KfK 3091 Juli 1981

Experimental Determination of the Atmospheric Dispersion Parameters at the Karlsruhe Nuclear Research Center for 60 m and 100 m Emission Heights

Part 2: Evaluation of Measurements

P. Thomas, K. Nester Hauptabteilung Sicherheit Projekt Nukleare Sicherheit

Kernforschungszentrum Karlsruhe

Kernforschungszentrum Karlsruhe

Hauptabteilung Sicherheit

Projekt Nukleare Sicherheit

K£K 3091

Experimental Determination of the Atmospheric Dispersion Parameters at the Karlsruhe Nuclear Research Center for 60 m and 100 m Emission Heights

Part 2: Evaluation of Measurements

P. ThomasK. Nester

Kernforschungszentrum Karlsruhe GmbH, Karlsruhe

Als Manuskript vervielfältigt Für diesen Bericht behalten wir uns alle Rechte vor

-

Kernforschungszentrum Karlsruhe GmbH ISSN 0303-4003

Abstract

Experiments are carried out at the Karlsruhe Nuclear Research Center in order to determine the atmospheric diffusion of pollutants. The influence on atmospheric diffusion by conditions specific to the site will be investigated.

For evaluation of the measurements the diffusion is assumed to be a steady-state process. A two-dimensional Gaussian distribution is used as the theoretical approximation of the concentrations. The dependence of the dispersion parameters σ_y and σ_z on the downwind distance is described by a power function. A least squares fit is applied to calculate the horizontal and vertical dispersion parameters and the normalized diffusion factor with the respective errors from the measured wind velocity, emission rate and concentration distribution. The dispersion parameters determined are assigned to stability classes by the measured standard deviation of the vertical wind direction.

The reported dispersion parameters are derived from 19 experiments with mostly two sampling periods of 30 min duration each. In eight experiments different tracers were released simultaneously at 60 m and 100 m height.

In Part 1 of this report the diffusion experiments are described and the measured data are presented in detail. The results of earlier experiments performed at the Karlsruhe Nuclear Research Center for only one emission height of 100 m have been published already. Experimentelle Bestimmung der atmosphärischen Ausbreitungsparameter für Emissionshöhen von 60 m und 100 m am Kernforschungszentrum Karlsruhe

Teil 2: Auswertung der Meßergebnisse

Zusammenfassung

Am Kernforschungszentrum Karlsruhe werden Experimente durchgeführt, um die Ausbreitung von Schadstoffen in der Atmosphäre zu erforschen. Standortspezifische Einflüsse sollen dabei untersucht werden.

Mittels der Methode der kleinsten Fehlerquadrate werden aus der gemessenen Konzentrationsverteilung die horizontalen und vertikalen Ausbreitungsparameter und der normierte Ausbreitungsfaktor mit den zugehörigen Fehlerbreiten ermittelt. Für die Konzentration wird eine zweidimensionale Gaußverteilung zugrunde gelegt. Die Ausbreitung wird als stationär angenommen. Ein Potenzansatz beschreibt die Abhängigkeit der Ausbreitungsparameter von der Quelldistanz. Die Zuordnung der ermittelten Ausbreitungsparameter zu Ausbreitungskategorien erfolgt über die gemessene Standardabweichung der vertikalen Windrichtung.

Die angegebenen Ausbreitungsparameter stammen von 19 Experimenten mit zumeist zwei Sammelperioden von 30 min Dauer. In acht Experimenten wurden jeweils verschiedene Tracer simultan in 60 m und 100 m Höhe freigesetzt.

Im ersten Teil dieses Berichtes werden die Ausbreitungsexperimente beschrieben und die Meßergebnisse in Form von Tabellen und Abbildungen dargestellt. Die Ergebnisse früherer Experimente am Kernforschungszentrum mit nur 100 m Emissionshöhe wurden bereits veröffentlicht. Table of Contents

ł

1.	Introduction	1
2.	Evaluation Technique	2
2.1	The Double Gaussian Function	2
2.2	Dispersion Parameters	3
2.3	Least Squares Method	3
2.4	Error Considerations	6
2.5	Weighting Procedure and Initial	
	Approximations	7
2.6	Transport Direction	8
2.7	Wind Velocity	8
3.	Evaluation	8
3.1	Experiments Suited for Evaluation	8
3.2	Combination of Several Sampling Periods	
	in One Experiment	9
4.	Presentation of the Dispersion	
	Parameters Determined	10
5.	Discussion of the Results	12
5.1	Vertical Dispersion Parameter σ_{τ}	12
5.2	Horizontal Dispersion Parameter σ_{y}	13
5.3	Normalized Diffusion Factor χ	14
6.	Final Remarks	14
7.	References	15
	Tables 1 - 2	
	Figures 1 - 65	

1. Introduction

Conventional and nuclear facilities release pollutants into the atmosphere during routine operation and in case of accidents. To assess the resulting impact on the health of the population living in the vicinity of the facility, atmospheric diffusion calculations must be performed. In general, a double Gaussian function is used as the basis of these calculations. The extension of the plume in the vertical and cross wind directions is described by the dispersion parameters σ_z and σ_y , i.e. the standard deviations of the double Gaussian function. The dispersion parameters depend on the meteorological and topographical conditions prevailing at the respective sites. Tracer experiments are appropriate for the determination of the dispersion parameters.

Those experiments in which the emission rate and downwind concentration of a tracer are measured under various meteorological conditions have been performed both elsewhere [1], [2], [3], [4] and at the Karlsruhe Nuclear Research Center (KNRC). At the KNRC the dispersion parameters have been determined as a function of the downwind distance, source height, and stability class. A first series of the KNRC-experiments, including experiments Nos. 1 to 25 for an emission height of 100 m, have been published in [5] and [6]. The measured data of experiments No. 26 to 51 for emission heights of 60 m and 100 m have been compiled in [7]. In this report the data of [7] are evaluated by a least squares fit to deduce dispersion parameters. Finally, these parameters are pooled with those of [6] to establish a family of dispersion parameters for stability classes A to F applicable to emission heights up to 100 m.

The experimental program of dispersion parameter evaluation has not yet been terminated at the KNRC. Now experiments are being performed for emission heights of 160 m and 195 m.

- 1 -

- 2 -

2. Evaluation Technique

The concentration distributions measured at ground level in the diffusion experiments are used to determine the dispersion parameters. For this purpose the least squares technique is applied to fit the double Gaussian function to the concentrations measured. The evaluation technique is described in detail in [6]. It is repeated here for convenience.

2.1 The Double Gaussian Function

The double Gaussian function describing the concentration C(x,y) close to the ground level at the field point P(x,y) downwind of the source reads

$$C(x,y) = \frac{\chi (x,y) \dot{A}_{0}}{u} = \frac{\dot{A}_{0}}{\pi u \sigma_{y}(x) \sigma_{z}(x)} \exp \left[-\frac{y^{2}}{2 \sigma_{y}^{2}(x)} - \frac{H^{2}}{2 \sigma_{z}^{2}(x)}\right] (1)$$

This follows from the diffusion equation for steady-state conditions, constant emission rate and reflection of the tracer at ground level, where

Å		emission rate in g/s,
น่		mean wind velocity in m/s,
χ	(x,y)	normalized diffusion factor in m^{-2} ,
х		downwind distance in m,
У		crosswind distance in m,
H		emission height in m,
σv	, σ _z	horizontal and vertical dispersion parameters,
1		respectively, in m.

The foot of the source coincides with the origin of the Cartesian coordinate system.

2.2 Dispersion Parameters

The dispersion parameters σ_y and σ_z describe the horizontal and vertical distributions, respectively, of the concentration perpendicular to the transport direction. They are functions of the downwind distance x.

For this dependence on x, the power functions

$$\sigma_{y} = \sigma_{oy} x^{p_{y}}, \quad \sigma_{z} = \sigma_{oz} x^{p_{z}}$$
(2)

are chosen.

2.3 Least Squares Method

The measured values C_i determined at field points with coordinates x_i and y_i are available from the experiments (i = 1,2, n; n > 4). A weighting factor g_i is assigned to each measured value.

Four coefficients $q_j(\sigma_{oy}, p_y, \sigma_{oz}, p_z)$ must be found to fit the function $f(x, y, \bar{q})$ to the measured values C_i in such a way that the sum of the square deviations,

$$Q = \sum_{i=1}^{n} g_i (f_i - C_i)^2$$
(3)

becomes minimum.

$$f_i = f(x_i, y_i, \bar{q})$$

(4)

- 4 -

In order to minimize the sum Q,

$$\frac{\partial Q}{\partial q_j} = 0 \tag{5}$$

must hold for j = 1, 2, 3, 4.

These are four equations determining the four parameters q_j . Since the function f is not a linear function of the parameters q_j , an approximation technique with iterative improvement must be applied to solve the. system of equations (5).

For the parameters it is postulated that

$$q_{j} = q_{0j} + \delta q_{j}.$$
 (6)

In a first approximation

$$f(x,y,\overline{q}) = f(x,y,\overline{q}_{o}) + \sum_{j=1}^{4} \frac{\partial f(x,y,\overline{q}_{o})}{\partial q_{oj}} \delta q_{j}.$$
(7)

If (7) is substituted in (3), (5) supplies a system of linear equations:

$$\frac{\partial Q}{\partial \delta q_{m}} = 2 \sum_{i=1}^{n} g_{i} \left[f_{i}(\overline{\overline{q_{o}}}) + \sum_{j=1}^{4} \frac{\partial f_{i}(\overline{q_{o}})}{\partial q_{oj}} \delta q_{j} - C_{i} \right] \frac{\partial f_{i}(\overline{q_{o}})}{\partial q_{om}} = 0 \quad (8)$$

- 5 -

$$\int_{j=1}^{4} N_{jm} \delta q_{j} = \sum_{i=1}^{n} g_{i} \left[C_{i} - f_{i} \left(\overline{q_{0}} \right) \right] \frac{\partial f_{i} \left(\overline{q_{0}} \right)}{\partial q_{0m}} , m = 1, 2, 3, 4$$
(9)

for determining $\delta q_{j}.$

For this purpose, the standard matrix

$$N_{jm} \stackrel{=}{\underset{i=1}{\overset{\Sigma}{=}}}^{n} g_{i} \frac{\partial f_{i}(\overline{q_{o}})}{\partial q_{oj}} \frac{\partial f_{i}(\overline{q_{o}})}{\partial q_{om}}$$
(10)

must not be singular.

The improved parameters

$$q_{1i} = q_{0i} + \delta q_{i} \tag{11}$$

are substituted in the function f.. They are improved by further iteration steps. This process is continued until the change ΔQ of the sum of the square deviations between two iteration steps is less than an optional small value.

For better convergence, a damping factor $\beta < 1$ is introduced:

 $q_{rj} = q_{(r-1)j} + \beta^{S} \delta q_{rj}$ (12)

where r is the rth iteration step. After each iteration step the sum of the square deviations Q_r is calculated and compared with Q_{r-1} , to choose S in the following manner:

S = 0 for $Q_r < Q_{r-1}$, S = 1 for $Q_r > Q_{r-1}$.

- 6 -

- 5 -

Next, another comparison is made. If $Q_r > Q_{r-1}$ still holds, S will be incremented by 1. This is continued until $Q_r < Q_{r-1}$ or a given number of damping steps have been achieved.

2.4 Error Considerations

The inverse standard matrix

$$I_{j,m} = (N_{j,m})^{-1}$$

can be used to determine the errors of the coefficients q_j and the errors of any functions of the coefficients. The error of the coefficients is

$$\Delta q_{j} = R \sqrt{I_{jj}}$$
(13)

The error Δh of any function h (\overline{q}) is

$$\Delta h = R \sqrt{\frac{4}{\sum} \frac{4}{\sum} \frac{\partial h(\overline{q})}{\partial q_{j}}} I_{jm} \frac{\partial h(\overline{q})}{\partial q_{m}} \cdot (14)$$

$$R = \sqrt{\frac{Q}{n-4}}$$
(15)

is the square root of the reduced sum of the least squares. The errors in the dispersion parameters σ_{y} and σ_{z} being functions of q_j are calculated according to (14). They qualify the least squares fit and,hence, the reliability of the deduced dispersion parameters. The errors are due to differences existing between the measured concentration distribution and the theoretical double Gaussian function. Compared with theses differences the errors in measurement are hardly significant.

- 7 -

- 6 -

2.5 Weighting Procedure and Initial Approximations

First computer runs showed a disadvantage of the evaluation technique. If different ensembles of first approximations q_{oj} were used, the same concentration distribution gave rise to different coefficients q_j . But the dispersion parameters σ_y and σ_z showed good agreement at the downwind distances of maximum concentration. The respective sums of least squares differed only slightly in most cases. To avoid this disadvantage a weighting procedure is chosen that prefers low concentration values at small and large downwind distances. The weighting procedure is performed in the following manner.

In the first iteration step all concentration data of the same zone, i.e., obtained at approximately the same downwind distance, are equally weighted. The weighting factor g_i in a zone is the ratio between the maximum concentration of all sampling positions and the maximum concentration within the respective zone. In the following step each weighting factor is calculated separately by

$$g_{i} = C_{max} / C(x_{i}, 0).$$
 (16)

 C_{max} is the maximum value of all values $C(x_i, 0)$ of (1). In Eqs. (1) and (16) the dispersion parameters σ_y , σ_z , which have been determined in the previous step are taken into account. This iteration process is continued until the change in parameters between two succeeding steps is less than an optional small value.

To avoid an undue increase of the weighting factors g_i , these are limited to a maximum value. This maximum value is twice the ratio between the maximum concentration of all sampling positions and the smallest value of the max-imum concentrations within the individual zones.

- 7 -

Despite the weighting procedure, different ensembles q_{oj} of first approximations are used for each evaluation. These are taken from the results of earlier KNRC diffusion experiments published in [6]. If different results with different ensembles of first approximations were still found, the representative ensemble q_j would have to meet the following conditions: The downwind distance of maximum concentration calculated from the ensemble q_j must coincide approximately with the measured one. The least squares sum Q must be small as compared to those of the other ensembles.

2.6 Transport Direction

The best fit to the measured concentrations can be reached if transport directions are chosen which differ slightly from that deduced from measurements of the wind direction. For this reason, several evaluation runs are carried out while varying the transport direction in steps of 1[°]. Again, that direction is deemed to be representative whose respective least squares sum is smallest.

2.7 Wind Velocity

The wind velocity must be known for Eq. (1). For emission heights of 60 m and 100 m it is measured at 40 m and 60 m heights, respectively, of the meteorological tower and averaged over the sampling time. The velocity averaged up to the emission height corresponds approximately to this assignment. This averaged wind velocity should be used in diffusion calculations together with the dispersion parameters from this report.

3. Evaluation

3.1 Experiments Suited for Evaluation

The concentrations measured in some of the sampling periods do not furnish physically meaningful dispersion parameters by the evaluation technique described in this paper. This may happen if only the background concentrations or one wing of the crosswind distribution are measured, because of changes in the wind direction. It may also apply to periods in which several zones show two peaks of concentration or where there is more than one peak in the downwind direction. During these periods extremely non-steady state conditions prevailed which are not described by the double Gaussian function.

The measured data of these experiments performed under extremely non-steady-state conditions have been compiled in [7] but assigned dispersion parameters are missing in that paper.

3.2 Combination of Several Sampling Periods in One Experiment

In order to obtain more reliable results, the individual periods in one experiment are combined in a further least squares fit. For this purpose, the results of the evaluation of individual periods are used as a first approximation. The optimum transport directions as determined in the evaluation of the individual periods are used without further variation. The combination is performed by treating the different periods as one period. The number of concentration values is increased by a factor equal to the number of combined periods. Obviously, such combination is possible only if the same stability class prevails during both periods.

In some cases (experiments Nos. 32/CFCl₃, 46/CF₂Br₂, 50/CFCl₃) this combination of results did not furnish meaningful dispersion parameters though the individual periods showed reasonable results. In these cases the periods are combined by forming the geometric mean value:

$$\overline{\sigma}_{O} = \begin{pmatrix} N \\ \pi \\ i=1 \end{pmatrix}^{1/N}$$
(17)
$$P_{O} = \frac{1}{2} \sum_{N} P_{O}$$
(18)

$$p = -\sum_{\substack{N i=1}} p_i$$
 (18)

$$\sigma = \overline{\sigma}_{0} \mathbf{x}^{p}$$
 (19)

 σ_{oi} , p_i being defined in (2). N is the number of periods referring to the same experiment. (17) to (19) are applicable to σ_v and σ_z .

4. Presentation of the Dispersion Parameters Determined

Table 1 shows the coefficients σ_{oy} , σ_{oz} , p_y , p_z as determined and the dispersion parameters σ_y and σ_z with the respective error widths at three downwind distances for all sampling periods suited for evaluation. The three distances roughly represent the shortest and the longest downwind distances of the sampling locations and that distance at which the maximum of concentration is found. The parameters obtained in a combination of the individual periods of an experiment are also indicated. In addition, Table 1 contains the stability class prevailing during the experiment and the mean transport directions θ and θ' deduced from wind measurements and from the least squares fit, respectively.

Figs. 1 to 65 show the dispersion parameters σ_y and σ_z determined and the normalized diffusion factor χ as a function of the downwind distance x. All periods suited for evaluation of one experiment are combined. The error widths are indicated as shaded areas. If two tracers had been released simultaneously in one experiment, the results of both tracers are drawn to facilitate comparison.

The dispersion parameters published in [6] and in this report, which belong to the same stability class have been combined by forming the geometric mean value according to Eqs. (17) to (19). By a smoothing and centering method the dispersion parameters have been attributed to the mean intensity of turbulence within each stability class. The combining, smoothing, and centering techniques and the results have been described in detail in [8]. The resulting family of dispersion parameters $\sigma_{\rm X}$ and $\sigma_{\rm Z}$ and normalized diffusion factors χ are also plotted as dashed lines in Figs. 1 to 81. In the following table the number of experiments (number of periods) which have been used to establish this family of dispersion parameters, are given as a function of the stability class and emission height.

Stability	Emission Height									
Class	60 m	100 m								
A	2 (2)	3 (7)								
B	1 (2)	3 (7)								
С	4 (10)	3 (11)								
D	6 (10)	8 (22)								
Е	3 (5)	3 (6)								
F	2 (4)									

- 12 -

- 11 -

5. Discussion of the Results

The results of the diffusion experiments are mainly influenced by the structure of the surface in the environment of the KNRC. Buildings, trees and the forest around our Center produce a roughness length of more than 1 m. If comparisons with other experimental results are performed, this fact has to be taken into account.

5.1 Vertical Dispersion Parameter σ_z

For the experiments relating to the stability class A two cases can be distinguished: those with strong variations of the wind direction and those with minor variations. In the second case the slope of the derived σ_z curves is steep, whereas a rather small value of the σ_z exponent is determined in the first case. The evaluation of the $\boldsymbol{\sigma}_z\text{-}\mathsf{curves}$ for the other stability classes do not show such differences. For that reason the vertical dispersion parameters, if averaged for each stability class [8], are ordered according to the classes. As expected, they decrease with increasing atmospheric stability. Nevertheless, it seemed necessary to smooth and to center them for practical applications in diffusion calculations. Centering means a shift of the curves of the dispersion parameters to the center of each stability class [8]. Especially for the stability class D most of the experiments were performed during daytime. Without centering the averaged σ_z -curve would not be representative of the entire stability class D.

The downwind distance x_{max} of the maximum concentration calculated from the dispersion parameters of individual experiments within the same stability class agree better with each other than the dispersion parameters themselves. Therefore, this distance x_{max} , which is influenced most by σ_z , is used for a comparison with the dispersion parameters derived from diffusion experiments carried out in

- 13 --

- 12 -

Brookhaven [2], St. Louis [3] and Jülich [4] (see Tab. 2). The distance x_{max} for the stability classes A to C calculated with the Karlsruhe parameters agrees well with the corresponding values determined at the other sites. Except for the Brookhaven parameters, this is still true for classes D to F.

5.2 Horizontal Dispersion Parameter σ_{y}

The horizontal dispersion parameters are influenced most by variations in the wind direction and by the structure of the topography. Both effects are reflected in the concentration distributions which have a more direct influence on the $\sigma_{\rm y}$ - than on the $\sigma_{\rm z}$ -curves. This more direct dependence is the reason why the error widths of the $\sigma_{\rm y}$ -curves are greater than those of the $\sigma_{\rm z}$ -curves.

The concentration distribution under stable conditions (stability classes E and F) is broader than in case of neutral stability (class D). This is a rather surprising result. Under stable conditions the wind velocity near ground level, where the tracers are sampled, is often very low, although high velocities are observed at great heights. These low velocities are combined with local wind variations which, together with the heterogeneous topography, lead to the rather broad concentration distributions. Only one experiment (No. 42) of these classes furnished small σ_y -values as expected from the St. Louis and Brookhaven σ_y -curves. On the other hand, the experiments performed at Jülich confirm our results.

The slopes of the σ_y -curves belonging to the same stability class vary greatly. Therefore, it seemed appropriate to smooth the σ_y -curves. An average slope value for all curves was assumed. After smoothing and centering the σ_y -curves,

- 14 -

an order according to the stability class was stated. With increasing stability the σ -values decrease up to class D in order to increase then again.

5.3 Normalized Diffusion Factor χ

The normalized diffusion factor χ summarizes the maximum pollutant burden to be expected from short-term emissions. Since σ_z has a stronger influence upon the χ -curves than σ_y , they are ordered according to the stability classes too. The error widths are small as compared to the σ_y -curves. The influence of σ_y is the cause that the maximum χ_{max} of the χ -curve for class C is higher than χ_{max} of classes A and B. The increase of σ_y with stability from D to F is reflected also in the χ_{max} values. For the classes E and F, they are much smaller than the corresponding values calculated with the St. Louis or the Brookhaven dispersion parameters (s. Table 2).

6. Final Remarks

The families of the dispersion parameters derived from our experiments can be used for sites with major surface roughnesses. To get still more general σ -curves for a source height of 100 m the Jülich and Karlsruhe experimental results were combined. The method of combination and the derived σ -curves are published in [9].

The Karlsruhe diffusion experiments are now being completed for tracer release heights of 160 m and 195 m. Some of the results have already been published [8]. The publication of the details is scheduled for 1982.

7. References

- [1] Gifford, L.A. Jr.; F. Hilsmeier; Graphs for Estimating Dispersion, ORO-545 (1962)
- [2] Singer, I.A.; M.E. Smith; An Improved Method of Estimating Concentrations and Related Phenomena from a Point Source Emission, J. of Appl. Meteorol. 5 (1966) pp. 631-639
- [3] Mc. Elroy, J.; A Comparative Study of Urban and Rural Dispersion, J. of Appl. Meteorol. 8 (1969), No. 1, pp. 19-31
- [4] Vogt, K.J.; H. Geiß; G. Polster New Sets of Diffusion Parameters Resulting from Tracer Experiments in 50 m and 100 m Source Height, 9th International Technical Meeting on Air Pollution Modeling and its Application, Toronto (1978)
- [5] Thomas, P. et al.; Experimental Determination of the Atmospheric Dispersion Parameters over Rough Terrain. Part 1, Measurements at the Karlsruhe Nuclear Research Center, KFK 2285 (1976)
- [6] Thomas, P.; K. Nester; Experimental Determination of the Atmospheric Dispersion Parameters over Rough Terrain. Part 2, Evaluation of Measurements, KFK 2286 (1976)
- [7] Thomas, P.; et al.; Experimental Determination of the Atmospheric Dispersion Parameters at the Karlsruhe Nuclear Research Center for 60 m and 100 m Emission Heights. Part 1: Measured Data, KfK 3090 (1981) (in Vorbereitung)
- [8] Nester, K.; P. Thomas; Im Kernforschungszentrum Karlsruhe experimentell ermittelte Ausbreitungsparameter für Emissionshöhen bis 195 m, Staub-Reinh. Luft 39 (1979), pp. 291-295
- [9] Geiß, H.; K. Nester; P. Thomas; K.J. Vogt; In der Bundesrepublik Deutschland experimentell ermittelte Ausbreitungsparameter für 100 m Emissionshöhe JÜL 1707, KfK 3095 (1981)

class	exp.	Tracer and emission		θ	θ'		y z		x	σy	$\frac{\Delta \sigma_y}{\sigma_v}$	σ _z	$\frac{\Delta \sigma_z}{\sigma_z}$	
Stab.	No. of	height (m)	Period			σο	p	σο	р	(m)	(m)	(%)	(m)	(%)
A	35	CF ₂ Br ₂ 60 m	1	258°	270°	0.0198	1.89	2,56	0.513	100 300 800	119 952 6074	47 24 36	27 48 79	9 38 67
A	47	CF ₂ Br ₂ 60 m	1	289°	206°	0.0350	1.76	3.57	0.464	100 400 2000	116 1333 22653	28 19 49	30 58 122	9 30 58
			2	255°	228°	0,0768	1.77	4.92	0.522	100 400 2000	271 3163 54923	13 69 148	54 112 259	40 112 197
		1+2				0,0428	1,74	4.16	0.450	100 400 2000	128 1426 23384	23 16 43	33 62 127	9 33 61
		CFCl ₃ 100 m	1	285°	202°	2.54	0,993	6.91	0.418	100 400 2000	246 974 4819	72 32 72	47 85 166	20 46 81
			2	251°	271°	0.0194	1.97	7.83	0.458	100 400 2000	168 2571 60971	25 33 84	65 122 255	19 72 136
		1+2				0.0397	1.82	5.94	0.483	100 400 2000	171 2120 39491	30 22 60	55 107 232	13 44 84
В	26	CF₂Br₂ 60 m	1	203°	209°	6.39	0.504	0.414	0.989	100 150 1000	65 80 208	17 12 38	39 59 383	10 10 36
			2	215°	219°	9.98	0.590	0,317	1.01	100 150 1000	151 192 587	37 21 77	33 49 333	14 19 58
		1+2				6.27	0.567	0.258	1.08	100 150 1000	85 107 315	18 12 43	37 57 438	8 10 34
с	28	CF ₂ Br ₂ 60 m	1	40°	38°	2.09	0.585	6.65	0.488	100 300 1500	31 59 151	11 6 19	63 108 236	17 8 20
			. 5	52°	40°	5.64	0.481	0.0426	1.28	100 300 1500	52 88 191	16 5 25	15 63 495	7 6 21
		1+2				2.75	0,590	0,103	1,13	100 300 1500	41 80 206	14 6 24	19 65 400	9 7 22
С	31	CFC1 ₃ 60 m	1	202°	201°	5.73	0.578	0.0772	1.15	100 400 1200	82 183 344	68 19 70	15 75 265	15 28 55
			2	188°	185°	7,34	0.463	2.20	0,472	100 400 1200	62 118 196	30 12 26	19 37 63	4 7 13
		1+2				2.49	0.650	3,23	0.410	100 400 1200	50 122 250	28 13 26	21 38 59	5 8 15

Table 1: Determined dispersion parameters σ_y and σ_z

x: downwind distance

 $\boldsymbol{\theta} \colon$ mean transport direction from wind measurements

 $\boldsymbol{\vartheta}^{\, \prime} \colon$ mean transport direction from least squares fit

<u> </u>	<u> </u>	Tracer				y		z	z		σ.,	Δσ.,	σ,	۵٥,
class	exp.	and emission	F	0	θ,	, ,	<u> </u>				У	y y	2	σ _z
Stab.	No. of	height (m)	Períoc			ďo	р	°,	p	(m)	(m)	(%)	(m)	(%)
С	32	CF2Br2 60 m	1	43°	38°	2.13	0.713	0.0627	1.24	100 250 1200	57 109 334	26 10 41	19 60 420	6 11 34
			2	37°	29°	0.287	1.01	0.121	1,12	100 250 1200	30 75 366	44 14 66	21 59 340	15 18 57
		1+2				2.27	0.681	0.0546	1.27	100 250 1200	52 98 284	24 9 38	19 61 445	6 10 31
		CFC1 ₃ 60 m ³	1	43°	38°	3.38	0.646	0,0283	1.40	100 250 1200	66 120 330	25 9 41	18 63 563	6 10 31
			2	37°	29°	0.922	0.847	0.0226	1.44	100 250 1200	46 100 373	39 13 67	17 66 632	11 16 51
		1+2				3.86	0.613	0.0220	1.45	100 250 1200	65 113 297	21 8 36	17 66 636	5 9 27
c	34	CF2Br2 100 m	1	54°	56°	0.0760	1.03	0.00154	1.67	150 600 1300	13 56 123	89 19 29	7 68 248	42 12 40
*			2	44°	55°	4.83	0.470	D.00424	1.51	150 600 1300	51 98 140	306 65 98	8 67 212	137 46 148
		1+2				0.249	0.880	0.00160	1.67	150 600 1300	21 70 137	98 21 32	7 67 254	47 14 45
		CFC1 ₃ 60 m	1	59°	54°	0.472	0.894	1.99	0.481	150 600 1300	42 144 287	22 11 18	22 43 62	7 12 22
			2	48°	47°	1.38	0.624	1.32	0.564	150 600 1300	32 75 122	13 7 12	22 48 76	5 10 18
		1+2				0.545	0.831	0.904	0.632	150 600 1300	35 111 211	14 7 12	22 51 84	5 11 19
D	27	CF ₂ Br ₂ 100 m	1	204°	204°	0.00289	1.78	0.805	0.621	100 400 1500	11 124 1301	56 21 41	14 33 76	11 9 25
D	36	CFC1, 60 m	1	78°	72°	0.333	1.39	0.872	0.629	100 300 1200	20 91 622	35 16 24	16 31 75	6 6 16
			2	77°	79°	0.113	1.13	0.564	0.741	100 300 1200	21 71 342	26 12 23	17 39 108	5 7 18
		1+2				D.0450	1.32	0.731	0.675	100 300 1200	20 84 522	23 10 18	16 34 88	4 5 13
D	44	CF₂Br₂ 60 m	1	281°	280°	0,401	0.799	0.0276	1.11	500 1200 9900	57 115 622	42 20 65	27 71 737	37 20 58
			2	284°	280°	0.804	0.746	D.646	0.642	500 1200 9900	83 159 768	13 9 30	35 61 238	11 10 33
		1+2				0.597	0.765	0.105	D.907	500 1200 9900	69 135 680	13 8 31	- 29 65 442	9 9 31
		CFC1 ₃ 100 m	1	280°	279°	1.71	0,628	0.0575	.1 . 05	500 1200 9900	84 147 552	37 19 54	39 98 894	13 14 51
			2	283°	281 <u>°</u>	6.22	0.535	1.89	0,501	500 1200 9900	173 277 857	29 16 32	43 66 191	8 10 37
		1+2				2.73	0.612	0,238	0.819	500 1200 9900	122 209 758	25 12 35	39 79 447	7 9 34

Table 1 continued /1

m			m	_	0						D						0	Stab.	class
42			40	<u> </u>	<u>5</u>				-		48						45	No. c	f exp.
60 m			CFC1 ₃ 60 m	100 m	CF2Br2 60 m	1+2		CFC13 100 m	112		CF2Br2 60 m	172	····	CFC1 3 100 m	1+2		60 m	(m)	Tracer and emission
		N					N		· · ·	N			N			ŝ		Perid	od .
255°		230°	218°	268°	272°		248°	247°		251°	249°		°69	73°		74 °	, 75°		æ
251°		219°	215°	257°	260°		25†°	250°		246°	243°		77°	77°		74°	77°		θ.
1.36	2.01	3.12	1.30	0.00137	0.00729	0.174	0,0229	1.32	1,69	1.47	2,04	0,957	3.42	0.0846	0.716	1.94	0.0830	¢	
0.523	0.890	0.854	0.929	1.83	1.47	1.00	1.23	0.771	0.643	0,665	0.612	0,703	0.519	1.05	0.744	0.603	0.968	φ	
D.670	0,870	0,781	0.982	1,95	0,00323	2,64	2.59	2.70	0.287	0.162	0.366	0.0316	0.145	0.00183	2.08	2.78	2.46	٥	
0.504	0.490	0,516	0.471	0.424	1.42	0.403	0,404	0.402	0.727	0.828	0.680	1.14	0,911	1.57	0,460	0,415	0.410	σ	z
700 3400 6500	600 2200 8000	600 2200 8000	500 2200 8000	400 1000 9900	400 1000 9900	300 1800 10000	1800 10000	300 1800 10000	1800 10000	300 1800 10000	300 1800 10000	100 1000 2700	100 1000 2700	100 1000 2700	100 1000 2700	100 1000 2700	100 2700	(m)	×
42 135	597 1897 5983	735 2229 6640	496 1659 5506	77 407 26740	48 183 5297	53 317 1769	236 1962	107 425 1594	56 210 632	65 214 670	67 200 572	24 123 247	37 122 206	11 123 349	122 256	31 125 228	7 66 174	(m)	ת
44 44	55 23 - 19	30 30	37	50 50	23 7 52	16 26	59 38	36 36	3012	35 19	28 13 35	43 24	52 30	51 11 25	13 24	35 35	36 13 27	(%)	y od y od y o
56 56	20 71	842	20 68	95 3 25	16 58 1484	108 108	107 107	27 110	18 233	18 332	18 192	258 	10 195	3 434	50 79	19 49 74	63 63	(m)	° z
10 28	13 22	12 24 39	12 20 33	28 6 7	41 41	7 7 19	30 30	26 26	6 28	10 24 51	7 15 33	30 25	18 20	27 8 22	10 15	7 15 23	დით	(%)	ζ ^Δ α ^z

Table 1 continued /2

| 18

lass	exp.	Tracer and		θ	θ'	ر	'		2	x	σу	Δσ <u>y</u> σy	σz	$\frac{\Delta \sigma_z}{\sigma_z}$
Stab. c	No. of	height (m)	Period			Jo	р	σ _o	p	(m)	(m)	(%)	(m)	(%)
E	43	CFC1 ₃ 60 m	1	296°	297°	4.15	0.412	0.238	0.779	600 1900 5600	58 93 146	46 30 73	35 85 199	38 42 85
			ż	297°	300°	D.169	0.898	1.68	0.488	600 1900 5600	53 149 392	59 24 54	38 67 113	89 41 66
		1+2				0,216	0.847	1.10	0.552	600 1900 5600	49 129 322	27 18 38	38 71 130	29 25 47
		CF ₂ Br ₂ 100 m	1	294°	298°	2.35	0.525	1.44	0,520	600 1900 5600	68 124 219	60 32 - 63	40 73 129	18 40 86
			2	295°	302°	3,66	0.573	0.719	0.634	600 1900 5600	143 276 513	69 30 60	42 86 171	19 39 84
	,	1+2				5,73	0.444	2.16	0.464	600 1900 5600	98 164 264	42 20 33	42 72 118	14 27 58
E	50	CFC1 ₃ 100 m	1	292 <i>°</i>	283°	0.0203	1.37	0.742	0.504	300 5100 9900	51 2484 .6201	158 41 53	13 55 76	37 18 31
			2	307°	276°	0.000886	1.82	0.722	0.529	300 5100 9900	28 4787 15967	156 36 45	14 66 86	22 21 31
		1+2				0.00424	1.59	0.732	0.517	300 5100 9900	37 3330 9559	108 25 30	14 60 85	20 13 20
F	41	CFC1 ₃ 60 m	1	9°	10°	3.24	0.603	1.10	0.423	300 3500 6300	101 443 631	162 60 94	12 34 44	25 22 30
			2	3°	5°	1.23	0.798	1.09	0.431	300 3500 6300	117 825 1325	224 73 102	14 36 47	41 39 56
		1+2				1.23	0.789	1.09 .	0.431	300 3500 6300	111 769 1223	105 36 50	13 37 47	19 19 26
F	46	CF2Br2 60 m	1	285°	279°	0.0633	1.54	0.417	0.585	300 2000 9000	412 7667 77731	916 302 198	12 36 86	22 153 268
			2	301°	281°	0.0222	1.04	0.137	0,654	300 2000 9000	8 59 280	440 236 87	6 20 53	505 77 530
		1+2				0.0375	1.29	0.239	0,620	300 2000 9000	59 680 4732	150 60 31	8 27 68	21 10 30

Table 1 continued /3

	Karl	sruhe [8]	Jül	ich [4]	St. I	_ouis [3]	Brookhaven [2]		
Stability class	x _{max} in km	X _{max} in m ^{−2}	x _{max} in km	X _{max} in m ⁻²	X _{max} in km	X _{max} in m ⁻²	x _{max} in km	Xmax in m ⁻²	
А	0.21	7.71·10 ⁻⁶	0.38	1.34·10 ⁻⁵	-	_	-	-	
В	0.39	1.22.10 ⁻⁵	0.46	1.45·10 ⁻⁵	0.45	1.42.10-5	0.29	2.40·10 ⁻⁵	
С	0.62	1.40.10 ⁻⁵	0.61	1.56·10 ⁻⁵	0.68	1.26.10-5	0.51	2.15.10-5	
D	1.18	8.56·10 ⁻⁶	0.87	1.52·10 ⁻⁵	1.09	1.08.10 ⁻⁵	1.64	1.61.10 ⁻⁵	
E .	3.02	2.87.10 ⁻⁶	1.54	0.54·10 ⁻⁵	2.21	1.11.10 ⁻⁵	-	-	
F	7.68	0.54.10 ⁻⁶	-	-	-	-	21.17	0.45.10-5	
e e e e									

Table 2: Source distance x_{max} and amount χ_{max} of the maximum of the normalized diffusion factor for an emission height of 100 m

- 22 ---

- 24 ---

- 25 -

— 31 **—**

- 32 --

— 33 —

— 37 —

/////////////////////////////////////	ICER CF	CL3
--	---------	-----

---- COMBINED, SMOOTHED, AND CENTERED RESULTS

- 42 ---

--- 45 ---

--- 58 ---

— 63 —

--- 68 ---

— 69 —

.

— 71 —

— 74 —

— 75 —

FIG.56:	NØRMALIZED DIFFUSIØN	FACTØR	
	OF EXPERIMENT NO.43,	PERIØDS 1+2	
4/////////////////////////////////////	H=100M, TRACER CFCL3		
<u> </u>	COMBINED, SMOOTHED, F	AND CENTERED	RESULTS

--- 81 ----

