 % des Kohlebedarfs und 50 % des Gasbedarfs durch einheimische Energien gedeckt werden. Die übrigen Primärenergieträger werden als 100 %ige Importe angesehen.

5.2 Ziel: Kurzfristige Versorgungssicherheit

Indikator: Vorratshaltungskosten für 1/2 Jahr pro Ein-

wohner Baden-Württembergs

Schwankung: 10 - 100 DM/(cap·a)

Erläuterung:

Dieser Indikator beinhaltet eine Bewertung der Wahrscheinlichkeit sowie der wirtschaftlichen Folgen einer kurzfristigen Verknappung von Primärenergieträgern, z.B. durch Streik
oder Embargo. Ein Maß hierfür sind die Kosten für die Vermeidung dieses Risikos durch entsprechende Vorratshaltung,
wobei nicht unterstellt wird, daß die Bevorratung auch tatsächlich durchgeführt wird. Die Höhe der Kosten hängt sowohl
von der Zusammensetzung des Primärenergieeinsatzes, der Länge
der Bevorratungsdauer sowie den spezifischen Lagerkosten pro
Energie- und Zeiteinheit ab. Für die Berechnung des Indikators
wird eine Bevorratungsdauer von 1/2 Jahr zugrunde gelegt.

Als Vereinfachung für die Indizierung in der formalen Beschreibung wollen wir im folgenden die Einzelziele einfach durchnumeriert bezeichnen.

- 1. Geringe Kosten
- 2. geringe Gesundheitsschäden durch Schwefeldioxid
- 3. geringe Gesundheitsschäden durch Feinstaub
- 4. geringe Gesundheitsschäden durch Stickoxide

- 5. geringe Gesundheitsschäden durch Kohlenmonoxid und Kohlenwasserstoffe
- 6. geringe radiologische Bevölkerungsbelastung
- 7. geringes unmittelbares Gesundheitsrisiko durch Energieerzeugung und -verbrauch
- 8. geringes Risiko von Klimaänderungen durch Kohlendioxid-Produktion
- 9. geringe Beeinträchtigung der Gewässer
- 10. geringe Landinanspruchnahme durch Anlagen der Energiewirtschaft
- 11. hohe Vielfalt des Endenergieangebots
- 12. hohe Energieeffizienz
- 13. mittelfristige Energieversorgungssicherheit
- 14. kurzfristige Energieversorgungssicherheit

In Anhang A sind in dieser Reihenfolge und Numerierung die das jeweilige Einzelziel messenden Attribute als lineare Funktionen der Modellvariablen (also der jährlich umgesetzten Energiemenge und der zugehörigen Umwandlungskapazitäten) dargestellt. Wegen einer detaillierten Beschreibung der Berechnungsgrundlagen zu den Formeln in Anhang A wird erneut auf Teil I verwiesen. Eine knappe Übersicht über alle Ziele und Attribute mit zugehörigen Schwankungsbreiten gibt Abb. 4.1.

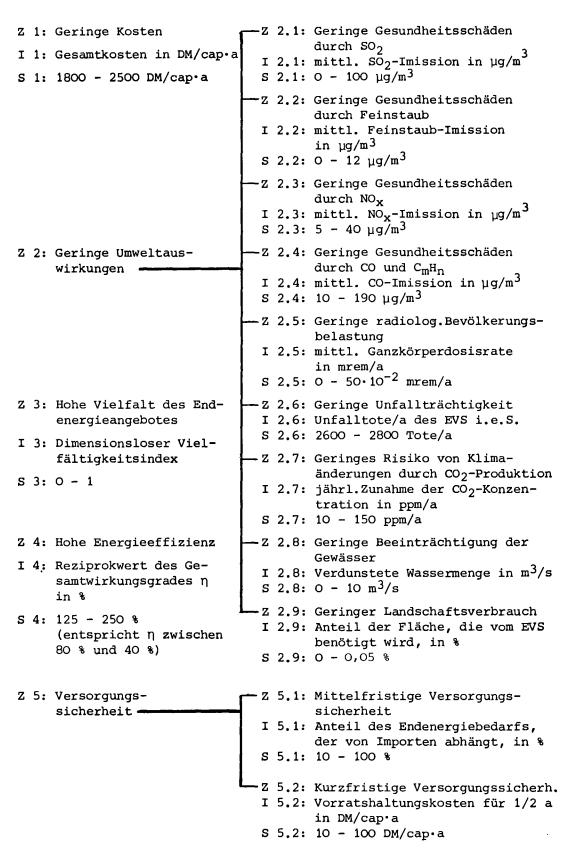


Abb. 4.1: Ziele, Indikatoren und Schwankungsbreiten für das EVS Baden-Württemberg

5. Konkrete Ermittlung der Nutzenfunktion

5.1 Übersicht und Klärung der Voraussetzungen

Der aktuelle Prozeß zur Ermittlung einer multikriterialen Nutzenfunktion bedarf der persönlichen Interaktion zwischen Berater und Entscheidungsträger, da es darum geht, die subjektiven Präferenzen des Entscheidungsträgers so zu ermitteln, daß sie formal durch eine Nutzenfunktion der Art (3.1) (3.2.) beschrieben werden können. Dieser Prozeß findet gewöhnlich im Rahmen einer interviewartig organisierten Sitzung statt, in deren Verlauf der Entscheidungsträger eine Reihe von Fragen über seine Präferenzen zu beantworten hat. Damit ein solches Interview auch zu verläßlichen Daten führt, muß der Interviewer (= Berater, Systemanalytiker) gründlich vorbereitet sein - etwa in Form einer vorherigen Durchführung von Testinterviews an Testpersonen - um sämtlichen methodologischen Schwierigkeiten, die bei derartigen empirischen Forschungsinterviews auftreten können, gewachsen zu sein. Da hier keine Abhandlung über grundlegende Methoden und Techniken der empirischen Sozialforschung erstellt werden soll, wird im folgenden in Anlehnung an Scheuch (1973) und Koolwijk (1974) ohne Anspruch auf Vollständigkeit lediglich katalogförmig und stichwortartig aufgelistet, an was bei der Durchführung von Interviews alles gedacht werden sollte. Die folgende Tafel $5 \cdot 1$ stellt ein grobes Stichwort- bzw. Inhaltsverzeichnis zu o.a. Literaturstellen dar. Die Unterteilung entspricht keiner irgendwie beabsichtigten Hierarchie der Kriterien, sondern stellt diese lediglich unter bestimmten, als wichtig erachteten Aspekten zusammen.

Grundsätzlich muß bei der Bestimmung der Nutzenfunktion die dynamische Natur des Ermittlungsprozesses berücksichtigt werden. Der Ablauf eines Interviews hängt natürlich stark von den laufenden Antworten des Entscheidungsträgers auf die Fragen zur Ermittlung seiner Präferenzstruktur ab. Dennoch wird der geübte Interviewer noch weitere Faktoren in Anbetracht ziehen, etwa beobachtete Schwierigkeiten beim Beantworten

- Tafel 5.1: Zu berücksichtigende Kriterien bei der Durchführung von Forschungsinterviews
- Das Interview als soziale Beziehung besonderer Art,
 d.h. Probleme des Interaktionsverhältnisses in Interviews
 - die Rolle des Interviewers (weich, neutral, hart) (vgl. Scheuch, S. 95, 1973)
 - die Rolle des Befragten: insbesondere Einstellungen und Erwartungen des Befragten zum Interview
 - die Wirkung von Persönlichkeitsmerkmalen
 - Probleme der sprachlichen Kommunikation
- 2. Die Lehre von der Frage
 - die Wahl der Formulierung
 - die Reihenfolge der Fragen (Plazierungseffekte)
 - besondere Fragentypen
 - Einleitungs- u. Übergangsfragen
 - Folgefragen
 - Filterfragen
 - Testfragen u.a.m.
- 3. Quellen und Kontrollmöglichkeiten des Interviewfehlers
 - Fehlreaktionen des Befragten, insbesondere durch Nichtoder Falschbeantwortung von Fragen
 - Einfluß der Interviewform (schriftl. mündl. einzeln Gruppe)
 - der Befragte als Fehlerquelle, insbesondere bei sog.
 "schwierigen Fragen" bzw. "Reizthemen"

oder Verstehen einer Frage, oder auch den Wunsch mehr ins Detail zu gehen.

Trotz dieser dynamischen Aspekte kann man ein bestimmtes Schema zur Bestimmung der Nutzenfunktion angeben. Nach erfolgter Spezifizierung der Attribute (Kap.4) kann man sich den Ermittlungsprozeß in 5 Stufen unterteilt denken:

- Familiarisierung des Entscheidungsträgers mit der Terminologie des nutzentheoretischen Konzeptes, Wecken der Bereitschaft zur Zusammenarbeit beim Ermittlungsprozeß;
- Verifizierung der Unabhängigkeitsannahmen bezgl. der Präferenzen, Bildung sog. Schlüsselattribute oder Attributpakete und -unterpakete;
- 3. Bestimmung der eindimensionalen Nutzenfunktionen der Einzelattribute
- 4. Bestimmung der Skalierungskonstanten
- 5. Überprüfung der Konsistenz und, falls nötig, Modifizierung.

Die folgenden Unterkapitel befassen sich schwerpunktsmäßig mit den Stufen 2 - 5, während dieses Unterkapitel Stufe 1 des Ermittlungsprozesses erläutern soll. Dabei verstehen wir unter Familiarisierung im wesentlichen den Prozeß der Sozialisation zwischen Entscheidungsträger (= Befragter) und Berater (= Interviewer).

Ziel ist hierbei, eine Übereinkunft im Sprachgebrauch zu finden und ein schärferes Problemverständnis zu wecken. Dies geschieht insbesondere durch die bereits beschriebene Einigung auf einen Zielkatalog und der Darstellung der Konsequenzen für die die den Zielerreichungsgrad messenden Attribute oder Indikatoren stehen. Wichtig ist an dieser Stelle, darauf hinzuweisen, daß nicht der Indikator selbst, sondern das Ziel, für das er steht, zu bewerten ist. Dies gilt besonders für die nichtmonetären Ziele (z.B.: kurzfristige Versorgungssicherheit), deren Indikatoren spezifische Kosten darstellen.

In unserem konkreten Fall ist Stufe 1 des Ermittlungsprozesses teilweise identisch mit einer Sitzung, die bereits 1977 im Wirtschaftsministerium Baden-Württembergs stattgefunden hat. Der zweiten Sitzung (die noch teilweise zu Stufe 1 zählt) ist ein informativer Schriftwechsel über das Zielsystem vorausgegangen, der die Grundlage einer Einstiegsdiskussion dieser 2. Sitzung im Spätherbst 1978 lieferte. Der Entscheidungsträger, ein für die regionale Energiepolitik maßgeblich verantwortlicher Ministerialbeamter, wurde zunächst noch einmal kurz über das Modell des Energieversorgungssystems für Baden-Württemberg und das in diesem Zusammenhang herangezogene Lösungskonzept zur Entscheidung bei mehrfacher Zielsetzung informiert. Der besondere Charakter des gewählten Verfahrens (vgl. Fiala, Stehfest (1979)) wurde eingehend erläutert, um sicherzustellen, daß der Entscheidungsträger seine eigenen Präferenzen artikuliert und nicht solche, von denen er meint, daß sie eine bestimmte Regierung habe oder haben sollte. Auf die nutzentheoretischen Grundlagen, speziell die Axiome (N1) - (N3) und deren Implikationen wurde ebenfalls eingegangen.

Der Entscheidungsträger akzeptierte in vollem Umfang, daß sein Entscheidungsverhalten durch die Axiome der kardinalen Nutzentheorie beschrieben werden könne und zeigte sich zuversichtlich ob der Möglichkeit, seine Präferenzen durch Beantwortung einfacher Lotteriefragen aufzudecken. Was häufig nicht mit genügendem Nachdruck geschieht und deshalb bereits jetzt erwähnt werden soll, ist der ausdrückliche Hinweis, daß das Auftreten von Inkonsistenzen (vgl. Beschreibung von Stufe 5) eine Selbstverständlichkeit darstellt und der Entscheidungsträger jederzeit ohne unangebrachte Scheu seine zunächst artikulierten Präferenzen revidieren kann und dies beim Vorliegen von Inkonsistenzen sogar muß.

Die Erfahrung zeigt, daß der Entscheidungsträger in einem hochkomplexen multikriterialen Kontext kaum in der Lage ist, auf Anhieb seine Präferenzen in konsistenter Weise ohne Modifikationen anzugeben. Dies sollte ihn auch nicht weiter stören, da es ein Hauptziel der Ermittlung ist, dem Entschei-

dungsträger konsequent das Verständnis für die Implikationen seiner Präferenzen auf derart komplexer Entscheidungsebene nahezubringen. Die Angst, sich einzugestehen, daß sich bestimmte eingangs geäußerte Präferenzen widersprechen, da ihre sämtlichen Implikationen zunächst nicht vollständig übersehen wurden, muß dem Entscheidungsträger von vorneherein genommen werden. Nichts kann die Gültigkeit der ermittelten Nutzenfunktion nachdrücklicher beeinträchtigen als ein nicht eingestandener Irrtum, der zu weiteren Fehleinschätzungen führt. Aus diesem Grunde ist dem Aufdecken von Inkonsistenzen anhand von Kontrollfragen und der evtl. folgenden Modifikation eine eigene Stufe gewidmet.

5.2 Bestimmung der Präferenzstruktur des Entscheidungsträgers und Überprüfung der Präferenzunabhängigkeit

Um die Präferenzstruktur des Entscheidungsträgers voll zu erfassen, muß dieser in der Lage sein, zweierlei Arten von Zieleinschätzungen zu artikulieren:

- Die relative Wünschbarkeit von verschiedenen Graden der Zielerreichung (= Attributwert) eines bestimmten Zieles;
- 2. Die relative Wünschbarkeit eines bestimmten Zielerreichungsgrades von einem Ziel (= Attributwert i) gegenüber einem anderen wohlspezifierten Zielerreichungsgrad eines zweiten Zieles (= Attributwert j).

Die Information über die relative Einschätzung verschiedener Zielerreichungsgrade eines Ziels reicht aus, um die u's in Gleichung (3.1) bzw. Gleichung (3.2) zu bestimmen, während die zweite Art der Zieleinschätzung hinreichende Bewertungsinformation zur Ermittlung der c's liefert. Zwei grundlegende Fragentypen und deren Beantwortung durch den Entscheidungsträger bezüglich aller Ziele und Unterziele reichen also aus, die komplette Nutzenfunktion zu determinieren, vorausgesetzt, die Unabhängigkeitsannahmen des Satzes 3.1 sind (wenigstens näherungsweise) erfüllt. In der Praxis der Ermitt-

lung von Nutzenfunktionen hat es sich als zweckmäßig erwiesen, speziell die Überprüfung der Präferenzunabhängigkeit zwischen $\mathbf{Z_i} \times \mathbf{Z_j}$ und $\overline{\mathbf{Z_i}}$ (j \ddagger i) mit Fragen nach der o.a. zweiten Art der Zieleinschätzung seitens des Entscheidungsträgers zu koppeln. Zur besseren Illustration wollen wir einen solchen Interviewausschnitt einmal exemplarisch dokumentieren. Der Leser sollte sich vergegenwärtigen, daß bei k Attributen gerade k-1 solcher Fragen (vom Typ 2) zu stellen sind. Um die Lesbarkeit nicht über Gebühr zu strapazieren, bezeichnen wir mit $\mathbf{Z_i}$ wie zuvor sowohl Ziel i als auch das Ziel i messende Attribut, während $\mathbf{z_i}$ die spezielle Höhe des Attributwertes angibt.

Man stelle sich zwei konkurrierende Energieversorgungsstrategien \underline{X}_A und \underline{X}_B vor, die bei allen Zielen zu identischen Zielerreichungsgraden (= Attributwerten) führen, außer bei den beiden Zielen (z.B.) Z_1 (Geringe Kosten) und Z_2 (Geringe Gesundheitsschäden durch SO_2). Strategie \underline{X}_A führe beispielsweise zu jährlichen Gesamtkosten pro Kopf i.H.v. z_{1A} = 1800 DM/ (cap·a) und zu einer mittleren Immissionsbelastung der Bevölkerung durch SO_2 von z_{2A} = 100 μ g/m³.

Strategie \underline{x}_B hingegen ergebe Gesamtkosten von $z_{1B} = 2500$ DM/ (cap·a) bei einer SO_2 -Immission von $z_{2B} = 0~\mu g/m^3$, also keinerlei Beeinträchtigung. Weiterhin gelte, daß alle anderen Attributwerte $\overline{z}_{12}^{O} = \overline{z}_{12A}^{O} = \overline{z}_{12B}^{O}$ (für beide Strategien gleich) und auf ihrem jeweils schlechtesten Niveau liegen. Der Entscheidungsträger muß nun im Bewußtsein, persönlich volle Verantwortung für die Entscheidung zu tragen, eine Präferenz (oder Indifferenz) zwischen beiden Strategien \underline{x}_A und \underline{x}_B bekunden, einfacher ausgedrückt:

Welcher der beiden Alternativen wird vorgezogen:

Gesamtkosten z _{1A}		Gesamtkosten z _{1B}
= 1800 DM/(cap·a)		= 2500 DM/(cap·a)
und	oder	und
mittl. SO ₂ -Immission		mittl. SO ₂ -Immission
$ \text{von } z_{2A} = 100 \mu\text{g/m}^3$		$ \text{von } \mathbf{z}_{2B} = 0 \mu \text{g/m}^3 $

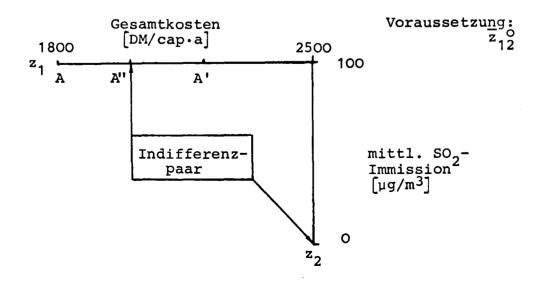
Betrachten wir den Fall, daß $\underline{x}_A > \underline{x}_B$ gilt. Dann wird man einen zweiten Alternativenvergleich zwischen einer Strategie \underline{x}_A , und \underline{x}_B erfragen:

Welche der beiden Alternativen wird vorgezogen:

Gesamtkosten
$$z_{1A}$$
'
= 2200 DM/(cap·a)
und
oder

mittl. SO_2 -Immission
von z_{2A} ' = 100 μ g/m³

Gesamtkosten z_{1B}
= 2500 DM/(cap·a)
und
mittl. SO_2 -Immission
von z_{2B} = 0 μ g/m³


Gelte nun $\underline{X}_B > \underline{X}_A$, wird man erneut etwa folgende Frage stellen:

Welche der beiden Alternativen wird vorgezogen:

Gesamtkosten
$$z_{1A}$$
''
= 2000 DM/cap·a)
und
wittl. SO_2 -Immission
von z_{2A} ''
= 100 μ g/m³
Gesamtkosten z_{1B}
= 2500 DM/(cap·a)
und
mittl. SO_2 -Immission
von z_{2B} = 0 μ g/m³

Dieser sukzessive Alternativenvergleich soll letztlich zu zwei Energieversorgungsstrategien führen, zwischen denen der Entscheidungsträger indifferent ist.

Graphisch veranschaulicht man dieses Vorgehen am besten im zweidimensionalen Attributeunterraum $\mathbf{Z}_1 \times \mathbf{Z}_2$:

Gilt in unserem Beispiel etwa, daß der Entscheidungsträger zwischen den beiden Strategien \underline{X}_A " und \underline{X}_B indifferent ist, so wissen wir damit, daß die Punkte A" und B auf der gleichen Isopräferenzkurve im Attributeunterraum $Z_1 \times Z_2$ liegen. M.a.W.: Unserem Entscheidungsträger ist eine Verbesserung der Gesamtkosten von 2500 DM/(cap·a) auf 2000 DM/(cap·a) genausoviel wert wie eine Verbesserung der mittleren SO₂-Immission von 100 μ g/m³ auf 0 μ g/m³.

Von großer Bedeutung bei der Bestimmung dieses StrategienIndifferenzpaares ist die als erfüllt unterstellte Voraussetzung, daß alle anderen Attribute ihren jeweils schlechtester. Wert annehmen. An dieser Stelle kann nun die Überprüfung der Präferenzunabhängigkeitsannahme erfolgen, indem man
den gleichen Strategienvergleich, wie oben exemplarisch angeführt, nochmals durchspielt, allerdings jetzt unter der
Annahme, daß alle anderen Attribute nun z.B. auf ihrem jeweils besten Niveau liegen.

Führt dieser neue Strategievergleichszyklus zu demselben Indifferenzpaar, so ist die Präferenzunabhängigkeit zwischen $z_1 \times z_2$ und \overline{z}_{12} als gesichert anzusehen. Andernfalls ist genau zu klären, die Änderung welcher Attribute aus \overline{z}_{12} die Entscheidung zwischen den beiden Strategien zu einem anderen Indifferenzpaar beeinflußten.

Haben sich die Interviewpartner erst einmal 'eingespielt', wird selbstverständlich bei der i-ten von k-1 solcher Überprüfungen nicht jedesmal der gesamte Strategienvergleichszyklus zweimal durchlaufen, sondern nach einmaliger Ermittlung des Indifferenzpaares lautet die Frage nur noch, ob die geäußerte Indifferenz abhängig ist von der Anhebung der zunächst auf ihrem jeweils schlechtesten Niveau fixierten Attributwerte auf ihr jeweils bestes (oder anders konstantes) Niveau und wenn ja, von welchen.

Die vollständigen Ergebnisse dieses Interviewteils sind im Anhang B graphisch wiedergegeben. Die Attribute, deren Werteänderungen Einfluß auf die jeweilige Indifferenzpaar-Bestimmung ausüben, sind neben den Einzelgraphiken aufgelistet. Da, wie man aus den im Anhang B wiedergegebenen Antworten erkennen kann, häufig Präferenzabhängigkeiten ge-

äußert wurden, müssen diese noch eingehender untersucht werden.

Insbesondere muß man sich vergegenwärtigen, daß die Abhängigkeit der Festlegung des Indifferenzpunktes zwischen zwei Attributen Z, und Z, von dem Wert eines dritten Z, (oder weiteren) lediglich einer sog. bedingten Präferenzunabhängigkeit (BPU) für die Attributmenge {Z₁,Z₂,Z₃} von ihrem Komplement bezüglich Z entspricht. Es ist also jeweils durch weitere Fragen zu prüfen, ob eine Festlegung der Indifferenzpunkte zwischen Z_1 , Z_2 und Z_3 (also zwischen den 3 Paaren: Z_1 , Z_2 ; $Z_1, Z_3; Z_2, Z_3$) noch von der Wertbelegung weiterer Attribute $\mathbf{Z}_{4},\ldots,\mathbf{Z}_{k}$ abhängt. Ist dies nicht der Fall, können wir $z_1 \times z_2 \times z_3$ als präferenzunabhängig von \overline{z}_{123} betrachten. Andernfalls ist die Fragestellung auf den größeren Attributekomplex $Z_1, Z_2, Z_3, Z_4, \ldots, Z_k$ in analoger Form auszudehnen. Dies führt zu den im Anhang В bei jedem Einzelattribut mit angegebenen Mengen präferenzunabhängiger Attribute.

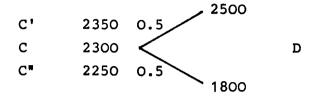
Aus diesen sog. Attributpaketen lassen sich unter Heranziehung eines Satzes über präferenzunabhängige Mengen (vgl. Kap.

andere Attributpakete (also ein- oder mehrelementige Mengen präferenzunabhängiger Attribute) bilden, die hernach als neue skalar- oder vektorwertige Attribute definiert werden, für die nach Konstruktion die Präferenzunabhängigkeit sichergestellt ist und somit eine wesentliche Voraussetzung für die Anwendbarkeit von Satz 3.1 (der auch für vektorwertige Attribute gilt) erfüllt ist.

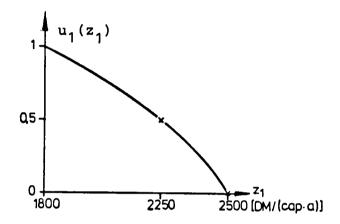
Die Auswertung der Information über die relative Einschätzung zwischen den Zielerreichungsgraden zweier Ziele, die ja gerade in den Indifferenzpaaren steckt und in gewisser Weise parallel zur Verifizierung der Präferenzunabhängigkeitannahme ermittelt wurde, wird in Kap. 5.5 beschrieben.

Wie bereits eingangs dieses Kapitels 5.2 ausgeführt, wird von dem Entscheidungsträger auch erwartet, daß er in der Lage ist, Präferenzen zwischen verschiedenen Zielerreichungsgraden (= Attributwerten) eines Zieles zu artikulieren. Die Überprüfung der Nutzenunabhängigkeitsannahme kann mit verschiedenen Einzelfragen (vom Typ 1) gekoppelt werden, und zwar analog

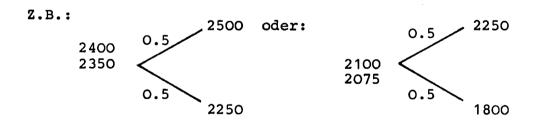
zur Überprüfung der Präferenzunabhängigkeitsvoraussetzung, die, wie oben ausgeführt, mit Einzelfragen (vom Typ 2) verbunden worden ist.


5.3 Bestimmung der Einzelnutzenfunktionen und Überprüfung der Nutzenunabhängigkeit

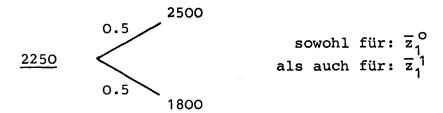
Betrachten wir wieder ein illustratives Beispiel, das diesmal stellvertretend für k solcher Interviewabschnitte (bei k Einzelattributen) steht.


Angenommen, man hätte unter der Voraussetzung, daß alle Attribute außer Z_1 auf ihrem jeweils schlechtesten Niveau lägen, zwischen den beiden folgenden Energieversorgungsstrategien \underline{X}_C und \underline{X}_D zu wählen. Alternative C liefere Gesamtkosten i.H.v. 2300 DM/(cap·a) mit Sicherheit, stelle also eine entartete Lotterie mit Wahrscheinlichkeit p=1 dar. Alternative D hingegen sei mit großer Unsicherheit behaftet und es ließe sich angeben, daß mit der gleichen Wahrscheinlichkeit p=0.5 entweder 1800 DM/(cap·a) oder 2500 DM/(cap·a) Gesamtkosten mit ihr verbunden seien. Im Bewußtsein der vollen persönlichen Verantwortung für die Entscheidung soll nun der Entscheidungsträger eine Wahl treffen.

Natürlich ist es einfach zu sehen, daß Strategie \underline{X}_D zu durchschnittlichen Gesamtkosten von 2150 DM/(cap·a) führt, wegen der zu berücksichtigenden Risiken können aber auch durchaus die sicheren 2300 DM/(cap·a) aus Strategie \underline{X}_C vorgezogen werden. Ist das der Fall, so wird man zur weiteren Bestimmung des Indifferenzwertes (in der Terminologie der Nutzentheorie hier auch Sicherheitsäquivalent genannt) den sicheren Wert in einer Strategie \underline{X}_C , noch höher als in \underline{X}_C ansetzen, um so die Lotterie D noch attraktiver zu machen; umgekehrt wird man den sicheren Wert herabsetzen, sofern die Lotterie gewählt wird. Letztlich will man wieder zwei Strategien erhalten, zwischen denen der Entscheidungsträger indifferent ist; dies sei der Fall zwischen \underline{X}_C , mit sicheren Gesamtkosten von 2250 DM/(cap·a) und \underline{X}_D .


Graphisch wird dieser Entscheidungsprozeß meist folgendermaßen veranschaulicht:

Unter Berücksichtigung der Normierungskonventionen aus Kap. 3 läßt sich die Bestimmung von Sicherheitsäquivalenten auch als Mittel zur Konstruktion von Punkten auf der eindimensionalen Nutzenfunktion $\mathbf{u}_1(\mathbf{z}_1)$ deuten.


Durch Ermittlung weiterer Sicherheitsäquivalente zu anders formulierten Lotterien lassen sich beliebig viele Zwischenwerte der Einzelnutzenfunktion bestimmen.

Den Implikationen über das Risikoverhalten des Entscheidungsträgers bei verschiedenartigem Nutzenfunktionsverlauf und Methoden der Kurvenanpassung an die ermittelten Werte ist ein eigenes Kapitel gewidmet. Eine vollständige Wiedergabe aller Resultate dieses Interviewteils findet sich in Anhang C. Zur Überprüfung der Nutzenunabhängigkeitsannahme kann bereits nach Beendigung des ersten Fragenzyklusses zur Ermittlung eines Strategien-Indifferenzpaares geklärt werden, ob die Voraussetzung (\overline{Z}_1^0) , daß alle Attributwerte auf ihren jeweils schlechtesten Niveau liegen, einen Einfluß auf das Resultat hat.

Man wird also erneut eine Sicherheitsäquivalent-Bestimmung für die eingangs formulierte Lotterie D, hinter der sich nichts anderes als eine konkrete Energieversorgungsstrategie \underline{X}_D verbirgt, durchspielen. Diesmal allerdings unter der Voraussetzung, daß alle anderen Attribute \overline{Z}_1 auf ihrem jeweils besten Niveau ($\overline{Z}_1^{\ 1}$) liegen.

Führt dieser neue Fragenzyklus zum gleichen Indifferenzpaar bzw. Sicherheitsäquivalent wie unter der Voraussetzung \overline{Z}_1^O , gilt die Nutzenunabhängigkeit zwischen Z_1 und \overline{Z}_1 als erfüllt; graphisch veranschaulicht:

In analoger Weise kann man bei der Ermittlung aller k Einzelnutzenfunktionen $u_{i}(z_{i})$ i=1(1)k stets überprüfen, ob das Sicherheitsäquivalent zu einer konkreten Lotterie

$$\begin{vmatrix} z_i^0 & \text{mit } p = 0.5 \\ z_i^1 & \text{mit } p = 0.5 \end{vmatrix}$$

unterschiedlich ausfällt, wenn entweder $\overline{z}_i^{\ o}$ oder $\overline{z}_i^{\ 1}$ bzw. irgendein anderes dazwischen liegendes, fest angenommenes Niveau \overline{z}_i' vorausgesetzt wird. Daß diese Überprüfung nicht für alle z_i (i = 1(1)k) (es sei denn zur Konsistenzprüfung) durchgeführt werden muß, kann anhand der Rekapitulierung der Prämissen von Satz 3.1 leicht nachvollzogen werden. Vergegenwärtigen wir uns nun den Stand der bislang erhalte-

Vergegenwärtigen wir uns nun den Stand der bislang erhaltenen Ergebnisse aus der Beantwortung von Fragen des Typs 2 und den damit gekoppelten Informationen über Präferenzunabhängigkeiten (vgl. Anhang B), um festzustellen, welche Sachverhalte noch eruiert werden müssen, um die Gesamtnutzenfunktion vollständig spezifizieren zu können.

5.4 Die Form und Eigenschaften der Gesamtnutzenfunktion

Auf die im Anhang wiedergegebenen Mengen präferenzunabhängiger Attribute, kurz Attributpakete, wird der folgende Satz (vgl. Theorem 3.7 Keeney, Raiffa (1976, p. 112)) angewandt.

Satz 5.4.1:

Seien A und B jeweils Untermengen der Attributmenge $Z_i = \{Z_1, \dots, Z_k\}$, wobei sich A und B überlappen sollen, ohne daß eine Menge in der anderen enthalten sei und ohne daß die Vereinigung von A und B identisch mit Z wäre; formal also: $A \cap B \neq \emptyset$; $A \cup B \neq Z$; $A \not\subset B$ und $B \not\subset A$, aber $A,B \subset Z$. Wenn A und B beide präferenzunabhängig von ihrem jeweiligen Komplement bezüglich Z sind, dann gilt für folgende Attributmengen

- (i) A ∪ B
- (ii) A ∩ B
- (iii) A B und B A
- (iv) $(A B) \cup (B A)$

ebenfalls, daß sie präferenzunabhängig von ihrem jeweiligen Komplement bezüglich Z sind.

Durch systematische Anwendung dieses Satzes versucht man, eine Aufstellung präferenzunabhängiger Attributmengen zu erzielen, die einerseits Z exakt überdeckt und andererseits nur disjunkte Attributpakete (dies können auch Einzelattribute sein) enthält. Ein mögliches Resultat, das in Abb. 5.4.1 graphisch veranschaulicht ist und vom Entscheidungsträger als Wiedergabe seiner Präferenzabhängigkeitsstruktur akzeptiert wurde, ist die folgende Partition von Z:

$$z := \{\{z_1\}\}, \{\{z_2, z_3\}, \{z_4, z_5\}, \{z_6\}, \{z_7\}, \{z_8\}\}, \{z_9\}, \{z_{10}\}, \{z_{11}\}, \{z_{12}, z_{13}, z_{14}\}\}.$$

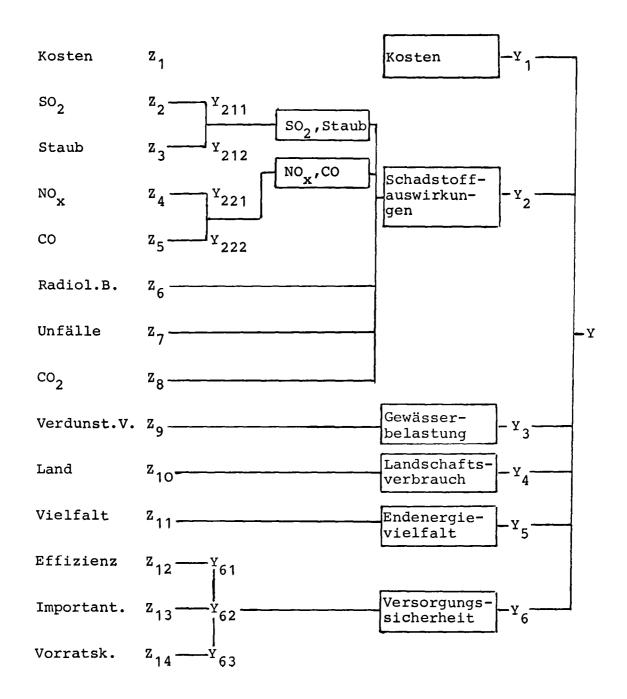


Abb. 5.4.1 Graphische Darstellung der präferenzunabhängigen Attributpakete bzw. -unterpakete des Entscheidungsträgers

Für die 6 Attributpakete, die im folgenden einfach als neue Attribute Y_i aufgefaßt werden, sind nach Konstruktion (vgl. 5.2) die Präferenzunabhängigkeit für jedes $Y_i \times Y_j$ von \overline{Y}_{ij} ($j \neq i$) nicht nur für ein bestimmtes Y_i , sondern für alle Y_i (i = 1(1)) 1 = 6) erfüllt.

Die Nutzenunabhängigkeit von $Y_1 = \overline{Z}_1$ bezüglich $\overline{Y}_1 = \overline{Z}_1$ ist nach Kap. 5.3 (s. auch Anhang C) erfüllt und reicht allein schon aus, die Anwendbarkeit von Satz 3.1 auf $Y:=Y_1\times\ldots\times Y_1$ zu gewährleisten.

Unsere Gesamtnutzenfunktion wird also wie folgt aussehen:

$$\mathbf{v}(\underline{\mathbf{y}}) = \begin{cases} \begin{cases} \frac{6}{1} & \mathbf{d_i} \cdot \mathbf{v_i} & (\mathbf{y_i}) \\ \mathbf{i} = 1 \end{cases} & \text{falls } \sum_{i} \mathbf{d_i} = 1 \\ \text{oder} & \\ \frac{1}{d} \left[\prod_{i=1}^{6} (1 + d\mathbf{d_i} \mathbf{v_i} (\mathbf{y_i})) - 1 \right] & \text{falls } \sum_{i} \mathbf{d_i} \neq 1 \end{cases}$$

$$(5.4.1)$$

mit
$$v_1(y_1) = u_1(z_1)$$
,
 $v_3(y_3) = u_9(z_9)$,
 $v_4(y_4) = u_{10}(z_{10})$,
 $v_5(y_5) = u_{11}(z_{11})$

und d (> -1) als Lösung von

$$1 + d = \prod_{i=1}^{6} (1 + dd_i),$$

wobei die Terminologie analog zu den Erläuterungen zu Satz 3.1 zu verstehen ist.

Zur weiteren Spezifizierung der Gestalt der Gesamtnutzenfunktion können wir jetzt Satz 3.1 erneut, diesmal auf der Ebene der neudefinierten vektorwertigen Attribute (mehrelementige Attributpakete Y₂ und Y₆), anzuwenden versuchen.

Wir untersuchen quasi auf der Ebene jedes einzelnen mehrelementigen Attributpakets wiederum Präferenzunabhängigkeit und Nutzenunabhängigkeit im Sinne der Voraussetzungen von Satz 3.1 Hierzu bedarf es keiner wesentlichen Neuermittlung von Unabhängigkeits-Information, es sei denn zu durchaus angebrachten Konsistenzkontrollen.

Eine derart rekursive Anwendung von Satz 3.1 auf der jeweiligen Ebene vektorwertiger Attribute (oder wiederum Unterattribute) führt bei konsequenter Durchführung bis auf die Stufe von ausschließlich skalarwertigen Einzelattributen. Es ergeben sich dabei sog. geschachtelte multikriteriale Nutzenfunktionen (engl.: nested multiattribute utility functions), auf deren Eigenheiten im folgenden noch etwas näher eingegangen werden soll.

Betrachten wir hierzu konkret das neugefaßte Attribut Y_2 , das insgesamt 7 skalare Einzelattribute Z_2 - Z_8 umfaßt. Die bereits gewonnene Information über Präferenzabhängigkeiten unter den (ursprünglichen) Attributen Z_1, \ldots, Z_{14} führt (unter Heranziehung von Satz 5.4.1 zu folgender Zerlegung von Y_2 in präferenzunabhängige Attribut(unter)pakete:

$$\begin{aligned} \mathbf{Y}_2 &:= \; \{\{\mathbf{Z}_2, \mathbf{Z}_3\}, \{\mathbf{Z}_4, \mathbf{Z}_5\}, \{\mathbf{Z}_6\}, \{\mathbf{Z}_7\}, \{\mathbf{Z}_8\}\} \\ \text{bzw.} \\ \mathbf{Y}_2 &:= \; \{\mathbf{Y}_{21}, \mathbf{Y}_{22}, \mathbf{Y}_{23}, \mathbf{Y}_{24}, \mathbf{Y}_{25}\} \,. \end{aligned}$$

Nach Konstruktion dieser Zerlegung ist jedes $Y_{2i} \times Y_{2j}$ präferenzunabhängig von \overline{Y}_{2ij} ($j \neq i$). Die Nutzenunabhängigkeit von einem bestimmten Y_{2i} bezüglich \overline{Y}_{2i} ist durch einen zusätzlichen Fragenzyklus – analog zum ausführlich beschriebenen Beispiel aus Kap. 5.3 – noch überprüft worden. Dabei hat sich ergeben, daß gilt: Y_{24} ist nutzenunabhängig von \overline{Y}_{24} . Tatsächlich konnte sogar eine Nutzenunabhängigkeit festgestellt werden, die auch Attribute außerhalb von Y_2 umfaßt, und zwar: Z_7 (= Y_{24}) ist nutzenunabhängig von \overline{Z}_7 ; d.h.: Die Bestimmung des Sicherheitsäquivalents für eine Lotterie, die mit gleichen Wahrscheinlichkeiten Z_7 und Z_7 ergibt, ist unbeeinflußt von den Werten aller anderen Attribute \overline{Z}_7 .

Wir können also auf $Y_2:=Y_{21}\times ...\times Y_{25}$ ebenfalls Satz 3.1 anwenden.

$$v_{2}(Y_{2}) = \begin{cases} \sum_{j=1}^{5} d_{2j}v_{2j}(Y_{2j}) & \text{falls } \sum_{j=2}^{5} d_{2j} = 1 \\ \text{oder} \\ \frac{1}{d^{2}} \prod_{j=1}^{5} \left[(1 + d^{2}d_{2j}v_{2j}(Y_{2j})) - 1 \right] & \text{falls } \sum_{j=1}^{5} d_{2j} \neq 1 \\ (5.4.2) \end{cases}$$

mit: $d^2(> -1)$ nichttriviale Lösung von $1 + d^2 = \prod_{j=1}^{5} (1 + d^2 d_{2j})$ und:

$$v_{23}(y_{23}) = u_6(z_6)$$

 $v_{24}(y_{24}) = u_7(z_7)$
 $v_{25}(y_{25}) = u_8(z_8)$.

Auf ganz analoge Weise gelangt man auch zu:

$$v_{6}(y_{6}) = \begin{cases} \frac{3}{\sum_{k=1}^{3}} d_{6k}v_{6k}(y_{6k}) & \text{falls } \sum_{k=1}^{3} d_{6k} = 1 \\ \text{oder} \\ \frac{1}{d^{6}} \left[\prod_{k=1}^{3} (1 + d^{6}d_{6k}v_{6k}(y_{6k})) - 1 \right] & \text{falls } \sum_{k=1}^{3} d_{6k} \neq 1, \end{cases}$$
(5.4.3)

wobei
$$d^6$$
 Lösung von 1 + $d^6 = \prod_{k=1}^{3} (1 + d^6 d_{6k})$,

$$v_{61}(y_{61}) = u_{12}(z_{12})$$

$$v_{62}(y_{62}) = u_{13}(z_{13})$$

$$v_{63}(y_{63}) = u_{14}(z_{14}).$$

Die Attributunterpakete $Y_{21} = \{Z_2, Z_3\}$ und $Y_{22} = \{Z_4, Z_5\}$ bilden die einzigen noch nicht untersuchten vektorwertigen Attribute aus der neudefinierten Attributmenge Y_1, Y_2 ; $(j = 1(1)5), Y_3, Y_4, Y_5, Y_{6k}$ (k = 1(1)3).

Nach erfolgreicher Überprüfung der Voraussetzungen für die Anwendbarkeit von Satz 3.1 werden zur endgültigen Spezifizierung der Gesamtnutzenfunktion $v(\underline{y})$ noch folgende Funktionsdefinitionen gegeben:

$$v_{21}(y_{21}) = d_{211}v_{211}(y_{211}) + d_{212}v_{212}(y_{212}) + d^{21}d_{211}d_{212}v_{211}$$

$$(y_{211})v_{212}(y_{212}), \qquad (5.4.4)$$

und

$$v_{22}(y_{22}) = d_{221}v_{221}(y_{221}) + d_{222}v_{222}(y_{222}) + d^{22}d_{221}d_{222}v_{221}$$

$$(y_{221})v_{222}(y_{222}) \qquad (5.4.5),$$

wobei:

$$v_{211}(y_{211}) = u_2(z_2)$$

 $v_{212}(y_{212}) = u_3(z_3)$
 $v_{221}(y_{221}) = u_4(z_4)$
 $v_{222}(y_{222}) = u_5(z_5)$

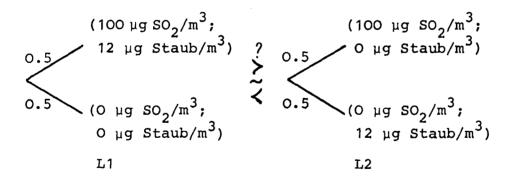
und

$$d^{21}$$
 Lösung von 1 + d^{21} = (1 + $d^{21}d_{211}$)(1 + $d^{21}d_{212}$)

sowie

$$d^{22}$$
 Lösung von 1 + d^{22} = (1 + $d^{22}d_{221}$)(1 + $d^{22}d_{222}$)

ist.


Es wurden also für v_{21} und v_{22} gleich multiplikative Formen gewählt, da synergistische Zusammenhänge, wie sie etwa zwischen z_2 und z_3 (bzw. z_4 und z_5) vermutet werden, durch eine additive Form nicht ausgedrückt werden können.

Grundsätzlich kann aber durch Zusatzfragen (vgl. Satz 3.2) eindeutig entschieden werden, ob die additive oder multiplikative Form zu wählen ist. Dies soll exemplarisch am SO_2 -Staub-Paket ($Y_{21} = \{Z_2, Z_3\}$) demonstriert werden. Der Entscheidungsträger wurde nach seiner Präferenz bezüglich folgender Lotterien befragt:

Voraussetzung: $\overline{z}_{23}^{\circ}$

(Erl.: $z_{i}^{\circ} \triangleq Attribut i$ auf seinem schlechtesten Wert $z_{i}^{\circ} \triangleq Attribut i$ auf seinem besten Wert)

oder mit den entsprechenden Werten:

Gilt L1 / L2, so ist nach Satz 3.2 auf alle Fälle die multiplikative Form zu wählen. Dies war hier für unseren Entscheidungsträger zutreffend, denn er zog Lotterie L2 der Lotterie L1 vor.

Analog kann für jedes mehrelementige Attributpaket (auch Y kann als solches aufgefaßt werden) überprüft werden, ob die additive oder multiplikative Form zutrifft. Dabei ergab sich

in unserem Fall stets die multiplikative Form.

Ein vermuteter Zusammenhang zwischen der Richtung der Präferenz in o.a. Lotteriefragen und dem Vorzeichen der abhängigen Skalierungskonstanten (d, d^2 , d^6 , d^{21} im Beispiel oben, d^{22}) soll im folgenden kurz aufgezeigt werden.

Greifen wir hierzu nochmals auf unser letztes Beispiel zurück. Der Entscheidungsträger äußerte die Präferenz L1 \langle L2 und wir behaupten, daß hieraus folgt: $d^{21} < 0$ (d^{21} aus (5.4.4)).

Beispielhafter Beweis:

Wegen der Ordnungstreue der Nutzenfunktion $v_{21}(y_{21})$ (vgl. Definition $^{2.4}$ Eigenschaft (E 1)) gilt:

$$L1 \prec L2 \Rightarrow v_{21}(L1) < v_{21}(L2)$$
. (A1)

Unter Berücksichtigung von $v_{21}(y_{21}) = v_{21}(z_2,z_3)$ ist dies gleichbedeutend mit:

$$v_{21}(L1) = 0.5 \quad v_{21}(z_2^0, z_3^0) + 0.5 \quad v_{21}(z_2^1, z_3^1)$$

$$< 0.5 \quad v_{21}(z_2^0, z_3^1) + 0.5 \quad v_{21}(z_2^1, z_3^0) = v_{21}(L2).$$

Wegen der Normierungskonvention gilt: $v_{21}(z_2^0, z_3^0) = 0$ und $v_{21}(z_2^1, z_3^1) = 1$, woraus folgt:

$$v_{21}(L1) = 0.5 < 0.5 \ v_{21}(z_2^0, z_3^1) + 0.5 \ v_{21}(z_2^1, z_3^0) = v_{21}(L2)$$
 (A3)

bzw.

$$v_{21}(z_2^0, z_3^1) + v_{21}(z_2^1, z_3^0) > 1.$$
 (A4)

Setzen wir nun (5.4.4) in (A4) ein, so ergibt sich:

$$d_{211}u_{2}(z_{2}^{0}) + d_{212}u_{3}(z_{3}^{1}) + d^{21}d_{211}d_{212}u_{2}(z_{2}^{0}) u_{3}(z_{3}^{1}) + d^{21}d_{211}u_{2}(z_{2}^{0}) u_{3}(z_{3}^{0}) + d^{21}d_{211}d_{212}u_{2}(z_{2}^{1}) u_{3}(z_{3}^{0}) > 1.$$
(A5)

Nach (bereits erwähnter) Normierungskonvention gilt allgemein

$$u_{i}(z_{i}^{0}) = 0,$$

 $u_{i}(z_{i}^{1}) = 1,$

und damit vereinfacht sich die Ungleichung (A5) zu:

$$d_{212} + d_{211} > 1.$$
 (A6)

d²¹ ist definiert als Lösung von:

$$1 + d^{21} = (1 + d^{21}d_{211})(1 + d^{21}d_{212})$$

$$\Leftrightarrow d^{21} = d^{21}d_{211} + d^{21}d_{212} + (d^{21})^{2}d_{211}d_{212}$$

bzw. für $d^{21} \neq 0$ folgt

$$1 = d_{211} + d_{212} + d^{21}d_{211} \cdot d_{212} \Rightarrow d^{21} = \frac{1 - d_{211} - d_{212}}{d_{211} \cdot d_{212}}.$$
(A7)

Nach Definitionsgleichung (3.6) gilt

$$d_{211} = v(z_2^1, \overline{z}_2^0) \in (0,1) \text{ und } d_{212} = v(z_3^1, \overline{z}_3^0) \in (0,1).$$

Mit (A6) folgt hieraus:

$$d^{21} < 0$$
 q.e.d.

Umgekehrt hätte man auch zeigen können: Für den Fall, daß im o.a. Beispiel der Entscheidungsträger die Präferenz L1 \rangle L2 hätte, wäre die abhängige Skalierungskonstante $d^{21} > o$.

In analoger Weise wurde für alle anderen mehrelementigen Attributpakete vorgegangen, da auch dort jeweils durch die Beantwortung der zusätzlichen Lotteriefrage (im Sinne von Satz 3.2) eine vom Entscheidungsträger geäußerte Präferenz gegeben war.

Der Entscheidungsträger zog in allen Fällen die sog. 'gemischte Lotterie', die zu gleichen Wahrscheinlichkeiten $(z_{i}^{0}, z_{j}^{1}, \overline{z}_{ij}^{0})$ bzw. $(z_{i}^{1}, z_{j}^{0}, \overline{z}_{ij}^{0})$ liefert, vor. Die sog. 'reine Extrem-Lotterie', die zu gleichen Wahrscheinlichkeiten $(z_{i}^{0}, z_{j}^{0}, \overline{z}_{ij}^{0})$ bzw. $(z_{i}^{1}, z_{j}^{1}, \overline{z}_{ij}^{0})$ liefert, erschien ihm stets weniger wünschenswert.

Es folgt daraus für alle anderen abhängigen Skalierungskonstanten, daß sie ebenfalls kleiner Null sind, bzw. wie in Keeney, Raiffa (1976, S. 347f) gezeigt wird (vgl. Beziehung 3.7 in Kap. 3), daß sie im offenen Intervall (-1,0) liegen. Von grundlegender Bedeutung ist aber hierbei, daß zur Darstellung der geschachtelten Teilnutzenfunktionen (und der Gesamtnutzenfunktion) aller mehrelementiger Attributpakete (sowie Y selbst, was auch als solches Paket verstanden werden kann) zwingend die multiplikative Form als der Präferenzstruktur des Entscheidungsträgers adäquaten Beschreibungsweise verwendet wird.

Das oben beschriebene, charakteristische Entscheidungsverhalten unseres Entscheidungsträgers, der ein für die regionale Energiepolitik maßgeblich verantwortlicher Ministerialbeamter ist, erscheint ein geradezu typisches Merkmal der Präferenzstruktur von Entscheidungsträgern in vergleichbaren Positionen zu sein.

Der verantwortungsbewußte Energiepolitiker wird vermutlich immer eine Alternative im Sinne unserer o.a. 'gemischten Lotterie' einer sog. 'reinen Extrem-Lotterie' vorziehen, denn grundsätzlich dürfte folgende Überlegung von einem durch gesellschaftliche Zwänge (ein Politiker, der risikofreudig auftritt, hat geringere Wiederwahlchancen als derjenige, der vorsichtige, behutsame, kurz risikoscheue Entscheidungen fällt und vertritt) zu konservativen Entscheidungen angehaltenen Entscheidungsträger in Anbetracht gezogen werden: Wenn ohnehin nach Voraussetzung alle in der jeweiligen Lotterie momentan nicht betrachteten Attribute schon auf ihrem jeweils schlechtesten Wert sind $(\overline{z}_{ij}^{\ o})$, ist eine Lotterie, die mit Wahrscheinlichkeit p = 0.5 für beide gerade berücksichtigten Attribute die jeweils schlechtesten Werte $(z_i^{\ o}, z_j^{\ o})$ ergeben kann, auch

wenn sie mit gleicher Wahrscheinlichkeit p=0.5 die jeweils besten Werte (z_i^1,z_j^1) liefert als relativ unattraktiver anzusehen als eine Lotterie, die mit gleichen Wahrscheinlichkeiten eine der beiden Kombinationen aus jeweils schlechtestem bzw. bestem Wert für je eine der beiden Attribute zur Konsequenz hat. Allein die Möglichkeit des sog. 'Crash-Effekts', daß nämlich alle Attribute auf ihrem schlechtesten Niveau sein könnten, macht die erste der beiden o.a. Lotterien unattraktiver im Sinne unseres Entscheidungsträgers.

Ein hiermit stark verwandtes Entscheidungsverhalten wurde vom Entscheidungsträger während des Interviews mehrfach mit Nachdruck artikuliert. In etwas verallgemeinerter Form handelt es sich um die folgende Äußerung:

Liegen bereits vielfältige Risiken für das Energieversorgungssystem vor, dergestalt, daß schon viele Attribute ihren
jeweils schlechtesten Wert angenommen haben, so sollte die
Verhinderung eines weiteren Risikos (i.o.a. Sinne) höher eingeschätzt werden als für den Fall, daß bislang nur geringe
oder keine Risiken bestanden. Anders ausgedrückt:

Der Nutzenzuwachs speziell bei Änderung von z_i^0 zu z_i^1 (d.h. Verhinderung des i-ten Risikos, in der Form, daß z_i^1 seinen schlechtesten Wert annimmt) muß größer sein, wenn z_i^0 vorliegt, als wenn z_i^1 vorliegt; es besteht also gewissermaßen ein Synergismus zwischen den Attributen. Formal ausgedrückt:

$$\Delta w(\overline{z}_{i}^{O}) = w(z_{i}^{1}, \overline{z}_{i}^{O}) - w(z_{i}^{O}, \overline{z}_{i}^{O}) > w(z_{i}^{1}, \overline{z}_{i}^{1}) - w(z_{i}^{O}, \overline{z}_{i}^{1})$$

$$= \Delta w(\overline{z}_{i}^{1}) \qquad (5.4.6)$$

wobei hier als Bezeichnung für die Nutzenfunktion $w(\underline{z})$ gewählt wurde, um formal von unserer konkret ermittelten Funktion $v(\underline{y})$ zu unterscheiden. In Anhang D wird gezeigt, daß aus (5.4.6) für eine allgemeine, über n Attributen definierte multiplikative Nutzenfunktion folgt, daß die abhängige Skalierungskonstante kleiner als Null sein muß, um der Aussage, die hinter der Beziehung (5.4.6) steht, zu genügen.

Hier soll anhand eines einfachen Beispiels erläutert werden, daß

- 1. die multiplikative Form der Nutzenfunktion eine grundlegende Voraussetzung ist, um überhaupt derartige Äußerungen formal beschreiben zu können; denn in der additiven Form von $w(\underline{z})$ würde stets $\Delta w(\overline{z}_i^0) = \Delta w(\overline{z}_i^1)$ gelten, und daß
- 2. durch formale Auswertung dieser Äußerungen bereits vorab wertvolle Information über die Skalierungskoeffizienten gewonnen werden kann, die vor allem auch für Konsistenzprüfungen herangezogen werden kann.

Beispiel:

Sei \mathbf{Z}_1 die Anzahl der Unfalltoten des Energieversorgungssystems. \mathbf{Z}_2 sei ein Umweltbelastungsindex, der verschiedene Umweltkriterien umfaßt.

Die konkret im Interview artikulierte Äußerung lautete: "Sind bereits vielfältige Risiken vorhanden ($\triangleq \overline{z}_1^O = z_2^O$), muß man sich die Verminderung eines weiteren Risikos (bildhaft gesprochen) etwas kosten lassen" (hier konkret: Unfallschutzmaßnahmen intensivieren).

Nutzentheoretisch formuliert, fordert man analog zu (5.4.6)

$$\Delta w(\overline{z}_1^0) > \Delta w(\overline{z}_1^1)$$
,

dies ist nur mit einer multiplikativen Form für w(z) beschreibbar, also:

$$w(\underline{z}) = q_1 w_1(z_1) + q_2 w_2(z_2) + q_1 q_2 w_1(z_1) w_2(z_2).$$

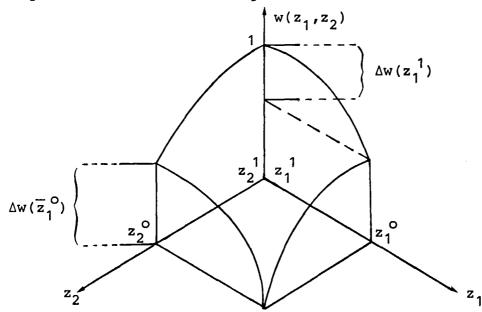
(Normierungskonventionen wie in Anhang D)

$$\Delta w(\overline{z}_{1}^{O}) = w(z_{1}^{1}, \overline{z}_{1}^{O}) - w(z_{1}^{O}, \overline{z}_{1}^{O}) = q_{1}$$

$$\Delta w(\overline{z}_{1}^{1}) = w(z_{1}^{1}, \overline{z}_{1}^{1}) - w(z_{1}^{O}, z_{1}^{1}) = q_{1} + q_{2} + qq_{1}q_{2} - q_{2}$$

$$= q_{1}(1 + qq_{2})$$

Forderung:


$$\Delta w(\overline{z}_{1}^{O}) > \Delta w(\overline{z}_{1}^{1})$$

$$q_{1} > q_{1}(1 + qq_{2})$$

$$1 > 1 + qq_{2}$$

$$0 > qq_{2} \Rightarrow q < 0 \text{ ist notwendig (und hier auch hinreichend) für das Erfülltsein der Forderung (vgl. Anhang D).$$

Graphische Veranschaulichung:

Kommen wir nun zurück zu der konkret zu ermittelnden Nutzenfunktion. Die Gesamtnutzenfunktion $v(\underline{y})$ ist durch die Gleichungen (5.4.1) - (5.4.5) vollständig spezifiziert.

Neben den k = 14 Einzelnutzenfunktionen $u_i(z_i)(i = 1(1)14)$ gehen lediglich noch maximal k + 4 = 18 unabhängige Skalierungskonstanten in die Gleichungen für v(y) ein. Die Größen d, d^2 , d^6 , d^{21} , d^{22} sind nicht unabhängig, d sie jeweils durch eine Gleichung (z.B. für d: $1 + d = \prod_{i=1}^{n} (1 + dd_i)$ mit den d_i) zusammenhängen und dadurch eindeutig bestimmt sind.

Ohne die verschiedenartigen Schachtelungen in sog. Unteroder Teilnutzenfunktionen lägen genau k = 14 unabhängige Skalierungskonstanten vor. Wir hätten dann allerdings auch k=14 skalare Einzelattribute, die allesamt voneinander präferenzunabhängig wären (also auch die Zusammenfassung irgendwelcher Z_i ϵ Z wäre dann präferenzunabhängig von ihrem jeweiligen Komplement bezüglich Z). Durch die unterschiedlichen Schachtelungsformen ist es möglich, Nutzenfunktionen zu definieren, die die Modellierung von Präferenzabhängigkeiten gestatten. In der Sprechweise von Keeney u. Raiffa (1976, S. 298): "Nesting multiplicative forms provides an extra degree of freedom in the problem by having an extra independent scaling constant."

D.h.: Jede Schachtelung unter Zugrundelegung der jeweiligen multiplikativen Form der Gleichungen (5.4.1) - (5.4.5) bringt einen zusätzlichen Freiheitsgrad in unsere Gesamtnutzenfunktion, denn mit ihr (s. Gleichung (5.4.2) - (5.4.5) ist jeweils eine zusätzliche unabhängige Skalierungskonstante verbunden.

(Diese zusätzlichen Skalierungskonstanten können zur Modellierung von Strukturen herangezogen werden, in denen zwischen vielen Attributen und/oder schon neugefaßten Attributpaketen Präferenzabhängigkeiten bestehen.)

"By various nesting schemes, enough extra constants could be provided to model situations where trade offs between many pairs of attributes depend on the level of other attributes" (Keeney, Raiffa (1976, S. 298, 299)).

Anhand eines einfachen Beispiels soll diese bedeutende Eigenschaft geschachtelter multiplikativer Nutzenfunktionen erläutert werden. Betrachten wir den Fall einer einfach geschachtelten multiplikativen Nutzenfunktion auf dem dreidimensionalen Attributeraum $Z:=Z_1\times Z_2\times Z_3$, die wie folgt definiert ist:

$$Y_1 = Z_1; \quad Y_2 = (Z_2, Z_3)$$

$$1 + dv(Y_1, Y_2) = (1 + dd_1v_1(Y_1))(1 + dd_2v_2(Y_2));$$

$$d_1 + d_2 \neq 1$$
(B1)

$$1 + d'v_2(y_2) = (1 + d'd_{21}v_{21}(y_{21}))(1 + d'd_{22}v_{22}(y_{22}));$$

 $d_{21} + d_{22} \neq 1$ (B2)

mit

$$v_1(y_1) = u_1(z_1)$$
 und d,d' Lösungen von:
 $v_{21}(y_{21}) = u_2(z_2)$ 1 + d = (1 + dd₁)(1 + dd₂)
 $v_{21}(y_{22}) = u_3(z_3)$ 1 + d'= (1 + d'd₂₁)(1 + d'd₂₂).

(B2) in (B1) ergibt:

$$1 + d \cdot v(y_1, y_2) = (1 + dd_1v_1(y_1))(1 + dd_2/d' \cdot (1 + d'd_{21}v_{21}(y_{21}))(1 + d'd_{22}v_{22}(y_{22})) - 1])$$
(B3)

Betrachten wir nun Gleichung (B3) für den Fall, daß $d'=d \cdot d_2$ ist:

$$1 + dv(y_{1}, y_{2}) = (1 + dd_{1}v_{1}(y_{1}))(1 + [(1 + dd_{2}d_{21}v_{21} + (y_{21}))(1 + dd_{2}d_{22}v_{22}(y_{22})) - 1])$$

$$1 + dv(y_{1}, y_{2}) = (1 + dd'_{1}v_{1}(y_{1}))(1 + dd'_{2}v_{21}(y_{21}))$$

$$(1 + dd'_{3}v_{22}(y_{22}))$$

$$1 + dv(z_{1}, z_{2}, z_{3}) = (1 + dd'_{1}v_{1}(z_{1}))(1 + dd'_{2}v_{2}(z_{2}))$$

$$(1 + dd'_{3}v_{3}(z_{3})), \qquad (B4)$$

wobei: $d'_1 = d_1$; $d'_2 = d_2 \cdot d_{21}$; $d'_3 = d_2 \cdot d_{22}$.

Gleichung (B4) ist nichts anderes als eine reine multiplikative Form der Gesamtnutzenfunktion für 3 Attribute. Gilt also $d' = d \cdot d_2$, so erfüllt jedes Paar von Attributen aus $Z = \{Z_1, Z_2, Z_3\}$ die Präferenzunabhängigkeitsvoraussetzung. In der Regel ist aber $d' \neq d \cdot d_2$, und wir können in Gleichung (B3) den Ausdruck 1 + $d \cdot v(y_1, y_2) = 1 + dv(z_1, z_2, z_3)$ nicht in 3 einzelne Faktoren, die jeweils nur von den einzelnen skalaren Attributen Z_1 , Z_2 , Z_3 abhängen, auflösen.

$$v(z'_1, z'_2, z_3) = v(z''_1, z''_2, z_3)$$

folgt nicht notwendig

M.a.W.: aus

$$v(z'_1, z'_2, z'_3) = v(z''_1, z''_2, z'_3)$$

wenn $z_3 \neq z'_3$ ist. Dies würde aber stets gelten, wenn $d' = d \cdot d_2$ erfüllt wäre, was ja gleichbedeutend mit der Präferenzunabhängigkeit für alle Attributpaare aus $Z = \{Z_1, Z_2, Z_3\}$ ist.

Die interviewmäßige Ermittlung der Beispielfunktion $v(z_1, z_2, z_3)$ würde also folgende Charakteristika aufweisen:

- 1. Die Festlegung des Indifferenzwertepaares für \mathbf{Z}_1 und \mathbf{Z}_2 hängt von den Werten für \mathbf{Z}_3 ab $(\mathbf{Z}_1 \times \mathbf{Z}_2$ ist präferenzabhängig von \mathbf{Z}_3).
- 2. Ebenso hängt die Festlegung des Indifferenzwertepaares für z_1 und z_3 von den Werten ab, die z_2 annimmt ($z_1 \times z_3$ ist präferenzabhängig von z_2).
- 3. Eine Indifferenzpunktbestimmung zwischen z_2 und z_3 ist hingegen unbeeinflußt von den Werten $\overline{z}_{23} = z_1$; d.h.: $Y_2 = \{z_2, z_3\}$ ist präferenzunabhängig von $Y_1 = z_1$.

Die Funktion v(z₁,z₂,z₃) spiegelt also eine Präferenzstruktur wider, die sowohl Präferenzabhängigkeiten als auch Präferenzunabhängigkeiten enthält. Hiermit dürfte beispielhaft demonstriert worden sein, daß eine geschachtelte multiplikative Nutzenfunktionsform durchaus geeignet ist, kompliziertere Präferenzstrukturen adäquat zu quantifizieren; wohingegen konventionelle Kosten-Nutzen-Analysen (vgl. z.B. Recktenwald (1970), Meyke (1973) u. Zangemeister (1973)) stets von ausnahmsloser Präferenzunabhängigkeit ausgehen.

5.5 Bestimmung der Skalierungskonstanten

Durch die Gleichungen (5.4.1) - (5.4.5) ist zwar die Form der Gesamtnutzenfunktion eindeutig spezifiziert, der Wert der einzelnen Koeffizienten in den Gleichungen ist allerdings noch unbestimmt. Im folgenden werden wir uns dieser Frage zuwenden.

Die Darstellung wird sich hierbei auf einer von unserer konkreten multiplikativen Gesamtnutzenfunktion (GNF) losgelösten (fiktiven) Ebene ausschließlich skalarwertiger Einzelattribute Z_i (i = 1, ..., k)bewegen. Diese Vorgehensweise bietet sich aus folgenden Überlegungen heraus an:

Wir können direkt die in Kap. 3 eingeführte Notation verwenden. Die $\mathbf{Z_i}$ (i = 1,...,k) sind dabei irgendwelche nicht näher konkretisierten skalarwertigen Attribute. Da wir von einer nicht geschachtelten Form der GNF ausgehen, liegen die Werte der $\mathbf{u_i}(\mathbf{z_i})$ bereits als Ergebnisse der Einzelnutzenfunktionsbestimmung (hier Kap. 5.3) vor, ohne daß hierzu vorab irgendwelche Koeffizienten bestimmt werden mußten. (Z.B. könnte $\mathbf{v_6}(\mathbf{y_6})$ nicht direkt als Zahlenwert angegeben werden.)

Das so dargestellte Bestimmungsschema (\triangleq i.w. das Lösen eines Gleichungssystems) für die Skalierungskoeffizienten ist problemlos auf jede beliebige Ebene mehrelementiger Attributpakete (insbesondere ist Y selbst als solche aufzufassen) anwendbar, sofern man berücksichtigt, daß in evtl. auftretenden eingebetteten Attributunterpaketen bereits vorab mit demselben Schema (wie jetzt auf der höheren Ebene der AttributeHierarchie) die Skalierungskoeffizienten bestimmt worden sein müssen.

D.h.: Bei geschachtelten Nutzenfunktionen wendet man das folgende Bestimmungsschema stets erst auf der untersten Ebene der Attribute-Hierarchie an und kann dort, da nur skalarwertige Einzelattribute vorliegen, die Skalierungskonstanten einfach durch Lösen eines noch näher zu beschreibenden Gleichungssystems bestimmen.

Erst danach lassen sich auf der nächst höheren Ebene der Attribut-Hierarchie die Skalierungskoeffizienten auf gleiche Weise bestimmen. Das gleiche Prinzip läßt sich auf beliebig geschachtelte Nutzenfunktionen anwenden, weshalb es im folgenden auch nur einmal beschrieben werden soll.

Hat man allgemein k Attribute z_1, \ldots, z_k , die den Voraussetzungen von Satz 3.1 genügen, versucht man k unabhängige Gleichungen zu erhalten, die die k Unbekannten c_1, \ldots, c_k eindeutig determinieren. Eine solche Gleichung kann wie folgt bestimmt werden:

Man ermittelt vom Entscheidungsträger zwei Strategien \underline{x}^A und \underline{x}^B , zwischen denen er indifferent ist, was i.d.R. dadurch geschieht, daß man das Indifferenzpaar $\underline{z}^A \sim \underline{z}^B$ der zu \underline{x}^A und \underline{x}^B gehörigen Attributausprägungen bestimmt.

Die so ermittelten (Attributwert-) Vektoren \underline{z}^A und \underline{z}^B benutzt man als Argumente der Nutzenfunktion in der Form von Gleichung (3.1) bzw. (3.2) und setzt die hieraus resultierenden erwarteten Nutzen gleich:

$$u(\underline{z}^{A}) = u(\underline{z}^{B}) \tag{5.5.1}$$

Beziehung (5.5.1) ist eine von k angestrebten Gleichungen mit höchstens k Unbekannten c_i (i = 1, ..., k), was leicht einzusehen ist, wenn man sie wie folgt schreibt:

$$f[u_1(z_1^A), ..., u_k(z_k^A), c_1, ..., c_k] = f[u_1(z_1^B), ..., u_k(z_k^B), c_1, ..., c_k]$$

$$(5.5.2)$$

Sind die Einzelnutzenfunktionen $u_i(z_i)$ ($i=1,\ldots,k$) bereits bestimmt worden, dann sind die $u_i(z_i^A)$ und $u_i(z_i^B)$ ($i=1,\ldots,k$) lediglich reelle Zahlen aus dem Intervall [0,1], so daß Gleichung (5.5.2) eben gerade eine Gleichung mit höchstens k Unbekannten darstellt.

Hat man nun k solcher Gleichungen ermittelt, die selbstverständlich nicht notwendig linear sind (vor allem bei Zugrundelegen der multiplikativen Form s. Gleichung (3.2)), so treten insbesondere bei der zeitlich begrenzten praktischen Interviewdurchführung rechentechnische Probleme auf:

- Wie kann sichergestellt werden, daß ein weder unter- noch überbestimmtes Gleichungssystem aus k + 1 Gleichungen (die (k + 1) -te Gleichung ist die Definitionsgleichung für c, vgl. (3.3)) vorliegt?
- Wie kann ein möglichst einfach zu lösendes wie auch relativ schnell zu ermittelndes Gleichungssystem bestimmt werden?

3. Wie soll mit inkonsistenten, sich widersprechenden Gleichungen verfahren werden?

Auf die ersten beiden Fragen gehen wir in den folgenden Ausführungen ein, während der Beantwortung der dritten Frage ein eigenes Kapitel gewidmet ist (Kap. 5.6). Nachdem in der Praxis bis zum Zeitpunkt der Bestimmung der Skalierungskonstanten die Form der Nutzenfunktion ohnehin bekannt ist, wird man versuchen, derartige Fragen an den Entscheidungsträger zu richten, deren Beantwortung erstens möglichst geringe Anforderungen an dessen Einschätzungsvermögen stellt und zweitens möglichst einfache Gleichungen ergibt. Diese Zielsetzungen beschränken nach Keeney, Raiffa (1976, S. 303) bzw. Sicherman (1975, S. 20) die Vielfalt möglicher Fragen auf zwei Grundtypen, die grundsätzlich nach den zweierlei Arten von Zieleinschätzung fragen, die bereits in Kapitel 5.2 erwähnt worden sind.

Beide Fragetypen sollen nun in der Darstellung nach Keeney, Raiffa (1976, S. 303) vorgestellt werden, wobei zur Notationsvereinfachung die Bezeichnungsweisen und Normierungskonventionen aus Kapitel 3 verwendet werden. Wichtig sind vor allem die Bezeichnungen:

$$u(z,...,z_{k}) = \sum_{i} c_{i}u_{i}(z_{i}) \quad \text{mit } \sum_{i} c_{i} = 1$$

$$1 + cu(z,...,z_{k}) = \prod_{i} [1 + cc_{i}u_{i}(z_{i})] \quad \text{mit } \sum_{i} c_{i} \neq 1$$

$$(3.2)$$

$$1 + c = \prod_{i} (1 + cc_{i}) \quad (3.3)$$

$$u_{i}(z_{i}^{\circ}) = 0 \quad \text{und } u_{i}(z_{i}^{1}) = 1, i \in \{1,...,k\} \quad (3.4)$$

$$u(\underline{z}^{\circ}) = u(z_{1}^{\circ}, z_{2}^{\circ}, ..., z_{k}^{\circ}) = 0 \quad \text{und } u(\underline{z}^{1}) = u(z_{1}^{1}, z_{2}^{1}, ..., z_{k}^{1}) = 1 \quad (3.5)$$

$$c_{i} = u(z_{1}^{\circ}, ..., z_{i-1}^{\circ}, z_{i}^{1}, z_{i+1}^{\circ}, ..., z_{k}^{\circ}) = u(z_{1}^{1}, \overline{z}_{i}^{\circ}) \quad (3.6)$$

Fragentyp 1: Für welche Wahrscheinlichkeit p sind Sie indifferent Vi ϵ {1,...,k} zwischen

A: einer Lotterie, die mit Wahrscheinlichkeit p \underline{z}^1 und mit Wahrscheinlichkeit 1 - p \underline{z}^0 liefert und

B: der sicheren Konsequenz
$$(z_1^0, \dots, z_{i-1}^0, z_i^0, z_{i+1}^0, \dots, z_k^0) = (z_i^1, \overline{z_i^0})$$
?

Bezeichnen wir die Antwort des Entscheidungsträgers mit p_i , so gilt mit (3.5), daß der erwartete Nutzen der Lotterie gerade p_i ist und unter Heranziehung der additiven (3.1) oder multiplikativen (3.2) Form der Nutzenfunktion ergibt sich als erwarteter Nutzen der sicheren Konsequenz gerade c_i . Da beide Alternativen für $p = p_i$ indifferent sind, erhält man durch Gleichsetzen der beiden den erwarteten Nutzen

$$c_i = p_i . ag{5.5.3}$$

Zur näheren Erläuterung sei an dieser Stelle auf die Anmerkung in Kap. 3 zu Gleichung (3.6) verwiesen. Es wird hier nochmals ausdrücklich darauf hingewiesen, daß unter Anerkennung der Normierungskonventionen (3.4) - (3.6) der absolute Wert der Skalierungskonstanten c_i ausschließlich von den Präferenzen des Entscheidungsträgers abhängt. Die Antwort auf eine Frage vom Typ 1 ist nach eigener Erfahrung und auch nach Angaben von Keeney, Raiffa (1976, S. 304) mit äußerster Vorsicht zu genießen und sollte auf alle Fälle durch Kontrollfragen überprüft werden.

Fragentyp 2: Wählen Sie einen Wert von Z_i , z.B. z_i , und einen von Z_j , etwa z_j , und zwar so, daß unter der Annahme irgendeines fixen Niveaus für alle anderen Attribute (also \overline{z}_{ij} fest, z.B.: \overline{z}_{ij}^{O}) Indifferenz besteht zwischen

A: einer Konsequenz, die z_i und z_j^o ergibt, und B: einer Konsequenz, die z_j^i und z_i^o ergibt.

Benutzt man die Beziehungen (3.4) und (3.5) und verwendet entweder die additive oder die multiplikative Form ((3.1) bzw. (3.2)), so kann man die Nutzen dieser beiden einander indifferenten Konsequenzen gleichsetzen und erhält

$$c_{i} \cdot u_{i}(z_{i}) = c_{i} \cdot u_{i}(z_{i})$$
 (5.5.4)

Sind die Einzelnutzenfunktionen u_i und u_j bereits bestimmt, können die Zahlenwerte $u_i(z_i')$ bzw. $u_j(z_j')$ einfach durch Einsetzen ermittelt werden und (5.5.4) stellt eine simple lineare Gleichung dar. Setzt man noch $z_i' = z_i'$, vereinfacht sich die Beziehung wegen (3.4) noch mehr und wir erhalten die denkbar einfachste lineare Gleichung

$$c_{i} = c_{j} \cdot u_{j}(z'_{j}),$$
 (5.5.5)

bzw., falls $z'_{j} = z_{j}^{1}$,

$$c_{i}u_{i}(z'_{i}) = c_{j}$$
 (5.5.6)

für die Beziehung zwischen 2 Skalierungskonstanten c_i und c_j . Erinnern wir uns an die 2. Art von Zieleinschätzungen in Kap. 5.2, so stellen wir fest, daß die Gleichungen (5.5.5.) und (5.5.6) nichts anderes sind als die Auswertung der Information über die relative Einschätzung zwischen den Zielerreichungsgraden (Attributwerten) zweier Ziele.

M.a.W.: Durch Einsetzen der bereits zur Verifizierung der Präferenzunabhängigkeit ermittelten Indifferenzwertepaare (vgl. Anhang B) in die Gleichungen (3.1) bzw. (3.2) und anschließendes Gleichsetzen ergeben sich bereits k - 1 lineare Gleichungen, die nach Konstruktion voneinander unabhängig sind.

Die nach Keeney, Raiffa (1976, S. 304) häufigste Vorgehensweise zur Bestimmung der c_i besteht darin, zunächst die c_i (i \in {1,...,k}) der Größe nach zu ordnen, danach für das größte c_i eine Frage vom Typ 1 auszuwerten und schließlich k - 1 Fragen vom Typ 2 zu stellen, um die Größe der c_j (j \in {1,...,k}\{i}) relativ zu dem größten c_i zu bestimmen. Hat man einmal alle c_i (i = 1,...,k) ermittelt, ist die additive Form anzuwenden, sofern

$$\sum_{i=1}^{k} c_i = 1$$

gilt. Andernfalls sind die c_i in Gleichung (3.3), also $1 + c = \prod_{i=1}^{K} (1 + cc_i)$ einzusetzen, um die zusätzliche abhängige Skalierungskonstante c zu bestimmen.

Die Aufstellung der Rangordnung der c_i ($i=1,\ldots,k$) kann zum einen direkt aus den relativen Verhältnissen der c_i zu c_j nach (5.5.5) bzw. (5.5.6) erfolgen, sollte jedoch als Konsistenzprüfung auch auf dem Weg der direkten Erfragung geschehen. Beispielsweise fragt man den Entscheidungsträger, ob er $(z_1^{\ 1}, \overline{z_i^{\ 0}})$ der Konsequenz $(z_j^{\ 1}, \overline{z_j^{\ 0}})$ vorzieht. Ist dies der Fall, gilt $c_i > c_j$, andernfalls $c_i < c_j$ oder, im Fall der Indifferenz, $c_i = c_j$. Durch wiederholte Anwendung derartiger Fragen in geschickt gewählter Reihenfolge erhält man sehr schnell eine komplette Rangfolge der c_i . Die praktische Ermittlung dieser Rangfolge der c_i vor der eigentlichen Bestimmung der c_i hat sich als sinnvolles Konsistenzprüfungsinstrument bewährt und häufig werden bereits zu diesem Zeitpunkt einige Indifferenzwertepaare revidiert.

Es muß in diesem Zusammenhang auch darauf hingewiesen werden, daß, wie in Kap. 3 schon angedeutet, die c_i nicht als Indikatoren für die relative Bedeutung eines einzelnen Attributs interpretiert werden können (vgl. Keeney, Raiffa (1976, S. 271 ff)). Da dies eine weitverbreitete Mißinterpretation der c_i darstellt, soll dieser Punkt kurz näher veranschaulicht werden.

Man denke sich etwa das Attribut 'Importanteil' (z_{13}) aus unserer konkreten Untersuchung mit einer Schwankungsbreite von nur 5 % (im Intervall [95 %, 100 %]) versehen. D.h. alle möglichen Energieversorgungssysteme haben fast den gleichen Importanteilssatz, da z_{13}^1 und z_{13}^0 sehr nahe beieinander liegen. Das zugehörige c_{13}^1 möge sehr klein sein und generell gilt, daß c_i umso kleiner ist, je näher c_i^1 und c_i^0 zusammenrücken (i beliebig). Der Importanteil hätte in diesem hypothetischen Fall einen ausgesprochen kleinen Einfluß auf die Wahl zwischen verschiedenen Energieversorgungsstrategien, dennoch kann aber niemand daraus schließen, daß der Importanteil grundsätzlich unbedeutend für die künftige Energieversorgungsstrategie ist.

Bevor wir uns den Möglichkeiten zur Umgehung von Fragen des Typs 1 zuwenden, soll ein einfaches Beispiel, das nach Keeney, Raiffa (1976) empfohlene und von ihnen wiederholt auf praktische strategische Entscheidungsprobleme angewandte Bestimmungsschema für die Skalierungskoeffizienten illustrieren.

Denken wir uns ein Entscheidungsproblem über verschiedene Energieversorgungsstrategien ausschließlich unter dem Blickwinkel der Versorgungssicherheit (= Z), repräsentiert durch die 3 Einzelattribute Z_1 = "Reziproker Gesamtwirkungsgrad"; Z_2 = "Importanteil"; und Z_3 = "Vorratshaltungskosten" (vgl. Detailbeschreibung in Kapitel 4).

Es gelte $c_1 > c_2 > c_3$.

Weiterhin gelte:

$$u(z_1', z_2^0, z_3^0) = u(z_1^0, z_2^1, z_3^0) \Leftrightarrow c_1 \cdot u_1(z_1') = c_2$$
(C1)

mit unseren Beispielwerten, also konkret

$$u(143,100,100) = u(125,10,100) \Leftrightarrow c_1 \cdot u_1(143) = c_2$$

$$oder \quad c_1 \cdot 0.875 = c_2$$

und

$$u(z_1'', z_2'', z_3'') = u(z_1^0, z_2^0, z_3^1) \Leftrightarrow c_1 \cdot u_1(z_1'') = c_3$$
(C2)

konkret

$$u(244,100,100) = u(125,100,10) \Leftrightarrow c_1 \cdot u_1(244) = c_3$$

oder $c_1 \cdot 0.053 = c_3$

Wäre die Nutzenfunktion u(z) additiv, müßte

$$\sum_{i=1}^{3} c_i = 1 \tag{C3}$$

gelten, woraus hier konkret folgt:

$$c_1 = 0.52; c_2 = 0.45; c_3 = 0.03$$

Wie wir in Kap. 5.4 gesehen haben, kann durch Zusatzfragen im Sinne von Satz 3.2 geklärt werden, ob Additivität vorliegt. Außerdem können auch bestimmte, verbal formulierte Äußerungen seitens des Entscheidungsträgers bereits darauf hindeuten, daß die multiplikative Form anzuwenden ist (vgl. Kap. 5.4). Ist dies der Fall, so muß aus Gründen der Konsistenz

$$c + 1 = (cc_1 + 1)(cc_2 + 1)(cc_3 + 1)$$
 (C4)

erfüllt sein.

Die drei Beispielgleichungen (C1), (C2) und (C4) haben 4 Unbekannte, weshalb wir noch eine andere Gleichung benötigen. Diese wird durch eine Frage vom Typ 1 ermittelt. Graphisch veranschaulicht:

B
A
$$\frac{p_1}{0.9} = \frac{p_1}{0.9}$$
(250, 100, 100)
$$\frac{z^0}{1-p_1} = (250, 10, 10)$$
0.5
B
0.8
B
0.86

$$z^0 = (125, 100, 100)$$

$$z^0 = (125, 100, 100)$$

$$\Rightarrow c_1 = p_1 = 0.86$$

$$(C1) \Rightarrow c_2 = 0.752$$

$$(C2) \Rightarrow c_3 = 0.046$$

$$\Rightarrow in (C4) \Rightarrow c = -0.95.$$

Nach diesem Beispiel wollen wir nun im Detail die Problematik von Fragen vom Typ 1 (die, wie das Beispiel zeigt, nur bei multiplikativen Formen von Nöten ist) wie auch vom Typ 2 diskutieren. Beide Fragetypen haben den Nachteil, daß sie im wesentlichen auf das Abwägen von extremen Attributwerten

(nämlich z_i^1 und z_i^0) abzielen. Da der Schwankungsbereich zwischen z_i^0 und z_i^1 alle möglichen z_i überdeckt, sind wegen der damit verbundenen Implikationen die Präferenzen für extreme Attributwerte gewöhnlich schwer artikulierbar.

Bei Fragen vom Typ 1 kommt ein noch schwerwiegenderer Umstand hinzu, da die Beantwortung solcher Typ 1-Fragen durch den Entscheidungsträger die simultane Berücksichtigung der Auswirkungen von allgemein k (i.o. Beispiel 3) Attributwertänderungen erfordert. Aus Gründen der rechnerischen Vereinfachung zwingt man den Entscheidungsträger also, Fragen zu beantworten, deren Schwierigkeitsgrad den theoretisch benötigten bei weitem überschreitet.

Die praktische Erfahrung im Umgang mit Fragen vom Typ 1 lehrt auch, daß implizit mit der Fragestellung dem Entscheidungsträger suggeriert wird, er sei additiv; denn kein Befragter konnte sich bei der Abwägung des $\mathbf{p_i} = \mathbf{c_i}$ von der wahrscheinlichkeitstheoretischen Mißdeutung, daß $\sum_{i=1}^{n} \mathbf{p_i} = 1$ ist, freimachen. Orientiert man sich beim Alternativenvergleich in einer Typ 1-Frage hieran, ergibt sich konsequenterweise meistens in guter Näherung auch $\sum_{i=1}^{n} \mathbf{c_i} = 1$ und damit die additive Form. Während die Beantwortung von Lotteriefragen im Sinne von Satz 3.2 und auch Äußerungen über synergistische Zusammenhänge (vgl. Kap. 5.4) eindeutig die multiplikative Form mit $\sum_{i=1}^{n} \mathbf{c_i} = 1$ zur Folge haben. Die Frage, was denn nun richtig sei, ist stets gleichbedeutend mit der Frage, welche Funktion die Präferenzstruktur des Entscheidungsträgers korrekt wiedergibt.

Man wird also bei Verwendung solcher Typ 1-Fragen mehrere zusätzliche Konsistenzfragen stellen müssen und deren Antworten und Implikationen mit dem Entscheidungsträger beraten.

Für die praktische Interviewdurchführung haben wir einen Alternativfragentyp 1' entwickelt, der nur das Abwägen von zwei Attributwertänderungen erfordert.

Wir gehen dabei davon aus, daß bereits k-1 lineare Gleichungen über Typ 2-Fragen gewonnen wurden, die die Größe der c_j , mit $j \in \{1, ..., k\} \setminus \{i\}$ relativ zu einem (nicht notwendig dem größten)

c wiederspiegeln. Fragentyp 1' unterscheidet sich nur geringfügig von den Fragen, die zur Ermittlung der Indifferenzpaare gestellt wurden (Kap. 5.2) die ja wiederum einen Spezialfall des Fragentyps 2 darstellen.

Fragentyp 1': Wählen Sie einen Wert von Z_i , z.B.: z_i , und einen von Z_j , etwa z_j , und zwar so, daß unter der Annahme irgendeines fixen Niveaus für alle anderen Attribute (also \overline{z}_{ij} fest) Indifferenz besteht zwischen:

A: einer Konsequenz, die z_i' und z_j^1 ergibt, B: einer Konsequenz, die z_j' und z_i^1 ergibt.

Mit (3.4) und (3.5) und der multiplikativen Form (3.2), denn nur für diese werden Fragen vom Typ 1' (oder Typ 1) benötigt, ergibt sich, wenn man die Nutzen beider Konsequenzen A und B gleichsetzt:

$$c_{i} \cdot u_{i}(z_{i}') + c_{j} + cc_{i}c_{j}u_{i}(z_{i}') = c_{i} + c_{j} \cdot u_{j}(z_{j}') + cc_{i}c_{j}u_{j}(z_{j}')$$
 (5.5.7)

Setzt man in (5.5.7) noch $z_i' = z_i^0$, so folgt:

$$c_{j} = c_{i} + c_{j}u_{j}(z_{j}') + cc_{i}c_{j}u_{j}(z_{j}')$$
 (5.5.8)

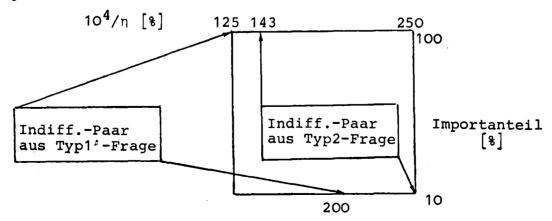
bzw. für $z_j' = z_j^o$:

$$c_{i} \cdot u_{i}(z_{i}') + c_{j} + cc_{i}c_{j} \cdot u_{i}(z_{i}) = c_{i}$$
 (5.5.9)

Da die $u_i(z_i')$ bzw. $u_j(z_j')$ nur reelle Zahlenwerte darstellen, sofern die Einzelnutzenfunktionen erst einmal bestimmt sind, ist eine Beziehung der Art (5.5.8) bzw. (5.5.9) die einfachste nichtlineare Beziehung für den Zusammenhang zweier c_i , c_j und c.

Wir sind somit in der Lage, ein Gleichungssystem aus k - 1 linearen Gleichungen, z.B. der Art (5.5.6) und einer nicht-linearen Gleichung der Art (5.5.9) und der Definitionsgleichung für c (3.3) aufzustellen. Für den in unserem konkre-

ten Projekt theoretisch denkbaren Fall einer rein multiplikativen Gesamtnutzenfunktion über 14 Einzelattributen (also ohne Schachtelung) ist das Gleichungssystem in Anhang E mit $c_i = c_1$ angegeben. Der Skalierungskoeffizient des Attributs: 'Gesamtkosten' wurde gewählt, da bereits in Kap. 3 sämtliche Indifferenzwertepaare bezüglich dieses einen Attributs ermittelt worden sind.


Für die Lösung dieses Gleichungssystems wurde ein Programm auf einem mit Magnetkartenprogrammspeicher ausgestatteten Taschenrechner entworfen, das dieses System nach den in Anhang E wiedergegebenen Gleichungen löst.

Das Programm wurde beim Interview zur Nutzenfunktionsbestimmung (von einem zweiten Berater, neben dem eigentlichen Interviewer des Entscheidungsträgers) erfolgreich eingesetzt. Es ist so angelegt, daß es für sämtliche mehrelementige Attributpakete (inkl. Y) auf jeder beliebigen Ebene der Attribute-Hierarchie unserer Gesamtnutzenfunktion $v(\underline{y})$ verwendet werden kann, wobei als Eingabe lediglich die Koeffizienten k_i der c_i und die Anzahl der Unbekannten benötigt werden.

Die Skalierungskoeffizienten d, d_i ($i=1,\ldots,6$), d^2 , d_{2j} ($j=1,\ldots,5$), d^6 , d_{6k} ($k=1,\ldots,3$), d^{21} , d_{211} , d_{212} , d^{22} , d_{221} und d_{222} sind in Anhang F mit den zugehörigen Gleichungssystemen, deren Lösung sie sind, angegeben.

Hier soll zur besseren Veranschaulichung lediglich unser o.a. Beispiel erneut angeführt werden.

Anstatt die Antwort auf die Frage von Typ 1 zu verwenden, wird jetzt eine nichtlineare Beziehung aus der Beantwortung einer Frage von Typ 1' bestimmt. Graphisch läßt sich das wie folgt darstellen:

$$u(z_{1}', z_{2}^{1}, z_{3}^{0}) = u(z_{1}^{1}, z_{2}^{0}, z_{3}^{0})$$

$$\Leftrightarrow c_{1} \cdot u_{1} \cdot (z_{1}''') + c_{2} + cc_{1} \cdot c_{2} \cdot u_{1} \cdot (z_{1}''') = c_{1}$$
(C5)

Konkret mit Beispielwerten

$$u(200,10,100) = u(125,100,100)$$

$$\Leftrightarrow c_1 \cdot u_1(200) + c_2 + cc_1 \cdot c_2 \cdot u_1(200) = c_1$$

$$\Rightarrow c_1 \cdot 0.437 + c_2 + cc_1 c_2 \cdot 0.437 = c_1$$

Aufbereitet für unser Taschenrechnerprogramm ergibt sich folgendes GS (vgl. Anhang F (GS4):

(12)
$$k_{12} \cdot c_1 = c_3$$

(13)
$$k_{13} \cdot c_1 = c_2$$

$$c_1 = k_{15} c_2 + k_{14} c_1 + k_{14} c_1^2$$

(15)
$$c + 1 = (1 + cc_1)(1 + cc_2)(1 + cc_2)$$

mit
$$k_{12} = u_1(244) = 0.053$$
 aus (C2)

$$k_{13} = u_1(143) = 0.875$$
 aus (C1)

$$k_{14} = u_1(200) = 0.437$$
 aus (C5)

$$k_{15} = 1$$
 aus (C5).

(13) in (14)
$$\Rightarrow c_1 = k_{13} \cdot k_{15} \cdot c_1 + k_{14} \cdot c_1 + k_{13} \cdot k_{14} \cdot cc_1^2$$

$$\Leftrightarrow c_1 = \frac{1}{k_{13} \cdot k_{14} \cdot c} (1 - k_{13} \cdot k_{15} - k_{14})$$

$$(13) \Rightarrow c_2 = k_{13} c_1$$

$$(12) \Rightarrow c_3 = k_{12} c_1$$

$$c_1 - c_3 in (15)$$

$$\Rightarrow c = \left[\left(\frac{1}{k_{13}} \frac{1}{k_{14}} \left(1 - k_{13} k_{15} - k_{14} \right) + 1 \right) \left(\frac{1}{k_{14}} \left(1 - k_{14} k_{15} - k_{14} \right) + 1 \right) \left(\frac{k_{12}}{k_{13}} \frac{1}{k_{14}} \left(1 - k_{13} k_{15} - k_{14} \right) + 1 \right) \right] - 1$$

$$\Rightarrow$$
 c = -0.95;
 $c_1 = 0.86$; $c_2 = 0.752$; $c_3 = 0.046$.

An dieser Stelle sei noch auf eine Eigenschaft der Gleichungen (0") und (15") aus dem Anhang E hingewiesen, die ebenso wie die Lotteriefragen auf der Basis von Satz 3.2 (vgl. Kap. 5.4) Aufschluß über die zu verwendende Form der Nutzenfunktion sowie notwendige Voraussetzungen für die Negativität der abhängigen Skalierungskonstanten (hier c) gibt.

Gilt in (0") $1 - k_{13} k_{15} - k_{14} = 0 \Leftrightarrow 1 - k_{14} = k_{13} k_{15}$, so folgt in (15"), daß c = 0 ist, womit die additive Form angezeigt ist und Gleichung (15) in (GS) entfällt und Gleichung (14) durch die Beziehung

$$\int_{i=1}^{14} c_i = 1$$

ersetzt wird. Soll nun c < O gelten (was die Beantwortung o.a. Lotteriefragen bereits nahegelegt), muß notwendigerweise folgende Ungleichung erfüllt sein:

$$1 - k_{14} < k_{13} \cdot k_{15}$$
 (5.5.10).

Für k_{15} gilt, daß es, sofern die nichtlineare Beziehung (14) auf der Ebene ausschließlich skalarwertiger Attribute ermittelt wird, stets den Wert 1 annimmt, womit man aus (5.5.10)

$$1 - k_{14} < k_{13} (5.5.11)$$

erhält. k_{13} und k_{14} sind u.o.a. Voraussetzung Werte von Einzelnutzenfunktionen, was sich am einfachsten an unserem letzten Beispiel verdeutlichen läßt:

$$k_{13} = u_1(z_1') = u_1(143) = 0.875$$

 $k_{14} = u_1(z_1''') = u_1(200) = 0.437$,

und es gilt für unser Beispiel auch (5.5.11) und, wie bereits berechnet, c < 0. Diese Beziehung, verbal interpretiert, ist in gewisser Weise verwandt mit dem in Kap. 5.4 hinter Gleichung (5.4.6) stehenden Zusammenhang. Der Nutzenzuwachs $(z.B.: \Delta u_1(\overline{z_1}^0) = u_1(z_1') = u_1(143) = 0.875 = k_{13})$, sofern man von den jeweils schlechtesten Attributwerten ausgeht, ist größer, als der Nutzenzuwachs (i.B. $\Delta u_1(\overline{z_1}^1) = u_1(z_1') - u_1(z_1'') = 1 - u_1(200) = 1 - 0.437 = 0.563 = 1 - k_{14})$, wenn man vom jeweils besten Niveau der Attribute die Bestimmung der Indifferenzwertepaare startet.

Unser Taschenrechnerprogramm (TRP), zur Lösung von (GS) (vgl. Anhang E), stellt lediglich einen Spezialfall eines großen interaktiven Programmsystems von Sicherman (1975) dar, das auch beliebig viele Nichtlinearitäten (auch von etwas allgemeinerer Form als (5.5.7) verarbeiten kann. Allerdings hat dieses sehr komfortable Programmsystem den Nachteil, daß es nur auf Großrechenanlagen arbeiten kann und somit nicht beim Interview vor Ort mitgeführt werden kann. Unser Taschenrechnerprogramm ist hierfür durchaus geeignet und bietet ein relativ einfaches Instrument zur Bestimmung sämtlicher Skalierungskoeffizienten einer multiplikativen Nutzenfunktion über (max.) k = 14 Einzelattributen. Auf alle Fälle können wir festhalten, daß Fragen vom Typ 1' weniger Anforderungen an den Entscheidungsträger stellen als die äußerst komplexe Abwägeprozesse voraussetzenden Fragen vom Typ 1. Die dringende Empfehlung bei Verwendung von Fragen des Typs 1, zusätzliche Kontrollfragen zur Konsistenzprüfung zu stellen, muß allerdings auch bei Verwendung von Fragen des Typs 1' aufrecht erhalten werden. Die Gleichungssysteme sind i.d.R. äußerst empfindlich gegen Änderungen der Koeffizienten k, in den linearen Gleichungen wie in der nichtlinearen Beziehung. Deshalb ist es angebracht, mehrere Gleichungssysteme für ein und dasselbe Attributpaket durchzurechnen und im Falle von Unstimmigkeiten in den Resultaten den Entscheidungsträger um Revision einzelner widersprüchlicher Angaben zu bitten. Eine grobe Sensitivitätsanalyse über einzelne Koeffizienten des Gleichungssystems kann den

Revisions-Prozeß erheblich beschleunigen, da dem Entscheidungsträger in diesem Falle die Auswirkungen bestimmter Änderungen bereits vorab mitgeteilt werden können.

5.6 Zur Überprüfung der Konsistenz

Mit den letzten Ausführungen sind wir bereits auf dem Gebiet der Konsistenzprüfung angelangt. Generell gilt, daß Kontrollfragen zur Konsistenzprüfung (engl. 'consistency checks') an jeder beliebiger Stelle während des Bestimmungs-prozesses der Nutzenfunktion einfließen können. Bereits an mehreren Stellen dieses Kapitels wurde auf Konsistenz-prüfungen hingewiesen, die ohne viel Mehraufwand durchgeführt werden können. Deshalb soll darauf hier nicht mehr näher eingegangen werden.

Grundsätzlich dienen die Kontrollfragen zur Konsistenzprüfung nicht nur dem Aufdecken von Widersprüchen, die (vgl. 5.1) fast zwangsläufig bei komplexeren Abwägeprozessen auftreten, weil es kaum möglich ist, alle Implikationen einer zwischen zwei Attributen geäußerten Präferenz auf Anhieb vollends zu überschauen. Vielmehr sollen die Kontrollfragen geradezu solche Widersprüche provozieren, damit man nach mehrfacher, oft mühseliger Revision zu einer Nutzenfunktion gelangt, die die tatsächliche Präferenzstruktur des Entscheidungsträgers widerspiegelt. Bei der praktischen Durchführung dieses Interviewteils ist man aus Zeitgründen freilich gezwungen, eine sinnvolle Auswahl unter der Vielzahl möglicher Kontrollfragen zu treffen. Insbesondere wird man versuchen, soviel wie möglich bereits erhaltene Antworten auf Fragen vom Typ 1' (oder Typ 1) bzw. Typ 2 (vgl. Kap. durch Zusatzfragen zu überprüfen. Dabei kann man sich notfalls auf die bei der Rangfolgebestimmung als am wichtigsten erkannten Attribute beschränken.

Allgemein läßt sich für eine der linearen Beziehungen, die aus einer Frage vom Typ 2 resultiert, folgender Zusammenhang formulieren:

$$d_i \cdot a_i^j = d_j$$
 i, j ϵ {1,211,212,221,222,23,24,25,3,4,5 61,62,63} (5.6.1)

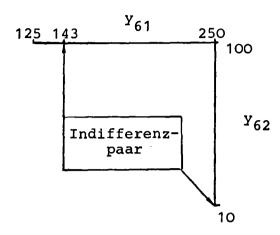
mit

$$a_{i}^{j} = \left\{ \begin{array}{c} v_{i}(y_{i}') & \text{wenn } y_{i} > y_{j} \\ \\ \frac{1}{v_{i}(y_{i}')} & \text{wenn } y_{j} > y_{i} \end{array} \right\}$$
 (5.6.2)

 y_i' : Indifferenzwert von y_i zu y_j^1 y_j' : Indifferenzwert von y_j zu y_i^1

Die Indifferenzwertepaare, die bereits bei der Verifizierung der Präferenzunabhängigkeit (vgl. 5.2) bestimmt worden sind, liefern uns schon 13 solcher Gleichungen, wobei stets i = 1 gilt, d.h. es ist jeweils ein bestimmtes Ziel, vertreten durch das Attribut j mit dem Ziel 1 'Geringe Gesamtkosten', gemessen durch Attribut 1, abgewogen worden. Eine Konsistenzprüfung wird nun mit Hilfe eines weiteren noch zu ermittelnden Indifferenzpaares durchgeführt. Zur Veranschaulichung soll ein kleines Beispiel dienen.

Aus Anhang B, besser noch aus Anhang G (1), können wir zwischen den Koeffizienten d_{61} und d_{1} bzw. d_{62} und d_{1} (also zwischen den Zielen 'langfristige Energieversorgungssicherheit', gemessen durch $1/\eta$ bzw. 'mittelfristige Energieversorgungssicherheit', repräsentiert durch den Importanteil und dem Ziel 'geringe Gesamtkosten des EVS') folgende Beziehungen aufstellen:


$$d_1 \cdot a_1^{61} = d_{61}$$
 mit $a_1^{61} = \frac{1}{v_{61}(200)} = 2.286$, (D1)

$$d_1 \cdot a_1^{62} = d_{62}$$
 mit $a_1^{62} = \frac{1}{v_{62}(70)} = 2.0$. (D2)

Eine Kontrollfrage (analog zur Indifferenzpaarbestimmung in Kap. 5.2) ergibt:

$$d_{61} \cdot a_{61}^{62} = d_{62}$$
 mit $a_{61}^{62} = v_{61}(143) = 0.875$, (D3)

graphisch veranschaulicht (vgl. hierzu auch die graphische Darstellung der Indifferenzpaare zu $\{Y_1,Y_{61}\}$ und $\{Y_1,Y_{62}\}$ in Anhang B:

Aus Konsistenzgründen muß jetzt gelten:

$$a_1^{61} \cdot a_{61}^{62} = a_1^{62} \quad \text{oder} \quad a_{61}^{62} = \frac{a_1^{62}}{a_1^{61}} = \frac{\frac{1}{v_{62}(70)}}{\frac{1}{v_{61}(200)}} = \frac{\frac{v_{61}(200)}{v_{62}(70)}}{\frac{v_{62}(70)}{v_{62}(70)}} \triangleq v_{61}(143)$$
 (D4)

was durch Einsetzen der Werte auch bestätigt wird (vgl. Anhang F.

Allgemein muß gelten:

$$a_i^j \cdot a_j^k = a_i^k$$
 (i,j,k & Einzelattributindexmengen) (5.6.3).

Im Anhang G (2) ist für die 13 Indifferenzwertepaare aus Kap. 5.2 graphisch veranschaulicht, wie die zur Konsistenzprüfung benutzten Werte über die Gleichungen (5.6.1) - (5.6.3) zusammenhängen.

Natürlich ließen sich noch viele andere Arten von Kontrollfragen zur Konsistenzprüfung angeben und auch praktisch durchführen, doch wollen wir es bei diesen Ausführungen belassen. Ein bislang noch nicht erörterter Aspekt derartiger Kontrollfragen soll allerdings noch kurz beschrieben werden. Bereits in Kap. 5.5 ist ausgeführt, daß die Beantwortung einer (Lotterie-)Frage vom Typ 1 dem Entscheidungsträger geradezu eine Meisterleistung bei der Abwägung persönlicher Präferenzen abverlangt. Deshalb sind wir auf Fragen vom Typ 1' übergegangen. Doch auch diese Fragen vom Typ 1' und ebenso die eng mit ihnen verwandten Fragen vom Typ 2 (die auch den einfachsten und daher meistverwendeten Kontrollfragentyp darstellen) verlangen vom Entscheidungsträger ein extrem differenziertes Abwägungsvermögen. Die Indifferenzwertepaare müßten nämlich ganz exakt angegeben werden, um zu völliger Konsistenz (rein numerisch, z.B. auf 3 Stellen genaue Faktoren a, j bzw. Koeffizienten d,) führen zu können. M.a.W. (das zuletzt angeführte Beispiel sei wiederum zur Veranschaulichung herangezogen):

Die Werte y_j ' (für j ϵ {61,62}) in (D1) und (D2) sowie der Wert für y_i '', (i = 61) in (D3) müßten so exakt angegeben werden, daß (D4) in der gewünschten Rechengenauigkeit erfüllt ist, was freilich auf Anhieb unmöglich vom Entscheidungsträger verlangt werden kann, zumal hier noch unterschiedliche Risikoeinstellungen bezüglich verschiedener Ziele über die Nutzenfunktionen v_j (j ϵ {61,62}) eingehen, die mit eingeschätzt werden müßten.

Der Entscheidungsträger ist grundsätzlich aber nur in der Lage, einen Indifferenzwert so exakt anzugeben, wie er überhaupt noch Unterschiede zwischen zwei Werten empfindet; d.h. in unserem Beispiel liegt zwar nur für $y_{61}^{""}=143$ völlige Konsistenz vor, aber der Entscheidungsträger ist wohl auch bei $y_{61}^{""}=142$ oder $y_{61}^{""}=144$ indifferent zu $y_{62}^{""}=10$. Durch mannigfaltige systematische Überprüfungen über andere Fragen und deren Antworten gelangt man allerdings letztlich zu einem die Präferenzstruktur des Entscheidungsträgers "richtig" wiedergebenden Indifferenzwert.

5.7 Kurvenanpassung der Einzelnutzenfunktionen und impliziertes Risikoverhalten bei bestimmtem Nutzenfunktionsverlauf

Bereits in Kap. 5.3 ist ausgeführt worden, wie man über einfache Lotteriefragen Punkte der Einzelnutzenfunktionen $u_i(z_i)$ $i=1,\ldots,k$ bestimmt. Als Grundlage für die folgenden Ausführungen sollen hier kurz einige Grundbegriffe über (engl.'unidimensional utility functions') eindimensionale Nutzenfunktionen erläutert werden.

Das bereits in Kap. 2 erwähnte <u>Sicherheitsäquivalent</u> einer Lotterie L wird hier definiert als der Betrag 2, bei dem ein Entscheidungsträger gerade indifferent zwischen der Lotterie L und dem sicheren Wert 2 ist:

$$u(\hat{z}) = E[u(z)] bzw. \hat{z} = u^{-1} (E[u(z)]).$$
 (5.7.1)

Ist L eine Lotterie gemäß der Notation aus Definition 2.2 (d.h. mit den Wahrscheinlichkeiten p_1, \ldots, p_h ergeben sich die Ergebniswerte z_1, \ldots, z_h , und z bezeichnet eine Zufallsgröße, die mit Wahrscheinlichkeit p_i den Ergebniswert z_i annimmt (i = 1,...,h)), so kann der erwartete Nutzen der Lotterie definiert werden als (vgl. 2.8):

$$E[u(z)] = \sum_{i=1}^{h} p_i u(z_i)$$
 (5.7.2)

mit u: $\mathbb{R} \rightarrow [0,1]$

$$z \mapsto u(z)$$
.

Der Erwartungswert der Lotterie ist (vgl. 2.7)

$$E(z) = \sum_{i=1}^{h} p_i z_i.$$
 (5.7.3)

Die bereits in Kap. 2 erwähnte Risikoscheu (Risikoneigung) liegt vor, sofern für eine in z monotone Nutzenfunktion gilt:

$$u[E(z)] \stackrel{?}{(>)} E[u(z)] = u(\hat{z}).$$
 (5.7.4)

Ist u(z) (wie das bei allen unseren Einzelattributen der Fall ist) eine in z monoton fallende Nutzenfunktion, so gilt im Falle der Risikoscheu (Risikoneigung)

$$E(z) \iff \hat{z}.$$
 (5.7.5)

Die Bestimmung von einzelnen Punkten der Einzelnutzenfunktionen hat in unserem konkreten Fall ergeben, daß der Entscheidungsträger fast immer eine risikoscheue Einstellung hat.

In wenigen Fällen ist er allerdings weder risikoscheu noch risikofreudig, sondern risikoneutral. Risikoneutralität liegt vor, wenn in den Gleichungen (5.7.4) und (5.7.5) statt des Ungleichheitszeichens ein Gleichheitszeichen steht. Die risikoneutrale Einstellung ist bemerkenswerterweise entweder bei nicht als besonders wichtig erachteten Zielen oder bei nur schwer einschätzbaren Zielen feststellbar. Im ersten Fall kann man eine gewisse Gleichgültig- $(Z_9, Z_{11}, Anhang C)$ keit als zugrundeliegende Verhaltensannahme zur Erklärung heranziehen, daß stets der Erwartungswert der Lotterie als Indifferenzwert gewählt wurde. Im zweiten Fall (Z7, gemessen durch Attribut 'Unfalltote/a', vgl. Anhang C) wird vom Entscheidungsträger keine vom Erwartungswert abweichende Wahl als vertretbar oder verantwortbar angesehen. Bei allen anderen Zielen finden wir die im Sinne von Schlaifer (1969, S. 146) sogar als 'general attitude' bezeichnete positive und (für in z monoton fallende Nutzenfunktionen u(z)) mit wachsendem z zunehmende Risikoaversion. Zur näheren Erläuterung dieses Phänomens führen wir den Begriff der Risikoprämie einer Lotterie ein, die als Differenz zwischen Erwartungswert und Sicherheitsäquivalent definiert ist.

$$RP(z) = E(z) - \hat{z} = E(z) - u^{-1} E u(z).$$
 (5.7.6)

Ein Individuum wird 'zunehmend risikoavers'genannt, wenn es erstens risikoavers ist und zweitens die Risikoprämie RP(z) für jede Lotterie zunimmt, sofern der zugehörige Betrag z ebenfalls zunimmt, vorausgesetzt, u(z) ist in z monoton fallend.

Graphisch läßt sich das folgendermaßen veranschaulichen:

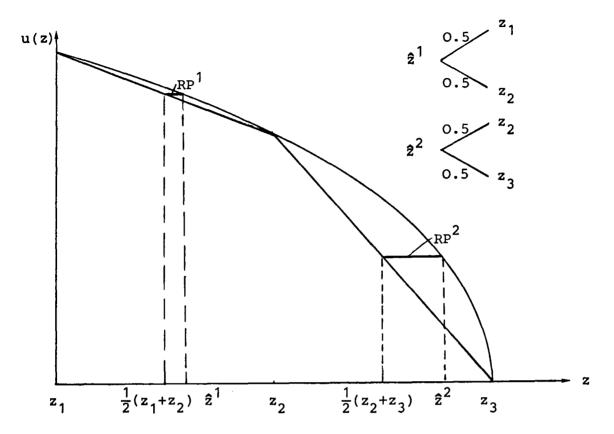


Abb. 5.7.1: In z monoton fallende Nutzenfunktion u(z), die positive in z zunehmende Risikoaversion impliziert.

Ein derartiges Verhalten erscheint gerade für einen verantwortungsbewußten Entscheidungsträger in Sachen Energiepolitik besonders angemessen, da er, je näher er an den am wenigsten wünschenswerten Wert von z gelangt, um so risikoscheuer wird. Diese Einstellung ist durchaus mit dem bereits in Kap. 5.4 angesprochenen konservativen Entscheidungsverhalten verwandt und ist anhand mehrerer Äußerungen seitens des Entscheidungsträgers während des Interviews erhärtet worden.

Der Zusammenhang zwischen Kurvenanpassung der Nutzenfunktion an einige wenige ermittelte Punkte und der Risikohaltung läßt sich wie folgt erläutern. In der einschlägigen Literatur (z.B. Schlaifer (1969) u. (1971); Pratt (1964); Meyer, Pratt (1968); Keeney, Raiffa (1976); Buehring et al. (1978)) finden sich viele Vorschläge möglicher Gleichungen für Nutzenfunktionen bei allen nur denkbaren Risikoeinstellungen.

Praktisch durchgeführt wurden offensichtlich aber nur Projekte, in denen, wenn nicht von Risikoneutralität, dann doch
meist von konstanter Risikoaversion ausgegangen wird. Selbst
das sehr komfortable Programmsystem von Sicherman (1975)
sieht nur diese beiden Fälle vor, deckt freilich alle anderen Formen der Risikoeinstellung durch eine stückweise linearisierte Nutzenfunktion ab, mit deren Hilfe sich auch die
wachsende Risikoscheu und sogar S-förmige Nutzenfunktionsverläufe approximieren lassen.

Konstantes Risikoverhalten bedeutet für die Nutzenfunktion, daß sie der Gleichung $u(z) = a + b \cdot e^{-cx}$ genügt, wobei a, b ε R hier nicht näher erläuterte Skalierungskoeffizienten sind und c ε R₊₊die sog. Risikoscheu- (bzw. Risikonei-gungs-) Konstante darstellt (vgl. hierzu Kenney, Raiffa (1976, S. 167f)).

Da wir mittels mehrerer Lotteriefragen empirisch nachgewiesen haben (vgl. Abb. 5.7.1), daß unser Entscheidungsträger positiv und mit wachsendem z zunehmend risikoscheu ist, kommt für uns der Exponentialansatz in der o.a. Form nicht zur Kurvenanpassung der Nutzenfunktionswertepaare in Frage. Wir wählen den rechentechnisch relativ einfachen gebrochenrationalen Ansatz:

$$u(z) = \frac{1 - A \cdot z}{B - C \cdot z} \tag{5.7.7}$$

Aus dem Gleichungssystem

(1)
$$u(z^1) = \frac{1 - A \cdot z^1}{B - C \cdot z^1} = 1$$
 (5.7.8)

(2)
$$u(z^{\circ}) = \frac{1 - A \cdot z^{\circ}}{B - C \cdot z^{\circ}} = 0$$
 (5.7.9)

(3)
$$u(\hat{z}) = \frac{1 - A \cdot \hat{z}}{B - C \cdot \hat{z}} = \frac{1}{2}$$
 (5.7.10)

ergeben sich die Koeffizienten A, B, C zu:

$$A = \frac{1}{z^0}$$
 (5.7.11)

$$B = \frac{(z^{0} - z^{1})(z^{1} - \hat{z}) + z^{1}(z^{1} + z^{0} - 2 \cdot \hat{z})}{z^{0}(z^{1} - \hat{z})}$$
(5.7.12)

$$C = \frac{z^{1} + z^{0} - 2 \cdot \hat{z}}{z^{0}(z^{1} - \hat{z})}$$
 (5.7.13)

Die für alle Einzelattribute mit diesem Ansatz (5.7.7) angepaßten Kurven sind bereits in Anhang C neben den Graphen der Einzelnutzenfunktionen wiedergegeben.

Von Interesse ist freilich noch die Frage, ob der gewählte Ansatz eine zunehmende Risikoaversion beschreibt. Hierzu führen wir in Anlehnung an Keeney, Raiffa (1976, S. 183 ff) folgendes Maß für die Risikoscheu bei monoton in z fallender Nutzenfunktion u(z) ein:

$$r(z) := \frac{u''(z)}{u'(z)}$$
 (5.7.14)

wobei u'(z), (u"(z)) die erste (zweite) Ableitung von u nach z darstellt. Gleichung (5.7.7), unter Anwendung der Quotientenregel abgeleitet und in (5.7.14) eingesetzt, ergibt für unseren gewählten Ansatz:

$$r(z) = \frac{\frac{2C(C - AB)}{(B - C \cdot z)^3}}{\frac{C - AB}{(B - C \cdot z)^2}} = \frac{2C}{B - C \cdot z} = \frac{2}{\frac{B}{C} - z}$$
 (5.7.15)

Es gilt nun der folgende Satz 5.7.1:

Die in z monoton fallende Nutzenfunktion u(z) ist dann und nur dann positiv und zunehmend risikoscheu, wenn die zugehörige Risikoaversionsfunktion r(z) nach (5.7.14) positiv und in z zunehmend ist.

Der Beweis findet sich in Keeney, Raiffa (1976, S. 183 ff) auf mehrere Theoreme verteilt und ist einfach nachzuvollziehen. r(z) muß positiv sein, da u'(z) negativ ist, weil u(z) monoton fallend ist und u''(z) ohnehin negativ sein muß, um

die die Risikoaversion implizierende Konkavität von u(z) zu gewährleisten (vgl. Kap.2).

Setzen wir in (3.4.7.15) die Gleichungen (5.7.12) und (5.7.13) für B und C ein, erhalten wir:

$$r(z) = \frac{2}{(z^{\circ} - z^{1})(z^{1} - \hat{z}) + z^{1}(z^{1} + z^{\circ} - 2 \cdot \hat{z}) - z}$$
(5.7.16)

Zunächst gilt: $z^1 > \hat{z} > z^0$ und $z \in [z^0, z^1]$. Wegen der allgemein geforderten Risikoscheu gilt außerdem:

$$z_1 + z^0 - 2 \cdot \hat{z} < 0$$
, (5.7.17)

womit in (5.7.16) r(z) eine auf dem Intervall [z^0 , z^1] positive und in z monoton wachsende Funktion darstellt; d.h. unser gewählter Ansatz gibt genau das festgestellte Risikoverhalten wieder.

Hiermit wäre die Beschreibung der Bestimmung der Gesamtnutzenfunktion sowie deren wichtigster Eigenschaften abgeschlossen.

Im letzten Kapitel wollen wir zusammenfassend nochmals kritisch erläutern, welches wesentliche entscheidungstheoretische Konzept den Ausführungen zugrundeliegt und welche Ansatzpunkte zur Kritik bei der praktischen Anwendung dieses Konzepts aufgetaucht sind.

6 Kritische Erörterung

Das in Kap. 2 eingeführte Bernoulli-Prinzip besagt, daß in Risikosituationen alternative EV-Strategien nach ihrem Nutzenerwartungswert beurteilt werden sollen, was freilich zur konkreten Anwendung voraussetzt, daß die Nutzenfunktion bekannt ist. Deshalb wurde in Kap. 5 geschildert, wie man den Nutzen eines Entscheidungsträgers mittels hypothetischer Risikosituationen messen kann, insbesondere für den Fall, daß mehrere Kriterien Eingang in die Untersuchung finden sollen. Hierzu wurden Möglichkeiten der praktikablen Bestimmung einer multikriterialen Nutzenfunktion aufgezeigt und an einem Beispiel exemplarisch durchgeführt. Natürlich zwingt die nur beschränkt zur Verfügung stehende Zeit dazu, die Nutzenmessung auf einige Werte zu beschränken und daraus durch Kurvenanpassungen eine Approximation des Bernoulli-Nutzens zu gewinnen, wobei man allerdings durch geschickte Zusatzfragen wertvolle Informationen über die Form der Funktion wie auch über dahinterstehende Risikoverhaltensstrukturen erhalten kann.

Sind die Strategien widerspruchsfrei geordnet (d.h. konsistent) und gelten neben diesem ordinalen Prinzip noch das Substitutions- und das Stetigkeitsprinzip, so kann aufgrund mathematischer Überlegungen die Gültigkeit des Bernoulli-Prinzips gefolgert werden.

Daher wird das Bernoulli-Prinzip in der Literatur als das rationale Entscheidungsprinzip angesehen, zumal es der intuitiven Vorgehensweise besser als andere Entscheidungsprinzipien (vgl. z.B. Schneeweiß (1967), Bühlmann et al. (1975) u.v.a.) entspricht. Das intuitive Vorgehen beim Abwägen geeignet bewerteter Handlungskonsequenzen, unter Berücksichtigung der mit ihnen zusammenhängenden Wahrscheinlichkeiten, ist im Bernoulli-Prinzip nachgebildet.

Doch gerade unter dem Aspekt der praktischen Anwendung läßt sich eine Reihe von Kritikpunkten gegen das Bernoulli-Prinzip formulieren:

- Eine Nutzenmessung ist für den Entscheidungsträger, dessen Präferenzstruktur wiedergegeben werden soll, ein relativ lästiger Prozeß.
- Für rasche Entscheidungen ist das Instrumentarium, allein wegen des erforderlichen Zeitaufwands, ungeeignet.
- Eine einmal bestimmte Nutzenfunktion kann wegen eventueller Zeit- und Situationsabhängigkeiten relativ wertlos sein.
- 4. Wichtige Entscheidungen sind im allgemeinen Gruppenentscheidungen, während die Schätzung von Nutzenfunktionen Individuen zum Gegenstand hat.

Hierzu sei folgendes bemerkt:

Punkt 1 dürfte relativ belanglos sein, wenn schwerwiegende Probleme zu lösen sind und der Entscheidungsträger selbst die Bereitschaft zum Durchdenken der Strategienvielfalt zeigt.

Punkt 2 ist zutreffend; so kann man auch bei Krelle (1968) im Vorwort sinngemäß lesen, daß bei einfachen, leicht überschaubaren Verhältnissen keine Entscheidungstheorie vonnöten ist, und wenn man unvermutet in komplizierten Situationen schnelle Entscheidungen treffen muß, wird man ohne sie auskommen müssen, da ihre Anwendung zu viel Zeit kostet. Unser bislang beschriebenes Instrumentarium ist aber von praktischer Bedeutung, wenn eine Entscheidungssituation einen gewissen Grad von Kompliziertheit überschreitet und für die Entscheidungsvorbereitung genügend Zeit bleibt, was im Fall der Energieplanung auf 20 - 25 Jahre sicher zutrifft.

Der Einwand 3 richtet sich eigentlich nicht gegen die formale Entscheidungsanalyse, sondern spricht ein generelles Problem bei Entscheidungen mit großer Reichweite an: Welchen Sinn hat eine Entscheidung, wenn man damit rechnen muß, daß man sie im nachhinein wegen einer geänderten Präferenzordnung bereut? Unabhängig von der Antwort auf diese Frage scheint es vernünftig, wenn Entscheidungen gefällt werden, dafür zu sorgen, daß sie im Einklang mit der Präferenzordnung zum Zeitpunkt der Entscheidung stehen. Dabei kann eine formale Entscheidungsanalyse, wie sie im vorliegenden Bericht beschrieben wurde, hilfreich sein. Sie gewährleistet immerhin Konsistenz der Entscheidungen für den Fall, daß die Präferenzordnung sich nicht ändert. Trotzdem sollte die Entscheidungsanalyse natürlich mit Änderungen der Präferenzstruktur rechnen und gegebenfalls eine geschätze Nutzenfunktion aktualisieren, z.B. dann, wenn neue Erkenntnisse über die Konsequenzen von Entscheidungsoptionen erzielt werden. Darüberhinaus kann sie die Offenheit gegenüber zukünftigen Änderungen der Präferenzstruktur als Ziel mit berücksichtigen.

Beim Einwand 4 ist zunächst auf die zahlreichen Ansätze zur Ermittlung von Gruppennutzenfunktionen hinzuweisen. Sie sind allerdings problematisch, weil sie tendenziell die Diskussion um Werte und Normen eliminieren, s. Fiala, Stehfest (1979). Betreibt man rein individuelle Entscheidungsanalyse, ist in der Tat nicht zu erwarten, daß das Ergebnis "die" Entscheidung ist, weil i.a. ein Konsens innerhalb einer Gruppe mit unterschiedlichen Wertvorstellungen erzielt werden muß. Die Entscheidungsanalyse kann jedoch dem Individuum helfen, zu identifizieren, was es im Gruppenentscheidungsprozeß anstreben soll. Und nicht zuletzt lassen sich die Punkte, an denen die Teilnehmer eines Entscheidungsprozesses unterschiedlicher Meinung sind, leichter auffinden und diskutieren, wenn die Präferenzordnungen der Teilnehmer in Form von Nutzenfunktion explizit gemacht worden sind.

Sicherlich sind dies nicht alle Kritikpunkte, manche anderen wurden bereits a.a.S. angesprochen, doch wollen wir es damit bewenden lassen und darauf hinweisen, daß die Anwendung des nutzentheoretischen Verfahrens allein durch das erforderliche Nachdenken über Präferenzen und Ziele den Entscheidungsprozeß erheblich fundierter und transparenter macht. Da bei diesem Durchdenken viel Sachverstand zusammenfließen muß, verwundert es nicht, wenn in der Praxis häufig eine einzige Strategie (die man favorisiert) genauer analysiert wird, während andere Strategien, wenn überhaupt, dann nur nach negativen Konsequenzen untersucht werden. Diese weitverbreitete Art der Entscheidungsfindung ist sicherlich schlechter als der zwar mühsame, aber auch erfolgversprechende Weg über entscheidungstheoretische Verfahren, vorausgesetzt, ein bestimmter Planungszeitraum und ein bestimmtes Budget stehen zur Verfügung.

LITERATURVERZEICHNIS

- Bamberg, G., A.G. Coenenberg (1977), Betriebswirtschaftliche Entscheidungslehre. Verlag Franz Vahlen München
- Bühlmann, H. (1975), Entscheidungs- und Spieltheorie. Springer-Verlag Berlin Heidelberg New York
- Buehring, W.A., W.K. Foell, R.L. Keeney (1978), Examining Energy/Environment Policy Using Decision Analysis in Energy Systems and Policy. Vol. 2, No. 3
- Bürk, R., W. Gehring (1978), Indices of Income Inequality and Societal Income: An Axiomatic Approach. In: Eichhorn et al. (1978) (Hrsg.): Theory and Applications of Economic Indices. Physica-Verlag Würzburg
- Ferschl, F. (1975), Nutzen- und Entscheidungstheorie. Einführung in die Logik der Entscheidungen. Westdt. Verlag Opladen
- Fiala, P., H. Stehfest (1979), Überblick über Methoden der linearen Vektoroptimierung. KfK-Bericht Nr. 2795, Kernforschungszentrum Karlsruhe
- Fishburn, P.C. (1964), Decision and Value Theory. John Wiley & Sons, Inc. New York London Sydney
- Fishburn, P.C. (1970), Utility Theory for Decision Making. John Wiley & Sons, Inc. New York London Toronto
- Gäfgen, G. (1974), Theorie der wirtschaftlichen Entscheidung. 3. erweiterte und ergänzte Auflage, J.C.B. Mohr Tübingen
- Gottinger, H.W. (1974), Grundlagen der Entscheidungstheorie. Uni-Taschenbuch 370, Gustav-Fischer-Verlag Stuttgart
- Keeney, R.L. (1974), Multiplicative utility functions.
 In: Operations Research 22, S. 22 34
- Keeney, R.L., H. Raiffa (1976), Decisions with Multiple Objectives: Preferences and Value Tradeoffs. John Wiley & Sons New York

- Kirsch, W. (1977), Einführung in die Theorie der Entscheidungsprozesse. 2. Auflage der Bände I bis III als Gesamtausgabe, Dr. Th. Gabler-Verlag Wiesbaden
- v. Koolwijk, J., M. Wieken-Mayser (Hrsg.), Techniken der empirischen Sozialforschung. Band 4: Erhebungsmethoden: Die Befragung; Band 5: Testen und Messen
- Krelle, W. (1968), Präferenz und Entscheidungstheorie. Verlag J.C.B. Mohr Tübingen
- Luce, R.D., H. Raiffa (1957), Games and Decisions. Wiley New York
- Menges, G. (1969), Grundmodelle wirtschaftlicher Entscheidungen. Westdeutscher Verlag Köln u. Opladen
- Meyer, R.F., J.W. Pratt (1968), The consistent assessment and fairing of preference functions. In: IEEE Transactions on Systems Science and Cybernetics. Vol. SSC-4, No. 3, S. 270 278
- Meyke, U. (1973), Cost-Effectiveness-Analysis als Planungsinstrument unter besonderer Berücksichtigung von Infrastrukturinvestitionen im Verkehr. Vandenhoeck & Ruprecht Göttingen
- Pfanzagl, J. (1968), Theory of Measurement. Physica-Verlag Würzburg Wien
- Pratt, J.W. (1964), Risk Aversion in the Small and in the Large Econometrica, Vol. 32, No. 1-2, S. 122 136
- Quade, E.S. (1964) (Hrsg.), Analysis for Military Decisions. Chicago, Dund Mc Nally. Zitiert in: Aaron Wildavsky: Politische Ökonomie der Effizienz. In:
- Recktenwald, H.C. (1970), Nutzen-Kosten-Analyse und Programm budget.J.C.B. Mohr-Verlag Tübingen
- Raiffa, H. (1973), Einführung in die Entscheidungstheorie. Oldenbourg-Verlag München
- Scheuch, E.K. (1973), in R. König (Hrsg.): Handbuch der empirischen Sozialforschung. Bd. 2: Grundlegende Methoden und Techniken der empirischen Sozialforschung. 1. Teil 3. umgearbeitete und erweiterte Auflage, Ferdinand Enke Verlag Stuttgart
- Schlaifer, R. (1969), Analysis of Decisions under Uncertainty. McGraw-Hill New York
- Schneeweiß, H. (1967), Entscheidungskriterien bei Risiko. Ökonometrie und Unternehmungsforschung VI, Springer-Verlag Berlin Heidelberg New York

- Sicherman, Alan (1975), An Interactive Computer Program for Assessing And Using Multiattribute Utility Functions. Technical Report 111, Operations Research Center, Massachusetts Institute of Technology
- Zangemeister, Chr. (1973), Nutzwertanalyse in der Systemtechnik. Wittemannsche Buchhandlung München, 3. Aufl.

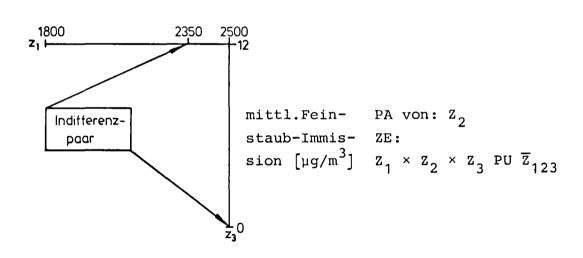
Anhang A: Berechnung der Attribute aus den Entscheidungsvariablen

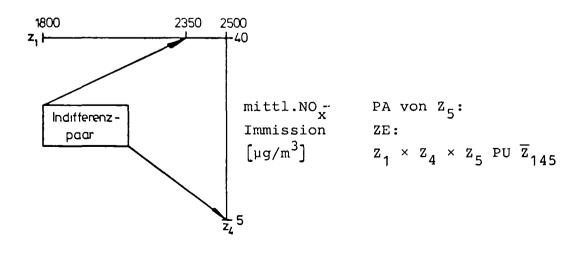
In den Gleichungen für $z_1 ext{...} z_{14}$ gilt

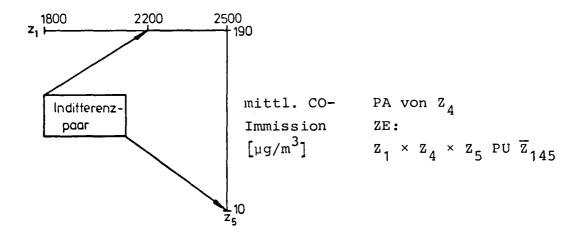
 $y = \{y_{ab}\} = Energieflußvektor (in MWh/a)$

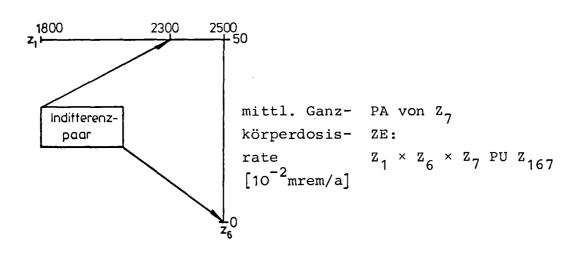
 $\underline{c} = \{c_{ab}\} = Kapazitätenvektor (in MW)$

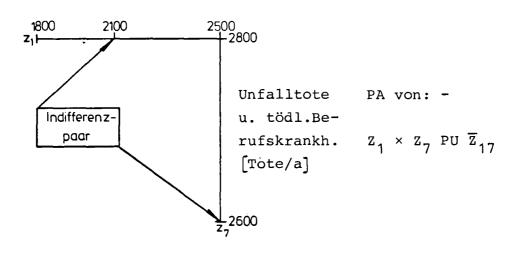
- (a,b) ε Menge der Indexpaare zu Primär-, Sekundär- und Endenergiearten, die ineinander umgewandelt werden können.
- PI, SI und EI bedeuten die Indexmengen zu den Primär-, Sekundär- bzw. Endenergiekategorien.
- 1. Gesamtkostenfunktion $z_1 = f_1(\underline{x}) = K(\underline{x}) = K(\underline{y},\underline{c}) = \underline{\alpha}_1^T \underline{y} + \underline{\beta}_1^T \underline{c}$ $\alpha_{1ab} = \text{variable Kosten pro Kopf und pro Energieeinheit des}$ $\text{Umwandlungsprozesses zwischen a und b (in DM/(MWh\cdot cap))}$
 - β_{1ab} = jährliche Fixkosten pro Kopf und pro Leistungseinheit der Umwandlungsinstallation des Umwandlungsprozesses zwischen a und b (in DM/(MW·a·cap))
- 2. SO_2 -Immissionsbelastungsfunktion $z_2 = f_2(\underline{x}) = SO_2(x) = SO_2(\underline{y}) = \underline{\alpha}_2^T \underline{y}$ $\alpha_{2ab} = \text{mittlere Immissionsbelastung durch } SO_2 \text{ pro Energie-}$
 - α_{2ab} = mittlere immissions belasting durch so₂ pro Energieeinheit und Jahr des Energieflusses von a nach b (in $\mu g/m^3 (MWh/a)^{-1}$)
- 3. Feinstaub-Immissionsbelastungsfunktion $z_3 = f_3(\underline{x}) = FS(\underline{x}) = FS(\underline{y}) = \underline{\alpha}_3^T \underline{y}$
 - $^{\alpha}3ab$ = mittlere Immissionsbelastung durch Feinstaub pro Energieeinheit und Jahr des Energieflusses von a nach b (in $\mu g/m^3 (MWh/a)^{-1}$)
- 4. NO Timmissions belast ungsfunktion $z_4 = f_4(\underline{x}) = NO_{\underline{x}}(\underline{x}) = NO_{\underline{x}}(\underline{x}) = NO_{\underline{x}}(\underline{y}) = \underline{\alpha}_4^T \underline{y}$
 - α_{4ab} = mittlere Immissionsbelastung durch NO_x pro Energieeinheit und Jahr des Energieflusses von a nach b (in $\mu g/m^3 (MWh/a)^{-1}$)

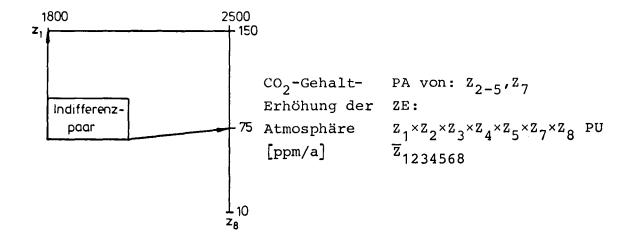

- 5. CO-Immissionsbelastungsfunktion $\mathbf{z}_5 = \mathbf{f}_5(\underline{\mathbf{x}}) = \mathrm{CO}(\underline{\mathbf{x}}) = \mathrm{CO}(\underline{\mathbf{y}}) = \underline{\alpha}_5^\mathrm{T} \underline{\mathbf{y}}$
 - α_{5ab} = mittlere Immissionsbelastung durch CO pro Energie-einheit und Jahr des Energieflusses von a nach b (in $\mu g/m^3 (MWh/a)^{-1}$), wobei a ϵ SI und b ϵ EI, da nur die Energieflüsse Diesel und Benzin für Kfz-Verkehr betrachtet werden.
- 6. Radiologische Belastungsfunktion $z_6 = f_6(\underline{x}) = R(\underline{x}) = R(\underline{c}) = \frac{\beta^T_7}{2} \underline{c}$
 - β_{7ab} = mittlere Ganzkörperdosisrate pro installierte Leistung der Kapazität, die Energie von a nach b umwandelt (in 10⁻² mrem/MW·a)), wobei Index a nur die Primärenergie Kernkraft darstellt.
- 7. Unfallträchtigkeitsfunktion $z_7 = f_7(\underline{x}) = U(\underline{x}) = U(\underline{y}) = \underline{\alpha}_7^T \underline{y}$ $\alpha_{7ab} = \text{Unfalltote pro Energieeinheit bezogen auf den Energiefluß von a nach b (in Unfalltote pro MWh)}$
- 8. CO_2 -Konzentrationszunahmefunktion $7_8 = f_8(\underline{x}) = CO_2(\underline{x}) = CO_2(\underline{y}) = \underline{\alpha}_8^T \underline{y}$
 - α_{8ab}^{2} = jährliche Zunahme der CO_{2} -Konzentration in der Atmosphäre pro Energieeinheit des Energieflusses von a nach b (in ppm/MWh)
- 9. Verdunstungsverlustefunktion $z_9 = f_9(\underline{x}) = V(\underline{x}) = V(\underline{y}) = \underline{\alpha}_9^T \underline{y}$ α_{9ab} = verdunstete Wassermenge pro Energieeinheit des Energieeflusses von a nach b (in $m^3/\text{sec}(MWh/a)^{-1}$)
- 10. Landschaftsflächenbedarfsfunktion $z_{10} = f_{10}(\underline{x}) = L(\underline{x}) = L(\underline{y},\underline{c}) = \underline{\alpha}_{10}^T \underline{y} + \underline{\beta}_{10}^T \underline{c}$
 - α_{10ab} = Flächenbedarf (bezogen auf die Fläche Baden-Württembergs) pro Energieeinheit und Jahr für den Energiefluß von a nach b (in %(MWh/a)⁻¹), wobei Index a nur die Primärenergie Braunkohle und Index b nur die Sekundärenergie Strom repräsentiert.
 - $^{\beta}_{10ab}$ = Flächenbedarf (bezogen auf die Fläche Baden-Württembergs) pro installierte Leistung und Jahr der Kapazität c_{ab} (in %/MW) mit b ϵ SI

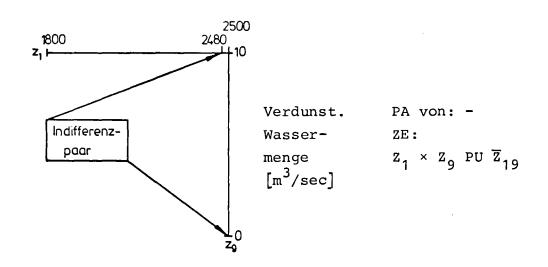

- 11. Endenergievielfältigkeitsfunktion $z_{11} = f_{11}(\underline{x}) = VF(\underline{x}) = VF(\underline{y}) = \frac{\alpha^{T}}{11} \underline{y}$ $z_{11} = x_{11} \underline{y}$
 - α_{11ab} = Beitrag zum Vielfältigkeitsindex pro Energieeinhiet und Jahr des Energieflusses von a nach b, wobei b ϵ EI (in (MWh/a)⁻¹)
- 12. Wirkungsgradfunktion $z_{12} = f_{12}(\underline{x}) = W(\underline{x}) = W(\underline{y}) = \frac{T}{\alpha_{12}} \underline{y} = \frac{1}{\eta}$ $\alpha_{12ab} = \text{reziproker Wert der Gesamtendenergienachfrage}$ $(\text{in } (MWh/a)^{-1}), \text{ wobei a } \epsilon \text{ PI.}$
- 13. Importanteilsfunktion $z_{13} = f_{13}(\underline{x}) = J(\underline{x}) = J(\underline{y}) = \frac{T}{\alpha_{13}} \underline{y}$ $\alpha_{13ab} = \text{Wirkungsgrad der importierten Primärenergiemenge } y_{ab}$ $(a \ \epsilon \ PI) \ bzgl. \ der \ Endenergienachfrage \ geteilt \ durch$ $\text{die Gesamtendenergienachfrage (Dimension: (MWh/a)}^{-1})$
- 14. Vorratshaltungskostenfunktion $z_{14} = f_{14}(\underline{x}) = VK(\underline{x}) = VK(\underline{y}) = \frac{\alpha_{14}^T}{4} \underline{y}$
 - α_{14ab}^{\prime} = Vorratshaltungskosten für ein halbes Jahr für importierte Primärenergieträger pro Energieeinheit und Jahr des Energieflusses von a nach b (in DM/(MWh·cap)), wobei a ϵ PI nur die Primärenergieträger öl und Gas repräsentiert.

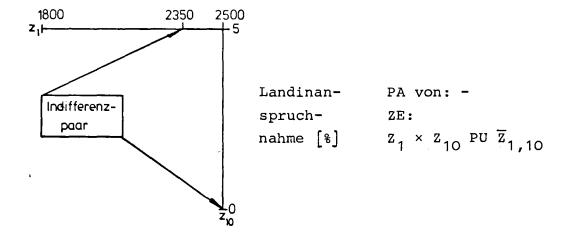

Indifferenzpaare und Mengen präferenzabhängiger Anhang B: (PA) Attribute

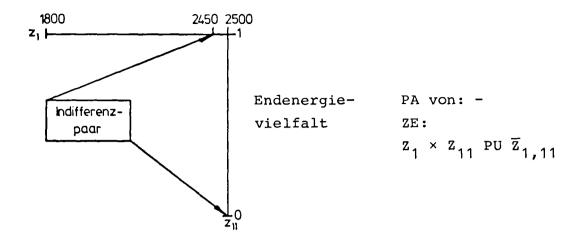

Grundsätzlich gilt für jede Indifferenzpaar-Bestimmung die Voraussetzung: 20 ij

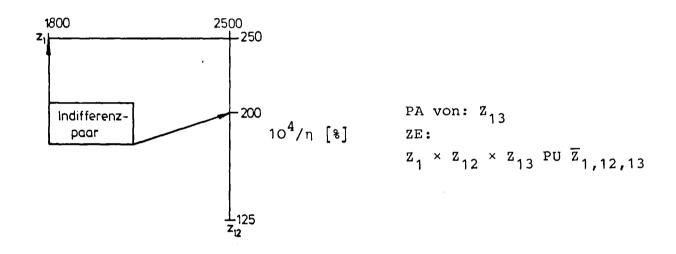


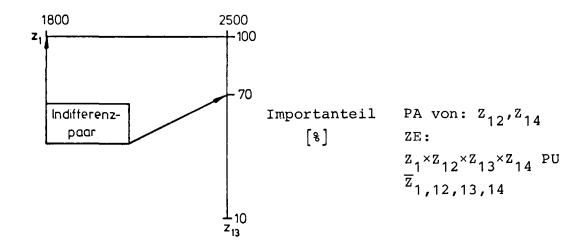


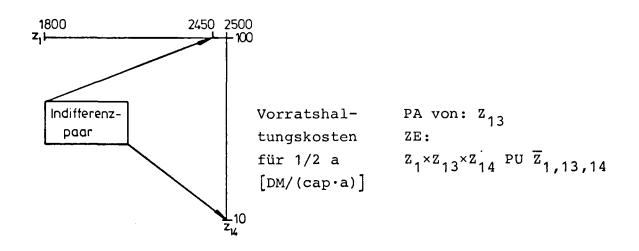


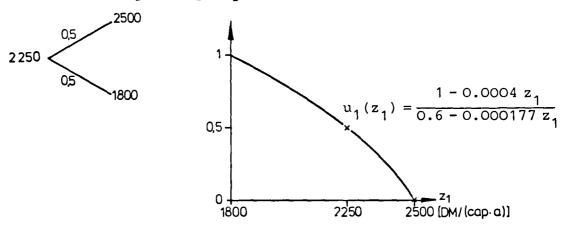


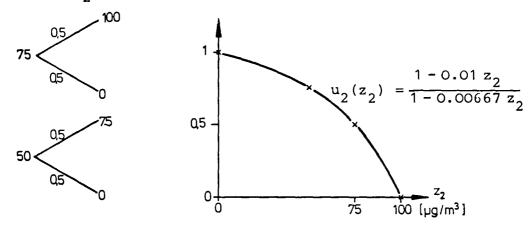




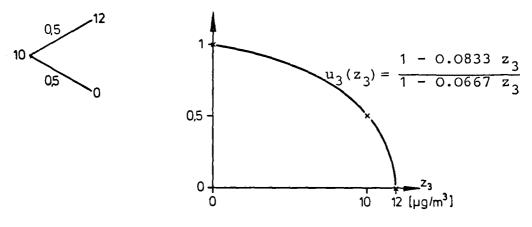


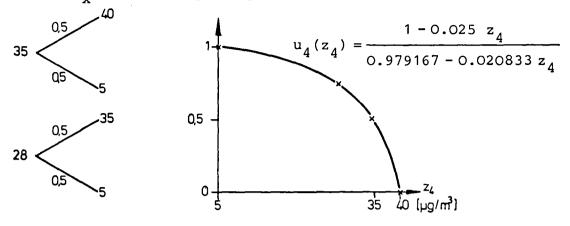


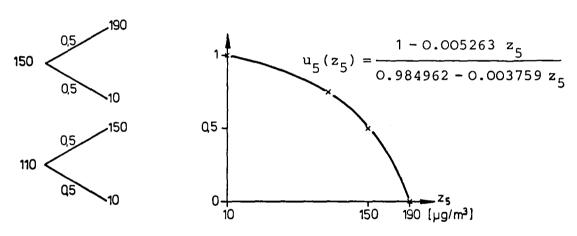


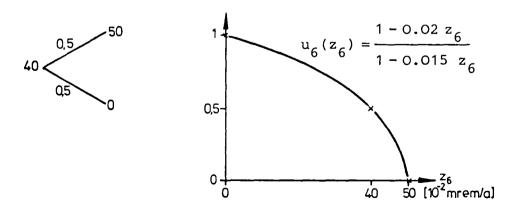

Anhang C: Einzelnutzenfunktionen (graphisch und algebraisch) sowie Lotterien zu ihrer Bestimmung

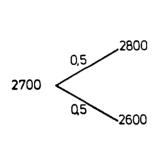
Grundsätzlich gilt bei jeder Lotterie-Frage die Voraussetzung: \bar{z}_i^{o}

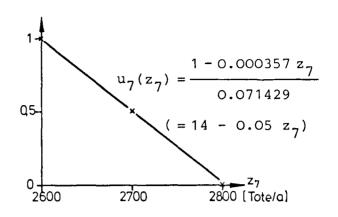

z1: Gesamtkosten [DM/(cap·a)]


z2: mittl. SO_2 -Immission [$\mu g/m^3$]


z3: mittl. Feinstaub-Immission $[\mu g/m^3]$

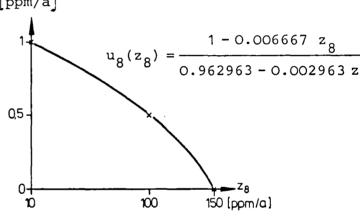

z4: mittl. NO $_{_X}$ -Immission [$\mu g/m^3$]


z5: mittl. CO-Immission $[\mu g/m^3]$

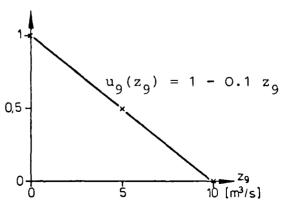


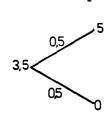
z6: mittl. Ganzkörperdosisrate [10⁻²mrem/a]

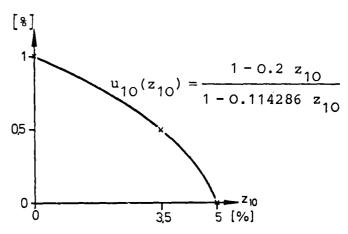


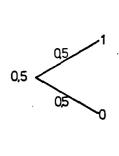

z7: Unfalltote [Tote/a]

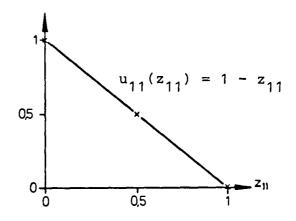


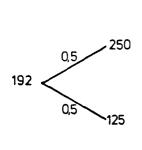

z8: CO₂-Gehalt-Erhöhung [ppm/a]

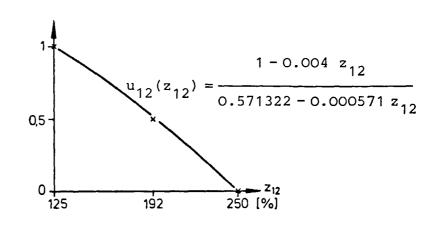


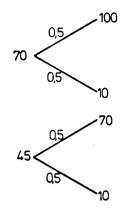

z9: verdunst. Wassermenge [m³/sec]

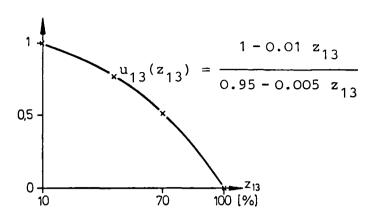


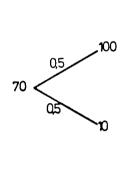

z10: Landinanspruchnahme [%]

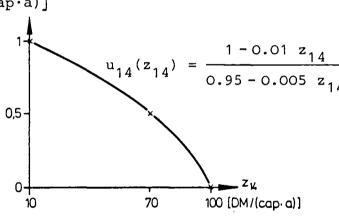



z11: Endenergievielfalt




$$z12: \frac{10^4}{\eta} [\%]$$




z13: Importanteil [%]

z14: Vorratskosten [DM/cap·a)]

Anhang D: Beziehung zwischen Attribute-"Synergismus" und dem Vorzeichen der Skalierungskonstanten c in der multiplikativen Nutzenfunktion

Behauptung: Für $\Delta w(\bar{z}_1^0) > \Delta w(\bar{z}_1^1)$ ist notwendig c < 0, während -1 < c < 0 hinreichend ist (s. Beziehung (5.4.6)).

Beweis: O.B.d.A. setzen wir i = 1. Dann ist $\Delta w(\bar{z}_i^{O}) = c_1$

$$\Delta w(\bar{z}_{i}^{1}) = \frac{1}{c} \prod_{i=1}^{k} (1 + cc_{i}) - 1 - \prod_{i=2}^{k} (1 + cc_{i}) + 1$$

$$= c_{1} \prod_{i=2}^{k} (1 + cc_{i})$$

Die Ungleichung in der Behauptung ist also äquivalent

$$1 > \prod_{i=2}^{k} (1 + cc_i)$$

Man erkennt daran unmittelbar, daß notwendig c < 0 ist, da die c_i positiv sind, und daß -1 < c < 0 hinreichend für die Gültigkeit der obigen Ungleichung ist.

Anhang E:

Gleichungssystem und Lösungsalgorithmus zur Bestimmung der Skalierungskonstanten c_i in der multiplikativen Nutzenfunktion für maximal 14 Einzelattribute

(0)
$$k_0 \cdot c_1 = c_1$$
 $k_0 := 1$
(1) $k_1 \cdot c_1 = c_2$
(2) $k_2 \cdot c_1 = c_3$
(3) $k_3 \cdot c_1 = c_4$
(4) $k_4 \cdot c_1 = c_5$
(5) $k_5 \cdot c_1 = c_6$
(6) $k_6 \cdot c_1 = c_7$
(7) $k_7 \cdot c_1 = c_8$
(8) $k_8 \cdot c_1 = c_9$
(9) $k_9 \cdot c_1 = c_{10}$
(10) $k_{10} \cdot c_1 = c_{11}$
(11) $k_{11} \cdot c_1 = c_{12}$
(12) $k_{12} \cdot c_1 = c_{13}$
(13) $k_{13} \cdot c_1 = c_{14}$
(14) $c_1 = k_{15} \cdot c_{14} + k_{14} \cdot c_1 + c_1 c_{14} \cdot k_{14}$
(15) $c + 1 = \prod_{i=1}^{14} (cc_i + 1)$

Lösung: Einsetzen von (13) in (14) ergibt:

$$c_{1} = k_{13} \cdot k_{15} \cdot c_{1} + k_{14} \cdot c_{1} + cc_{1} \cdot k_{13} \cdot c_{14}$$

$$1 - k_{13} \cdot k_{15} - k_{14} = cc_{1} \cdot k_{13} \cdot k_{14}$$

$$c_{1} = \frac{(1 - k_{13} \cdot k_{15} - k_{14})}{k_{13} \cdot k_{14} \cdot c} \text{ womit nach } (1) - (13)$$

$$alle c_{1} (i = 1, ..., 14)$$

$$in c ausdrückbar sind$$

$$(1') \quad (1) \Rightarrow c_{2} = \frac{k_{1} (1 - k_{13} \cdot k_{15} - k_{14})}{k_{13} \cdot k_{14} \cdot c}$$

$$\vdots \quad \vdots$$

$$(13') \quad (13) \Rightarrow c_{14} = \frac{(1 - k_{13} \cdot k_{15} - k_{14})}{k_{14} \cdot c}$$

(o') - (13') in (15) eingesetzt ergibt:

$$c = \left[\left(\frac{1 - k_{13} k_{15} - k_{14}}{k_{13} k_{14}} + 1 \right) \left(\frac{k_1 (1 - k_{13} k_{15} - k_{14})}{k_{13} k_{14}} + 1 \right) \dots \right]$$

$$\left(\frac{1 - k_{13} k_{15} - k_{14}}{k_{14}} + 1 \right) - 1$$

$$c = \left[\prod_{i=0}^{13} \left(\frac{k_i (1 - k_{13} k_{15} - k_{14})}{k_{13} k_{14}} + 1 \right) \right] - 1$$
 (15')

oder

$$c = \prod_{i=0}^{13} (k_i \cdot c'_1 + 1) - 1$$
 (15")

mit

$$c'_1 = c_1 \cdot c = \frac{1 - k_{13} k_{15} - k_{14}}{k_{13} k_{14}}$$
 (o")

Berechnungsreihenfolge: Zuerst (o"), danach (15") ergibt c, und dies eingesetzt in (o') - (13') ergibt die c_i .

Anhang F: Bestimmung der Skalierungskonstanten

Bestimmung sämtlicher Skalierungskoeffizienten aus $v(\underline{y})$ unter Benutzung eines Taschenrechnerprogramms (TRP) zur Lösung des Gleichungssystems (GS)

1. Attributpaket $Y_{21} = \{Y_{211}, Y_{212}\} = \{Z_2, Z_3\}$

(13)
$$k_{13} \cdot d_{211} = d_{212}$$

(14) $d_{211} = k_{15} d_{212} + k_{14} d_{211} + k_{14} d^{21} d_{211} d_{212}$ (GS1)
mit $k_{13} = v_{211}(0) = \frac{v_1(2350)}{v_1(2350)} = 1$
 $k_{14} = v_{211}(50) = 0.75 = k_{15}$ $d^{21} = -0.889$
 $d^{21} = 0.750$
 $d^{21} = 0.750$

2. Attributpaket $Y_{22} = \{Y_{221}, Y_{222}\} = \{Z_4, Z_5\}$

(13)
$$k_{13} \cdot d_{222} = d_{221}$$

(14) $d_{222} = k_{15} d_{221} + k_{14} d_{222} + k_{14} d^{22} d_{221} d_{222}$ (GS2)
mit $k_{13} = \frac{v_1(2350)}{v_1(2200)} = 0.573$ $d^{22} = -0.846$
 $= v_{222}(140)$
 $k_{14} = v_{222}(110) = 0.737$ $d_{222} = 0.868$
 $K_{15} = 1.$

3. Attributpaket $Y_2 = \{Y_{21}, Y_{22}, Y_{23}, Y_{24}, Y_{25}\} = \{\{Z_2, Z_3\}, \{Z_4, Z_5\}, Z_6, Z_7, Z_8\}$

(10)
$$k_{10} \cdot d_{22} = d_{24}$$

(11) $k_{11} \cdot d_{22} = d_{21}$
(12) $k_{12} \cdot d_{22} = d_{25}$
(13) $k_{13} \cdot d_{22} = d_{23}$
(14) $d_{22} = k_{15} \cdot d_{23} + k_{14} d_{22} + k_{14} d^{2} d_{22} d_{23}$ (GS3)

mit
$$k_{10} = d_{222}$$
: $\frac{v_1(2100)}{v_2(2200)} = 1.068$

$$k_{11} = \frac{d_{222}}{d_{211}} \cdot \frac{v_1(2350)}{v_1(2200)} = 0.663$$

$$k_{12} = d_{222} \cdot \frac{1}{v_{25}(75)} \cdot v_1(2200)$$

$$= 2.240$$

$$k_{13} = d_{222} \cdot \frac{v_1(2300)}{v_1(2200)} = 0.634$$

$$= d_{222} \cdot v_{222}(110)$$

$$k_{14} = v_{222}(168) = 0.328$$

$$k_{15} = \frac{1}{d_{222}} = 1.152$$

$$d^2 = -0.875$$

$$d_{21} = 0.213$$

$$d_{22} = 0.321$$

$$d_{23} = 0.203$$

$$d_{24} = 0.343$$

$$d_{25} = 0.719$$

4. Attributpaket $Y_6 = \{Y_{61}, Y_{62}, Y_{63}\} = \{Z_{12}, Z_{13}, Z_{14}\}$

$$\begin{pmatrix}
(12) & k_{12} & \cdot & d_{61} & = & d_{63} \\
(13) & k_{13} & \cdot & d_{61} & = & d_{62} \\
(14) & & & d_{61} & = & k_{15} \cdot & d_{62} + & k_{14} & d_{61} + & k_{14} & d_{61} & d_{62}
\end{pmatrix}$$
(GS4)

mit
$$k_{12} = v_1(2450) \cdot v_{61}(200) = 0.053$$
 $d^6 = -0.950$ $k_{13} = \frac{v_{61}(200)}{v_{62}(70)} = 0.875$ $d_{61} = 0.860$ $d_{61} = 0.860$ $d_{62} = 0.752$ $d_{62} = 0.752$ $d_{63} = 0.046$

5. Attributpaket $Y = \{Y_1, \dots, Y_6\} = \{Z_1, Y_2, Z_9, Z_{10}, Z_{11}, Y_6\}$ (9) $k_9 \cdot d_6 = d_5$ (10) $k_{10} \cdot d_6 = d_4$ (11) $k_{11} \cdot d_6 = d_3$ (12) $k_{12} \cdot d_6 = d_2$ (13) $k_{13} \cdot d_6 = d_1$ (14) $d_6 = k_{15} \cdot d_1 + k_{14} \cdot d_6 + k_{14} \cdot d_1 d_6$ (GS5)

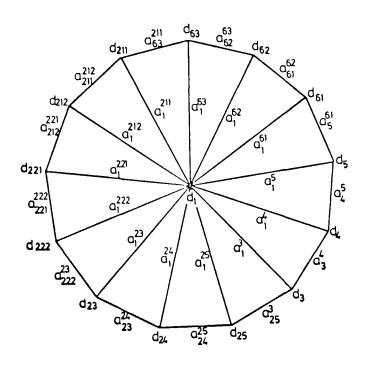
mit
$$k_9 = d_{62} \cdot v_{62} (70) \cdot v_1 (2450)$$

 $= 0.046$
 $k_{10} = d_{62} \cdot v_{62} (70) \cdot v_1 (2350)$
 $= 0.124$
 $k_{11} = d_{62} \cdot v_{62} (70) \cdot v_1 (2480)$
 $= 0.019$
 $k_{12} = \frac{d_{62} \cdot v_{62} (70)}{d_{25} \cdot v_{25} (75)} = 0.775$
 $k_{13} = d_{62} \cdot v_{62} (70) = 0.376$
 $k_{14} = v_{62} (60) = 0.615$
 $k_{15} = \frac{1}{d_{62}}$ = 1.330

Anhang G: Rangfolge der Attribute und Konsistenzprüfungen

Anhang G(1): Rangordnung der Attribute (endgültige)

			•	
Rang-Nr.	Attribut	SkalKonst. bzw. Produkt aus solchen	Indifferenzwert bezogen auf Attribut 1: Kosten	
1	z ₁₂ : 10 ⁴ /n	d ₆₁ ·d ₆ = 0.554	200 %	$a_1^{61} = \frac{1}{v_{61}(200)} = 2.286$
2	z ₁₃ : Import- anteil	$d_{62} \cdot d_{6} = 0.484$	70 %	$a_1^{62} = \frac{1}{v_{62}(70)} = 2.$
3	z ₈ : co ₂	ā ₂₅ ·d ₂ = 0.356	75 μg/m ³	$a_1^{25} = \frac{1}{v_{25}(75)} = 1.481$
4	z ₁ : Kosten	$d_1 = 0.242$	_	$a_1^1 = 1.$
5	z ₇ : Unfälle	d ₂₄ ·d ₂ = 0.171	2100 DM/cap·a	$a_1^{24} = v_1(2100) = 0.706$
6	z ₅ : CO	d ₂₂₂ ·d ₂₂ ·d ₂ = 0.160	2200,-	$a_1^{222} = v_1(2200) = 0.574$
7	z ₆ : Rad.Bel.	d ₂₃ ·d ₂ = 0.101	2300,-	$a_1^{23} = v_1(2300) = 0.419$
9.5	z ₁₀ : Landverbr.	$d_4 = 0.080$	2350,-	$a_1^4 = v_1(2350) = 0.329$
9.5	$z_2 : SO_2$	d ₂₁₁ ·d ₂₁ ·d ₂ = 0.080	2350,-	$a_1^{211} = v_1(2350) = 0.329$
9.5	z ₃ : Staub	$d_{212} \cdot d_{21} \cdot d_2 = 0.080$	2350,-	$a_1^{212} = v_1(2350) = 0.329$
9.5	z_4 : NO_x	d ₂₁₁ ·d ₂₂ ·d ₂ = 0.080	2350,-	$a_1^{221} = v_1(2350) = 0.329$
12.5	z ₁₁ : Vielfalt	d ₅ = 0.030	2450,-	$a_1^5 = v_1(2450) = 0.121$
12.5	z ₁₄ : Vorratskost.	d ₆₃ ·d ₆ = 0.030	2450,-	$a_1^{63} = v_1(2450) = 0.121$
14	z _g : Verdunst Verluste	$d_3 = 0.012$	2480,-	$a_1^3 = v_1(2480) = 0.050$


Einzelränge innerhalb der mehrelementigen Attributpakete:

Attributpaket Y_{21} : $d_{211} = d_{212}$

2. Attributpaket Y_{22} : $d_{222} > d_{221}$ 3. Attributpaket Y_2 : $d_{25} > d_{24} > d_{22} > d_{21} > d_{23}$ 4. Attributpaket Y_6 : $d_{61} > d_{62} > d_{63}$ 5. Attributpaket Y_6 : $d_6 > d_2 > d_1 > d_4 > d_5 > d_3$

Anhang G(2): Schematische Darstellung der für die Nutzenfunktionsschätzung verwendeten Fragen zur Konsistenzprüfung

Sie werden symbolisiert durch die Kreissehnen. Der Koeffizient an jeder Sehne, multipliziert mit dem Koeffizienten an dem im Uhrzeigersinn benachbarten Radius, muß gleich dem Koeffizienten am anderen benachbarten Radius sein.

Anhang H: Nutzenfunktion von V. Schulz

Es wird die Nomenklatur aus Kap. 5.4 benutzt.

$$v(\underline{y}) = \sum_{i=1}^{9} d_i v_i(\underline{y}_i)$$

$$v_1(y_1) = u_1(z_1)$$

$$v_2(y_2) = \frac{1}{d^2} \prod_{j=1}^{2} (1 + d^2 d_{2j} v_{2j}(y_{2j})) - \frac{1}{d^2}$$

$$v_{21}(y_{21}) = d_{211}u_2(z_2) + d_{212}u_3(z_3) + d^{21}d_{211}d_{212}u_2(z_2)u_3(z_3)$$

$$v_{22}(y_{22}) = d_{221}u_4(z_4) + d_{222}u_5(z_5) + d^{22}d_{221}d_{222}u_4(z_4)u_5(z_5)$$

$$v_3(y_3) = u_6(z_6)$$

$$v_4(y_4) = u_7(z_7)$$

$$v_5(y_5) = u_8(z_8)$$

$$v_6(y_6) = u_9(z_9)$$

$$v_7(y_7) = u_{10}(z_{10})$$

$$v_8(y_8) = u_{11}(z_{11})$$

$$v_9(y_9) = \frac{1}{d^9} \prod_{k=1}^{1} (1 + d^9 d_{9k} u_{11+k}(z_{11+k})) - \frac{1}{d^9}$$

Koeffizienten:

$$d_1 = 0.167$$

$$d_2 = 0.340$$

$$d_3 = 0.070$$

$$d_4 = 0.070$$

$$d_5 = 0.016$$

$$d_6 = 0.042$$

$$d_7 = 0.0$$

$$d_8 = 0.118$$

$$d_{q} = 0.177$$

ء2	=	-0.	828
~			

$$d_{21} = 0.546$$

$$d_{22} = 0.829$$

$$d^9 = -0.705$$

$$d_{91} = 0.711$$

$$d_{92} = 0.474$$

$$d_{93} = 0.158$$

$$d^{21} = -0.858$$

$$d_{211} = 0.979$$

$$d_{212} = 0.130$$

$$d^{22} = -0.580$$

$$d_{221} = 0.516$$

$$d_{222} = 0.691$$

Anhang I: Nutzenfunktion von H. Stehfest

Es wird die Nomenklatur aus Kap. 5.4 benutzt.

$$v(\underline{y}) = \frac{1}{d} \prod_{i=1}^{7} (1 + dd_{i}v_{i}(y_{i}) - \frac{1}{d}$$

$$v_1(y_1) = u_1(z_1)$$

$$v_2(y_2) = \frac{1}{d^2} \prod_{j=1}^{3} (1 + d^2 d_{2j} v_{2j}(y_{2j})) - \frac{1}{d^2}$$

$$v_{21}(y_{21}) = \frac{1}{d^{21}} \prod_{k=1}^{4} (1 + d^{21}d_{21k}u_{1+k}(z_{1+k})) - \frac{1}{d^{21}}$$

$$v_{22}(y_{22}) = u_6(z_6)$$

$$v_{23}(y_{23}) = u_7(z_7)$$

$$v_3(y_3) = u_8(z_8)$$

$$v_4(y_4) = u_9(z_9)$$

$$v_5(y_5) = u_{10}(z_{10})$$

$$v_6(y_6) = u_{11}(z_{11})$$

$$v_7(y_7) = \frac{1}{d^7} \prod_{1=1}^{3} (1 + d^7 d_{71} u_{11+1}(z_{11+1})) - \frac{1}{d^7}$$

Koeffizienten:

$$d = -0.812$$

$$d_1 = 0.263$$

$$d_2 = 0.431$$

$$d_3 = 0.215$$

$$d_4 = 0.110$$

$$d_5 = 0.131$$

$$d_6 = 0.066$$

$$d_7 = 0.519$$

2			
a-	_	-0	795
u		· ·	

$$d_{21} = 0.787$$

$$d_{22} = 0.350$$

$$d_{23} = 0.304$$

$$d^7 = -0.824$$

$$d_{71} = 0.563$$

$$d_{72} = 0.769$$

$$d_{73} = 0.127$$

$$d^{21} = -0.869$$

$$d_{211} = 0.489$$

$$d_{212} = 0.324$$

$$d_{213} = 0.445$$

$$d_{214} = 0.547$$

TEIL III:

Numerische Realisierung des Optimierungsmodells für das Energieversorgungssystem von Baden-Württemberg

- B. FÜRNISS
- V. Schulz
- H. STEHFEST

Inh	nhaltsverzeichnis:		Seite
1.	0rga	nisation der numerischen Rechnungen	1
	1.1	Problembeschreibung	1
	1.2	Lineares Optimierungsprogramm MPSX/370	2
	1.3	Erstellen der Eingabematrix	4
2.	Die	wesentlichen Eingabeparameter	12
	2.1	Parameter zur Ermittlung der Häufigkeiten der Lastzustände und der Tag-Nacht-Übergänge	13
	2.2	Parameter zur Charakterisierung der Um- wandlungsoptionen	13
	2.3	Parameter zur Berechnung der Attribute und Nutzenfunktionen	16
3.	Das	Restriktionensystem	17
	3.1	Definition der Variablennamen	19
	3.2	Formelmäßige Berechnung der Koeffizienten in den Restriktionen	23
4.	Ein-	und Ausgabeprotokoll für einen Optimierungslauf	75
5.	lite	ratur	134

•

1. Organisation der numerischen Rechnungen

1.1 Problembeschreibung

Wie in Fürniß et al. (1980) beschrieben, läßt sich das Problem, ein regionales Energieversorgungssystem im Hinblick auf verschiedene energiepolitische Ziele möglichst günstig zu gestalten, als nichtlineares Maximierungsproblem mit linearen Restriktionen formulieren. Die Restriktionen beschreiben dabei die technisch möglichen Umwandlungsoptionen, die nichtlinearen Zielfunktionen sind sog. Nutzenfunktionen, die durch Befragen gewonnen werden (s. Teil II). Für die Lösung dieses Problems wurde das reduzierte Gradientenverfahren von Wolfe (s. z.B. Neumann (1975)) benutzt. Als Ausgangspunkt für dieses Verfahren diente die Lösung eines Maximierungsproblems, bei dem die Nutzenfunktion durch eine additiv separierbare Näherung (die additive Nutzenfunktion (s. Teil II) ersetzt worden war. Es zeigte sich, daß die Ergebnisse des reduzierten Gradientenverfahrens sich nur unwesentlich von der Ausgangslösung unterschieden (Fürniß et al. (1980)). Das Problem ließ sich damit im wesentlichen auf die Maximierung einer additiv separierbaren Zielfunktion bei linearen Restriktionen zurückführen, und nur davon soll im folgenden die Rede sein. Wegen der Einzelheiten für die Anwendung des reduzierten Gradientenverfahrens sei auf Hoch (1979) verwiesen.

Das vereinfachte Problem läßt sich durch stückweise Linearisierung der einzelnen Komponenten der additiven Nutzenfunktion in ein lineares Maximierungsproblem verwandeln. (Voraussetzung dafür ist allerdings die Konkavität der Nutzenfunktion, die in allen untersuchten Fällen jedoch erfüllt war, s. Teil II). Im Fall der Einzelzieloptimierung, der ebenfalls eine große Rolle spielte (s. Fürniß et al. (1980)), liegt von vornherein ein lineares Optimierungsproblem vor. Das im folgenden zu diskutierende rechentechnische Problem bestand also in der Bereitstellung der Koeffizienten für ein Problem der linearen Optimierung und der Lösung dieses Problems. Es lautet im Falle der Maximierung

$$\begin{array}{ccc}
\text{max} & \text{cx} \\
\text{x} \\
\text{A } \text{x} \leq \text{b} \\
\text{0} \leq \text{x}
\end{array} \tag{1.1}$$

wobei c, b und x Vektoren sind, während A eine Matrix ist.

1.2 Das lineare Optimierungsprogramm MPSX/370

Für die Lösung der in Abschnitt 1.1 genannten linearen Programmierungsaufgabe wurde das IBM-Programmprodukt MPSX/370 benutzt. Es bietet neben einem effizienten Lösungsalgorithmus verschiedene weitere Möglichkeiten zur einfachen Analyse linearer Optimierungsprobleme (s. IBM (1976)). Zu nennen ist hier vor allem das "parametric programming", mit dem sich auf recht einfache Weise Sensitivitätsrechnungen durchführen lassen. Als sehr nützlich erwies sich auch die Möglichkeit, eine einmal gefundene Lösung zum einen abzuspeichern und zum anderen als Startpunkt für einen weiteren Optimierungslauf zu benutzen, z.B. mit einer neuen Zielfunktion, wie es bei der Berechnung der Häufigkeitsverteilungen und der Übergangswahrscheinlichkeiten (s. Abschn. 1.3) der Fall war.

Das Abspeichern der vollständigen Lösung war auch erforderlich, um die Lösung des in Abschn. 1.1 erwähnten Näherungsproblems mit additiver Nutzfunktion als Zielfunktion an das Fortran-Programm RDGRAD (s. Hoch (1979)) zu übergeben, das das reduzierte Gradientenverfahren durchführt. Wegen dieser Übergabe waren bei der Eingabe für MPSX/370 folgende Einschränkungen zu beachten: Separierbare Nichtlinearitäten mußten durch Einführung zusätzlicher Variablen und Restriktionen explizit beseitigt werden. (MPSX/370 bietet die Option des "separable programming" zur einfacheren Berücksichtigung separierbarer Nichtlinearitäten.) Ferner waren Begrenzungen für einzelne Variable explizit als Ungleichungen einzugeben, obwohl MPSX/370 für derartige Restriktionen eine spezielle Verarbeitungsart ("bound-section") vorsieht.

Das Paket MPSX/370 ist durch einfache Aufrufe der verschiedenen Programmteile leicht zu handhaben. Zu dem in Abschn. 4 gegebenen Beispiel eines Kontrollprogramms seien die folgenden Erläuterungen gegeben:

PROGRAM zeigt den Beginn des Kontrollprogramms an

INITIALZ initialisiert einige programminterne Parameter

TITLE('XXX') gibt jeder Druckerseite den Titel XXX

CONVERT liest und prüft die Eingabedaten und legt sie in geeig-

neter Form auf einer Problemdatei ab

SETUP bereitet die Optimierung vor, liest die Problemdatei,

setzt den Optimierungstyp (z.B. Minimierung) fest,

reserviert Speicherplatz

BCDOUT druckt die Eingabedaten aus

PRIMAL Hauptprozedur für die Optimierung, sucht eine zulässige

Ausgangslösung und optimiert mittels "Simplex-Iteration"

SOLUTION druckt die Lösung aus

EXIT gibt die Regie an das Betriebssystem zurück

PEND zeigt das Ende des Kontrollprogramms an

Die MOVE-Statements weisen internen Variablen extern gewählte Namen zu.

Bei der Eingabe für MPSX/370 müssen bestimmte Konventionen eingehalten werden (s. Abschn. 4). Entsprechend der mathematischen Darstellung (1.1) des Optimierungsproblems ist im wesentlichen die Matrix A einzugeben. Da i.a. die überwiegende Zahl der Matrixelemente Null ist, erfolgt dies in der Weise, daß für jedes von Null verschiedene Element Position und Wert eigelesen wird. Dazu erhalten alle Spalten (Variablen) und Zeilen (Restriktionen) einen Namen, ebenso die rechte Seite.

Das Eingabepaket gliedert sich in die Abschnitte ROW-Section, COLUMN-Section, RHS-Section, evtl. BOUND-Section (s.o.). Die ROW-Section enthält Namen und Typ der Restriktion. ("L" steht für "<", "G" für ">", "E" für "=".) Die Zielfunktion wird als Restriktion vom Typ "N" (non-constraint) behandelt. Die COLUMN-Section enthält die spaltenweise Eingabe der von Null verschiedenen Matrixelemente (Koeffizienten) des Optimierungsproblems. Eine Eingabezeile hat die Form:

"Spaltenname Zeilenname Koeffizient Zeilenname Koeffizient",

wobei die in der ROW-Section gewählte Reihenfolge der Zeilennamen einzuhalten ist. Die RHS-Section enthält die Werte der rechten Seite der Restriktionen. Die Eingabeform ist die gleiche wie die der COLUMN-Section.

1.3 Erstellen der Eingabematrix

Die einzugebende Koeffizientenmatrix ist in Abb. 1.1 schematisch dargestellt. In ihr bedeuten leere Rechtecke Untermatrizen, die nur aus Nullen bestehen, während schattierte Flächen Elemente ungleich Null enthalten. Wenn in einer Untermatrix nur einzelne Diagonalen oder Zeilen von Null verschiedene Elemente enthalten, so sind diese Diagonalen bzw. Zeilen durch entsprechende gestrichtele Linien symbolisiert. Die Namen am linken bzw. oberen Rand sind die Namen der Restriktionen bzw. Variablen, wie sie für die Eingabe für MPSX/370 vergeben wurden (vgl. Abschn. 4). RS ist die rechte Seite des Restriktionensystems.

Die ersten Zeilen von HTDEMND bis HTSTA3AE bilden die "Kernmatrix", die die Koeffizienten der Gleichungen für die technischen Restriktionen enthält. Diese Restriktionen werden in Abschn. 3 gegeben.

Das nichtlineare Attribut "Vielfältigkeitsindex" war, wie in Teil I, Abschn. 8, angegeben, durch Einführung zusätzlicher Variablen und Restriktionen als lineare Funktion darzustellen. Für jede Variable, die in die Berechnung dieses Attributs eingeht, waren zwei Hilfsvariable einzuführen, die durch die (vektorwertigen) Variablen XSNFM1 und XSNFM2 am oberen Rand angedeutet sind. Die Restriktionen GRIDVA bis GRIDVE definieren die Größen $x_{i,j}$ in Formel (8.1) in Teil I als Summe dieser Hilfsvariablen, wobei die letzteren so normiert werden, daß sie zwischen 0 und 1 schwanken. (Bei mehreren Deckungsoptionen mit derselben Endenergieform - z.B. Gasheizung und Gaswärmepumpe - steht x_{ij} für die Summe der entsprechenden Entscheidungsvariablen!) Der folgende Satz von Nebenbedingungen beschränkt die eine Hälfte der Hilfsvariablen auf den Bereich unterhalb der Knickstelle, die durch die Betragsfunktion in der Attributdarstellung entsteht.(d.h. auf den Bereich ≤ 1). Diese Restriktionen sind entsprechend den Hilfsvariablennamen symbolisch mit BXSNFM1 bezeichnet, die tatsächlichen Namen (s. Abschn. 4) sind aber auch durch die Anfangsbuchstaben BX und die Ziffer 1 am Ende gekennzeichnet.

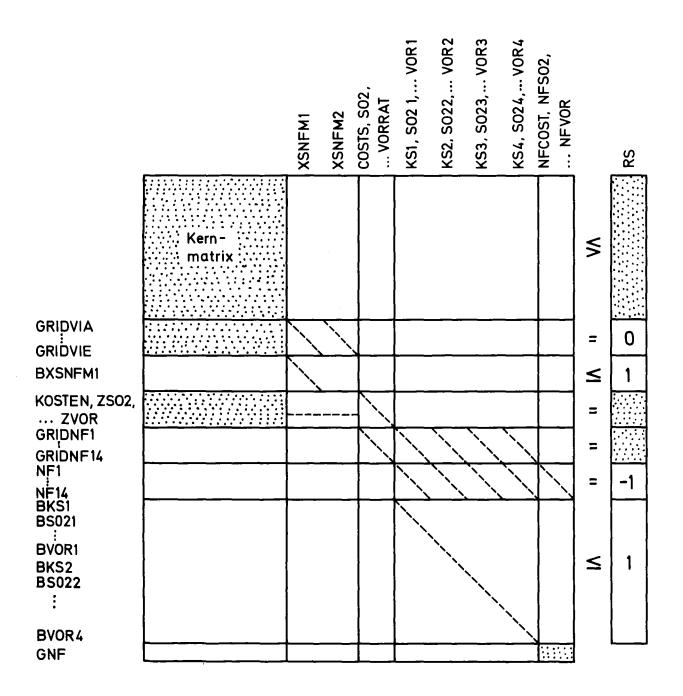


Abbildung 1.1: Schematische Darstellung der Eingabematrix

Die Nebenbedingungen "Kosten", "ZSO $_2$ " "ZVOR" sind die Definitionsgleichungen für die Attribute, deren Variablennamen "COSTS", "SO₂" "VORRAT" sind. Die rechten Seiten dieser Definitionsgleichungen sind nicht alle Null, beispielsweise weil bei der Umwandlungsoption "Olheizung" nicht nach Gemeindegrößenklassen unterschieden wurde (s. Fürniß et al. (1980)), wodurch es nötig war, den Attributwert als Abweichung von dem Fall 100 %iger Deckung des Raumwärmebedarfs mittels Ölheizung zu berechnen. Eine von Null verschiedene rechte Seite in einer Definitionsgleichung für ein Attribut ergibt sich auch, wenn ein Beitrag zum Indikatorwert allein vom Gebrauch einer Nutzenergieform herrührt, also nicht von den Entscheidungsvariablen abhängt. Dies gilt z.B. für das Unfallrisiko beim Umgang mit Elektrizität und beim PKW-Verkehr. Die nichtlinearen Einzelnutzenfunktionen (s. Teil II) waren über dem Schwankungsbereich des zugehörigen Attributs durch vier Geradenstücke zu approximieren: Die entsprechenden vier Hilfsvariablen je Attributvariable werden mit den Restriktionen GRIDNF1 ..., GRIDNF14 eingeführt (14 Attribute!), die Restriktionen NF1 bis NF14 definieren die Einzelnutzenfunktionen als Funktionen dieser Hilfsvariablen und die Restriktionen BKS1, BS021 etc. begrenzen die Hilfsvariablen auf den jeweiligen Teilbereich der Attributschwankungsbreite. Der nicht beschränkte Ausdruck GNF schließlich stellt die (additive) Gesamtnutzenfunktion in Abhängigkeit von den Einzelnutzenfunktionen dar. Um in Abb. 1.1 die Abhängigkeiten zwischen den Variablen besser (nämlich durch Diagonalen) veranschaulichen zu können, wurde die Reihenfolge der Variablen etwas anders gewählt als bei der in Abschn. 4 wiedergegebenen Programmeingabe.

Die Programme zum Erstellen der in Abb. 1.1 gezeigten Eingabematrix (und zum Lösen des Optimierungsproblems) sind in Abb. 1.2 in ihrem Zusammen-wirken gezeigt. Sie sollen im folgenden (von unten nach oben) erläutert werden:

Matrixaufbereitungsprogramm MATAUF

Das Programm MATAUF bringt die Eingabedaten für das Optimierungsprogramm MPSX in die in Kap. 1.2 beschriebene Form (s.a. Abschn. 4). Es liest dazu die Anzahl der Variablen und Restriktionen sowie deren Namen ein. Für die von Null verschiedenen Koeffizienten werden Zahlentripel (Spalte, Zeile, Wert) eingelesen, die vom Vorbereitungsprogramm KOEFF erzeugt werden. In einem als Unterprogramm ausgelegten Programmteil werden die Koeffizienten für die Berechnung der Einzelattribute ermittelt, in einem weiteren Unterprogramm werden die Koeffizienten für die Einzelnutzenfunktionen berechnet sowie die Gewichte der Einzelnutzenfunktionen bei der Berechnung der Gesamtnutzenfunktion eingelesen.

Vorbereitungsprogramm KOEFF

Aufgabe des Programms KOEFF ist es, die Koeffizienten der Matrix zu berechnen und sie als Zahlentripel (Spalte, Zeile, Wert) für die Weiterverarbeitung durch MATAUF auf eine Datei abzulegen.

Die meisten Koeffizienten lassen sich aus relativ wenigen, primären Parametern berechnen (s. Abschn. 2). Den Koeffizienten, die nicht von solchen primären Parametern abhängen, werden innerhalb des Programms KOEFF feste Werte zugewiesen.

Berechnung der Häufigkeiten für Elektrizitäts- und Wärmenachfrage sowie der Wahrscheinlichkeiten für die Tag-Nacht-Übergänge zwischen den Lastsituationen

Für die Berechnung verschiedener Koeffizienten (s. Abschn. 3) werden benötigt:

- die Häufigkeiten a ik für die verschiedenen Kombinationen (i,k)
 der Elektrizitäts- und Niedertemperaturnachfrage und
- die Häufigkeiten w^{jl} für die Nachfragezustände (i,k) unter der Bedingung, daß anschließend ein Tag-Nacht- bzw. Nacht-Tag-Übergang nach (j,l) erfolgt.

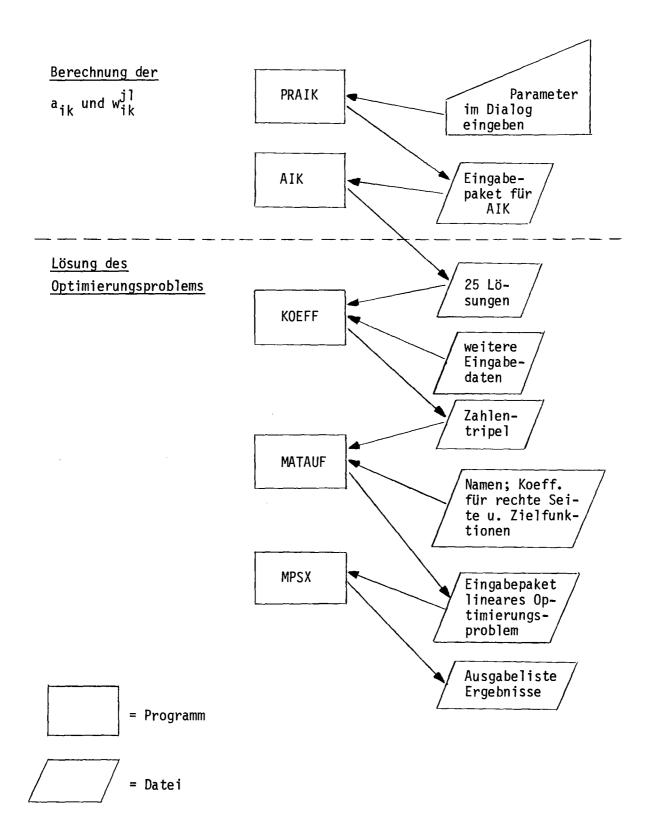


Abbildung 1.2: Zusammenwirken der verschiedenen Programme zum Aufbau und zur Lösung des linearen Optimierungsproblems

Die Nachfragezustände werden dabei durch die Indizes (i, k) bzw. (j, l) so charakterisiert, wie es Abb. 1.3 zeigt, d.h. (1,1) entspricht der Grundlast bei beiden Nachfragearten, während (1,3) Grundlast bei Elektrizität und Spitzenlast bei Wärme bedeuteten.

Mangels ausreichender Informationen mußten die a_{ik} und w_{ik}^{jl} teils aus bekannten Größen, teils aus realistischen Annahmen konstruiert werden:

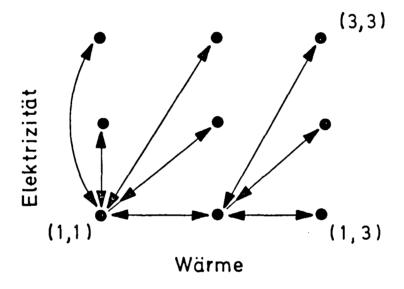


Abbildung 1.3: Angenommene Tag-Nacht-Übergänge zwischen den Lastsituationen für die kombinierte Nachfrage nach Niedertemperaturwärme und Elektrizität

Bekannt sind die Randverteilungen für Elektrizitäts- und Wärmenachfrage. Für die a_{ik} ergeben sich dadurch die Gleichungen

$$\sum_{i=1}^{3} a_{ik} = \frac{\Delta_k}{8760} \quad k = 1, 2, 3$$
 (1.1)

$$\sum_{k=1}^{3} a_{ik} = \frac{\Gamma_{i}}{8760} \quad i = 1, 2$$
 (1.2)

Dabei sind Δ_k und Γ_i , i = 1, 2, 3, die Zeitdauern in Stunden, während der Grund-, Mittel- bzw. Spitzenlast bei Wärme bzw. Elektrizität herrscht, 8760 ist die Jahresstundenzahl. Eine Gleichung vom Typ (1.2) für i = 3 er- übrigt sich, da sie von den anderen 5 Gleichungen linear abhängig wäre. Eine weitere Bestimmungsgleichung für die a_{ik} kann man durch Vorgabe des Korrelationskoeffizienten ρ für die zweidimensionale, diskrete Wahrschein-lichkeitsdichte a_{ik} erhalten:

$$\sum_{i=1}^{3} \sum_{k=1}^{3} E_{i} H_{k} a_{ik} = \rho \sqrt{(\langle E^{2} \rangle - \langle E \rangle^{2}) (\langle H^{2} \rangle - \langle H \rangle^{2})} + \langle E \rangle \langle H \rangle$$
 (1.3)

Dabei sind E_i und H_k die Nachfragen (Leistung) nach Elektrizität bzw. Niedertemperaturwärme in den jeweils 3 Lastsituationen. $\langle E \rangle$, und $\langle E^2 \rangle$ sind die Mittelwerte 1. bzw. 2. Ordnung der Randverteilungen für Elektrizität, entsprechendes gilt für $\langle H \rangle$, $\langle H^2 \rangle$ bzgl. der Niedertemperaturwärme. Da über den Korrelationskoeffizienten nichts genaues bekannt war, wurde er als zu variierender Parameter behandelt.

Von den möglichen Tag- Nacht- und Nacht- Tag-Übergängen wurden nach einer Analyse tatsächlicher Lastkurven die in Abb. 1.3 gezeigten Übergänge als repräsentativ ausgewählt. Es wird angenommen, daß von zwei Zuständen, die aufeinander folgen, derjenige der dem Zustand (1.1) näher liegt, tagsüber, d.h. 16 h lang vorliegt. Ferner wird davon ausgegangen, daß jedem Übergang im Tag-Nacht-Wechsel ein Übergang in umgekehrter Richtung folgt.

Diese Annahme kann zwar nicht vollständig richtig sein, denn es müssen alle Zustände von jedem Zustand aus erreichbar sein. Wenn es aber, wie im vorliegenden Fall, um die Berücksichtigung der Energiemengen geht, die über Energiespeicher von einer Lastsituation in die anderen übertragen werden, dürfte die Annahme realistisch sein. Unter den erwähnten Annahmen ergeben sich für die w_{ik}^{jl} folgende Bestimmungsgleichungen:

$$\sum_{ij} w_{ik}^{jl} - a_{ik} = 0 \qquad \forall i,k \qquad (1.4)$$

wobei die Summe über alle gemäß Abb. 1.3 vorgesehenen Übergänge zu erstrecken ist, sowie

$$y w_{ik}^{jl} - w_{il}^{ik} = 0$$
 (1.5)

für alle vorgesehene Übergänge. Die Größe γ ist dabei das Verhältnis zwischen Nacht- und Tag-Zeit, wenn der Zustand (i,k) tagsüber angenommen wird; es wurde = 0.5 gesetzt (d.h. 16 Stunden Tag, 8 Stunden Nacht). Damit haben sich 23 lineare Gleichungen ergeben, die die 25 Unbekannten aik und wil nicht eindeutig bestimmen. Andererseits bestehen die Nebenbedingungen

$$a_{ik} \ge 0 \tag{1.6}$$

$$w_{ik}^{jl} \ge 0 \tag{1.7}$$

so daß von vorneherein nicht sicher ist, ob überhaupt zulässige Lösungen des Systems (1.1) – (1.7) existieren. In der Tat zeigte sich, daß (bei den vorliegenden Randverteilungen) dies nur gegeben ist, wenn der Parameter ρ nicht größer als etwa 0.5 ist.

Dies zeigt, daß die Aufstellung weiterer Bestimmungsgleichungen für die a_{ik} und $w_{ik}^{j\,l}$ ein problematischer Weg ist, um zu einer eindeutigen Lösung zu gelangen. Beispielsweise ist es nicht möglich, höhere Momente der a_{ik} willkürlich vorzugeben, weil deren Wertebereich durch die Vorgabe von $_{\rho}$ in unbekannter Weise eingeschränkt wird. Um zu einem konsistenten Satz von Werten a_{ik} und $w_{ik}^{j\,l}$ zu kommen, wurde daher folgender Weg einge-

schlagen: Die Gleichungen und Ungleichungen (1.1) – (1.7) werden als Restriktionen eines linearen Optimierungsproblems betrachtet, bei dem eine der 25 Unbekannten zu maximieren ist. Als Lösung ergeben sich mit den Vorgaben verträgliche Häufigkeitsverteilungen, allerdings sind zwangsläufig einige Variablen gleich Null. Daher wird, von der gefundenen Lösung ausgehend, das Optimierungsproblem neu gelöst, jedoch mit einer anderen der 25 Unbekannten als zu maximierender Zielfunktion. Dieses Verfahren wird für alle 25 Variablen durchgeführt. Das ergibt 25 zulässige Lösungen, deren Mittelwert mit den gesuchten Größen a_{ik} und w_{ik}^{jl} identifiziert wird.

Die Berechnung der a_{ik} und w_{ik}^{jl} geschieht in den PL1-Programmen PRAIK und KOEFF sowie dem MPSX/370 -Kontrollprogramm AIK. Die Rechnungen von PRAIK basieren auf variablen und festen Parametern. Die variablen Parameter, nämlich Gesamtwärmebedarf D_H , Gesamtelektrizitätsbedarf D_E und Korrelationskoeffizient ρ , werden im Dialog eingegeben. Fest vorgegeben sind die Verhältniswerte der nachgefragten Arbeit für Spitzen- zu Mittellast und Mittel- zu Grundlast, sowohl bei Wärme als auch bei Elektrizität. Ferner sind für die nachgefragten Leistungen H_1 , H_3 , E_1 und E_3 (s. Gl. (1.3)) Basiswerte, die dem Jahr 1975 entsprechen, fest eingebaut; sie werden vom Programm PRAIK dem jeweils vorgegebenen Gesamtbedarf so angepaßt, daß die Verhältnisse konstant bleiben. Mithilfe der genannten Parameter werden die Gleichungen (1.1) - (1.5) aufgestellt und in der von MPSX/370 verlangten Form auf eine Datei abgelegt. Dann löst das Programm AIK mittels MPSX/370 die 25 Optimierungsaufgaben und übergibt die Lösungen an KOEFF, das den Mittelwert ausrechnet.

2. Die wesentlichen Eingabeparameter

Im folgenden werden die wesentlichen, nicht von anderen Programmen übergebenen Eingabedaten für die Programme PRAIK (Abschn. 2.1), KOEFF (Abschn. 2.2) und MATAUF (Abschn. 2.3) aufgeführt (s. Abb. 1.2). Die angegebenen Zahlenwerte wurden in dem Rechenlauf, der in Abschn. 4 protokolliert ist, benutzt. Die Bezeichnungen der Parameter korrespondieren mit denen in Abschn. 3.

2.1 Parameter zur Ermittlung der Häufigkeiten der Lastzustände und der Tag-Nacht-Obergänge

D_E, D_H jährlicher Bedarf an Elektrizität und Niedertemperaturwärme = 86 bzw. 108 Mio MWh

 E_1 , E_3 elektrische Leistung bei Grund- bzw. Spitzenlast = 7 624 bzw. 13 083 MW

 H_1 , H_3 Wärmeleistung bei Grund- bzw. Spitzenlast = 5 548 bzw. 32 636 MW

ρ Korrelationskoeffizient = 0.5

A₂ Verhältnis Spitzenlastenergie : Mittellastenergie bei Wärme = 0.66667

A₃ Verhältnis Mittellastenergie : Grundlastenergie bei Wärme = 1.85368

A₁₃ Verhältnis Spitzenlastenergie : Mittellastenergie bei Elektrizität = 0.52400

A₁₄ Verhältnis Mittellastenergie : Grundlastenergie bei Elektrizität = 1.36300

2.2 Parameter zur Charakterisierung der Umwandlungsoptionen

Bedarfsstruktur

 $D_{\rm E}$, $D_{\rm H}$, jährlicher Bedarf an Elektrizität, Niedertemperaturwärme, Hochtemperaturwärme und Transportenergie = 86, 108, 58 bzw. 18 Mio MWh

RS $_{166}$, RS $_{167}$, RS $_{168}$ Niedertemperaturwärmenachfrage in Großstädten, Mittelstädten und Landgemeinden, dargestellt als jeweils benötigte Leistung = 5771,7, 8490,7 bzw. 18365,4 MW

 A_{124}/A_{249} Anteil an D_T (s.o.) der mindestens durch Dieselkraftstoff gedeckt werden muß (LKW-Anteil an D_T) = 0.37

 A_2, A_3, A_{13}, A_{14} s. Abschn. 2.1

 E_1, E_3, H_1, H_3 s. Abschn. 2.1

U ₁ / H ₃	Leistung für Warmwasserbereitung in Relation zu H ₃ = 0.02 (s. Abb. 2.7, Fürniß et al. (1980))
U ₂ / H ₃	Maximale Leistung für Warmwasserbereitung und Niedertemperatur-Prozeßwärme in Relation zu $H_3=0.2$ (s. Abb. 2.7, Fürniß et al. (1980))

Umwandlungswirkungsgrade Sekundärenergie - Nutzenergie

A ₁	Wirkungsgrad der Fernwärmeverteilung (incl. Verteilung im Gebäude) = 0.82
B ₁	Wirkungsgrad der Erdgasheizung, incl. Verteilungsverlusten = 0.67
c_1	Wirkungsgrad der Heizung mit leichtem Heizöl = 0.67
A ₁₂	Wirkungsgrad der Elektrizitätsverteilung = 0.95
^ε 1	Wirkungsgrad der Elektrowärmepumpe im Direktbetrieb (defi- niert als Verhältnis zwischen jährlich abgegebener Nutzener- gie und der jährlich eingesetzten elektrischen Energie, d.h. er berücksichtigt auch die Verteilungsverluste im Haus) = 2.5
^ε 2	Wirkungsgrad der Elektrowärmepumpe im Speicherbetrieb (definiert wie ϵ_1) = 2.0
€g	Wirkungsgrad der Gaswärmepumpe (definiert analog zu ϵ_1 mit dem Unterschied, daß auch die Verteilungsverluste des Erdgases (2 %) mit berücksichtigt sind) = 1.5
A ₁₂₄	mechanischer Wirkungsgrad des Dieselmotors = 0.35
B ₁₂₄	mechanischer Wirkungsgrad des Ottomotors = 0.25
A ₁₃₄	Umwandlungswirkungsgrad von schwerem Heizöl in Hochtemperaturwärme = 0.90
^B 134	Umwandlungswirkungsgrad von leichtem Heizöl in Hochtemperaturwärme = 0.90

<u>Umwandlungswirkungsgrade Primärenergie-Sekundärenergie bzw. Sekundärenergie-</u> Sekundärenergie

Die Koeffizienten α und β die im folgenden für verschiedene Heizkraftwerke gegeben werden, haben die gleiche Bedeutung wie in den Gleichungen 2.2 und

2.3 in Fürniß et al. (1980). Das heißt, α ist das Verhältnis zwischen der Strommenge, auf die man bei größtmöglicher Wärmeentnahme im Heizkraftwerk verzichtet, und dieser entnehmbaren Wärmemenge. Mit β wird das Verhältnis zwischen Strom und Wärme bei maximaler Wärmeentnahme bezeichnet. Die ebenfalls angegebenen Koeffizienten v bedeuten die Wärmeverluste bei der Erzeugung von Heizwärme und Strom bezogen auf den Primärenergieeinsatz. Demnach ist der Wirkungsgrad der Stromerzeugung in einem Heizkraftwerk, wenn keine Wärme entnommen wird,

$$\eta = \frac{(\alpha + \beta) (1 - \nu)}{1 + \beta}$$

Der Wirkungsgrad für die reinen Elektrizitätswerke wird in derselben Weise errechnet. Die Indizes C, N, Ø, G bedeuten Kohle, Kernenergie, schweres Heizöl bzw. Erdgas. Ein hochgestellter Index E bezieht sich auf Heizkraftwerke für das dezentrale Netz.

$$\alpha_{C} = \alpha_{\emptyset} = \alpha_{G} = 0.16$$
 $\alpha_{N} = 0.14$
 $\alpha_{C}^{E} = \alpha_{\emptyset}^{E} = \alpha_{G}^{E} = 0.12$
 $\beta_{C} = \beta_{\emptyset} = 0.46$
 $\beta_{N} = 0.32$
 $\beta_{G} = 0.53$
 $\gamma_{C} = \gamma_{\emptyset} = \gamma_{G} = 0.1$
 $\gamma_{N} = 0.05$

 n_T Wirkungsgrad des Stromtransports vom Rheinischen Braunkohlenrevier nach Baden-Württemberg = 0.965 n_H Umwandlungswirkungsgrad von Heizwerken = 0.9 n_P Umwandlungswirkungsgrad von Pumpspeicherwerken = 0.7 n_P Verlustfaktor für schweres Heizöl wegen Raffinerie-Eigenbe-

darfs = 0.88

A₁₂₆,A₁₂₇ Verlustfaktoren für leichtes Heizöl bzw. Benzin aus Crackern wegen Eigenverbrauchs = 0.92

Sonstige Parameter

^A 128	Verhältnis zwischen den Fraktionen schweres und leichtes Heizöl = 1.15
A ₁₂₉	Verhältnis zwischen den Fraktionen leichtes Heizöl und Benzin = 2.6
A ₁₃₀	Untere Grenze für das Verhältnis Benzin - leichtes Heizöl beim Cracken = 0.23
A ₁₃₁	Obere Grenze für das Verhältnis Benzin - leichtes Heizöl beim Cracken = 4.4
r ₁	Reservehaltungsfaktor für Kraftwerke, Heizkraftwerke, Heiz- werke, Raffinerien und Cracker = 1.25
μ ₁ ,μ ₂ ,μ ₃	Anteile der Haushaltswärmenachfrage, die durch Erdreichwärmepumpen befriedigt werden können, in Großstädten (μ_1 = 0.2), Mittelstädten (μ_2 = 0.3) bzw. Landgemeinden (μ_3 = 0.5).
⁷ 1, ⁷ 2, ⁷ 3	Anteile der Haushaltswärmenachfrage, die durch Solarheizungen und Erdreichwärmepumpen befriedigt werden können, in Großstädten (γ_1 = 0.3), Mittelstädten (γ_2 = 0.5) bzw. Landgemeinden (γ_3 = 0.7).
W	Minimales Verhältnis zwischen Nutzenergiebedarfsdeckung für Raumheizung durch Wärmeerzeugung und eingesparter Energie durch Isolierung. Somit ist $1 / (1+w)$ der Bruchteil des Raumheizungsbedarfs, der durch Isoliermaßnahmen befriedigt werden kann, $w = 1.0$.
⁶ 3, ⁶ 2	Spitzenlastzeit bzw. Mittellastzeit, während der das Solarheizungssystem durch Zusatzheizung mit leichtem Heizöl zu beheizen ist (s. Fürniß et al. (1980), Abb. 2.8), ρ_3 = 700 h, ρ_2 = 500 h

2.3 Parameter zur Berechnung der Attribute und der Nutzenfunktionen

Was die nichtmonetären Attribute betrifft, so werden neben Größen, die in den Abschn. 2.1 und 2.2 schon aufgeführt sind, nur noch Größen benutzt, die in Teil I erklärt und numerisch festgelegt sind.

Die spezifischen Kosten für die (in Abschn. 3 definierten) Variablen lassen sich leicht aus der Eingabeliste in Abschn. 4 entnehmen.

Die Parameter, die die Nutzenfunktionen charakterisieren, sind zahlenmäßig in Teil II angegeben. Die dort angegebenen glatten Einzelnutzenfunktionen werden für die Eingabe in das lineare Optimierungsprogramm durch je einen Polygonzug mit 3 Ecken so approximiert, daß die Projektionen der Geradenstücke auf die Nutzen-(Ordinaten)Achse gleich lang sind.

3. Das Restriktionensystem

Nachfolgend wird die "Kernmatrix" von Abb. 1.1 beschrieben. Es handelt sich dabei um die Restriktionen, die die Energieumwandlungstechnologien des Energieflußschemas in Abb. 3.1 definieren (s.a. Fürniß et al. (1980), Abb. 2.1). Im Prinzip sind diese Restriktionen durch die Eingabeliste von Abschn. 4 gegeben, allerdings in einer sehr unübersichtlichen Form. Zum besseren Verständnis der Restriktionen werden zunächst die Variablennamen erklärt, und dann die Formeln zur Berechnung der Koeffizienten aus den Parametern von Abschn. 2 angegeben, bevor die Restriktionen mit kurzen Erläuterungen wiedergegeben werden.

3.1 <u>Definition der Variablennamen</u>

Abgesehen von drei Hilfsvariablen, nämlich EC1, EC2 und XSOF1, besteht jeder Variablenname aus vier Teilen:

- 1. Das erste Zeichen gibt an, ob es sich bei der Variablen um eine Flußvariable (X), eine Kapazitätsvariable (C) oder eine Isoliervariable (I) handelt.
- 2. Die folgende Kombination von einem Buchstaben (P, S, F) und einer ein- oder zweistelligen Zahl charakterisiert die Eingangsenergie gemäß Abb. 3.1 für einen Umwandlungsprozeß. Sofern mehr als eine Eingangsenergie für den Umwandlungsprozeß maßgebend ist, steht anstelle der Zahl der Buchstabe M oder N.
- 3. Hieran schließt sich eine weitere Kombination wie unter 2. an, die die Ausgangsenergieform gemäß Abb. 3.1 angibt.
- 4. In vielen Fällen ist zur Identifikation der Variablen eine zusätzliche Kennzeichnung notwendig. Hierfür gibt es drei Gründe:
 - a) Die Unterteilung der Niedertemperaturwärmeversorgung nach Gemeindegrößenklassen. Die Zahl 1 steht hierbei für Großstädte, die 2 für Mittelstädte und die 3 für Landgemeinden. So sind z.B. unter der Kombination CP5F11 die in den Großstädten installierten Heizungsanlagen für Niedertemperaturwärmeerzeugung durch Erdgas zu verstehen.
 - b) Vielfach existieren unterschiedliche Umwandlungsoptionen mit gleichen Ein- und Ausgangsenergien, z.B. die Elektrizitätserzeugung in reinen Elektrizitätswerken sowie in großen oder kleinen Heizkraftwerken.
 - c) Die Zusammenfassung von Umwandlungsoptionen mit mehreren Einoder Ausgangsenergien durch den Buchstaben M oder N macht u.U.
 auch für unterschiedliche Ein- bzw. Ausgangsenergien eine besondere Kennzeichnung notwendig.
 Zum Beispiel bedeutet CS19SNA die Kraftwerkskapazität für die

Elektrizitätserzeugung mit schwerem Heizöl, die Variable CS19SND hingegen die Kapazität der Crackanlagen mit den Produkten Benzin und leichtes Heizöl.

Die Kapazitätsvariablen sind i.a. als Ausstoßkapazität definiert, während die Flußvariablen eingesetzte Energiemengen bedeuten. Die Isoliervariablen sind als ersparte Nutzenergiemengen pro Jahr definiert.

Nach diesen Erläuterungen bedürfen die Variablenamen mit einer oder mehrerer der folgenden Eigenschaften noch einer zusätzlichen Erklärung:

- Es handelt sich um die Hilfsvariablen EC1, EC2 oder XSOF1
- Im zweiten oder dritten Teil des Variablenamens taucht ein M oder N auf.
- Die Variable enthält einen vierten Teil, und dieser ist ungleich den Zahlen 1,2 oder 3 in Verbindung mit F1 als drittem Teil.
- Der zweite bzw. dritte Teil enthält Numerierungen, die aus Übersichtsgründen im Schema von Abb. 3.1 nicht enthalten sind. Hierbei handelt es sich um Niedertemperaturwärmespeicher im Haushaltsbereich.

Im einzelnen bedeuten:

XS0F1	Hilfsvariable, die die gesamte erzeugte Fernheizenergie angibt
EC[I] I = 1,2	Hilfsvariable zur Bezeichnung der in den Lastsituationen (1,1) bzw. (1,2) vorhandenen freien Stromerzeugungs-kapazität
XP[I]S[J]E CP[I]SNE XS19S[J]E CS19SNE I = 1,5 J ≤ 17, ungerade	Wärmeerzeugung durch Kraft-Wärme-Kopplung in Heizkraftwerken des dezentralen Netzes. (Bei Erzeugung in großen Heizkraftwerken entfällt das E oder wird durch ein B ersetzt, s.u.)

XS19S[J][Y] CS19SN[Y]	Y = B Wärmeerzeugung durch Kraft-Wärme-Kopplung, zentrales Netz
XP5S [J] [Y] CP5SN [Y]	Y = C Wärmeerzeugung in Spitzenheizwerken, zentrales Netz
J = 5, 11, 17	Y = CE Wärmeerzeugung in Spitzenheizwerken, dezentrales Netz
	Y = D Wärmeerzeugung in Spitzenheizwerken, dezen- trales Netz, falls J = 11 oder 17 (bei Y = CE würde der Name zu lang für MPSX/370)
XS [J] F1E J ≤ 17, ungerade	Fernwärme, dezentrales Netz
CSNF1[Y]	Y = 1, 2, 3 Fernwärmeverteilung und -anschlüsse für zentrales Netz
	Y = E2, E3 Fernwärmeverteilung und -anschlüsse für dezentrales Netz (Mittelstädte und Landgemeinden)
XP[I]S[J] Y CP[I]SN[Y]	Y = A Elektrizitätserzeugung in reinen Elektrizi- tätswerken
XS19S[J][Y] CS19SN[Y]	Y = B Elektrizitätserzeugung in großen Heizkraft- werken
I = 1, 2, 5 J ≤ 18 , gerade	Y = E Elektrizitätserzeugung in kleinen Heizkraft- werken (hier entfällt die Möglichkeit I = 2).
CP6SN	Kraftwerkskapazität für Braunkohlenverstromung
CSNSMP	Kapazität für Pumpspeicherwerke
CSNF2	Verteilungskapazität für Elektrizität, ohne Elektrizität für Niedertemperaturwärme
CSMF1 [Y] Y = 1, 2, 3	zusätzliche Verteilungskapazität für Elektrizität zur Erzeugung von Niedertemperaturwärme
CP3SN	Raffineriekapazität (im Gegensatztzu den übrigen Kapazitätsvariablen ist diese und die folgende Variable nicht über die Ausstoßleistung sondern über die einsetzbare Menge definiert.)
CS19SND	Raffineriekapazität (s. vorhergehende Variable)
CS20F1	Installierte Ölheizungskapazität in <u>allen</u> Gemeinde- größenklassen

XSMF6 CF6F1 [Y] Y = 1, 2, 3	Heizelektrizität für Haushalte mit Nachtspeicherheizungen
XSMF1A CSMF1A[Y] Y = 1, 2, 3	Heizelektrizität für Haushalte mit elektrischer Direktheizung
XSMF1B	Elektrizität für Warmwasserbereitung in Haushalten mit Elektroheizung
XSMF1C CSMF1C[Y] Y = 1, 2, 3	Elektrizität für Raumheizung mit 24 h-Wärmepumpe
XSMF1D	Elektrizität für Warmwasserbereitung in Haushalten mit 24 h-Wärmepumpe
XSMF1E CSMF1E[Y] Y = 1, 2, 3	Elektrizität für elektrische Zusatzheizung in Haushalten mit 24 h-Wärmepumpe
XSMF7A CSMF7A [Y] Y = 1, 2, 3	Elektrizität für Raumheizung mit 8 h-Wärmepumpe (Speicherbetrieb)
XSMF7B	Elektrizität für Warmwasserbereitung in Haushalten mit 8 h-Wärmepumpe
XSMF7C CSMF7C[Y] Y = 1, 2, 3	Elektrizität für elektrische Zusatzheizung in Haushalten mit 8 h-Wärmepumpe
XP7F8A CF8F1 [Y] Y = 1, 2, 3	Solarenergie für Raumwärme (Im Gegensatz zu den anderen Flußvariablen ist hier die bei F8 (Speicher) ankommende Energie gemeint, das gleiche gilt für die folgende Variable.)
XP7F8B	Solarenergie für Warmwasserbereitung (s. XP7F8A)
XS20F1A CS20F1A [Y] Y = 1, 2, 3	Leichtes Heizöl für Zusatzheizung in Haus- halten mit elektrischen Wärmepumpen
XS20F1B	Leichtes Heizöl für Zusatzheizung in Haushalten mit Solarheizung

XS20F1C

Leichtes Heizöl für Warmwasserbereitung in Haushalten mit Solarheizung

XP5F1A
CP5F1 Y
Y = 1, 2, 3

XP5F1B

Leichtes Heizöl für Warmwasserbereitung in Haushalten mit Solarheizung mit Gaswärmepumpen

Erdgas für Raumheizung mit Gaswärmepumpen

Die Bezeichnungen der Isoliervariablen ergeben sich direkt aus den Bezeichnungen der entsprechenden Kapazitätsvariablen und sind daher nicht gesondert aufgeführt. Die Kapazitätsvariablen für Hausheizsysteme enthalten bis auf CF6F1 $\,$ Y und CSMF1A $\,$ Y , $\,$ Y = 1,2,3 auch die Warmwasserbereitung.

halten mit Gaswärmepumpen

3.2 Formelmäßige Berechnung der Koeffizienten in den Restriktionen

Abkürzungen

 σ_1 = 8760 h (Jahresstundenzahl) σ_2 = 4000 h (Dauer Mittellast + Spitzenlast Wärme) σ_3 = 1000 h (Dauer Spitzenlast Wärme) σ_2 = 5000 h (Dauer Mittellast + Spitzenlast Elektrizität) σ_3 = 1500 h (Dauer Spitzenlast Elektrizität)

$$e_{1} = RS_{All} / (RS_{All} + RS_{Al} + RS_{Al})$$

$$e_{2} = RS_{Al} / (RS_{All} + RS_{Al} + RS_{Al})$$

$$e_{3} = RS_{Al} / (RS_{All} + RS_{Al} + RS_{Al})$$

$$\rho = \frac{(H_{2} - u_{2})(\sigma_{2} - \sigma_{3})}{\sigma_{3}(H_{3} - u_{2})}$$

$$q = \frac{(H_{2} - u_{2})\sigma_{4}(a_{32} + a_{22} + w_{42}^{11})}{\sigma_{3}(H_{3} - u_{2}) + (H_{2} - u_{2})\sigma_{4}(a_{42} - w_{42}^{11})}$$

$$r = \sigma_{3} + (\sigma_{2} - \sigma_{3}) \frac{H_{2} - u_{2}}{H_{3} - u_{2}} = \sigma_{3} (1 + \rho)$$

$$r = \sigma_{2} + (\sigma_{4} - \sigma_{2}) \frac{H_{4} - u_{4}}{u_{4} - u_{4}}$$

$$S = \frac{g_3 (H_3 - u_2)}{g_3 (H_3 - u_2) + g_2 (H_2 - u_2)}$$

$$t = \frac{u_4 p_4}{r (H_3 - u_2)}$$

$$\gamma_{c} = \frac{\alpha_{c} + \beta_{c}}{1 + \beta_{c}} \quad \gamma_{c}$$

$$\gamma_{N} = \frac{\alpha_{N} + \beta_{N}}{1 + \beta_{N}} \quad \gamma_{N}$$

$$\gamma_{N} = \frac{\alpha_{N} + \beta_{N}}{1 + \beta_{N}} \quad \gamma_{N}$$

$$\gamma_{N} = \frac{\alpha_{N} + \beta_{N}}{1 + \beta_{N}} \quad \gamma_{N}$$

$$\gamma_{N} = \frac{\alpha_{N} + \beta_{N}}{1 + \beta_{N}} \quad \gamma_{N}$$

$$\gamma_{N} = \frac{\alpha_{N} + \beta_{N}}{1 + \beta_{N}} \quad \gamma_{N}$$

$$\gamma_{N} = \frac{\alpha_{N} + \beta_{N}}{1 + \beta_{N}} \quad \gamma_{N}$$

$$\gamma_{N} = \frac{\alpha_{N} + \beta_{N}}{1 + \beta_{N}} \quad \gamma_{N}$$

$$\gamma_{N} = \frac{\alpha_{N} + \beta_{N}}{1 + \beta_{N}} \quad \gamma_{N}$$

$$\gamma_{N} = \frac{\alpha_{N} + \beta_{N}}{1 + \beta_{N}} \quad \gamma_{N}$$

$$\gamma_{N} = \frac{\alpha_{N} + \beta_{N}}{1 + \beta_{N}} \quad \gamma_{N}$$

$$\gamma_{N} = \frac{\alpha_{N} + \beta_{N}}{1 + \beta_{N}} \quad \gamma_{N}$$

$$\gamma_1 = \frac{u_1}{H_3 - u_2}$$

$$Y_2 = \frac{H_2 - u_2}{H_3 - u_2}$$

$$\gamma_3 = \frac{H_3 - u_2 + u_4}{H_3}$$

$$P_4 = \frac{H_3 - u_2}{H_3}$$

$$V_5 = \frac{H_2 - u_2}{H_2 - u_2 + u_4}$$

$$Y_6 = \frac{H_2 - u_2 + u_4}{H_3 - u_2 + u_4}$$

$$\lambda_1 = \frac{\sigma_1 \left(a_{32} + a_{22} + w_{12}^{41} \right)}{\sigma_2}$$

$$\lambda_{2} = \frac{V_{3} + V_{1} \left(\alpha_{12} + V_{11}^{11}\right)}{V_{1}}$$

$$A_{2} = \frac{\sigma_{3} + \sigma_{1} \left(\alpha_{12} + W_{12}^{14} \right)}{\sigma_{2}}$$

$$\lambda_{4} = \frac{a_{44}}{w_{44}^{32} + w_{44}^{12} + w_{44}^{42}}$$

$$\gamma_1 = \frac{u_1}{H_3 - u_2}$$

$$\gamma_3 = \frac{H_3 - u_2 + u_4}{H_3}$$

$$\gamma_4 = \frac{\mu_3 - \mu_2}{\mu_3}$$

$$V_5 = \frac{H_2 - u_2}{H_2 - u_2 + u_4}$$

$$\gamma_6 = \frac{H_2 - u_2 + u_4}{H_3 - u_2 + u_4}$$

$$\lambda_1 = \frac{\sigma_1 \left(a_{32} + a_{22} + w_{12}^{11} \right)}{\sigma_2^2}$$

$$\lambda_2 = \frac{v_3 + v_1 \left(a_{12} + w_{12}^{11} \right)}{v_1}$$

$$\lambda_3 = \frac{V_3 + V_1 (a_{12} + V_{12}^{11})}{V_2}$$

$$\lambda_{4} = \frac{a_{41}}{w_{44}^{32} + w_{44}^{12} + w_{44}^{12}}$$

Berechnung der Koeffizienten

Die Indizes kennzeichnen die Position der entsprechenden Restriktion in Abschn. 3.3.

$$D_{A} = A_{12} \cdot \varepsilon_{4} \qquad E_{1} = A_{12} \cdot \varepsilon_{2}$$

$$E_{1} = 2 \cdot D_{1} / (1 + \varepsilon_{4}) \qquad G_{1} = 2 \cdot E_{1} / (1 + \varepsilon_{2})$$

$$L_{1} = A_{12} \qquad M_{1} = C_{1} \qquad N_{1} = \varepsilon_{3}$$

$$L_{2} = (1 - A_{2} \cdot \rho) / A_{1} \cdot (1 + \rho)$$

$$L_{3} = \rho / A_{1} (1 + \rho)$$

$$A_{4} = a_{33} / a_{23}$$

$$A_{5} = a_{23} / a_{13}$$

$$A_{6} = a_{32} / a_{12}$$

$$A_{7} = a_{21} / a_{42}$$

$$A_{8} = a_{31} / a_{24}$$

$$A_{9} = a_{21} / a_{44}$$

$$A_{10} = v_{3} + v_{3} / A_{2} + v_{3} / (A_{2} \cdot A_{3})$$

$$E_{10} = C_{1}$$

$$C_{10} = D_{10} = E_{10} = (A_{10} - v_{\rho})(u_{2} - u_{1}) / 3(H_{2} - u_{2} + u_{4})$$

$$E_{10} = G_{10} = H_{10} = (A_{10} - v_{\rho})(u_{2} - u_{4}) / (H_{3} - u_{2} + u_{4})$$

$$L_{10} = \int_{10}^{1} = H_{10} = (A_{10} - v_{\rho})(u_{2} - u_{4}) / (H_{2} - u_{2} + u_{4}) = C_{10} \cdot 3$$

$$L_{10} = (A_{10} - v_{\rho})(u_{2} - u_{4}) / (H_{3} - u_{2})$$

$$M_{10} = 1 - A_{10} / r$$

$$N_{10} = \frac{(A_{10} - v_{\rho})(u_{2} - u_{4})}{r(H_{3} - u_{2} + u_{4} - H_{2} - u_{2})}$$

$$O_{10} = L_{10} / r$$

$$P_{10} = F_{10} / r$$

$$A_{AA} = A_{A} \qquad L_{AA} = 63$$

$$A_{A5} = a_{33} / a_{32}$$

$$A_{A4} = a_{32} / a_{34}$$

$$A_{A7} = a_{23} / a_{22}$$

$$A_{A8} = a_{21} / a_{24}$$

$$A_{A8} = a_{43} / a_{42}$$

$$A_{20} = a_{A1} / a_{44}$$

$$A_{21} = A_{22} = A_{22} - a_{24}$$

$$A_{22-24} = A_{22-30} = A_{34-36} = 7_{0} / a_{0}$$

$$E_{21-24} = E_{22-30} = E_{34-36} = 7_{0} / a_{0}$$

$$E_{21-24} = E_{22-30} = E_{34-36} = 7_{0} / a_{0}$$

$$E_{21-24} = E_{22-24} = T_{0}$$

$$A_{22-24} = E_{22-24} = T_{0}$$

$$A_{23-25} = A_{31-33} = A_{33-35} = 7_{0}$$

$$B_{23-27} = B_{34-33} = B_{33-35} = 7_{0}$$

$$G_{21-24} = G_{21-24} = G_{21-2$$

8 = a 12

8 = a 13

0 37

$$C_{26} = \frac{\alpha_{32} \cdot \sigma_1 \cdot \rho}{(\sigma_2 - \sigma_3) (1+\rho)}$$

$$D_{21} = a_{32} \cdot o_{1} / o_{2}$$

$$C_{27} = \frac{a_{33} \cdot \sigma_1}{\sigma_3 \left(1 + \rho\right)}$$

$$D_{27} = a_{33} \cdot \sigma_{4} / \sigma_{2}$$

$$C_{32} = \frac{\alpha_{22} \cdot \sigma_{1} \cdot \rho}{(\sigma_{2} - \sigma_{3})(1+\rho)}$$

$$D_{32} = a_{22} \cdot \sigma_1 / \sigma_2$$

$$C_{33} = \frac{\alpha_{23} \cdot \sigma_1}{\sigma_3 (1+\rho)}$$

$$D_{33} = a_{23} \cdot \sigma_{1} / \sigma_{2} \qquad E_{33} = a_{23} \cdot \sigma_{1} / \sigma_{3}$$

$$E_{33} = a_{23} \cdot \sigma_{1} / \sigma_{3}$$

$$C_{37} = q/(1+q)$$
 $D_{37} = \lambda_1$ $E_{37} = 1 - \lambda_2$

$$\mathcal{D}_{37} = \lambda_{1}$$

$$C_{38} = \frac{\alpha_{12} \cdot \nabla_{1} \cdot \rho}{(\sigma_{2} - \sigma_{3})(1+\rho)}$$

$$D_{38} = a_{12} \cdot \frac{0}{1} / \frac{0}{2}$$

$$E_{38} = 1/(1+q)$$
 $F_{38} = \lambda_3$ $\rho_{38} = \lambda_2$

$$\rho = \lambda_2$$

$$C_{33} = \frac{\alpha_{13} \cdot \sigma_{1}}{\sigma_{3} (1+\rho)}$$

$$J_{39} = a_{13} \cdot o_{1} / o_{2}$$

$$A_{40} = A_{43} = A_{44} = A_{49} = A_{52} = A_{55} = A_{59} = A_{41} = A_{44} = \beta_{c} / \alpha_{c}$$

$$A_{41} = A_{44} = A_{47} = A_{50} = A_{53} = A_{5} = A_{5} = A_{62} = A_{65} = \beta_{c} / \alpha_{c}$$

$$A_{42} = A_{43} = A_{43} = A_{51} = A_{51} = A_{60} = A_{63} = A_{66} = \beta_{c} / \alpha_{c}$$

$$B_{67-69} = 7\mu$$

$$A_{20-78} = C_{70-78} = B_{73-87} = 7c$$

$$A_{88-96} = C_{88-96} = B_{97-405} = 7N$$

$$A_{406-444} = C_{406-444} = B_{445-123} = 7e$$

$$B_{10} = A_{13} = B_{18} = A_{31} = B_{10} = A_{145} = C_{1} \cdot \alpha_{31} / \tau,$$

$$B_{24} = A_{10} = B_{25} = A_{38} = B_{10} \cdot A_{144} = C_{1} \cdot \alpha_{32} / \tau,$$

$$A_{67} = B_{12} = A_{14} = B_{50} = A_{23} = B_{10} = A_{147} = C_{1} \cdot \alpha_{23} / \tau,$$

$$B_{13} = A_{12} = B_{31} = A_{100} = B_{103} = A_{147} = C_{1} \cdot \alpha_{21} / \tau,$$

$$B_{24} = A_{13} = B_{32} = A_{104} = B_{140} = A_{145} = C_{1} \cdot \alpha_{21} / \tau,$$

$$B_{24} = A_{12} = B_{33} = A_{142} = B_{141} = A_{140} = C_{1} \cdot \alpha_{21} / \tau,$$

$$B_{24} = A_{12} = B_{33} = A_{142} = B_{141} = A_{140} = C_{1} \cdot \alpha_{11} / \tau,$$

$$B_{27} = A_{14} = B_{35} = A_{107} = B_{142} = A_{142} = C_{1} \cdot \alpha_{11} / \tau,$$

$$A_{132} = C_{1}$$

$$A_{133} = C_{1}$$

$$A_{134} = A_{23} \cdot \frac{\sigma_{1} (H_{3} - H_{1})}{H_{3} \cdot T_{11} \cdot A_{1}}$$

$$A_{135} = A_{25} \cdot \frac{\sigma_{1} (H_{3} - H_{1})}{H_{3} \cdot T_{11} \cdot A_{1}}$$

$$A_{137} = A_{20} = B_{14} = B_{31}$$

$$A_{138} = A_{21} \cdot \frac{\sigma_{1} (H_{3} - H_{1})}{H_{3} \cdot T_{11} \cdot A_{1}}$$

$$A_{139} = A_{20} = B_{14} = B_{14} = A_{15} =$$

N = M /~

$$B_{10} = A_{15} = B_{gg} = A_{31} = B_{00} = A_{145} = C_{1} \cdot \alpha_{31} / \tau_{1}$$

$$B_{14} = A_{10} = B_{25} = A_{3g} = B_{103} = A_{144} = C_{1} \cdot \alpha_{32} / \tau_{1}$$

$$A_{47} = B_{12} = A_{24} = B_{50} = A_{35} = B_{105} = A_{144} = C_{1} \cdot \alpha_{33} / \tau_{1}$$

$$B_{13} = A_{22} = B_{34} = A_{100} = B_{105} = A_{149} = C_{1} \cdot \alpha_{24} / \tau_{1}$$

$$B_{24} = A_{25} = B_{35} = A_{140} = B_{140} = A_{143} = C_{1} \cdot \alpha_{22} / \tau_{1}$$

$$A_{4g} = B_{35} = A_{24} = B_{33} = A_{142} = B_{144} = A_{140} = C_{1} \cdot \alpha_{23} / \tau_{1}$$

$$B_{24} = A_{25} = B_{34} = A_{143} = B_{144} = A_{140} = C_{1} \cdot \alpha_{23} / \tau_{1}$$

$$B_{24} = A_{25} = B_{34} = A_{145} = B_{144} = A_{140} = C_{1} \cdot \alpha_{12} / \tau_{1}$$

$$B_{37} = A_{27} = B_{35} = A_{494} = B_{443} = A_{410} = C_{1} \cdot \alpha_{14} / \tau_{1}$$

$$B_{37} = A_{27} = B_{35} = A_{494} = B_{443} = A_{423} = C_{1} \cdot \alpha_{12} / \tau_{1}$$

$$A_{435} = B_{7} = A_{27} = B_{34} = A_{495} = B_{444} = A_{423} = C_{1} \cdot \alpha_{12} / \tau_{1}$$

$$A_{435} = \alpha_{33} \cdot \frac{\sigma_{1} (H_{3} - H_{1})}{H_{3} \cdot V_{1} \cdot A_{4}}$$

$$A_{435} = \alpha_{33} \cdot \frac{\sigma_{1} (H_{3} - H_{1})}{H_{3} \cdot V_{1} \cdot A_{4}}$$

$$A_{437} = A_{49} = B_{49} = B_{49}$$

$$C_{437} = C_{1} \cdot \frac{\sigma_{1} (H_{3} - H_{2})}{H_{3} \cdot V_{1} \cdot A_{4}}$$

$$A_{438} = A_{49} = A_{49} = A_{49} = B_{49}$$

$$C_{439} = C_{1} \cdot \frac{\sigma_{1} (H_{3} - H_{2})}{H_{3} \cdot V_{1} \cdot A_{4}}$$

$$A_{439} = A_{49} = A_{49$$

$$A = C = \eta^{\epsilon}$$

$$B_{160} = B_{128} = B_{187} = T_1 \cdot a_{31} / r_1$$

$$B_{174} = B_{193} = B_{192} = \tau_1 \cdot a_1 / \tau_1$$

$$A_{196} = A_{1}$$
 $B_{136} = C_{196} = \sigma_{3}$

$$A_{197} = A_{195} = A_{201} = A_{203} = A_{205} = A_{207} = A_{205} = A_{213} = \beta_{c} / \alpha_{c}^{E}$$

$$A_{197} = A_{200} = A_{202} = A_{204} = A_{205} = A_{207} = A_{212} = A_{213} = \beta_{c} / \alpha_{0}^{E}$$

$$A_{198} = A_{200} = A_{202} = A_{204} = A_{206} = A_{208} = A_{210} = A_{212} = A_{214} = \beta_{0} / \alpha_{0}^{E}$$

$$A_{224-232} = \eta_c^E / \alpha_c^E$$

$$B_{224-232} = n^{\epsilon}/\alpha^{\epsilon}$$

$$C_{224-232} = n^{\epsilon}/\alpha^{\epsilon}$$

$$G_{324-232} = n^{\epsilon}/\alpha^{\epsilon}$$

$$A_{233} = A_2$$

$$A_{234} = A_3$$

$$A_{235} = A_4$$

$$A_{237} = A_{6}$$

$$A_{247} = A_{248} = \frac{a_{13} + a_{23} + a_{33}}{A_2 (a_{12} + a_{22} + a_{32})}$$

$$C_{244} = A_{244} / r$$

$$A_{251} = A_{35} = \tau_{1} \cdot \alpha_{34} / \tau_{1}$$

$$A_{252} = A_{34} = \tau_{1} \cdot \alpha_{32} / \tau_{1}$$

$$A_{253} = A_{34} = \tau_{1} \cdot \alpha_{33} / \tau_{1}$$

$$A_{254} = A_{32} = \tau_{1} \cdot \alpha_{24} / \tau_{1}$$

$$A_{254} = A_{35} = \tau_{1} \cdot \alpha_{23} / \tau_{1}$$

$$A_{251} = A_{36} = \tau_{1} \cdot \alpha_{23} / \tau_{1}$$

$$A_{251} = A_{36} = \tau_{1} \cdot \alpha_{12} / \tau_{1}$$

$$A_{253} = A_{34} = \tau_{1} \cdot \alpha_{12} / \tau_{1}$$

$$A_{253} = A_{34} = \tau_{1} \cdot \alpha_{12} / \tau_{1}$$

$$A_{253} = A_{34} = \tau_{1} \cdot \alpha_{12} / \tau_{1}$$

$$A_{253} = A_{34} = \tau_{1} \cdot \alpha_{13} / \tau_{1}$$

$$B_{254-255} = \gamma_{C}$$

$$A_{246} = B_{24} = \tau_{1} \cdot \alpha_{14} / \tau_{1}$$

$$B_{256-255} = \gamma_{C}$$

$$A_{246} = \gamma_{C} = \gamma_{C}$$

C = C 260

G = G 260

M = 17 266 260

 $B_{247} = C_{247} \cdot \gamma_{P}$

B = C . 7p

B = C . 1P

B = C . 7p

G = A2

D = D 260

H = H 260

N = N 260

$$A_{244} = B_{27} \qquad B_{241} = B_{240}$$

$$E_{241} = E_{240} \qquad F_{246} = F_{240}$$

$$I_{241} = I_{240} \qquad L_{244} = L_{240}$$

$$O_{246} = O_{240}$$

$$A_{247-270} = \eta_{\rho}$$

$$C_{247} = 1 - a_{12} / w_{12}^{33}$$

$$C_{247} = 1 - a_{12} / w_{12}^{33}$$

$$C_{249} = 1 - a_{12} / w_{12}^{33}$$

$$C_{249} = 1 - a_{12} / w_{12}^{33}$$

$$C_{249} = 1 - a_{12} / w_{12}^{33}$$

$$D_{249-270} = A_{244} = T_{1} \cdot a_{12} / \tau_{1}$$

$$E_{269} = 1 / (1 + q) \qquad F_{269} = A_{3}$$

$$H_{267} = H_{249} = H_{267} = 1 - \frac{a_{12}}{a_{12} - w_{12}^{14}}$$

$$E_{267} = F_{269} = F_{270} = H_{247} / (1 + q)$$

$$F_{267} = F_{269} = F_{270} = H_{247} A_{2}$$

$$A_{271} = B_{273} = w_{11}^{33} \cdot T_{1} / \tau_{p}$$

$$A_{272} = B_{271} = w_{11}^{33} \cdot T_{1} / \tau_{p}$$

$$A_{273} = B_{271} = w_{11}^{33} \cdot T_{1} / \tau_{p}$$

$$A_{274} = B_{279} = w_{11}^{27} \cdot T_{1} / \tau_{p}$$

$$A_{274} = B_{279} = w_{11}^{27} \cdot T_{1} / \tau_{p}$$

$$A_{274} = B_{279} = w_{11}^{27} \cdot T_{1} / \tau_{p}$$

$$A_{274} = B_{279} = w_{11}^{27} \cdot T_{1} / \tau_{p}$$

$$A_{274} = B_{279} = w_{11}^{27} \cdot T_{1} / \tau_{p}$$

$$A_{274} = B_{279} = w_{11}^{27} \cdot T_{1} / \tau_{p}$$

$$A_{278} = B_{279} = w_{11}^{27} \cdot T_{1} / \tau_{p}$$

$$A_{279} = B_{279} = w_{11}^{27} \cdot T_{1} / \tau_{p}$$

$$A_{279} = B_{279} = w_{11}^{27} \cdot T_{1} / \tau_{p}$$

$$A_{279} = B_{279} = w_{11}^{27} \cdot T_{1} / \tau_{p}$$

$$A_{279} = B_{279} = w_{11}^{27} \cdot T_{1} / \tau_{p}$$

$$A_{279} = B_{279} = w_{11}^{27} \cdot T_{1} / \tau_{p}$$

$$A_{279} = B_{279} = w_{11}^{27} \cdot T_{1} / \tau_{p}$$

$$A_{279} = B_{279} = w_{11}^{27} \cdot T_{1} / \tau_{p}$$

$$A_{279} = B_{279} = w_{11}^{27} \cdot T_{1} / \tau_{p}$$

$$A_{279} = B_{279} = w_{11}^{27} \cdot T_{1} / \tau_{p}$$

$$A_{279} = B_{279} = w_{11}^{27} \cdot T_{1} / \tau_{p}$$

$$A_{279} = B_{279} = w_{11}^{27} \cdot T_{1} / \tau_{p}$$

$$A_{279} = B_{279} = w_{11}^{27} \cdot T_{1} / \tau_{p}$$

$$A_{279} = B_{279} = w_{11}^{27} \cdot T_{1} / \tau_{p}$$

$$A_{279} = B_{279} = w_{11}^{27} \cdot T_{1} / \tau_{p}$$

$$A_{279} = B_{279} = w_{11}^{27} \cdot T_{1} / \tau_{p}$$

$$A_{279} = B_{279} = w_{11}^{27} \cdot T_{1} / \tau_{p}$$

$$A_{279} = B_{279} = w_{11}^{27} \cdot T_{1} / \tau_{p}$$

$$A_{279} = B_{279} = w_{11}^{27} \cdot T_{1} / \tau_{p}$$

A 279 - 286 = 7p

$$A_{287} = A_{287} = A_{287} = A_{201} = A_{233} = A_{255} = \sigma_{3}$$

$$B_{287} = B_{287} = A_{42} / (4 + \rho)$$

$$B_{28} = A_{42} \cdot \varepsilon_{4} \cdot \overline{\sigma_{3}} / \sigma_{2} \qquad C_{29} = 2 A_{42} \cdot \varepsilon_{4} \cdot \overline{\sigma_{3}} / \sigma_{4} (4 + \varepsilon_{4})$$

$$A_{250} = A_{42} \cdot \varepsilon_{2} \cdot \lambda_{3} \qquad C_{230} = 2 A_{42} \cdot \varepsilon_{2} \lambda_{2} / (4 + \varepsilon_{4})$$

$$B_{250} = A_{42} \cdot \varepsilon_{2} \cdot \lambda_{3} \qquad C_{230} = 2 A_{42} \cdot \varepsilon_{2} \lambda_{2} / (4 + \varepsilon_{4})$$

$$B_{251} = B_{252} = A_{42}$$

$$B_{253} = C_{4}$$

$$A_{254} = S_{3} \qquad B_{254} = C_{4} \cdot S \qquad C_{257} = \varepsilon_{3} \cdot \sigma_{3} / \sigma_{7}$$

$$A_{264} = t \qquad C_{257} = \varepsilon_{4} \cdot A_{42}$$

$$A_{257} = t \qquad C_{257} = \varepsilon_{4} \cdot A_{42}$$

$$A_{257} = t \qquad C_{257} = \frac{2 \varepsilon_{4} \cdot A_{42}}{4 + \varepsilon_{4}}$$

$$B_{257} = \frac{\sigma_{3} (H_{3} - H_{2}) + \sigma_{2} (H_{2} - u_{2})}{\sigma_{2} (H_{2} - u_{2})} \cdot t \cdot A_{42} \cdot \varepsilon_{4}$$

$$A_{259} = t \qquad C_{259} = \frac{2 \varepsilon_{4} \cdot A_{42}}{4 + \varepsilon_{2}}$$

$$B_{269} = \frac{\sigma_{3} (H_{3} - H_{2}) + \sigma_{3} (H_{3} - u_{2})}{\sigma_{3} (H_{3} - H_{2}) + \sigma_{3} (H_{3} - u_{2})} \cdot t \cdot A_{42} \cdot \varepsilon_{2}$$

$$A_{253} = \frac{u_{4} (\sigma_{4}^{2} - S_{3} - S_{2})}{\sigma_{3} (H_{3} - H_{2}) + \sigma_{3} (H_{3} - u_{2})} \cdot t \cdot A_{42} \cdot \varepsilon_{2}$$

$$A_{259} = \frac{u_{4} (\sigma_{4}^{2} - S_{3} - S_{2})}{\sigma_{3} (H_{3} - H_{2}) + \sigma_{3} (H_{3} - u_{2})}$$

$$A_{259} = \frac{u_{4} (\sigma_{4}^{2} - S_{3} - S_{2})}{\sigma_{3} (H_{3} - H_{2}) + \sigma_{3} (H_{3} - H_{2})}$$

$$A_{259} = \frac{u_{4} (\sigma_{4}^{2} - S_{3} - S_{2})}{\sigma_{3} (H_{3} - H_{2}) + \sigma_{3} (H_{3} - H_{2})}$$

$$A_{259} = \frac{u_{4} (\sigma_{4} - S_{3} - S_{2})}{\sigma_{3} (H_{3} - H_{2}) + \sigma_{3} (H_{3} - H_{2})}$$

$$A_{259} = \frac{u_{4} (\sigma_{4} - S_{3} - S_{2})}{\sigma_{5} (H_{3} - u_{2}) + \sigma_{5} (H_{3} - H_{2})}$$

$$A_{350} = \frac{u_{4} (\sigma_{4} - S_{3} - S_{2})}{B_{40} \cdot (\sigma_{5} (H_{3} - u_{2}) + \sigma_{5} (H_{3} - H_{2})}$$

$$B_{350} = \frac{u_{4} (S_{3} + S_{2})}{(S_{3} + S_{2}) (H_{3} - u_{2}) + S_{3} (H_{3} - H_{2})}$$

$$B_{360} = \frac{u_{4} (S_{3} + S_{2})}{(S_{3} + S_{2}) (H_{3} - u_{2}) + S_{3} (H_{3} - H_{2})}$$

 $A_{301} = t/\varepsilon_{3}$ $B_{301} = t$

$$A_{302-304} = Y_{4} \qquad B_{302-304} = (Y_{2} - Y_{4})/r \qquad C_{302-344} = 1 - Y_{4}$$

$$A_{305-307} = Y_{4}/2 \qquad B_{305-323} = (Y_{2} - Y_{4})/r \qquad C_{105-303} = (1 - Y_{4})/3$$

$$A_{305-340} = (1 - Y_{4})/3 \qquad L_{305-340} = (Y_{2} - Y_{4})/r$$

$$D_{316-340} = (1 - Y_{4})/3 \qquad L_{305-340} = (Y_{2} - Y_{4})/r$$

$$A_{341} = \frac{(v_{2} - s_{3} - s_{2})(H_{2} - u_{2}) + (v_{3} - s_{3})(H_{3} - H_{2})}{(s_{3} + s_{3})(H_{2} - u_{2}) + s_{3}(H_{3} - H_{2})}$$

$$A_{341} = e_{4} \qquad B_{312} = c_{4} A_{42} / \sigma_{4} a_{44}$$

$$A_{341} = e_{5} \qquad B_{341} = c_{5} A_{42} / \sigma_{7} a_{44}$$

$$A_{341} = e_{5} \qquad B_{341} = c_{5} A_{42} / \sigma_{7} a_{44}$$

$$A_{341} = e_{5} \qquad B_{341} = c_{5} A_{42} / \sigma_{7} a_{44}$$

$$A_{341} = e_{5} \qquad B_{341} = c_{5} A_{42} / \sigma_{7} a_{44}$$

$$A_{341} = e_{5} \qquad B_{341} = 1 / \varepsilon_{2}$$

$$E_{311} = E_{341} = E_{341} = 1 / \varepsilon_{4}$$

$$E_{312} = B_{343} = A_{345} = 1 + V_{4}$$

$$B_{313} = A_{345} = A_{347} = 1 + V_{4}$$

$$B_{313} = A_{345} = A_{347} = 1 / \varepsilon_{4}$$

$$C_{345} = C_{347} = V_{7} / r$$

$$A_{347-323} = 1 / r$$

$$A_{347-323} = 1 / r$$

$$A_{347-323} = 1 / r$$

$$A_{348-324} = V_{7} / r$$

$$A_{322-334} = V_{7} / r$$

$$A_{332-334} = V_{7} / r$$

$$A_{335-340} = W/\tau$$

$$A_{341-343} = Y_5$$

$$B_{344-346} = (1-Y_5+W)Y_2/\tau$$

$$A_{347-352} = V_4/V_3$$
 $B_{347-352} = (1-\frac{X_1}{X_3}+w)/+$

$$A_{353-355} = \frac{u_2-u_4}{H_2-u_2+u_4} \qquad B_{353-355} = A_{353} / T$$

3.3 Das Restriktionensystem

Bedarfsdeckung für Niedertemperaturwärme

```
A (XS1F1 + XS3F1 + XS5F1 + XS7F1 + XS9F1 + XS11F1 + XS13F1 + XS15F1 + XS17F1 +
HTDEMND
               + XS 1F1E + XS3F1E + XS5F1E + XS7F1E + XS9F1E + XS11F1E + XS13F1E + XS15F1E + XS17F1E) +
           +B XP5F1 + C XS20F1 + D XSMF1C + E XSMF7A + E XSMF1D + G XSMF7B +
           + L. (XSMF6 + XSMF1A + XSMF1B + XSMF1E + XSMF7C) +
           + M, (XS20F1A + XS20F1B + XS20F1C) + M, (XP5F1A + XP5F1B) + XP7F8A + XP7F8B +
           + ISNF11 + ISNF12 + ISNF13 + ISNF1E2 + ISNF1E3 + IP5F11 + IP5F12 + IP5F13 +
           + IS20F11 + IS20F12 + IS20F13 + IF6F11 + IF6F12 + IF6F13 + ISMF1A1 + ISMF1A2 + ISMF1A3+
           + ISMF1C1 + ISMF1C2 + ISMF1C3 + ISMF7A1+ ISMF7A2 + ISMF7A3 + IF8F11 + IF8F12 + IF8F13 +
           + IP5F1A1+ IP5F1A2 + IP5F1A3 ≥ Du
```

Verhältnis Spitzenlastwärme: Mittellastwärme bzw. Mittellastwärme Grundlastwärme

 $XSSF1 + XS11F1 + XS17F1 - A_2 (XS3F1 + XS9F1 + XS15F1) + L_2 (ISNF11 + ISNF12 + ISNF13) = 0$ PIRATHT $XS3F1 + XS9F1 + XS15F1 - A_3 (XS1F1 + XS7F1 + XS13F1) + L_3 (ISNF11 + ISNF12 + ISNF13) = 0$ IBRATHT

Aufteilung von Spitzenlast (PK)-, Mittellast (IM)- und Grundlast (BS)-Wärme auf die drei Lastsituationen bezügl. der Elektrizitätsnachfrage

 CCPKHT1
 $XSSF1 - A_4 XS11F1 = 0$

 CCPHHT2
 $XS11F1 - A_5 XS17F1 = 0$

 CCIMHT1
 $XS3F1 - A_6 XS9F1 = 0$

 CCIMHT2
 $XS9F1 - A_7 XS15F1 = 0$

 CCBSHT1
 $XS7F1 - A_8 XS7F1 = 0$

 CCBSHT2
 $XS7F1 - A_7 XS13F1 = 0$

Kapazitätsanforderung für Niedertemperaturwärmebedarfsdeckung durch leichtes Heizöl

Kapazitätsanforderung für Fernwärmeversorgung, zentrales Netz

HTTRALD
$$A_{11}$$
 (XSSF1 + XS11F1 + XS17F1) - L_{11} (CSNF11 + CSNF12 + CSNF13) ≤ 0

Bedarfsdeckung für Elektrizität

ELDEMND
$$A_{12}$$
 (XS2F2 + XS4F2 + XS6F2 + XS8F2 + XS10F2 + XS12F2 + XS14F2 + XS16F2 + XS18F2) $\gg D_E$

Verhältnis Spitzenlast: Mittellastelektrizität bzw. Mittellast: Grundlastelektrizität

PIRATEL XS2F2 + XS4F2 + XS6F2 -
$$A_{13}$$
 (XS8F2 + XS10F2 + XS12F2) = 0

IBRATEL XS8F2 + XS10F2 + XS12F2 -
$$A_{44}$$
 (XS14F2 + XS16F2 + XS18F2) = 0

Aufteilung von Spitzenlast (PK)-, Mittellast (IM)- und Grundlast (BS)-Elektrizität auf die drei Lastsituationen bezügl. der Wärmenachfrage

$$CCPKEL1$$
 $XS6F2 - A_{S}XS4F2 = 0$

$$CCPKEL2$$
 $XS4F2 - A_{11}$ $XS2F2 = 0$

CCIMEL1
$$XS12F2 - A_{13}XS10F2 = 0$$

$$CCIMEL2 XS 10 F2 - A_{12} XS 8 F2 = 0$$

$$CCBSEL1 XS18F2 - A_{13} XS16F2 = 0$$

Kapazitätsanforderung für Elektrizitätsnetz (ohne Elektrizität für Niedertemperaturwärme)

ELTRANS
$$A_{24}$$
 (XS2F2 + XS4F2 + XS6F2) - B_{24} CSNF2 $\leq C$

Bilanzen für Fernwärme bei Spitzenlast

Bilanzen für Elektrizitä bei Spitzenlast

$$PKELBAL1 \qquad A_{25} \left(XP1S2A + XP1S2B \right) + I_{25} XP1S2E + B_{25} XP6S2 + H_{25} \left(XP2S2A + XP2S2B \right) + \\ + N_{25} \left(XS19S2A + XS19S2B \right) + J_{25} XS19S2E + G_{25} XP5S2A + H_{25} XP5S2B + M_{25} XP5S2E - XS2F2 + \\ + L_{25} XS14S2 - XS2S14 - B_{25} \left(XSMF1B + XSMF1D \right) > 0 \\ PKELBAL2 \qquad A_{24} \left(XP1S4A + XP1S4B \right) + I_{24} XP1S4E + B_{24} XP6S4 + H_{24} \left(XP2S4A + XP2S4B \right) + \\ + N_{24} \left(XS19S4A + XS19S4B \right) + J_{24} XS19S4E + G_{24} XP5S4A + H_{24} XP5S4B + M_{24} XP5S4E - XS4F2 + \\ + L_{24} XS14S4 - XS4S44 - C_{24} XSMF1A - D_{24} XSMF1C - D_{24} \left(XSMF1B + XSMF1D \right) > 0 \\ PKELBAL3 \qquad A_{23} \left(XP1S6A + XP1S6B \right) + I_{23} XP1S6E + B_{23} XP6S6A + H_{23} XP5S6B + M_{24} XP5S6E - XS6F2 + \\ + N_{24} \left(XS19S6A + XS19S6B \right) + J_{24} XS19S6E + G_{24} XP5S6A + H_{25} XP5S6B + M_{24} XP5S6E - XS6F2 + \\ + L_{24} XS16S6 - XS6S16 - C_{24} XSMF1A - D_{24} XSMF1C - E_{24} XSMF1E - D_{24} \left(XSMF1B + XSMF1D \right) > 0 \\ \end{cases}$$

Bilanzen für Fernwärme bei Mittellast

Bilanzen für Elektrizität bei Mittellast

$$Inelbal1 \qquad A_{3,1} \left(XP1S8A + XP1S8B \right) + I_{3,1} XP1S8E + B_{3,1} XP6S8 + M_{3,1} \left(XP2S8A + XP2S8B \right) + \\ + N_{3,1} \left(XS19S8A + XS19S8B \right) + J_{3,1} XS19S8E + G_{3,1} XP5S8A + M_{3,1} XP5S8B + K_{3,1} XP5S8E - XS8F2 + \\ + L_{3,1} XS14S8 - XS8S14 - B_{3,1} \left(XSMF1B + XSMF1D \right) > 0$$

$$Inelbal2 \qquad A_{3,2} \left(XP1S10A + XP1S10B \right) + I_{3,2} XP1S10E + B_{3,2} XP6S10 + M_{3,2} \left(XP2S10A + XP2S10B \right) + \\ + N_{3,1} \left(XS19S10A + XS19S10B \right) + J_{3,2} XS19S10E + G_{3,2} XP5S10A + M_{3,2} XP5S10B + K_{3,2} XP5S10E - XS10F2 + \\ + L_{3,2} XS14S10 - XS10S14 - C_{3,2} XSMF1A - D_{3,2} XSMF1C - B_{3,2} \left(XSMF1B + XSMF1D \right) > 0$$

$$Inelbal3 \qquad A_{3,3} \left(XP1S12A + XP1S12B \right) + I_{3,3} XP1S12E + B_{3,3} XP6S12 + M_{3,3} \left(XP2S12A + XP2S12B \right) + \\ + N_{3,3} \left(XS19S12A + XS19S12B \right) + J_{3,3} XS19S12E + G_{3,3} XP5S12B + M_{3,3} XP5S12E - XS12F2 + \\ + L_{3,3} XS16S12 - XS12S16 - C_{3,3} XSMF1A - D_{3,3} XSMF1C - E_{5,3} XSMF1E - B_{3,3} \left(XSMF1B + XSMF1D \right) > 0$$

Bilanzen für Fernwärme bei Grundlast

BSHTBAL1
$$A_{34}$$
 XP1S1 + B_{34} XP2S1 + C_{34} XS19S1 + E_{34} XP5S1 - XS1F1 ≥ 0

BSHTBAL2 A_{35} XP1S7 + B_{35} XP2S7 + C_{35} X519S7 + E_{35} XP5S7 - XS7F1 ≥ 0

BSHTBAL3 A_{34} XP1S13 + B_{34} XP2S13 + C_{34} XS19S13 + E_{34} XP5S13 - XS13F1 ≥ 0

Bilanzen für Elektrizität bei Grundlast

Begrenzung des Kraft-Wärme-Verhältnisses (COIN steht für Coincidence, der erste Buchstabe gibt die Situation bezügl. der Wärmenachfrage, der zweite diejenige bezügl. der Elektrizitätsnachfrage an. Es bedeuten: B (ase) - Grundlast, I (intermediate) - Mittellast, P (eak) - Spitzenlast.)

BPCOIN1	A ₄₀ XP151 - XP152B	£ 0
BPCØINZ	A XP2S1 - XP2S2B	≤ 0
8PC01N3	A XS1951 - XS19528	€ 0
IPCØIN1	A XP153 - XP154 B	€ 0
IPC Ø I NZ	A XP253 - XP2548	€ 0
IPC01N3	A ₄₅ XS19S3 - XS19S4B	40
PPCØIN1	A XP155 - XP156 B	<i>≤ 0</i>
PPCØINZ	A x P2 S5 - x P2 S6 B	<i>4 0</i>
PPCØIN3	A, XS1955B-X51956B	€ 0
BICØIN1	A XP157 - XP1588	4 0
BICQINS	A ₅₀ XP2S7 - XP2S8B	40
BICOINS	A ₅₁ XS19S7 -XS19S8B	<i>\(0</i>
]IC0[N1	Asz XP1S9 - XP1S10B	<i>40</i>
IICØIN2	A XP259 - XP2510B	40
IICØIN3	A ₅₄ XS19S9 - XS19S10B	40

PICOINA	A XP1511 - XP1512 B	<i>4 0</i>
PICOINZ	A XP2511 - XP25128	€ 0
PICØIN3	8512612X - 8112612X	≤ 0
BBC0IN1	A XP1513 - XP15148	≤ 0
8BCØIN2	A XP2513 - XP2514B	€ 0
BBCBIN3	A60 XS19513 - XS195148	€ 0
IBCOINA	A XP1515 - XP1516B	€ 0
IBCØINZ	A62 XP2515 - XP2516B	∠ 0
IBCØIN3	A ₁₃ XS19S15 - XS19S16B	<i>≤ 0</i>
PBCØINA	A ₄₄ XP1517 - XP1518B	40
PBCØINZ	A ₁₅ XP2 S17 - XP2 S18B	≤ 0
PBC0IN3	A XS195178 - XS195 18B	<i>≤</i> 0

Kapazitätsanforderungen für Heizwerke mit schwerem Heizöl

HTSTATA
$$B_{63}$$
 XS19S5C - A_{63} CS19SNC ≤ 0

HTSTAT2 B_{63} XS19S17C - A_{69} CS19SNC ≤ 0

HTSTAT3 B_{69} XS19S17C - A_{69} CS19SNC ≤ 0

Kapazitätsanforderungen für Kraft-Wärme-Kopplung mit Steinkohle

Kapazitätsanforderungen für Elektrizitätserzeugung mit Steinkohle

PØWLC1

$$B_{35}$$
 $XP1S2A - A_{38}$
 $CP1SNA \le 0$

 PØWLC2
 B_{30}
 $XP1S4A - A_{30}$
 $CP1SNA \le 0$

 PØWLC3
 B_{31}
 $XP1S6A - A_{31}$
 $CP1SNA \le 0$

 PØWLC4
 B_{32}
 $XP1S8A - A_{32}$
 $CP1SNA \le 0$

 PØWLC5
 B_{33}
 $XP1S10A - A_{33}$
 $CP1SNA \le 0$

POWLCE
$$B_{g_{i}}$$
 XP1512A - $A_{g_{i}}$ CP15NA ≤ 0

POWLCE $B_{g_{i}}$ XP1514A - $A_{g_{i}}$ CP15NA ≤ 0

POWLCE $B_{g_{i}}$ XP1516A - $A_{g_{i}}$ CP15NA ≤ 0

POWLCE $B_{g_{i}}$ XP1518A - $A_{g_{i}}$ CP15NA ≤ 0

Kapazitätsanforderungen für Kraft-Wärme-Kopplung mit Kernenergie

PBWHTNEA	A XPZS1	+ C, XP2528	- B, CPZSNB	≤ 0
POWHTNEZ	A _{P3} XP253	+ C XPZS4B	- B CPZSN8	€ 0
POWHTNES	A XP2 S5	+ C30 XP2568	- B, CP2SNB	€ 0
POWHTNEY	A	+ C3, XP2 58 B	- B, CP2SNB	← 0
PBWHTNE5	A ₉₂ XP2S9	+ C32 XP2 S 10B	- B CP2 SNB	£ 0
PØWHTNE6	A XP2 511	+ C XP2512B	- 8 CP2SNB	60
POWATNET	A XP2 513	+ C XP2 5 148	- Bg CP25NB	€ 0
PØWHTNE8	A XP2 S 15	+ C XP2516B	- B ₃₅ CP2 SNB	≤ 0
PØWHTNES	A36 XP2517	+ C XP25188	- B, CPZSNB	40

Kapazitätsanforderungen für Elektrizitätserzeugung mit Kernenergie

POWLNE1

$$B_{37}$$
 XP2S2A - A_{37}
 CP2SNA ≤ 0

 POWLNE2
 B_{38}
 XP2S4A - A_{38}
 CP2SNA ≤ 0

 POWLNE3
 B_{39}
 XP2S6A - A_{50}
 CP2SNA ≤ 0

 POWLNE4
 B_{400}
 XP2S8A - A_{400}
 CP2SNA ≤ 0

 POWLNE5
 B_{401}
 XP2S10A - A_{401}
 CP2SNA ≤ 0

 POWLNE6
 B_{402}
 XP2S12A - A_{402}
 CP2SNA ≤ 0

 POWLNE7
 B_{403}
 XP2S14A - A_{403}
 CP2SNA ≤ 0

 POWLNE8
 B_{404}
 XP2S16A - A_{403}
 CP2SNA ≤ 0

 POWLNE9
 B_{405}
 XP2S18A - A_{405}
 CP2SNA ≤ 0

Kapazitätsanforderungen für Kraft-Wärme-Kopplung mit schwerem Heizöl

POVHTØ1	A,06 X519 51	+ C XS19528	- B CS195NB	4 0
PBWHTBZ	A X S 19 S 3	+ C XS19548	- B, CS195NB	≤ 0
POWHTOS	A XS 1955 B	+ C XS19563	- 8, CS195NB	≤ 0
POWHTO4	A 109 XS1957	+ C XS1958B	- B, CS195NB	€ 0
POWHT05	A ₁₁₀ XS 19 S9	+ C XS19510B	- 3, CS195NB	40

PØWHTØ 6	A XS19 S11 B	+ C XS19512B - B CS195NB	€ 0
POWHTOF	A XS15 S 13	+ C XS19514B - B CS195NB	€ 0
POWHTO?	A ₁₄₃ XS19515	+ C XS19516B - B CS195NB	€ 0
P0 WHT 09	A XS19517 B	+ C XS195188 - B CS195NB	60

Kapazitätsanforderung für Elektrizitätserzeugung mit schwerem Heizöl

POWOIL1	B XS1952A	- A CS195NA	≤ 0
POWOILZ	B XS1954A	- A CS195NA	4 0
PØWØIL3	8 XS1956A	- A CS19SNA	€ 0
POWOILY	B XS1958A	- A CS195 NA	€ 0
POWOIL5	B XS19510A	- Ang CS195NA	€ 0
POWOIL 6	B X519512A	- Ano CS195NA	≤ 0
POWOIL7	B ₁₂₁ XS19514A	- A CS195NA	€ 0
POWOIL8	B X513516A	- A CS195NA	± 0
POWOILS	B XS19518A	- A CS195NA	<i>≤ 0</i>

Bedarfsdeckung für Transportenergie

Bilanzen für schweres Heizöl, leichtes Heizöl und Benzin

Fraktionsverhältnis leichtes: schweres Heizöl bzw. leichtes Heizöl: Benzin

LHFRAC
$$XP3S19 - A_{12} XP3S20 = 0$$

LGFRAC $XP3S20 - A_{12} XP3S21 = 0$

Untere bzw. obere Grenze für das Verhältnis leichtes Heizöl: Benzin beim Cracken

LLCRACK
$$A_{130}$$
 XS19520 - XS19521 ≤ 0

UPCRACK XS19521 - A_{131} XS19520 ≤ 0

Kapazitätsanforderungen für Raffinerien und Cracker

REFINELD XP3S19 + XP3S20 + XP3S21 -
$$A_{132}$$
 CP3SN ≤ 0

CRACKLD XS19S20 + XS19S21 - A_{133} CS19SND ≤ 0

Bedarfsdeckung für Hochtemperaturwärme

Deckung der Spitzenlastfernwärme durch Heizwerke

Kapazitätsanforderung für Niedertemperaturwärmebedarfsdeckung durch Erdgas

GASHTLD
$$B_{138} \times P5F1 - A_{138} \left(CP5F11 + CP5F12 + CP5F13 \right) - C_{138} \times P5F18 + \Pi_{138} \left(CP5F1A1 + CP5F1A2 + CP5F1A3 \right) - L_{138} \left(IP5F1A + IP5F12 + IP5F13 \right) + N_{138} \left(IP5F1A1 + IP5F1A2 + IP5F1A3 \right) \leq 0$$

Begrenzung des Kraft-Wärme-Verhältnisses für Erdgas-Heizkraftwerke (vgl. Restriktionen 40-66)

BPCØIN5	A ₁₃₃ XP551 - XP552B	€ 0
IPCDIN5	A 440 XP553 - XP554B	S 0
PPC0IN5	A XP535B - XP536 B	≤ 0
BICOINS	A XP557 - XP5588	≤ 0
IICØIN5	A XP553 - XP55103	≤ 0
PICØIN5	A XP5511B - XP5512B	£ 0
BBC0IN5	A XP5513 - XP55148	≤ 0
18C01N5	A XP5515 - XP55168	≤ 0
PBCØIN5	A XP55178- XP5518B	≤ 0

Kapazitätsanforderungen für Kraft-Wärme-Kopplung mit Erdgas

Kapazitätsanforderungen für Elektrizitätserzeugung mit Erdgas

POWLDG1	B ₄₅₇ XP552A	- A CP5SNA	≤ 0
POWLDG2	B ₁₅₈ XP554A	- A CP5 SNA	<i>≤ 0</i>
PØVLDG3	B XP556A	- A CP55NA	5 0
POWLJ64	B, XP558A	- A CP55NA	4 0
PONLOG5	B _{11,1} XP5 S 10A	- A CPSSNA	€ 0

POWLDG6
$$B_{112}$$
 XP5512A - A_{112} CP55NA ≤ 0

POWLDG7 B_{113} XP5514A - A_{113} CP55NA ≤ 0

POWLDG8 B_{114} XP5516A - A_{114} CP55NA ≤ 0

POWLDG9 B_{115} XP5518A - A_{115} CP55NA ≤ 0

Unterteilung der Niedertemperaturwärmeversorgung nach Gemeindegrößenklassen

Analog zu Restriktionen 70-78, für dezentrale Versorgung

Analog zu Restriktionen 106-114, für dezentrale Versorgung

Analog zu Restriktionen 148-156, für dezentrale Versorgung

Kapazitätsanforderung für Fernwärmeversorgung, dezentrales Netz

Analog zu Restriktionen 40-66 und 139-147, für dezentrale Versorgung

BPCOIN1 E	A x	P151 <i>E</i>	- XP152E	≤ 0
BPCØIN3E	A 158 XS	51951E	- XS1952E	<i>40</i>
IPC0IN1E	A X	0153 <i>E</i>	- XP154 E	€ 0
IPC0IN3E	A 200 X3	S1953 <i>E</i>	- XS1954E	≟ 0
PPCOIN1E	A X1	P155E	- XP156E	€ 0
PPCØINJE	A XS	519 <i>55E</i>	- XS19S6E	4 0
BI (BIN1E	A 203 X	P157E	- XP158E	≤ 0
BICOINZE	A X	51957 E	- XS19 S8E	€ 0
II (0IN1E	A 205 X	P159E	- XP1510E	€ 0
IICOIN3E	A X.	S 19 S 9 E	- XS19 S10E	<i>4 0</i>
PICOIN1É	A X1	P1511E	- XP1512 E	€ 0
PICØIN3E	A 208 X	513 S11E	- XS19 S12 E	<i>≤0</i>
BBC0IN1E	A 200	P1513E	- XP1514E	<i>40</i>
BBC0IN3E	A 210 X	S19S13E	- XS19 S14E	40

·

IBCOIN1E	A XP1515E - XP1516E	40
IBCOINSE	A XS19515E - XS19516E	≤ 0
PBC0IN1E	A XP1517E - XP1518E	£ 0
PBC01N3E	A XS19517E - XS19518E	€ 0
8PC01 <i>N5E</i>	A YP5(AE - YOE 52E	<i>⊆ 0</i>
OI COINGE	A XP5 S1 E - XP5 S2 E	- 0
IPC0INSE	A XP5S3E - XP5S4E	40
PPC0INSE	A XP5S5E - XP5S6E	← <i>D</i>
BICOINSE	A XP557E - XP558E	≙ 0
II COINSE	A XPSSSE - XPSS10E	40
PICØIN5E	A XP5511E - XP5512E	<i>4 0</i>
BBC0IN5E	A XP5513E - XP5514E	€ 0
IBC0IN5E	A XP5515E - XP5516E	<i>4 0</i>
PBC0IN5E	A 223 XP5517E - XP5518E	<i>4 0</i>

Analog zu Restriktionen 22-24, für dezentrale Versorgung

Analog zu Restriktionen 28-30, für dezentrale Versorgung

INHTBA3E
$$A_{223}$$
 XP1S3E + B_{223} XS19S3E + C_{223} XP5S3E - XS3F1E ≥ 0

INHTBA3E A_{228} XP1S9E + B_{228} XS19S9E + C_{228} XP5S9E - XS9F1E ≥ 0

INHTBA3E A_{229} XP1S15E + B_{229} XS19S15E + C_{229} XP5S15E - XS15F1E ≥ 0

Analog zu Restriktionen 34-36, für dezentrale Versorgung

Analog zu Restriktionen 2-3, für dezentrale Versorgung

PIRATHTE XSSF1E + XS11F1E + XS17F1E -
$$A_{233}$$
 (XS3F1E + XS9F1E + XS15F1E) + L_{233} (ISNF1E2 + ISNF1E3) = 0

IBRATHTE XS3F1E + XS9F1E + XS15F1E - A_{234} (XS1F1E + XS7F1E + XS13F1E) + L_{234} (ISNF1E2 + ISNF1E3) = 0

Analog zu Restriktionen 4-9, für dezentrale Versorgung

Begrenzung der Fernwärmeversorgung in den Gebieten, die über Anschlußleitungen versorgt werden

Kapazitätsanforderungen für Heizwerke mit Erdgas

HTSTAT1A
$$B_{244} \times P5S5C - A_{244} \times CP5SNC \leq 0$$

$$HTSTAT2A \qquad B_{245} \times P5S11C - A_{245} \times CP5SNC \leq 0$$

$$HTSTAT3A \qquad B_{246} \times P5S17C - A_{246} \times CP5SNC \leq 0$$

Sicherstellung von Reservekapazitäten an Heizwerken

RESERVE1
$$B_{243} CP5SNC + C_{243} CS19SNC - A_{243} (CSNF11 + CSNF12 + CSNF13) > 0$$

$$RESERVE2 B_{249} CP5SNCE + C_{243} CS19SNCE - A_{249} (CSNF1E2 + CSNF1E3) > 0$$

Sicherstellung der Dieselölmenge zur Bedarfsdeckung des LKW-Verkehrs

Ermittlung der insgesamt erzeugten Fernwärme

SUMFW
$$XSAFA + XS3FA + XS3FA + XS7FA + XS9FA + XSAAFA + XSA3FA + XSA5FA + XSA7FA +$$

Kapazitätsanforderungen für Elektrizitätserzeugung mit Braunkohle

POWLB1	B ₂₅₁ XP6S2	- A CP6SN	£ 0
POWL B 2	B ₂₅₂ XP654	- A ₁₅₂ CP65N	€ 0
PØWL B3	B ₂₅₃ XP656	- A253 CP65N	€ 0
POWL BY	B ₂₅₄ XP658	- A CP65N	∠ 0
P0 WL B5	B ₂₅₅ XP6510	- A CP6SN	<i>≤ 0</i>
POWL B6	B ₂₅₆ XP6512	- A CP6SN	≤ 0
P0WL 57	B ₂₅₇ XP6514	- A CP6SN	40
PBWL 88	B ₂₅₈ XP6516	- A CP6SN	€ 0
PO WL 89	B XP6518	- A CP6SN	40

Sicherstellung von ausreichenden Kraftwerkskapazitäten (wegen nur näherungsweiser Aufschlüsselung der Nachfragesituationen)

- $A_{261} \left(XS4S14 + XS8S14 + XS10S14 + XS16S14 \right) + B_{261} XS2S14 C_{261} XS14S2 D_{261} EC E_{261} XSMF6 F_{261} XSMF7A XS14S4 XS14S8 XS14S10 XS14S16 <math>\leq 0$
- $A_{243} \left(XS2514 + XS4514 + X510514 + X516514 \right) + B_{243} XS8514 C_{243} XS1458 D_{243} EC E_{243} XS17F6 F_{243} XS17F7A X51452 X51454 X514510 X514516 \le 0$
- $A_{244} \left(XS2S14 + XS4S14 + XS8S14 + XS16S14 \right) + B_{244} XS10S14 C_{244} XS14S10 D_{244} EC E_{244} XS17F6 F_{244} XS17F7A XS14S2 XS14S4 XS14S8 XS14S16 \leq 0$

Kapazitätsanforderungen für Pumpspeicherwerte

CPSUP1	X51452	- A CSNSMP	€ 0
CPSUPZ	XS1454	- A CSNSMP	€0
CPSUP3	XS 1656	- A CSNSMP	€0
CPSUP4	XS1458	- A CSNSMP	€0
CPSUP5	XS14510	- AZZZ CSNSMP	€0
CPSUP6	XS14516	- Azza CSNSMP	€0
CPSUP7	XS16512	- A CSNSMP	≤ 0
CPSUP8	XS16518	- A LIFE CSNSMP	€ 0

CPSDI1
$$A_{275}$$
 XS2S14 - B_{275} CSNSMP ≤ 0

CPSDI2
$$A_{280} XS4514 - B_{280} CSNSTIP \le 0$$

CPSDI3
$$A_{284} \times S6S16 - B_{284} CSNSTP \leq 0$$

CPSDIS
$$A_{283} \times 5.10514 - B_{283} \times 5.057P \le 0$$

CPSDI7 A XS12S16 - B CSNSMP
$$\leq 0$$

Kapazitätsanforderung für elektr. Nachtspeicherheizungen

Kapazitätsanforderung für elektr. Direktheizungen

Kapazitätsanforderung für elektr. Wärmepumpen im Direktbetrieb

KAFWPDH
$$B_{289}$$
 XSMF1C + C XSMF1D - A_{289} (CSMF1C1 + CSMF1C2 + CSMF1C3) ≤ 0

Kapazitätsanforderung für elektr. Wärmepumpen im Speicherbetrieb

Kapazitätsanforderung für Elektrozusatzheizungen für elektr. Wärmepumpen im Direktbetrieb

$$KAFWPDZE$$
 $B_{291} XSMF1E - A_{291} (CSMF1E1 + CSMF1E2 + CSMF1E3) = 0$

Kapazitätsanforderung für Elektrozusatzheizungen für elektr. Wärmepumpen im Speicherbetrieb

KAFWPNZE
$$B_{292} \times SMF7C - A_{292} \left(CSNF7C1 + CSNF7C2 + CSNF7C3 \right) = 0$$

Kapazitätsanforderung für Ölzusatzheizungen für elektr. Wärmepumpen

$$KAFWP20$$
 $B_{293} XS20F1A - A_{293} (CS20F1A1 + CS20F1A2 + CS20F1A3) $\leq 0$$

Kapazitätsanforderung für Solarheizungen

KAFSOL
$$B_{294}$$
 XS20F1B + C XS20F1C - A_{294} (CF8F11 + CF8F12 + CF8F13) ≤ 0

Kapazitätsanforderung für Erdgas-Wärmepumpen

111/68

Verhältnisse der Energiemengen für Warmwasserbereitung zu denen für Raumheizung

Zuordnung der Zusatzheizungen

ZHTWPN1

$$A_{305}$$
 CSMF7C1 - B_{305} ISMF7A1 - C_{305} CSMF7A1 ≤ 0

 ZHTWPN2
 A_{306} CSMF7C2 - B_{306} ISMF7A2 - C_{306} CSMF7A2 ≤ 0

 ZHTWPN3
 A_{307} CSMF7C3 - B_{307} ISMF7A3 - C_{307} CSMF7A3 ≤ 0

ZHTWP1 $A_{302}\left(CS\PiF1E1 + CS20F1A1\right) + B_{302}\left(S\PiF7C1 - C_{302}\right) CS\PiF1C1 - D_{302}\left(S\PiF7A1 - L_{302}\right) (IS\PiF1C1 + IS\PiF7A1) = 0$ ZHTWP2 $A_{303}\left(CS\PiF1E2 + CS20F1A2\right) + B_{303}\left(S\PiF7C2 - C_{303}\right) CS\PiF1C2 - D_{303}\left(S\PiF7A2 - L_{303}\right) (IS\PiF1C2 + IS\PiF7A2) = 0$ ZHTWP3 $A_{340}\left(CS\PiF1E3 + CS20F1A3\right) + B_{340}\left(S\PiF7C3 - C_{340}\right) CS\PiF1C3 - D_{340}\left(S\PiF7A3 - L_{340}\right) (IS\PiF1C3 + IS\PiF7A3) = 0$

Zusatzbedarf an leichtem Heizöl bei Solarheizungen

SØLØEL $XP7F8A - A_{341}$ XS20F1B = 0

Erforderliche Netzerweiterungen bei elektr. Niedertemperaturwärmeversorgung

ECGRID11 $B_{312} \times S14F2 + CS\PiF7C1 - CS\PiF1A - A_{312} CSNF2 + C_{312} CF6F1A + D_{312} CS\PiF7AA + E_{312} CS\PiF1AA + F_{312} CS\PiF1AA + F_$

 $ECGRID21 \qquad B_{344} X S 14F2 - A_{314} C S N F Z + C_{344} C F 6 F 1 Z + D_{344} C S N F 7 A Z + E_{344} C S N F 1 A Z + F_{344} C S N F 1 A Z + F_{344} C S N F 1 A Z + F_{344} C S N F 1 A Z + F_{344} C S N F 1 A Z + F_{345} C S N F 1 A Z + F_{$

ECGRID31 $B_{311} \times S14F2 - A_{312} \times SNF2 + C_{311} \times CF6F13 + D_{311} \times SNF7A3 + E_{311} \times SNF1A3 + F_{311} \times SNF1A3 + F_{31$

Einschränkungen des möglichen Versorgungsgrades mit elektr. Wärmepumpen

Einschränkungen des möglichen Versorgungsgrades mit elektr. Wärmepumpen und Solarkollektoren

$$\begin{split} \text{MAXSOL1} & \qquad \text{CF8F1A} + \text{CSNF1C1} + \text{CSNF1E1} + \text{B}_{321} \text{CSNF7A1} + \text{C}_{321} \text{CSNF7C1} + \text{A}_{321} \left(\text{ISNF1C1} + \text{ISNF7A1} + \text{IF8F1A} \right) \leq \text{RS}_{321} \\ \text{NAXSOL2} & \qquad \text{CF8F1A} + \text{CSNF1C2} + \text{CSNF1E2} + \text{B}_{322} \text{CSNF7A2} + \text{C}_{322} \text{CSNF7C2} + \text{A}_{322} \left(\text{ISNF1C2} + \text{ISNF7A2} + \text{IF8F12} \right) \leq \text{RS}_{322} \\ \text{NAXSOL3} & \qquad \text{CF8F13} + \text{CSNF1C3} + \text{CSNF1E3} + \text{B}_{323} \text{CSNF7A3} + \text{C}_{323} \text{CSNF7C3} + \text{A}_{323} \left(\text{ISNF1C3} + \text{ISNF7A3} + \text{IF8F13} \right) \leq \text{RS}_{323} \\ \end{split}$$

Beschränkung der Isoliermaßnahmen bei Fernwärme-beheizten Gebäuden, zentrales Netz

$$MAXIFW1$$
 B_{324}
 $ISNF11$
 $-A_{324}$
 $CSNF11$
 ≤ 0
 $MAXIFW2$
 B_{325}
 $ISNF12$
 $-A_{325}$
 $CSNF12$
 ≤ 0
 $MAXIFW3$
 B_{324}
 $ISNF13$
 $-A_{324}$
 $CSNF13$
 ≤ 0

Beschränkung der Isoliermaßnahmen bei Fernwärme-beheizten Gebäuden, dezentrales Netz

Beschränkung der Isoliermaßnahmen bei Erdgas-beheizten Gebäuden

Beschränkung der Isoliermaßnahmen bei Öl-beheizten Gebäuden

[][/72

Beschränkung der Isoliermaßnahmen bei Gebäuden mit elektr. Nachtspeicherheizung

Beschränkung der Isoliermaßnahmen bei Gebäuden mit elektr. Direktheizung

$$naxield2$$
 A_{339} $ISMF1A2 - CSMF1A2 \leq 0$

Beschränkung der Isoliermaßnahmen bei Gebäuden mit elektr. Wärmepumpe im Direktbetrieb

$$AXIWPD1$$
 -A CSTF1C1 + B ISTF1C1 ≤ 0

$$\pi AXIVPD3$$
 - A CSTF1C3 + B ISTF1C3 ≤ 0

Beschränkung der Isoliermaßnahmen bei Gebäuden mit elektr. Wärmepumpe im Speicherbetrieb

$$A_{344}$$
 CSTF741 + B_{344} ISTF741 ≤ 0

$$\pi_{AXIWPN3}$$
 - A_{3YA} CSTF7A3 + B_{3YA} ISTF7A3 $\leq D$

Beschränkung der Isoliermaßnahmen bei Gebäuden mit Solarkollektor-Heizung

Beschränkung der Isoliermaßnahmen bei Gebäuden mit Erdgas-Wärmepumpen

$$\Pi AXIGWP1$$
 - A_{350} CP5F1A1 + B_{350} IP5F1A1 ≤ 0
 $\Pi AXIGWP2$ - A_{351} CP5F1A2 + B_{351} IP5F1A2 ≤ 0
 $\Pi AXIGWP3$ - A_{352} CP5F1A3 + B_{352} IP5F1A3 ≤ 0

Deckung des Prozeßwärmebedarfs durch Erdgas in den Gebieten, die mit Erdgaswärmepumpen versorgt werden

PROGWP1
$$A_{353}$$
 CP5F1A1 + B_{353} IP5F1A1 - CP5F11 ≤ 0

PROGWP2 A_{354} CP5F1A2 + B_{354} IP5F1A2 - CP5F12 ≤ 0

PROGWP3 A_{355} CP5F1A3 + B_{355} IP5F1A3 - CP5F13 ≤ 0

Analog zu Restriktionen 67-69, für dezentrale Versorgung

HTSTATIE A_{356} XS19SSCE - B_{356} CS19SNCE ≤ 0

HTSTATZE A_{357} XS19S11CE - B CS19SNCE ≤ 0

HTSTAT3E A XS19517CE - B CS195NCE ≤0

Analog zu Restriktionen 244-246, für dezentrale Versorgung

HTSTA1AE A XP5S5CE - B CP5SNCE & 0

HTSTAZAE A_{360} XP5S11CE - B_{360} CP5SNCE ≤ 0

HTSTAJAE A_{341} XP5517CE - B_{342} CP5SNCE ≤ 0

4. Ein- und Ausgabeprotokoll für einen Optimierungslauf

Aus Gründen der Rechengenauigkeit werden die Nebenbedingungen im Programm MATAUF (s. Abschn. 1.3) so umformuliert, daß die Fluß- und Isoliervariablen die Einheit 10^7 MWh und die Kapazitätsvariablen die Einheit 10^4 MW haben. Die Attributwerte werden in den folgenden Einheiten ausgedruckt:

Kosten	10 ⁹	DM/a
so ₂	10	μg/m ³
Staub	10	μ g/m 3
NOX	10	μg/m ³
CO	10	μg/m ³
co ₂	10	ppm/a
Radioaktivität	mre	m/a
Verdunstung	m^3/s	sec
Landschaftsverbrauch	10-	2 %
Unfallträchtigkeit	10 ³	Tote/a
Vielfältigkeit	dime	ensionslos
reziproker Wirkungsgrad	dime	ensionslos
Importabhängigkeit	dime	ensionslos
Vorratshaltung	10 ⁸	DM/a

Maximiert wird die additive Näherung der Nutzenfunktion, die in Teil II im Detail diskutiert wurde.

III/76

E I N G A B E

NAM		BA_WUE				
ROW					_	
L	HTDEMND		L	IICOIN2	L	POWHTO2
Ε	PIRATHT		L	IICOIN3	L	POWHTO3
Ε	IBRATHT		L	PICOIN1	L	POWHT 04
Ε	CCPKHT1		L	PICOIN2	L	POWHT05
Ε	CCPKHT2		L	PICOIN3	L	POWHTO6
Ε	CCIMHT1		L	BBCOINI	L	POWHT 07
Ε	CCIMHT2		L	BBCOIN2	L	POWHTO8
Ε	CCBSHT1		L	BBCOIN3	L	POWHT09
Ε	CCBSHT2		L	IBCOIN1	L	POWOIL1
L	HOMHTLD		L	IBCOIN2	L	POWOIL2
Ĺ	HTTRALD		Ĺ	IBCOIN3	L	POWOIL3
Ĺ	ELDEMND		Ĺ	PBCOIN1	L	POWOIL4
E	PIRATEL		L	PBCOIN2	Ł	POWOIL5
Ē	IBRATEL		Ĺ	PBCOIN3	L	POWOIL6
Ē	CCPKEL1		Ĺ	HTSTAT1	L	POWOIL7
Ē	CCPKEL2		Ĺ	HTSTAT2	L	POWOIL8
Ē	CCIMEL1		Ĺ	HTSTAT3	L	POWOIL9
Ē	CCIMEL2		Ĺ	POWHTC1	Ĺ	TRANSPRT
Ē	CCBSEL1		ī	POWHT C2	Ĺ	HOILBAL
Ē	CCBSEL2		Ĺ	POWHTC3	Ĺ	LOILBAL
Ĺ	ELTRANS		Ĺ	POWHTC4	Ĺ	GASBAL
Ĺ	PKHTBAL1		Ĺ	POWHT C5	Ē	LHFRAC
			Ĺ	POWHTC6	Ē	LGFRAC
Ļ	PKHTBAL2		L	POWHIC7	Ĺ	LLCRACK
L	PKHTBAL3				Ĺ	UPCRACK
L	PKELBAL1		L	POWHTC8	Ĺ	REFINELD
L	PKELBAL2		Ļ	POWHTC9		CRACKLD
L	PKELBAL3		F	POWLC1	L	INDUSDMD
L	IMHTBAL1		L	POWLC 2	L	
L	IMHTBAL2		Ļ	POWLC3	Ļ	STATION1 STATION2
Ļ	IMHTBAL3		L	POWLC4	L	
L	IMELBAL1		L	POWLC 5	L	STATION3
L	IMELBAL2		Ļ	POWLC6	L	GASHTLD
L	IMELBAL3		L	POWLC7	L	BPCOIN5
L	BSHTBAL1		L	POWLC8	Ļ	IPCOIN5
L	BSHTBAL2		L	POWLC9	L	PPCOIN5
L	BSHTBAL3		L	POWHTNE1	L	BICOIN5
L	BSELBAL1		L	POWHTNE 2	L	IICOIN5
L	BSELBAL 2		L	POWHT NE3	L	PICOIN5
L	BSELBAL3		L	POWHTNE4	L	BBCOIN5
L	BPCOIN1		L	POWHTNE5	L	IBCOIN5
L	BPCOIN2		L	POWHTNE6	L	PBCOIN5
L	BPCOIN3		L	POWHTNE7	L	POWHTG1
L	IPCOIN1		L	POWHTNE8	L	POWHTG2
L	IPCOIN2		L	POWHTNE9	L	POWHTG3
L	IPCOIN3		L	POWLNE1	L	POWHT G4
L	PPCOIN1		L	POWLNE2	L	POWHTG5
L	PPCOIN2		L	POWLNE3	L	POWHTG6
L	PPCOIN3		L	POWLNE4	L	POWHT G7
L	BICOINI		L	POWLNE5	L	POWHTG8
L	BICOIN2		L	POWLNE6	L	POWHTG9
L	BICOIN3		L	POWLNE7	L	POWLDG1
L	IICOIN1		L	POWLNE8	L	POWLDG2
			L	POWLNE9	Ĺ	POWLDG3
			L	POWHTO1	L	POWLDG4

L	POWLDG5	L	BPCOIN5E	L	CSE1612
Ĺ	POWLDG6	L	IPCOIN5E	L	CSE1618
Ĺ	POWLDG7	Ĺ	PPC OI N5E	Ĺ	CP SUP 1
	POWLDG8	Ĺ	BICOINSE	Ĺ	CPSUP2
L	POWLDG9	Ĺ	IICOIN5E	Ē	CPSUP3
		Ĺ	PICOIN5E	Ĺ	CPSUP4
L	EXCL1	Ĺ	BBCOIN5E	Ĺ	CPSUP5
L	EXCL2	ī	IBCOINSE	Ĺ	CPSUP6
L	EXCL3 POWHTC1E	Ĺ	PBCDIN5E	Ĺ	CPSUP7
Ļ		ī	PKHTBALE	ī	CPSUP8
L	POWHT C2E		PKHTBA2E	Ĺ	CPSDI1
L	POWHTC3E	Ĺ	PKHTBA3E	ī	CPSDI2
L	POWHTC4E	Ĺ	IMHTBALE	Ĺ	CPSDI3
Ļ	POWHTC5E	Ĺ	IMHTBAZE	Ĺ	CPSDI4
L	POWHTC6E	Ĺ	IMHTBA3E	Ĺ	CPSDI5
L	POWHTC 7E	Ĺ	BSHTBAIE	Ĺ	CPSDI6
L	POWHTC8 E	L	BSHTBA2E	Ĺ	CPSD17
L	POWHTC9E		BSHTBA3E	L	CPSDI8
L	POWHTOLE	Ĺ		L	
L	POWHTO2E	Ē	PIRATHTE	E	KAFELNS
L	POWHTO3E	E	IBRATHTE		KAFELDH
L	POWHT 04 E	Ε	CCPKHT1E	L	KAFWPDH
L	POWHTO5E	E	CCPKHT2E	Ĺ	KAFWPNS
L	POWHT06E	E	CCIMHT1E	E	KAFWPDZE
L	POWHTO7E	E	CCIMHT2E	E	KAFWPNZE
L	POWHTO8E	Ε	CCBSHT1E	L	KAFWPZO
L	POWHT09E	Ε	CCBSHT2E	L	KAFSOL
L	POWHTG1E	L	COR1TO2	L	KAFGWP
L	POWHTG2E	L	COR2TO3	Ε	WWHTEL
L	POWHTG3E	L	COR1TO2E	E	WWHTWPD
L	POWHTG4E	L	HTSTAT1A	Ε	WWHTWPN
L	POWHT G5 E	L	HTSTAT2A	E	WWHTSOL
L	POWHTG6E	L	HTSTAT3A	E	WWHTSOLO
L	POWHTG7E	L	RESERVE1	Ε	WWHTGWP
L	POWHT G8 E	L	RESER VE2	L	ZHTWPD1
L	POWHTG9E	L	LKWVER KR	L	ZHTWPD2
L	HTTRALDE	Ε	SUMFW	L	ZHTWPD3
L	BPC0IN1E	L	POWLB1	L	ZHTWPN1
Ĺ	BPCOIN3E	L	POWLB2	L	ZHTWPN2
ī	IPCOIN1E	Ł	POWLB3	L	ZHTWPN3
Ĺ	IPCOIN3E	L	POWLB4	E	ZHTWP1
Ĺ	PPCOIN1E	L	POWLB5	Ε	ZHTWP2
Ĺ	PPCOIN3E	L	POWLB6	E	ZHTWP3
Ĺ	BICOINIE	L	POWLB7	Ε	SGLOEL
Ĺ	BICOIN3E	L	POWL B8	L	ECGRID11
Ĺ	IICOIN1E	L	POWLB9	L	ECGRID12
Ĺ	LICOIN3E	E	DEC14	L	ECGRID21
Ĺ	PICOINIE	L	CSE142	L	ECGRID22
Ĺ	PICOIN3E	Ĺ	C SE 144	L	ECGRID31
Ĺ	BBCOINIE	Ĺ	CSE148	Ĺ	ECGRID32
L	BBCOIN3E	ī	CSE1410	ĩ	MAXWP1
Ĺ	IBCOINIE	Ĺ	C SE 1416	Ĺ	MAXWP 2
L	IBCOINSE	Ē	DEC16	ī	MAXWP3
Ĺ	PBCOIN1E	Ĺ	CSE166	Ĺ	MAXSOL1
		Ĺ	CSE1614	Ĺ	MAXSOL 2
L	PBC01N3E	-	UJCIUI T		HANGULL

MPSX/370 R1.5 ENE

ENERGIEMODELL BA-WUE(GR)

P2X	/3/U KI.)
L	MAXSOL3	
Ĺ	MAXIFW1	
L	MAXIFW2	
L	MAXIFW3	
	MAXIFW2E	
	MAXIFW3E	
	MAXIG1	
	MAXIG2	
L	MAXIG3	
	MAXIO1	
	MAXIO2 MAXIO3	
	MAXIELNI	
	MAXIELN2	
	MAXIELN3	
	MAXIELD1	
	MAXIELD2	
	MAXIELD3	
	MAXIWPD1	
L	MAXIWPD2	
	MAXIWPD3	
	MAXIWPN1	
	MAXIWPN2	
	ENGWIX AF	
L	MAXISOL 1	
	MAXISOL2	
	MAXISOL 3	
	MAXIGWP1 MAXIGWP2	
	MAXIGWP2	
	PROGWP1	
	PROGWP2	
	PROGWP3	
	HTSTATLE	
	HTSTAT2E	
L	HTSTAT3E	
	HTSTA1AE	
	HTSTA2AE	
	HTSTA3AE	
	GRIDVIA	
	GRIDVIB GRIDVIC	
	GRIDVIC	
	GRIDVI5	
	GRIDVI6	
E	GRIDVI7	
	GRIDVID	
E	GRIDVIE	
L	BXSOF11	
L	3XS20F11	
	3XP5F11	
	BXS20F31	
	3XS21F31	
L	BXS19F41	

BXS20F41 L BXELF11 L **BXP7F81** L KOSTEN Ε Ε Z S 0 2 Ε ZFS Ε ZNOX Ε ZCO Ε ZRAD ZUNF ε Ε ZC02 Ε ZVV E ZLAND Ε ZVIFI Ε ZEFF Е ZIMP Ε ZVOR Ε GRIDNF1 GRIDNF2 Ε E GRIDNF3 **GRIDNF4** E GR IDNF 5 · E E GRIDNF6 Ε GRIDNE7 Ε GRIDNF8 Е GRIDNF9 Ε **GRIDNF10** Ε **GRIDNF11** Ε GRIDNF12 Ε GRIDNF13 Ε GRIDNF14 Ε NF 1 Ε NF2 Ε NF3 Ε NF4 Ε NF5 Ε NF6 Ε NF7 NF8 Ε NF9 Ε Ε NF10 **NF11** Ε **NF12** Ε Ε **NF13** Ε **NF14** L BKS1 L BKS2 BKS3 L

L

L

L

L

L

BK\$4

BS021

85022

BS023

B SO24 B S T 1

BST2 L BST3 L BST4 BNOX1 BNO X2 L BNOX3 L **BNOX4** L BCOS1 L BCOS2 L BCOS3 L BCOS4 L BRB1 L BRB2 L **BRB3** Ł **BRB4** L BUNF 1 BUNF2 L L BUNF3 L **BUNF4** L BC021 L BC 022 L BC023 L BC024 L BVD1 L BVD2 L 3VD3 L BVD4 L **BLAND1** L BLAND2 L BLAND3 L **BLAND4** L **BVIFA1** BVIFA2 L L **BVIFA3 BVIFA4** L L BEFF1 L BEFF2 BEFF3 L BEFF4 L L BIMP1 L BIMP2 L BIMP3 BIMP4 L **BVOR1** L BVOR2 L Ł BVOR3 L **BVOR4** GNF

			-			
COLUMNS						
XP1S2A	PKELBAL1	_	-38219	POWLC1		-38219
XP1S2A	KOSTEN		.21000	ZS 02		-15912
XP1S2A	ZFS		.00375	ZNOX		.07493
XP1S2A	ZUNF		•00225	ZCO2		-19400
XP1S2A	ZVV		.24373	ZEFF		.03704
XP1S4A	PKELBAL2	_	.38219	POWLC2		.38219
XP1S4A	KOSTEN		.21000	ZS02		.15912
XP154A XP154A	ZFS		•00375	ZNDX		.07493
XP1S4A	ZUNF		•00225	ZC02		.19400
XP1S4A	ZVV		-24373	ZEFF		.03704
XP1S6A	PKELBAL3	_	•38219	POWLC3		.38219
XP1S6A	KOSTEN	_	.21000	ZSO2		-15912
XP1S6A	ZFS		•00375	ZNOX		.07493
XP1S6A	ZUNF		•00225	ZCOZ		-19400
XP1S6A	ZVV		-24373	ZEFF		•03704
XPIS8A	IMELBAL1	_	•38219	POWLC4		.38219
XP1S8A	KOSTEN		-21000	ZS 02		.15912
XPISSA	ZFS		•00375	ZNOX		.07493
XP1S8A	ZUNF		•00225	ZCO2		.19400
XP1S8A	ZVV		.24373	ZEFF		.03704
XPISIOA	IMELBAL2	_	•38219	POWLC5		-38219
XP1S10A	KOSTEN	_	.21000	ZSO2		-15912
XPISIOA XPISIOA	ZFS		•00375	ZNOX		.07493
XPISIUA XPISIOA	ZUNF		•00225	ZCO2		-19400
	ZVV		•24373	ZEFF		.03704
XP1S10A	IMELBAL3	_	•38219	POWLC6		-38219
XPISI2A	KOSTEN	_	•21000	ZSO2		-15912
XP1S12A	ZFS		•00375	ZNOX		.07493
XPISIZA XPISIZA	ZUNF		•00225	ZCO2		-19400
XP1512A XP1512A	ZVV		•24373	ZEFF		.03704
XP1312A XP1314A	BSELBAL1	_	.38219	POWLC7		.38219
XP1514A	DEC 14		-38219	KOSTEN		-21000
XPISI4A	ZSO2		•15912	ZFS		.00375
XPISI4A	ZNOX		•07493	ZUNF		-00225
XPISI4A	ZCO2		•19400	ZVV		.24373
XP1514A	ZEFF		.03704			42,513
XPIS16A	BSELBAL2	_	.38219	POWLC8		.38219
XPISI6A	DEC16		.38219	KOSTEN		.21000
XP1S16A	Z S D 2		.15912	ZFS		.00375
XPISI6A	ZNOX		.07493	ZUNF		-00225
XP1S16A	ZCO2		.19400	ZVV		.24373
XP1S16A	ZEFF		.03704			
XPIS18A	BSELBAL3	_	-38219	POWLC9		.38219
XP1S18A	KOSTEN		.21000	ZS 02		.15912
XP1S18A	ZFS		•00375	ZNOX		.07493
XP1518A	ZUNF		•00225	ZCO2		-19400
XPIS18A	ZVV		-24373	ZEFF		.03704
CP1SNA	POWLC1	-	-11284	POWLC2	_	.33903
CP 1 SNA	POWLC3	_	-74798	POWLC4	_	1.75974
CP1SNA	POWLC5	_	•99961	POWLC6	-	.04011
CPISNA	POWLC7	_	1.93589	POWLC8	-	1.06066
CP1SNA	POWLC9	-	.01211	DEC14	-	1.93589
CP1 SNA	DEC16	-	1-06066	KOSTEN		2.60000
CP1SNA	ZLAND		-28000			
XP1S1	BSHT BAL 1	-	2.38870	BPCOIN1		2.87500
XP1S1	POWHTC1		-38219	KOSTEN		.21000
XP1S1	ZSD2		15912	ZF S		-00375
XP1S1	ZNOX		•07493	ZUNF		.00225
XP1S1	ZCO2		-19400	ZVV	-	-70071

XP151	ZEFF		.03704			
XP1S3	IMHTBAL1	-	2.38870	IPCOIN1		2.87500
XP1S3	POWHTC2		-38219	KOSTEN		-21000
XP1S3	ZS02		.15912	ZFS		-00375
XP1S3	ZNOX		•07493	ZUNF		•00225
XP1S3	ZCO2		.19400	ZVV	-	.70071
XP1S3	ZEFF		•03704			
XP1S5	PKHTBAL 1	-	2.38870	PPCOIN1		2.87500
XP1S5	POWHTC3		•38219	KOSTEN		•21000
XP1S5	Z SO2		•15912	ZFS		.00375
XP1S5	ZNOX		-07493	ZUNF		•00225
XP1S5	ZC 02		•19400	ZVV	-	.70071
XP1S5	ZEFF		-03704			
XP1S7	BSHTBAL2	-	2.38870	BICOINI		2.87500
XP1S7	POWHTC4		•382 19	KOSTEN		-21000
XP1S7	ZSO2		.15912	ZFS		00375
XP1S7	ZNOX		•07493	ZUNF		•00225
XP1S7	ZCO2		-19400	ZVV	-	.70071
XP1S7	ZEFF		.03704			
XP1S9	IMHTBAL2	_	2.38870	IICOIN1		2.87500
XP1S9	POWHTC5		.38219	KOSTEN		-21000
XP1S9	Z \$ 0 2		-15912	ZFS		-00375
XPIS9	ZNOX		.07493	ZUNF		•00225
XPIS9	ZCO2		-19400	ZVV	-	.70071
XP1S9	ZEFF		-03704			
XPISI1	PKHTBAL2	-	2.38870	PICOIN1		2.87500
XPISI1	POWHTC6		-38219	KOSTEN		-21000
XPISII	Z \$0 2		.15912	ZFS		.00375
XPISI1	ZNOX		.07493	ZUNF		•00225
XP1S11	ZCO2		.19400	ZVV	-	.70071
XPISII	ZEFF		.03704			
XPISI3	BSHTBAL3	_	2.38870	BBC OIN1		2.87500
XP1S13	POWHTC7		.38219	DEC 14		.38219
XP1S13	KOSTEN		-21000	ZS02		.15912
XP1S13	ZFS		.00375	ZNOX		.07493
XPISI3	ZUNF		.00225	ZCO2		•19400
XP1S13	ZVV	_	.70071	ZEFF		.03704
XPISI5	INHTBAL3	_	2.38870	IBCOINI		2.87500
XP1S15	POWHTC8		.38219	DEC 16		•38219
XP1S15	KOSTEN		.21000	Z S 0 2		.15912
XPISI5	ZFS		.00375	ZNOX		.07493
XPISI5	ZUNF		.00225	ZC02		-19400
XPISI5	ZVV	_	.70071	ZEFF		.03704
XP1317	PKHTBAL3	_	2.38870	PBCOIN1		2.87500
XPISI7	POWHTC9		-38219	KOSTEN		-21000
XP1517	ZSO2		.15912	ZFS		•00375
			.07493	ZUNF		•00225
XP1S17 XP1S17	ZNOX ZCO2		•19400	ZVV	-	.70071
XP1517	ZEFF		•03704	~ * *	_	-10011
		_	•38219	BPC OIN1		1.00000
XP1S2B XP1S2B	PKELBAL1 POWHTC1	_	•38219	KOSTEN	_	-21000
XP1528	Z SO2		•15912	ZFS		.00375
	ZNOX		.07493	ZUNF		•00225
XP1S2B			•19400	ZVV		.24373
XP1S2B	ZC02		• 1340U	7 A A		• E 4713

XP1S2B	ZEFF		-03704			
XP1S4B	PKELBAL2	-	-38219	IPCOIN1	-	1.00000
XP1S4B	POWHTC2		-38219	KOSTEN		-21000
XP1S4B	Z S O 2		•15912	ZFS		.00375
XP1S4B	ZNOX		•07493	ZUNF		•00225
XP1S4B	ZC02		-19400	ZVV		-24373
XP1S4B	ZEFF		.03704			
XP1S6B	PKELBAL3	-	.38219	PPCOIN1	-	1.00000
XP1S6B	POWHTC3		-38219	KOSTEN		.21000
XP1S6B	Z S O 2		•15912	ZFS		•00375
XP1S6B	ZNOX		.07493	ZUNF		-00225
XP1S6B	ZCO2		.19400	ZVV		.24373
XP1S6B	ZEFF		• 03 7 0 4			
XP1S8B	IMELBAL1	_	-38219	BICOIN1	-	1.00000
XP1S8B	POWHTC4		.38219	KOSTEN		-21000
XP1S8B	2502		15912	ZF S		•00375
XP1S8B	ZNOX		-07493	ZUNF		.00225
XP1S8B	ZCO2		•19400	ZVV		.24373
XP1S8B	ZEFF		-03704			
XP1S10B	IMELBAL2	-	-38219	IICOIN1	-	1.00000
XP1S10B	POWHTC5		.38219	KOSTEN		-21000
XPIS10B	ZS02		.15912	ZFS		.00375
XP1S10B	ZNOX		.07493	ZUNF		.00225
XP1S10B	ZCO2		-19400	ZVV		.24373
XP1S10B	ZEFF		•03704			32,213
XP1S12B	IMELBAL3	-	-38219	PICOIN1	-	1.00000
XPISI2B	POWHT C6		.38219	KOSTEN		.21000
XP1S12B	Z SO2		.15912	ZFS		•00375
XPISI2B	ZNOX		•07493	ZUNF		.00225
XP1S12B	ZC 02		-19400	ZVV		.24373
XP1S12B	ZEFF		.03704			02,5,5
XPISI4B	BSELBAL1	_	-38219	BBCOIN1	_	1.00000
XP1S14B	POWHTC7		•38219	DEC14		-38219
XP1514B	KOSTEN		-21000	Z S O 2		.15912
XP1S14B	ZFS		•00375	ZNOX		.07493
XP1S14B	ZUNF		•00225	ZCO2		-19400
XP1 S148	ZVV		.24373	ZEFF		.03704
XP1516B	BSELBAL2	_	•38219	IBCOIN1	_	1.00000
XPISI6B	POWHTC8		-38219	DEC 16		.38219
XP1516B	KOSTEN		-21000	ZS 02		•15912
XPISI6B	ZFS		.00375	ZNUX		.07493
XPISI6B	ZUNF		•00225	ZC02		.19400
XP1S16B	ZVV		-24373	ZEFF		-03704
XPISIOB XPISI8B	BSELBAL3	_	•38219	PBCOIN1	_	1.00000
XPISI8B	POWHTC9	_	•38219	KOSTEN		-21000
XPISI8B	ZSO2		•15912	ZFS		•00375
			.07493	ZUNF		•00225
XP1S18B XP1S18B	ZNOX ZCO2		•19400	ZVV		-24373
XP1518B	ZEFF		•03704	7 A A		•47313
		_	.11284	POWHTC2	_	.33903
CP1SNB	POWHTC1 POWHTC3	_	•11264 •74798	POWHTC4	_	1.75974
CP1SNB		_	•99961	POWHTC6	_	•04011
CPISNB	POWHTC5	_	1.93589	POWHTC8	_	1.06066
CP1SNB CP1SNB	POWHTC7	_	•01211	DEC 14	_	1.93589
PLIZIND	POWHTC9	_	•01211	DECIT	_	10 73 70 7

CPISNB	DEC 16	-	1.06066	KOSTEN		2.80000
CP1SNB	ZL AND		-28000			
XP1S1E	POWHTC1E		35753	BPCOIN1E		3.83333
XP1S1E	B SHTBA1E	_	2.97945	KOSTEN		-20000
XPISIE	Z\$02		•39312	ZFS		.06744
XP1S1E	ZNOX		.13113	ZUNF		•00225
XPISIE	ZCO2		•19400	ZVV	_	.70071
XPISIE	ZEFF		•03704	2 4 4		•10011
XP1S1E	POWHTC2E		•3575 3	I PCOI NI E		3.83333
			2.97945	KOSTEN		-20000
XP1S3E	IMHTBALE	_		ZFS		-06744
XP1S3E	Z SO2		•39312	_		
XP1S3E	ZNOX		•13113	ZUNF		-00225
XP1S3E	ZCO2		•19400	ZVV	_	.70071
XP1S3E	ZEFF		• 03704			
XP1S5E	POWHTC3E		.35753	PPCOIN1E		3.83333
XP1S5E	PKHTBA1E	_	2.97945	KOSTEN		-20000
XP1S5E	ZS02		•39312	ZFS		•06744
XP1S5E	ZNOX		.13113	ZUNF		•00225
XP1S5E	ZCO2		-19400	ZVV	-	-70071
XP1S5E	ZEFF		.03704			•
XP1S7E	POWHTC4E		.35753	BICOIN1E		3.83333
XP1S7E	BSHTBA2E	_	2.97945	KOSTEN		-20000
XP1S7E	Z \$ 02		-39312	ZFS		.06744
XP1S7E	ZNOX		.13113	ZUNF		•00225
			•19400	ZVV	_	.70071
XPISTE	ZC02			7 4 4	_	•10011
XP1S7E	ZEFF		.03704	TICOTHIC		2 0222
XP1S9E	POWHTC5E		.35753	IICOIN1E		3.83333
XP1S9E	IMHTBA2E	-	2.97945	KOSTEN		-20000
XP1S9E	Z S O 2		•39312	ZFS		.06744
XP1S9E	ZNOX		•13113	ZUNF		•00225
XP1S9E	ZC02		19400	ZVV	-	. 70071
XPIS9E	ZEFF		.03704			
XP1S11E	POWHTC6E		•35753	PICOIN1E		3.83333
XP1S11E	PKHTBA2E	-	2.97945	KOSTEN		-20000
XPISI1E	Z S O 2		.39312	ZFS		-06744
XP1S11E	ZNOX		.13113	ZUNF		-00225
XPISI1E	ZC02		•19400	ZVV	_	.70071
XP1S11E	ZEFF		.03704			
XPISI3E	POWHTC7E		-3575 3	BBCOIN1E		3.83333
XP1S13E	BSHTBA3E	_	2.97945	DEC14		•35753
XPISI3E	KOSTEN	_	-20000	Z SO2		.39312
						.13113
XPISI3E	ZFS		-06744	ZNOX		
XP1S13E	ZUNF		-00225	ZC02		-19400
XP1S13E	ZVV	_	. 70071	ZEFF		.03704
XP1S15E	POWHTC8E		•35753	IBCOIN1E		3.83333
XP1S15E	IMHTBA3E	-	2.97945	DEC 16		-35753
XP1S15E	KOSTEN		-20000	ZSO2		•39312
XP1S15E	ZFS		• 06744	ZNOX		.13113
XP1S15E	ZUNF		.00225	ZC 02		.19400
XP1S15E	ZVV	-	-70071	ZEFF		.03704
XP1S17E	POWHTC9E		.35753	PBCOINIE		3.83333
XP1S17E	PKHTBA3E	-	2.97945	KOSTEN		.20000
XP1S17E	Z S O 2		•39312	ZFS		-06744
XPISITE	ZNOX		•13113	ZUNF		.00225

XP1S17E	ZC02		-19400	ZVV	-	.70071
XP1S17E	ZEFF		.03704			
	PKELBAL1	_	•35753	POWHTC1E		.35753
XP1S2E		_				-20000
XP1S2E	BPCOIN1E	-	1.00000	KOSTEN		
XP1S2E	ZSD2		•39312	ZFS		-06744
XP1S2E	ZNOX		-13113	ZUNF		•00225
XP1S2E	ZC02		.19400	ZVV		•24373
XP1S2E	ZEFF		.03704			
XP1S4E	PKELBAL2	_	.35753	POWHTC2E		.35753
XP1S4E	IPCOINTE	_	1.00000	KOSTEN		.20000
	Z S 0 2		•39312	ZFS		.06744
XP1S4E						•00225
XP1S4E	ZNOX		-13113	ZUNF		
XP1S4E	ZCO2		-19400	ZVV		.24373
XP1S4E	ZEFF		.03704			
XP1S6E	PKELBAL3	-	•35753	POWHTC3E		.35753
XP1S6E	PPC OIN1E	-	1.00000	KOSTEN		-20000
XP1S6E	Z S O 2		•39312	ZFS		.06744
XP1S6E	ZNOX		-13113	ZUNF		•00225
	ZC02		-19400	ZVV		-24373
XP1S6E			.03704	244		• £ 7 3 1 3
XP1S6E	ZEFF		·-	201117615		25752
XP1S8E	IMELBAL1	_	•35753	POWHTC4E		•35753
XP1S8E	BICOIN1E	_	1.00000	KOSTEN		-20000
XP1S8E	ZS02		•39312	ZFS		•06744
XP1S8E	ZNOX		.13113	ZUNF		- 00225
XP1S8E	ZC02		. 19400	ZVV		. 24373
XP1S8E	ZEFF		.03704			
XPISIOE	IMELBAL2	_	.35753	POWHTC5E		.35753
			1.00000	KOSTEN		-20000
XP1S10E	IICOINLE	-				
XP1S10E	Z S O 2		•39312	ZFS		-06744
XP1S10E	ZNOX		.13113	ZUNF		-00225
XP1S10E	ZC02		•19400	ZVV		.24373
XP1S10E	ZEFF		.03704			
XP1S12E	IMELBAL3	_	.35753	POWHTC6E		•35753
XP1S12E	PICOINIE	_	1.00000	KOSTEN		.20000
XPISI2E	ZS02		•39312	ZFS		.06744
XP1S12E	ZNOX		.13113	ZUNF		.00225
			.19400	ZVV		.24373
XPISI2E	ZC02			2 4 4		• 2 7 3 1 3
XP1S12E	ZEFF		•03704	201117075		25752
XP1S14E	BSELBAL1	-	.35753	POWHTC7E		.35753
XP1S14E	BBCOIN1E	-	1.00000	DEC 14		.35753
XP1S14E	KOSTEN		- 20000	ZSO2		.39312
XP1S14E	ZFS		.06744	ZNOX		.13113
XP1S14E	ZUNF		•00225	ZCO2		-19400
XPISI4E	ZVV		.24373	ZEFF		.03704
XPISI6E	BSELBAL2	-	.35753	POWHTC8E		.35753
	IBCOINTE	_	1.00000	DEC16		•35753
XP1S16E		-	-20000	ZS02		.39312
XP1S16E	KOSTEN					.13113
XP1S16E	ZFS		• 06744	ZNOX		
XP1S16E	ZUNF		•00225	ZCO2		-19400
XP1S16E	ZVV		. 243 73	ZEFF		.03704
XP1S18E	BSELBAL3	-	. 3575 3	POWHTC9E		•35753
XP1S18E	PBCOIN1E	-	1.00000	KOSTEN		-20000
XP1S18E	Z SO2		.39312	ZFS		.06744
XP1S18E	ZNOX		.13113	ZUNF		.00225
AT ISIOC	2		7-7-5-	· · · ·		

XP1S18E	zco2		•19400	zvy		-24373
XP1S18E	ZEFF		• 03 7 0 4			
CP1SNE	POWHTC1E	-	-11284	POWHTC2E	-	•33903
CPISNE	POWHTC3E	-	. 74798	POWHTC4E	-	1.75974
CP1SNE	POWHTC5E	-	• 99961	POWHTC6E	-	.04011
CP1SNE	POWHTC7E	-	1.93589	POWHTC8E	-	1.06066
CP1SNE	POWHTC9E	-	.01211	DEC14	-	1.93589
CP1SNE	DEC16	-	1.06066	KOSTEN		2.80000
CPISNE	ZLAND		-28000			
XP2S2A	PKELBAL1	_	. 33106	POWLNE1		.33106
XP2S2A	KOSTEN		•05000	ZVV		•26390
XP2S2A	ZEFF		-03704	ZIMP		.01165
XP2S4A	PKELBAL2	-	.33106	POWLNE2		-33106
XP2S4A	KOSTEN		-05000	ZVV		. 26390
XP2S4A	ZEFF		•03704	ZIMP		.01165
XP2S6A	PKELBAL3	_	•33106	POWLNE3		•33106
XP2S6A	KOSTEN		• 0500 0	ZVV		-26390
XP2S6A	ZEFF		•03704	ZIMP		.01165
XP2S8A	IMELBAL1	_	•33106	POWLNE4		.33106
XP2S8A	KOSTEN		•05000	ZVV		-26390
XP2S8A	ZEFF		.03704	ZIMP		.01165
XP2S10A	IMELBAL2	_	• 33106	POWLNE5		.33106
XP2S10A	KOSTEN		•05000	ZVV		.26390
XP2S1QA	ZEFF		.03704	ZIMP		.01165
XP2S12A	IMELBAL3	_	.33106	POWLNE6		.33106
XP2S12A	KOSTEN		•05000	ZVV		.26390
XP2S12A	ZEFF		.03704	ZIMP		.01165
XP2S14A	BSELBAL1	_	•33106	POWLNE7		.33106
XP2S14A	DEC 14		.33106	KOSTEN		.05000
XP2S14A	ZVV		-26390	ZEFF		.03704
XP2S14A	ZIMP		.01165			
XP2S16A	BSELBAL2	-	. 33106	POWLNE8		-33106
XP2S16A	DEC16		•33106	KOSTEN		.05000
XP2S16A	ZVV		-26390	ZEFF		-03704
XP2S16A	ZIMP		•01165			
XP2S18A	BSELBAL3	-	•33106	POWLNE9		.33106
XP2S18A	KOSTEN		•05000	ZVV		.26390
XP2S18A	ZEFF		•03704	ZIMP		-01165
CP2SNA	POWLNE 1	-	-11284	POWLNE2	-	.33903
CP2SNA	POWLNE3	-	•74798	POWLNE4	-	1.75974
CP2SNA	POWLNE5	_	.99961	POWLNE6	-	-04011
CP2SNA	POWLNE7	-	1.93589	POWLNE8	-	1.06066
CPŹSNA	POWLNE9	_	.01211	DEC14	-	1.93589
CP2SNA	DEC16	_	1.06066	KOSTEN		3.00000
CP2SNA	ZRAD		-24100	ZLAND		-28000
XP 2S1	BSHTBAL 1	_	2.36472	8PCOIN2		2.28571
XP2S1	POWHTNE1		.33106	KOSTEN		-05000
XP2S1	ZVV	-	•60319	ZEFF		.03704
XP2S1	ZIMP		•07182			
XP2S3	IMHTBAL1	-	2.36472	IPCOIN2		2.28571
XP2S3	POWHTNE 2		-33106	KOSTEN		-05000
XP2S3	ZVV	-	-60319	ZEFF		-03704
XP2S3	ZIMP		•07182			
XP2S5	PKHTBAL 1	-	2.36472	PPCOIN2		2-28571

MPSX/370 R1.5	ENE	RGI	EMODELL BA-W	UE (GR)		
XP2S5	POWHTNE3		-33106	KOSTEN		•05000
XP2S5	ZVV	_	•60319	ZEFF		.03704
XP2S5	ZIMP		.07182			-
XP2S7	BSHTBAL2	-	2.36472	BICOIN2		2.28571
XP2S7	POWHTNE 4		33106	KOSTEN		.05000
XP2S7	ZVV	-	•60319	ZEFF		.03704
XP2S7	ZIMP		•07182			
XP2S9	IMHTBAL 2	-	2.36472	IICOIN2		2.28571
XP2S9	POWHTNE5		•33106	KOSTEN		•05000
XP2S9	ZVV	-	. 60319	ZEFF		.03704
XP2S9	ZIMP		•07182			_
XP 2 S 1 1	PKHTBAL 2	-	2.36472	PICOIN2		2-28571
XP2S11	POWHTNE6		•33106	KOSTEN		-05000
XP2S11	ZVV	-	•60319	ZEFF		.03704
XP2S11	ZIMP		.07182	22667112		2 20571
XP2S13	BSHTBAL3	-	2.36472	BBCOIN2		2.28571
XP2S13	POWHTNE 7		-33106	DEC14		•33106
XP2S13	KOSTEN		•05000	ZVV	-	.60319
XP2S13	ZEFF		•03704	ZIMP		.07182
XP2S15	IMHTBAL3	_	2-36472	IBCOIN2 DEC16		2.28571 .33106
XP2S15 XP2S15	POWHTNE8 KOSTEN		•33106 •05000	ZVV	_	.60319
XP2515 XP2S15	ZEFF		•03704	ZIMP	_	.07182
XP2S17	PKHTBAL3	_	2 •36472	PBCOIN2		2.28571
XP2517 XP2517	POWHTNE9	_	•33106	KOSTEN		•05000
XP2517	ZVV	_	•60319	ZEFF		•03704
XP 2517	ZIMP		•07182	CL! !		403104
XP2S2B	PKELBAL1	_	-33106	BPCOIN2	_	1.00000
XP2S2B	POWHTNE1		.33106	KOSTEN		•05000
XP2S2B	ZVV		•26390	ZEFF		.03704
XP2S2B	ZIMP		•01165			
XP2S4B	PKELBAL 2	_	.33106	IPCOIN2	-	1.00000
XP2S4B	POWHTNE2		•33106	KOSTEN		•05000
XP2S4B	ZVV		-26390	ZEFF		-03704
XP2S4B	ZIMP		•01165			
XP2S6B	PKELBAL3	_	•33106	PPCOIN2	-	1.00000
XP2S6B	POWHTNE3		•33106	KOSTEŇ		•05000
XP2S6B	ZVV		-26390	ZEFF		-03704
XP2S6B	ZIMP		.01165			
XP2S8B	IMELBAL1	-	•33106	BICOIN2	-	1.00000
XP2S8B	POWHTNE4		•33106	KOSTEN		-05000
XP2S8B	ZVV		. 26390	ZEFF		-03704
XP2S8B	ZIMP		-01165			
XP2S10B	IMELBAL 2	-	-33106	IICOIN2	-	1-00000
XP2S10B	POWHTNE5		-33106	KOSTEN		.05000
XP2S10B	ZVV		-26390	ZEFF		.03704
XP2S10B	ZIMP		•01165	DICCING		
XP2S12B	IMELBAL3	-	•33106	PICOIN2	-	1.00000
XP 2S 1 2B	POWHTNE 6		• 33106 34300	KOSTEN		-05000 -03704
XP2S12B	ZVV		•26390 •01165	ZEFF		•03104
XP2S12B XP2S14B	ZIMP BSELBALI	_	•33106	BBCOIN2	_	1.00000
XP2514B XP2S14B	POWHTNE7	_	•33106	DEC14	_	•33106
XP2514B XP2514B	KOSTEN		• 05000	ZVV		.26390
AF 23170	NUU I LIT		+0,000	_ , ,		-20370

XP2S14B	ZEFF		•03704	ZIMP		-01165
XP2S16B	BSELBAL2	-	•33106	IBCOIN2	-	1.00000
XP 2S 163	POWHTNE 8		.33106	DEC16		.33106
XP2S16B	KOSTEN		•05000	ZVV		.26390
XP2S16B	ZEFF		.03704	ZIMP		.01165
XP2S18B	BSELBAL3	_	.33106	PBCOIN2	_	1.00000
XP2S18B	POWHTNE9		•33106	KOSTEN		•05000
XP2S18B	ZVV		-26390	ZEFF		.03704
XP2S18B	ZIMP		.01165			
CP 2 SNB	POWHTNE 1	_	-11284	POWHTNE2	_	.33903
CP2SNB	POWHTNE3	-	.74798	POWHTNE4	_	1.75974
CP2SNB	POWHTNE 5	_	.99961	POWHTNE6	-	-04011
CP2SNB	POWHTNE7	-	1.93589	POWHTNE 8	-	1.06066
CP2SNB	POWHTNE9	_	.01211	DEC14	_	1.93589
CP 2 SNB	DEC 16	-	1.06066	KOSTEN		3.45000
CP2SNB	ZRAD		-24100	ZLAND		.28000
XP5S2A	PKELBAL1	-	•40588	POWLDG1		•40588
XP5S2A	KOSTEN		.31500	ZNOX		.07493
XP5S2A	ZC02		-13200	ZVV		.23438
XP5S2A	ZEFF		• 03704	ZIMP		.00714
XP5S2A	ZVOR		•01200			
XP5S4A	PKELBAL2	-	•40588	POWLDG2		-40588
XP5S4A	KOSTEN		•31500	ZNOX		.07493
XP5S4A	ZC 02		-13200	ZVV		-23438
XP5S4A	ZEFF		•03704	ZIMP		.00714
XP5S4A	ZVOR		•01200			
XP5S6A	PKELBAL3	_	•40588	POWLDG3		-40588
XP5S6A	KOSTEN		•31500	ZNOX		.07493
XP5S6A	ZCO2		•13200	ZVV		-23438
XP5S6A	ZEFF		•03704	ZIMP		.00714
XP5S6A	ZVOR		.01200			
XP5S8A	IMELBAL1	_	•40588	POWLDG4		-40588
XP5S8A	KOSTEN		•31500	ZNOX		.07493
XP5S8A	ZCD2		•13200	ZVV		.23438
XP5S8A	ZEFF		•03704	ZIMP		.00714
XP5S8A	ZVOR		•01200			
XP5S10A	INELBAL2	_	•40588	POWLDG5		.40588
XP5S10A	KOSTEN		•31500	ZNOX		.07493
XP5S10A	2002		•13200	ZVV		-23438
XP5S10A	ZEFF		•03704	ZIMP		.00714
XP5S10A	ZVOR		•01200			000.2.
XP5S12A	IMELBAL3	-	•40588	POWLDG6		.40588
XP5S12A	KOSTEN		•31500	ZNOX		.07493
XP5S12A	ZCO2		•13200	ZVV		-23438
XP5S12A	ZEFF		.03704	ZIMP		.00714
XP5S12A	ZVOR		-01200	4.4111		
XP5S14A	BSELBAL 1	_	•40588	POWLDG7		•40588
XP5S14A	DEC14		•40588	KOSTEN		.31500
XP5S14A	ZNOX		•07493	ZCO2		-13200
XP5S14A	ZVV		•23438	ZEFF		•03704
XP5S14A	ZIMP		•00714	ZVOR		.01200
XP5S16A	BSELBAL2	-	-40588	POWLDG8		.40588
XP5S16A	DEC16		•40588	KOSTEN		•31500
XP5S16A	ZNOX		• 07493	ZCO2		.13200
JJ 1 UN	-110 A		441173			

XP5S16A	ZVV		•23438	ZEFF		-03704
XP5S16A	ZIMP		-00714	ZVOR		.01200
XP5S18A	BSELBAL3	_	40588	POWLDG9		-40588
XP5S18A	KOSTEN		•31500	ZNOX		.07493
XP5S18A	ZCO2		-13200	ZVV		.23438
XP5S18A	ZEFF		.03704	ZIMP		.00714
XP5S18A	ZVOR		.01200			
CP5SNA	POWLDG1	_	.11284	POWLDG2	-	.33903
CP5SNA	POWLDG3	_	.74798	POWLDG4		1.75974
CP5SNA	POWLDG5	_	•99961	POWLDG6	_	-04011
CP5 SNA	POWLDG7	-	1.93589	POWLDG8	-	1.06066
CP5SNA	POWLDG9	_	•01211	DEC14	_	1.93589
CP5SNA	DEC16	_	1.06066	KOSTEN		1.94000
CP5SNA	ZLAND		-28000			
XP5S1	BSHTBAL 1	_	2.53677	BPCOIN5		3.31250
XP5S1	POWHTG1		. 40588	KOSTEN		.31500
XP5S1	ZNOX		•07493	ZC02		.13200
XP5S1	ZVV	-	.77638	ZEFF		-03704
XP5S1	ZIMP		-03852	ZVOR		.01200
XP5S3	IMHTBAL 1	-	2.53677	IPCOIN5		3.31250
XP5S3	POWHTG2		. 40588	KOSTEN		•31500
XP5S3	ZNOX		07493	ZC 02		.13200
XP5S3	ZVV	_	.77638	ZEFF		.03704
XP5S3	ZIMP		.03852	ZVOR		.01200
XP5S5B	PKHTBAL 1	_	2.53677	PPCOIN5		3.31250
XP5S5B	POWHTG3		-40588	KOSTEN		.31500
XP5S5B	ZNOX		.07493	ZC 02		-13200
XP5S5B	ZVV	-	.77638	ZEFF		.03704
XP5S5B	ZIMP		.03852	ZVOR		.01200
XP5S7	BSHTBAL 2	-	2.53677	BICOIN5		3.31250
XP5S7	POWHT G4		-40588	KOSTEN		.31500
XP5S7	ZNOX		.07493	ZCO2		-13200
XP5S7	ZVV	-	-77638	ZEFF		.03704
XP5S7	ZIMP		•03852	ZVOR		.01200
XP5S9	IMHTBAL 2	-	2.53677	IICOIN5		3.31250
XP5S9	POWHTG5		•40588	KOSTEN		.31500
XP5S9	ZNOX		•07493	ZC 02		-13200
XP5S9	ZVV	_	- 77638	ZEFF		.03704
XP5S9	ZIMP		-03852	ZVOR		-01200
XP5S11B	PKHTBAL 2	_	2.53677	PICOIN5		3.31250
XP5S11B	POWHTG6		•40588	KOSTEN		.31500
XP5S11B	ZNOX		•07493	ZCO2		-13200
XP5S11B	ZVV	_	-77638	ZEFF		.03704
XP5S11B	ZIMP		.03852	ZVOR		-01200
XP5S13	BSHT BAL 3	_	2.53677	BBCOIN5		3.31250
XP5S13	POWHTG7		•40588	DEC14		.40588
XP5S13	KOSTEN		-31500	ZNOX		.07493
XP5S13	ZCO2		-13200	ZVV	-	.77638
XP5S13	ZEFF		•03704	ZIMP		.03852
XP5S13	ZVOR		.01200			
XP5S15	IMHTBAL3	-	2.53677	IBCOIN5		3.31250
XP5S15	POWHTG8		-40588	DEC 16		•40588
XP5S15	KOSTEN		-31500	ZNOX		•07493
XP5\$15	ZC02		-13200	ZVV	-	.77638

XP5S15	ZEFF		.03704	ZIMP		.03852
XP5S15	ZVOR		•01200			
XP5S17B	PKHTBAL 3	-	2. 53677	PBCOIN5		3.31250
XP5S17B	POWHTG9		- 40588	KOSTEN		.31500
XP5S17B	ZNOX		•07493	ZC02		•13200
XP5S17B	ZVV	_	•77638	ZEFF		.03704
XP5 S1 7B	ZIMP		•0385 <i>2</i>	ZVOR		.01200
XP5S2B	PKELBAL1	-	. 40588	BPCOIN5	-	1.00000
XP5S2B	POWHTG1		. 40588	KOSTEN		.31500
XP5S2B	ZNOX		•07493	ZC 02		-13200
XP5S2B	ZVV		23438	ZEFF		.03704
XP5S2B	ZIMP		•00714	ZVOR		.01200
XP5S4B	PKELBAL2	_	-4 0588	IPCOIN5	-	1-00000
XP5S4B	POWHTG2		-4 0588	KOSTEN		-31500
XP5S4B	ZNOX		•07493	ZC 02		.13200
XP5S4B	ZVV		.23438	ZEFF		.03704
XP5S4B	ZIMP		•00714	ZVOR		-01200
XP5S6B	PKELBAL3	-	•40588	PPCOIN5	-	1.00000
XP5S6B	POWHTG3		-40588	KOSTEN		.31500
XP5S6B	ZNOX		-07493	ZC 02		.13200
XP5S6B	ZVV		-23438	ZEFF		.03704
XP5S6B	ZIMP		-00714	ZVOR		-01200
XP5S8B	IMELBAL 1	_	40588	BICOIN5	-	1.00000
XP5S8B	POWHT G4		•40588	KOSTEN		-31500
XP5S8B	ZNOX		.07493	ZC 02		-13200
XP5S8B	ZVV		.23438	ZEFF		-03704
XP5S8B	ZIMP		•00714	ZVOR		.01200
XP5S10B	IMELBAL2	-	•40588	IICOIN5	-	1.00000
XP5S10B	POWHTG5		-40588	KOSTEN		.31500
XP5S10B	ZNOX		.07493	ZC 02		.13200
XP5S10B	ZVV		-23438	ZEFF		.03704
XP5S10B	ZIMP		-00714	ZVOR		-01200
XP5S12B	IMEL BAL 3	_	. 40588	PICOIN5	_	1.00000
XP5S12B	POWHTG6		•40588	KOSTEN		.31500
XP5S12B	XCNZ		-07493	ZCO2		-13200
XP5S12B	ZVV		-23438	ZEFF		.03704
XP5S12B	ZIMP		-00714	ZVOR		.01200
XP5S14B	BSELBAL 1	_	•40588	BBCOIN5	-	1.00000
XP5S14B	POWHTG7		- 40588	DEC14		•40588
XP5S14B	KOSTEN		-31500	ZNOX		.07493
XP5S14B	ZC02		-13200	ZVV		-23438
XP5S14B	ZEFF		.03704	ZIMP		.00714
XP5S14B	ZVOR	•	•01200			
XP5S16B	BSELBAL2	-	-40588	IBCOIN5	_	1.00000
XP5S16B	POWHTG8		. 40588	DEC 16		•40588
XP5S16B	KOSTEN		•31500	ZNOX		.07493
XP5S16B	ZC02		.13200	ZVV		-23438
XP5S16B	ZEFF		.03704	ZIMP		.00714
XP5S16B	ZVOR		.01200			
XP5S18B	BSELBAL3	-	-40588	PBCOIN5	-	1.00000
XP5S18B	POWHTG9		.40588	KOSTEN		.31500
XP5S18B	ZNOX		.07493	ZCO2		-13200
XP5S18B	ZVV		-23438	ZEFF		.03704
XP5S18B	ZIMP		-00714	ZVOR		.01200

C	P 5 SNB	POWHTG1	-	-11284	POWHTG2	_	-33903
C	PSSNB	POWHTG3	-	- 74798	POWHTG4	-	1.75974
C	P5SNB	POWHTG5	-	•99961	POWHTG6	_	-04011
C	CP5SNB	POWHTG7	_	1-93589	POWHTG8	-	1.06066
C	CP5SNB	POWHTG9	-	-01211	DEC14	-	1.93589
	P5SNB	DEC16	-	1-06066	KOSTEN		2.14000
	PSSNB	ZLAND		-2 8000			
	(P5S5C	PKHTBAL1	_	•9000 0	STATION1	_	1.00000
	(PSS5C	HTSTAT1A		•90000	KOSTEN		-31500
	(P5S5C	ZNOX		.07493	ZCO2		-13200
	(P5S5C	ZEFF		.03704	ZIMP		.01367
	(P5S5C	ZVOR		-01200			
	(P5S11C	PKHTBAL2	-	.90000	STATION2	-	1.00000
	(P5S11C	HTSTAT2A		-90000	KOSTEN		.31500
	(P5S11C	ZNOX		• 07493	ZCO2		.13200
	(P5S11C	ZEFF		•03704	ZIMP		.01367
	(P5S11C	ZVOR		•01200	CTATIONS	_	1.00000
	(P5S17C	PKHTBAL3	-	- 90000 - 90000	STATION3	_	.31500
	(P5S17C	HTSTAT3A			KOSTEN ZCO2		•13200
	(P5S17C	ZNOX	_	•07493 •03704	ZIMP		.01367
	(P5S17 C (P5S17 C	ZEFF ZVOR		•01200	ZINP		•01501
	P5SNC	HTSTATIA	_	•74798	HTSTAT2A	_	-04011
	P5SNC	HTSTATTA	_	-01211	RESERVE1	_	.65600
	PSSNC	KOSTEN		•13500	ZLAND		-12000
	(P5S1E	POWHTG1E		•38235	BPCOIN5E		4.41667
	(P5S1E	BSHTBALE	_	3.18628	KOSTEN		•31500
	P5S1E	ZNOX		•07493	ZCO2		.13200
	(P5S1E	ZVV	_	•77638	ZEFF		.03704
	(P5S1E	ZIMP		-04838	ZVOR		.01200
	P5S3E	POWHTG2E		.38235	IPCOIN5E		4.41667
	(P5S3E	IMHTBALE	_	3-18628	KOSTEN		.31500
X	(P5S3E	ZNOX		.07493	ZC02		.13200
Х	(P5S3E	ZVV	-	-77638	ZEFF		.03704
Х	(P5S3E	ZIMP		.04838	ZVOR		.01200
X	(P5S5E	POWHTG3E		•38235	PPCOIN5E		4.41667
	(P5S5E	PKHTBA1E	-	3.1 8628	KOSTEN		•31500
	(P5S5E	ZNOX		.07493	ZC02		.13200
	(P5S5E	ZVV	-	•77638	ZEFF		•03704
	(P5S5E	ZIMP		-04838	ZVOR		•01200
	(P5S7E	POWHTG4E		-38235	BICOIN5E		4.41667
	KP5S7E	BSHTBAZE	-	3.18628	KOSTEN		-31500
	(P5S7E	ZNOX		-07493	ZC 02		.13200
	(P5S7E	ZVV	-	•77638	ZEFF		.03704
	P5S7E	ZIMP		• 04838	ZVOR		-01200
	P5S9E	POWHTG5E		•38235 3•10430	IICOINSE		4.41667
	(PSS9E	IMHTBA2E		3.18628	KOSTEN		.31500 .13200
	(P5S9E (P5S9E	ZNOX ZVV	_	•07493 •77638	ZCO2 ZEFF		•03704
	(P5S9E	ZIMP	_	• 04838	ZVOR		.01200
	(P5511E	POWHT G6 E		•38235	PICOINSE		4.41667
	(P5S11E	PKHTBA2E	_	3. 18628	KOSTEN		-31500
	(P5S11E	ZNOX		•07493	ZCO2		.13200
	(P5S11E	ZVV	_	•77638	ZEFF		.03704
•		_ • •		· · · · · ·			

XP5S11E	ZIMP		.04838	zvor		.01200
XP5S13E	POWHTG7E		•38235	BBC01N5E		4-41667
XP5S13E	BSHTBA3E	_	3.1 8628	DEC14		•38235
XP5S13E	KOSTEN		•31500	ZNOX		.07493
XP5S13E	ZC02		-13200	ZVV	-	.77638
XP5S13E	ZEFF		• 03704	ZIMP		- 04838
XP5S13E	ZVOR		- 01200			
XP5S15E	POWHTG8E		-38235	IBCOIN5E		4-41667
XP5S15E	IMHTBA3E	-	3. 18628	DEC16		•38235
XP5S15E	KOSTEN		•31500	ZNOX		.07493
XP5S15E	ZCD2		•13200	ZVV	-	.77638
XP5S15E	ZEFF		-03704	ZIMP		•04838
XP5S15E	Z VOR		.01200			
XP5S17E	POWHTG9E		.38235	PBCOIN5E		4.41667
XP5S17E	PKHTBA3E	-	3.18628	KOSTEN		-31500
XP5S17E	ZNOX		-07493	ZC02		-13200
XP5S17E	ZVV	-	.77638	ZEFF		-03704
XP5S17E	ZIMP		•04838	ZVOR		-01200
XP5S2E	PKELBAL1	-	.38235	POWHTG1E		.38235
XP5S2E	BPCOIN5E	-	1.00000	KOSTEN		-31500
XP5S2E	ZNOX		•07493	ZCO2		-13200
XP5S2E	ZVV		-23438	ZEFF		-03704
XP5S2E	ZIMP		•00673	ZVOR		.01200
XP5S4E	PKELBAL 2	-	.38235	POWHTG2E		-38235
XP5S4E	I PCOINSE	-	1.00000	KOSTEN		.31500
XP5S4E	ZNOX		.07493	ZC02		-13200
XP5S4E	ZVV		.23438	ZEFF		•03704
XP5S4E	ZIMP		. 00673	ZVOR		-01200
XP5S6E	PKELBAL3	-	-38235	POWHTG3E		-38235
XP5S6E	PPCOINSE	_	1.00000	KOSTEN		-31500
XP5S6E	ZNOX		.07493	ZC02		.13200
XP5S6E	ZVV		.23438	ZEFF		-03704
XP5S6E	ZIMP		.00673	ZVOR		.01200 .38235
XP5S8E	IMELBAL1	-	-38235	POWHTG4E Kosten		•38233
XP5S8E	BICOINSE	-	1.00000			•13200
XP5S8E	ZNOX		-07493	ZC02		•03704
XP5S8E	ZVV		•23438 •00673	ZEFF ZVOR		.01200
XP5S8E	ZIMP IMELBAL2	_	•38235	POWHTG5E		•38235
XP5S10E XP5S10E	IICOINSE	_	1.00000	KOSTEN		•31500
XP5S10E	ZNOX	_	•07493	ZCO2		.13200
XP5S10E	ZVV		•23438	ZEFF		-03704
XP5S10E	ZIMP		.00673	ZVOR		-01200
XP5S12E	IMELBAL3	_	•38235	POWHTG6E		.38235
XP 5 S 1 2 E	PICOINSE	_	1.00000	KOSTEN		-31500
XP5S12E	ZNOX		.07493	ZCO2		.13200
XP5S12E	ZVV		•23438	ZEFF		.03704
XP5S12E	ZIMP		•00673	ZVOR		.01200
XP5S14E	BSELBAL1	_	.38235	POWHTG7E		•38235
XP5S14E	BBCOIN5E	-	1.00000	DEC14		.38235
XP5S14E	KOSTEN		•31500	ZNOX		.07493
XP5S14E	ZCO2		.13200	ZVV		-23438
XP5S14E	ZEFF		.03704	ZIMP		.00473
XP5S14E	ZVOR		.01200			
· · -						

XP5S16E	BSELBAL2	_	3 8235	POWHTG8 E		.38235
XP5S16E	IBCOIN5E	-	1.00000	DEC16		•38235
XP5S16E	KOSTEN		-3 1500	ZNOX		.07493
XP5S16E	ZC02		-13200	ZVV		.23438
XP5S16E	ZEFF		-03704	ZIMP		.00673
XP5S16E	ZVOR		.01200			
XP5S18E	BSELBAL3	-	38235	POWHTG9E		-38235
XP5 S1 8E	PBC OI N5 E	_	1.00000	KOSTEN		•31500
XP5S18E	ZNOX		.07493	ZC02		.13200
XP5S18E	ZVV		-23438	ZEFF		.03704
XP5S18E	ZIMP		.00673	ZVOR		-01200
CPSSNE	POWHTG1E	_	-11284	POWHTG2E	-	.33903
CP5SNE	POWHTG3E	_	.74798	POWHT G4E	_	1.75974
CPSSNE	POWHTG5E	_	.99961	POWHTG6E	_	.04011
CP5SNE	POWHTG7E	_	1.93589	POWHTG8E	_	1.06066
CP 5 SNE	POWHTG9E	-	•01211	DEC14	-	1.93589
CP5SNE	DEC16	_	1.06066	KOSTEN		2.25000
CP5SNE	ZLAND		-28000			
XP5S5CE	PKHTBALE	_	•90000	HTSTA1AE		•90000
XP5S5CE	KOSTEN		-31500	ZNOX		.07493
XP5S5CE	ZCO2		•13200	ZEFF		-03704
XP5S5CE	ZIMP		-04838	ZVOR		.01200
XP5S11CE	PKHTBA2E	_	•90000	HTSTA2AE		.90000
XP5S11CE	KOSTEN		•31500	ZNOX		.07493
XP5S11CE	ZCO2		•13200	ZEFF		.03704
XP5S11CE	ZIMP		•03852	ZVOR		-01200
XP5S17CE	PKHTBA3E	_	•90000	HTSTABAE		•90000
XP5S17CE	KOSTEN		•31500	ZNOX		.07493
XP5S17CE	ZCOZ		•13200	ZEFF		.03704
XP5S17CE	ZIMP		.03852	ZVOR		.01200
CP5SNCE	RESERVE2	_	•65600	HTSTALAE	-	.74798
CP5SNCE	HTSTA2AE	_	.04011	HTSTA3AE	_	.01211
CPSSNCE	KOSTEN		.13500	ZLAND		-12000
XP6S2	PKELBAL1	-	-36881	POWLB1		-38219
XP6S2	KOSTEN		•06500	Z SO2		- 78624
XP6S2	ZFS		-14987	ZNOX		.26227
XP6S2	ZC02		•23844	ZVV		.24373
XP6S2	ZLAND		.26700	ZEFF		-03704
XP6S4	PKELBAL2	_	-36891	POWLB2		.38219
XP6S4	KOSTEN		•06500	ZS 02		.78624
XP6S4	ZFS		-14987	ZNOX		-26227
XP6S4	ZC02		-23844	ZVV		.24373
XP6S4	ZLAND		-26700	ZEFF		-03704
XP6S6	PKELBAL3	_	-36891	POWLB3		-38219
XP6S6	KOSTEN		•06500	ZS 02		.78624
XP6S6	ZFS		14987	ZNOX		.26227
XP6S6	ZC02		-23844	ZVV		-24373
XP6S6	ZLAND		-26700	ZEFF		.03704
XP6S8	IMELBAL1	_	-36881	POWLB4		.38219
XP6S8	KOSTEN		•06500	ZS 02		•78624
XP6S8	ZFS		-14987	ZNOX		.26227
XP6S8	ZÇO2		-23844	ZVV		.24373
XP6S8	ZLAND		•26700	ZEFF		-03704
XP6S10	IMELBAL2	-	-36881	POWLB5		.38219

XP6S10	KOSTEN		•06500	ZS02		•78624
XP6S10	ZFS		-14987	ZNOX		-26227
XP6S10	ZCO2		-23844	ZVV		-24373
XP6S10	ZLAND		-26700	ZEFF		•03704
XP6512	IMELBAL3	-	-36881	POWLB6		.38219
XP6S12	KOSTEN		•06500	ZS 02		. 78624
XP6S12	ZFS		-14987	ZNOX		-26227
XP6S12	ZCO2		.23844	ZVV		-24373
XP6S12	ZLAND		. 26700	ZEFF		-03704
XP6S14	BSELBAL1	-	.36881	POWLB7		.38219
XP6S14	DEC14		-36881	KOSTEN		-06500
XP6S14	Z S O 2		-78624	ZFS		14987
XP6S14	ZNOX		·2622 7	ZCO2		-23844
XP6S14	ZVV		24373	ZLAND		•26700
XP6514	ZEFF		•03704			
XP6S16	BSELBAL2	-	.36881	POWLB8		•38219
XP6S16	DEC16		.36881	KOSTEN		•06500
XP6S16	Z S O 2		•78624	ZFS		14987
XP6S16	ZNOX		-26227	ZC02		-23844
XP6516	ZVV		-24373	ZLAND		-26700
XP6516	ZEFF		• 03704			
XP6518	BSELBAL3	-	.36881	POWLB9		.38219
XP6S18	KOSTEN		- 06500	ZS02		-78624
XP6518	ZFS		-14987	ZNOX		-26227
XP6518	ZCO2		.23844	ZVV		.24373
XP6S18	ZLAND		-26700	ZEFF		-03704
CP6SN	POWLB1	-	-11284	POWLB2	-	.33903
CP6SN	POWLB3	_	. 74798	POWL 84	_	1.75974
CP6SN	POWL B5	-	.99961	POWLB6	-	-04011
CP6SN	POWL87	-	1.93589	POWL B8	_	1.06066
CP6SN	POWLB9	-	-01211	DEC14	-	1.86813
CP6SN	DEC16	-	1.02353	KOSTEN		2.77800
CP6SN	ZLAND		•56000			
X S1 9 S 2 A	PKELBAL1	-	-38219	POWOIL1		-38219
XS19S2A	HOILBAL		1.00000	KOSTEN		•01500
XS 19 S 2 A	Z S O 2		15912	ZFS		.00187
XS19S2A	ZNOX		•05620	ZVV		.24373
XS19S2A	ZIMP		.01345			
XS19S4A	PKELBAL2	-	.38219	POWOIL2		.38219
XS1954A	HOILBAL		1.00000	KOSTEN		-01500
XS19S4A	ZS02		-15912	ZFS		.00187
XS19S4A	ZNOX		•05620	ZVV		• 24373
XS1954A	ZIMP		.01345			
XS1956A	PKELBAL3	-	-38219	POWOIL3		-38219
XS1956A	HOTIBAL		1.00000	KOSTEN		-01500
XS19S6A	Z.		•15912	ZFS		.00187
XS19S6A	Z i		.05620	ZVV		-24373
XS19S6A	ZIMH		.01345			
XS1958A	IMELBAL1	-	.38219	POWOIL4		.38219
XS19S8A	HOILBAL		1.00000	KOSTEN		-01500
XS1958A	Z S O 2		.15912	ZF S		-00187
XS19S8A	ZNOX		.05620	ZVV		-24373
XS19SE	IMP		-01345			
X\$19\$}	1ELBAL2	-	-38219	POWO IL5		-38219

•	(/) (2.111	-1/01	LINDUCEL DA	MOL TONY		
	XS19S10A	HOILBAL		1.00000	KOSTEN		.01500
	XS19S10A	Z S O 2		-15912	ZFS		.00187
	XS19S10A	ZNOX		•05620	ZVV		.24373
	XS19S10A	ZIMP		-01345			
	XS19S12A	IMELBAL3	_	.38219	POWOIL6		-38219
	XS19S12A	HOILBAL		1.00000	KOSTEN		.01500
	XS 19S 12A	Z S O 2		.15912	ZFS		.00187
	XS19S12A	ZNOX		•05620	ZVV		.24373
	XS19512A	ZIMP		.01345			VL . U . U
	XS19514A	BSELBAL1	_	•38219	POWOIL7		.38219
	XS19S14A	HOILBAL		1.00000	DEC14		-38219
	XS19S14A	KOSTEN		-01500	Z S O 2		.15912
	XS19S14A	ZFS		.00187	ZNOX		.05620
	XS19514A	ZVV		-24373	ZIMP		.01345
	XS19314A	BSELBAL2	_	-38219	POWOIL8		.38219
	XS19516A	HOILBAL	_	1.00000	DEC16		.38219
	XS19S16A	KOSTEN		-01500	Z S O 2		.15912
	XS19516A	ZFS		.00187	ZNOX		.05620
				• 24373	ZIMP		•01345
	XS19S16A XS19S18A	ZVV	_	-38219	POWOIL9		-38219
		BS EL BAL3	_	1.00000	KOSTEN		.01500
	XS19S18A	HOILBAL			ZFS		.00187
	XS19S18A	Z\$02		•15912 •05620	ZVV		.24373
	XS19S18A	ZNOX		-01345	Z V, V		• 24313
	XS19S18A	ZIMP			POWOIL2	_	-33903
	CS19SNA	POWOILI	_	•11284 •74798	POWOIL4	_	1.75974
	CS19SNA	POWOIL3	_	•99961	POWOIL 6	_	.04011
	CS19SNA	POWOIL5	_			_	1.06066
	CS19SNA	POWOIL7	_	1.93589	POWOIL8	_	1.93589
	CS19SNA	POWOIL9	_	-01211 1-06066	DEC14	_	2.30000
	CS19SNA	DEC16	_	_	KOSTEN		2.30000
	CS19SNA	ZLAND	_	-28000 2-38870	BPCO IN3		2.87500
	XS19S1	BSHTBAL1	_	-38219	HOILBAL		1.00000
	XS19S1	POWHTO1 KOSTEN		•01500	ZSO2		.15912
	XS19S1 XS19S1	ZFS		-00187	ZNOX		.05620
			_	.70071	ZIMP		.07255
	XS19S1	ZVV IMHTBAL1	_	2.38870	IPCOIN3		2.87500
	XS19S3		_	-38219	HOILBAL		1.00000
	XS19S3	POWHTO2 KOSTEN			ZSO2		.15912
	X\$19\$3			.01500 .00187	ZNOX		•05620
	XS19S3	ZFS ZVV	_	.70071	ZIMP		•07255
	XS19S3		_	2-38870	PPCDIN3		2.87500
	XS19S5B XS19S5B	PKHTBAL1 POWHTO3	_	-38219	HOILBAL		1.00000
	XS1955B	KOSTEN		•01500	ZSO2		•15912
	XS1955B	ZFS		-00187	ZNOX		•05620
	XS1955B	ZVV	_	-70071	ZIMP		.07255
	XS1957	BSHTBAL2	_	2-38870	BICOIN3		2.87500
	XS1957	POWHTO4	_	•38219	HOILBAL		1.00000
	XS1957	KOSTEN		-01500	ZSO2		.15912
	XS1957	ZFS		-00187	ZNOX		-05620
	XS1957	ZVV	_	-70071	ZIMP		.07255
	XS1959	IMHTBAL2	_	2-38870	IIÇOIN3		2.87500
	XS1959	POWHTO5	-	-38219	HOILBAL		1.00000
	XS19S9	KOSTEN		•01500	ZSO2		.15912
	V37131	V02 + E14		*01700	£30£		• 1771C

;	XS19S9	ZFS		.00187	ZNOX		-05620
,	XS19S9	ZVV	-	• 70071	ZIMP		•07255
)	XS19S11B	PKHTBAL2	-	2-38870	PICOIN3		2.87500
)	XS19S11B	POWHTO6		-38219	HOILBAL		1.00000
)	KS 19S 11B	KOSTEN		.01500	Z S O 2		.15912
;	XS19S11B	ZFS		-00187	ZNOX		.05620
,	XS19S11B	ZVV	-	. 70071	ZIMP		•07255
)	KS19S13	BSHTBAL3	-	2.38870	BBCOIN3		2.87500
)	XS19S13	POWHTO7		-38219	HOILBAL		1.00000
)	XS19S13	DEC14		•38219	KOSTEN		-01500
;	XS19S13	Z S O 2		•15912	ZFS		•00187
)	KS19S13	ZNOX		• 05620	ZVV	-	- 70071
)	KS19S13	ZIMP		•07255			
)	XS19S15	IMHTBAL3	-	2.38870	IBCOIN3		2.87500
)	XS19S15	POWHTO8		-38219	HOILBAL		1.00000
)	XS19S15	DEC16		-38219	KOSTEN		-01500
)	KS 19S 15	Z S D 2		.15912	ZF S		.00187
)	XS19S15	ZNOX		•05620	ZVV	-	-70071
,	XS19S15	ZIMP		•07255			
)	KS19S17B	PKHTBAL3	_	2.38870	PBCOIN3		2.87500
)	XS19S17B	POWHTO9		.38219	HOILBAL		1.00000
)	KS19S17B	KOSTEN		.01500	Z S O 2		-15912
7	XS19S17B	ZFS		.00187	ZNOX		•05620
)	XS19S17B	ZVV	-	.70071	ZIMP		-07255
)	KS19S2B	PKELBAL1	-	-38219	BPCOIN3	-	1.00000
)	KS19S2B	POWH TO1		-38219	HOILBAL		1.00000
	K\$19\$2B	KOSTEN		-01500	ZS02		.15912
)	XS19S2B	ZFS		.00187	ZNOX		•05620
	KS19S2B	ZVV		-24373	ZIMP		.01345
	KS19S4B	PKELBAL2	_	-38219	IPCOIN3	-	1.00000
	XS19S4B	POWHT02		.38219	HOILBAL		1.00000
	(S19S4B	KOSTEN		•01500	Z S O 2		•15912
	X\$19\$4B	ZFS		.00187	ZNOX		.05620
	KS19S4B	ZVV		- 24373	ZIMP		.01345
)	KS19S6B	PKELBAL3	-	-38219	PPCOIN3	_	1.00000
	K\$1956B	POWHT03		.38219	HOILBAL		1.00000
	KS19S6B	KOSTEN		.01500	Z \$ 0 2		.15912
	XS19S6B	ZFS		.00187	ZNOX		.05620
)	KS19S6B	ZVV		. 24373	ZIMP		.01345
	KS19S8B	INELBAL1	-	-38219	BICOIN3	-	1.00000
	KS19S8B	POWHTO4		-38219	HOILBAL		1.00000
	KS19S8B	KOSTEN		•01500	Z S O 2		.15912
)	XS19S8B	ZFS		.00187	ZNOX		.05620
	(S19S8B	ZVV		•24373	ZIMP		.01345
)	KS19S10B	IMELBAL2	-	.38219	IICOIN3	-	1.00000
)	XS19S10B	POWHTO5		.38219	HOILBAL		1.00000
)	KS19S10B	KOSTEN		.01500	Z S O 2		-15912
)	KS19S10B	ZFS		-00187	ZNOX		.05620
	(S19S10B	ZVV		-24373	ZIMP		•01345
	KS19S12B	IMELBAL3	_	.38219	PICOIN3	-	1.00000
	(S19S12B	POWHTO6		-38219	HOILBAL		1.00000
	(S19S12B	KOSTEN		-01500	ZSO2		.15912
	XS19S12B	ZFS		-00187	ZNOX		•05620
	(S19S12B	ZVV		-24373	ZIMP		.01345

XS19S14B	BSELBAL1	_	.38219	BBCOIN3	-	1.00000
XS19S14B	POWHTO7		•382 19	HOILBAL		1.00000
XS19S14B	DEC14		.38219	KOSTEN		•01500
XS19S14B	ZS02		.15912	ZFS		-00187
XS19S14B	ZNOX		.05620	ZVV		.24373
XS19S14B	ZIMP		.01345			
XS19S16B	BSELBAL2	_	. 38219	IBCOIN3	-	1.00000
XS19S16B	POWHTO8		.38219	HOILBAL		1.00000
XS19S16B	DEC16		-38219	KOSTEN		•01500
XS19S16B	Z \$0 2		.15912	ZF S		.00187
X\$19\$16B	ZNOX		•05620	ZVV		•24373
X\$19\$16B	ZIMP		.01345			
XS19S18B	BSELBAL3	-	.38219	PBCOIN3	_	1.00000
X\$19\$18B	POWH TO9		.38219	HOILBAL		1.00000
XS19S18B	KOSTEN		•01500	ZS02		-15912
XS19S18B	ZFS		•00187	ZNOX		-05620
XS19S18B	ZVV		24373	ZIMP		.01345
CS19SNB	POWHTO1	_	•11284	POWHTO2	_	-33903
C S 19 S N B	POWHTO3	-	.74798	POWHT04	-	1.75974
CS19SNB	POWHTO5	-	-99961	POWHTO6	_	-04011
CS19SNB	POWHTO7	_	1.93589	POWHTO8	-	1-06066
CS19SNB	POWHTO9	-	.01211	DEC14	-	1.93589
CS19SNB	DEC16	-	1.06066	KOSTEN		2.50000
CS19SNB	ZLAND		-28000			00000
XS1955C	PKHTBAL 1	-	•90000	HTSTAT1		-90000
XS19S5C	HOILBAL		1.00000	STATION1	_	1-00000
XS19S5C	KOSTEN		-00500	ZSO2		•37440
XS19S5C	ZFS		.00749	ZNOX		-11240
XS19S5C	ZIMP		.02733	UTCTATO		00000
XS19511C	PKHTBAL2	-	- 90000 1- 00000	HTSTAT2 STATION2		.90000 1.00000
XS19S11C	HOLLBAL		•00500	ZSO2	_	•37440
XS19S11C XS19S11C	KOSTEN ZFS		•00749	ZNOX		•11240
XS19511C	ZIMP		.02733	ZNUX		411240
XS19517C	PKHTBAL3	_	90000	HTSTAT3		•90000
XS19517C	HOILBAL		1.00000	STATION3	_	1.00000
XS19517C	KOSTEN		•00500	Z \$ 0 2		•37440
XS19517C	ZFS		•00749	ZNOX		-11240
XS19517C	ZIMP		.02733	LITON		*****
CS195NC	HTSTAT1	_	.74798	HTSTAT2	_	.04011
CS19SNC	HTSTAT3	_	01211	RESERVE1	-	.65600
CS19SNC	KOSTEN		.15000	ZLAND		-12000
XS19S1E	HOILBAL		1.00000	POWHTO1E		•35753
XS19S1E	BPCOIN3E		3.83333	BSHTBA1E	_	2.97945
XS19S1E	KOSTEN		•00500	ZS02		-37440
XS19S1E	ZFS		.00749	ZNOX		-11240
XS19S1E	ZVV	-	.70071	ZIMP		.09049
XS19S3E	HOI LBAL		1.00000	POWHTO2 E		•35753
XS19S3E	IPCOIN3E		3.83333	IMHTBA1E	-	2.97945
XS19S3E	KOSTEN		•00500	ZS 02		•37440
XS19S3E	ZFS		•00749	ZNOX		-11240
XS19S3E	ZVV	-	.70071	ZIMP		.09049
X\$1955E	HOILBAL		1.00000	POWHT 03 E		•35753
XS 19S 5E	PPCOIN3E		3.83333	PKHTBA1E	_	2.97945

XS19S5E	KOSTEN		•00500	Z S O 2		.37440
X\$1955E	ZFS		•00749	ZNOX		-11240
XS19S5E	ZVV	-	.70071	ZIMP		-09049
XS19S7E	HOILBAL		1.00000	POWHT04E		•35753
XS19S7E	BICOIN3E		3. 83333	BSHTBA2E	_	2.97945
XS19S7E	KOSTEN		•00500	ZS02		.37440
XS19S7E	ZFS		.00749	ZNOX		-11240
XS19S7E	ZVV	_	.70071	ZIMP		•09049
XS19S9E	HOILBAL		1.00000	POWHTO5E		•35753
X\$1959E	IICOIN3E		3.83333	IMHTBA2E	-	2.97945
XS19S9E	KOSTEN		•00500	ZS02		.37440
XS19S9E	ZFS		.00749	ZNOX		-11240
X\$19\$9E	ZVV	-	. 70071	ZIMP		.09049
XS19511E	HOILBAL		1-00000	POWHTO6 E		-35753
XS19S11E	PICOIN3E		3. 83333	PKHTBA2E	-	2.97945
XS19S11E	KOSTEN		•00500	Z\$02		•37440
XS19S11E	ZFS		-00749	ZNOX		-11240
XS19S11E	ZVV	_	.70071	ZIMP		•09049
XS19S13E	HOILBAL		1.00000	POWHTO7E		•35753
XS19S13E	BBCDIN3E		3.83333	BSHTBA3E	-	2.97945
XS19S13E	DEC14		•35753	KOSTEN		•00500
XS19S13E	Z S O 2		.37440	ZFS		-00749
XS19S13E	ZNOX		.11240	ZVV	-	.70071
XS19S13E	ZIMP		-09049			
XS19S15E	HOILBAL		1.00000	POWHTO8E		.35753
XS19S15E	IBCOIN3E		3.83333	IMHTBA3E	-	2.97945
XS19S15E	DEC 16		•35753	KOSTEN		•00500
XS19S15E	ZS 02		•37440	ZFS		.00749
XS19S15E	ZNOX		.11240	ZVV	-	.70071
XS19S15E	ZIMP		.09049			
XS19S17E	HOILBAL		1.00000	POWHTO9E		.35753
XS19S17E	PBC0IN3E		3.83333	PKHTBA3E	-	2.97945
XS19S17E	KOSTEN		•00500	ZSO2		.37440
XS19S17E	ZFS		.00749	ZNOX		-11240
XS19S17E	ZVV	_	.70071	ZIMP		.09049
XS19S2E	PKELBAL1	-	•35753	HOILBAL		1.00000
XS19S2E	POWHTO1E		.35753	BPCOIN3E	-	1.00000
XS19S2E	KOSTEN		.00500	ZSO2		-37440
XS1952E	ZFS		- 00749	ZNOX		-11240
XS19S2E	ZVV		•24373	ZIMP		•01258
XS19S4E	PKELBAL2	_	•35753	HOILBAL		1.00000
XS19S4E	POWHTO2E		•35753	IPCOIN3E	-	1.00000
XS19S4E	KOSTEN		•00500	ZS 02		-37440
XS19S4E	ZFS		.00749	ZNOX		-11240
XS19S4E	ZVV		-24373	ZIMP		.01258
XS1956E	PKELBAL3	-	.35753	HOILBAL		1-00000
XS19S6E	POWHTO3E		-35753	PPCOIN3E	-	1.00000
XS19S6E	KOSTEN		.0 0500	Z SO2		-37440
XS19S6E	ZFS		.00749	ZNOX		-11240
XS19S6E	ZVV		.24373	ZIMP		.01258
XS1958E	IMELBAL1	-	.35753	HOILBAL		1.00000
XS1958E	POWHT04E		.35753	BICOIN3E	-	1.00000
XS1958E	KOSTEN		-00500	ZS 02		-37440
XS19S8E	ZFS		.00749	ZNOX		-11240

XS19S8E	ZVV		• 24373	ZIMP		.01258
XS19S10E	IMELBAL2	_	•35753	HOILBAL		1.00000
X\$19\$10E	POWHTO5E		-35753	IICOIN3E	_	1.00000
XS19S10E	KOSTEN		•00500	ZSO2		.37440
X\$19\$10E	ZFS		• 00749	ZNOX		-11240
X\$19\$10E	ZVV		•24373	ZIMP		.01258
X\$19\$12E	IMELBAL3	_	•35753	HOILBAL		1.00000
XS19512E	POWHTO6E		•35753	PICOIN3E	_	1.00000
XS19S12E	KOSTEN		•00500	ZS02		•37440
XS19512E	ZFS		-00749	ZNOX		.11240
XS19512E	ZVV		•24373	ZIMP		•01258
XS19S14E	BSELBAL1	_	•35753	HOILBAL		1.00000
XS19S14E	POWHTO7E		•35753	BBCOIN3E	_	1.00000
XS19514E	DEC14		•35753	KOSTEN		•00500
XS 19S 14E	ZS02		•37440	ZFS		.00749
XS19S14E	ZNOX		•11240	ZVV		.24373
XS19S14E	ZIMP		•01258	_ , ,		.21313
XS19516E	BSELBAL2	_	•35753	HOILBAL		1.00000
XS19516E	POWHTO8E	_	•35753	IBCOIN3E	_	1.00000
XS19516E	DEC16		.35753	KOSTEN		.00500
XS19516E	ZS02		•37440	ZFS		.00749
XS19516E	ZNOX		•11240	ZVV		•24373
XS19516E	ZIMP		.01258	744		•27JIJ
XS19518E	BSELBAL3	_	•35753	HOILBAL		1.00000
XS19518E	POWHTO9E		•35753	PBCOIN3E	_	1.00000
XS19518E	KOSTEN		•00500	ZSO2	_	•37440
	ZFS		• 00749	ZNOX		.11240
XS19S18E	ZVV			ZIMP		-01258
XS19S18E			-24373		_	.33903
CS19SNE	POWHTOLE	•	-11284	POWHTO2E	_	1.75974
CS19SNE	POWHTO3E	_	•74798 •00071	POWHTO4E	_	.04011
CS19SNE	POWHTOSE	_	•99961 1•93589	POWHTO6E POWHTO8E	_	1.06066
CS19SNE	POWHTO7E	_		DEC14	_	1.93589
CS19SNE	POWHTO9E	_	-01211	KOSTEN	_	2.80000
CS19SNE	DEC16	_	1.06066 -28000	KO21EN		2.00000
CS19SNE XS19S5CE	ZLAND HOILB AL		1.00000	PKHTBA1E	_	•90000
	HTSTATIE		•90000	KOSTEN	_	.00500
XS19S5CE XS19S5CE	ZSO2		•37440	ZFS		.00749
				ZIMP		-09049
XS19S5CE	ZNOX		-11240		_	.90000
XS19S11D	HOILBAL		1.00000	PKHTBA2E	_	•00500
XS19S11D	HTSTATZE		•90000	KOSTEN ZFS		•00749
XS19S11D XS19S11D	ZSO2		•37440 •11240	ZIMP		.09049
XS19517D	ZNOX HOILBAL		1.00000	PKHTBA3E	_	•90000
XS19517D	HTSTAT3E		-90000	KOSTEN	_	•00500
XS19517D	ZSO2		•37440	ZFS		.00749
XS19517D	ZNOX		•11240	ZIMP		•09049
CS19SNCE	RESERVE2	-	•65600	HTSTATLE	_	.74798
CS19SNCE	HTSTATZE	_	.04011	HTSTATE	_	.01211
CS195NCE	KOSTEN		.15000	ZLAND		.12000
XP3S19	HOILBAL	_	-88000	LHFRAC		1.00000
XP3S19	REFINELD		1.00000	KOSTEN		•23500
XP3519	ZCO2		-15400	ZEFF		.03704
XP3S19	ZVOR		-15400	6 L I I		•03107
ソレココアユ	T AOU		- 1 J T U U			

XP3S20	LOILBAL	-	1.00000	LHFRAC	-	1.15000
XP3S20	LGFRAC		1.00000	REFINELD		1.00000
XP 3S 20	KOSTEN		-23500	ZC02		.15400
XP3S20	ZEFF		•03704	ZVOR		.15400
XP3S21	GASBAL	-	1.00000	LGFRAC	-	2.60000
XP3S21	REFINELD		1.00000	KOSTEN		. 26500
XP3S21	ZC02		15400	ZEFF		•03704
XP3S21	ZVOR		-1 5400	_		
CP3SN	REFINELD	-	7.88398	KOSTEN		.04100
CP3SN	ZLAND		.05730			
XS19S20	HOILBAL		1.00000	LOILBAL	-	-92000
XS19S20	LLCRACK		-23000	UPCRACK	_	4.40000
XS 19S 20	CRACKLD		1.00000	KOSTEN		.03000
XS19S21	HOILBAL		1.00000	GASBAL	-	-92000
XS19S21	LLCRACK	_	1.00000	UPCRACK		1.00000
XS19S21	CRACKLD		1.00000	KOSTEN		.06000
C S 19 S N D	CRACKLD	-	7-88398	KOSTEN		.07300
CS 19SND	ZLAND		•05730			
XS20F3	TRANSPRT	_	•35000	LOILBAL		1.00000
XS20F3	LKWVERKR	-	• 945 95	GRIDVI4	-	1.00000
XS20F3	KOSTEN		•09300	ZS02		.08984
XS20F3	ZFS		-03188	ZNOX		-17098
XS20F3	ZCO		-69842	ZIMP		-01296
XS21F3	TRANSPRT	_	•25000	GASBAL	-	1.00000
XS21F3	GRIDV15	_	1-00000	KOSTEN		.09300
XS21F3	ZS02		-00876	ZFS		-00311
XS21F3	ZNOX		-19007	ZCO		3.92950
XS21F3	ZIMP		•00926	******		
XS19F4	HOILBAL		1-00000	INDUSDMD	-	•90000
XS19F4	GRIDVI6	-	1.00000	KOSTEN		.01200
XS19F4	Z S O 2		- 37440	ZFS		.00749
XS19F4	ZNOX		-11240	ZIMP		.03333
XS20F4	LOILBAL		1.00000	INDUSDMD	-	.90000
XS20F4	GRIDVI7	_	1.00000	KOSTEN		-01200
XS20F4	Z S O 2		.10670	ZF S		-00173
XS20F4	ZNOX		-11240	ZIMP		-03333
XS2S14	PKELBAL1		1.00000	BSELBAL1	-	-70000
XS2S14	CSE142	_	23.31770	CSE144		.70000
XS2S14	C SE 148		-7 000 0	CSE1410		•70000
XS2S14	CSE1416		- 70000	CPSDI1		-70000
XS2S14	ZIMP	_	•01508			
XS4S14	PKELBAL 2		1-00000	BSELBAL1	-	•70000
XS4S14	CSE142		. 70000	CSE144	-	7-29403
XS4S14	C SE 148		. 70000	CSE1410		.70000
XS4S14	CSE1416		-7 0000	CPSDI2		-7 0000
XS4S14	ZIMP	-	-01508			
XS8S14	IMELBAL1		1.00000	BSELBAL1	-	.70000
XS8S14	CSE142		-7 0000	CSE144		-70000
XS8S14	CSE148	-	.84014	CSE1410		-70000
XS8S14	CSE1416		-7 0000	CPSDI4		.70000
XS8514	ZIMP	-	-01508			
XS10S14	IMELBAL2		1.00000	BSELBAL1	-	- 70000
XS10S14	CSE142		•70000	CSE144		-70000
XS10S14	CSE148		- 7 0000	CSE1410	-	2.01131

XS10S14	CSE1416		.70000	CPSD15		.70000
XS10S14	ZIMP	-	•01508			
XS16S14	BSELBAL1	-	• 70000	BSELBAL2		1.00000
XS16S14	CSE142		•70000	CSE144		.7 0000
XS16S14	CSE148		.7 000 0	CSE1410		. 70000
XS16S14	CSE1416	_	3.40298	CSE166	_	1.00000
XS16514	CSE1614		.60571	CSE1612	-	1.00000
XS16514	CSE1618	-	1.00000	CPSDI6		. 70000
XS16S14	ZIMP	_	.01508			
XS14S2	PKELBAL1	-	.70000	BSELBAL1		1.00000
XS14S2	CSE142		33. 31110	CSE 144	-	1.00000
XS14S2	CSE148	-	1.00000	CSE1410	-	1.00000
XS14S2	CSE 1416	-	1.00000	CP SUP1		1.00000
XS14S2	ZIMP	-	.01508			
XS14S4	PKELBAL2	_	.70000	BSELBAL1		1.00000
XS14S4	CSE142	-	1.00000	CSE 144		10.42000
XS1454	CSE148	-	1.00000	CSE1410	_	1.00000
XS14S4	CSE1416	-	1.00000	CPSUP2		1.00000
XS14S4	ZIMP	-	.01508			
XS1458	IMELBAL1	-	.70000	BSELBAL1		1.00000
XS14S8	CSE142	_	1.00000	CSE144	_	1.00000
XS14S8	C SE 148		1.20020	CSE1410	-	1.00000
XS14S8	CSE1416	_	1.00000	CPSUP4		1.00000
XS1458	ZIMP	-	.01508			
XS14S10	IMELBAL2	_	-70000	BSELBAL1		1.00000
XS14S10	CSE142	-	1.00000	CSE144	-	1.00000
XS14S10	C SE 148	_	1.00000	CSE1410		2.87330
XS14S10	CSE1416	_	1.00000	CPSUP5		1.00000
XS14S10	ZIMP	_	•01508			
XS14S16	B SELBAL 1		1.00000	BSELBAL2	_	.70000
XS14S16	CSE142	-	1.00000	CSE144	_	1.00000
XS14S16	C SE 148	-	1.00000	CSE1410	_	1.00000
XS14S16	CSE1416		4.86141	CSE166		.70000
XS14S16	CSE1614	_	•42400	CSE1612		.70000
XS14S16	CSE 1618		.70000	CP SUP6		1.00000
XS14S16	ZIMP	-	-01508	-,		
XS6S16	PKELBAL3		1.00000	BSELBAL2	_	.70000
XS6S16	CSE166	_	1.28523	CSE 1614		-70000
XS6S16	CSE1612		• 70000	CSE1618		.70000
XS6S16	CPSDI3		.70000	ZIMP	_	.01508
XS12S16	IMELBAL3		1.00000	BSELBAL 2	-	.70000
XS12S16	CSE 166		• 70000	CSE1614		.70000
XS12S16	CSE1612	-	36.32320	CSE1618		.70000
XS12516	CPSDI7		.70000	ZIMP	-	.01508
XS18S16	BSELBAL 2	_	.70000	BSELBAL3		1.00000
XS18S16	CSE166		.70000	CSE1614		.70000
XS18516	CSE1612		.70000	CSE1618	_	121.90500
XS18S16	CPSD18		. 70000	ZIMP	-	.01508
XS1656	PKELBAL3	-	.70000	BSELBAL2		1.00000
XS16S6	CSE166		1.83604	CSE 1614	-	1.00000
XS16S6	CSE1612	_	1.00000	CSE1618	-	1.00000
XS16S6	CPSUP3		1.00000	ZIMP	-	.01508
X\$16512	IMELBAL3	-	.70000	BSELBAL 2		1.00000
XS16S12	CSE166	-	1.00000	CSE1614	-	1.00000
- · 						

MPSX/370 R1.5 ENERG	GIEMODELL BA-WUE(GR)
---------------------	----------------------

XS16S12	C SE 1612		51.89040	CSE1618	-	1.00000
XS16S12	CPSUP7		1.00000	ZIMP	-	•01508
XS16S18	BSELBAL2		1.00000	BSELBAL3	-	•70000
XS16S18	CSE166	-	1.00000	CSE1614	_	1.00000
XS16S18	CSE1612	_	1.00000	CSE1618		174-15100
XS16S18	CPSUP8		1.00000	ZIMP	-	.01508
CSNSMP	CPSUP1	-	- 07053	CPSUP2	_	-21190
CSNSMP	CPSUP3	_	- 46749	CPSUP4	_	1.09983
CSNSMP	CPSUP5	-	•62475	CP SUP 6	_	-41285
CSNSMP	CPSUP7	-	•02507	CPSUP8	_	-00757
CSNSMP	CPSDI1	-	•07053	CPSD12	_	-21190
CSNSMP	CPSD13	-	•46749	CPSD14	_	1.09983
CSNSMP	CPSD15	-	•62475	CPSD16	-	-41285
CSNSMP	CPSD17	-	•02507	CPSD18	_	.00757
CSNSMP	KOSTEN		1.30000	ZLAND		-28000
EC1	DEC14		1935-89000	CSE 142		1935-89000
EC 1	CSE144		1935.89000	CSE148		1935.89000
EC1	CSE1410	_		CSE 1416		1935.89000
EC2	DEC16		1060-66000	CSE166		1060.66000
EC2	CSE1614	-	1060.66000	CSE1612	_	1060-66000
EC2	CSE1618	_	1060.66000			
XS2F2	ELDEMND	_	•95000	PIRATEL		1.00000
XS2F2	CCPKEL2	-	3.00445	ELTRANS		•95000
XS2F2	PKELBAL1		1.00000			
XS4F2	ELDEMND	_	•95000	PIRATEL		1.00000
XS4F2	CCPKEL 1	-	2.20623	CCPKEL2		1.00000
XS4F2	ELTRANS		•95000	PKELBAL2		1.00000
XS6F2	ELDEMND	_	-95000	PIRATEL		1.00000
XS6F2	CCPKEL1		1.00000	ELTRANS		•95000
XS6F2	PKELBAL3		1.00000			50400
XSBF2	ELDEMND	-	-95000	PIRATEL	_	•52400
XS8F2	IBRATEL		1.00000	CCIMEL2	-	- 56804
XS8F2	IMEL BAL 1		1.00000	0104751		63/00
XS10F2	ELDEMND	_	•95000	PIRATEL	_	•52400
XSIOF2	IBRATEL		1.00000	CC I MEL 1	-	•04012
XS10F2	CCIMEL2		1.00000	IMELBAL 2		1.00000
XS12F2	ELDEMND	_	•95000	PIRATEL	-	•52400
XS12F2	IBRATEL		1.00000	CCIMEL1		1-00000
XS12F2	IMELBAL3		1.00000	TODATES		1 24200
XS14F2	ELDEMND	-	•95000	IBRATEL	_	1.36300
XS14F2	CCBS EL2	_	•54789	BSELBAL1		1.00000
XS14F2	ECGRID11		.06945	ECGRID21		-10216
XS14F2	ECGRID31		•22098	IDD ATEL		1 24 200
XS16F2	ELDEMND	-	•95000	IBRATEL	-	1.36300
XS16F2	CCBSEL1	-	.01142	CCB SEL2		1.00000
XS16F2	BSELBAL2		1.00000	TODATEL		1 2/200
XS18F2	ELDEMND	_	•95000	IBRATEL	-	1.36300
XS18F2	CCBSEL1		1-00000	BSELBAL3	_	1.00000
C SNF 2	ELTRANS	_	1.49983	ECGRID11	_	•17689 •56288
CSNF2	ECGRID21	-	-26023	ECGRID31	_	• 20 20 0
CSNF2	KOSTEN		2.30000 .82000	IBRATHT	_	1.85368
XSIF1	HTDEMND	_	1.00000	BSHTBAL 1	_	1.00000
XS1F1	CCBSHT1			DOUIDALI		1.00000
XS1F1	SUMFW		1-00000			

XS3F1	HTDEMND	-	.82000	PIRATHT	-	•66667
XS3F1	IBRATHT		1.00000	CC IMHT1		1.00000
XS3F1	IMHTBAL1		1.00000	SUMFW		1.00000
XS5F1	HTDEMND	-	82000	PIRATHT		1.00000
XS5F1	CCPKHT1		1.00000	HTTRALD		.82000
XS5F1	PKHTBAL 1		1.00000	SUMFW		1.00000
XS7F1	HTDEMND	_	-82000	IBRATHT	-	1.85368
XS7F1	CCB SHT1	-	.06413	CCBSHT2		1.00000
XS7F1	BSHTBAL 2		1.00000	SUMFW		1.00000
XS9F1	HTDEMND	-	. 8200 0	PIRATHT	-	•66667
X S9F 1	IBRATHT		1-00000	CCIMHT1	-	.33917
XS9F1	CCIMHT2		1.00000	IMHTBAL2		1.00000
XS9F1	SUMFW		1.00000			
XS11F1	HTDEMND	-	. 82000	PIRATHT		1.00000
XS11F1	CCPKHT1	-	18.64940	CCPKHT2		1.00000
XS11F1	HTTRALD		82000	PKHTBAL2		1.00000
XS11F1	SUMFW		1.00000			
XS13F1	HTDEMND	_	-82000	IBRATHT	-	1.85368
XS13F1	CCBSHT2	_	•90901	BSHTBAL3		1.00000
XS13F1	SUMFW		1-00000			
XS15F1	HTDEMND	-	-82000	PIRATHT	-	•66667
XS15F1	IBRATHT		1.00000	CC IMHT 2	-	•94244
XS15F1	IMHTBAL3		1.00000	SUMFW		1-00000
XS17F1	HTDEMND	-	. 82000	PIRATHT		1.00000
XS17F1	CCPKHT2	-	3.31158	HTTRALD		-82000
XS17F1	PKHTBAL3		1.00000	SUMFW		1.00000
CSNF11	HTTRALD	_	1.00026	EXCL1		1.00000
CSNF11	COR1TO2	_	1.47109	RESERVE1		•49973
CSNF11	MAX I FW1	_	. 8000 0	MAXIOI		.80000
CSNF11	KOSTEN		.62480	Z SO2	-	2.71266
CSNF11	ZFS	-	-04397	ZNDX	-	.76621
CSNF12	HTTRALD		1.00026	STATION1		-63343
CSNF12	STATION2		•03396	STATION3		.01026
CSNF12	EXCL2		1.00000	COR 1TO2		1.00000
CSNF12	COR2TO3	_	2.16300	RESERVE1		.49973
CSNF12	MAXIFW2	_	-80000	MAXIO2		.80000
CSNF12	KOSTEN		1.36070	Z SO2	-	1.59245
CSNF12	ZFS	-	.02581	ZNOX	-	.44980
CSNF13	HTTRALD	_	1-00026	STATION1		.63343
CSNF13	STATION2		•03396	STATION3		-01026
CSNF13	EXCL3		1.00000	COR 2 TO 3		1.00000
CSNF13	RESERVE1		•49973	MAXIFW3	-	.80000
CSNF13	MAXIO3		. 80000	KOSTEN		1.87000
CSNF13	Z S O 2	_	1.01038	ZFS	-	-01638
CSNF13	ZNOX	-	-28539			
XS1F1E	HTDEMND	-	-82000	BSHTBA1E		1.00000
XS1F1E	IBRATHTE	-	1.85368	CCBSHT1E		1.00000
XS1F1E	SUMFW		1.00000			
XS3F1E	HIDEMND	-	.82000	IMHTBA1E		1-00000
XS3F1E	PIRATHTE	_	•66667	IBRATHTE		1.00000
XS3F1E	CCIMHTLE		1.00000	SUMFW		1.00000
XS5F1E	HTDEMND	-	.82000	HTTRALDE		-82000
XS5F1E	PKHTBA1E		1.00000	PIRATHTE		1.00000
XS5F1E	CCPKHT1E		1.00000	SUMFW		1.00000

XS7F1E	HTDEMND	-	.82000	BSHTBA2E		1.00000
XS7F1E	IBRATHTE	-	1.85368	CCB SHT1E	_	.06413
XS7F1E	CCBSHT2E		1.00000	SUMFW		1.00000
XS9F1E	HTDEMND	_	-82000	IMHTBA2E		1.00000
XS9F1E	PIRATHTE	_	-66667	IBRATHTE		1.00000
XS9F1E	CCIMHTIE	-	.33917	CCIMHT2E		1.00000
XS9F1E	SUMFW		1.00000			
XSIIFIE	HTDEMND	_	-82000	HTTRALDE		-82000
XS11F1E	PKHTBA2E		1.00000	PIRATHTE		1.00000
XSIIFIE	CCPKHTLE	_	18.64940	CCPKHT2E		1.00000
XS11F1E	SUMFW		1.00000			
XS13F1E	HTDEMND	_	-82000	BSHTBA3E		1.00000
XS13F1E	IBRATHTE	_	1.85368	CCBSHT2E	_	.90901
XS13F1E	SUMFW		1.00000			
XS15F1E	HTDEMND	_	.82000	IMHTBA3E		1.00000
XS15F1E	PIRATHTE	_	•66667	IBRATHTE		1.00000
XS15F1E	CCIMHT2E	_	.94244	SUMFW		1.00000
XS17F1E	HTDEMND	_	.82000	HTTRALDE		-82000
XS17F1E	PKHTBA3E		1.00000	PIRATHTE		1.00000
XS17F1E	CCPKHT2E	_	3.31158	SUMFW		1.00000
CSNF1E2	EXCL 2		1.00000	HTTRALDE	-	1.00026
CSNF1E2	CORITOZE	_	2-16300	RESERVE2		.49973
CSNF1E2	MAXIFW2E	_	-80000	MAXIO2		.80000
CSNF1E2	KOSTEN		.81796	Z S O 2	_	1.59245
CSNF1E2	ZFS	_	•02581	ZNOX	_	•44980
CSNF1E3	EXCL 3		1.00000	HTTRALDE	_	1.00026
CSNF1E3	COR1 TO2E		1.00000	RESERVE2		.49973
CSNF1E3	MAXIFW3E	_	-80000	MAXIO3		.80000
CSNF1E3	KOSTEN		1.87000	Z S O 2	_	1.01038
CSNF1E3	ZFS	_	-01638	ZNOX	_	-28539
XSOF1	SUMFW	_	1.00000	GRIDVIA	-	.07593
XS20F1	HTDEMND	_	.67000	HOMHTLD		.67000
XS20F1	LOILBAL		1-00000	GRIDVIB	_	-06204
XS20F1	KOSTEN		-01500	ZUNF		-00210
XS20F1	ZIMP		.02481	20		
CS20F1	HOMHTLD	_	3.31005	KOSTEN		•39300
XP5F1	HTDEMND	_	•67000	GASHTLD		•67000
XP5F1	GRIDVIC	_	• 06204	KOSTEN		-31500
XP5F1	ZUNF		•00520	ZCO2		.13200
XP5F1	ZEFF		.03704	ZIMP		-01241
XP5F1	ZVOR		•01200	2.2 · · · ·		
CP5F11	GASHTLD	_	3.31005	EXCL1		1.00000
CP5F11	MAXIG1	_	.80000	MAXIO1		.80000
CP5F11	PROGWP1	-	1.00000	KOSTEN		•45500
CP5F11	Z \$02	_	2.71266	ZFS		•04397
CP5F11	ZNOX	_	.26651	2. 0		
CP5F12	GASHTLD	_	3.31005	EXCL2		1-00000
CP5F12	MAXIG2	_	.80000	MAXIO2		.80000
CP5F12	PROGWP2	_	1.00000	KOSTEN		.57700
CP5F12	Z \$02	_	1.59245	ZFS	_	-02581
CP5F12	ZNOX	_	•15645			
CP5F13	GASHTLD	_	3.31005	EXCL3		1.00000
CP5F13	MAXIG3	_	.80000	MAXIO3		.80000
CP5F13	PROGWP3	_	1.00000	KOSTEN		.66100
J. J. L.J	1 11301113			,,,		

	MPSX/370	R1.5	ENERGIEMODELL	BA-WUE(GR)
--	----------	------	---------------	------------

CP5F13	Z 502	-	1.01038	ZFS	_	.01638
CP5F13	ZNOX	-	•09927			
XP5F1A	HTDEMND	_	1.50000	KAFGWP		.70606
XP5F1A	WWHTGWP	-	-10306	GRIDVIC	-	.13889
XP5F1A	KOSTEN		-31500	ZUNF		•00520
XP5F1A	ZCO2		.13200	ZEFF		.03704
XP5F1A	ZIMP		.02778	ZVDR		.01200
XP5F1B	HTDEMND	_	1.50000	GASHTLD	-	12.27720
XP5F18	KAFGWP		.17128	WWHTGWP		1.00000
XP5F1B	GRIDVIC	_	-13889	KOSTEN		-31500
XP5F1B	ZUNF		•00520	ZCO2		.13200
XP5F1B	ZEFF		•03.704	ZIMP		.02778
XP5F1B	ZVOR		•01200	22111		**
CP5F1A1	GASHTLD		•72659	EXCL1		1.00000
CP5F1A1	KAFGWP	_	1.00026	MAXIG1		.17561
CP5F1A1	MAXIO1		.80000	MAXIGWP1	_	.97561
CP5F1A1	PROGWP1		•21951	KOSTEN		.70980
		_	2.71179	ZFS		•04396
CP5F1A1	Z S O 2	_	•45745	213		*04370
CP5F1A1	ZNOX	_		CVCLO		1.00000
CP5F1A2	GASHTLD		.72659	EXCL2		
CP5F1A2	KAFGWP	-	1.00026	MAXIG2		•17561
CP5F1A2	MAXIO2		-80000	MAXIGWP2	-	.97561
CP5F1A2	PROGWP2		.21951	KOSTEN		.92410
CP5F1A2	Z S O 2	-	1.59194	ZFS	-	.02581
CP5F1A2	ZNOX	-	-26854			
CP 5F 1A 3	GASHTLD		. 72659	EXCL3		1.00000
CP5F1A3	KAFGWP	-	1.00026	MAXIG3		.17561
CP5F1A3	MAXIO3		. 80000	MAXIGWP3	-	.97561
CP5F1A3	PROGWP3		-21951	KOSTEN		1.17600
CP5F1A3	Z S O 2	-	1.01006	ZFS	-	.01637
CP5F1A3	ZNOX	_	17039			
XSMF6	HTDEMND	-	•95000	BSELBAL 1		•44103
XSMF6	8 SE LBAL2		•558 97	CSE142	-	-44103
XSMF6	CSE144		-41310	CSE148	-	.44103
XSMF6	CSE1410		.4 1310	CSE1416		-41310
XSMF6	CSE166		•92283	CSE1614	-	•55897
XSMF6	CSE1612		•92283	CSE1618		.92283
XSMF6	KAFELNS		•44717	WWHTEL	-	.10306
XSMF6	GRIDVID	_	.08796			
CF6F11	HOMHTLD		1.04771	EXCL1		1.25000
CF6F11	KAFELNS	_	1.00026	ECGRID11		2.40003
CF6F11	ECGRID12		•02500	MAXIO1		1.00000
CF6F11	MAXIELN1	_	1.00000	KOSTEN		•69300
CF6F11	ZSO2	_	1.92097	ZFS	-	.03114
CF6F11	ZNOX	-	. 54259			
CF6F12	HOMHTLD	-	1.04771	EXCL2		1.25000
CF6F12	KAFELNS	-400	1.00026	ECGRID21		2.40003
CF6F12	ECGRID22		•02500	MA X I O 2		1.00000
CF6F12	MAX IELN2	_	1.00000	KOSTEN		.69300
CF6F12	Z SO2		1.12769	ZFS	-	.01828
CF6F12	ZNOX	_	•31852			
CF6F13	HOMHTLD	-	1.04771	EXCL3		1.25000
CF6F13	KAFELNS	_	1.00026	ECGRID31		2.40003
CF6F13	ECGRID32		•02500	MAX IO3		1.00000
-, -						

CF6F13	MAXIELN3	-	1.00000	KOSTEN		•69300
CF6F13	Z S D 2	-	.71550	ZFS	-	.01160
CF6F13	ZNOX	-	.20210			
XSMF1A	HTDEMND	-	• 95000	PKELBAL2		•07479
XSMF1A	PKELBAL3		•43999	IMELBAL2		.22052
XSMF1A	IMELBAL3		•02359	BSELBAL2		.23398
XSMF1A	BSELBAL3		•00712	KAFELDH		•44717
XSMF1A	WWHTEL	-	•10306	GRIDVID	-	•08796
CSMF1A1	HOMHTLD	-	1.04771	EXCL1		1.25000
CSMF1A1	KAFELDH	-	1-00026	ECGRID11		.40003
CSMF1A1	ECGRID12		1.02500	MAXIO1		1.00000
CSMF1A1	MAXIELD1	-	1.00000	KOSTEN	-	.13200
C SMF1A1	ZS 02	-	1.9209 7	ZFS	_	.03114
CSMF1A1	ZNOX	-	54259			
CSMF1A2	HOMHTLD	-	1.04771	EXCL2		1.25000
CSMF1A2	KAFELDH	-	1.00026	ECGRID21		•40003
CSMF1 A2	ECGRID22		1.02500	MAXIO2		1.00000
CSMF1A2	MAXIELD2		1.00000	KOSTEN	-	.13200
CSMF1A2	ZS02	-	1.12769	ZFS	-	.01828
CSMF1A2	XCNZ	-	-31852			
CSMF1A3	HOMHTLD	-	1-04771	EXCL3		1.25000
CSMF1A3	KAFELDH	-	1.00026	ECGRID31		•40003
CSMF1A3	ECGRID32		1.02500	MAX I D3		1.00000
CSMF1A3	MAXIELD3	-	1.00000	KOSTEN	-	.13200
CSMF1A3	Z S O 2	-	. 71550	ZFS	-	.01160
CSMF1A3	ZNOX	-	.20210			
XSMF1B	HTDEMND	-	- 95000	PKELBAL 1		.01610
XSMF1B	PKELBAL2		-04838	PKELBAL3		.10673
XSMF18	IMELBAL1		.25110	IMELBAL2		.14264
XSMF1B	IMELBAL3		.00572	BS EL BAL 1		•27624
XSMF1B	BSELBAL2		15135	BSELBAL3		.00173
XSMF1B	WWHTEL		1.00000	GR I DV I D	-	.08796
XSMF1B	KOSTEN		.04486			
XSMF1C	HTDEMND	-	2. 37500	PKELBAL2		-10596
XSMF1C	PKELBAL3		•23378	IMELBAL2		•31242
XSMF1C	IMELBAL3		.01254	BSELBAL2		.33151
XSMF1C	BSELBAL3		•00379	KAFWPDH		• 59399
XSMF1C	WWHTWPD	-	.34678	GRIDVID	-	-21991
XSMF1D	HTDEMND	-	1.35714	PKELBALI		.01610
XSMF1D	PKELBAL2		•04838	PKELBAL3		.10673
XSMF1D	IMEL BAL 1		.25110	IMELBAL2		.14264
XSMF1D	IMELBAL3		•00572	BSELBAL 1		•27624
XSMF1D	BSELBAL2		•15135	BSELBAL3		.00173
XSMF1D	KAFWPDH		-15496	WWHTWPD		1.35714
XSMF1D	GRIDVID	-	•12566			
CSMF1C1	HOMHTLD	-	2.61909	EXCLI		1.21951
CSMF1C1	KAFWPDH	-	1.00026	ZHT WPD1	-	.60973
CSMF1C1	ZHTWP1	-	•60973	ECGRID11		•40000
CSMF1C1	ECGRID12		.40000	MAXWP1		1.00000
CSMF1C1	MAXSOL1		1.00000	MAXIO1		-97561
CSMF1C1	MAX IWPD1	-	.93750	KOSTEN		1.57500
CSMF1C1	ZS02	-	3.52139	ZFS	-	•05708
CSMF1C1	ZNOX	-	•99464			
CSMF1C2	HOMHTLD	-	2.61909	EXCL2		1.21951

CSMF1C2	KAFWPDH	-	1.00026	ZHTWPD2	-	•60973
CSMF1C2	ZHTWP2	-	.60973	ECGRID21		•40000
CSMF1C2	ECGRID22		•40000	MAXWP2		1.00000
CSMF1C2	MAXSOL2		1.00000	MAX I 02		•97561
CSMF1C2	MAX IWPD2	-	•93750	KOSTEN		1.57500
CSMF1C2	Z\$02		2.06722	ZFS	_	-03351
CSMF1C2	ZNOX	-	•58390			
CSMF1C3	HOMHTLD	-	2.61909	EXCL3		1.21951
CSMF1C3	KAF WPDH	-	1.00026	ZHTWPD3	-	•60973
CSMF1C3	ZHTWP3	-	.60973	ECGRID31		. 40000
CSMF1C3	ECGRID32		•40000	MAXWP3		1.00000
CSMF1C3	MAXSOL3		1.00000	MAXIO3		.97561
CSMF1C3	MAX I WPD3	-	•93750	KOSTEN		1.57500
CSMF1C3	Z\$02	-	1.31161	ZFS	-	•02126
CSMF1C3	ZNUX	-	.37047			
XSMF1E	HTDEMND	-	•95000	PKELBAL3		.93474
XSMF1E	IMELBAL3		-05012	BSELBAL3		.01514
XSMF1E	KAFWPDZE		•95000	GRIDVID	_	.08796
CSMF1E1	EXCLI		1.21951	KAF WPDZE	-	1-00026
CSMF1E1	ZHT WPD1		•39027	ZHT WP1		• 39027
CSMF1E1	ECGRID12		1.00000	MAXWP1		1.00000
CSMF1E1	MAXSOL1		1.00000	MAXIO1		.97561
CSMF1E1	KOSTEN		-15000	ZSO2	_	-81973
CSMF1E1	ZFS	_	.01329	ZNOX	-	.23154
CSMF1E2	EXCL2		1.21951	KAFWPDZE	_	1.00026
CSMF1E2	ZHTWPD2		.39027	ZHTWP2		.39027
CSMF1E2	ECGRID22		1.00000	MAXWP2		1.00000
CSMF1E2	MAXSOL2		1.00000	MAXIO2		.97561
CSMF1E2	KOSTEN		.1 5000	ZS02	-	.48122
CSMF1E2	ZFS	-	.00780	ZNOX	_	.13592
CSMF1E3	EXCL3		1.21951	KAFWPDZE	_	1.00026
CSMF1E3	ZHTWPD3		.39027	ZHTWP3		.39027
CSMF1E3	ECGRID32		1.00000	MAXWP3		1.00000
CSMF1E3	MAXSOL3		1.00000	MAXIO3		.97561
CSMF1E3	KOSTEN		. 15000	ZS02	-	•30532
CSMF1E3	ZFS	_	.00495	ZNOX	_	.08624
XSMF7A	HTDEMND	-	1.90000	BSELBAL 1		.62484
XSMF 7A	BSELBAL2		-37515	CSE142	-	-62484
XSMF7A	CSE144		•58527	CSE148	_	-62484
XSMF 7A	CSE1410		•5852 7	CSE1416		•58527
XSMF7A	CSE166		•61936	CSE 1614	-	-37515
XSMF7A	CSE1612		.61936	CSE1618		.61936
XSMF7A	KAFWPNS		.71279	WWHTWPN	-	-27742
XSMF7A	GRIDVID	-	•17593			
XSMF7B	HTDEMND	-	1-26667	BSELBAL1		.82872
XSMF7B	BSELBAL2		•17128	CSE 166		-28277
XSMF 7B	CSE1614	-	-17128	CSE1612		.28277
XSMF7B	CSE1618		-28277	KAFWPNS		-21695
XSMF7B	WWHTWPN		1.26667	GRIDVID	-	-11728
CSMF7A1	HOMHTLD	_	-87303	EXCL1		•40650
CSMF7A1	KAFWPNS	-	•50013	ZHTWPN1	-	.20324
CSMF7A1	ZHTWP1	-	•20324	ECGRID11		•50000
CSMF7A1	MAXWP1		.33333	MAXSOL1		.33333
CSMF7A1	MAXIOI		•32520	MAXIWPN1	-	.31250

CSMF7A1	KOSTEN		1.20000	ZSO2	-	1.17380
CSMF7A1	ZFS	_	.01903	ZNOX	-	•33155
CSMF7A2	HOMHTLD	-	-87303	EXCL2		-40650
CSMF7A2	KAFWPNS	_	.50013	ZHT WPN2	-	-20324
CSMF7A2	ZHTWP2	-	.20324	ECGRID21		•50000
CSMF7A2	MAXWP2		• 33333	MAXSOL2		-33333
CSMF7A2	MAXIO2		•32520	MAXIWPN2	-	-31250
CSMF7A2	KOSTEN		1.20000	ZS02	_	.68907
CSMF7A2	ZFS	_	.01117	ZNOX	_	.19463
CSMF7A3	HOMHTLD	_	•87303	EXCL3		•40650
CSMF7A3	KAFWPNS	_	•50013	ZHTWPN3	_	•20324
		_		ECGRID31	_	•50000
CSMF7A3	ZHTWP3	-	.20324			
CSMF7A3	MAXWP3		•33333	MAXSOL 3		.33333
C SMF 7A3	MAXIO3		• 32520	MAXIWPN3	-	•31250
CSMF7A3	KOSTEN		1.20000	ZS02	_	.43720
CSMF7A3	ZFS	-	•00709	ZNOX	-	.12349
XSMF7C	HTDEMND	-	•95000	BSELBAL 2		1.00000
XSMF7C	CSE166		1.65095	CSE1614	-	1.00000
XSMF7C	C SE 1612		1.65095	CSE1618		1.65095
XSMF7C	KAFWPNZE		-95000	GRIDVID	-	•08796
CSMF7C1	EXCL1		- 60976	KAFWPNZE	-	•50013
CSMF7C1	ZHTWPN1		-19514	ZHTWP1		-19514
CSMF7C1	ECGRID11		1.00000	MAXWP1		•50000
CSMF7C1	MAXSOL1		• 50000	MAXIO1		.48780
CSMF7C1	KOSTEN		-15000	ZS02	_	•40986
CSMF7C1	ZFS	_	-00664	ZNOX	_	.11577
CSMF7C2	EXCL2	-	-60976	KAFWPNZE	_	.50013
					_	•19514
CSMF7C2	ZHTWPN2		-19514	ZHTWP2		
CSMF7C2	ECGRID21		1.00000	MAXWP2		•50000
CSMF7C2	MAXSOL2		•50000	MAXIO2		•48780
CSMF7C2	KOSTEN		-1 5000	Z S O 2	_	-24061
CSHF7C2	ZFS	-	-00390	ZNOX	-	.06796
CSMF7C3	EXCL3		- 60976	KAFWPNZE	-	.50013
CSMF7C3	ZHTWPN3		19514	ZHTWP3		-19514
CSMF7C3	ECGRID31		1.00000	MAXWP3		- 50000
CSMF7C3	MAXSOL3		•50000	MA X I 03		•48780
CSMF7C3	KOSTEN		-15000	ZS02	-	.15266
CSMF7C3	ZFS	_	.00247	ZNOX	-	.04312
XS20F1A	HTDEMND	_	.67000	LOILBAL		1.00000
XS20F1A	KAFWPZO		.67000	GRIDVIB	_	•06204
XS20F1A	KOSTEN		.01500	ZUNF		.00210
XS20F1A	ZIMP		.02481	20.11		*****
CS20F1A1	EXCL1		1.21951	KAFWPZO	_	1.00026
CS20F1A1	ZHTWP1		-39027	MAXWP1		1.00000
CS20F1A1	MAXIO1		•97561	KOSTEN		•39300
CS 20 F 1 A 2			1.21951		_	1.00026
	EXCL 2			KAFWPZO		
CS20F1A2	ZHTWP2		•39027	MAXWP2		1.00000
CS20F1A2	MAXIO2		-97561	KOSTEN		•39300
CS20F1A3	EXCL3		1.21951	KAFWPZD	-	1.00026
CS20F1A3	ZHTWP3		•39027	MAXWP3		1.00000
CS20F1A3	MAXIO3		•97561	KOSTEN		•39300
CSMF11	ECGRID11	-	1.00000	ECGRID12	-	1.00000
CSMF11	KOSTEN		•55000			
CSMF12	ECGRID21	-	1.00000	ECGR ID22	-	1.00000

CCHETA	VOCTEN		•55000			
CSMF12	KOSTEN			Eccninaa		1 00000
CSMF13	ECGRID31	-	1.00000	ECGRID32	_	1.00000
CSMF13	KOSTEN		•55000	LOUZZOU		15272
XP 7F 8A	HIDEMND	-	1.00000	WWHTSOL	-	.15273
XP7F8A	SOLOEL		1.00000	GRIDVIE	_	
XP7F8B	HTDEMND	-	1.00000	WWHTSOL		1.00000
XP7F8B	GRIDVIE	-	•09259			
XS20F1B	HTDEMND	_	-67000	LOILBAL		1.00000
XS20F1B	KAFSOL		• 52844	WWHTSOLO	_	.03380
XS20F1B	SOLOEL	-	1.39434	GRIDVIB	-	-06204
XS20F1B	KOSTEN		•01500	ZUNF		.00210
XS20F1B	ZIMP		.02481			
XS20F1C	HTDEMND	_	•67000	LOILBAL		1.00000
XS20F1C	KAFSOL		- 39083	WWHTSOLO		1.00000
XS20F1C	GRIDVIB	_	•06204	KOSTEN		.01500
XS20F1C	ZUNF		.00210	ZIMP		-02481
CF8F11	HOMHTLD		1.02216	EXCL1		1.21951
CF8F11	KAFSOL	-	.70000	MAXSOL1		1.00000
CF8F11	MAXIO1		• 97561	MAXISOL1	-	.97561
CF3F11	KOSTEN		2.89300	ZS02	-	1.14053
CF8F11	ZFS	-	.01849	ZNOX	-	-32215
CF8F12	HOMHTLD	-	1.02216	EXCL2		1.21951
CF8F12	KAFSOL	-	•70000	MAXSOL2		1.00000
CF8F12	MAXIO2		•97561	MAXISOL2	-	.97561
CF8F12	KOSTEN		2.89300	ZS02	-	•66954
CF8F12	ZFS	-	-01 085	ZNOX	-	•18912
CF8F13	HOMHTLD	-	1.02216	EXCL3		1.21951
CF8F13	KAFSOL	-	•70000	MAXSOL3		1.00000
CF8F13	MAXIO3		•97561	MAXISOL3	-	.97561
CF8F13	KOSTEN		2.89300	ZS 02	_	•42481
CF8F13	ZFS	-	• 00689	ZNOX	-	.11999
ISNF11	HTDEMND	-40	1.00000	PIRATHT		.14371
ISNF11	IBRATHT		.64548	EXCL1		•47058
ISNF11	COR1TO2	-	•692 27	MAXIFW1		• 56470
ISNF11	MAXIO1		.37647	GRIDVIA	_	•09259
ISNF11	KOSTEN		- 56072	Z SO2	-	1.27654
ISNF11	ZFS		•02069	ZNOX	-	. 36057
ISNF12	HTDEMND	_	1.00000	PIRATHT		-14371
ISNF12	IBRATHT		64548	STATION 1	-	.07452
ISNF12	STATION2	_	•00400	STATION3	-	.00121
ISNF12	EXCL 2		•47058	COR1TO2		•47058
ISNF12	COR2TO3	_	1.01788	MAXIFW2		• 56470
ISNF12	MAXIO2		• 37647	GRIDVIA	_	•09259
ISNF12	KOSTEN		.90703	Z S O 2	-	.74939
ISNF12	ZFS	_	•01215	ZNOX		.21167
ISNF13	HTDEMND	-	1.00000	PIRATHT		.14371
ISNF13	IBRATHT		•64548	STATION1	_	.07452
ISNF13	STATION2	_	•00400	STATION3	_	.00121
ISNF13	EXCL3		. 47058	COR 2TO 3		.47058
ISNF13	MAXIFW3		•56470	MAXIO3		.37647
ISNF13	GRIDVIA	-	•09259	KOSTEN		1.14670
ISNF13	Z S O 2	_	.47547	ZFS	-	.00771
ISNF13	ZNOX	_	.13430			· · •
ISNF1E2	HTDEMND	_	1.00000	EXCL 2		.47058
	-			· -		-

ISNF1E2	PIRATHTE		.14371	IBRATHTE		•64548
ISNF1E2	COR1TO2E	_	1.01788	MAXIFW2E		•56470
ISNF1E2	MAX I O2		.37647	KOSTEN		.65162
ISNF1E2	Z \$ 0 2	_	.74939	ZFS	-	.01215
ISNF1E2	ZNOX	-	.21167			
ISNF1E3	HTDEMND	-	1.00000	EXCL3		•47058
ISNF1E3	PIRATHTE		-14371	IBRATHTE		. 64548
ISNF1E3	COR1TO2E		.47058	MAXIFW3E		• 56470
ISNF1E3	MAXIO3		. 37647	KOSTEN		1.14670
ISNF1E3	Z\$02	-	. 47547	ZFS	-	•00771
ISNF1E3	ZNOX	-	.13430			
IP5F11	HTDEMND	-	1.00000	GASHTLD	_	•55766
IP5F11	EXCL1		•47058	MAXIGI		• 56470
IP5F11	MAXIO1		.37647	GRIDVIC	-	•09259
IP5F11	KOSTEN		• 39352	ZS02	-	1.27654
IP5F11	ZFS	_	.02069	ZNOX	_	•02555 •55766
IP5F12	HTDEMND	-	1.00000	GASHTLD	-	•56470
IP5F12	EXCL2		.47058	MAXIG2	_	•09259
IP5F12	MAXIO2		.37647	GRIDVIC	_	•74939
IP5F12	KOSTEN		.45658 .01215	Z SO 2 ZNOX	_	•01500
IP5F12	ZFS	_	1.00000	GASHTLD	_	•55766
IP5F13	HTDEMND Excl3	-	47058	MAXIG3	_	•56470
IP5F13			.37647	GRIDVIC	_	•09259
IP5F13	MAXIO3 KOSTEN		•50882	Z\$02	_	•47547
IP5F13 IP5F13	ZFS		•00771	ZNOX	_	.00952
1820F11	HTDEMND	_	1.00000	HOMHTLD	-	• 55766
IS20F11	EXCLI	_	. 47058	MAX IO1		.94117
IS20F11	GRIDVIB		• 09259	KOSTEN		.26670
IS20F11	ZS02	_	•81952	ZFS	_	.01328
I \$20F11	ZNOX	_	•23148	21 3		TOTSEO
IS20F12	HTDEMND	_	1.00000	HOMHTLD	_	•55766
IS20F12	EXCL2		.47058	MAX IO2		.94117
IS20F12	GRIDVIB	_	• 09259	KOSTEN		.26670
IS20F12	ZS02	_	•48110	ZFS	_	.00780
I \$20F12	ZNDX	_	.13589			
IS20F13	HTDEMND	_	1.00000	HOMHTLD	-	• 55766
IS20F13	EXCL3		.47058	EOI XAM		.94117
IS 20F13	GRIDVIB	-	.09259	KOSTEN		.26670
I\$20F13	ZSO2	-	.30525	ZFS	-	•00495
IS20F13	ZNOX	-	.08622			
IF6F11	HTDEMND	-	1.00000	HOMHTLD	-	•49304
IF6F11	EXCL1		•47058	WWHTEL	-	-10848
IF6F11	ECGRID12		.01176	MAXIOI		•47058
IF6F11	MAXIELN1		•47058	GRIDVID	-	•09259
IF6F11	KOSTEN		.26670	Z \$02	-	•90398
IF6F11	ZFS	-	.01465	ZNOX		•25533
IF6F12	HTDEMND	-	1.00000	HOMHTLD	-	.49304
IF6F12	EXCL2		.47058	WWHIEL	-	•10848
IF6F12	ECGRID22		.01176	MAXIO2		•47058
IF6F12	MAXIELN2		.47 058	GRIDVID	-	.09259
IF6F12	KOSTEN		.26670	Z S O 2	-	•53068
IF6F12	ZFS	-	.00860	ZNOX	-	.14989
IF6F13	HTDEMND	-	1.00000	HOMHTLD	-	• 49304

IF6F13	EXCL3		.47058	WWHTEL	-	.10848
IF6F13	ECGRID32		.01176	MAX I 03		•47058
IF6F13	MAXIELN3		•47058	GRIDVID	-	• 09259
IF6F13	KOSTEN		·26670	ZS02	-	•33670
IF6F13	ZFS	-	.00546	ZNOX	-	•0951.0
ISMFLAL	HTDEMND	-	1.00000	HOMHTLD	-	• 49304
ISMF1A1	EXCL1		-47 058	WWHTEL	-	.10848
ISMFIAL	ECGRID12		-01176	MAXIOI		.47058
ISMF1A1	MAXIELD1		•47058	GR I DV I D	-	•09259
ISMF1A1	KOSTEN		•26670	Z SO 2		•90398
ISMF1A1	ZFS	-	•01465	ZNOX	-	•25533
ISMF1A2	HTDEMND	-	1.00000	HOMHTLD	-	•49304
ISMF1A2	EXCL2		.47058	WWHTEL	-	.10848
ISMF1A2	ECGRID22		.01176	MAXIO2		•47058
ISMF1A2	MAXIELD2		47058	GRIDVID	-	• 09259
ISMF1A2	KOSTEN		•26670	Z SO2	-	•53068
ISMF1A2	ZFS	-	.00860	ZNOX	-	•14989
ISMF1A3	HTDEMND	_	1.00000	HOMHTLD	-	• 49304
ISMF1A3	EXCL3		. 47058	WWHTEL	-	.10848
ISMF1A3	ECGR ID32		.01176	MAXIO3		•47058
ISMF1A3	MAXIELD3		•47058	GRIDVID	-	.09259
ISMF1A3	KOSTEN		.26670	Z SO2	-	•33670
ISMF1A3	ZFS	_	•00546	ZNOX	-	.09510
ISMF1C1	HTDEMND	_	1.00000	HOMHTLD	-	.48101
ISMF1C1	EXCL1		47058	WWHTWPD	-	.10306
ISMF1C1	ZHTWPD1	_	-00717	ZHTWP1	_	.00717
ISMF1C1	MAXWP1		.47058	MAXSOL1		.47058
ISMF1C1	MAXIO1		•45911	MAX I WPD 1		.18751
ISMF1C1	GRIDVIB	_	.01362	GRIDVID	-	.07897
ISMF1C1	KOSTEN		• 40568	Z S O 2	-	.86255
ISMF1C1	ZFS	-	-01398	ZNOX	_	.24363
ISMF1C2		-	1.00000	HOMHTLD	_	.48101
ISMF1C2	EXCL2		-47058	WWHTWPD	-	.10306
ISMF1C2	ZHTWPD2	-	.00717	ZHTWP2	-	.00717
ISMF1C2	MAXWP2		•47058	MAXSOL2		.47058
ISMF1C2	MAXIO2		.4 5911	MAX I WPD2		.18751
ISMF1C2	GRIDVIB	-	•01362	GRIDVID	-	•07897
ISMF1C2	KOSTEN		•40568	ZS02	-	•50636
ISMF1C2	ZFS	_	.00821	ZNOX	_	.14302
ISMF1C3	HTDEMND	-	1.00000	HOMHTLD	-	.48101
ISMF1C3			47058	WWHTWPD	_	.10306
ISMF1C3	ZHTWPD3	_	.00717	ZHTWP3	_	.00717
ISMF1C3	MAXWP3		•47058	MAXSOL 3		.47058
ISMF1C3	MAXIO3		45911	MAXIWPD3		.18751
ISMF1C3	GRIDVIB	-	.01362	GRIDVID	-	.07897
ISMF1C3	KOSTEN		4 0568	ZSO2	-	.32127
ISMF1C3	ZFS	_	•00521	ZNOX	-	.09075
ISMF7A1	HTDEMND		1.00000	HOMHTLD	-	.48101
ISMF7A1	EXCL1		•47058	WWHTWPN	-	.10306
ISMF7A1	ZHTWPN1	-	-00717	ZHTWP 1	-	-00717
ISMF7A1	MAXWP1		.47058	MAXSOL1		•47058
ISMF7A1	MAXIO1		-45911	MAXIWPN1		.18751
ISMF7A1	GRIDVIB	-	.01362	GRIDVID	-	-07897
ISMF7A1	KOSTEN		•58437	Z S O 2	-	.86255

ISMF7A1	ZFS	-	•01398	ZNOX	-	.24363
ISMF7A2	HTDEMND	-	1.00000	HOMHTLD	-	.48101
ISMF7A2	EXCL2		•47058	WWHTWPN	_	.10306
ISMF7A2	ZHTWPN2	-	-00717	ZHTWP2	-	.00717
ISMF7A2	MAXWP2		-47 058	MAXSOL2		•47058
ISMF7A2	MAXIO2		•45911	MAXIWPN2		.18751
ISMF7A2	GRIDVIB	-	.01362	GRIDVID	-	•07897
ISMF7A2	KOSTEN		•58437	ZS02	-	• 50636
ISMF7A2	ZFS	-	.00821	ZNOX	-	.14302
ISMF7A3	HTDEMND	-	1.00000	HUMHTLD	-	-48101
ISMF7A3	EXCL3		•47058	WWHTWPN	-	.10306
ISMF7A3	ZHTWPN3	-	-00717	ZHTWP3	-	.00717
ISMF7A3	MAXWP3		•47058	MAXSOL3		•47058
ISMF7A3	MAXIO3		45911	MAX IWPN3		.18751
ISMF7A3	GRIDVIB	-	.01362	GRIDVID	-	.07897
ISMF7A3	KOSTEN		•58437	Z S O 2	-	.32127
ISMF7A3	ZFS	_	•00521	ZNOX	_	•09075
IF8F11	HTDEMND	-	1.00000	HOMHTLD	-	•46222
IF8F11	EXCL1		•47058	WWHTSOL	-	•08894
IF8F11	WWHTSDLD	_	.02107	MAXSOL1		•47058
IF8F11	MAXIO1		•45911	MAXISOL1		•48206
IF8F11	GRIDVIB	_	.03867	GRIDVIE	-	.05392
IF8F11	KOSTEN		.26670	Z SO 2	_	.89916
IF8F11	ZFS	-	.01458	ZNOX	_	.25397
IF8F12	HTDEMND	-	1.00000	HOMHTLD	-	-46222
IF8F12	EXCL2		•47058	WWHTSOL	_	.08894
IF8F12	WWHTSOLO	_	.02107	MAXSOL2		.47058
IF8F12	MAXIO2		•45911	MAXISOL2		.48206
IF8F12	GRIDVIB	-	•03867	GRIDVIE	-	.05392
1F8F12	KOSTEN		• 26670	Z S O 2	_	•52785
IF8F12	ZFS	_	•00856	ZNOX	_	•14909
IF8F13	HTDEMND	_	1.00000	HOMHTLD	_	.46222
IF8F13	EXCL3		•47058	WWHTSOL	_	.08894
IF8F13	WWHTSDLO	_	.02107	MAXSOL3		•47058
1F8F13	MAXIO3		-45911	MAXI SOL3		•48206
1F8F13	GRIDVIB	_	.03867	GRIDVIE	_	•05392
IF8F13	KOSTEN		• 26670	Z SO2	_	.33491
IF8F13	ZFS	_	•00543	ZNOX	_	•09460
IP5F1A1	HTDEMND	_	1.00000	GASHTLD		-34192
IPSF1A1	EXCL1		.47058	WWHTGWP	_	.06871
IP5F1A1	MAXIG1		-08264	MAX 101		.37647
IP5F1A1	MAXIGNP1		•48206	PROGWP1		.10330
IPSFIAL	GRIDVIC	_	•09259	KUSTEN		•52820
IP5F1A1	Z SO 2	_	1.27613	ZFS	_	.02069
IPSF1AI	ZNOX	_	-28270	21 3		•02007
IP5F1A2	HTDEMND	_	1.00000	GASHTLD		.34192
IPSF1A2	EXCL 2	_	•47058	WWHTGWP	_	.06871
			•08264	MAX IO2		.37647
IP5F1A2 IP5F1A2	MAXIG2		• 48206	PROGWP2		•10330
	MAXIGWP2 GRIDVIC	_	•48206 •09259	KOSTEN		-61013
I P5 F1 A2		_	•74915	ZFS	_	.01214
IP5F1A2	Z \$02	_		4 F 3		•01214
IP5F1A2	ZNOX	_	-16596	CACUTIO		.34192
IP5F1A3	HTDEMND	_	1.00000	GASHTLD		-06871
IP5F1A3	EXCL3		•47058	WWHTGWP	_	.008/1

IP5F1A3	MAXIG3		.08264	MAXIO3		•37647
IP5F1A3	MAXIGWP3		. 48206	PROGWP3		.10330
IP5F1A3	GRIDVIC	-	• 09259	KOSTEN		.69554
IP5F1A3	ZS02	-	•47532	ZFS	-	.00771
IP5F1A3	ZNOX	-	.10530			
XSOF11	GRIDVIA		.20000	BXSOF11		1.00000
XSOF11	ZVIFI	_	•07337			
XSOF12	GRIDVIA		.80000	ZVIFI		-29348
XS20F11	GRIDVIB		.20000	BXS20F11		1.00000
XS20F11	ZVIFI	_	.07337			
XS20F12	GRIDVIB		.80000	ZVIFI		.29348
XP5F11	GRIDVIC		.20000	BXP5F11		1.00000
XP5F11	ZVIFI	_	.07337			
XP5F12	GRIDVIC		80000	ZVIFI		.29348
X\$20F31	GRIDVI4		2.57143	BXS20F31		1.00000
XS20F31	ZVIFI	_	.04891			
XS20F32	GRIDVI4		2.57143	ZVIFI		.04891
XS21F31	GRIDV15		3.60000	BXS21F31		1.00000
XS21F31	ZVIFI	_	.04891			
XS21F32	GRIDVI5		3.60000	ZVIFI		.04891
XS19F41	GRIDV16		3.22222	BXS19F41		1.00000
XS19F41	ZVIFI	_	.15761			
XS19F42	GRIDVI6		3.22222	ZVIFI		.15761
XS20F41	GRIDVI7		3.22222	BX\$20F41		1.00000
XS20F41	ZVIFI	_	.15761			_
XS20F42	GRIDVI7		3.22222	ZVIFI		.15761
XELF11	GRIDVID		•20000	BXELF11		1.00000
XELF11	ZVIFI	-	.07337			
XELF12	GRIDVID		-80000	ZVIFI		.29348
XP7F81	GR I DVI E		.20000	BXP7F81		1.00000
XP7F81	ZVIFI	-	•07337			
XP7F82	GRIDVIE		. 80000	ZVIFI		-29348
COSTS	KOSTEN	_	1.00000	GRIDNF1	_	1.00000
SO2	Z S O 2	-	1.00000	GRIDNF2	_	1.00000
STAUB	ZFS	-	1.00000	GRIDNF3	_	1.00000
NOX	ZNOX	_	1.00000	GRIDNF4	_	1.00000
COXID	ZCO		1.00000	GRIDNE5	-	1.00000
RABE	ZRAD	-	1.00000	GR IDNF6	-	1.00000
UNFALL	ZUNF	_	1.00000	GRIDNF7	_	1.00000
C02	Z C O 2	_	1.00000	GRIUNF8	_	1.00000
VDUNST	ZVV	-	1.00000	GRIDNF9	_	1.00000
LAND	ZLAND	_	1.00000	GRIDNF10	_	1.00000
VIELFALT	ZVIFI		1.00000	GRIDNF11	_	1.00000
EFFIZ	ZEFF	_	1.00000	GRIDNF12	_	1.00000
IMPORT	ZIMP	_	1.00000	GRIDNF13	_	1.00000
VORRAT	ZVOR	_	1.00000	GRIDNF14	_	1.00000
KS1	GRIDNF1		2.50000	NF 1	_	•25000
KS1	BKS1		1.00000			
KS2	GRIDNF1		2.00000	NF 1	_	•25000
KS2	BKS2		1.00000	- + +		
KS3	GRIDNF1		1.50000	NF1	_	•25000
KS3	BKS3		1.00000			
KS4	GRIDNF1		1.00000	NF L	_	.25000
KS4	BKS4		1.00000	-		_
· - ·						

MPSX/370	R1.5	ENERGIEMODELL B	A-WUE (GR)	
S021 S021	GRIDNF: BSO21	2 5.0000 1.0000		-	•25000
SO 2 2	GRIDNE			-	•25000
\$022	B\$022	1.0000			
\$023	GRIDNE			-	•25000
S023	B\$023	1.0000			25222
\$024	GRIDNE			_	.25000
SD24	B \$024	1.0000 3.7500		_	•25000
ST1 ST1	GRIDNF: BST1	1.0000		_	• 2 3 0 0 0
ST2	GRIDNF:			_	.25000
ST2	BST2	1.0000			
ST3	GRIDNF:			-	-25000
ST3	BST3	1.0000			
ST4	GRIDNE	.0750	0 NF3	-	. 25000
ST4	BST4	1.0000			
NOXI	GRIDNE			-	-25000
NOXI	BNO X 1	1.0000			25000
NOX2	GRI DNF			_	•25000
NOX2	BNOX2	1.0000 3200		_	•25000
NOX3 NOX3	GRIDNF BNOX3	1.0000		_	•23000
NOX4	GRIDNE:	-		_	.25000
NOX4	BNOX4	1.0000			• • • • • • • • • • • • • • • • • • • •
COSI	GRIDNE			_	•25000
COSI	BCOS 1	1.0000			
CO\$2	GRIDNE			-	•25000
COS2	BCOS2	1.0000			25.40.4
COS3	GRIDNE			-	-25000
COS3	BCOS3	1.0000		_	-25000
COS4 COS4	GRIDNF! BCOS4	5 1.5000 1.0000			• 25000
RB1	GRIDNE				-25000
R81	BRB1	1.0000			•23000
RB2	GRIDNE			-	-25000
RB2	BRB2	1.0000			
RB3	GRIDNE	• 0600	0 NF6	-	.25000
RB3	BRB3	1.0000			
R B4	GR I DNF			-	•25000
RB4	BRB4	1.0000			25000
UNF1	GRIDNE			-	.25000
UNF 1 UNF 2	BUNF1 GRIDNF	1.0000 7 .0500		_	-25000
UNF2	BUNF2	1.0000			•23000
UNF3	GR I DNF			_	.25000
UNF3	BUNF3	1.0000			
UNF 4	GRIDNE	7 •0500	0 NF7	_	.25000
UNF4	BUNF4	1.0000			
C021	GRIDNE			-	•25000
C021	BC021	1.0000			25002
C022	GRIDNF			-	-25000
CO22 CO23	BCO22 GRIDNF	1.0000 3 2.8000		_	.25000
£023	BC023	1-0000			12300
	34023	10000	-		

C024	GRIDNF8		2.20000	NF8	-	•25000
CD24 VD1	BCO24 GRIDNF9		1.00000 2.50000	NF9	-	•25000
VD1	BVD1		1.00000			
VD2	GRIDNF9		2.50000	NF9	-	.25000
VD2	BVD2		1.00000	NEO		25000
VD3	GRIDNE9		2.50000	NF9	-	.25000
VD3 VD4	BVD3 GRIDNF9		1.00000 2.50000	NF 9	_	.25000
VD4 VD4	BVD4		1.00000	1417	_	• 2 3 0 0 0
LAND1	GRIDNF10		220-00000	NF10	_	-25000
L AND1	BLAND1		1.00000			
LAND2	GRIDNF10		130.00000	NF10	_	.25000
L AND2	BL AND2		1.00000			
LAND3	GRIDNF10		90.00000	NF10	-	•25000
LAND3	BLAND3		1.00000			
LAND4	GRIDNF10		60.00000	NF10	-	.25000
LAND4	BLAND4		1.00000			
VIFA1	GRIDNF11		.25000	NF 1 1	_	-25000
VIFAL	BVIFAL		1.00000			25000
VIFA2	GRIDNF11		25000	NF11	-	•25000
VIFA2	BVIFA2		1.00000	NF11		•25000
VIFA3	GRIDNF11 BVIFA3		-25000 1-00000	METT	-	•25000
VIFA3 VIFA4	GRIDNF11		•25000	NF11	_	-25000
VIFA4	BVIFA4		1.00000	141 22		•23000
EFF1	GRIDNF12		•35000	NF12	_	.25000
EFF1	BEFF1		1.00000			
EFF2	GRIDNF12		•32000	NF 12	-	-25000
EFF2	BEFF2		1.00000			
EFF3	GRIDNF12		•30000	NF12		.25000
EFF3	BEFF3		1.00000			
EFF4	GRIDNF12		. 28000	NF12	-	-25000
EFF4	BEFF4		1.00000			25000
IMP1	GRIDNF13		.35000	NF13	-	.25000
IMP1	BIMP1		1.00000	4513		25000
IMP2	GRIDNF13		-25000 1-00000	NF 13	_	-25000
IMP2	BIMP2		•17000 •17000	NF13	_	•25000
IMP3 IMP3	GRIDNF13 BIMP3		1.00000	METO	_	•27000
IMP4	GRIDNF13		•13000	NF13	_	•25000
IMP4	BIMP4		1.00000	111 23		•23000
VORI	GRIDNF14		3.50000	NF14	_	.25000
VOR 1	BVORI		1.00000			
VUR2	GRIDNF14		2.50000	NF 14	-	.25000
VOR 2	BVOR2		1.00000			
VOR 3	GRIDNF14		1.70000	NF 14	-	•25000
VOR3	BVOR3		1.00000			
VOR4	GRIDNF14		1.30000	NF 14	-	.25000
VOR4	BVOR4		1.00000	CNE		.09900
NFCOST NFSO2	NF 1 NF 2	_	1.00000 1.00000	GNF GNF		.03300
NFSTAUB	NF3	_	1.00000	GN F		.03300
NENDX	NF4	_	1.00000	GNF	·	.03300
NFCO	NF 5	_	1.00000	GNF		•05700
NFRABE	NF6	-	1.00000	GNF		.04100
NFUNF	NF 7	-	1.00000	GNF		.07000
NFC02	NF8	_	1.00000	GNF		.14700
NFVDST	NF9	-	1.00000	GNF		.00500
NFLAND	NF 10	-	1-00000	GNF		.03300
NEVIFA	NF11	-	1.00000	GNF		.01200
NFEFF	NF12	_	1.00000	GNF		-22700
NFIMP NFVOR	NF13 NF14	_	1.00000 1.00000	GNF		.19800
IAL ANK	141- T.4		1-00000	GNF		-01200

RHS						
RS	HTDEMND	_	10.80000	ELDEMND	_	8.60000
RS	TRANSPRT	_	1.80000	INDUSDMD	-	5.80000
RS	EXCL 1		•57717	EXCL2		.84907
RS	EXCL3		1.83654	LKWVERKR	-	1.80000
RS	MAXWP1		.09466	MAXWP2		.20887
RS	MAXWP3		•75298	MAXSOL 1		.14198
RS	MAXSOL2		-34812	MAXSOL3		1.05420
RS	MAXIO1		.46174	MAXIO2		.67926
R S	MAXIO3		1.46923	BXSOF11		1.00000
RS	BXS20F11		1.00000	BXP5F11		1.00000
RS	BXS20F31		1.00000	BX\$21F31		1.00000
R S	BXS19F41		1.00000	BXS20F41		1.00000
RS	BXELF11		1.00000	8XP7F81	_	1.00000 .02499
RS	Z \$O2 ZNOX	_	4.62582 1.06729	ZFS ZCO	_	1.14783
RS RS	ZNOX	_	2.60601	ZVIFI	_	.77989
R S	GRIDNF1	_	18.00000	GRIDNF4	_	-50000
RS	GRIDNF5	_	1.00000	GRIDNE7	_	2.60000
R S	GRIDNE8	_	1.00000	GRIDNF12	_	1.25000
RS	GRIDNF13	-	-10000	GRIDNF14	_	1.00000
RS	NF1	_	1.00000	NF2	_	1.00000
RS	NF3	_	1.00000	NF 4	_	1.00000
RS	NF5	_	1.00000	NF6	_	1.00000
RS	NF 7	-	1.00000	NF8	-	1.00000
RS	NF9	-	1.00000	NF 10	_	1.00000
RS	NF 1 1	-	1.00000	NF12	-	1.00000
RS	NF 13	-	1.00000	NF 14	-	1.00000
RS	BKS1		1.00000	BKS2		1.00000
R S	BK \$3		1.00000	BKS4		1.00000
RS	BSO21		1.00000	B S O 2 2		1.00000
R S	B\$023		1.00000	BS024		1.00000
RS	BST1		1.00000	BST2		1.00000
RS	BST3		1.00000	BST4		1.00000
R S	BNOX1		1.00000 1.00000	BNOX2 BNOX4		1.00000
RS RS	BNOX3 BCOS1		1.00000	BCOS2		1.00000
RS	BCOS3		1.00000	BC054		1.00000
R S	BRB1		1.00000	BRB2		1.00000
R S	BRB3		1.00000	BRB4		1.00000
RS	BUNF1		1.00000	BUNF2		1.00000
RS	BUNF 3		1.00000	BUNF4		1.00000
RS	BCO21		1.00000	BC 022		1.00000
D C	BCD23		1.00000	BC024		1.00000
R S	B VD 1		1.00000	BVD2		1.00000
RS	BVD3		1.00000	BVD4		1.00000
R S R S	BLAND1		1.00000	BL AND2		1.00000
RS	BLAND 3 BV ifal		1.00000	BLAND4		1.00000
R S	BVIFA3		1-00000	BVIFA2		1.00000
RS	BEFF1		1.00000 1.00000	BVIFA4		1.00000
RS	BEFF3		1.00000	BEFF2 BEFF4		1.00000
RS	BIMP1		1.00000	BIMP2		1.00000
RS	BIMP3		1.00000	BIMP4		1.00000
R S	B VOR 1		1.00000	BVOR2		1.00000
RS	BVOR3		1.00000	BVOR4		1.00000
ENDATA				•		

PAGE 76 80/298

A U S G A B E

MPSX/370 R1.5 ENERGIEMODELL BA-WUE(GR)

SECTION 1 - ROWS

HTDEMND UL 10-80000-	Ni	JMBER	ROW	AT	ACTIVITY	SLACK ACTIVITY	LOWER LIMIT.	UPPER LIMIT.	-DUAL ACTIVITY
2 PIRATHIT EQ		1	HTDEMND	111	10.80000-	_	NONE	10 00000-	03114=
3 18RATHI EQ						•	HONE		
A 5 CCPKHT1 EQ					-	-	•	•	
A 5 CCPKHT2 EQ	A				-		-	•	.01002
CCIMHTI EQ					-	_	-	-	•
7 CC IM HTZ EQ					_	-		-	.00221=
B CCBSHT EQ					•	-	_	-	
P CCBSHT EQ					-	•	-		
10 HOMHTLD UL				-	•	•	-	•	
HTTRALD UL					•	•	NONE	_	
12 ELDEMND UL			HTTRALD	UL	•	•		-	
13 PIRATEL EQ		12	ELDEMNO	UL	8-60000-	-		8.60000-	
14 IBRATEL CQ		13	PIRATEL	ΕQ	•	•	•	•	
16 CCPREL2 EQ		14	IBRATEL	EQ	•	•	•	•	
17		15	CCPK EL 1	EQ	•	•	•	•	.01584
18		16	CCPKEL2	ΕQ	•	•	•	•	.00888
A 19 CCBSEL1 EQ		17	CCIMELI	EQ	•	•	•	•	-00593-
A 20 CCB SEL2 EQ		18	CCIMEL2	EQ	•	•	•	•	•00022-
21 ELTRANS UL			CCBSEL 1		•	•	•	•	•
22	A		CCBS EL2	EQ	•	•	•	•	•
23					•	•		•	-02530-
24 PKHTBAL3 UL			PKHT BAL 1		•	•	NONE	•	-01735-
25 PKELBAL1 UL					•	•		•	.01735-
26 PKELBAL2 UL					•	•	_	•	-01735-
27 PKELBAL3 UL				-	•	•		•	
28					•	•		•	
1					•	•		•	
1				_	•	•		•	
1 MELBAL1 UL					•	•		•	
1 1 1 1 1 1 1 1 1 1					•	•	_	•	
33 I MEL BAL3 UL					•	•		•	
34 BSHTBAL1 UL					•	•	_	•	
35 BSHTBAL2 UL					•	•		•	
36 BSHTBAL3 UL					•	•		•	
37 BSELBAL1 UL					•	•		•	
38 BSELBAL2 UL					•	•		•	
39 BSELBAL3 UL					-	•		•	
40 BPCOINI BS .1557915579 NUNE					_	-		•	
41 BPCOIN2 BS					-15579-	-15579		<u>.</u>	*02175
42 BPCOIN3 BS					-	-		•	-
43 IPCOINI BS					-	•		_	
44 IPCOIN2 BS					-	•	_	•	•
45 I PCOIN3 BS . NONE					•	•		•	•
46 PPCOIN1 UL . NONE00313- 47 PPCOIN2 UL . NONE00125- 48 PPCOIN3 UL . NONE00020-					•	-		•	•
47 PPCOIN2 UL . NONE00125- 48 PPCOIN3 UL . NONE00020-					•	•		•	•00310-
48 PPCDIN3 UL NONE00020-					•	•		•	
					•	•		•	
					1.83758-	1.83758		•	

MPSX/37	0 R1.5	EN	ERGIEMODELL BA-H	IUE (GR)				PAGE	77	80/298
NUMBER	ROW	AT	ACTIVITY	SLACK ACTIVITY	LOWER LIMIT.	UPPER LIMIT.	.DUAL ACTIVITY			
50	B [COIN2	ВS	-	_	NONE		_			
51	BICOIN3	BS	-	-	NONE	•	•			
52	IICOIN1	UL	-		NONE	-	.00161-			
53	LICOIN2	BS	•	-	NONE	-				
54	I ICOIN3	BS	-		NONE	_	•			
55	PICOIN1	ÜĹ	•	-	NONE	-	-00808-			
56	PICUIN2	ÜĹ	•	•	NONE	-	.00634-			
57		UL	_	_	NONE	-	•00499-			
58	BBCO IN 1	UL	•	•	NONE		.00231-			
59	BBCOIN2	BS	•	•	NONE	•	•			
60	BBCU IN 3	BS		•	NONE	_	•			
61	IBCOIN1	UL	•	•	NONE		.00265-			
62	IBCOIN2	BS	•	•	NONE					
63	IBCDIN3	BS	•	•	NONE	•	•			
64		UL	•	•	NONE	_	-00808-			
65		BS	•	•	NONE	•	•			
66	PBCOIN3	ÜĹ		•	NONE	•	.00499-			
67		BS	•	•	NÜNE	•	•			
68	HTSTAT2	BS	•	•	NONE	-				
69	HTSTAT3	85	•	•	NONE	-				
70	POWHTC1	ÜĹ	•	•	NONE	•	-00191-			
71	POWHTC2	ÜL	•	•	NUNE	•	-00254-			
72		UL	•	•	NONE	-	-05255-			
73		BS	-22624-	.22624	NONE	•	•			
74		ÜĹ	•	•	NONE	•	-00410-			
75	POWHTC6	UL	•	•	NONE		•01509-			
76	POWHTC 7	ВS	1.02150-	1.02150	NONE	•	•			
77		ÜĹ	•	•	NONE	•	-00089-			
78	POWHTC9	UL	•	-	NONE	•	-01509-			
79		UL	•	•	NONE	•	-00191-			
80	POWL C2	UL	•		NONE	•	-00254-			
81	POWLC3	UL	•	•	NONE	•	-04444-			
82	POWL C4	BS	•	-	NONE	•	•			
83	POWL C5	ВS	•	•	NONE	•	•			
84	POWLC6	85	•	•	NONE	•	•			
85	POWLC7	BS	•	•	NONE	•	•			
86	POWLC8	ВS	•	•	NONE	•	•			
87	POWL C9	BS	•	•	NONE	•	•			
88	POWHTNE1	UL	•	•	NONE	•	-00797-			
89	POWHTNE 2	UL	•	•	NONE	•	-00859-			
90	POWHTNE3	IJĹ	•	•	NONE	•	.05427-			
91	POWHTNE 4	ŲL	•	•	NONE	•	-00606-			
92	POWHTNE 5	UL	•	•	NONE	•	•00594~			
93	POWHTNE 6	UL	•	•	NONE	•	-01914-			
A 94	POWHTNE7	UŁ	•	•	NONE	•	•			
95	POWHTNE8	BS	•	•	NONE	•	•			
96	POWHTNE 9	UL	•	•	NONE	•	.06290-			
97	POWL NE 1	UL	•	•	NONE	•	-00797-			
98	POWLNE2	UL	•	•	NONE	•	-00859-			
99	POWLNE3	ÚL	•	•	NONE	•	.05049-			
100	POWLNE4	UL	•	•	NONE	•	-00606-			

MPSX/370	R1.5	EN	ERGIEMODELL BA-W	UE (GR)				PAGE	78	80/298
NUMBER	ROW	AT	ACTIVITY	SLACK ACTIVITY	LOWER LIMIT.	UPPER LIMIT.	.DUAL ACTIVITY			
101	POWLNES	UL			NONE	_	00594-			
102	POWLNE6	BS	.00182-	.00182	NONE					
103	POWL NE 7	BS	.10731-	•10731	NONE	_	•			
104	POWLNE8	BS	-48211 -	-48211	NONE	_	•			
105	POWLNE9	BS	•00606-	-00606	NONE	-	•			
106	POWHTO1	BS	-	-	NONE	•	-			
107	POWH TO2	BS	_	_	NONE	-				
108	POWHTO3	ÜL	_	_	NONE	_	•03602-			
109	POWHT04	BS	•	•	NONE		***************************************			
110	POWHTO5	BS	_	_	NONE	_	•			
111	POWHT06	BS	•	•	NONE	•	•			
112	POWHTO7	BS	•	•	NONE	•	•			
113	POWHTO8	BS	•	-	NONE	-				
114	POWHTO9	BS	•	•	NONE	•	•			
115	POWOIL1	BS	•	•	NONE	•	•			
116	POWOIL2	BS		_	NONE					
117	POWOLL3	UL	•	•	NONE	•	-03551-			
118	POWOIL4	85	•	•	NONE	•	•			
119	POWOIL5	BS		•	NONE	•	•			
120	POWDIL6	BS	•	•	NONE	•	•			
121	POWOIL7	BS	•	•	NONE	•	•			
122	POWOIL8	BS	•	•	NONE	•	•			
123	POWOIL9	BS	•	•	NONE	•	•			
124	TRANSPRT	ÜL	1.80000-	•	NONE	1.80000-	.06248-			
125	HOILBAL	UL	•	•	NONE	•	-01245-			
126	LOILBAL	UL	•	•	NONE	•	-01413-			
127	GASBAL	UL	•	•	NONE	•	.00460-			
128	LHFRAC	EQ	•	•	•	•	•00021			
129	LGFRAC	ΕQ	•	•	•	•	•00272-			
130	LL CR ACK	ÜL	•	•	NONE	•	.00023~			
131	UPCR ACK	BS	•	•	NONE	•	•			
132	REFINELD	UL	•	•	NONE	•	-00009-			4.2
133	CRACKLD	BS	•	•	NONE	. •	•			
134	INDUSDMD	UL	5-80000-	•	NONE	5.80000-	•02401-			
135	STATIONI	ВS	.12708-	.12708	NONE	•	•			
136	STATION2	BS	.00681-	.00681	NONE	•	•			
137	STATION3	BS	.00206-	.00206	NONE	•	•			
138	GASHTLD	UL	•	•	NONE	•	-00722-			
139	BPCOIN5	BS	-01264-	-01264	NONE	•	•			
140	IPCO IN5	BS	-03796-	.03796	NONE	•	•			
141	PPCDIN5	ŲL	•	•	NONE	•	.00157-			
142	BICOINS	BS	•	•	NONE	•	•			
143	TICOINS	BS	•	•	NONE	•	•			
144	PICOIN5	UL	•	•	NONE	•	.00633-			
145	BBCOIN5	UL	•	•	NONE	•	-00010-			
146	IBCOIN5	UL	•	•	NONE	•	-00052-			
147	PBCO IN5	UL	•	•	NONE	•	.00633-			
A 148	POWHTG1	UL	•	•	NONE	•	•			
149	POWHTG2	UL	•	•	NONE	•	-00063~			
150	POWHT G3	UL.	•	•	NONE	•	.04641-			
151	POWHTG4	BS	•07997→	.07997	NONE	•	•			

MPSX/370	R1.5	E٨	NERGIEMODELL BA-W	UE(GR)				PAGE	79	80/298
NUMBER	ROW	AT	ACTIVITY	SLACK ACTIVITY	LOWER LIMIT.	UPPER LIMIT.	-DUAL ACTIVITY			
152	POWHTG5	ВŞ	-04543~	• 04543	NONE	_	_			
153	POWHTG6	ÜL	•	•	NONE		.00762-			
154	POWHTG7	BS	.08798-	.08798	NONE	-	•			
155	POWHTG8	BS	-04820-	.04820	NONE	-	-			
156	POWHTG9	ÜĹ	•	•	NONE	•	•00762-			
157	POWL DG1	BS	-01451-	.01451	NONE	-	-			
158	POWLDG2	ÜĹ	•	•	NONE	-	.00063-			
159	POWL DG3	ÜĹ	_		NONE	-	-04253-			
160	POWLDG4	BS	.48101-	.48101	NONE		-			
161	POWL DG5	BS	.27324-	-27324	NONE	Ĭ	-			
162	POWLDG6	BS	.01096-	•01096	NONE	-	_			
163	POWLDG7	BS	.52916-	-52916	NONE	•	-			
164	POWLDG8	BS	-28992-	.28992	NONE	_	-			
165	POWL DG9	BS	.00331-	.00331	NONE	_	-			
166	EXCLI	ÜL	.57717	-	NONE	.57717	.07144-			
167	EXCL2	ÜĹ	.84907	•	NONE	.84907	•05154-			
168	EXCL3	BS	1.83654	_	NONE	1.83654	•			
169	POWHTC1E	UL	•	_	NONE	•	-00167-			
170	POWH TC ZE	UL	_	-	NONE	_	•00160-			-
171	POWHTC3E	ÜĹ	_	_	NONE	-	•05189-			
172	POWHTC4E	ÜĹ	_	_	NONE	_	-00091-			
173	POWHTC SE	UL	-	_	NONE	_	•00192-			
174	POWHTC6 E	UL	-	-	NONE	-	.00263-			
175	POWHTC 7E	βS	-	_	NONE	-	•			
176	POWHTCHE	ÜL	-	Ţ.	NONE	_	•00263-			
177	POWHTC9E	UL	-		NONE	_	.02069-			
178	POWHTO1E	BS			NONE	-	•			
179	POWHTO2E	BS		_	NONE	-	_			
180	POWHTO 3E	UL		_	NONE	-	-03609-			
181	POWHTO4E	BS	-	_	NONE	_	•			
182	POWH TOSE	BS		_	NONE	-	_			
183	POWHTO6E	UL	-	_	NONE	_	.01317~			
184	POWHTO7E	ÜΓ	-	_	NONE	•	.00043-			
185	POWHTORE	UL	_	_	NONE	•	-01317-			
186	POWHT09E	UL	-	-	NONE	_	.00490-			
187	POWHTG1E	BS	.00251~	.00251	NONE	-	•			
188	POWHTG2E	BS	.00438-	.00438	NONE	_	•			
189	POWHTG3E	UL	-	•	NONE	•	.04939-			
190	PDWHTG4E	BS	-03917-	.03917	NONE	•	•			
191	POWHTG5E	BS	.01292-	.01292	NONE	-	•			
192	POWHTG6E	BS	•	•	NONE	•	•			
193	POWHTG7E	BS	.04309-	.04309	NONE	•	•			
194	POWHTG 8E	85	.01371-	.01371	NONE	•	•			
195	POWHTG9E	UL	•	•	NONE	•	.01612-			
196	HTTRALDE	UL	•	•	NONE	•	.05272-			
197	BPCOINTE	UL	<u>-</u>	-	NONE	•	.00233-			
198	BPCOINTE	BS	-	•	NONE	•	•			
199	IPCOINTE	UL	-	•	NONE	•	-00208-			
200	IPCO IN 3E	BS	-	•	NONE	•	•			
201	PPCOINTE	UL	•	-	NONE	•	-00508-			
202	PPCOINTE	UL	• -	-	NONE	•	-00201-			
202	FFULINDE	ŲĽ	•	•		-				

,

MPSX/370	R1.5	EN	ERGIEMODELL BA-W	UE (GR)				PAGE	80	80/298
NUMBER	ROW	AT	ACTIVITY	SLACK ACTIVITY	LOWER LIMIT.	UPPER LIMIT.	DUAL ACTIVITY			
203	BICOINLE	UL	•		NONE		-00274-			
204	BICDIN3E	BS	•	•	NONE	_	-			
205	IICOIN1E	UL	•	-	NONE	-	.00314-			
206	IICOIN3E	BS	•	•	NONE	_	• • • • • • • • • • • • • • • • • • • •			
207	PICOIN1E	UL	•	•	NONE	•	•00552-			
208	PICOIN3E	BS	•	•	NONE		• • • • • • • • • • • • • • • • • • • •			
209	BBCO IN 1E	UL	•	•	NONE	•	-00458-			
210	BBCOIN3E	BS	•	•	NONE	•	•			
211	IBCOIN1E	UL	•	•	NONE	•	.00552-			
212	IBCDIN3E	BS	•	•	NONE	•	•			
213	PBCOIN1E	UL	•	•	NONE	•	-01198-			
214	PBC0 IN3E	UL	•	•	NONE	•	-00891-			
215	BPCOINSE	UL	•	•	NONE	•	-00076-			
216	IPCO INSE	UL	•	•	NONE	•	-00052-			
217	PPCOIN5E	UL	•	•	NONE	•	.00338-			
218	BICOIN5E	UL	•	•	NONE	. •	-00108-			
219	I I CO INSE	υL	•	•	NONE	•	-00153-			
220	PICOIN5E	UL	•	•	NONE	•	-00381-			
221	BBCOIN5E	UL	•	•	NONE	•	-00271-			
222	IBCOIN5E	UL	•	•	NONE	•	.00381-			
223	PBC0IN5E	UL	•	•	NONE	•	-00997-			
224	PKHT BALE	UL	•	•	NONE	•	-01747-			
225	PKHTBA2E	UL	•	•	NONE	•	.01213-			
226	PKHT BA3E	UL	•	•	NONE	•	.02260-			
227	IMHTBALE	UL	•	•	NONE	•	- 00758-			
228	IMHTBA2E	UL	•	•	NONE	•	-00898-			
229	IMHTBA3E	UL	•	•	NONE	•	.01213-			
230	BSHTBA1E	UL	•	•	NONE	•	.00791-			
231	BSHT BAZE	ÜL	•	•	NONE	•	•00835-			
232	BSHTBA3E	UL	•	•	NONE	•	.01060-			
233	PIRATHTE	EQ	•	•	•	•	.03530			
234	IBRATHTE	EQ	•	•	•	•	•00849			
235	CCPKHT1E	ΕQ	•	•	•	•	.00019			
236	CCPKHT2E	EQ	•	•	•	•	.00161-			
237	CC IMHT 1E	EQ	•	•	•	•	-00260-			
238	CCIMHT2E	EQ	•	•	•	•	.00208-			
239	CCBSHT1E	EQ	•	• ,	•	•	.00157-			
240	CCBSHT2E	EQ	• 05324	*05004	• Nove	-	.00124-			
241	COR1TO2	BS	.05224-	•05224	NONE	•	•			
242	COR2TO3	UL	* 11300	• 11200	NONE	•	-00163-			
243	CURITOZE	BS	-11299-	-11299	NONE	•	•			
244	HTSTATIA	BS	-22620-	-22620	NONE	•	•			
245	HTSTAT2A	BS	.01213-	-01213	NONE	•	•			
246	HTSTAT3A	BS	•00366-	•00366	NONE	•	00340			
247	RESERVEL	UL	•	•	NONE	•	-00340-			
248	RESERVE2	UL	3.54800-	1 7/ 000	NONE	1 90000	-00340-			
249	LKWVERKR	BS	3.54000	1.74800	NONE	1-80000-	00033			
250	SUMFW	EQ	•	•	· .	•	-00033-			
251 252	POWLB1	BS	•	•	NONE	•	•			
252	POWL 82	BS UL	•	•	NONE NONE	•	• •03650-			
253	POWL B3	UL	•	•	NONE	•	•05050-			

MPS	5X/370	R1.5	ΕN	ERGIEMODELL BA-W	UE (GR)				PAGE	81	80/298
N	JMBER	ROW	ΑT	ACTIVITY	SLACK ACTIVITY	LOWER LIMIT.	UPPER LIMIT.	*DUAL ACTIVITY			
	254	POWL B4	BS		_	NONE	_	_			
	255	POWLB5	BS	-	•	NONE					
	256	POWLB6	BS		_	NONE	-	-			
	257	POWL B7	BS	_	•	NONE					
	258	POWLBB	85	_	•	NONE	-	-			
	259	POWLB9	BS	•	-	NONE	-	_			
A	260	DEC14	EQ	•	•		-				
	261	CSE142	BS	1.78904-	1.78904	NONE	-	_			
	262	CSE144	BS	1.78904-	1.78904	NONE	-				
	263	CSE148	BS	1.78904-	1.78904	NONE	-	-			
	264	CSE1410	BS	1.78904-	1.78904	NONE	_	_			
	265	CSE1416	BS	1.78904-	1.78904	NONE		-			
A	266	DEC16	ΕQ		-	•	•	_			
	267	CSE166	BS	-83395-	. 83395	NONE	_	_			
	268	CSE1614	BS	.83395-	.83395	NONE	•	-			
	269	CSE1612	BS	.83395-	.83395	NONE	-	-			
	270	CSE1618	BS	-83395-	-83395	NONE	-	•			
	271	CPSUP1	ÜĹ	•	•	NONE	_	-00013-			
	272	CPSUP2	UL	•	-	NONE	-	•00057-			
	273	CPSUP3	ÜĹ	•	-	NONE	•	.02990-			
	274	CPSUP4	BS	•	•	NONE	•	•			
	275	CPSUP5	BS	•		NONE		•			
	276	CPSUP6	BS	ē	_	NONE	-	_			
	277	CPSUP7	BS	-	•	NONE		-			
	278	CPSUP8	BS	•	<u>.</u>	NONE	_	_			
	279	CPSD11	BS	•	•	NONE	-				
	280	CPSD12	B\$	•	_	NONE	_	-			
	281	CPSD13	BS	•	•	NONE	•	-			
	282	CPSD14	BS		•	NONE		•			
	283	CPSDI5	BS	•		NONE	-				
	284	CPSD16	BS	•	•	NONE	•	•			
	285	CPSD17	85	•	•	NONE	•	•			
	286	CPSD18	BS	•	•	NONE	•	•			
	287	KAFELNS	UL	•	•	NONE	•	.00349~			
	288	KAFELDH	EQ	•	•	•	•	-03139-			
	289	KAFWPDH	UL	•	•	NONE	•	-05431-			
	290	KAFWPNS	UL	•	•	NONE	•	.04594-			
	291	KAFWPDZE	EQ	•	•	•	•	-00010			
	292	KAFWPNZE	EQ	•	•	•	•	.00238-			
	293	KAFWPZO	UL	•	•	NONE	•	.00196-			
	294	KAFSOL	UL	•	•	NONE	•	-10216-			
	295	KAFGWP	UL	•	•	NONE	•	.05547-			
	296	WWHIEL	EQ	•	•	•	•	-00678			
	297	WWHT WPD	EQ	•	•	•	•	.00118			
	298	WWHT WPN	EQ	•	•	•	•	-00181-			
	299	WWHTSOL	EQ	•	•	•	•	.03157-			
	300	WWHTSOLO	ΕQ	•	•	•	•	.05730-			
	301	WWHT GWP	EQ	•	•	•	•	.10727-			
	302	ZHTWPD1	BS	•	•	NONE	•	•			
	303	ZHTWPD2	BS	•	•	NONE	•	•			
	304	ZHTWPD3	BS	•	•	NONE	•	•			

.

MPSX/370	R1.5	ΕN	ERGIEMODELL BA-W	UE (GR)				PAGE	82	80/298
NUMBER	ROW	AT	ACTIVITY	SLACK ACTIVITY	LOWER LIMIT.	UPPER LIMIT.	.DUAL ACTIVITY			
305	ZHTWPN1	BS			NONE	_	_			
	ZHTWPN2	ÜĹ	-	-	NONE		.01136-			
	ZHTWPN3	BS	•	-	NONE	•	•			
	ZHTWP1	BS		-		-	_			
	ZHTWP2	EQ	-	_	•	-	.18986			
	ZHTWP3	EQ	•	_	•	•	-12907			
	SOLOEL	EQ	•	•	•	•	.03639-			
	ECGRID11		-10396-	-10396	NONE	•	-			
	ECGRID12	UL	•	•	ANCH	•	-00907-			
314	ECGRID21	BS	-15294-	-15294	NONE	•	•			
315	ECGRID22	UL	•	•	NONE	•	-00907-			
	ECGRID31	BS	-33082 -	.33082	NONE	•	•			
317	ECGRID32	85	•	•	NONE	•	•			
318	MAXWP1	ВS	•	-09466	NONE	•09466	•			
319	MAXWP2	BS	•	-20887	NONE	.20887	•			
320	MAXWP3	ВS	•	- 75298	NONE	. 75298	•			
321	MAXSOL1	ВS	•	-14198	NONE	.14198	•			
322	MAXSOL 2	ВS	•	•34812	NONE	.34812	•			
323	MAXSOL3	BS	•	1.05420	NONE	1.05420	•			
	MAXIFW1	UL	•	-	NONE	•	-01212-			
	MAXIFW2	UL	•	•	NONE	•	.01212-			
326	MAXIEW3	UL	•	•	NONE	•	•01212-			
327		UL	•	•	NONE	•	-01412-			
328		ÜL	•	•	NONE	•	.01096-			
	MAXIG1	ВS	•	•	NONE	•	•			
330		UL	•	•	NONE	•	-00426-			
331		UL	•	•	NONE	•	-01576-			
	MAXIO1	ВS	.46174	•	NONE	-46174	•			
333	MAXIO2	ŲL	•6 7 926	•	NONE	.67926	-00689-			
334	MAXIO3	UL	1.46923	•	NONE	1.46923	-05061-			
335	MAX [ELN1	BS	•	•	NONE	•	•			
336	MAXIELN2	UL	•	•	NONE	•	.00538-			
337	MAXIELN3	UL	•	•	NONE	•	-05281-			
338	MAXIELD1	BS	•	•	NONE	•	•			
339	MAXIELD2	UL	•	•	NONE	•	• 03917-			
340	MAXIELD3	UL	•	•	NONE	•	.01130-			
341	MAXIWPD1	BS	•	•	NONE	•	•			
342	MAXIWPD2	UL	•	•	NONE	•	-15449-			
343	MAXIWPD3	UŁ	•	•	NONE	•	-01700-			
344	MAXIWPN1	BS	•	•	NONE	•	•			
345	MAXIWPN2	88	•	•	NONE	•	•			
346	MAXI WPN3	UL	•	•	NONE	•	-11376-			
347	MAXISOL 1	UL	•	•	NONE	•	•00644-			
348	MAXISOL2	UL	•	•	NONE	•	.01533-			
349	MAXISOL 3	UL	•	•	NONE	•	-02194-			
350		BS	•	•	NONE	•	•			
351	MAXIGWP2	UL	•	•	NONE	•	• 00524-			
	MAXIGWP3	UL	•	•	NONE	•	-01145-			
353		UL	•	•	NONE	•	-04695-			
354	PROGWP 2	ВS	•	•	NONE	•	•			
	PROGWP3	UL	•	•	NONE	•	-01186-			

ВЅ

BS

-01786-

NUMBER ...ROW..

356 357

358

359

HTSTAT1E BS

HTSTAT2E

HTSTAT3E

GRIDNE 6

GRIDNE7

GR I DNF 9

GRIDNF9

406 GRIDNF13 EQ

404 GRIDNF11

GRIDNF10

GRIDNF12 EQ

399

400

401

403

402

405

EQ

EQ

ΕQ

ΕQ

ΕQ

2.60000-

1.00000-

1.25000-

.10000-

.35000

.00693

.00050

.00004

-01200

.16214

·19036

2.60000-

1.00000-

1.25000-

.10000-

.01786

AT ...ACTIVITY... SLACK ACTIVITY ..LOWER LIMIT. ..UPPER LIMIT. .DUAL ACTIVITY

NONE

NONE

NONE

NONE

2.60000-

1.00000-

1.25000-

.10000-

MPSX	/370	R1.5	EN	ERGIEMODELL BA-W	UE (GR)				PAGE	84	80/298
NUMB	BER	ROW	AŢ	ACTIVITY	SLACK ACTIVITY	LOWER LIMIT.	UPPER LIMIT.	-DUAL ACTIVITY			
4	407	GR I DNF14	EQ	1.00000-	•	1.00000-	L.00000-	.00086			
4	408	NF 1	EQ	1.00000-	•	1.00000-	1.00000-	.09900			
4	409	NF 2	ΕQ	1-00000-	•	1.00000-	1.00000-	.03300			
4	410	NF3	EQ	1.00000-	•	1.00000-	1.00000-	.03300			
4	411	NF 4	EQ	1.00000-	•	1.00000-	1.00000-	.03300			
4	+12	NF5	ΕQ	1.00000-	•	1.00000-	1.00000-	-05700			
	413	NF6	ΕQ	1.00000-	•	1.00000-	1.00000-	.04100			
	414	NF7	EQ	1.00000-	•	1.00000-	1.00000-	-07000			
	415	NF8	EQ	1.00000-	•	1.00000-	1.00000-	.14700			
	416	NF 9	EQ	1.00000-	•	1-00000-	1.00000-	.00500			
	+17	NF10	EQ	1.00000-	•	1.00000-	1.00000-	-03300			
	418	NF11	EQ	1.00000-	•	1.00000-	1.00000-	-01200			
	419	NF12	EQ	1.00000-	•	1.00000-	1.00000-	-22700			
	420	NF13	EQ	1.00000-	•	1.00000-	1.00000-	-19800			
	421	NF14	EQ	1.00000-	•	1.00000-	1.00000-	.01200			
	422	BKS1	UL	1.00000	•	NONE	1.00000	.01650-	,		
	423	BK S2	UL	1.00000	03703	NONE	1.00000	•00825-			
	424 425`	BKS3 BKS4	85	.16217	.83783	NONE	1.00000	•			
	425 426	BS021	8 S 8 S	.95995	1.00000 .04005	NONE NONE	1.00000	•			
	427	BS022	BS	• 72772	1.00000	NONE	1.00000	•			
	428	BS023	BS	•	1.00000	NONE	1.00000 1.00000	•			
	129	BS024	BS	•	1.00000	NONE	1.00000	•			
	430	BST1	BS	.24338	•75662	NONE	1.00000	•			
	431	BST2	BS		1.00000	NONE	1-00000	•			
	432	BST3	BS	•	1.00000	NONE	1.00000	•			
	433	BST4	BS	•	1.00000	NONE	1.00000	•			
4	434	BNOX 1	UL	1.00000	•	NONE	1.00000	-01886-			
4	435	BNOX2	ВS	•00293	.9 9707	NONE	1.00000	•			
	436	BNOX3	ВS	•	1.00000	NONE	1.00000	•			
	437	BNOX4	ВS	•	1.00000	NONE	1-00000	•			
	438	BCCSI	BS	.81302	-18698	NONE	1.00000	•			
	439	BCOS 2	BS	•	1.00000	NONE	1.00000	•			
	440	BCOS3	BS	•	1.00000	NONE	1.00000	•			
	441	BCOS4	BS	*	1.00000	NONE	1.00000	•			
	442	BRB1	BS	.55616	.44384	NONE	1.00000	•			
	443	BRB2	BS	•	1.00000	NONE	1.00000	•			
	444	BR B3	85	•	1.00000	NONE	1.00000	•			
	445	BRB4 BUNF1	B S B S	•	1.00000 1.00000	NONE NONE	1.00000 1.00000	•			
	446 447	BUNF 2	BS	•	1.00000	NONE	1.00000	•			
	448	BUNF 3	BS	.85951	-14049	NONE	1.00000	•			
	449	BUNF4	85	- 03/31	1.00000	NONE	1.00000	•			
	450	BCO21	BS	.81683	.18317	NONE	1.00000	•			
	45 L	BCO22	BS		1.00000	NONE	1.00000	•			
	452	BC023	BS	- •	1.00000	NONE	1.00000	•			
	453	BCO24	BS	•	1.00000	NONE	1.00000	•			
	454	BVD1	BS	•55563	.44437	NONE	1.00000	•			
	455	BVD2	BS	•	1.00000	NONE	1.00000	•			
	456	BVD3	UL	1.00000	•	NONE	1.00000	•			
•	457	BVD4	BS	•	1.00000	NONE	1.00000	•			

MР	SX/370	R1.5	EN	ERGIEMODELL BA-W	UE (GR)				PAGE	85	80/298
N	UMBER	ROW	AT	ACTIVITY	SLACK ACTIVITY	LOWER LIMIT.	UPPER LIMIT.	.DUAL ACTIVITY	1		
	458	BL AND1	BS	.00380	•99620	NONE	1.00000	•			
	459	BL AND2	BS	•	1.00000	NDNE	1.00000	•			
	460	BL AND3	BS	•	1.00000	NONE	1.00000	•			
	461	BLAND4	BS	•	1.00000	NONE	1.00000				
	462	BVIFA1	BS	16537	.83463	NONE	1.00000	•			
A	463	BVIFA2	UL	1.00000	•	NONE	1.00000	•			
A	464	BVIFA3	UL	1.00000	•	NONE	1.00000				
A	465	BV IFA4	UL	1-00000	•	NONE	1.00000	•			
	466	BEFF1	BS	•97671	•02329	NONE	1.00000	•			
	467	BEFF2	ВŞ	•	1.00000	NONE	1.00000	•			
	468	BEFF3	BS	•	1.00000	NONE	1.00000	•			
	469	BEFF4	BS	•	1.00000	NONE	1.00000	•			
	470	BIMPl	UL	1.00000	•	NONE	1.00000	.01713-	•		
	471	BIMP2	BS	•	1.00000	NONE	1.00000	•			
	472	BIMP3	BS	•	1.00000	NONE	1.00000	•			
	473	BIMP4	BS	•	1.00000	NONE	1.00000	•			
	474	B VOR 1	BS	-28738	-71262	NONE	1.00000	•			
	475	BVOR2	BS	-	1.00000	NONE	1-00000	•			
	476	BVOR3	BS	•	1.00000	NONE	1.00000	•			
	477	BVOR4	85	•	1-00000	NONE	1.00000	•			
	478	GNF	BS	.74868	.74868-	NONE	NONE	1.00000			

.

N	UMBER	-COLUMNS	AT	ACTIVITY	INPUT COST	LOWER LIMIT.	UPPER LIMIT.	.REDUCED COST.
	479	XP1S2A	BS	•	•	•	NONE	•
	480	XP1S4A	BS	•	•	•	NONE	•
	481	XP1S6A	BS	•	•	•	NONE	•
A	482	XP1S8A	LL	•	•	•	NONE	•
	483	XP1S10A	LL	•	•	•	NONE	-00004-
	484	XP1S12A	LL	•	•	•	NONE	•00231-
	485	XP1S14A	LL	•	•	•	NONE	•00231-
	486	XP 1S 16A	LL	•	•	•	NONE	-00231-
	487	XP1S18A	LL	•	•	•	NONE	•00231 -
	488	CP1SNA	LL	•	•	•	NONE	-00860-
	489	XP1S1	BS	.03793	•	•	NONE	•
	490	XP1S3	85	-23474	•	•	NONE	•
	491	XP1S5	ВS	•51789	•	•	NONE	•
	492	XP1S7	BS	.59143	•	•	NONE	•
	493	XP1S9	BS	•69211	•	•	NONE	•
	494	XPISII	BS	•02777	•	•	NONE	•
	495	XP1S13	BS	.65064	•	•	NONE	•
	496	XP1S15	ВS	.73438	•	•	NONE	•
	497	XP1517	BS	.00839	•	•	NONE	•
	498	XP1S2B	BS	. 26483	•	•	NONE	•
	499	XP1S4B	BS	-67488	•	•	NONE	•
	500	XP1S6B	BS	1.48894	•	•	NONE	•
	501	XP1S8B	BS	3.53795	-	•	NONE	•
	502	XP1S10B	BS	1.98982	•	•	NONE	•
	503	XP 1S 12B	BS	.07984	•	•	NONE	•
	504	XP15149	BS	1.87058	-	•	NONE	•
	505	XP15168	8.5	2.11135	•	•	NONE	•
	506	XP1S18B	BS	-02411	•	•	NONE	. •
	507	CPISNB	BS	1.02541	•	•	NONE	•
	508	XPISIE	BS	-00051	•	•	NONE	•
	509	XP1S3E	B S	.00154 .00340	•	•	NONE NONE	•
	510	XP1S5E XP1S7E	BS BS	.00800	•	•	NONE	•
	511 512		85	.00454	•	•	NONE	•
	513	XP1S9E XP1S11E	BS	.00018	•	•	NONE	•
	514	XP1S13E	BS	.00880	•	•	NONE	•
	515	XP1S15E	BS	.00482	-	<u>-</u>	NONE	<u>.</u>
	516	XP1S17E	85	.00006	•		NONE	_
	517	XP1S2E	BS	.00197	-	-	NONE	<u>.</u>
	518	XP1S4E	BS	.00591	_	-	NONE	-
	519	XP1S6E	BS	.01303	_	-	NONE	-
	520	XP1S8E	BS	.03065	_	_	NONE	_
	521	XP1S10E	85	.01741	•	•	NONE	-
	522	XP1S12E	85	.00070	-		NONE	-
	523	XPISIZE	BS	.03372	•	•	NONE	•
	524	XP1S16E	BS	.01848		-	NONE	-
	525	XPISIBE	BS	.00021	-	•	NONE	-
	526	CPISNE	85	.00785	-	•	NONE	-
	527	XP 2S 2A	BS	.22418	•	•	NONE	
	121	AT LULA	55		-	-		-

[[/12

MPSX	/370	R1.5	EN	ERGIEMODELL BA-W	UE (GR)				PAGE	87	80/298
NUM	BER	-COLUMNS	ΑT	ACTIVITY	INPUT COST	LOWER LIMIT.	UPPER LIMIT.	.REDUCED COST.			
	528	XP2S4A	ВS	.67353	•		NONE				
		XP2S6A	BS	1.48596	•	•	NONE	•			
		XP2S8A	BS	3.49594	•	•	NONE	•			
		XP2S10A	ВS	1.98584	•	•	NONE	•			
		XP2S12A	BS	.07417	•		NONE	•			
		XP2S14A	85	3.52174	•	•	NONE	-			
	534	XP2S16A	BS	.65088	•	•	NONE	•			
	535	XP2S18A	ВS	•00577	•	•	NONE	•			
	536	CPZSNA	ВS	•65769	•	•	NONE	•			
	537	XP2S1	LL	•	•	•	NONE	-00980-			
	538	XP2S3	LL	•	•	•	NONE	.00977-			
	539	XP2S5	BS	•	•	•	NONE	•			
	540	XP2\$7	LĻ	•	•	•	NONE	-00989-			
	541	XP2S9	LL	•	•	•	NONE	-00372-			
	542	XP2S11	BS	•	•	•	NONE	•			
	543	XP2S13	LL	•	•	•	NONE	-00130-			
	544	XP2S15	BS	•	•	•	NONE	•			
	545	XP2S17	BS	•	•	•	NONE	•			
	546	XP2S2B	BS	•	•	•	NONE	•			
	547	XP2S4B	BS	•	•	•	NONE	•			
	548	XP2S6B	ВS	•	•	•	NONE	•			
	549	XP2S8B	85	•	•	•	NONE	•			
	550	XP2S10B	BS	•	•	•	NONE	•			
	551	XP2S12B	BS	•	•	-	NONE	•			
	552	XP2514B	BS	•	•	•	NONE	•			
Α	553	XP2S16B	LL	•	•	•	NONE	•			
	554	XP2S18B	LL	•	•	•	NONE	-02082-			
	555	CP2SNB	LL	•	•	•	NONE	•00307-			
		XP5S2A	BS	•04025	•	•	NONE	•			
		XP 5S4A	BS	-22832	•	•	NONE	•			
	558	XP5S6A	BS	.50373	•	•	NONE	•			
		XP5S8A	LL	•	•	•	NONE	.00078-			
		XP5S10A	LL	•	•	•	NONE	-00082-			
		XP5S12A	LŁ	•	•	•	NONE	.00323-			
		XP5S14A	LL	•	•	•	NONE	+00323-			
		XP5S16A	LL	•	•	•	NONE	.00323-			
	564	XP5S18A	LL	• 2727 (•	•	NONE	.00323-			
	565	CP 5SNA	BS	.27334	•	•	NONE	.00597-			
	566	XP5S1	LL	•	•	•	NONE	.00597-			
	567	XP5S3	FL	• 210/3	•	•	NONE NONE				
	568	XP5S58	BS	.01942	•	•	NONE	.00675-			
		XP5S7	LL	•	•	•	NONE	.00075-			
	570	XP5S9	LL	• 00104	•	•	NONE	.50010-			
		XP5S118	BS	.00104	•	•	NONE	•			
		XP5S13	BS	•	•	•	NONE	•			
	573	XP5\$15	88	00031	•	•	NONE	•			
		XP5S178	8.5	.00031	•	•	NONE	•			
		XP5S2B	BS	.01264	•	•	NONE	•			
	576	XP5S4B	BS	•03796	•	•	NONE	•			
	577	XP5S6B	В\$.06433	•	•	NONE	.00078-			
	218	XP5S88	LL	•	•	•	110112				

MPSX/370	R1.5	EN	ERGIEMODELL BA-W	UE (GR)				PAGE	88	80/298
NUMBER	.COLUMNS	AT	ACTIVITY	INPUT COST	LOWER LIMIT.	UPPER LIMIT.	.REDUCED COST.			
579	XP5\$10B	LL	-			NONE	•00082-			
580	XP55128	BS	-00345	•	•	NONE	•			
581	XP5S14B	LL	•	•	•	NONE	.00314-			
582	XP5S16B	LL	•	•	-	NONE	.00272-			
5 8 3	XP5\$188	ВS	-00104	•	•	NONE	-			
584	CP5SNB	BS	.04545	•	•	NONE	_			
585	XP5S5C	BS	.92531	•	•	NONE	-			
586	XP5S11C	BS	.04962		•	NONE	_			
587	XP5S17C	BS	-01498	•	•	NONE				
588	CP5SNC	BS	1.41578			NONE	_			
589	XP5S1E	85	_	-	_	NONE	-			
590	XP5S3E	85	.00153	-	_	NONE	_			
591	XP5S5E	BS	.00804	•	•	NONE	_			
592	XP5S7E	BS	•	-	_	NONE	-			
593	XP5S9E	BS	.00450	•	-	NONE	-			
594	XP5S11E	BS	.00043	•	_	NONE	-			
595	XP5S13E	BS	•	•	-	NONE	-			
596	XP5S15E	BS	.00478	•	_	NONE	-			
59 7	XP5S17E	BS	.00013	_	-	NONE	•			
598	XP5S2E	BS	•			NONE	-			
599	XP5S4E	BS	.00675	_	_	NONE	-			
600	XP5S6E	BS	•03550	-	-	NONE	-			
601	XP5S8E	LL	-		-	NONE	.00042-			
602	XP5S10E	BS	.01989	-	-	NONE	-00042			
603	XP5S12E	BS	.00190	_	_	NONE	•			
604	_	LL	•	1	_	NONE	.00110-			
	XP5S16E	BS	.02110		-	NONE	-			
606	XP5S18E	BS	.00057	-	_	NONE	-			
607	CP5SNE	BS	.02226	_	_	NONE	_			
608	XP5S5CE	LL	-	-	_	NONE	.00650-			
609	XP5S11CE	LL	-	-	<u>-</u>	NONE	•00943-			
610	XP5S17CE	BS	-		Ţ.,	NONE	•			
611	CPSSNCE	BS	.02388	-	_	NONE	•			
612	XP6S2	LL			-	NONE	.00173-			
613	XP6S4	LL	<u>-</u>	-		NONE	.00150-			
614	XP6S6	BS	_		-	NONE	.00150			
615	XP6S8	LL	-	-	•	NONE	•00244-			
616	XP6S10	LL	_		-	NONE	-00248-			
617	XP6S12	ίĹ	•	•	•	NONE	•00467-			
618	XP6S14	LL	<u>.</u>	Ī.	-	NONE	•00467-			
619	XP6S16	LL	-	-	•	NONE	.00467-			
620	XP6518	LL	•	•	-	NONE	.00467-			
621	CP6SN	LL	•	-	•	NONE	-01856-			
622	XS1952A	ĹĹ	<u>-</u>	-	-	NONE	.00268-			
623	XS1954A	LL	•	•	•	NONE	•00244-			
624	XS1956A	BS	•	•	•	NONE	•00244			
625	XS1958A	LL	•	•	•	NONE	.00341-			
		LL	•	•	•	NONE				
626 627	XS19510A XS19512A		•	•	•		• 00346- 00573-			
627		LL	•	•	•	NONE	.00573-			
628	XS19S14A	LL	•	•	•	NONE	.00573-			
629	XS19516A	LL	•	•	•	NONE	.00573-			

MPSX/370	R1.5	EN	ERGIEMODELL BA-W	UE(GR)				PAGE	89	80/298
NUMBER	•COLUMNS	AT	ACTIVITY	INPUT COST	LOWER LIMIT.	UPPER LIMIT.	.REDUCED COST.			
630	XS19S18A	LL	•			NONE	-00573-			
	CS19SNA	LL	•	•	-	NONE	-01140-			
632	XS19S1	LŁ	•	•	•	NONE	.01393-			
633	XS19S3	LL	•	•	•	NONE	.01369-			
634	XS19S5B	ВS	•	•	•	NONE	•			
635	XS19S7	LL	•	•		NONE	.01466-			
636	XS19S9	LL	•	•	•	NONE	.00847-			
637	XS19S11B	88	•	-		NONE	•			
638	XS19S13	LL	•	•	•	NONE	-00801-			
639	X\$19\$15	LL	•	•	•	NONE	.00670-			
640	XS19S17B	BS	•	•	•	NONE	•			
641	XS19S2B	LL	•	•	•	NONE	-00268-			
642	XS19S4B	LŁ	•	•	•	NONE	-00244-			
643	XS19S6B	ВS	•	•	•	NONE	•			
644	XS19S8B	LL	•	•	•	NONE	.00341-			
645	XS19S10B	LL	•	•	•	NONE	.00346~			
646	XS19512B	LL	•	•	•	NONE	. 00074−			
647	XS19S14B	LL	•	•	•	NONE	.00573-			
648	XS19516B	LL	•	•	•	NONE	• 00573-			
649	XS19S18B	LL	•	•	•	NONE	.00074-			
650	CS19SNB	LL	•	•	•	NONE	.01432-			
651	XS1955C	LĹ	•	•	•	NONE	-00415-			
652	XS19S11C	LL	•	•	•	NONE	-00415-			
653	XS19S17C	LL	•	•	•	NONE	.00415-			
654	CS 19SNC	LL	•	•	•	NONE	•00025 -			
655	XS1951E	LL	•	•	•	NONE	.00787-			
65 6	XS19S3E	LL	•	•	•	NONE	-00886-			
657	XS19S5E	BS	•	•	•	NONE	•			
658	XS1957E	LL	•	•	•	NONE	.00657-			
659	XS19S9E	LL	•	•	•	NONE	.00468-			
660	XS19SL1E	BS	•	•	•	NONE	•			
661	XS19S13E	BS	•	•	•	NONE	•			
662	XS19S15E	BS	•	•	•	NONE	•			
663	XS19S17E	ВS	•	•	•	NONE	• • • • • • • • • • • • • • • • • • • •			
664	XS19S2E	LL	•	•	•	NONE	-00431-			
665	XS1954E	LL	•	•	•	NONE	.00409-			
666	XS19S6E	BS	•	•	•	NONE	.00500-			
667	XS1958E	LL	•	•	•	NONE				
668	XS19S10E	LL	•	•	•	NONE NONE	.00504- .01187-			
669	XS19S1ZE	LL	•	•	•	NONE	.00732-			
670 671	XS19S14E XS19S16E	LL	•	•	•	NONE	-01187-			
672	XS19518E	BS	•	•	•	NONE	•01101			
673	CS19SNE	LL	•	-	•	NONE	.00382-			
674	XS19S5CE	LL	•	•	•	NONE	.01606-			
675	XS19511D	LL	•	•	•	NONE	.02087-			
676	XS19517D	LL	•	•	•	NONE	.01144-			
677	CS19SNCE	ĹĹ	•	•	-	NONE	-00025-			
678	XP 3S 19	BS	5.82738	- -	-	NONE				
679	XP3S20	BS	5.06729	•	•	NONE	•			
	XP3S21	85	1.94896	-	-	NONE	•			
000	M 2321	0.5	28,40,0	-	-	,,,,,,,	-			

MPSX/370	R1.5	ΕN	ERGIEMODELL BA-W	UE (GR)				PAGE	90	80/298
NUMBER	-COLUMNS	AT	AC TIVITY	INPUT COST	LOWER LIMIT.	UPPER LIMIT.	.REDUCED COST.			
681	CP3 SN	BS	1.62908	•	•	NONE	•			
	XS19520	BS	•	•	•	NONE	•			
683	XS19S21	LL	•	•	•	NONE	-00898-			
684	CS19SND	LL	•	•	•	NONE	.00121-			
685	XS20F3	BS	3.75074	•	•	NONE	•			
686	XS21F3	BS	1.94896	•	•	NONE	•			
687	XS19F4	BS	5.12810	•	•	NONE	•			
688	XS20F4	BS	1.31635	•	•	NONE	•			
689	XS2S14	LL	•	•	•	NONE	.01341-			
690	XS4S14	LL	•	•	•	NONE	.01404-			
691	XS8S14	LL	•	•	•	NONE	-01150-			
692	XS10S14	LL	•	•	•	NONE NONE	•01139~ •00545~			
69 3 69 4	XS16S14 XS14S2	L L B S	•	•	•	NONE	•00545-			
695	XS1432 XS14S4	BS	•	•	•	NONE	•			
696	XS1454	LL	•	-	-	NONE	.00121-			
697	XS14510	LL	•	-	-	NONE	•00129-			
698	XS14516	LL	•	•	•	NONE	•00545-			
699	XS6S16	ίί	•	-	•	NONE	-05594-			
700	XS12516	LL	•	•	•	NONE	-00545-			
	XS18S16		•	•	•	NONE	.00545-			
	X\$1656	BS	•	•	•	NONE	•			
703	XS16S12	LL	•	•	•	NONE	•00545−			
704	XS16S18	LL	•	•	•	NONE	•00545-			
705	CSNSMP	LL	•	•	•	NONE	•00735-			
706	EC1	85	•00092	•	•	NONE	•			
707 -		ВS	-00079	•	•	NONE	•			
	XS2F2	BS	.19760	•	•	NONE	•			
	XS4F2	BS	.59368	•	•	NONE	•			
	XS6F2	BS	1.30980	•	•	NONE	•			
	XS8F2	88	2.52051	•	•	NONE NONE	•			
	XS10F2 XS12F2	BS BS	1.43176 .05745	•	•	NONE	•			
	XS14F2	B.S	1.89289	•	•	NONE	•			
	XS16F2	BS	1.03710	•	•	NONE	•			
	XS18F2	BS	.01184	•	•	NONE	-			
717	CSNF2	BS	1.33084	_	-	NONE	•			
	XS1F1	BŞ	.09059	-		NONE	•			
	XS3F1	ВŠ	-56072	•	•	NONE	•			
	XS5F1	BS	2-11913	•	•	NONE	•			
	XS7F1	8.5	1.41276	•	•	NONE	•			
722	XS9F1	BS	1.65324	•	•	NONE	•			
723	XS11F1	8 S	.11363	•	•	NONE	•			
	XS13F1	BS	1.55418	•	•	NONE	•			
	XS15F1	BS	1.75421	•	•	NONE	•			
	XS 17F 1	ВS	-03431	•	•	NONE	•			
727	CSNF11	BS	.34630	•	•	NONE	•			
	CSNF12	BS	.47810	•	•	NONE	•			
729	CSNF13	BS	1.03412	•	•	NONE	•			
730	XS1F1E	BS	•00153	•	•	NONE	•			
731	XS 3F LE	BS	• 00946	•	•	NONE	•			

MPSX/370	R1.5	EN	ERGIEMODELL BA-W	UE (GR)				PAGE	91	80/298
NUMBER	.COLUMNS	AT	ACTIVITY	INPUT COST	LOWER LIMIT.	UPPER LIMIT.	.REDUCED COST.			
732	XS5F1E	BS	.03574	_	_	NONE	_			
	XS7F1E	BS	.02383	•	•	NONE	•			
	XS9F1E	BS	-02788	_	•	NONE	-			
	XS11F1E	BS	.00192	_	_	NONE				
	XS13F1E	BS	.02621	_	_	NONE	-			
	XS15F1E	BS	.02958	•	_	NONE	_			
	XS17F1E	BS	.00058	•	-	NONE				
	CSNF1E2	BS	.03134	•	•	NONE	-			
	CSNF1E3	ĹĹ	•	-	-	NONE	.00633-			
	XSOF1	BS	9.44950	_	•	NONE				
	XS20F1	BS	.00020	_	_	NONE	-			
	CS20F1	BS	.00004	•	-	NONE				
	XP5F1	BS	-24185	_	-	NONE	-			
	CP5F11	BS	•	•	-	NONE	-			
	CP5F12	LL	-	•	_	NONE	-03450-			
	CP5F13	85	.02034		-	NONE	•			
	XP5F1A	BS	. 06403	_	•	NONE	-			
	XP5F18	BS	.01320	_	_	NONE	-			
	CP5F1A1	LL	•	_	_	NONE	.03287			
	CP5F1A2	LL	_	•	_	NONE	.01162-			
	CP 5F 1A3	ВS	.04746	_	-	NONE	•			
	XSMF6	BS	2010	_	_	NONE				
	CF6F11	LL	-	-	_	NONE	.08552-			
	CF6F12	ĹĹ	-	-	_	NONE	-06624-			
	CF6F13	BS	-	•	-	NONE	4			
	XSMF 1A	LL	-	_	_	NONE	-03664-			
	CSMF1A1	ίĹ		_	_	NONE	.05307-			
	C SMF 1A2	BS		_	-	NONE	•			
	CSMF1A3	88	<u> </u>	_	_	NONE	-			
	XSMF1B	BS	-	_	_	NONE	-			
	XSMF 1C	BS	-	_	_	NONE	-			
	XSMF1D	BS	_		-	NONE	•			
	CSMF1C1	ĹĹ	-	_	_	NONE	.03913-			
	CSMF1C2	BS	•	_	•	NONE	•			
	CSMF1C3	ĹĹ	-	-		NONE	.07191-			
	XSMF1E	LL	_	_	•	NONE	.04485-			
	CSMF1E1	ίĹ	-	_	_	NONE	.09454-			
	CSMF1E2	ίί	-	•	•	NONE	.00464-			
	CSMF1E3	BS	•	•	•	NONE	•			
	XSMF 7A	BS	•	•	•	NONE	•			
	XSMF7B	ВS	•	•	•	NONE	•			
	CSMF7A1	LL	•	•	•	NONE	.01810-			
	CSMF 7A2	ĹĹ		•	•	NONE	-05103-			
	CSMF7A3	BS	•	•	•	NONE	•			
	XSMF 7C	BS	•	•	•	NONE	•			
	CSMF7C1	LL	•	•	•	NONE	.04273-			
	CSMF7C2	BS	•	•	•	NONE	•			
	CSMF7C3	BS	•	•	•	NONE	•			
	XS20F1A	BS	•	•	•	NONE	•			
	CS20F1A1	LL	•	•	-	NONE	-09165-			
		BS	•	•	•	NONE	•			
102	43241 AME	55	-	· ·	-		-			

MPSX/370 R1.5		ENERGIEMODELL BA-WUE(GR)						PAGE	92	80/298
NUMBER	•COLUMNS	AT	ACTIVITY	INPUT COST	LOWER LIMIT.	UPPER LIMIT.	.REDUCED COST.			
783	CS20F1A3	LL	•	_		NONE	•00353-			
	CSMF11	BS	•	_	-	NONE				
	CSMF12	BS	•	•	•	NONE	•			
	CSMF13	ĹĹ	•	_		NONE	•00907-			
	XP7F8A	BS		-	•	NONE				
	XP 7F 8B	BS	•	-		NONE	•			
	XS20F1B	BS	•		_	NONE	-			
	XS20F1C	LL	•	•	•	NONE	-09591-			
791	CF8F11	LL	•	•	•	NONE	.04919-			
	CF8F12	LL	•	-	•	NONE	.02538-			
	CF8F13	ВS	•		•	NONE				
	ISNF11	BS	•49060	•	•	NONE	•			
	ISNF12	BS	.67731	_	•	NONE	•			
	ISNF 13	85	1.46502		•	NONE	•			
	ISNF1E2	BS	.04440	-	-	NONE				
	I SNF 1E 3	BS	•	•	-	NONE	•			
	IP5F11	LL	•		•	NONE	-00249-			
	IP5F12	BS		•	•	NONE	•			
	IP5F13	BS	•	-	•	NONE	•			
	IS20F11	LL	•	_	•	NONE	-00195-			
	IS20F12	BS	-	•	•	NONE	-			
	IS20F13	ĹĹ	_	_	-	NONE	.01780-			
	IF6F11	ίί	•	-	•	NONE	-00167-			
	IF6F12	BS	•	-		NONE				
	IF6F13	ĹĹ	-	_	•	NONE	•01954-			
	ISMF LA 1	LL		•		NONE	.00167-			
	ISMF1A2	ίί	•	_	-	NONE	.01590-			
	ISMF1A3	BS	_	_	_	NONE				
	ISMFICI	ĹĹ		_	-	NONE	.00348-			
	ISMF1C2	ii	_	-	-	NONE	.02944-			
	ISMF1C3	ВS	•	_	•	NONE	•			
	ISMF7A1	LL	•	-	•	NONE	.00612-			
	ISMF 7A2	LL	•	_	•	NONE	.00303-			
	ISMF7A3	īī	_	-	_	NONE	.02078-			
	IF8F11	BS	•	_	_	NONE	1			
818	IF8F12	BS	_	_	•	NONE	_			
	LF8F13	BS	•	_	•	NONE	_			
	IP5F1A1	LL		_	-	NONE	.00505-			
	IP5F1A2	BS	_	_		NONE	•			
	IP5F1A3	BS	.09605		•	NONE				
	XSOF11	BS	1.00000	•	•	NONE	•			
824	XSOF12	85	•95156		•	NONE	•			
	XS20F11	BS	.00007	_	•	NONE	•			
	XS20F12	LL	•	•	•	NONE	.00704-			
	XP 5F 11	BS	.17312	•	•	NONE	•			
	XP5F12	LL	•	•	•	NONE	.00704-			
	XS20F31	BS	1.00000	•	•	NONE	•			
	XS 20F 32	BS	.45862	•	•	NONE	•			
831	XS21F31	BS	•54138	•	-	NONE	•			
	XS21F32	LL	• 54150	•	•	NONE	.00117-			
	XS19F41	BS	1.00000	-	Ţ.	NONE	•			
				•	<u> </u>		-			

NUMBER - COLUMNS ATACTIVITY INPUT COST LONER LIMIT UPPER LIMIT REDUCED COST. 834	MPS	SX/ 37 0	R1.5	EN	ERGIEMODELL BA-W	UE (GR)				PAGE	93	80/298
### ### ### ### ### ### ### ### ### ##	N	JMBER	.COLUMNS	AT	ACTIVITY	INPUT COST	LOWER LIMIT.	UPPER LIMIT.	.REDUCED COST.			
836		834	XS19F42	вς	.59148	•	•	NONE	•			
837		835	XS20F41	8\$.40852	•	•		•			
838 KELF12 LL		836	XS20F42	LL	•	•	•	NONE	.00378-			
839 XPTE81 85		837	XELF11	ВS	•	•	•	NONE	•			
840 XPTF82 LL 841 COSTS 85 22.74326					•	•	•	NONE	.00704-			
## COSTS ## S 22.74326					•	•	•		•			
842 SQ2 BS 4.79977					•	•	•		.00704-			
849 STAUB BS						•	•		•			
844 NOX 85 2.80205 - NONE 845 COXID 95 9.13019 - NONE 846 RABE 85 .15850 - NONE 847 UNFALL 85 2.64298 - NONE 848 CO2 85 5.32918 - NONE 849 VOUNST 85 3.88909 - NONE 850 LAND 85 .83507 - NONE 851 VELFALT 85 .79134 - NONE 852 EFF12 85 1.59185 - NONE 852 EFF12 85 1.59185 - NONE 854 VORRAT 85 2.00584 - NONE 855 VORRAT 85 2.00584 - NONE 855 VORRAT 85 1.00000 - NONE 856 KS2 85 1.00000 - NONE 857 KS3 85 1.6217 - NONE 858 KS4 LL - NONE 858 KS4 LL - NONE 858 SO21 B5 95995 - NONE 858 SO21 B5 95995 - NONE 860 SO22 LL - NONE 005777 862 SO24 LL - NONE 005777 862 SO24 LL - NONE 005777 863 ST1 B5 2.4338 - NONE 864 ST2 LL - NONE 005777 865 ST3 LL - NONE 005777 866 ST3 LL - NONE 005777 867 NONE 006677 868 NOX2 B5 00293 - NONE 869 NOX3 LL - NONE 005507 869 NOX3 LL - NONE 006677 860 NOX4 LL - NONE 0055078 861 NONE 006677 862 SO24 LL - NONE 0055078 863 ST1 B5 1.00000 - NONE 006677 864 ST2 LL - NONE 006677 865 ST3 LL - NONE 006677 866 ST4 LL - NONE 0055078 867 NOX1 B5 1.00000 - NONE 006677 868 NOX2 B5 .00293 - NONE 006677 877 RB3 LL - NONE 006677 878 RB4 LL - NONE 006677 879 NONE 006677 878 RB4 LL - NONE 006677 878 RB4 LL - NONE 006677 879 NONE 006677 878 RB4 LL - NONE 006677 879 NON						•	•		•			
## # # # # # # # # # # # # # # # # # #						•	•		•			
846						•	•		•			
847 UNFALL 8S 2.64298 - NONE 64298 - NONE 64299 - NONE 64298 - NONE 64299 - NONE 64298 - NONE 64299 - NONE 642999 - NONE 64299 - NONE 6						•	•		•			
848 CQ2 BS 5.32918						-	•		•			
849 VDUNST 85 3.88909 . NONE						•	•		•			
850 LAND 85 .83507 . NONE									•			
851 VIELFALT 85 79134 NONE SEPTIZ 85 1.59185 NONE NONE SEPTIZ 85 1.59185 NONE SEPTIZ 85 1.59185 NONE SEPTIZ 85 1.59185 NONE SEPTIZ SEPT						•	•					
## 853						•	•		•			
854 VORRAT 85 2.00584 NONE S55 KS1 85 1.00000 NONE S56 KS2 85 1.00000 NONE S57 KS3 85 1.6217 NONE S57 KS3 85 1.6217 NONE S57 KS3 85 1.6217 NONE S57 KS3 S5 1.6217 NONE S57 NONE S57 S501 S5 5.9595 NONE S57 NONE S57 S501 S5 5.9595 NONE S57 S501 S5 S501						•	•		•			
855 K\$1 B\$ 1.00000		853	IMPORT	ВS	•45000	•	•	NONE	•			
856		854	VORRAT	BS	2.00584	•	•	NONE	•			
857						•	•		•			
858 KS4						•	•		•			
859 SO21					-16217	•	•		•			
860 S022					•	•	•		.00825-			
861 S023					• 95995	•	•		•			
862 S024					•	•	•					
863 ST1 85 .24338					•	•	•					
864 ST2					24339	•	•					
865 ST3 LL						•	•					
866 ST4 LL							-					
867 NOX1 BS 1.00000 NONE					-	-	•					
868 NOX2 BS .00293 . NONE .00448- 869 NOX3 LL					1.00000	•	•					
869 NOX3						•	•		•			
070 NOX4 LL 0 00613- 871 COS1 85 81302 0 NONE 00855- 872 COS2 LL 0 00855- 873 COS3 LL 0 00869- 874 COS4 LL 0 00869- 875 R81 85 55616 0 NONE 00611- 876 R82 LL 0 00809- 877 R83 LL 0 00809- 878 R84 LL 0 00809- 878 R84 LL 0 00809- 879 UNF1 LL 0 00809- 881 UNF3 BS 85951 0 NONE 00881- 882 UNF4 LL 0 0 NONE 00809- 883 CO21 85 81683 0 NONE 00809- 884 UNF3 BS 85951 0 NONE 00809- 885 UNF4 LL 0 0 NONE 00809- 886 UNF4 LL 0 0 NONE 00809- 887 UNF4 LL 0 0 NONE 00809- 888 UNF4 LL 0 0 NONE 00809- 888 CO21 BS 81683 0 NONE 0 NONE 0 889 CO21 BS 81683 0 NONE 0 NONE 0 880 UNF4 LL 0 0 NONE 0 NONE 0 880 UNF4 LL 0 0 NONE 0 NONE 0 880 UNF4 LL 0 0 NONE 0 NONE 0 880 UNF4 LL 0 0 NONE 0 NONE 0 880 UNF4 LL 0 0 NONE 0 NONE 0 880 UNF4 LL 0 0 NONE 0 NONE 0 880 UNF4 LL 0 0 NONE 0 NONE 0 880 UNF4 LL 0 0 NONE 0 NONE 0 880 UNF4 LL 0 0 NONE 0 NONE 0 880 UNF4 LL 0 0 NONE 0 NONE 0 880 UNF4 LL 0 0 NONE 0 NONE 0 880 UNF4 LL 0 0 NONE 0 NONE 0 880 UNF4 LL 0 0 NONE 0 NONE 0 880 UNF4 LL 0 0 NONE 0 NONE 0 NONE 0 880 UNF4 LL 0 0 NONE 0 NONE 0 NONE 0 880 UNF4 LL 0 0 NONE 0 N				LL	•	•	•	NONE	.00448-			
872 COS2 LL		870	N0 X4	LL	•	•	•		.00613-			
873 COS3 LL		871	COSI		.81302	•	•					
874 COS4 LL					•	•	•					
875 RB1 BS .55616					•	•	•					
876 RB2 LL					•	•	•		.01211-			
877 RB3 LL					• 22010	•	•		00611-			
878 RB4 LL					•	•	•					
A 879 UNF1 LL					•	•	•					
A 880 UNF2 LL					•	•	•					
881 UNF3 BS .85951 . NONE 882 UNF4 LL . NONE .3499986E-06- 883 CO21 BS .81683 . NONE					•	•	•		•			
882 UNF4 LL • • NONE -3499986E-06- 883 CO21 BS -81683 • NONE	A				- -85951	•	•		•			
883 CO21 BS -81683 • NONE •					•05,751		•		-3499986E-06-			
NO.					-81683	•	•		•			
					•	•	•		-01109-			
		,			-							

MP	SX/370	R1.5	EN	ERGIEMODELL BA-W	UE (GR)				PAGE	94	80/298
N	UMBER	.COLUMNS	AT	ACTIVITY	INPUT COST	LOWER LIMIT.	UPPER LIMIT.	.REDUCED COST.			
	885	C023	LL	•	•	•	NONE	-01733-			
	886	C024	LL	•	•	•	NONE	.02150-			
	887	VD1	BS	- 55563	•	•	NONE	•			
A	888	VD2	LL	•	•	•	NONE	•			
	889	VD3	BS	1.00000	•	•	NONE	•			
A	890	VD4	LL	•	•	•	NONE	•			
	891	LAND1	BS	.00380	•	•	NONE	•			
	892	LAND2	LL	•	•	•	NONE	-00337-			
	893	LAND3	LL	•	•	•	NONE	.00487-			
	894	LAND4	LL	•	•	•	NONE	-00600-			
	895	VIFAL	BS	.16537	•	•	NONE	•			
	896	VIFA2	BS	1.00000	•	•	NONE	•			
	897	VIFA3	BS	1.00000	•	•	NONE	•			
	898	VIFA4	BS	1.00000	•	•	NONE	•			
	899	EFF1	BS	.97671	•	•	NONE	•			
	900	EFF2	LL	•	•	•	NONE	-00486-			
	901	EFF3	LL	•	•	•	NONE	.00811-			
	902	EFF4	LL	_	•	•	NONE	-01135-			
	903	IMP1	BS	1.00000	•	•	NONE	•			
	904	IMP2	LL	•	•	•	NONE	-00191-			
	905	IMP3	LL	•	•	•	NONE	.01714-			
	906	IMP4	LL		•	•	NONE	• 02 47 5-			
	907	VOR 1	BŞ	.28738	•	•	NONE	•			
	908	VOR2	LL	•	•	•	NONE	-00086-			
	909	VOR3	LL	•	•	•	NONE	-00154-			
	910	VOR4	LL	-	•	•	NONE	.00189-			
	911	NECOST	BS	.45946	•09900	•	NONE	•			
	912	NFSO2	BS	.76001	.03300	•	NONE	•			
	913	NF STAUB	BS	.93916	.03300	•	NONE	•			
	914	NENDX	BS	-74927	-03300	•	NONE	•			
	915	NFCO	BS	•79675	.05700	•	NONE	•			
	916	NFRABE	BS	- 86096	-04100	•	NONE	•			
	917	NEUNE	BS	.78512	.07000	•	NONE	•			
	918	NFC02	BS	.79579	.14700		NONE	•			
	919	NEVDST	BS	-61109	.00500	•	NONE	•			
	920	NFLAND	85	.99905	•03300	•	NONE	•			
	921	NEVIFA	BS	- 20866	.01200	•	NONE	•			
	922	NEEFE	BS	.75582	.22700	•	NONE	•			
	923	NEIMP	85	.75000	-19800	•	NONE	•			
	924	NEVOR	BS	.92815	.01200	•	NONE	•			

5. Literatur

- Fürniß, B., Schulz, V., Stehfest, H. (1980): Optimierung des Energieversorgungssystems von Baden-Württemberg bei mehrfacher Zielsetzung.

 Bericht KfK 2978/I, Kernforschungszentrum Karlsruhe.
- Hoch, D. (1979): Mehrfache Zielsetzung bei der Optimierung eines regionalen Energieversorgungssystems. Diplomarbeit, Institut für Wirtschaftstheorie und Operations Research, Universität Karlsruhe.
- Neumann, K. (1975): Operations Research Verfahren, Bd. I. Hanser-Verlag, München.
- IBM (1976): Mathematical Programming System Extended/370.
 Manual SH19-1095-1, IBM France, Paris.