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The boolean algebra with restricted variables as a tool for fault

tree modularization,

Abstract

The number of minimal cut sets (m.c.s.) of very complex and highly inter-
connected fault trees can become extremely large (e.g. more than 107). In
this case the usual analytical approach of dissecting the fault tree TOP vari-
able into m.¢.s. is not only computationally prohibitively expensive, but al-
so meaningless because it does not offer any synthetic overview of system be-
havior. The method proposed in this paper overcomes the deficiencies of the ana-
lytical method. It is shown that, by applying boolean algebra with restricted
variables (b,a.w.r.v.), the concept of fault tree modularization can be straight-
forwardly extended from a single gate to a set of gates, Thus, large fault trees
are divided into smaller fault trees (modules), which are conmnected to each
other according to a simple scheme. This scheme is represented by a block dia-
gram in which each block is a module, The modules are analyzed separately by
the m.c.s. method, and the results are combined according to the block diagram
connections to calculate the occurrence probability of the TOP event. The method
allows the calculation of very large fault trees in a short time and offers a
synthetic overview of system behavior through the block diagram. Numerical exam-
ples are also included. Calculations have been carried out by using the com—

puter code MUSTAMO, which is based on the theory developed in this paper.



Boolesche Algebra mit beschridnkten Variablen als Mittel zur

Fehlerbaum-Modularisierung

Kurzfassung

Die Anzahl der Minimalschnitte sehr komplexer und stark vermaschter
Fehlerbdume kann extrem grol werden (beispielsweise mehr als 107).

Fiir diesen Fall ist das iibliche analytische Verfahren der Zerlegung
der TOP-Variablen des Fehlerbaums in Minimalschnitte sowohl rechen-—
technisch prohibitiv teuer, als auch sinnlos, weil es keinen iiberblick
iiber das Systemverhalten liefert., Mit der hier vorgeschlagenen Metho-
de werden diese Midngel der analytischen Methode iberwunden. Es wird
gezeigt, dal durch Einsatz der Booleschen Algebra mit beschrinkten
Variablen das Konzept der FehlerbaumModularisierung von einem ein-
zelnen Gatter ohne weiteres auf eine Menge von Gattern erweitert
werden kann. GroRe Fehlerbdume werden dadurch in kleinere Fehlerbdume
(Module ) aufgeteilt, die nach einem einfachen Schema miteinander ver-—
kniipft sind, Dieses Schema wird durch ein Blockdiagramm dargestellt,
in dem jeder Block ein Modul ist. Die Module werden nach der Methode
der Minimalschnitte einzeln analysiert, und die Ergebnisse werden
aufgrund der Verkniipfungen des Blockdiagramms zusammengefaRt, um

die Eintrittswahrscheinlichkeit des TOP-Ereignisses zu berechmen. Die
Methode erlaubt die Auswertung von sehr grofen Fehlerbiumen in kurzer
Zeit und liefert iiber das Blockdiagramm einen Uberblick iiber das Sys-
temverhalten., Die Methode wird auch an Hand von numerischen Beispie-
len erlautert. Die Berechnungen wurden mit Hilfe des Rechenprogrammes
MUSTAMO durchgefilhrt, das auf der in diesem Bericht beschriebenen Theorie

basiert.



Preface

The '"ad hoc'' european expert working group in reliability during their
11th meeting held at Ispra (Italy) on 15th and 16th October 1980 recommended
to investigate the use of boolean algebra with restricted variables in future

computer programe for fault tree analysis.

Following this recommendation a meeting was held at Karlsruhe on lst April
1981. The participants were Messers A. Cross and R, Matthews from the Safety
and Reliability Directorate, UKAEA (Warrington; Great Britain), Mr. A, Amendola
from the European Joint Research Center of Ispra (Italy), Mr. C.A. Clarotti
from the Comitato Ricerche Nucleari (Roma, Italy) and Messers L. Caldarola,

A. Wickenhiduser, H. Knuth and H. Schnauder from Kernforschungszentrum Karls-

ruhe (Federal Republic of Germany).

At the end of the meeting the participants issued the following state-

ment :

"In order to extend the current techniques of logical analysis to give a
more complete system representation, it seems advisable to use boolean al-
gebra with restricted variables (b.a.w.r.v.) in future computer programs

for fault tree analysis,

The advantages of b,a.w.r.v. over the traditional boolean algebra tech-

niques are as follows:
1. It handles components with more than two states.

2. It extends the concept of modules from that of a single gate to that
of a set of gates. This has the potential for handling fault trees
with large numbers of minimal cut sets. The extent of this potential

should be further investigated.

3. Because of the modularisation of the fault tree, the logical informa-
tion is presented in a more compact, understandable form. This is of

particular importance when the number of minimal cut sets is very large.



With reference to points 1 and 2 above, b.a.w.r.v. is the common language
which can be used.,atthe boolean level, in both fault tree analysis and
state analysis, thus allowing the combination of the two techniques in a
more manageable way. In addition there are no basic problems integrating
b.a.w.r.v. with computer aided fault tree construction, common mode ana-
lysis and quantitative analysis (analytical and/or simulation methods),

The development of these aspects should also be explored.

The above points are valid in all applications of fault tree analysis

such as risk analysis, design optimisation, on line diagnostics etcetera."

During the meeting the authors showed the applications of b.,a.w.r.v. for fault
tree modularization, This paper is the authors presentation on the subject

at the meeting.
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INTRODUCTION

The evaluation of the occurrence probability of the top event of a
fault tree can be carried out by means of simulation methods (Monte Car -
lo-type methods) or by means of analytical methods.

Numerical simulation allows reliability information to be obtained for
systems of almost any degree of complexity. While this method provides
estimates it does not yield parametric relations. In addition, since the
failure probability of a system is usually very low, precise results can

be achieved only at the expense of very long computational times.

Analytical methods give more insight and understanding because ex-
plicit relationships are obtainable. The results are also more precise

because these methods usually give the exact solution of the problem.

In 1970 Vesely /1/ gave the foundations of the analytical method for
fault tree analysis. Vesely's theory was improved by the present author,
A computer program for fault tree analysis was developed based on this
theory / 2; 3 /. This computer program proved to be the best analytical

program for fault tree analysis in the Federal Republic of Germany / &4 /.

Vesely's method can be applied only to coherent systems with binary
{two states) components. Another important limitation of the method is
that the boolean function which describes the TOP variable of the fault
tree must not contain negated variables. Finally the theory does not give

any indication on how to handle statistically dependent components.

Since there are components (e.g. a switch) which have more than two
states, a theory was developed by the author in 1977 /5/ to handle sys-
tems with multistate components. Here the basic idea was introduced to
associate the primary variables with the states of the primary components
instead of with the primary components. In addition the basic boolean al-
gorithms were described. In 1978 the author /6/ showed that the technique
of multistate super—components can be used to remove statistical depen-
dencies from a fault tree, by introducing supercomponents defined "ad hoc"

with more than two states.

An interesting feature of the method proposed in /5/ and /6/ is that

the boolean function which describes the TOP wvariable of the fault tree



does not necessarily need to be coherent. In . addition boolean functions con-

taining negated variables can be treated.

A formalization of the theory by means of the so called 'boolean algebra

with restricted variables" has been developed by the authot in /7/, and /8/.

It is shown in /8/ that the boolean algebra with restricted variables
(b.a.w.r.v.) is the common language which can be used in both fault tree ana-
lysis and state analysis, thus allowing the combination of the two techniques
in a more manageable way. This feature is of particular value for handling
statistical dependencies in fault trees. The importance of the b.a.w.r.v.
was recognised in /9/, where it was said that the b.a.w.r.v. "will play the

role that Vesely's paper played ten years ago" /9/.

In /10/ the coherent systems were defined for the more general case in
which multistate (two or more than two states) primary components are con~
tained in a system. Here the concept of "associated coherent function' of a

given boolean function is introduced.

Based on the theory given in /7/; /8/ and /10/ the computer program MUSTA-
FA was developed to analyze fault trees of coherent and non ccherent systems
containing statistically independent as well as dependent components with

two or more than two states.

In this paper another important application of the b.a.w.r.v. will be exa-

mined,, namely fault tree modularization.

In the case of very large systems with many interconnections the total
nuber of minimal cut sets (m.c.s.) of a fault tree may become extremely large
(e.g. more than 107). In this case the usual m.c.s. approach is not only com—
putationally impossible but also meaningless because it does not offer any
synthetic overview of system behaviour. This deficiency was also pointed out

in the german reactor risk study /11/.

For this reason attempts have been made /12; 13/ to modularize large fault
trees. In order to briefly illustrate the previously available methods, let
us consider the fault tree 1 of Fig. 1. The meaning of the symbols used in

Fig. | are explained in Table 1. The primary components underneath gate G09

are different from the primary components located underneath the rest of the
fault tree. The same holds for gate Gl0. One can therefore calculate the fault

tree 1 by treating the gates G09 and Gl0 as primary variables,




Fault tree 1 can be dissected into three smaller fault trees, namely GO9,
G10 and the main fault tree in which G09 and G10 enter as primary variables
(modules). The three resulting fault trees can be analyzed separately ome
after the oher, and the results are properly combined to calculate fault

tree 1.

It is important to point out that the theory available from the literature

allows the modularization based on single gates only,

With reference to fault tree ! it is not possible to handle the gate GO5
as a module because some of the primary components underneath GO5 (F and H)
are also underneath GO6. The same holds for GO6. Consider now the gate GO5
and GO6 together (as a set). The primary components underneath the set of
gates GO5 and GO6 (E; F; H and K) are different from the primary components
located underneath the rest of the fault tree., One could therefore try to mo-
dularize fault tree 1 by considering the gates GO5 and GO6 not individually

but together as a set.

The theory presented in this paper allows the extension of the concept
of modularization from that based on a single gate to that based on a set

of gates,



Table 1
List of Symbols used in the Fault Trees.

Symbol Meaning

O Primary Variable

Non Primary Variable

@ O0R Gate
9 AND Gate

Q NOT Gate
MAJORITY Gate
| (at least k out of n)

Note : A marked point at the input of a gate
means that the variable is negated.
(see NOT Gate).
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l. Generalities on the boolean algebra with restricted variables

According to what is said in the introduction, the basic idea of the boo-
lean algebra with restricted variables is that of associating the primary va-
riables (literals) with the states of the primary components instead of with

the primary components.

A primary component will be indicated by a lower case letter. For instance

a, b, ¢ are components,

A state of a primary component will be indicated by the same notation as the
primary component to which it belongs followed by a positive integer number
(a0, al, a2, etc.). In general we shall have agq with q= 0; 1; 2....; na — 1

where na is the total number of states belonging to primary component a.

We now associate with each state aq a boolean variable Aq (literal) which

takes the value 1 if primary component'a"occupies state aa and the value O

if"a"does not occupy ag.

The event
{Aq = 1} —— e aQ (1~1)

indicates that primary components”a''occupies state aq.

Conversely, the event

{Aq = O} ., aq = ak .(k#Q) (1-2)

indicates that primary component “a” does not occupy state aq and therefore

occupies one of its other possible states (i.e. the unionof all remaining states),

Note the one to one equivalence between state aq (small a) and boolean

variable Aq (capital A) associated with it. We have

aq-:_:..-{Aq 1} (1-3)
and
aq -t {Iq 1} -— {Aq = O} (1-4)




Since a primary component must occupy one of its states and can occupy only
one state at a time, the variables Aq must obviously satisfy the following

two types of restrictions.

Restriction Type 1 The disjunction of all binary variables associated

with the same primary component is always equal to 1.

" na-1’
Aq = 1 (1-5)
q=0

Restrictions Type 2 The conjunction of two different binary variables asso-

ciated with the same primary component is always equal

to O.

Aq /\ Ak = 0 (q # k) q; k =031325 e 5na-1 (1-6)
Note that there is only one restriction type 1 and na+(na - 1) / 2 restric-
tions type 2.

The complement rule is also important.

Complement rule A negated (complemented) literal is equal to the dis-

junction of all remaining literals belonging to the
same primary component, that is
na-1

Aq = Ak (k # q) (1-7)
q kyo | q

Note that the complement rule can be derived from the restrictions and
viceversa [/7/.

It has been shown in /7/8/ and /10/ that the boolean algebra with restriced
variables allows one to operate on boolean variables in a way similar to the
traditional boolean algebra, but with the additional rules given by Egqs. 1-5

to 1-7, These additiomal rules apply only among the primary variables (literals)
which belong to the same primary component, There are no additional rules among

primary variables which do not belong to the same primary component.

The following definitions have already been introduced in /7/, /8/ and /10/
and will be used throughout this paper.

Definitions

1. A monomial is a conjuction of literals.

Note that by definition a monomial does not contain negated literals.



2.

3.

10,

- 8-

A zero monomial is a monomial which is always equal to zero.

A monomial is identical with zero if it contains at least two different

literals of the same primary component (restrictions type 2),

A literal is said to be obligatory if its deletion in a given monomial
alters the truth table of the monomial,.

Repeated literals are not obligatory.
Bi /\ Bi = Bi (1-8)

An irredundant monomial is a non zero monomial which contains only obli-

gatory literals.

. A complete monomial {minterm) is an irredundant monomial which has 2 num

ber of literals equal to the number of primary components present in the

system,

If two irredundant monomials are such that the first {say X ) contains
all literals of the second one (sayY ), the first monomial implies the

second one, The first monomial (X ) is called subsuming monomial and the

second one ( Y} subsumed monomial.

A disjunctive form of a boolean function is any disjunction of monomials

which is equivalent to the function.

The disjunctive canonical form of a boolean function is that disjunctive

form of the function in which every monomial is complete.

A monomial belonging to a disjunctive form of a boolean function is said

to be oblipatory if its deletion in the disjunctive form alters the truth
table of the function.

A monomial is not obligatory if (1) it is a zero monomial, or (2) it sub-
sumes another monomial of the disjunctive form, or (3) it implies

the disjunction of two or more other monomials of the disjunctive form.

A disjunctive form of a boolean function is called a normal disjunctive

form if (1) all monomials are irredundant and (2) no subsuming monomial

is contained in it.




11. An irredundant disjunctive form of a boolean function is a normal dis-

junctive form of the function which ceases to be a disjunctive form of

the function if one of its monomials is.removed (deleted).

The monomials of an irredundant disjunctive form are all obligatory.

12, An irredundant monomial (say X) is said to be a prime monomial (or prime

implicant) of a boolean function (say TOP) if (1) X implies the TOP and
(2) every subsumed monomial Y obtained from X by replacing one of its

literals with 1 does not imply the TOP.

Prime monomials are also currently called minimal cut sets in the literature.

13. A base of a boolean function is any disjunction of prime monomials which

is equivalent to the functionm.

14. The complete base of a boolean function is the disjunction of all its

prime monomials.

15. An irredundant base of a boolean function is a base which ceases to be a

base if one of its prime monomials is removed (deleted).

The prime monomials of an irredundant base are all obligatory,.

16. The three simplification rules, which allow one to get a normal disjunc-

tive form from a disjunctive form are the following:

1. Delete the repeated literals of a monomial (idempower law).
2. Delete zexo monomials (exclusion law).

3. Delete subsuming monomials (absorption law).

17. We call intact literal (or intact primary variable) of a primary compo-

nent that literal which is associated with the intact state of the prima-

ry component.

For convection the literal with the index "0" is the intact literal.
For instance AO, BO, CO are the intact literals respectively of the

primary components A, B, C,

18. A boolean function is said to be irredundant if it has only onme base which

is at the same time complete and irredundant.

19, A boolean function is said to be coherent if at least one literal (the
intact literal) of each primary component does not appear in the comple-

te base of the function.
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It is important to point out /10/ that a coherent function is irredundant

but that an irredundant function is not necessarily coherent.

20. The associated coherent function of a given boolean function TOP is that

function é? which is generated from any normal disjunctive form of the

TOP by replacing all intact literals by 1.

Due to the way in which the function :%s is generated, one can easily
verify that TOP implies é

If a boolean function is coherent, its associated coherent function is

identical with the boolean function. The reverse is also true.

The following rules on coherent boolean functions are important /10/.
Rule 1

If a normal disjunctive form of a boolean function is such
that at least one literal of each primary component does
not appear in it, the function is coherent, and the normal

disjunctive form is the only base of the function.
Rule 2

If a boolean function is coherent, its base can be calcu-
lated from any of its normal disjunctive forms by replacing
all intact literals by 1 and by applying the absorption law

among the monomials.
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2. Description of the method

According to /8/ the occurrence probability "P'" of the event that a sto-

chastic boolean variable takes the value 1 is equal to the expected value "E"
of the stochastic boolean variable, that is

SEID IS

For more details about the above equation see chapter 2 of /8/.

In the following we shall speak of the expected value of a stochastic boolean
variable and we shall mean by that the occurrence probability of the associ-

ated event.

In the B1lldwing we shall use the symbols + and + to indicate the operations
respectively of disjunctions (V) and conjunctions ( A )} among boolean variab-

les.

Note that the symbols + and s indicate the arithmetical operations respecti-
vely of addition and multiplication when they are used in conjunction with ex-

pected values of boolean variables.
The method will be described step by step by applying it to a fault tree.

Let us consider the already mentioned fault tree 1} (Fig. 1). The primary
components of the fault tree are A, B, C, D, E, F; H, X, L, M, N and P,

The primary components are all binary, i.e. they have two variables, one asso-
ciated with the failed state (failed variable) and one associated with the
intact state (intact variable). So in the case of the primary component A we
have the primary variable Al which is associated with the failed state and the
primary variable A0 which is associated with the intact state., The two primary

variables AQO and Al are restricted variables. We have:

A0 » AL =0
AO + A1 =1
A0 = Al
A1 = A0

The fault tree of Fig. 1 contains only failed variables, namely Al; Bl, C1,
D1, El, F1, H1, K1, L1, M1, N1 and Pl. Since the fault tree does not contain
any intact variable, fhe boolean function TOP is coherent.

The fault tree 1 is very simple and could be solved without any difficulty by
applying the usual analytical methods.
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However, due to its simplicity, fault tree | is suitable for introduecing

the method, because all operations can bé carried out by hand.

We introduce first some terminology of fault tree analysis. It is a common
practice in fault tree analysis to classify the variables (vertices) into
twa categories: primary variables and non primary variables. The non primary

variables will be called gates here.

Definition 21

The input variables of a gate are called predecessors of

the gate.

Definition 22

A successor of a variable is any gate to which the wvariable

is an input.

Definition 23

A route in an ordered sequence of variables which (1) starts
with a primary variable, (2) ends with the TOP wvariable and
(3) in which each variable is a successor of the preceding variable

and a predecessor of the following variable.

With reference to fault tree | of Fig. 1, observe for instance that each

one of the two sequences

Fl - GO9 - GO5 - GO1 - TQP

Mi - G10 — GO8 - GO4 — TOP
is a route of the fault tree..

Definition 24

A bundle is a set of routes.

For example the two routes listed above constitute a bundle.
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Definition 25

The territory of a given bundle is the set of all primary components
associated with the primary variables contained in the routes of the

bundle,

Referring to the bundle composed of the two routes shown above, notice that
the primary variables belonging to the routes of the bundle are F1 and Ml.
The primary components associated with these primary variables are therefore

F and M. The set { F;M } constitutes the territory of the bundle,

Select now an arbitrary set (group) of gates of fault tree 1, for example
GO5 and GO6. Consider the complete set of routes which contain either GO5
or GO6 or both,

They are:

El - GO5 - GO1 - TOQP
Fl - GO9 - GO5 - GOl - TOP
H1 - GO9 - GO5 - GO1 - TOP
Fl - GO9 - GO6 - GO2 - TOP
Hi - GO9 - GO6 - GO2 - TOP
Ki - GC6 - GOZ2 - TOP

Each of the above six routes is said to be internal with respect to the
group of gates GO5 and GO06. The bundle made of these six routes is called

the internal bundle and its territory the internal territory of the group

of gates GO5 and GO6. By inspection, the internal territory is, in this
case, the set {E;F;H;K}.

Consider now all the remaining routes of fault tree 1. They are:

Al - GO1 - TOP

Bl - GO2 - TOP

L] - GO7 - GO3 - TQP

Cl - GO3 - TQP

M1 - G10 - GO7 - GO3 - TOP
NI - GI0 - GO7 - GO3 - TOP
Ml - G10 - GO8 - GO4 - TOP
Nl -~ G10 - GO8 - GO4 - TOP
Pl - GO§ - GO4 - TOP

D1 - GO4 - TOP
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Notice that non of the above ten routes comtains GO5 and/or GO6.
These routes are said to be external with respect to the group of
gates GO5 and GO6. The bundle made of the above ten routes is called the

external bundle and its territory the external territory of the group of

gates GO5 and GO6. By inspection, the external territory is, in this example,
the set {A;B;E;C;M;N;P;D} .

In summary, given an arbitrary group of gates, each route of the fault tree

is either internal or external with respect to the selected gates. The inter-
nal routes are those which contain at least one gate of the group, while the
external routes do not contain any gate of the group. The set of all internal
routes constitutes the internal bundle and similarly the set of all external
routes constitutes the external bundle, The set of all primary components
asgociated with the primary variables contained in the internal bundle consti-
tutes the interral territory of the selected group of gates. Likewise, the set
of all primary components associated with the primary variables contained in the

external bundle constitutes the external territory.

The above definitions allow one to identify, for amy arbitrary group of gates,

the associated internal and external territories,

In the example the following table can be finally set up:

Selected Group of Gates GO5; GO6

Associated Internal Territory E; F; H; K

Agssociated External Territory A; B; C; D; L; M; N3 P
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Notice that the two territories have no primary component in common. In

this case we say that the two territories are disjoint.

Definition 26

Two territories are said to be disjoint if they have no primary

component in common.

Since the internal and external territories of the selected group of gates
{(GO5 and GO6) are disjoint, we shall soon see that the group of gates can
be analyzed separately. For this reason we say that the group of gates is

logically independent.

Definition 27

A group of gates is said to be logically independent if its internal

and external territories are disjoint,

Consider the internal bundle of GO5 and GO6. Notice that no route of the
internal bundle contains both GO5 and GO6. We say that the group of gates
GO5 and GO6 is linear.

Definition 28

A group of gates is said to be linear if each route of its internal

bundle contains one and only one gate of the group.
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If a group of gates is linear and logically independent, it is possible tohuild
with them a supercomponent, whose variables can be treated as primary variab-
les of the fault tree, Each variable of the supercomponent can be considered
in turn as the TOP variable of a fault tree which can be analyzed separately
from the main fault tree as well as from the fault trees of the other variab-
les of the supercomponent. We shall illustrate.this break down procedure by

applying it to the group of gates GO5 and GO6.

We consider the complements of GO5 and GO6, namely GO5 and GO6. The following
conjunctions can be constructed with the four variables GO5; GO6; GO5 and GO6.

Ql = GO5 « GO6 (2-1)
Q2 = GOS5 « GO6 , (2~2)
Q3 = GO5 + GO6 (2-3)
Q0 = GO5 + GO6 (2-4)

The four variables Q0; Ql; Q2 and Q3 can be regarded as the variables of a
component (supercomponent Q) because they satisfy the appropriate restrictions.

In fact starting from the equations 2-1 to 2-4 it is easy to verify that

Q2 + Q3 =1 Restriction 1lst Type

+

Qo + Q1

Q1 - Q2 =
Ql - Q3 =
Ql . Qo =
Q2 » Q3 =
Q2 - Q =
Q3+ Q0 =

Restrictions 2nd Type

c © o O ©C ©

The equations 2-1 to 2-3 can be solved with respect to the variables GO5 and
GO06 which are present in the fault tree.

We get
GO5

GO6

Q1 + Q2 (2~5)

and Q2 + Q3 (2-6)
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.

The Eqs. 2-1 to 2-3 and 2-5 to 2-6 can be used to "cut" the original fault
tree into four fault trees. This is‘diagramatically shown in Fig. 2! The
equations 2-5 and 2-6 are used in the main fault tree (the upper part) in
which the variables Ql, Q2 and Q3 enter as the primary variables of super-
component Q. The equations 2-1 to 2-3 are used to define the variables Ql,

Q2 and Q3 each one being a TOP variable of a separate fault tree. (see Fig. 2)

Notice that the group of gates GO7 and GO8 (Fig.l) is also linear and logically
independent. We introduce hevre the supercomponent R with four states in a
similar way as we have dome in the case of Q. We finally obtain that the ori-
ginal fault tree has been cut into seven simpler fault trees (Fig. 3). The
six new variables Ql to Q3 and Rl to R3 enter as primary variables in the
main fault tree (the upper fault tree). Fach one of the six new variables

is in turn a TOP variable of a separate fault tree, All seven fault trees are

shoyn in Fig. 3.

The minimal cut sets of the main fault tree can be easily calculated by using
the rules of boolean algebra with restricted variables. The algorithms are
given in /7/; /8/ and 10/, The minimal cut sets are shown in Fig. 4 under

the heading TOP.

We can group the minimal cut sets of the TOP with respect to all possible con-
junctions among the primary variables of the supercomponents Q and R. By

doing that, we get

TOP = X« +Ql-XP+QS-XX +Q2 +Rl. X3 +R3 . Xg +

+R2 + Q1 « R1 + Q1 « R3 + Q3 « R1 + Q3 « R3 ' (2-7)
where
X = Al + Bl + Al - Cl + Al « D1 + Bl » CL + Bl « D1 +
+Cl » D1 (2-8)
xP = Bl + Cl + D1 {2-9)
xb/ = Al + Cl + D1 (2-10)
XJd = Al + Bl + D1 {(2-11)

Xeg = Al + Bl + cCl (2-12)
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Fig.2: Faulit Tree 1. Modularisation with one
Supercomponent ( Q)
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Fig. 3: Fault Tree 1. Modularisation with two
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Ccl Q3
Q3 | m1
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cl D1
cl R3
D1 R1
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Fig. 4:

Fault Tree 1, Minimal
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X0 =

and of the modules,

Al

Bl

Al

Cl

Al

D1

Bl

Cl

Bl

D1

c1

D1

Bl

C1

D1

Al

cl

Dl

Al

Bl

Dl

Al

Bl

cl

Q1

Q2

Q3

Rl

R2

R3

El KO FO
El KO HO
F1 H1
El K1
K1 EQ FO
K1l EO HO
L1 PO MO
L1 PO NO
MI NI
L1 P1
P1 LO MO
Pl LO NO

Cut Sets (M.C.S.) of the main fault tree
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The block diagram of Fig. 5 shows the interconnections among the various boo-
lean functions, that is Eq. 2-7. Each block (module) is a boolean function.
Two blocks belonging to two different columns are pairwise each other logi-
cally independent, that is they have no primary component in common. The

blocks belongirdg to the same row are pairwise each other 1ogicallylindependent.

We calculate now the minimal cut sets of the variables of the supercomponents
Q and R, e.g. the fault trees Q1, Q2, Q3, Rl, R2 and R3 in Fig. 3.
We calculate Q1. From Fig. 3 we get

QL = GO5 « G06 (2-13)
C05 = E1 + GO9 ' (2-14)
GO6 = K1 + GO9 (2-15)
GO9 = Fl1 . H1 (2-16)

Taking into account Eqs, 2-14 to 2-16, Eq. 2-13 becomes

Ql = (E1 + F1 » B1) + K1 - (F1 + H1)

n

=(El1+ F1 » H1) » RO « (FO + HO)

=FEl « KO + FO + E1 «+ KO + HO (2-17)

The minimal cut sets of the variables of all modules are also given in Fig. 4,

Let us now assume that all primary components of fault tree 1 are statistical-
ly independent. The expected values of the primary variables(that is the occur- .
rence probabilities of the primary events) are assumed to be known and are

given in Table 2,

With reference to the block diagram of Fig. 5, we can finally calculate the

occurrence probability of the TOP event, that is the expected value of the
TOP variable,
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Fig. 5.

Fault Tree 1.

Block Diagram

Lo
Ql g
Q2
Q3 XY
R1 X8
Ql R1
R3 Xe
Q1 R3
Q3 R1
Q3 R3
R2
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Table 2

Fault Tree 1, Occurrence Probabilities of the Primary Variables

Primary Expected

Variable Value
Al 10 72
Bl 10 72
cl 10 7
D1 10 "2
El 10 72
F1 10 !
H1 10 "}
K1 10 2
Ll 10 "2
Ml 10!
N1 10 ~!
Pl 10 2
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We have

{TOP} E {Xu + E {Ql} XP}+ E {sz. + E XX}
E{Rl} {X5}+E{Ql} +E{R3} {xz}
{{m}} - {R3} +E {Q3} Rl} +E Q3} { R3}

(2-18)

The expected values of the boolean functions X to X€ , Q1 to Q3 and Rl
to R3 can be calculated from the expected values of the primary variables.
With reference to Fig. 4 and taking into account the numerical values of

table 2, we get:

E{Xn(}.':E } E } Al}-E{C1}+E{A1}.E{D1}+
E{B1}. e fc } {Bl}-E{Dl} +E{Cl}-

=610 "
(2-19)
E{XB}%’E{B1}+E{01} +E{D1} = 3.10 2  (2-20)
E{Xx} :E{_M} +E {01} +E{D1} = 3.102 (2-21)
ELxSt “E{Aa1(+E<BLY +E4 D1 = 3.102 (2-22)
{xs) 2o {mfen{m] vx{n]}
E{Xi} = E {Al} + E {31} +E{Cl} = 3.10° (2-23)

E {Ql} Yk {El} = 1072 (2-24)
E{Q2} :E{Fl}-E{Hl} +
E {31} . E { Kl} 1.01- 10 2 (2-25)

1
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E{e) ¥e {xa} = 107 (2-26)
" E { Rl}. =E {Ll} 162 (2-27)
E -{RZ} E {Ml}-—E {N{i + E {Ll}-E {P{}=

1

113

(2-28)

E {Pl} - 1072 (2-29)

=

L

{]

The expected values of the modulesare written inside the corresponding block

of the bloek diagram ofFig. 5. This has been done in Fig. 6 where the operations
of Eq. 2-18 have been carried out. The expected value of the TOP is equal to
2,24 + 1072

In order to compare the-results of this method with those of other methods,
one may be interested incalculating the minimal cut sets of the whole fault

tree, starting from the minimal cut sets of each module.

We notice that the minimal cut sets of the variables Ql, Q3, R1 and R3 con-
tain intact primary variables. On the other hand we know that the TOP is a co-
herent boolean function. Dueto the theorems developed in fi)/ and mentioned in
section 2 of this paper,the coherent function TOP remains unaltered if in ome

of its mormal disjunctive forms all intact variables are replaced by 1,

According to definition 20 of section 2, the associated coherent funéticn
of a given boolean function (say Q!) is that function (say CQl!) obtained

from Ql by replacing the intact variables by 1.

With reference to Fig. 4, we can calculate the associated coherent functions

of 91, Q3, R1 and R3. We have

cQl = El (2-30)
cQ3 = K1 (2-31)
CRl = 1l (2-32)

CR3 = Pl (2-33)
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Fig. 6 Fault Tree 1,

6-107%
1072 3.10°2
1.01-10
1072 3:1072
1072 3.10 2
1072 1072
1072 3-1072
1072 1072
1072 1072
107% 1072
1.01.10 2

Calculation of the Occurrence Probability of the TOP,

Expected Value of TOP:

1.01-10°

2

2

2.24°10
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The functions Q2, R2 and X« to Xg are not effected by this operation because

they do not contain any intact primary variable,

By replacing in Eq. 2-7 the boolean functions Ql; .Q3, Rl and R3 by their asso-

ciated coherent functions, we get

TOP = Xe +CQl- XPB +CQ3 ¢ Xy + Q2+ CRI - X9 +
+ CR3+ Xg +R2+ CQL+ CRL + CQL + CR3 +

+ CQ3 + CR1 + €Q3 + CR3 (2-34)

It is important to point out that the operation of replacing the intact va-
riables by 1 alters the functions Q1l,. Q3, Rl and R3 respectively into CQl,
CQ3, CR1 and CR3 but leaves the function TOP unaltered.

The number of minimal cut sets of each associated coherent function is written
inside the corresponding block of the block diagram{Fig. 7). The number of
winimal cut sets (m.c.s.) of each row is simply given by multiplying the num-
ber of m.c.s. of a2ll blocks belonging to the same row. Each result is written
in correspondence of each row on the right side of the block diagram (see

Fig., 7). The total number of minimal cut sets is simply given by summing up
the number of m.c.s. of all rows. This operation is alsoshown in Fig, 7. The

total number of m.c.s. of the fault tree 1 is equal to 26.
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6 6

1 3 3
2 2
1 3 3
1 3 3

1 1 1
1 3 3

1 1 1
1 1 1
1 1 1
2 2

Total Number of M.C.S. 26

Fig. 7 Fault Tree 1. Calculation of the Number of Minimal Cut Sets (M.C.S.).
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3. An example

Fig. 8 shows a larger fault tree (fault tree 2) which.was proposed to the
authors for test purposes by the Safety and Reliability Directorate (5.R.D.),
UKAEA, Warrington, Great Britain. The TOP event of this fault tree is the
failure of a part of a reactor protective system which is described in /14/.
The occurrence probabilities of thelgrimary events are given in Table 3.

0

This fault tree has about 4.18 - 1 cut sets, 5630 of them being minimal

cut sets,

By looking at the fault tree of Fig. 8, we notice that the group of gates
GO6 and GO7 is linear and logically independent. We therefore introduce the

supercomponent SCOI with'22 = 4 states, namely

SC01-1 = GO06 « GO7 (3-1)
SC0l1-2 = GOB « GO7 (3-2)
8C01-3 = GO6 « GO7 (3-3)
SC01-0 = GO6 * GO7 (3-4)

By applying the same procedure described in the previous section, one can
cut the original fault tree into four smaller fault trees as it is shown in

Fig. 9.

The computer program MUSTAMO executes this cut of a large fault tree into

smaller fault trees and analyzes all the resulting fault trees separately one
after the other,
The block diagram of fault tree 2 is shown in Fig. 10. Here the block cha-

racterized by the number 30 consists of the failed state of the primary comr

ponent 30. The minimal cut sets of the modules MO0l and MO02 are listed re-
spectiveiy in Table 4 and 5. Fig. 11 shows the expected values of each module.
These expected values are calculated by simply summing up the expected values
of all minimal cut sets belonging to the module. It is known that this proce-
dure overestimates the expected value of a module. The occurrence probability
of the TOP is 1.947 - 10_5. The CPU time for the complete analysis of fault

tree 2 was 48.5 secs. on a IBM 3033 computer. From Fig. 11 it results that
the modules SC01-1 (expected value: 1,275 « 10_5) and M002 (expected value

6.699 « 10-6) give by far the largest contributions to the occurrence proba-
bility of the TOP. For this reason the expected values of these two modules
have been calculated by using the more precise method described in /8/. The
results are written in Fig. 11 between brackets. The exact value of the occur-

rence probability of the TOP results to be 1,794 ¢ 10—51
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Fig.8: Fault Tree 2
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Table 3

Expected Values of the Primary Variables of Fault Tree 2

Primary Variable

Expected Value

From 01 to 03

From 04 to 06

From 07 to 15

From 22 to 27

From 30 to 35

From 41 to 45

3.5 + 10 2
2.2 + 10 2
1« o107}
8.8 - 10
1.75 « 10 >

-3




Fig.9: Modularization of Fault Tree 2 by means of one
Supercomponent {SCO1)
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Fig. 10 Block Diagram of Fault Tree 2, Modularization with
one Supercomponent (SCO1)

5C01-1
5C01-3 30
S5C01-2 MOO1
30 MOO1
M002

ROW



Fault Tree 2. Minimal Cut Sets (M.C.S5.) of Module MOO1
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Table 4

M.C.8. Composition
1 31 . 32 . 33
2 31 ¢ 32 + 43
3 31 - 42 - 33
4 31 ¢ 42 - 43
5 41 - 32 . 33
6 41 - 32 . 43
7 41 + 42 + 33
8 31 - 32 + 34
9 31 * 32 44
10 3l - 42 « 34
11 31 42 -+ 44
12 41+ 32 « 34
13 41 « 32 - 44
14 41 - 42 - 34
15 31 .32 + 35
16 31 - 32 - 45
17 31 - 42 + 35
18 31 « 42 - 45
19 41 « 32 - 35
20 41 -+ 32 - 45
21 41 + 42 - 35
22 31 - 33 . 3
23 31 - 33 . 44
24 31 - 43 - 34

M.C.8.] Gomposition
25 31 « 43 - 44
26 41 -+ 33 + 34
27 41 ¢ 33 - 44
28 41 - 43 - 34
29 31 - 33 - 35
30 31 + 33 - 45
31 31 + 43 - 35
32 31 + 43 - 45
33 41 + 33 + 35
34 41 + 33 - 45
35 41 « 43 - 35
36 31 + 34 - 35
37 31 * 34 - 45
38 31 - 44 + 35
39 31 - 44 © 45
40 41 - 34 . 35
41 41 + 34 -« 45
42 41 - 44 « 35
43 32 - 33 . 34
b4 32 + 33 .« 44
45 32 - 43 + 34
46 32 - 43 » 44
47 42 - 33 + 34
48 42 - 33 . 44

M.C.S.| Composition
49 42 + 43 - 34
50 32 - 33 . 35
51 32 + 33 45
52 32 « 43 - 35
53 32+ 43 45
54 42 + 33 . 35
55 42 + 33 - 45
56 42 - 43 - 35
57 32 » 34+ 35
58 32 » 34 - 45
59 32 - 44 - 35
60 32+ 44 + 45
61 42 + 34 -+ 35
62 42 - 34 - 45
63 42 - 44 . 35
64 33 34 . 35
65 33 « 34+ 45
66 33 - 44 ° 35
67 33 44 - 45
68 43 - 34 + 35
69 43 ¢ 34 - 45
70 43 * 44 « 35




_35_.

Table 5

Fault Tree 2. Composition of the Minimal Cut Sets (M.C.S.)
of Module MOO2Z,.

M.C.S. Composition
1 41 « 42 « 43
2 41 « 42 .+ 44
3 41 « 42 + 45
4 41 + 43 .+ 44
5 41 + 43 .+ 45
6 41 + 44 + 45
7 42 « 43 . 44
8 42 « 43 , 45
9 42 « 44 . 45

10 42 + 44 . 45
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Calculation of the Occurrence Probability of the TOP,

Expected Value of TOP:

1,275-10'5

1.52-10°

4,23-10'11

8,54:10

6.699-10°

1.947.10°°
(1,794-1077)

1.275-10"°
-5
(1.13:10 7)
8.67-10 ° 1.75-10"3
8.67-107° 4.88-10"°
1.75-10°° 4.88-10'6
6.69910 °
(6,612-10° %)
Fig. 11 Fault Tree 2. Modularization with one Supercomponent (SCOl)
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In order to better compare the results obtained in this paper with those
of S.R.D., the minimal cut sets (m.c.s.) have been divided into groups, each
group being characterized by the length of the m.c.s. that is the number of

primary variables contained in the m.c.s.

Table 6 gives the total number of m.c.s. contained in the associated coherent
functions of each block ordered according to their length. Note that only the
associated coherent functions CSC01-2 and CSCOl1-3 are different from the

functions (S5C01-2 and SCOI-3) from which they have respectively derived.

The information contained in Table 6 has been used to calculate the
total number of m.c.s. contained in each row of the block diagram ordered

according to their length. This result is shown in Table 7, where the
total number of m.c.s. ordered according to their length of the whole fault tree

has been calculated (See last column of Table 7). The results up to the length 6
of the m.c.s. are identical with those of S.R,D. /15/. The remaining m.c.s. of
order 7 could not be compared because the computer programs available at S.R.D.
were not able to calculate all m.c.s. of the fault tree. From Table 7 one gets

that the total number of m.c.s. of the fault tree 2 is equal to 5630.

The group of gates 10X, 10Y and 10Z of fault tree 2 (Fig. 8) ié also
linear and logically independent. One could introduce therefore an additional
supercomponent with 23 = 8 states, which is obtained by combining the three

gates and their complements in all possible ways, that is

10X « 10Y - 102
10X « 10Y - 10 Z
10X + 10Y + 102
10X « 10Y +» 10 Z
10X+ 10Y +10z

10X *» 10Y + 10 Z

10X « 10Y .« 10 2

10X » 10Y +» 10 2

It is possible however to reduce the number of states of the second super-
component from 8 to 5 by condensing the first four states into a single

macrostate.
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Table 6

Fault Tree 2. Total Number of M.C.S., contained in each Block.

Length Block (associated coherent function)

of M.C.8. g001-1 | cscot-2 | csco1-3} 30 MO0 M0O2
1 1
2 3 3
3 70 10
4 18 72 72
5 180
6 27

Total 225 75 75 1 70 10

Table 7

Fault Tree 2. Total Number of M,C.S, contained in each Row.

Length Row
of M.C.S. | ) 3 . s Total

!
2
3 3 10 13
4 18 70 88
5 180 72 210 462
6 27 27
7 5040 5040

Total 225 75 5250 70 10 5630
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If one calculates with the code MUSTAMO the fault tree of Fig. 8 (or those
of Fig. 9) by considering the gates 10X, 10Y and 10Z as failted states of

three different primary components, one gets a solution of the type

TOP = 10X + KX + 10Y « KY + 10Z » KZ +

+(10X + 10Y + 10X « 10Z + 10Y . 10Z) (3-5)

where KX, KY and KZ are boolean functions which do not contain 10X, 10Y and

10Z.

Let us indicate with Al the boolean function between brackets in Eq. 3-5,
that is
Al = 10X + 10Y + 10X - 10Z + 10Y . 10Z (3-6)

Eq. 3-5 can be written as follows:

TOP = (10X + Al). KX + (10Y + Al) « KY + (3-7)
+(10Z + Al) » KZ + Al

Eq. 3-7 means that the TOP remains unaltered i1f one replaces in the fault tree
of Fig. 8 (or in those of Fig. 9) the variables 10X, 10Y and 10Z respectively
with (10X + A1), (10Y + Al) and (10Z + Al). This allows us to introduce the

supercomponent SC02 with five states, namely

$C02-4 = Al = 10X . 10Y + 10X . 10Z + 10Y . 102 (3-8)
5c02-1 = (10X + A1) - Al = 10X - T0oY : Ioz (3-9)
5C02-2 = (10Y + A1) « Al = 10X - 0Y . 107 (3-10)
8€02-3 = (10zZ + Al) + Al = 10X » 10Y * 10% (3-11)
sco2-0 = ToX + T0Y + 10z (3-12)

Note that the macrovariable (macrostate) SC02-4 results from the dis-
junction (condensation) of the four variables (states) 10X + 10Y - 10Z,

10X - 10Y - 10Z, 10X - 10Y - 102, and 10X - 10Y - I0Z.

Fig. 12 shows fault tree 2 cut at two levels, namely GO6 and CGO7 (supercompo-
nent 5C01 with four states) and 10X, 10Y and 10Z (supercomponent SCO2 with

five states).



P

2P
Op

@}ebgp

D PP

08

oY,
o e

D @5
| ®
DIt @}ﬂ_

pe

101, A1

Dl @B Df

v
~

\=S

T

10% (ot

OL O
oJfo ® olo|loo]e
500

Fig. 12: Modularization of Fault Tree 2 with two Supercomponents
{SC01 and SCO2) in Cascade.

>z
O




_41_

The computer program MUSTAMO executes the two cuts in cascade of fault
tree 2 and analyses the resulting fault trees (Fig. 12) separately one after

the other starting from the fault trees at the bottom.

Fig. 13 shows the block diagram of fault tree 2 with the two cuts in
cascade. The m.c.s. of the modules NOOlto  NO12 are given in Table 8. The

m.c.s. of the functions MOOl and MOO2 are given in Tables & and 5 respectively,

The expected values of each module are shown in Fig, 14, where the occur-
rence probability of the TOP has been calculated. The result is of course iden-
tical with that already obtained in the case of one supercomponent. From Fig.
14 one concludes that the modules SC02-4 (expected value: 1.274 . 10d5) and
the module MO02 (expected value 6.669 . 10_6) give by far the largest con-

tributions to the occurrence probability of the TOP.

Fig., 15 shows the calculation of the total number of minimal cut sets
(m.c.s.). Note that the blocks SC02-0 have disappeared in the block diagram
of Fig. 15 because the associated coherent function of $C02-0 is just 1 and
does not give therefore any contribution to the m.c.s., of the fault tree.

The notations CSCOI-2 and CSCO1-3 in Fig. 15 indicate the associated coherent
functions respectively of SCO1-2 and SCO1-3.

We compare now the block diagram of Fig. 13 with that of Fig. 10. In the
block diagram of Fig. 13 the modules SCOl-1 to SCO1-3 have been decomposed
into smaller modules. The block diagram of Fig. 13 can be obtained from that

of Fig. 10 just by carrying out this decomposition.

The block diagram of Fig. 13 is more complex but it gives also more in-
sight into the importance of the various blocks. For instance we have already
noticed that the module SCOI-1 (225 minimal cut sets, Table 6) gives the
largest contribution to the system unavailability (Fig. 11). This contri-
bution is almost equal to that of the module SCO2-4 (Fig. 14), which is a

part of SCOl-!, has only 72 m.c.s. (Fig. 15) and is therefore easier to
analyze.

The CPU time for the complete analysis of fault tree 2 with two super-
components in cascade (Fig. 12) was about 3 secs. This value is reimarkably
lower than the already mentioned value of 48,5 secs. of the CPU time of the

case with only one supercomponent (Fig. 9).
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SCO01-3

5C01-2

30
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I 4 SC02-1 4 NOoO1 |
II  ]sco2-2 [} Noo2
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sC02-3 (4 Noo3
{ |
H sco2-4 [
I
NOO4 '
|
| | |
F SCco2-1 ’- NO09 |
|
4 SCo2-2 H  NOlo |
| H scoz-3 4 Noll |
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=
I A sco2-1 [ Noo5 ;
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Fig, 13 Block Diagram of Fault Tree 2.

Supercomponents (SC0l and SC02) in Cascade.

M0OO2

Modularization with two
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Table 8
Fault Tree 2, Two Supercomp. in Cascade — M.C.S. of NOOl to NOI12
Composition of M,C.S. Composition of M.C.S.
Block Block )
Module Ass,Coh.Function Module Ass.Coh.Function
24 + 25 24 25 92 + 25 . 23 22
NOO7 .
94 . 27 26 27 24 - 25 - 23 24
NOO ! ———
26 . 25 26 25 22 .« 24 .+ 25 . 23 122 « 24
26 + 27 26 27 22 + 24 . 27 - 23
29 . 23 22 23 22.24.;.;
22 - 27 22 27 29 + 26 + 25 « 23 |22 « 26
NOO2
26 - 23 26 23 Noo8 {22 ¢ 26 - 27 + 23
26 + 27 26 27 22 + 26 + 27 - 25
22 - 23 22 23 264 + 26 - 25 » 23 |24 - 26
Ivoo3 22 « 25 22 25 24 + 26 + 27 - 23
24 . 23 24 23 24 + 26 + 27 + 25
24 .+ 25 24 25 25 + 24 + 26 25
22 24 + 23 .25 |22 24 23 25 | [NOO9 27 « 24 - 26 27
22 . 24 « 23 . 27 |22 24 23 27 23 + 22 + 26 23
NO10 _
22 - 24 + 25 - 27 |22 24 25 27 27 + 22 - 26 27
22 - 26 - 23+ 25 |22 26 23 25 23 + 22 + 24 23
NOl1
Noo4 |22 ¢+ 26 - 23 . 27 |22 26 23 27 25 + 22 . 24 25
22 - 26 - 25 . 27 {22 26 25 27 93 + 25 « 22 « 24 |23 + 25
2 . 26 - 23 .25 |24 26 23 25 23 + 95 « 22 + 26
24 ¢ 26 23 . 27 |24 26 23 27 23 + 25 . ?5_ E
26« 26 - 25 - 27 {24 26 25 27 23 « 27 « 22 « 24 |23 - 27
noos |24 27 ¢ 25 24 No1z |23 27 - 22 - %6
26 + 27 - 25 26 93 « 27 « 24 - 26
oos |22 27+ 23 22 25 « 27 . 22 . 24 125 . 27
26 + 27 - 23 26 25 . 27 « 22 . 26
25 . 27 . 26 + 24
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Expected Value of TOP: 1.947-10"5

(1,794-107°)

Fig. 14 Fault Tree 2. Modularization with two Supercomponents in Cascade,.

Calculation of the Occurrence Probability of TOP.
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225

75

5250

70

10

5630
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4, A second example

Fig. 16 shows a fault tree of a part of a reactor protective system. We
call this fault tree: fault tree 3. All components of fault tree 3 are
binary with the exception of P!, P2 and P3 which have each three states.
Only the failed states Pl-1 to P3-1 and P1-2 to P3-2 are present in the

fault tree.

Table 9 gives the expected values of the primary variables. These expec-
ted values have been changed by orders of magnitudes from the original true

7

values, Fault tree 3 has more than 1030 cut sets, about 1.1 + 10" of them

being minimal cut sets (m.c.s.).

The two linear groups of gates Cl1, C2, El, E2 and G}, G2, K1, K2 are both logi-
cally independent. We can define therefore two supercomponents, namely SCO1
and SC02 each having 24 = 16 states.

Since the fault tree is symmetrical with respect to the two supercomponents,
we need to analyse only the first (SCOl), the analysis of the second (SC02)

being equivalent,

Table 10 shows the compositions of each state of supercomponent SCOl. We
note that the 7 variables $C02-9 to SC02-15 are equal to zero. This is found
also automatically by MUSTAMO. For this reason the number of states of SCO1

reduces to 9.

MUSTAMO breaks down the fault tree 3 into 17 faﬁlt trees, The main fault
tree is shown in Fig. 17. MUSTAMO calculates the fault tree of Fig. 17. The
solution is shown in the block diagram of Fig. 18. It is important that only
four non zero variables of the supercomponents SCOl and SCO2 are present in
the solution. They are

s5col -
5C01 -
sCol1 -
5C01 -

b B N e

Sco2 -
5Cco2 -
5C02 -
5Co2 -

L5 B . -
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The fault trees of the above variables are shown in Fig. 19 (5C01) and
in Fig. 20 (SC02). The fault tree of module MO46 1is shown in Fig. 21. Fig.
22 shows the common structure of the fault trees of the modules MO47 to
M06l  The composition of the variables U; V and Z for each module are given

in the table in the same Fig. 22,

Fig. 23 shows the block diagram of fault tree 3 with the expected values

‘s . -8

of each module. The occurrence probability of the TGP event is 1.12 + 10 .
Fig. 24 shows the total numbexr of m,c.s., of the associated coherent functions

, 7
of each module. The total number of m.c.s. of the fault tree is 1.1220036 . 10 ,

The CPU time for the complete analysis of fault tree 3 was 71 secs.
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Table 9

Fault tree 3. Expected Values of the Primary Variables

Primary Variable Expected Value
From MLl to Ml4 8.2569 « 10 >
From M2l to M24 8.2560 - 10 °
From M3l to M34 8.2569 + 10 -
From SUl to SU3 2.5933 . 10 °
From SOl to S03 2.5933 . 10 °
€SO and CSU 5.9996 - 10 -
From 11V to 13V 9.99 .10 "
From 21V to 23V 3,9984 « 10
From 41V to 43V 1,996 - 10 °
From 11N to 13N 9.901 - 10 >
From 21N to 23N 9.901 - 10 °
From 31N to 33N 1.9608 - 10 -
From 41N to 43N 9.901 - 10 2
From T1 to T3 2.991 - 10 >
From CM1 to CM4 10_3
From P1-1 to P3-1 9.98 10 %
From P1-2 to P3-2 9.98 - 10 °
From 31V to 33V 3.998% 10
CMT 1072




Table 10

Fault Tree 3. Supercomponent 5CO 1

STATE COMPOSITION COMMENT

1 €1 - G2 - E1 « E2 Present in the result
2 Cl+ C2 « El - E2 Present in the result
3 €l CZ + E1 - E2

4 cl- C2: El + E2 Present in tﬁe result
5 ¢l - C2 - El - E2 Present in the result
6 Cl+ C2 . El « E2

7 cl . c2 + El - E2

8 Cl- C2 + E1 » B2

9 Cl: C2 + El + E2 ZERO

10 ¢ci-: ¢2 + El - E2 ZERO

11 Cl - G2 - EL  E2 ZERO

12 Cl + C2 - EI - E2 ZERO

13 Ti.c¢2- EL - E2 ZERO

14 ¢l - c2 - El. E2 ZERDO

15 Ci-c2-El- E2 ZERO

0 cl+ ¢2:+ E1l - E2
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Fig.17: Foult Tree 3. Main Fault Tree after Break Down.
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MO46
ﬁk—-— 5C01-5 SC02-5 MO49
—45C01-2 §C02-5 MO50
L_4sc01-5 SC02-2 MO47
*—9
—{sco1-5 SCO2-4 MO53~
SCO1-4 SC02-5 MO57
“Jsc01—2 §C02-2 M048
L_15C01-2 SC02-4 MO54 .
—{sco1-5 sco2~1 MO51
—]scol-1 8C02-5 MO58
—1scoi-4 5C02-2 MO55
SCO1-4 §C02-4 MO60
SCOL1-2 5C02-1 MO52
SCO1-1 SCo2-2 MO56
SC01-1 SC02-4 MO61
SCO1-4 5C02-1 MO59
SCO1-1 SCo2-1
Fig. 18 Fault Tree 3. Block Diagram
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Fig. 19: Fault Tree 3. Fault Trees of the Variables of Supercomponent SCO1.
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Fig20: Fault Tree 3. Fault Trees ofthe Variables of Supercomponent SCO 2.
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ToP
MOLB

223

OOE

Fig. 21: Fault Tree 3.
Fault Tree of Module MOLG




MODULE

A

=213

7

-

0202

AT

AAA /\@/\ Tyl

VA A Ve

‘T

SUZ

Fig.22: Fault Tree 3.

Fault Tree of the Modules MO L7 to MO 61

MODULE ¥ U 1
M0 52 M11 M21 M31
M0 56 M12 M22 M32
M0 61 M13 M23 M33
MD 59 M14 M24 M34
M0 48 M11-M12 M21-M22 M31-M32
MO 5L M11-M13 M21-M23 M31-M33
M0 51 M11-M14 M21-M24 M31-M34
MD 58 M12.M13 M22-M23 M32-M33
M0 55 M12-M14 M22-M24 M32-M34
MO 60 M13-M14 M23-M24 M33-M34
MO 50 | M11-M12-813 M21-M22-M23 M31-M32-M33
MOLT | m1q-m12-M14 M21.M22-M24 M31-M32-M34
MOE3 | M11-M13-M14 M21-M23-M24 M3T1-M33.M34
MOB7 | mM1z-M13-M14 M22-M23-M24 M32-M33.M34
MO A9 |M11.M12-MT5-M14|M21-M22-M23-M2

tM31-M32-M33-M34

Composition of the Variables ¥,V and I

_.gg_
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6.43:107°
1.38-100 F1.08-107°{1.03. 1078
- - - o-13
- 5.34-10 1_J1.08-10 29,97 10 7}2275:20
- ") - 6-10'13
— 1.38-103'—4.36-10 ——9,97- 10
i 4 ~; 3,8:10 17
—1 1,38 10 2,73:10 ' 19.97-10
5.9-10'13
5.5:10°° 1.08-107 21 9.97.1077
-12
] 5.34°10 4,36-10 11,4104 P20
- " ” 210" 12
— 5.34-101—2.73-10 1,4-10
- - =—2.01 167¢
~— 1.38-10 3I"'Il.oa-lo 1,410
] 12
= =2 %4 13.2'10
2,13°10 1.08-10 1,410
=
-5 -4 -4 3,3'10-'12
L 15,5.10 r-{i:36-1o 1.4-10
= ” v 10712
5.5-10 .73-10 " H1.4-10
= » 114107
5.34-10 1.04-10 2,05- 10
-6 -4 21,910 'L
L 12,1310 4,36-10 f—2.05.10 =
— -11
-6 -4 -9 1,2'10
L 15.13.10 27,7310 2.05-10
L] -5 -3 -2 ,17:107
5.5-10 1.04-10 .05 10
= -3
2.13-10 1,04 10

Fig. 23 Fault Tree 3.

Calculation of the Occurrence Probability of the TOP

Expected Value of TOP:

1,12-10°

6.43°10

1.54-10"13

7,5-10'12

2,15°10 19

2,34-10"°

2,215-10"°

8
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Fig. 24 Fault Tree 3.

16
L— 78 39 27 . |
246402
— 234 39 27
|| 195858
78 93 27
+ t 195858 ¢ '
78 03  H 27
246402
234 v H
587574
— 234 93 27
o wm ” o 587574
515970
J 78 25 27 .
o—
714987
— 679 39 27
587574
—] 234 a3 27 -
587574
234 93 27
234 245 27 1247910
1704969
679 93 27
e 1704969
679 93 27
234 " . 1547910
679 245

Total Number of M.C.S.:

16

82134

884520

3581253

6505758

166355

11220036

Calculation of the Total Number of Minimal
Cut Sets (M.C.S.),



_.59_

5. Conclusions

The number of minimal cut sets (m.c.s.) of very complex and highly intercon-
nected fault trees can become extremely large (e.g. more than 107). In this
case the usual analytical approach of dissecting the fault tree TOP variable
into m.c.s, is not only computationally prohibitively expensive, but also
meaningless because it does not offer any synthetic overlook of system beha-

vior.

To emphasize this last point, a stack of paper 21 meters high would be re-
quired to print out all m.c.s. of fault tree 3 (~1,1: 107 m.c,s.) from

section 4. This is equivalent to the height of a six story building.

The above deficiencies were alsopointed outin the german risk study /11/,

where simulation methods were preferred to analytical methods,

The method suggested in this paper also overcomes the deficiencies of the
analytical methods. By applying boolean algebra with restricted variables
(b.a.w.r.v.), the concept of fault tree modularization can be straightfor-
wardly extended from a single gate to a set of gates. Thus, large fault trees
are divided into smaller fault trees {modules), which are connected to each
other according to a simple scheme. This scheme is represented by a block dia-
gram in which each block is a module. The modules are analyzed separately by
the m.c.s. method, and the results are combined according to the block diagram

connections to calculate the occurrence probability of the TOP event.
The method offers the following advantages:
1. Calculation of very large and highly interconnected fault trees within
a reasonable computing time.
For example the CPU time on an IBM 3033 for the complete analysis of
the already mentioned fault tree 3 was 71 secs.
2. A gynthetic overview of system behavior,

Each block of the block diagram physically represents a failure mode
of a part of the system (subsystem). The contribution of each subsys-
tem failure mode to the occurrence probability of the TOP event can

be read from the block diagram.
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3. Calculation of the complete boolean function of the TOP variable in

a compact form,
This is important for the following reasoms:

(a) Two or more fault trees of the same system can be compared at
the boolean level in order to determine whether or not they

are identical,

The comparison among different reliability analyses of the
same system must be carried out not only at the level of pro-
babilities (as it is usually dome) but also at the level of
events. In fact two TOP events, although they are different,
could have the same occurrence probability. On the other hand
two fault trees of the same system, although they look diffe-

rent, may be equal.

The problem of comparison among fault trees is becoming im-
portant because the confidence in the reliability analyses of
systems will increase if the analyses are carried out by dif-

ferent and independent organizations.

(b) For sensitivity studies the boolean calculation needs only be
made once. The same holds for the evaluation of the confidence

intervals of the TOP event occurrence probability.

(c) Potential application to'bn line failure diagnosis'.
Here, in particular, a complete, clear and synthetic represen-—

tation of system faults is required.

The analysis of fault tree 2 (section 3) with two supercomponents in cascade
has shown that the most convenient supercomponent is not always that which
has 2" states, where n is the number of gates in the selected group. Efforts
must be directed to find out more general rules for the definition of the

most appropriate supercomponents.

Another interesting point for further developments is the removal of logical
independence as a necessary condition for applying the method. The method being
developed at Karlsruhe handles also linear groups of gates which are weakly logically
dependent. The internal and external territories of a weakly logically dependent

group of gates are not disjoint. They have only very few components in common.
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