KfK 3221 Oktober 1981

Zerfallsrechnungen verschiedener mittelaktiver und actinidenhaltiger Abfälle des LWR-Brennstoffkreislaufes

Teil I:

Modellmäßig abgeleitete Basisdaten Aktivität und Wärmeleistung

H. O. Haug Institut für Heiße Chemie Projekt Wiederaufarbeitung und Abfallbehandlung

Kernforschungszentrum Karlsruhe

KERNFORSCHUNGSZENTRUM KARLSRUHE

Institut für Heiße Chemie

Projekt Wiederaufarbeitung und Abfallbehandlung

KfK-3221

PWA 50/81

ZERFALLSRECHNUNGEN VERSCHIEDENER MITTELAKTIVER UND ACTINIDENHALTIGER ABFÄLLE DES LWR-BRENNSTOFFKREISLAUFES.

TEIL I. MODELLMÄSSIG ABGELEITETE BASISDATEN, AKTIVITÄT UND WÄRMELEISTUNG

H.O. HAUG

Kernforschungszentrum Karlsruhe GmbH

Als Manuskript vervielfältigt Für diesen Bericht behalten wir uns alle Rechte vor

> Kernforschungszentrum Karlsruhe GmbH ISSN 0303-4003

Zusammenfassung

In der Studie werden eine Reihe von Basisdaten für mittelaktive und actinidenhaltige Abfallströme aus dem LWR-Brennstoffkreislauf abgeschätzt und die Aktivität und Wärmeleistung als Eigenschaft des Nuklidinventars von Hüll- und Strukturmaterial, Feedklärschlamm, wäßrigem Prozeß-MAW, brennbarem festem Alpha-Waste und mittelaktiven Reaktorbetriebsabfällen berechnet.

Die Aktivität der mittelaktiven Abfälle nimmt im Zeitraum von 500-600 Jahren um 1 bis 3 Größenordnungen ab und liegt dabei ca. 1-2 Größenordnungen niedriger als beim hochaktiven Abfall. Die Wärmeleistung der mittelaktiven Abfälle fällt nach 10 bis 100 Jahren um ca. 3 Zehnerpotenzen ab und liegt dabei um 1 bis 2 Größenordnungen unter dem hochaktiven Abfall.

Langzeitig (d.h. nach über 1000 Jahren) fällt die restliche Aktivität (und Wärmeleistung) nur noch langsam entsprechend den langen Halbwertszeiten der bestimmenden Actiniden ab; die Aktivität liegt um ca. 1-2 Größenordnungen (bei α -LAW um den Faktor 10 bis 4) niedriger als beim hochaktiven Abfall. Die Aktivität pro Volumeneinheit des Gebindes liegt wegen der größeren Gebinde der konditionierten mittelaktiven und α -haltigen Abfälle bis 500 Jahre durchschnittlich 2 bis 4 Größenordnungen, langfristig (>1000 Jahre) um einen Faktor 20-200 niedriger als beim hochaktiven Abfall. "Decay Calculations on Medium-Level and Actinide-Containing Wastes from the LWR Fuel Cycle. Part I. Basic Data Evaluation Including Activity and Thermal Decay Power".

Abstract

A number of basic data on medium-level and actinide-containing waste streams from the LWR fuel cycle were evaluated and the activity and thermal decay power were calculated for the nuclide inventories of cladding hulls and fuel assembly structural materials, for feed clarification sludge, medium-level aqueous process waste, low-level solid transuranium waste and for medium-level reactor operating waste.

The activity as a function of decay time of the medium-level wastes decreases within 500 to 600 years by 1 to 3 orders of magnitude and is at the same time about 1 to 2 orders of magnitude lower than the activity of the high-level waste. The thermal decay power of the medium-level wastes decreases after 10 to 100 years by about 3 orders of magnitude and is about a factor of 10 to 100 less than that of high-level waste. In the very long term the residual activity (and thermal power) decreases only slowly due to the long halflifes of the dominant actinides. The activity after more than 1000 years is about 1 to 2 orders of magnitude lower than that of high-level waste, the low-level transuranium waste by a factor 10 to 4, respectively.

The activity per unit volume of the packaged waste of the medium-level and actinide-containing wastes because of the bigger volume of the conditioned wastes is lower by 2 to 4 orders of magnitude up to about 500 years. After more than 1000 years the activities per unit volume are lower by a factor of 20 to 200 than that of high-level waste.

Inhaltsverzeichnis

Zusammenfassung / Abstract

		·	Seite
1.	Einlei	tung	1
2.	Vergle	ich der Aktivität und Wärmeleistung	
	von mi	ttel- und schwachaktiven Abfällen	2
	2.1	Basisdaten und Randbedingungen	2
	2.1.1	Auswahl der Wastetypen	2
	2.1.2	Abschätzung der Plutoniumverluste im	
		LWR-Brennstoffkreislauf	3
	2.1.3	Randbedingungen für konditionierte Abfälle	3
	2.2	Vergleiche von Eigenschaften der Abfälle	
		anhand der Nuklidinventare	8
	2.2.1	Aktivität	8
	2.2.2	Spezifische Aktivität	9
	2.2.3	Wärmeleistung	10
3.	Charakt	teristische Eigenschaften der mittel- und	
	schwach	naktiven Abfälle	14
	3.1	Hüll- und Strukturmaterial	14
	3.1.1	Allgemein	14
	3.1.2	Menge und Zusammensetzung des Hüll-	
		und Strukturmaterials	14
	3.1.3	Aktivierungsprodukte des Hüll- und	
		Strukturmaterials	15
	3.1.4	Gehalt an Spaltprodukten und Actiniden	17
	3.1.5	Aktivität und Wärmeleistung von Spalt-	
		produkten und Actiniden	19

	3.2.1	Allgemein	32
	3.2.2	Menge und Zusammensetzung des Feedklärschlamms	32
	3.2.3	Gehalt an Spaltprodukten und Actiniden	33
	3.2.4	Aktivität und Wärmeleistung	35
	3.3	Wäßriger, mittelaktiver Prozeßabfall	43
	3.3.1	Allgemein	43
	3.3.2	Menge und Zusammensetzung	43
	3.3.3	Gehalt an Spaltprodukten und Actiniden	44
	3.3.4	Aktivität und Wärmeleistung	45
	3.4	Fester, schwachaktiver Alpha-Abfall	52
	3.4.1	Allgemein	52
	3.4.2	Menge	52
	3.4.3	Gehalt an Actiniden	53
	3.4.4	Aktivität und Wärmeleistung	55
	3.5	Reaktorbetriebsabfall	59
	3.5.1	Allgemein	59
•	3.5.2	Menge	59
	3.5.3	Aktivität und Wärmeleistung	59
4.	Litera	turverzeichnis	62
5.	Abkürz	ungen	66

3.2 Feedklärschlamm

32

1. Einleitung

In früheren Arbeiten wurden die Konzentrationen, die Aktivität und die Radiotoxizität von hochaktiven Abfällen als inhärente Eigenschaften des Radionuklidinventars berechnet /1,2/. Die zeitliche Änderung durch den radioaktiven Zerfall war mit dem Rechenprogramm ORIGEN (1973) berechnet, die Ergebnisse in graphischer Form dargestellt worden. In einem ersten Ansatz war die Betrachtung über die Aktivität und Radiotoxizität auf verfestigte mittelaktive Prozeßabfälle der Wiederaufarbeitung ausgedehnt worden /3/.

- 1 ---

Um einen Vergleich der Aktivität, Wärmeleistung und Radiotoxizität von mittelaktiven und actinidenhaltigen Abfällen untereinander und mit hochaktiven Abfällen durchführen zu können, wurde eine Auswahl der radioaktiven Rohabfälle im LWR-Brennstoffkreislauf getroffen. Die Zusammensetzung und die Radionuklidkonzentration in den Abfällen wurden modellmäßig abgeleitet und die Randbedingungen für die Zerfallsrechnungen festgelegt. Auf der Basis dieser Referenzdaten der einzelnen Abfallarten erfolgte Berechnung und Vergleich des zeitlichen Verlaufs der Aktivität und Wärmeleistung im vorliegenden Teil I und der Radiotoxizität im Teil II /21/. 2. <u>Vergleich der Aktivität und Wärmeleistung</u> <u>von mittel- und schwachaktiven Abfällen</u>

2.1 Basisdaten und Randbedingungen

2.1.1 Auswahl der Wastetypen

Aus der Vielzahl der radioaktiven Rohabfallströme bzw. konditionierten Abfälle des LWR-Brennstoffkreislaufs mußte für eine vergleichende Betrachtung von Referenzfällen eine Auswahl getroffen werden. Diese Auswahl erfolgte hauptsächlich nach Gesichtspunkten, die von der Endlagerung her gesehen wichtig erscheinen, nämlich Abfälle

- die langlebige Nuklide, insbesondere α -Strahler enthalten,
- deren Wärmeentwicklung nicht vernachläßigt werden kann.

Danach wurden folgende Abfallarten in die Untersuchungen einbezogen:

Aus der Wiederaufarbeitung

-	hochaktive	e verfestigte A	Abfäll e	(HAW)
	Feedklärso	chlamm		(FKS)
-	Hüll- und	Strukturmater	ial	(HSM)

- wäßrige mittelaktive Abfälle (MLLW)

aus der Plutoniumrefabrikation

- schwachaktive brennbare Alphaabfälle (&-LAW) aus dem Kernkraftwerksbetrieb

- mittelaktive Betriebsabfälle.

Bei der Abfallkonditionierung können verschiedene Primär- und Sekundärabfallströme des Brennstoffkreislaufs (Entsorgungszentrum) zusammengefaßt werden. Auf Grund des unterschiedlichen und auch schwankenden Nuklidspektrums ist in solchen Fällen nur schlecht eine charakteristische Zusammensetzung für die hier gewünschten Berechnungen angebbar. Deshalb wurde beim wäßrigen MAW nur der flüssige, mittelaktive Abfallstrom aus der Lösungsmittelwäsche des Wiederaufarbeitungsprozesses ausgewählt. Die sonstigen wäßrigen, mittelaktiven Abfallströme aus der Wasserreinigung der Brennelementlagerung, der Wiederaufarbeitungsanlage, Sekundärabfälle aus der Abfallbehandlung oder gar Dekowaste konnten nicht berücksichtigt werden, da für sie Referenzzusammensetzungen fehlten oder das Nuklidinventar nicht auf einfache Weise abgeleitet werden konnte.

2.1.2 Abschätzung der Plutoniumverluste im LWR-Brennstoffkreislauf

Für den LWR-Brennstoffkreislauf mit Wiederaufarbeitung abgebrannter Brennelemente und Verarbeitung des gewonnenen Plutoniums zu Mischoxidbrennstoff (MOX) wird angenommen, daß der gesamte Verlust an Plutonium 2 % nicht übersteigt. Eine mögliche Verteilung könnte sein:

Pu-Verlust	bei	der	Wiederaufarbeitung	1	-	1.2	૪
Pu-Verlust	bei	der	MOX-Fabrikation	1	-	0.8	÷
			Gesamtverlust			2	8

Die Anteile von Uran, Plutonium, übrige Transurane und nichtflüchtiger Spaltprodukte sind in Prozent vom Durchsatz in Tabelle 2.1/1 zusammengestellt. Nähere Angaben zur Zusammensetzung der aufgeführten Abfälle finden sich im Kapitel 3, wo auf die einzelnen Wastearten näher eingegangen wird.

2.1.3 Randbedingungen für konditionierte Abfälle

Für den Vergleich der Aktivität und der Wärmeleistung und der Radiotoxizität (vgl. Teil II) der hoch-, mittel- und schwachaktiven Abfälle miteinander auf der Basis gleicher Volumina der verfestigten Endprodukte ist die Kenntnis der Größe und Anzahl der Gebinde der konditionierten Abfälle nötig. Die spezifischen Volumina bzw. die spezifische Anzahl der Gebinde wurde bei der Detailbetrachtung der einzelnen Abfälle in Kapitel 3 ermittelt und ist in Tabelle 2.1/2 zusammengestellt.

					IH4 	CH-H-80/10
WASTESTROM			ANTEIL	IN X VOM D	URCHSATZ	
	PU	U	NP	AM	CM	FP
IEDERAUFARBEITUN	G					
HAW (+FKS)	0.5 (A)	0.5	99	99.9	99.9	99.8 (B)
FKS	0.2 (A)	0.02	0-1	0.1	0.1	7.7 (B)
HSM	0.1	0.03	0.03	0.03	0.03	0.1
MLLW (C)	0.2	0.3	0.5	0.01 (D) 0.01	BERECHNET
<maw-fest< td=""><td>0.1 (E)</td><td>•</td><td></td><td></td><td></td><td></td></maw-fest<>	0.1 (E)	•				
IOX-FABRIKATION						
ALPHA-LAW FEST	1	0.14				
<fl. alpha-law<="" td=""><td>0.06</td><td>0.006</td><td></td><td>(F)></td><td></td><td></td></fl.>	0.06	0.006		(F)>		

TABELLE 2.1/1 VERTEILUNG DER ACTINIDEN UND SPALTPRODUKTE AUF EINZELNE WASTESTROEME IN LWR-BRENNSTOFFKREISLAUF (DWR-BRENNSTOFF, ABBRAND 33 GWD/T SM)

A) SUMME DER PU-VERLUSTE IN HAW + FKS = 0.5 %
B) SUMME DER NICHTFLUECHTIGEN SPALTPRODUKTE IN HAW + FKS = 99.8 %
C) MLLW: WAESSRIGER SALZHALTIGER ABFALLSTROM AUS DER SOLVENTWAESCHE DER WA CA. 20 % DES GESAMTEN FLUESSIGEN MAW IN BRENNSTOFFKREISLAUF
D) OHNE AM-241 AUS GELAGERTEM PU DER MOX-FABRIKATION
E) MAW-FEST HIER NICHT BETRACHTET

F) FL. ALPHA-LAW: WAESSRIGER SCHWACHAKTIVER ALPHA-ABFALL MIT >7 G AM-241/T SM HIER NICHT BETRACHTET

		ABFAELLE (DWR-BRENNSTOFF; ABBRAND 33 GWD/T SM; BEZUG 1 T SM)							
					IHCI	H-H-80/09			
WASTE	ENDI	AGERBE	HAELTE	R	KOND. AI Pro t	BFAELLE SM			
	INHALT (L)	ABME (M)	SS. (M)	VOL/GEB (M3)	GEBINDE	VOLUMEN (L)			
HAW	62	0.30	1.20	0.085	1.61	100			
HSM	330	0.78	1.10	0.52	1.75	910			
FKS	310	0.78	1.10	0.52	0.50	260			
MLLW -ALTERNATIV	360 360	1.06 1.74	1.51 2.20	1.31 5.23	1.6 1.6	2100 8370			
ALPHA-LAW -Hom.FIX.	210 360	0.78 0.78	1.10 1.10	0.52 0.52	3.4 1.4	1770 730			
REAKTOR-MAW	200	0.63	0.93	1.2	0.35	420			

(M3) = KUBIKMETER

TABELLE 2.1/2

VOLUMENEINHEITEN DER KONDITIONIERTEN

Für die Ermittlung dieser Daten wurden folgende Vorgaben und modellmäßig ermittelte Randbedingungen festgelegt:

Brennelemente	(BE) -	Druckwasserreaktor (Typ Biblis)
	. –	Brennstoff UO ₂ mit 3.2 % angereichertem
		Uran, bzw. MOX (mit äquivalenter Anreicherung)
	-	Abbrand 33 Gwd/t SM
	-	292 Vollasttage pro Jahr
	-	jährliche BE-Nachladung 1/3 des Cores
HAW	_	Verglasung
	-	KfK-Referenzglas GP98/12 ($g = 2.83 \text{ g/cm}^3$)
	-	10.0 Gew-% Spaltproduktelemente,
		entsprechend ca. 15 % HAW-Oxide
	-	spezifischesVolumen 100 l Glas/t SM
FKS	-	homogene Zementierung
	-	400-1-Rollreifenfaß
	-	spezifisches Volumen 0.5 Gebinde/t SM
HSM	-	Fixierung mit Zement
	-	400-1-Rollreifenfaß
	-	spezifisches Volumen 1.75 Gebinde/t SM
MLLW	_	homogene Zementierung
	-	400-1-Faß in verlorener Betonabschirmung
	_	spezifisches Volumen 1.6 Gebinde/t SM
🗙 -law	_	mit Beton übergossene 10-1-Blechdosen, die
		nicht-fixierte Abfälle enthalten.
	-	400-1-Rollreifenfaß
	-	spezifisches Volumen 3.4 Gebinde/t SM
	-	(alternativ bei Zerkleinern und quasi-
		homogener Zementierung 1.4 Gebinde/t SM)
mittelaktiver Reaktorbetrie	os-	
abfall	-	mittelaktiver Abfall
	-	Fixierung mit Zement
	-	200-l-Rollreifenfaß in VBA (1.2 m ³)
	-	spezifisches Volumen 0.35 Gebinde/t SM

Da zahlreiche Annahmen modellmäßig abgeleitet worden sind, haben sich trotz Orientierung an Planungskonzepten in einzelnen Fällen Abweichungen von entsprechenden Werten in diesen Konzepten ergeben; die hier zugrundegelegten Randbedingungen oder Annahmen sind jedoch im Kapitel 3 erläutert oder abgeleitet.

Anmerkung:

Der mittlere Abbrand einer Nachladecharge (ca. 35 t Une pro Jahr) eines DWR vom Typ Biblis liegt auf Grund der Auslegungsund Betriebsdaten nämlich

- maximale Anreicherung 3.3 % U-235 (Genehmigungswert)
- 3jährige Standzeit der Brennelemente
- jährliche Abschaltpa**use** für Brennelementwechsel und Inspektion
- angenommene 80 %ige jährliche Auslastung, d. h. 292 Volllasttage/a

bei ca. 32 Gwd/t SM. Höhere durchschnittliche Abbrände sind mit deutschen DWR nur erreichbar

- bei höherer Anfangsanreicherung (Genehmigungsänderung!)
- bei einer Verlängerung der Standzeit der Brennelemente durch zyklische Verschiebung der Abschaltpause für Wartung, Inspektion und Brennelementwechsel, die jetzt in etwa jährlichem Abstand liegt;
- bei Übergang zu 4jähriger Standzeit, d. h. jährlicher Brennelementnachladung von 1/4 des Cores.

Die Bestrahlung des DWR-Brennstoffs in 4 Zyklen war zum Zeitpunkt der Berechnung der hier verwendeten Daten im Rechencode KORIGEN-79 nicht implementiert.

2.2 <u>Vergleiche der Eigenschaften der Abfälle anhand der</u> Nuklidinventare

Die Ergebnisse der Zerfallsrechnungen und vergleichenden Betrachtung über die mittel- und schwachaktiven Abfälle werden nachfolgend zusammengefaßt. Auf der Basis des Nuklidinventars der einzelnen Abfallarten werden folgende Eigenschaften erfaßt:

- Aktivität

- spezifische Aktivität
- Wärmeleistung.

Die Darstellung erfolgt jeweils in Form der Zerfallskurven als Funktion der Zeit für die Abfallströme

- Hüll- und Strukturmaterial (HSM)
- Feedklärschlamm (FKS)
- wäßriger, mittelaktiver Prozeßabfall (MLLW)
- fester, schwachaktiver Alphaabfall (α -LAW)

- mittelaktive Reaktorbetriebsabfälle.

2.2.1 <u>Aktivität</u>

Die Aktivität des Nuklidinventars und der zeitliche Verlauf für das Hüll- und Strukturmaterial (HSM), den Feedklärschlamm (FKS), den wäßrigen, mittelaktiven Prozeßabfall (MLLW), den festen, schwachaktiven α -Abfall (α -LAW) und den Reaktorbetriebsabfall ist in Fig.2.2-1 im Vergleich zu den hochaktiven Abfällen (HAW) dargestellt (bezogen auf 1 t SM). Innerhalb von ca. 100 Jahren fällt die Aktivität der betrachteten mittelaktiven Abfälle um 2 bis 3 Zehnerpotenzen ab. Dabei liegt die Aktivität um einen Faktor 10 bis 100 niedriger als die Aktivität des hochaktiven Abfalls. Nach mehr als 1000 Jahren erfolgt ein deutlich langsameres Abklingen der Aktivität der mittelaktiven Abfälle, wobei die Aktivität um den Faktor 2 bis 5 niedriger als die Aktivität des Spaltproduktanteils im hochaktiven Abfall liegt. Die relativ höhere Aktivität des Hüll- und Strukturmaterials wird durch die Aktivierungsprodukte der Legierungsbestandteile bestimmt.

Die Aktivität der mittelaktiven Reaktorbetriebsabfälle fällt (solange sie keine Actiniden enthalten) nach ca. 300 Jahren um mehr als 3 Größenordnungen auf sehr niedrige Werte ab.

2.2.2 Spezifische Aktivität

Die spezifische Aktivität (pro m³ konditionierten Abfalls) ist für die betrachteten mittel- und schwachaktiven Abfälle in Fig. 2.2-2 eingetragen.

Die Aktivität pro Volumeneinheit von Hüll- und Strukturmaterial und von Feedklärschlamm liegt im Zeitraum bis ca. 1000 Jahre um etwa 2 - 3 Größenordnungen unterhalb der spezifischen Aktivität der hochaktiven Abfälle und liegt nach mehr als 1000 Jahren bei beiden Wastearten um ca. einen Faktor 20 unterhalb des Spaltproduktanteils im HAW.

Die spezifische Aktivität vom verfestigten mittelaktiven Prozeßabfall (MLLW) liegt einen Faktor 50 - 100 niedriger als diejenige des zementierten Hüll- und Strukturmaterials bzw. Feedklärschlamms, zum Teil bedingt durch das größere Volumen der verlorenen Betonabschirmung des Gebindes gegenüber den 400-1-Rollreifenfässern bei HSM und FKS.

2.2.3 Wärmeleistung

Die Wärmeleistung des Nuklidinventars für die mittel- und schwachaktiven Abfälle HSM, FKS, MLLW, α -LAW ist in Fig. 2.2-3 in ihrem zeitlichen Verlauf aufgetragen und wird mit dem hochaktiven Abfall verglichen.

Die Wärmeleistung von HSM und FKS fällt nach weniger als 100 Jahren um ca. 3 Größenordnungen ab, die von MLLW nach ca. 10 Jahren auf die gleiche Größe. Nach ca. 100 Jahren liegt damit die Wärmeleistung von HSM, FKS und MLLW um 0,5 - 2 W/t SM und ca. einen Faktor 200, die von α -LAW um ca. 50, niedriger als die Wärmeleistung des hochaktiven Abfalls. Langfristig fällt die Wärmeleistung entsprechend der langen Halbwertszeiten der bestimmenden Actiniden nur langsam weiter ab.

Fig.2.2-1 Aktivität von Hüll- und Strukturmaterial (HSM) Feedklärschlamm (FKS), wässrigem mittelaktivem Prozeßabfall (MLLW) und festem schwachaktivem α -Abfall (α-LAW) sowie Reaktorbetriebsabfall (MAW) im Vergleich zu HAW

Fig. 2.2-2 Aktivität pro Volumeneinheit von Hüll-und Strukturmaterial (HSM), Feedklärschlamm (FKS), wässrigem mittelaktivem Prozeßabfall (MLLW) und festem schwachaktivem α-Abfall (α-LAW) sowie Reaktorbetriebsabfall (MAW) im Vergleich zu HAW

Fig. 2.2-3 Wärmeleistung von Hüll- und Strukturmaterial (HSM), Feedklärschlamm (FKS), wässrigem mittelaktivem Prozeßabfall (MLLW) und festem, schwachaktivem α-Abfall (α-LAW) im Vergleich zu HAW

- 3. <u>Charakteristische Eigenschaften der mittel- und</u> schwachaktiven Abfälle
- 3.1 <u>Hüll- und Strukturmaterial (HSM)</u>

3.1.1 <u>Allgemein</u>

Im ersten Schritt der Wiederaufarbeitung abgebrannter LWR-Brennelemente werden diese im allgemeinen vorzerlegt, d.h. Strukturteile wie Kopf- und Fußstücke werden entfernt. Die Brennstäbe werden in kurze Abschnitte zerhackt, so daß der Brennstoff (UO₂ oder MOX) mit Salpetersäure herausgelöst werden kann.

Die Art der Brennelementzerlegung hängt vom Typ der Schere ab, mit der die Brennstäbe zerschnitten werden:

- Bei Verwendung einer Stabschere werden vorher die Endstücke, Abstandshalter und Steuerstabführungsrohre (DWR-Brennelemente) von den Brennstäben entfernt;
- Bei Verwendung einer Bündelschere können bei Beginn und Ende des Schneidvorganges die Endstücke abgetrennt werden, während die Abstandshalter und die mit den Brennstäben zerhackten Steuerstabführungsrohre mit in den Auflöser gelangen.

Die Auflösung erzeugt die Brennstofflösung für die Extraktion und läßt die "Hülsen" ungelöst zurück. Die mit Salpetersäure gewaschenen Brennstababschnitte enthalten Rückstände und Kontaminationen an Spaltprodukten und Actiniden aus dem Brennstoff sowie die Neutronenaktivierungsprodukte der Legierungsbestandteile des Hüll- und Strukturmaterials selbst.

3.1.2 <u>Menge und Zusammensetzung des Hüll- und Struktur-</u> materials

Dieser Waste besteht aus den ausgelaugten, unlöslichen Hüllrohrabschnitten, massiven Endstücken und allen anderen Bauteilen der Brennelementbündel sowie feinen Spänen vom Zerlegen und Schneiden. Die Zusammensetzung dieser festen Abfälle wird bestimmt vom Reaktortyp, von der Konstruktion des Brennelements und der Materialauswahl des Herstellers. Das Material bei LWR ist z.Zt. meist Zircaloy und kleinere Anteile Edelstahl, Inconel sowie anderer Materialien (vgl. Tabelle 3.1/1 und 3.1/2). Die Gesamtmenge des Hüll- und Strukturmaterials liegt bei - 400-425 kg / t SM beim DWR davon ca. 308-312 kg Hülsen / t SM - 307-363 kg / t SM beim SWR davon ca. 260-303 kg Hülsen / t SM Bei einer Schüttdichte der Hülsen von ca. 1 t / m³ errechnet sich ein Volumen für den Hülsenanteil von ca. -0,26 bis 0,31 m³ / t SM insgesamt für das Hüll- und Strukturmaterial -0,55 bis 0,58 m³ / t SM Die Hüll- und Strukturmaterialabfälle werden in 400-l-Roll-

reifenfässern mit eingesetzter Trommel von 330 l Nutzvolumen mit Beton übergossen und fixiert /15/. Hierbei ergeben sich für nicht kompaktiertes HSM beim DWR:

- 0,55-0,58 m³ zementiertes HSM/t SM bzw.

- 1,66-1,75 Gebinde / t SM.

3.1.3 Aktivierungsprodukte des Hüll- und Strukturmaterials

Die Aktivität und Wärmeleistung der Aktivierungsprodukte wurde für das Hüll- und Strukturmaterial von DWR- und SWR-Brennelementen mit Hilfe des Rechencodes KORIGEN-79/4,5,6/ berechnet.

Dabei wurde entsprechend der axialen Neutronenflußverteilung im Reaktor nach Fig. 3.1-1 bei der Berechnung der Aktivierung berücksichtigt, daß an den Enden der Brennelemente, d.h. bei den Kopf- und Fußteilen, der Fluß stark abfällt.

Fig. 3.1-1 Axiale Abbrandverteilung /8/

Nähere Abschätzungen des Abfalls des Neutronenflusses an den Enden der Brennelemente außerhalb der aktiven Core-Zone eines DWR und SWR wurden von A.G. CROFF et al. /7;Table 3.7/ gemacht. Da keine Meßwerte vorlagen, wurde diese relativ niedrig erscheinenden ORNL-Werte nicht voll übernommen, sondern die in Fig. 3.1-2 angegebene, vereinfacht abgestufte Neutronenflußverteilung zugrunde gelegt:

	DWR	SWR	
Brennstäbe:			
Zircaloy	100 %	100 %	
Stützrohre	30 %	entfällt	
Plenumfedern	30 %	50 %	
Steuerstabführungsrohre	100 %	entfällt	
Wasserstab	entfällt	100 %	
Abstandshalter	100 %	100 %	
Endstücke (pl us Kleinteile)	10 %	२० ६	

Die induzierte Radioaktivität von Zircaloy, Edelstahl und Inconel des Hüll- und Strukturmaterials von DWR- und SWR-Brennelementen ist summarisch aus Fig.3.1-3 zu entnehmen und für DWR-Brennelemente in Tabelle 3.1/3 angegeben. Aus Fig.3.1-3 geht hervor, daß die Aktivität der Aktivierungsprodukte bei DWR-Brennelementen durchschnittlich etwa um einen Faktor 3 höher als bei SWR-Brennelementen liegt. Der zeitliche Verlauf der Aktivität einzelner Radionuklide der Aktivierungsprodukte des Hüll- und Strukturmaterials von DWR-Brennelementen ist in Fig.3.1-4 dargestellt. Insgesamt fällt die Aktivität bis 1000 Jahre um mehr als 3 Größenordnungen ab; zwischen 1 und 20 Jahren Zerfallzeit überwiegt die Aktivität von Fe-55 und Co-60, von 20 bis 700 Jahren wird die Aktivität von Ni-63 und langfristig von Ni-59, Nb-94 und Zr/Nb-93 bestimmt.

Die Zerfallswärmeleistung der Aktivierungsprodukte von DWR-Brennelementen ist in Tabelle 3.1/4 gelistet; der zeitliche Abfall in Fig.3.1-6 dargestellt. Die Wärmeleistung fällt in ca. 50 Jahren um ca. 2,5 Größenordnungen ab, insgesamt bis etwa 700 Jahre um mehr als 3 Zehnerpotenzen. Der Anteil einzelner Nuklide der Aktivierungsprodukte ist in Fig.3.1-7 ersichtlich, wonach bis 50 Jahre Zerfallzeit Co-60 bestimmend ist, danach Ni-63. Langfristig fällt die Wärmeleistung mit der Halbwertszeit von Ni-59 ab.

3.1.4 Gehalt an Spaltprodukten und Actiniden

Bei der Ermittlung des Transurangehalts in den Hüll- und Strukturmaterialabfällen ergibt sich durch die Vorzerlegung der Brennelemente in Brennstäbe und übriges Strukturmaterial eine entsprechende Unterteilung:

- Bei Verwendung einer Bündelschere werden bei einer Vorzerlegung nur die Endstücke abgeschnitten und können als separater Wastestrom abgetrennt werden. Brennstababschnitte, Abschnitte von Führungsrohren (bzw. Wasserstab) und die Abstandshalter fallen in den Auflöser.

 Bei Anwendung einer Stabschere werden alle übrigen Strukturteile wie Endstücke, Führungsrohre (bzw. Wasserstab) und Abstandshalter bei der Vorzerlegung abgetrennt, nur die Brennstabkomponenten gelangen in den Auflöser.

Strukturmaterial

Die Edelstahl- und Inconelteile des Brennelementstrukturmaterials sind mit einer dünnen Fe/Ni/Cr-Oxidschicht überzogen, und weisen eine geringe Kontamination mit Spaltprodukten und aktivierten Korrosionsprodukten aus dem Primär-Kühlkreislauf des Reaktors auf. Die Kontamination der Strukturteile mit Transuranen ist normalerweise, wenn diese Teile vor der Auflösung abgetrennt würden, äußerst niedrig.

In /8/ findet sich der Hinweis, daß diese Teile im Auflöser merkliche Mengen Transurane aus der Brennstofflösung adsorbieren würden.

<u>Hülsen</u>

Die mit Salpetersäure ausglaugten und gewaschenen Hülsen enthalten neben dem Aktivierungsprodukt noch kleine Mengen Spaltprodukte und Actiniden.

- in der inneren und äußeren Oberflächenoxidschicht
- in Form von ungelöstem Brennstoff
- im Innern des Metalls.

Zum Gehalt an Spaltprodukten und Actiniden (Pu, Am, Cm) liegen an Hüllrohrabschnitten gemessene Werte /9/ vor. Hierzu wären noch Rückstände von ungelöstem Brennstoff, z.B. in einseitig geschlossenen Endstücken der Brennstäbe, zu rechnen. Demnach wurde für die Zerfallsrechnung folgender Actinidengehalt der Hülsen angenommen:

Gew.-% vom Durchsatz

Pu								0.1
υ,	Np,	Am,	Cm				je	0.03

Ferner wurde mit einem restlichen Spaltproduktgehalt von 0.1% der nichtflüchtigen Spaltprodukte gerechnet.

In der Metallmatrix bleibt ein Teil des bei der Spaltung entstehenden Tritiums, das während der Reaktorbestrahlung aus dem Brennstoff in das Zircaloy-Hüllrohr diffundiert, gelöst. Messungen haben gezeigt /10/, daß die Hülsen bei mittlerem Abbrand ca. 40% des gebildeten Tritiums, bei hohem Abbrand ca. 60% enthalten.

3.1.5 <u>Aktivität und Wärmeleistung von Spaltprodukten</u> <u>und Aktiniden</u>

Die Aktivität der Spaltprodukte und Transurane ist in Tabelle 3.1/3 ersichtlich, der zeitliche Verlauf für das Hüll- und Strukturmaterial in Fig. 3.1-3 und für einzelne Transurane in Fig. 3.1-5 dargestellt. Für die Summe des Hüll- und Strukturmaterials wird die Aktivität auch langfristig von den Aktivierungsprodukten bestimmt (Fig.3.1-3). Betrachtet man jedoch nur die im Auflöser ausgelaugten Hülsen (Brennstababschnitte), die mit Spaltprodukten und Actiniden kontaminiert sind, so liegt bis 200 Jahre Zerfallzeit auch die Aktivität der restlichen Spaltprodukte und im Zeitraum von ca. 200 bis 10⁴ Jahren auch die Aktivität der Actiniden in der gleichen Größenordnung wie die Aktivität der Aktivierungsprodukte in den Hülsen (vgl. Fig.3.1-3).

Die Ergebnisse der entsprechenden Berechnung der Wärmeleistung finden sich in Tabelle 3.1/4. In Fig.3.1-6 ist der zeitliche Verlauf der Wärmeleistung von Hüll- und Strukturmaterial dargestellt, und in Fig.3.1-8 die einzelnen Transurane.

Beim Strukturmaterial haben anteilmäßig nach Zerfallzeiten von mehr als 50 Jahren (nach Reaktorentladung) die Endstücke den geringsten, die Abstandshalter den größten Beitrag zur gesamten Wärmeentwicklung. Eine Abtrennung der Endstücke ist sowohl bei der Stabschere als auch bei der Bündelschere möglich. Eine genauere Wärmerechnung unter Endlagerungsbedingungen könnte zeigen, ob eine separate Verpackung (Konditionierung) der nicht &-kontaminierten und weniger Wärme produzierenden Endstücke bei der Endlagerung eine Vereinfachung bringt.

		IHC	H-H-81/3
LEGIERUNG	KOMPONENTEN	DWR	SWR
		KG/T SM	KG/T SM
ZIRCALOY-4	HUELLROHRE + STOPFEN Abstandshalter	293	10.4
ZIRCALOY-2	HUELLROHRE + STOPFEN Wasserstab		297 4.8
STAHL W.NR. 1.4541	STUETZROHRE KOPF- + FUSS-STUECKE FUEHRUNGSROHRE KLEINTEILE	11.4 53.2 28.7 2.5	
STAHL W.NR. 1.4568 STAHL W.NR. 1.4308	PLENUM-FEDERN Kopf- + Fuss-Stuecke	9.2 	 32.7
STAHL W.NR. 1.4550	KLEINTEILE		0.3
INCONEL 718	ABSTANDSHALTER	16.4	
INCONEL X750	KLEINTEILE (BOLZEN,FEDERN) PLENUM-FEDERN ABSTANDSHALTER	8•1 	1.2 7.5 1.7
SUMME		422.5	355.6

TABELLE 3.1/1	ZUSAMMENSETZUNG DES HUELL- UND STRUKTURMATERIALS VO	N
	1300 MWE REFERENZ-DWR UND -SWR	

•

		KONZÉNTRATION IN GEWICHTSPROZENT									
	7 /DC 11 0N . /	EDELSTAEHLE, WERKSTOFF-NR.					INC	ONEL			
		2 IRCALUT-2	1.4541	1.4571	1.4568	1:4308	1.4550	718	×750		
в								0.003			
С			0.1	0.1	0.09	0.05	0.1	0.05	0.05		
AL					1.5			0.5	0.8		
st			1.0	1.0	1.0	1.5	1.0	0.3	0.5		
Р			0.04	0.04	0.04	0.03	0.04	0.01			
S			0.03	0.03	0.03	J•02	0.03	0.01	0.01		
τí			0.5	0.5				1.0	2.5		
CR	0.1	0.1	18.0	17.0	17.0	18.7	18.0	18.8	15.5		
MN			2.0	2.0	1.0	1.0	2.0	0.2	0.8		
FE	0.21	0.15	67.83	65.03	72.04	68.6	67.6	17.8	7.0		
CO	0.0020	0.0020	0.1	0.1	0.i	0.1	0.1	0.1	0.1		
NI		0.06	10.5	12.0	7.2	10.0	10.5	53.0	71.4		
CU								0.2	0.3		
ZR	98.06	98.19									
NB							0.7	4.6	0.92		
MO				2.3				3.0			
SN	1.5	1.5									
TA							0.06	0.4	0.08		
U	< 0.00035	< 0.00035									

TABELLE 3.1/2 CHEMISCHE ZUSAMMENSETZUNG VON LEGIERUNGEN IN DWR- UND SWR-BRENNELEMENTEN. GEMITTELTE WERTE FUER AKTIVIERUNGSRECHNUNG MIT KORIGEN-79

.

•

.

.

								I HC H- H- 8	0/11
	MENGE				AKTIVITAET	ICI/T SM)			
	(G/T SM)				ZERFALI	LSZEIT			
	3 A	1 A		5 A	7 A	10 A	20 A	100 4	1000 A
AKTIVIERUNGSPROD	UKTE VON	HSM - EINZ	ELNE NUKLID	E					
MN-54		1230	244	48	9.5	0.84			
FE-55		18100	10600	6230	3650	1640	114		
CO-58		467	0.37						
CO-60		8780	6750	5190	3990	2690	721	0.019	
NI-59		8.3	8.3	8.3	8.3	8.3	8.3	8.3	8.2
N1-63		1170	1160	1140	1120	1100	1020	556	0.56
ZR/NB-93		0.18	0.20	0.21	0.22	0.24	0.27	0.32	0.32
ZR/NB-95		3880	1.4						
NB-94		1.42	1.42	1.42	1.42	1.42	1.42	1.42	1.37
MO-93		0.063	0.063	0.063	0.063	0.063	0.063	0.062	0.052
TC-99		0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.011
SN-119M		3400	431	55	6.9	0.31			
SN-121M		0.85	0.83	0.81	0.79	0.75	0.66	0.22	
58-125		57.4	34.8	21.0	12.7	6.0	0.49		
TE-125H		14.0	8.5	5.1	3.1	1.5	0.12		
TA-182		3530	43	0.53	0.006				
KTIVIERUNG VON	BRENNSTAB	- UND STRUKT	URMATERIAL	(STABSCHER	E)				
HUELSEN	315000	12100	3500	2090	1390	815	197	24	0.7
STRUKTURNATER.	109000	28500	15800	10600	7410	4630	1670	543	10
SUMME	424000	40700	19300	12700	8610	5440	1860	570	11
	ANTEILE:								
-ABSTANDSHALTER	16350	8720	3620	2720	2140	1590	868	367	7
	28600	16400	10000	6490	4320	2470	623	127	2
-ENDSTUECKE	64000	3460	2120	1400	935	570	176	49	0.8
KTIVLERUNG VON	HUELL- UN	D STRUKTURMA	TERIAL (BU	ENDELSCHERE)				
HILEL & MATERIAL	360000	37200	17200	11300	7850	4870	0641	518	10
ENDSTLIECKE	64000	3460	2120	1400	953	570	176	49	0.8
SUMME	424000	40700	19300	12700	8810	5440	1860	570	11
ONTAMINATION DE	R HUELSEN								
50 % TRITIUN		250	223	199	178	151	86	1	-
0.1 X SPALTPROD	. 28	2220	778	468	370	311	230	35	0.02
ACTINIDEN (+)	296		113	103	95	83	54	6.4	1.6
DAVON									
- U	287		5.2E-4	5.6E-4	5.7E-4	5.9E-4	6.4E-4	9.7E-4	1.46-
- NP-237	0.1		9.0E-5	9.0E-5	9.1E-5	9.28-5	9.8E~5	L.8E-4	7.1E-
- PU (**)	9.0		112	102	93	81	51	2.9	0.78
- AH	0.0	9	0.21	0.54	0.84	1.24	2.2	3.4	0.80

.

TABELLE-3.1/3 MENGE UND AKTIVITAET DES HUELL- UND STRUKTURMATERIALS VON DWR-BRENNELEMENTEN (TYP BIBLIS; 33 GWO/T SM)

*) ACTINIDEN 0.1 % PU; 0.03 % U, NP, AM, CM VOM DURCHSATZ **) PU-VEKTOR (NACH 3 A) PU-238 1.5 %, PU-239 55.9 %, PU-240 25.5 %, PU-241 11.8 %, PU-242 5.2 %;

	MENGE			WAERM	ELEISTUNG	(W/T SM)			
	(G/T SM)				ZERFALLSZE				
	3 A	1 A	3 A	5 A	7 A	10 A	20 A	100 A	1000 A
AKTIVIERUNGSPRO	DUKTE VON H	ISM - EINZ	ELNE NUKLIDE						
MN-54		6.1	1.2	0.24	0.048	0.004			
FE-55		24.9	14.6	8.6	5.0	2.3	0.16		
CO-58		2.8	0.002						
CO-60		135	104	80	61.5	41.4	11.1	0.0003	
NI-59		0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.052
NI-63		0.47	0.46	0.45	2.45	0.44	0.40	0.22	0.0002
ZR/NB-95		18.9	0.007						-
SN-119M		1.8	0.22	0.028	0.004				
SN-121M		0.0017	0.0017	0.0016	0.0016	0.0015	0.0013	0.0004	
NB-94		0.015	0.015	0.015	0.015	0.015	0.015	0.014	0.014
SB-125		0.18	0.11	0.066	0.040	0.019	0.0015		
TE-125M		0.012	0.0071	0.0043	0.0026	0.0012			
TA-182		31.4	0.38	0.005					
AKTIVIERUNG VON	HUELSEN UN	D STRUKTURM	ATERIAL (ST	ABSCHERE)					
HUELSEN	315000	51	27	16.5	12.3	9.1	2.1	2.01	2.5-3
CTDHW THOMAT	100000	171							
	104000			/3	55	46	9.6	0.28	0.06
SUMME	424000	222	121	73 89	55 67	36 44	9.6 11.7	0.28	0.06
SUMME	424000	222	121	73 89	55 67	36 44	9.6 11.7	0.28 0.29	0.06 0.07
SUMME	424000	222	121	73 89	55 67	36 44	9.6	0.28	0.06
SUMME TRUKTURMATERIAL ABSTANDSHALTER	424000 LANTEILE: R 16350	72	30	73 89 23	55 67 17	36 44 11•6	3.3	0.28 0.29 3.2	0.06 0.07
SUMME TRUKTURMATERIAI -ABSTANDSHALTEI -FUEHRUNGSROHRI	424000 LANTEILE: R 16350 E 28600	72 81	30 56	73 89 23 41	55 67 17 31	36 44 11•6 20	9.6 11.7 3.3 5.2	0.28 0.29 3.2 0.06	0.06 0.07 0.05 0.01
SUMME STRUKTURMATERIA -ABSTANDSHALTER -FUEHRUNGSROHRI -ENDSTUECKE	424000 424000 LANTEILE: R 16350 E 28600 64000	72 81 18	30 56 12.5	73 89 23 41 9.2	55 67 17 31 6.9	36 44 20 4.5	3.3 5.2 1.2	0.28 0.29 3.2 0.06 0.02	0.06 0.07 0.05 0.01 5.E-3
STANDE SUMME TABSTANDSHALTEI -FUEHRUNGSROHRI -ENDSTUECKE INTIVIERUNG VON	104000 424000 LANTEILE: R 16350 E 28600 64000 HUELL- UNC	222 72 81 18 STRUKTURMA	30 36 12.5 Terial (Bue	73 89 23 41 9.2 NDEL SCHERE	55 67 17 31 6.9	36 44 20 4.5	3.3 5.2 1.2	0.28 0.29 3.2 0.06 0.02	0.06 0.07 0.05 0.01 5.E-3
STAURION ATERIAI - ABSTANDSHALTEI - FUEHRUNGSROHRI - ENDSTUECKE KTIVIERUNG VON HUELLMATERIAL	424000 424000 LANTEILE: R 16350 E 28600 64000 HUELL- UNE 360000	222 72 81 18 9 STRUKTURMA 204	30 56 12.5 Terial (Bue 109	73 89 23 41 9.2 NDELSCHERE 80	55 67 17 31 6.9) 60	36 44 11•6 20 4•5	3.3 5.2 1.2	0.28 0.29 3.2 0.06 0.02	0.06 0.07 0.05 0.01 5.E-3
TRUKTURMATERIA -ABSTANDSHALTEI -FUEHRUNGSROHRI -ENDSTUECKE KTIVIERUNG VON HUELLMATERIAL ENDSTUECKE	104000 424000 LANTEILE: R 16350 E 28600 64000 HUELL- UNE 360000 64000	222 72 81 18 5 STRUKTURMA 204 18	30 56 12.5 TERIAL (BUE 109 12.5	73 89 23 41 9.2 NDEL SCHERE 80 9.2	55 67 17 31 6.9 1 60 6.9	36 44 20 4.5 40 4.5	9.6 11.7 3.3 5.2 1.2	0.28 0.29 3.2 0.06 0.02 0.02	0.06 0.07 0.05 0.01 5.E-3 0.06 5.E-3
TRUKTURMATERIA ABSTANDSHALTEI -FUEHRUNGSROHRI -ENDSTUECKE KTIVIERUNG VON HUELLMATERIAL ENDSTUECKE SUMME	104000 424000 LANTEILE: R 16350 E 28600 64000 HUELL- UNE 360000 64000 424000	222 72 81 18 5 STRUKTURMA 204 18 222	121 30 56 12.5 TERIAL (BUE 109 12.5 121	73 89 23 41 9.2 NDELSCHERE 80 9.2 89	55 67 17 31 6.9) 60 6.9 67	36 44 20 4.5 40 4.5 44	9.6 11.7 3.3 5.2 1.2 10.6 1.2 11.7	0.28 0.29 3.2 0.06 0.02 0.27 0.02 0.27	0.06 0.07 0.05 0.01 5.E-3 0.06 5.E-3 0.97
AND TO A SUMME TRUKTURMATERIAI -ABSTANDSHALTEI -FUEHRUNGSROHRI -ENDSTUECKE KTIVIERUNG VON HUELLMATERIAL ENDSTUECKE SUMME ONTAMINATION DI	424000 424000 LANTEILE: R 16350 E 28600 64000 HUELL- UNE 360000 64000 424000 ER HUELSEN	222 72 81 18 9 STRUKTURMA 204 18 222	121 30 56 12.5 TERIAL (BUE 109 12.5 121	73 89 23 41 9.2 NDEL SCHERE 80 9.2 89	55 67 31 6.9) 60 6.9 67	36 44 11.6 20 4.5 40 4.5 44	10.6 11.7 3.3 5.2 1.2 10.6 1.2 11.7	0.28 0.29 3.2 0.06 0.02 0.27 0.02 0.27	0.06 0.07 0.05 0.01 5.E-3 0.06 5.E-3 0.97
AND TO THE STAND SHALTEN - ABSTAND SHALTEN - FUEHRUNG SROHRI - FUOS TUECKE KTIVIERUNG VON HUELLMATERIAL ENDSTUECKE SUMME ONTAMINATION DI 50 \$ TRITIUM	424000 424000 LANTEILE: R 16350 E 28600 64000 HUELL- UNE 360000 64000 424000 ER HUELSEN	222 72 81 18 9 STRUKTURMA 204 18 222 8-E-3	121 30 56 12.5 TERIAL (BUE 109 12.5 121 8.E-3	73 89 23 41 9.2 NDEL SCHERE 80 9.2 89 7.6-3	55 67 17 31 6.9 1 60 6.9 67 67	36 44 11.6 20 4.5 40 4.5 44	10.6 11.7 3.3 5.2 1.2 10.6 1.2 11.7 3.F-3	0.28 0.29 3.2 0.06 0.02 0.27 0.02 0.27 0.02 0.29	0.06 0.07 0.05 0.01 5.E-3 0.06 5.E-3 0.97
TRUKTURMATERIA -ABSTANDSHALTEI -FUEHRUNGSROHRI -ENDSTUECKE KTIVIERUNG VON HUELLMATERIAL ENDSTUECKE SUMME ONTAMINATION DI 50 % TRITIUM 0.1 % SPALTPRO	424000 LANTEILE: R 16350 E 28600 64000 HUELL- UNE 360000 64000 424000 ER HUELSEN	222 72 81 18 9 STRUKTURMA 204 18 222 8-E-3 9-2	121 30 56 12.5 TERIAL (BUE 109 12.5 121 8.E-3 2.9	73 89 23 41 9.2 NDEL SCHERE 80 9.2 89 7.E-3 1.55	55 67 17 31 6.9) 60 6.9 67 6.E-3 1-14	36 44 11.6 20 4.5 40 4.5 44 5.E-3 0.92	1.7 3.3 5.2 1.2 10.6 1.2 11.7 3.E-3 0.67	0.28 0.29 3.2 0.06 0.02 0.27 0.02 0.29 3.E-5 0.10	0.06 0.07 0.05 0.01 5.E-3 0.06 5.E-3 0.07
TRUKTURMATERIAI -ABSTANDSHALTEI -FUEHRUNGSROHRI -ENDSTUECKE KTIVIERUNG VON HUELLMATERIAL ENDSTUECKE SUMME ONTAMINATION DI 50 % TRITIUM 0.1 % SPALTPRO	424000 424000 LANTEILE: R 16350 E 28600 64000 40000 424000 ER HUELSEN D. 28 296	222 72 81 18 9 STRUKTURMA 204 18 222 8.E-3 9.2	121 30 56 12.5 TERIAL (BUE 109 12.5 121 8.E-3 2.9 0-133	73 89 23 41 9.2 NDELSCHERE 80 9.2 89 7.E-3 1.55 0.137	55 67 17 31 6.9) 60 6.9 67 67 6.E-3 1.14 0-144	36 44 20 4.5 40 4.5 44 5.E-3 0.2154	1.7 3.3 5.2 1.2 10.6 1.2 11.7 3.E-3 0.67 0.176	0.28 0.29 3.2 0.06 0.02 0.27 0.02 0.27 0.02 0.29 3.E-5 0.10 0.174	0.06 0.07 0.05 0.01 5.E-3 0.06 5.E-3 0.97
TRUKTURMATERIA -ABSTANDSHALTEI -FUEHRUNGSROHRI -EVDSTUECKE KTIVIERUNG VON HUELLMATERIAL ENDSTUECKE SUMME ONTAMINATION DI 50 \$ TRITIUM 0.1 % SPALTPROG ACTINIDEN (*) DAVON:	424000 LANTEILE: R 16350 E 28600 64000 HUELL- UNE 360000 424000 ER HUELSEN D. 28 296	222 72 81 18 5 STRUKTURMA 204 18 222 8.E-3 9.2	30 56 12.5 TERIAL (BUE 109 12.5 121 8.E-3 2.9 0.133	73 89 23 41 9.2 NDEL SCHERE 80 9.2 89 7.E-3 1.55 0.137	55 67 17 31 6.9 0 60 6.9 67 67 6.E-3 1.14 0.144	36 44 11.6 20 4.5 40 4.5 44 5.E-1 0.92 0.154	11.7 3.3 5.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1	0.28 0.29 3.2 0.06 0.02 0.27 0.02 0.27 0.02 0.29 3.E-5 0.10 0.174	0.06 0.07 0.05 0.01 5.E-3 0.06 5.E-3 0.97
STRUKTURMATERIA -ABSTANDSHALTEI -FUEHRUNGSROHRI -FUEHRUNGSROHRI -ENDSTUECKE SUMME SONTAMINATION DI 50 % TRITIUM 0.1 % SPALTPROC ACTINIDEN (*) DAVON: - PUI (*)	424000 424000 LANTEILE: R 16350 E 28600 64000 64000 424000 ER HUELSEN D. 28 296 9-0	222 72 81 18 204 18 222 8.E-3 9.2	121 30 56 12.5 TERIAL (BUE 109 12.5 121 8.E-3 2.9 0.133 0.106	73 89 23 41 9.2 NDEL SCHERE 80 9.2 89 7.E-3 1.55 0.137 0.105	55 67 17 31 6.9) 60 6.9 67 6.E-3 1.14 0.144 0.103	36 44 11.6 20 4.5 40 4.5 44 5.E-3 0.92 0.154 0.101	1.7 3.3 5.2 1.2 10.6 1.2 11.7 3.E-3 0.67 0.176 0.095	0.28 0.29 3.2 0.06 0.02 0.27 0.02 0.29 3.E-5 0.10 0.174 0.062	0.06 0.07 0.05 0.01 5.E-3 0.06 5.E-3 0.97 - 2.E-5 0.051

TABELLE 3.1/4 WAERMELEISTUNG DES HUELL- UND STRUKTURNATERIALS VON DWR-BRENNELEMENTEN (TYP BIBLIS; 33 GWD/T SM)

.

*) ACTINIDEN 0.1 % PU; 0.03 % U, NP, AM, CH VOM DURCHSATZ **) PU-VEKTOR (NACH 3 A) PU-239 1.5 %, PU-239 55.9 %, PU-240 25.5 %, PU-241 11.8 %, PU-242 5.2 %;

Fig. 3.1-2 Axiale Neutronenflußverteilung & zur Berechnung der Aktivierung von Hüll-und Strukturmaterial

Fig. 3.1-3 Aktivität von Hüll- und Strukturmaterial von LWR-Brennelementen; Aktivität und Kontamination der Hülsen (DWR). (WA nach 3a; Actiniden: 0,1% Pu; 0,03% U, Np, Am, Cm)

Fig. 3.1-4 Aktivität einzelner Nuklide der Aktivierungsprodukte von Hüll-und Strukturmaterial

Fig.3.1-5 Aktivität einzelner Actiniden in ausgelaugten Hülsen (WA nach 3a; Actiniden: 0,1% Pu; 0,03% U,Np,Am,Cm)

Fig. 3.1-6 Wärmeleistung von Hüll- und Strukturmaterial von LWR Brennelementen (WA nach 3a; Actiniden : 0,1 % Pu; 0,03 % U, Np, Am, Cm)

Fig.3.1-7 Wärmeleistung einzelner Nuklide der Aktivierungsprodukte von Hüll- und Strukturmaterial

Fig.3.1-8 Wärmeleistung einzelner Actiniden im Hüll-und Strukturmaterial (HSM) (WA nach 3a; Actiniden: 0.1%Pu;0,03%U, Np, Am, Cm)

3.2 Feedklärschlamm (FKS)

3.2.1 <u>Allgemein</u>

Die bei der Wiederaufarbeitung aus dem Auflöser abgezogene Brennstofflösung enthält einen feinsuspendierten unlöslichen Rückstand. Die mitgeschleppten Feststoffteilchen geben in der Extraktion durch Akkumulation in den Phasengrenzflächen zu erheblichen hydraulischen Störungen Anlaß und werden daher vor der Einspeisung der Brennstofflösung in die Extraktion abgetrennt.

Für die Klärung der Brennstofflösung stehen Filtrieren oder Zentrifugieren zur Verfügung. Bei der Filtration würde voraussichtlich der abgetrennte Feedklärschlamm mit den Filtereinsätzen (Filterkerzen) zur Abfallkonditionierung gelangen.

Bei der Feedklärung durch Zentrifugieren wird der abgetrennte Rückstand aus der Zentrifuge ausgespült und als Schlamm in einen Betriebspufferbehälter zwischengelagert. Wegen der chemischen Verwandtschaft der Klärrückstände mit den im flüssigen hochaktiven Abfall stets in mehr oder minder großer Menge vorhandenen Niederschlägen, sollte nach Meinung des Autors der Feedklärschlamm bei der Verglasung des HAW mit zugemischt und verfestigt werden. Da jedoch noch keine Entscheidung hierüber gefallen ist, soll der Feedklärschlamm zur Zeit noch als ein separater Wastestrom betrachtet werden.

3.2.2 Menge und Zusammensetzung des Feedklärschlamms

Im Folgenden wird davon ausgegangen, daß der unlösliche Rückstand der Brennstofflösung durch Zentrifugieren abgetrennt wird und als Schlamm zur Konditionierung gelangt. Für die Verfestigung wird Zementieren angenommen. Bei den Auflösungen von LWR-Brennstoffen in der Laboranlage MILLI (KfK - IHCH) /11,18/ bzw. nach Literaturangaben /12,13/ wurden recht ähnliche Rückstandsmengen beobachtet. Übereinstimmend hiermit wurden die Referenzangaben nach /14/ übernommen, nämlich Gesamtmenge Feedklärschlamm

-	3	600	g	1	t	SN	1			
-	da	von		30	0	g	/	t	SM	Zircaloyspäne
			3	30	0	g	1	t	SM	Löserückstände

Für die Fixierung des wärmeentwickelnden Feedklärschlamms durch homogene Zementierung wurde die Wärmeentwicklung als limitierender Faktor angesehen. Für die Zementierung in 400-1-Rollreifenfässern wurde in Tabelle 3.2/1 als maximale Wärmeleistung 150 W/Gebinde /16/ zugrunde gelegt.

	TIMICIEICEI WAIMEIE.	
Kühlzeit (nach Reaktor entnahme)	Wärmeleistung des FKS W / t SM	Zahl der Gebinde bei max. 150 W/Geb.
3 a	250	1,8
4 a -	125	0,9
5 a	66	0,5

Tabelle 3.2/1 Spezifische Wastemengen von FKS bei limitierter Wärmeleistung

Geht man bei der Einlagerung in einzelne Bohrlöcher von maximal 150 W pro 400 l Faß aus, so kann nach einer Kühlzeit von ca. 5 Jahren mit einer spezifischen Wastemenge von

```
- 0,5 Gebinden / t SM
```

gerechnet werden.

3.2.3 Cehalt an Spaltprodukten und Actiniden

Für die Abschätzung des Gehalts an Spaltprodukten und Actiniden wurde von einer Referenzzusammensetzung des Feedklärschlamms /14/, die in Tabelle 3.2/2 wiedergegeben ist, ausgegeangen.

Kompone	nten		Anteile						
Gesamtmeng	9		3	600	g/t	U			
hiervon	Zircaloyspäne			300	g/t	U			
	Spaltproduktele	mente	2	160	g/t	U	davon	in Gew%	
							Ru	40	
							Rh	7	
							Pd	7	
							Тс	3	
							Мо	17	
		Rest	t (Zr,	тe,	Sn,	Ag)	26	
	Uran 5				Rück: vom 1	stand Durcl	d hsatz		
	Plutonium	0,3-1 Ge = 0,1	∍w. 1 -	-8 v • 0,4	70m] 4 % 1	Rück: vom 1	stand Durchs <i>a</i>	atz	

 Tabelle 3.2/2
 Referenzzusammensetzung von Feedklärschlamm /14/

Einige fehlende Spaltprodukt- und Actinidenelemente wurden auf Grund diverser Analysenergebnisse abgeschätzt und ergänzt. Der Anteil der Elemente Cs, Sr, Ce und Seltene Erden, Sn und Sb ist jedoch ziemlich unsicher und beruht zum Teil auf Einzelanalysen, zum Teil nur auf Schätzungen (aufgrund chemischer Verwandtschaften). In weiteren Untersuchungen sollten insbesondere die Anteile an Cs, Sr, Sn, Sb, Ce und Seltene Erden geklärt werden.

Die für die Berechnung verwendeten Werte sind in Tabelle 3.2/3 zusammengefaßt.

3.2.4 Aktivität und Wärmeleistung

Die Ergebnisse der Berechnung der Aktivitäten und der Wärmeleistung von FKS ist in Tabelle 3.2/4 bzw. 3.2/5 gelistet und in Fig. 3.2-1 bzw. 3.2-3 aufgezeichnet. Zusätzlich ist in Fig. 3.2-2 und 3.2-4 die Aktivität bzw. Wärmeleistung einzelner Spaltprodukte dargestellt.

Die Aktivität des Feedklärschlamms wird in den ersten 10 Jahren (nach Reaktorentnahme des Brennstoffs) von Ru/Rh-106 bestimmt. Danach bis ca. 200 Jahre fällt die Spaltproduktaktivität im Wesentlichen mit der Cs-137/Ba-137m und Sr/Y-90 Aktivität ab. Von etwa 100 bis 3000 Jahre ist die Aktivität der Transurane (insbesondere Am und Pu) dominierend, nach ca. 3000 Jahren schließlich von den langlebigen Spaltprodukten (Tc-99).

Die Wärmeleistung wird bis 10 Jahre von Ru/Rh-106 bestimmt, danach vom Anteil Cs-137/Ba-137m und Sr/Y-90. Ab ca. 50 Jahren Zerfallszeit-bis dahin ist die Wärmeleistung um ca. 3 Zehnerpotenzen abgefallen – dominiert die Wärmeleistung der Transurane (Am und Pu-Isotope).

ELEMENT (1 A KUEHLZEIT) NUKLID AKTIVITAE ERECH. KONZ. ANTETL IN FKS BERECH. KONZ. KONZ. KONZ. M BRENSTOFF MUKLID AKTIVITAE BERECH. KONZ. KONZ. UDRCMS. IN FKS IN FKS IM BRENNSTOFF IN FKS IN FKS KUFHLZEIT SA GG/T SMJ GG/T SMJ GG/T SMJ GG/T SMJ FPALTPRODUKTE: (**) GS CS-135 296 0.474 SS 889 0.1 0.05 1.08 SR-00 539 0.628 0.0006 0.003 SA 1430 0.12 0.428 0.0006 0.003 1.03 SR-137 100 1.9 158 SA 130 0.11 0.022 0.47 Y-40 0.628 0.0006 0.003 L4 1220 C0.17 0.0045 0.14 PM-147 143 0.143 75.5 FM 143 C0.17 0.0056 0.14 PM-167 13.0 0.033 0.033								[]	HCH-H-80/14
EFECH. NOTELL IM FKS BERECH. KONZ. KUPHLZEIT N BRENNSTOFF M/O VOM M/O KONZ. KUPHLZEIT DURCHS. IM FKS KIF BERECH. KONZ. KUPHLZEIT JURCHS. IM FKS KIF G/T SM IG/T SM IG/T SM FALTPRODUKTE: (4*) G/T SM G/T SM 0.128 84.6 CS 2730 0.16 0.2 4.3 CS-135 296 0.474 0.006 SR 889 0.1 0.05 IL08 SR-90 539 0.628 0.0006 0.003 L1 1220 C 0.1 7 PR-144 149 0.377 203 R 1130 C 0.1 0.0054 0.14 PM-1471 143 0.143 75.5 SM 723 C 0.1 7 0.034 0.72 SH-151 13.0 0.037 0.31 <t< th=""><th></th><th>ELEM</th><th>ENT (1 A</th><th>KUEHLZE</th><th>IT)</th><th></th><th>NUKLID</th><th></th><th>AKTIVITAET</th></t<>		ELEM	ENT (1 A	KUEHLZE	IT)		NUKLID		AKTIVITAET
BERELH., KUNZ. DURCHS. IM FKS IM FKS BERELH. KUNZ.			ANTE	IL IN FK	s				
(G/T SM) (G/T SM) (G/T SM) (G/T SM) (C/T SM) SPALTPRODUKTE: (**) CS 2730 0.16 0.2 4.3 CS-135 296 0.474 0.000 SR 899 0.1 0.05 1.90 1.9 1.0 1.9 1.9 <th>5ER [M</th> <th>BRENNSTOFF</th> <th>W/O VOM</th> <th>W/O IN FKS</th> <th>KONZ. IM FKS</th> <th>BERECH. Im Brenn</th> <th>KUNZ. ISTOFF</th> <th>IM FKS</th> <th>RUEHLZEIT 3 A</th>	5ER [M	BRENNSTOFF	W/O VOM	W/O IN FKS	KONZ. IM FKS	BERECH. Im Brenn	KUNZ. ISTOFF	IM FKS	RUEHLZEIT 3 A
PALTPRODUKTE: (**) CS 2730 0.16 0.2 4.3 CS-135 79.3 0.128 84.6 CS 2730 0.16 0.2 4.3 CS-135 796 0.474 0.000 CS-137 1190 1.9 1.9 1.9 1.9 1.9 1.9 BA 1430 0.055 85.3 8.6 0.655 85.3 BA 137 <0.022 0.47 Y-90 0.628 0.0006 0.003 LA 1220 <0.1 7 0.022 0.47 Y-90 0.628 0.0006 0.003 LA 120 <0.1 7 0.0065 0.14 HP.147 143 0.143 75.5 PN 143 <0.1 7 0.0068 0.15 EU-154 39.7 0.0133 4.6 R 3560 1.82 3 64.8 ZR-93 1.6 13.0 0.033 0.013 4.8 R 3380 10.9 17 367 1.6 1.0 0.031 0.448		(G/T SM)		(G/T SM)	. (G/T SM)	(G/T SM)	(CI/T SM)
CS 2730 0.16 0.2 4.3 CS-134 79.3 0.128 84.6 CS 2730 0.16 0.2 4.3 CS-135 296 0.474 0.001 SR 889 0.1 0.05 1.08 SR-90 539 0.455 88.3 Y 465 <0.1			. (++)			1 0.			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CS	2730	0.16	0.2	4.3	CS-134	79.3	0.128	84.6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						CS-135	296	0.474	0.0005
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						CS-137	1190	1.9	158
BA 1430 BA BA 137M $\zeta = \zeta = \zeta = \zeta$ 150 Y 465 $\zeta = 0$ $\gamma = 0$ 0.628 0.0006 0.003 L1 1220 $\zeta = 0$ $\gamma = 0$ 0.628 0.0006 0.003 CE 2560 $(+1) 0.25$ 0.3 6.5 CE-144 149 0.3777 203 ND 3920 $\zeta = 1$ 7 0.0065 0.14 PM-147 143 0.113 75.5 SM 723 $\zeta = 1$ 7 0.0068 0.15 EU-155 39.7 0.0338 9.22 IA6 $\zeta = 0.1$ 7 0.0038 0.72 34.6 0.013 4.6 ZR 3560 1.82 3 64.6 $ZR - 93$ 11.6 $1.252.00$ 0.031 0.48 MB 1.76 1.8 11.6 7 35.7 0.031 0.48 RH 488 31.0 7 151 RP-106 $7.5 = 5$ 25.200 0.0137 8.6 <td>SR</td> <td>889</td> <td>0.1</td> <td>0.05</td> <td>1.08</td> <td>SR-90</td> <td>539</td> <td>0.655</td> <td>85.3</td>	SR	889	0.1	0.05	1.08	SR-90	539	0.655	85.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	BA	1430				BA-137M	< 2.E-4		150
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	¥.	465	< 0.1 ?	0.022	0.47	Y-90	0.628	0.0006	0.003
LA 1220 < 0.1 ? C 2560 (*) 0.25 0.3 6.5 CE-144 149 0.377 203 PR 1130 < 0.1 ? PR 143 < 0.1 82 3 64.8 [L-54] 30.7 0.0390 9.22 PU 120 12.4 ? PT 138 11 4 86.4 [C-99 788 86.4 1.47 PU 2240 38.6 40 864 RU-106 77.3 29.8 25200 PN 1220 12.4 ? PI 220 2.23 0.1 0.2 4.3 SB-126 (PI 2.2 6.8 0.1076 3.2E-4 0.096 0.0092 297 TE-127 < 5.E-4 1.17 3.220 SB-126/M 0.0006 0.0092 297 TE-127 < 5.E-4 1.17 3.220 SB-126/M 0.0096 0.0092 297 4.62 PU-238 3960 4.6E-1 0.230 216 PU-238 3960 4.6E-1 0.230 216 PU-239 5010 9.95 0.622 PU-240 2290 4.54 1.04 PU-241 1160 2.30 2.16 PU-242 468 0.27 4.62 PU-240 2290 4.54 1.04 PU-241 1160 2.30 2.16 PU-242 468 0.0930 0.0034 AM 178 0.1 0.0006 0.18 AM 242 M 0.436 0.0004 0.004 AM 242 S.E-6 0.0004 0.004 AM 242 S.E-6 0.0004 0.0032 AM 243 0.333 0.00029 0.435 CM 22.4 CM 2.43 0.333 0.00029 0.435 CM 22.4 CM 0.436 0.00029 0.435 CM 22						Y-91	0.628	0.0006	0.003
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	LA	1220	< 0.1 ?						
PR 1130 0.17 PR-144 0.006 $5.E-6$ 203 PM 143 0.17 0.0065 0.14 PH-147 143 0.143 75.5 SM 723 0.17 0.0066 0.15 EU-154 39.7 0.0338 9.22 ZR 3560 1.82 3 64.8 $ZR-95$ 1.47 0.0266 0.21 ZR 3560 1.82 3 64.8 $ZR-95$ 1.47 0.0266 0.21 NB 1.76 1.8 $(1.E-5)$ 0.033 $NB-95$ 1.75 0.031 4.6 C7 738 11 4 86.4 1.67 $2.9.8$ 25200 RH 498 31.0 7 151 PD-107 198 25.3 0.013 A6 64.0 7 0.2 4.3 $36-10M$ 0.21 0.017 8.8 C0 7.2 7 7.51 $R-106$ 1.220 1.26 7 $7.25.$	CE	2560 (*	1 0.25	0.3	6.5	CE-144	149	0.377	203
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	PR	1130	< 0.1 .?			PR-144	0.006	5.E-6	203
PM 143 < 0.1 7	ND	3920	< 0.1 ?						
SM 723 < 0.13	PM	143	< 0.1 7	0.0065	0.14	PM-147	143	0.143	75.5
EU 146 < 0.1	SM	723	< 0.1 7	0.034	0.72	SM-151	13.2	0.0132	0.35
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	EU	146	< 0.1 7	0.0068	0.15	EU-154	39.7	0.0398	9.2
ZR 3560 1.82 3 64.8 $ZR - 93$ 716 13.0 0.033 NB 1.76 1.8 $(1.E-5)$ 0.03 NB -95 1.75 0.031 0.48 MO 3380 10.9 17 367 - - - - TC 798 11 4 86.4 TC -99 788 86.4 1.47 RU 2240 38.6 40 864 RU-106 7.73 29.8 25200 RH 488 31.0 7 151 RH-106 7.65 25.3 0.013 AG 66.4 7 0.2 4.3 AG-110M 0.21 0.0137 8.8 SD 46.4 7 0.3 6.5 SN-126 19.2 2.68 0.076 SB 15.3 28.1 0.2 4.3 SB-126/M 0.0996 0.0092 297 TE 450 9.6 2 43.2 TE-125M 0.096 0.0092 297 SUMME SPALTPRODUKTE 28 <td></td> <td></td> <td></td> <td></td> <td></td> <td>FU-155</td> <td>13.0</td> <td>0.013</td> <td>4.6</td>						FU-155	13.0	0.013	4.6
NB 1.76 1.8 (1.E-5) 0.03 NB-95 1.47 0.0268 0.21 NB 1.76 1.8 (1.E-5) 0.03 NB-95 1.75 0.031 0.48 MB 1.76 1.8 7 1.75 0.031 0.48 TC 798 1.4 86.4 TC-99 788 86.4 1.47 RH 488 31.0 7 151 RH-106 7.E-5 25.3 0.013 RH 488 31.0 7 151 RH-106 7.E-5 25.3 0.013 RG 66.0 7 0.2 4.3 AG-110M 0.21 0.0137 8.8 CD 67.9 7 20.3 6.5 SN-126 19.2 2.68 0.076 SB 15.3 28.1 0.2 4.3 SB-125 6.86 1.93 1220 VB 9.6 2 43.2 TE-125M 0.096 0.0092 297 TE-127 5.E-4 1.17 SUMME SPALTPRODUKTE 228 944000<	ZR	3560	1.82	3	64-8	ZR-93	716	13.0	0.033
NB 1.76 1.8 (1.E-5) 0.03 NB-95 1.75 0.031 0.48 MO 3380 10.9 17 367 - - - RU 2240 38.6 40 86.4 TC-99 788 86.4 1.47 RU 2240 38.6 40 86.4 TC-99 788 86.4 1.47 RU 2240 38.6 40 86.4 TC-99 788 86.4 1.47 RU 2240 38.6 40 86.4 TC-99 788 86.4 1.47 RU 2200 151 RH-106 7.E-5 25.20 0.013 7 SB 15.3 28.1 0.2 4.3 GE16/M 0.0137 8.8 0.037 TE 450 9.6 2 43.2 TE-125M 0.096 0.0092 297 T SUMME SPALTPRODUKTE 28126/M 0.018 5 180 U-234 153 2.1E-4 28200 81 1756 5.86 1.9						7R-95	1.47	0.0268	0_21
3380 10.9 17 367 -	NB	1.74	1-8	(1-E-5)	0-03	NB-95	1 . 75	0_031	0.48
11 4 86.4 TC-99 788 86.4 1.47 RU 2240 38.6 40 864 RU-106 77.3 29.8 25200 RH 488 31.0 7 151 RH-106 7.E-5 25200 PD 1220 12.4 7 151 RD-107 198 25.3 0.0137 AG 66.0 7 0.2 4.3 AG-110M 0.21 0.0137 8.8 C0 67.9 7 6.5 SN-126 19.2 2.68 0.076 SB 15.3 28.1 0.2 4.3 SB-125/M 0.096 0.0092 297 TE 450 9.6 2 43.2 TE-125M 0.096 0.0092 297 SUMME SPALTPRODUKTE 28200 81 1756 53000 3.2E-4 1.17 SUMME SPALTPRODUKTE 294000 177.6 6.0E-2 0.243 192.2 4.8E-3 VU 956000 0.018 5 180 U-236 7960 3.2E-6	мп	3380	10.9	17	367			000JI	
120 14.6 4 004.4 10.7 10.1 <t< td=""><td>TC</td><td>799</td><td>11</td><td>4</td><td>96 6</td><td>00-01</td><td>799</td><td>86.4</td><td>1 47</td></t<>	TC	799	11	4	96 6	00-01	799	86.4	1 47
NO 2210 200 210 2200 2200 PD 1220 12.4 7 151 PD-107 198 25.3 0.013 AG 66.0 ? 0.2 4.3 AG-110M 0.21 0.0137 8.8 C0 67.9 ? 4.3 AG-110M 0.21 0.0137 8.8 C0 67.9 ? 4.3 AG-110M 0.21 0.0137 8.8 C0 6.5 SN-126 19.2 2.68 0.076 5 SN 46.4 ? 0.2 4.3 SB-125 6.86 1.93 1220 SB 15.3 28.1 0.2 4.3 SB-125 6.86 1.93 1220 SUMME SPALTPRODUKTE 28200 81 1756 53000 1.17 53000 2.1E-4 V 956000 0.018 1 0.43 NP-237 7960 3.2E-0 U 926000 0.018 1 0.43 NP-237 426 0.426 3.0E-2 PU	211	2240	38.6	A 0	864	DIL-106	77 2	29.9	25200
AG 100 101 101 101 100 101 100 101 100 101 100 101 100 101 100 101 100 101 100 101 100 101 100 101 100 101 100 101 100 101 100 101 100 101 100 100 101 1000 100 100 1		600	31.0	7	151	DH-104	7 65	2700	25200
TO TO <t< td=""><td>20</td><td>1220</td><td>12 4</td><td>7</td><td>151</td><td>00-107</td><td>109</td><td></td><td>27200</td></t<>	20	1220	12 4	7	151	00-107	109		27200
AG Goto 1 0.22 4.5 $A0-110^{-1}$ 0.21 0.0137 8.8 C0 67.9 7 0.5 $7 < 0.5$ $7 < 0.5$ $7 < 0.5$ $7 < 0.3$ 6.5 $SN-126$ 19.2 2.68 0.076 SB 15.3 28.1 0.2 4.3 $SB-125$ 6.86 1.93 1220 $SB-126M$ 0.097 1200 TE 450 9.6 2 43.2 $TE-125M$ 0.096 0.0092 297 SUMME SPALTPRODUKTE 28200 81 1756 53000 $CTINIDEN:$ $U-235$ 7960 $3.2E-4$ U 956000 0.018 5 180 $U-234$ 153 $2.1E-4$ VU 956000 0.018 $NP-237$ 7960 $3.2E-6$ PU 9060 0.2 0.5 18 $PU-239$ 5010 9.95 0.62 PU 9060 0.2 0.5 18 $PU-234$ 136 0.230 216 PU<	10	1220	14.4	0.2	191	PU-107	140	22.3	0.013
CU 07-7 $f < 0.3$ 6.5 SN-126 19.2 2.68 0.076 SB 15.3 28.1 0.2 4.3 SB-125 6.86 1.93 1220 SB 15.3 28.1 0.2 4.3 SB-125 6.86 1.93 1220 SB 15.3 28.1 0.2 4.3 SB-125 6.86 1.93 1220 SB 15.3 28.1 0.2 4.3 SB-126/M 0.096 0.092 297 TE 450 9.6 2 43.2 TE-125M 0.096 0.0092 297 SUMME SPALTPRODUKTE 28200 81 1756 53000 $2.1E^{-4}$ 1.17 SUMME SPALTPRODUKTE 2235 7960 $3.2E^{-4}$ U^{-236} 3960 $4.8E^{-1}$ U 956000 0.018 5 180 U^{-238} 136 0.27 4.62 NP 426 0.1 0.012 0.43 NP-237 426 0.62 PU 9060 0.22 0.5	AG	47 0	· · · · · · · · · · · · · · · · · · ·		C • F	40-1104	0.21	0.0137	0.0
SN TC U.3 C.3 SN SN TO U TO U TO U <		0/•Y	7	<pre>\ U.j < 0 iii</pre>		CN-124	10.7	2 (2	-
SS 13.3 23.1 0.2 4.3 SB-125 6.86 1.93 1220 SB-126/M 0.096 0.0092 297 $TE-127$ $5.E-4$ 1.17 SUMME SPALTPRODUKTE 28200 81 1756 53000 53000 CTINIDEN: 0.018 5 180 U-234 153 $2.1E-4$ U 956000 0.018 NP-237 426 0.426 $0.0E-4$ NP 426 0.1 0.012 0.43 NP-237 426 0.426 $0.0E-4$ PU-240 2290 4.54 1.04 0.02 0.454 1.04 AM 178 0.1 0.0008 <td>214</td> <td>40.4</td> <td>20.1</td> <td>L 0 - 5</td> <td>0.5</td> <td>50-125</td> <td>19.2</td> <td>2.08</td> <td>0.076</td>	214	40.4	20.1	L 0 - 5	0.5	50-125	19.2	2.08	0.076
TE 450 9.6 2 43.2 TE-125M 0.096 0.0092 297 SUMME SPALTPRODUKTE 28200 81 1756 53000 1.17 SUMME SPALTPRODUKTE 28200 81 1756 53000 1.17 CTINIDEN: U 956000 0.018 5 180 U-234 153 2.1E-4 U 956000 0.018 5 180 U-234 153 2.1E-4 U 956000 0.018 5 180 U-234 153 2.1E-4 U-236 3960 4.8E-4 U-236 3960 4.8E-4 U-238 944000 177.6 6.0E-1 0.274 4.62 PU 9060 0.2 0.5 18 PU-237 136 0.277 4.62 PU-240 2290 4.54 1.04 PU-24 166 0.0034 AM 178 0.1 0.008 0.18 AM-241 90.1 0.004	28	15.3	28.1	U•2	4.3	58-125	6.86	1.93	1220
1E 450 9.6 2 43.2 TE-125M 0.096 0.0092 297 TE-127 $5.E-4$ 1.17 SUMME SPALTPRODUKTE 28200 81 1756 53000 CTINIDEN: U 956000 0.018 5 180 U-234 153 2.1E-4 U 956000 0.018 5 180 U-234 193 2.1E-4 U 956000 0.018 5 180 U-234 153 2.1E-4 U 956000 0.018 5 180 U-234 153 2.1E-4 U 956000 0.018 5 180 U-234 153 2.1E-4 U 236 3960 .48E-1 .0 .8E-1 .0 .8E-1 PU 9060 0.2 0.5 18 PU-238 136 0.27 .62 PU-240 2290 4.54 1.04 PU-241 1160 2.30 216 0.008 0.18 <td></td> <td>·</td> <td>.</td> <td>· _</td> <td></td> <td>SB-126/M</td> <td>_</td> <td>-</td> <td>0.087</td>		·	.	· _		SB-126/M	_	-	0.087
TE-127 $< 5.E-4$ 1.17 SUMME SPALTPRODUKTE 28200 81 1756 53000 CTINIDEN: U 956000 0.018 5 180 U-234 153 2.1E-4 U 956000 0.018 5 180 U-234 153 2.1E-4 U 956000 0.018 5 180 U-234 153 2.1E-4 NP 426 0.1 0.012 0.43 NP-237 426 0.426 3.0E-4 PU 9060 0.2 0.5 18 PU-238 136 0.27 4.62 PU 9060 0.2 0.5 18 PU-239 5010 9.95 0.62 PU-240 2290 4.54 1.04 PU-242 468 0.930 0.0034 AM 178 0.1 0.008 0.18 AM-241 90.1 0.091 1.03 AM-242 5.E-6 0.004 AM-243 87.7 0.093 0.018 CM 22.3 0.1 0.0006 0.02 CM-242 2.93 0.0029 0.43	ιE	450	Y + 6	2	43.Z	1E-125M	0.096	0.0092	297
SUMME SPALTPRODUKTE 28200 81 1756 53000 CTINIDEN: U 956000 0.018 5 180 U-234 153 2.1E-4 U 956000 0.018 5 180 U-235 7960 3.2E-4 U-236 3960 4.8E-4 U-236 3960 4.8E-4 NP 426 0.1 0.012 0.43 NP-237 426 0.426 3.0E-4 PU 9060 0.2 0.5 18 PU-238 136 0.27 4.62 PU-240 2290 4.54 1.04 PU-240 2290 4.54 1.04 AM 178 0.1 0.008 0.18 AM-241 90.1 0.091 1.03 AM-242 5.E-6 0.004 0.004 AM-243 87.7 0.093 0.018 CM 22.3 0.1 0.0006 0.02 CM-243 0.333 0.0003 0.016 CM-243 0.333 0.0003 0.16 CM-244 18.8 0.0188 1.41 CM-245 0.125 0.0001		ME				16-127	< 5.E-4		1.17
CTINIDEN: U 956000 0.018 5 180 U-234 153 2.1E-4 U-235 7960 3.2E-4 U-238 944000 177.6 6.0E-1 U-238 944000 177.6 6.0E-1 U-238 944000 177.6 6.0E-1 U-238 944000 177.6 6.0E-1 U-238 136 0.27 4.62 PU-249 5010 9.95 0.62 PU-240 2290 4.54 1.04 PU-241 1160 2.30 216 PU-242 468 0.930 0.0034 AM 178 0.1 0.008 0.18 AM-241 90.1 0.091 1.03 AM 178 0.1 0.008 0.18 AM-241 90.1 0.091 1.03 AM-242 5.E-6 0.004 AM-243 87.7 0.093 0.018 CM 22.3 0.1 0.0006 0.02 CM-242 2.93 0.0029 0.435 CM 22.3 0.1 0.0006 0.02 CM-242 0.125 0.0001 2.2E-1 CM-244 18.8 0.0188 1.41 CM-245 0.125 0.0001 2.2E-1 CM-246 0.096 0.0001 3.1E-3 SUMME TRANSURANE 0.51 18.7 225 IRCALOY-4 SPAENE 300 3.5	201	28200	KUDUKTE	81	1756			· · · ·	53000
U 956000 0.018 5 180 U-234 153 2.1E-4 U-235 7960 3.2E-4 U-236 3960 4.8E-1 U-238 944000 177.6 6.0E-1 U-238 944000 177.6 6.0E-1 U-240 2290 4.54 1.04 PU-241 1160 2.30 216 PU-241 1160 2.30 216 PU-242 4.68 0.930 0.0004 AM-242 5.E-6 0.0004 AM-242 5.E-6 0.0004 AM-243 87.7 0.093 0.018 CM 22.3 0.1 0.0006 0.02 CM-242 2.93 0.0029 0.435 CM-243 0.333 0.0003 0.016 CM-244 18.8 0.0188 1.41 CM-245 0.125 0.0001 2.2E-1 CM-246 0.096 0.0001 3.1E-1 225 UMME TRANSURANE 0.51 18.7 225 IRCALOY-4 SPAENE 300 3.5	ст								
C 22.3 0.1 0.000<		956000	0.018	5	180	11-234	153		2.1F-4
NP 426 0.1 0.012 0.43 NP-237 426 0.426 3.0E-4 PU 9060 0.2 0.5 18 PU-238 136 0.27 4.62 PU 9060 0.2 0.5 18 PU-238 136 0.27 4.62 PU-239 5010 9.95 0.62 PU-240 2290 4.54 1.04 PU-240 2290 4.54 1.04 PU-242 468 0.930 0.0034 AM 178 0.1 0.008 0.18 AM-241 90.1 0.091 1.03 AM-242 5.E-6 0.004 0.004 0.004 0.004 0.004 AM-243 87.7 0.093 0.018 0.18 AM-243 87.7 0.093 0.018 CM 22.3 0.1 0.0006 0.02 CM-242 2.93 0.0029 0.435 CM-243 0.333 0.0033 0.018 1.41 CM-245 0.125 0.0001 2.2E-5 SUMME TRANSURANE 0.51 18.7	-			-		11-235	7960		2 2 2 - 4
NP 426 0.1 0.012 0.43 NP-238 944000 177.6 6.0E-! PU 9060 0.2 0.5 18 PU-238 136 0.27 4.62 PU 9060 0.2 0.5 18 PU-238 136 0.27 4.62 PU 9060 0.2 0.5 18 PU-238 136 0.27 4.62 PU-239 5010 9.95 0.62 PU-240 2290 4.54 1.04 PU-240 2290 4.54 1.04 PU-241 1160 2.30 216 AM 178 0.1 0.008 0.18 AM-241 90.1 0.091 1.03 AM-242 5.E-6 0.004 0.004 0.004 0.004 0.004 AM-243 87.7 0.093 0.018 1.41 0.426 0.033 0.018 CM 22.3 0.1 0.0006 0.02 CM-242 2.93 0.0029 0.435 CM-243 0.333 0.0033 0.018 1.41 CM-2						1-235	2040		J. 2000
NP 426 0.1 0.012 0.43 NP-237 426 0.426 3.0E-4 PU 9060 0.2 0.5 18 PU-239 5010 9.95 0.62 PU-239 5010 9.95 0.62 PU-239 5010 9.95 0.62 PU-240 2290 4.54 1.04 PU-240 2290 4.54 1.04 PU-241 1160 2.30 216 PU-242 468 0.930 0.0030 AM 178 0.1 0.008 0.18 AM-241 90.1 0.091 1.03 AM-242 5.E-6 0.004 0.436 0.004 0.004 AM-243 87.7 0.093 0.018 0.18 AM-243 87.7 0.093 0.018 CM 22.3 0.1 0.0006 0.02 CM-242 2.93 0.0029 0.435 CM-243 0.333 0.0003 0.016 CM-244 18.8 0.0188 1.41 CM-245 0.125 0.0001 2.2E-5 CM-246 0.096						0-230	5700	177 4	+.DE=2
NT 420 0.420 3.024 PU 9060 0.2 0.5 18 PU-238 136 0.27 4.62 PU 9060 0.2 0.5 18 PU-238 136 0.27 4.62 PU-239 5010 9.95 0.62 PU-240 2290 4.54 1.04 PU-240 2290 4.54 1.04 PU-241 1160 2.30 216 PU-242 468 0.930 0.0034 0.0031 0.0034 0.0034 0.0041 0.0041 AM 178 0.1 0.008 0.18 AM-241 90.1 0.091 1.03 AM-242 5.8E-6 0.0041 0.436 0.0041 0.0041 AM-243 87.7 0.093 0.018 0.0141 0.016 CM 22.3 0.1 0.0006 0.02 CM-242 2.93 0.0029 0.435 CM-243 0.333 0.0033 0.016 CM-244 18.8 0.0188 1.41 CM-245 0.125 0.0001 <td< td=""><td>N D</td><td>674</td><td>0.1</td><td>0 012</td><td>0 4 2</td><td>V-200 9</td><td>44000</td><td>111.0</td><td>2 05 4</td></td<>	N D	674	0.1	0 012	0 4 2	V-200 9	44000	111.0	2 05 4
F0 0.2 0.5 15 FU-238 136 0.27 4.62 PU-239 5010 9.95 0.62 0.04 1.04 PU-240 2290 4.54 1.04 0.037 0.0037 AM 178 0.1 0.008 0.18 AM-241 90.1 0.091 1.03 AM-242 5.8 6 0.004 0.004 0.004 AM-243 87.7 0.093 0.018 0.018 CM 22.3 0.1 0.0006 0.02 CM-242 2.93 0.0029 0.435 CM-243 0.333 0.0003 0.016 CM-244 18.8 0.0188 1.41 CM-245 0.125 0.0001 2.22-3 CM-246 0.096 0.0001 2.22-5 SUMME TRANSURANE 0.51 18.7 <t< td=""><td></td><td>720</td><td>0.1</td><td>0.012</td><td>10</td><td>011-220</td><td>720</td><td>0.97</td><td>3.02-4</td></t<>		720	0.1	0.012	10	011-220	720	0.97	3.02-4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	۳U	4000	U• Z	0.5	10	PU-238	130	0.27	4.02
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						20-239	2010	y . yo	0.62
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						PU-240	2290	4.54	1.04
AM 178 0.1 0.008 0.18 AM-241 90.1 0.091 1.03 AM-242 0.436 0.004 0.004 0.004 0.004 AM-242 5.8E-6 0.004 0.004 0.004 AM-242 5.8E-6 0.004 0.004 CM 22.3 0.1 0.0006 0.02 CM-242 2.93 0.0029 0.435 CM-243 0.333 0.0003 0.016 CM-244 18.8 0.0188 1.41 CM-245 0.125 0.0001 2.2E-1 CM-246 0.096 0.0001 2.2E-5 SUMME TRANSURANE 0.51 18.7 225 18.7 225 IRCALOY-4 SPAENE 300 3.5 3.5						PU-241	1160	2.30	216
AM 1 (8 0.1 0.008 0.18 AM-241 90.1 0.091 1.03 AM 1 (8 0.1 0.008 0.18 AM-241 90.1 0.091 1.03 AM-242M 0.436 0.0004 0.004 AM-242 5.E-6 0.004 AM-243 87.7 0.093 0.018 0.435 0.0029 0.435 CM 22.3 0.1 0.0006 0.02 CM-242 2.93 0.0029 0.435 CM-243 0.333 0.003 0.016 CM-243 0.333 0.0003 0.016 CM-244 18.8 0.0188 1.41 CM-246 0.096 0.0001 2.2E-1 CM-246 0.096 0.0001 3.1E-1 225 3.1E-1 3.1E-1 SUMME TRANSURANE 0.51 18.7 225 3.5 IRCALOY-4 SPAENE 300 3.5 3.5						PU-242	468	0.930	0.0036
AM-242M 0.436 0.0004 0.004 AM-242 5.E-6 0.004 AM-243 87.7 0.093 0.018 AM-243 87.7 0.093 0.018 CM 22.3 0.1 0.0006 0.02 CM-242 2.93 0.0029 0.435 CM-243 0.333 0.0003 0.016 CM-244 18.8 0.0188 1.41 CM-245 0.125 0.0001 2.2E-1 CM-246 0.096 0.001 2.2E-1 SUMME TRANSURANE 0.51 18.7 225 225 IRCALOY-4 SPAENE 300 3.5	AΜ	178	0.1	0.008	0.18	AM-241	90.1	0.091	1.03
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						AM-242M	0.436	0.0004	0.0043
AM-243 87.7 0.093 0.018 CM 22.3 0.1 0.0006 0.02 CM-242 2.93 0.0029 0.435 CM-243 0.333 0.0003 0.016 CM-244 18.8 0.0188 1.41 CM-245 0.125 0.0001 2.2E-1 CM-246 0.096 0.0001 3.1E-3 SUMME TRANSURANE 0.51 18.7 225 225 3.5 IRCALOY-4 SPAENE 300 3.5 3.5		-				AM-242	5.E-6		0.0043
CM 22.3 0.1 0.0006 0.02 CM-242 2.93 0.0029 0.435 CM-243 0.333 0.0003 0.016 CM-244 18.8 0.0188 1.41 CM-245 0.125 0.0001 2.22-1 CM-246 0.096 0.0001 3.1E-1 SUMME TRANSURANE 0.51 18.7 225 IRCALOY-4 SPAENE 300 3.5						AM-243	87.7	0.093	0.018
CM-243 0.333 0.0003 0.016 CM-244 18.8 0.0188 1.41 CM-245 0.125 0.0001 2.2E-1 CM-246 0.096 0.0001 3.1E-1 SUMME TRANSURANE 0.51 18.7 225 IRCALOY-4 SPAENE 300 3.5	CM.	22.3	0.1	0.0006	0.02	CM-242	2.93	0.0029	0.435
CM-244 18.8 0.0188 1.41 CM-245 0.125 0.0001 2.2E-1 CM-246 0.096 0.0001 3.1E-1 SUMME TRANSURANE 0.51 18.7 225 IRCALOY-4 SPAENE 300 3.5						CM-243	0.333	0.0003	0.016
CM-245 0.125 0.0001 2.2E- CM-246 0.096 0.0001 3.1E- SUMME TRANSURANE 0.51 18.7 225 IRCALOY-4 SPAENE 300 3.5						CM-244	18.8	0.0188	1.41
CM-246 0.096 0.0001 3.1E- SUMME TRANSURANE 0.51 18.7 225 IRCALOY-4 SPAENE 300 3.5						CM-245	0-125	0.0001	2-2E-5
SUMME TRANSURANE 0.51 18.7 225 IRCALOY-4 SPAENE 300 3.5						CM-246	0.096	0.0001	3.18-5
IRCALOY-4 SPAENE 300 3.5	SUM	ME TRANSU	RANE	0.51	18.7				225
	IRC	ALOY-4 SP	ENE		300				3.5
	000		HINTE	6	190				

 TABELLE 3.2/3 REFERENZZUSAMMENSETZUNG VON FEEDKLAERSCHLAMM (FKS) AUS LWR

 BRENNSTOFF (DWR-BRENNSTOFF; ABBRAND 33 GWD/T SM)

**) MENGE FKS 3600 G/T SM, DAVON SPALTPRODUKTE 2160 G/T SM ACTINIDEN 200 G/T SM

.

FI 64		NUKI TO			AKTIVITAE					
LLL	GE₩−X	NORETO								
	IM FKS				ZERFA	LLSZEIT				
	1 A		1 4	3 A	5 A	7 A	10 A	20 A	100 A	1000 A
SPALT	PRODUKT	E								
cs	0.2	CS-134	166	84.6	43.2	22.0	8.04	0.28	-	
		CS/BA-137/M	323	308	294	280	262	208	32.7	
SR	0.05	SR/Y-90	179	171	163	155	144	114	16.9	
CE	0.3	CE/PR-144	2400	406	68.2	11.5	0.80	0.0001	-	
PM	0.0065	PM-147	128	75.5	44.5	26.3	11.9	0.85	-	
SM	0.034	SM-151	0.353	0.347	0.342	0.337	0.329	0.305	0.164	0.000
EU	0.0068	EU-154	10-8	9.2	7.8	6.7	5.2	2.34	0.0037	-
		EU-155	6.1	4.6	3.5	2.6	1.7	0.43	6.E-6	-
ZR	3	ZR/NB-93/M	0.033	0.036	0.038	0.041	0.044	0.052	0.054	0.06
		ZR/NB-95	576	0.21	8.E-5	-				
TC	4	TC-99	1.47	1.47	1.47	1.47	1.47	1.47	1.47	1.46
RU	40	RU/RH-106	199400	50400	12740	3220	410	0.41	-	
PD	7	PD-107	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.01
SN	0.3	SN/S8-126/M	0.163	0.163	0.163	0.163	0.163	0.162	0.162	0.16
58	0.2	SB/TE-125/M	2200	1520	915	554	261	21.2	-	-
TE		TE-127/M	250	2.31	0.023	0.0002				
2044	EFP		205000	53000	[4300	4280	1110	349	,51+0	1.71
CTEN	IDEN									
U	5	U-GESANT	3.0E-4	3.8E-4	4.0E-4	4.2E-4	4.5E-4	5.5E-4	0.0012	0.00
NP	0.012	NP-237	3.0E-4	3.0E-4	3.0E-4	3.0E-4	3.1E-4	3.2E-4	5.1E-4	0.00
PU	0.5	PU-GESANT	244	222	202	184	160	101	5.83	1.55
		PU-238	4.65	4.62	4.55	4.48	4-37	4-04	2.15	0.00
		PU-239	0-62	0.620	0.620	0.620	0.620	0.619	0.618	0.60
		PU-240	1.04	1.04	1.04	1.04	1.04	1.04	1.03	0.94
		PU-241	237	216	196	178	154	95.1	2.02	2.0E
		PU-242	0.0036	0.0036	0.0036	0.0036	0.0036	0.0036	0.0036	0.00
AM	0.008	AM-GESAMT	0.32	1.05	1-70	2.30	3.08	4.97	7.19	1.72
		AM-241	0.30	1.03	1.68	2.27	3.06	4.95	7.12	1.72
		AM-242M	0.0042	0.0042	0.0041	0.0041	0.0040	0.0039	0.0027	4.5E
		AM-242	0.0042	0.0042	0.0041	0.0041	0.0040	0.0039	0.0027	4.5E
		AM-243	0.018	0.018	0.018	0.018	0.018	0.017	0.017	0.01
CM	0.0006	CM-GESANT	11.1	1.86	1.34	1.23	1.09	0.75	0.03A	8.4E
		CM-242	9.6	0.44	0.023	0.0043	0.0033	0.0032	0.0022	3.7E
		CM-243	0.017	0.016	0.016	0.015	0.014	0.011	0.0016	-
SUMM	E ACT	CM-244	256	225	206	1.21	165	107	13.4	3.4
IRCA	LOY-4 SP	AENE	12.1	3.5	2.1	1.4	0.82	0.20	0.024	0.00

,

TABELLE 3.2/4 AKTIVITAET VON FEEDKLAERSCHLAMM VON LWR-BRENNSTOFF (ABBRAND 33 GWD/T SM)

,

									[HCH-H-	A0/16
ELEMENT				WAER	ELEISTUNG	(W/T SM)				
	GEW-X									
	EM FRS					FALLSZETT				1000 4
					7 A	/ A		20 A		1000 A
SPAL	TPRODUKT	E								
cs	0.2	CS-134	1.69	0.86	0.44	0.22	0.082	0.0028	0.081	_
¢.0	0.5	C3/08-13//A	0.50	0.78	0.15	0.52	0.48	0.39	0.057	_
7 5	0.7	CE/00-144	0.57	1 4 2	0.37	0.044	0.003	0.30	0.031	
DM	0.0045	DM-147	0.046	0-027	0.016	0.0096	0.0043	0.0004	-	
EU.	0.0068	FU-154	0.097	0.027	0.070	0.060	0.047	0.021	0.00003	_
20	0.0000	50-154	0.0044	0.0024	0.0025	0.0019	0.0013	0.0003	-	
79	1	20-133 70 /NB-05	4 5	0.0034	-	0.0017	0.0019	0.0003		
TC	3	1C-00	0.0	0.00074	0 00074	0.00074	0 00074	0 00074	0.00074	0 00073
0.1	40	01/01-104	043	744	41 4	15 5	1 97	0.002	-	0.00013
CM	0 3	SN/SR-176/M	0 0013	0.0013	0 0013	0.0013	0 0013	0.0013	0.0013	0.0012
59	0.2	SR/30-120/H	6.7	4.0	2.5	1.48	0.71	0.057	-	0.0012
TC	2	TE-127/M	0 22	0 0022	0 00007	-		0.000		
รับพ	IE FP		990	251	66	18.6	3.94	0.98	0.140	0.0020
-										
ACTIN	IDEN									
U	5	U-GE SAMT	8.2E-6	9.0E-6	9.8E-6	1.18-5	1.2E-5	1.5E-5	3.5E-5	5.8E-5
NP	0.012	NP-237	9.1E-6	9.2E-6	9.2E-6	9.3E-6	9.3E-6	9.86-6	1.6E-5	5.lE-5
۶U	0.5	PU-GESAMT	. 0.21	0.21	0.21	0.21	0.20	0.19	0.12	0.048
		PU-238	0.154	0.153	0.151	0.148	0.145	0.134	0.071	0.00006
		PU-239	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.019
		PU-240	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.029
		PU-241	0.0073	0.0067	0.0060	0.0055	0.0048	0.0029	0.00006	-
		PU-242	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
AM	0.008	AM-GESAMT	0.011	0.035	0.056	0.076	0.102	0.165	0-24	0.057
		AM-241	0.010	0.034	0.056	0.075	0.10	0.16	0.24	0.057
		AM-243	0.00058	0.00058	0.00058	0.00058	0.00057	0.00057	0.00057	0.00052
СМ	0.0006	CH-GE SAM T	0.40	0.066	0.047	0.043	0.038	0.026	0.0013	2.9E-6
		CM-242	0.35	0.016	0.00083	0.00016	0.00012	0.00012	8.2E-5	1.4E-6
		CM-244	0.053	0.049	0.046	0-042	0.038	0.026	0.0012	-
SUMM	E TRANS	IRANE	0.63	0.31	0.31	0.33	0.34	0.38	0.36	0.105
LIRCA	LOY-4 SP	AENE	0.051	0.022	0.016	0.012	0.008	0.0021	1.2E-5	2.2E-6
GESAM	T		990	251	66	18.9	4.28	1.36	0.50	0.107

 TABELLE 3.2/5
 WAERMELEISTUNG VON FEEDKLAERSCHLAMM VON LWR-BRENNSTOFF

 (DWR-BRENNSTOFF; ABBRAND 33 GWD/T SM)

•

. .

Fig. 3.2-1 Aktivität von Spaltprodukten, Actiniden und Zircaloy-Spänen im Feedklärschlamm { Actiniden : 0,2 % Pu; 0,02 % U; 0,1 % Np, Am, Cm }

Fig.3.2-3 Wärmeleistung von Spaltprodukten, Actiniden und Zircaloy-Spänen im Feedklärschlamm (Actiniden : 0,2 % Pu; 0,02 % U; 0,1 % Np, Am, Cm)

Fig. 3. 2-4 Wärmeleistung einzelner Spaltprodukte im Feedklärschlamm

3.3 Wäßriger, mittelaktiver Prozeßabfall (MLLW)

3.3.1 Allgemein

Im gesamten Wiederaufarbeitungsprozeß fallen verschiedene ∝-kontaminierte Abfallströme an. Unter wäßrigem Prozeß-MAW wird hier der mittelaktive, wäßrige Abfallstrom mit hoher Salzkonzentration aus dem Wiederaufarbeitungsprozeß verstanden. Nicht inbegriffen sind hier Konzentrate aus der Wasserreinigung bei der Brennelementlagerung, Dekowaste aus der Wiederaufarbeitungsanlage, der zum Teil relativ hohe Pu-Konzentrationen aufweist, oder Sekundärwaste aus der Abfallbehandlung und Konditionierung, da deren Nuklidinventare nicht abgeschätzt werden konnten.

Der salzhaltige Abfall aus den Lösungsmittelwäschen des Wiederaufarbeitungsprozesses kommt dadurch zustande, daß das organische Lösungsmittel nach Durchlaufen der Extraktionszyklen einer Kombination von alkalischer und saurer Wäsche unterzogen wird, um Radiolyse- und Zersetzungsprodukte sowie Spaltprodukte und Actiniden zu entfernen. Die alkalischen Wäschen (mit Natriumkarbonat und Natriumhydroxid) bedingen den hohen Salzgehalt der Waschabwässer.

3.3.2 Menge und Zusammensetzung

Aus dem Chemikalienverbrauch der Extraktionsmittelwäsche errechnet sich folgende Salzfracht für den MAW /19/:

1350 mol NaNO₃ / t SM = 115 kg NaNO₃ / t SM

Das spezifische Volumen des wäßrigen Prozeß-MAW (Konzentrat) wäre demnach

0.29 m³ MAWC / t SM bei 400 g Salz/1

Bei einer Begrenzung des Salzgehalts auf 10 % des zementierten Produkts ergibt sich

0.60 m³ zementierter MAW / t SM ($g = 2 \text{ g/cm}^3$) ~ 1.6 Stück 400 l Fässer / t SM (Füllung 360 l/Faß)

3.3.3 Gehalt an Spaltprodukten und Actiniden

Die Abschätzung des Radionuklidinventars im wäßrigen MAW erfolgte auf Grund von Überlegungen zur Abtrennung der nichtflüchtigen Spaltprodukte und der Transurane im 1. Extraktionszyklus der Wiederaufarbeitung. Vereinfachend wurde angenommen, daß der wäßrige Prozeß-MAW alle Spaltprodukte enthält, die nicht im HAW oder FKS abgetrennt wurden. Die obere Grenze der Nuklide, die nicht in das hochaktive Raffinat gelangen,wird durch die Dekontaminationsfaktoren der Co-dekontamination im 1. Extraktionszyklus der Wiederaufarbeitung bestimmt. Nach Vorgabe dieser Faktoren, lassen sich die Mengen an Spaltprodukten und Actiniden sowie der zeitliche Abfall von Aktivität, Wärmeleistung etc. mit dem Rechenprogramm KORIGEN-79 berechnen.

Für die Abtrennung der Spaltprodukte im Co-dekontaminationsschritt des 1. Extraktionszyklus wurden folgende Dekofaktoren angenommen:

	DF
Cs/Ba	10 ⁴
Sr/Y	10 ⁴
Seltene Erden	2.104
Zr/Nb	200
Ru/Rh	100
übrige Spaltprod.	10 ³

Der Gehalt an Actiniden im wäßrigen Prozeß-MAW wurde wie folgt geschätzt:

	% vom Durchsatz
υ	0.3
Np	0.5
Pu	0.2
Am	0.01
Cm	0.01

- 44 ---

3.3.4 Aktivität und Wärmeleistung

Die Ergebnisse der Berechnung der Radioaktivität und der Wärmeleistung von Spaltprodukten und Actiniden im wäßrigen Prozeß-MAW sind in Tabelle 3.3/1 und 3.3/2 zusammengefaßt und in Fig.3.3-1 bis Fig.3.3-4 graphisch dargestellt.

Nach mehr als 10 Jahren Zerfallszeit dominiert die Aktivität bzw. die Wärmeleistung der Transurane. Bei den einzelnen Spaltproduktnukliden wird die Aktivität bis ca. 10 Jahre von Ru/Rh-106, danach von Cs-137/Ba-137m und Sr/Y-90 bestimmt. Nach mehr als 300 Jahren Zerfallszeit verbleibt langfristig eine niedrige Restaktivität von Zr/Nb-93 und Tc-99 bestimmend.

Die Aktivität einzelner Transurane ist in Fig.3.3-3 in ihrem zeitlichen Verlauf aufgezeichnet. Sie wird bestimmt durch den Zerfall der Pu-Isotope und des Am-241, das aus dem Zerfall von Pu-241 nachgebildet wird.

MENT	NUKLID				AKTIVITAET	(CI/T SM)		·- .	
	1				7 ER EAL	S7E IT			
1 A	•	1 A	3 A	5 A	7 A	10 A	2C A	100 A	1000 A
TPRODUKT	E								
0.273	CS-134	10.5	5.35	2.73	1.39	0.51	C.018	-	
	CS/BA-137/M	20	19.4	18.5	17.7	16.5	13.1	2.1	-
0.087	SR/Y-90	14.7	14.0	13.4	12.8	11.9	9.4	1.4	-
0.128	CE/PR-144	47.6	8.0	1.35	0.23	0.016	-		
0.0071	PM-147	6.6	3.9	2.3	1.36	0.61	0.44	-	
0.036	SM-151	0.017	0.017	0.017	0.017	0.016	0.015	0.008	-
0.0073	EU-154	0.54	0.46	0.39	0.33	0.26	0.12	0.0018	-
	EU-155	0.30	0.23	0.17	0.13	0.086	0-021	_	
17.8	78-93	0.0090	0.0090	0.0090	0.0090	0.0090	0.0090	0.000	0.0090
	7 R/NB-95	501	0.186	-					
0.79	TC-49	0.013	0-013	0.013	0.013	0.013	0.013	0.013	0.013
23 4		5190	1210	320	0.015	10.6	0.011	0.015	0.013
1 22	AD-107	0 0001	1310	0 0001	02.0	0 0001	0.0001	0,0001	0 0001
1+22		0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
0.0060	AG-IIUM	1.0	0.135	0.018	0.0023	0.0001	-		
0.019	SN/ 58-126/M	0.0012	0.0012	0.0012	0.0012	0.0012	0.0012	0.0012	0.0012
0.015	SB/ 1E-125/M	8.9	5.4	3.2	1.97	0.92	0.075	-	
0.45	16-127	2.6	0.025	0.0001					
ME FP		5850	1370	373	120	41.8	23.0	3.5	0.033
NIDEN									
970	U-GESAMT	0-0052	0.0052	0.0052	0-0053	0.0053	6.0054	0-0061	0.0069
	U-234	0.0034	0.0034	0.0034	0.0035	0.0035	0.0036	0.0043	0.0051
	11-235	0-00005	0.00005	0.00005	0. 00005	0.00005	0.00005	0.00005	0.0000
	11-236	0.00077	0.00077	0-00077	0.00077	0.00077	0.00077	0.00077	0.00077
	U-238	0.00095	0.00095	0.00095	0.00095	0.00095	0.00095	0.00095	0.00095
2.13	NP-237	0.0015	0.0015	0.0015	0.0015	0.0015	C.0015	0.0017	0.0028
18.1	P U – GE S AM T	246	224	204	186	161	102	58.3	1.55
	PU-238	4.65	4.58	4.51	4.44	4.34	4.01	2.13	0.0017
	PU-239	0.62	0.62	0.62	0.62	0.62	C.62	0-62	0.60
	PU-240	1.04	1.04	1.04	1.04	1.04	1.04	1.03	0.94
	PU-241	240	218	198	180	155	99.1	2.04	_
	PU-242	0.0036	0.036	0.0036	0.0036	0.0036	C.0036	0.0036	0.0036
0.018	AN-GE SAMT	0.034	0.77	1.43	2.03	2.82	4.74	7.01	1.67
	AM-241	0.03	0.76	1.43	2.02	2.82	4.73	7.01	1.67
	AM-242/M	0.00084	0.00084	0.00083	0.00082	0.00081	C.00078	0.00054	0.00009
	AM-243	0.0018	0.0018	0.0018	0.0018	0.0018	C.0018	0.0018	0.0016
0.0022	CM-GESAMT	1.13	0 187	0 134	0 123	0 109	0.075	0 003 0	_
0.0022	CN-242	0 97	0 044	0 0023	0.0004	0 0002	0.007	0.0000	_
	6 m = 2 4 2 C M = 26 3	0.97	0.0014	0.0023	0.0004	0.0003	C-0003	0-0002	-
	CH-242	0.0017	0.0018	0.0016	0.0015	0.0014	0.0011	0.00016	-
	UM-244	U . 19	0.14	0.13	0.12	0.108	0.074	0.0034	
TE AUTIN	LUCN	241	.()	200	199	104	107	12.5	3.2
	MENT MENGE (G/T SM 1 A TPRODUKT 0.273 0.089 0.128 0.0071 0.036 0.0073 17.8 0.79 22.4 1.22 0.0066 0.019 0.015 0.45 ME FP NIOEN 370 2.13 18.1 0.018 0.0022 ME ACTIN	MENT NUKLID MENGE (G/T SM) 1 A TPRODUKTE 0.273 CS-134 CS/BA-137/M 0.089 SKY-90 0.128 CE/PR-144 0.0071 PM-147 0.036 SM-151 0.0073 EU-155 17.8 ZR-93 ZR/NB-95 0.79 TC-99 22.4 RU/RH-106 1.22 PD-107 0.0066 AG-110M 0.015 SB/TE-125/M 0.45 TE-127 ME FP NIDEN 370 U-GESAMT U-236 U-236 U-238 2.13 NP-237 18.1 PU-GESAMT PU-238 2.13 NP-237 18.1 PU-GESAMT PU-238 2.13 NP-237 18.1 PU-GESAMT PU-238 2.13 NP-237 18.1 PU-GESAMT PU-238 0.0022 CM-GESAMT AM-241 AM-243 0.0022 CM-GESAMT CM-242 CM-243 CM-244 ACTINIDEN	MENT NUKLID MENGE (G/T SM) 1 A 1 A 1 A 1 B 1 C - 0 A	MENT NUKLID MENGE	NUKLID MENOE (G/T SH)	VENT NUKLID AKTIVITAET MENGE	NUKLID AKTIVITAET CL/T SM) 1 A 1 A 3 A 5 A 7 A 10 A 1 A 1 A 3 A 5 A 7 A 10 A 1 A 1 A 3 A 5 A 7 A 10 A 1 A 1 A 3 A 5 A 7 A 10 A 1 A 1 A 3 A 5 A 7 A 10 A 1 A 1 A 3 A 5 A 7 A 10 A 1 A 1 A 3 A 5 A 7 A 10 A 1 A 1 A 3 A 5 A 7 A 10 A 1 A 1 A 3 A 5 A 7 A 10 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A	NUKLID AKTIVITAET CL/T SK) MENGE 1 A 1 A 3 A 5 A 7 A 10 A 2C A 1 A 1 A 3 A 5 A 7 A 10 A 2C A TPRODUKTE 0.273 CS-134 10.5 5.15 2.73 1.29 0.51 C.018 0.128 CE/PR-144 47.6 8.0 1.35 0.23 0.016 - 0.035 SR/M-90 14.7 14.0 1.35 0.23 0.016 - 0.0326 SR/M-90 14.7 14.0 1.35 0.23 0.016 - 0.035 SH-151 0.017 0.017 0.017 0.017 0.016 - 0.035 GU-154 0.54 0.46 0.39 0.33 0.26 0.12 1.7.6 ZR-93 0.0090 0.0090 0.0090 0.0090 0.0090 0.0090 0.0090 0.0090 0.0013 0.013 0.013 0.011	NUKL 10 AKT IVITAET CLTT SM MENCE CGT SM ZERFALLSZE IT ZC A 100 A 2C A 100 A 1 A 1 A 3 A 5 A 7 A 10 A 2C A 100 A 1 A 1 A 3 A 5 A 7 A 10 A 2C A 100 A 1 A 1 A 3 A 5 A 7 A 10 A 2C A 100 A 1 A 1 A 3 A 5 A 7 A 10 A 2C A 100 A 1 A 1 A 3 A 5 A 7 A 10 A 2C A 100 A 0.128 CEPR=144 14.7 14.0 13.4 12.8 11.9 9.4 1.4 0.036 SK1+51 0.017 0.017 0.017 0.016 0.016 0.0200 0.0200 0.0090 0.0090 0.0090 0.0090 0.0090 0.0013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.016

.

TABELLE 3.3/1 AKTIVITAFT VON WAESSRIGEM MITTELAKTIVEM PROZESSABFALL AUS DER WA VON LWR-BRENNSTOFF (DWR-BRENNSTOFF; ABBRAND 33 GWD/T SM) .

									I+CH-H-	80/19
ELEMENT		NJKLIC			WA ER ME	LEISTUNG (W/T SM)			
11 C / T	C M					7605 411 576	: 1 T		 -	
1	A		1 A	3 A	5 A	7 A	10 A	20 A	100 A	1000 A
SPALTPRO	DUKTI	É								
cs o.	273	C S-134	0.107	0.054	0.028	0.014	0.0052	0.0002	-	
		CS/8A-137/M	0.050	0.048	0.046	0.044	0.041	0.033	0.0051	-
SR '0.	089	SR/Y-90	0.049	0.047	0.045	0.043	0.040	0.031	0.0C47	-
CE 0.	128	CE/PR-144	0.19	0.032	0.0054	0.0009	0.00006	-		
РМ О.	0071	PM-147	0.0024	0.0014	0.0008	0.0005	0.0002	0.00002	-	
EU 0.	0073	EU-154	0.0048	0.0041	0.0035	0.0030	0.0023	0.010	0.0005	-
		EU-155	0.00022	0.00017	0.00013	0.0001	0.00006			
ZR 17.	8	ZR/NB-95	2.5	0.0009	-					
RU 22.	4	RU/RH-106	24.9	6.31	1.60	0.44	0.054	0.00002	-	
AG O.	0066	AG-110M	0.017	0.0023	0.0003	-				
SB 0.	015	SB/TE-125/M	0.024	0.014	0.0087	0.0052	0.0025	0.00005	-	
SUMME F	P		28.0	6.52	1.73	0.51	0.14	0.065	0.0098	0.00002
ACTINIDE	N									
U 2870		U-GES AMT	0.00015	0.00015	0.00015	0.00015	0.00015	0.00015	C.00017	0.00019
NP 2.	13	NP-237	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	C.00005	0+00009
PU 18.	1	PU-GE SAMT	0.21	0.21	0.207	0.204	0-200	0.187	0.122	0.048
		PU-238	0.154	0.152	0.149	0.147	0.144	0.133	0.071	0.00006
		PU-239	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.0187
		PU-240	0.033	0.033	0.033	0.033	0.033	0.032	0.032	0.029
		PU-241	0.0074	0.0067	0.0061	0.0055	0.0048	0.003	0.00006	-
		PU-242	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	C+0C01	0.0001
AM O.	018	AM-GESAMT	0.0011	0.025	0.047	0.067	0.094	0.157	0.23	0.056
		AM-241	0.001	0.025	0.047	0.067	0.094	0.16	0.23	0.055
		AM-243	0.00005	0.0005	0.00005	0.00005	0.00005	0.00005	C-C0005	C.00005
CN O.	0022	CM-GE SAMT	0.041	0.0066	0.0047	0.0043	0.0038	0.0026	6.001	-
		CM-242	0.035	0.0016	0.00008	0.00002	0.00001	0.00001	0.00001	-
		CM-243.	0.00006	0.00006	0.00005	0.00005	0.00005	0.00004	-	_
		CM-244	0.0053	0.0049	0.0046	0.0042	0.0038	0.0026	0.0001	-
SUMME A	C T		0.26	0.24	0.26	0.28	0.30	0.35	0.36	0.104
GESAMT			28.3	6.76	1.99	0.79	0.44	0.42	0.37	0.104

TABELLE **3.**3/2 WAERMELEISTUNG VCN WAESSRIGEM, MITTELAKTIVEM PROZESSABFALL AUS DER WA VON LWR-BRENNSTOFF (DWR-BRENNSTCFF; ABBRAND 33 GWD/T SM)

Fig. 3.3–1 Aktivität von Spaltprodukten und Actiniden im flüssigen mittelaktiven Prozeßabfall der Wiederaufarbeitung ("Actiniden : 0,2 % Pu; 0,3 % U; 0,5 % Np; 0,01 % Am, Cm)

Fig.3.3-2 Aktivität einzelner Spaltproduktnuklide im flüssigen Prozeß-MAW aus der Wiederaufarbeitung

Fig.3.3-3 Aktivität einzelner Actiniden im flüssigen Prozeß-MAW aus der Wiederaufarbeitung (Actiniden : 0,2% Pu; 0,3%U; 0,5% Np; 0,01% Am,Cm; ∑ZP = Summe der Zerfallsprodukte Pa-Pb)

Fig.3.3-4 Wärmeleistung von Spaltprodukten und Actiniden im flüssigen Prozeß-MAW aus der Wiederaufarbeitung (Actiniden: 0,2% Pu; 0,3% U; 0,5% Np; 0,01% Am, Cm)

3.4 Fester schwachaktiver Alpha-Abfall (*C*-LAW)

3.4.1 Allgemein

Beim festen, schwachaktiven &-Abfall handelt es sich um den plutoniumhaltigen, brennbaren Waste aus der Mischoxidherstellung und -verarbeitung, d. h. überwiegend aus Handschuhkästen stammenden Abfällen (Zellstoff, Kunststoffe, Gummi etc.).

Für die Konditionierung und Endlagerung werden alternative Verfahrensweisen praktiziert und entwickelt, wie

- Verpackung in 10-1-Blechbüchsen und Überbetonieren in 400-1-Rollreifenfässern;
- Zerkleinern und quasi homogene Fixierung mit Zementmörtel in 200- oder 400-l-Rollreifenfässern;
- Verbrennung (z. B. durch Pyrolyse oder Naßveraschung) und homogene Zementierung der Asche. Bei einer Naßveraschung der Abfälle ist darüberhinaus eine >90 %ige Rückgewinnung des Plutoniums möglich.

Diese Alternative der Veraschung der festen α -Abfälle soll hier nicht näher betrachtet werden.

3.4.2 <u>Menge</u>

Bei der Verfahrensweise der Verpackung des festen α -LAW in 10-1-Blechbüchsen sollen je 21 Büchsen in 3 Lagen in einem 400-1-Rollreifenfaß (d. h. 210-1-Füllung) mit Zementmörtel eingebettet werden. Eine Fixierung der Abfälle innerhalb der Büchsen erfolgt nicht.

Abgeleitet vom Jahresdurchsatz der Wiederaufarbeitungsanlage und der Verarbeitung des gewonnenen Plutoniums (8,9 kg Pu/t SM) zu Mischoxidbrennstoff wurde eine Rohabfallmenge von ca. 1000 m³/a bezogen auf 1400 jato WA-Anlage geschätzt /14/ und eine spezifische Wastemenge berechnet von:

- 0.72 m^3/t SM bzw. 3,4 Gebinde/t SM.

Bei der Verfahrensalternative der Zerkleinerung, Vermischung mit Zement und "homogener" Fixierung des brennbaren, festen α -LAW wurden in Vorversuchen /17/ 40 kg Abfall im 200-1-Rollreifenfaß konditioniert. Geht man von einer Dichte des brennbaren Rohabfalls von 0.15 kg/l aus, so errechnet sich eine Fixierung von 267 1 Rohabfall pro 200-1-Faß, d.h.

entsprechend

-	2.7 Gebin	de/t SM	(200-l-Rohreifenfaß)	oder
-	1.4 Gebin	de/t SM	(400-l-Rohreifenfaß)	•

3.4.3 Gehalt an Actiniden

Da die Abfälle bei der Verarbeitung des bei der Wiederaufarbeitung gewonnenen und gereinigten Plutoniums anfallen, kann davon ausgegangen werden, daß der X-LAW keine Spaltprodukte, sondern nur Pu und U enthält. Auch für das zur MOX-Herstellung verwendete U wird angenommen, daß es sich um Uran aus der Wiederaufarbeitung handelt (Isotopenvektor z.B. U-234/235/236/238 = 0.016/0.83/0.42/98.7%).

Je nach Zeitraum der Zwischenlagerung des Plutoniums zwischen der Endreinigung bei der Wiederaufarbeitung und der Verarbeitung zu Mischoxid wird sich ein entsprechender Anteil Am-241 aus dem Pu-241 (Halbwertszeit 14.9 a) nachbilden. Bei größerem Zeitraum für die Zwischenlagerung, wird das Am-241 in einem separaten Trennschritt vor der Verarbeitung abgetrennt und fällt als flüssiger \ll -LAW an (ca. 7 g Am-241/t SM pro Jahr /14/), der mit dem wäßrigen MAW verarbeitet werden soll. Nach Meinung des Autors sollten demgegenüber die konzentrierten Raffinate mit höherer Am-241-Konzentration dem HAW, in dem sich ohnehin das Americium aus dem Brennstoff befindet, zugeschlagen und damit einer Verglasung zugeführt werden. Für den festen α -LAW wird aber angenommen, daß zum Zeitpunkt der Entstehung des Rohabfalls nur vernachlässigbar kleine Mengen an Am-241 enthalten sind.

Für den Gehalt an Pu und U im festen α -LAW wurden die Werte der DWK-Planung übernommen, nämlich

- Pu-Verlust 1 % vom Durchsatz

- U-Verlust 0,14 % vom Durchsatz (bezogen auf Uneu) entsprechend

- 85 g Pu/t SM und 1 370 g U/t SM.

Für die Berechnung der Zerfallskurven wurde die Isotopenzusammensetzung der Elemente U und Pu nach 3 Jahren Kühlzeit angesetzt.

Auf die Abfallgebinde umgerechnet, ergeben sich die Werte der Tabelle 3.4/1:

·	(bei 1	% Pu− und	0,14% U-Vei	clust)	
Gebind	le	Pu-Konze	entration	U-Konzer	ntration
Größe	[Geb/t SM]	[g/Geb]	[g/m ³]	[g/Geb]	$\left[g/m^3\right]$
Einbetonier	te Büchsen:				
400-1-Faß	3.4	25	62.5	400	1 000
Quasi homoo	gen fixierte A	Abfälle:			
200 -1- Faß	2.7	31.5	157	50 7	2 540
400-1-Faß	1.35	63	157	1 015	2 540

Tabelle 3.4/1 Pu- und U-Konzentration pro &-LAW-Gebinde (bei 1% Pu- und 0,14% U-Verlust)

Kernbrennstoffbegrenzung in den bisherigen ASSE-Einlagerungsbedingungen

Nach Tabelle 3.4/1 liegt der Pu-Gehalt in allen Gebinden für die betrachteten Fälle der Konditionierung von \propto -LAW über dem Grenzwert der bisherigen ASSE-Einlagerungsbedingungen, die den Kernbrennstoffgehalt auf 15 g pro Gebinde (gleichgültig ob 200-1-Faß oder VBA) beschränkt hatte. Dieser niedrige Wert scheint eher in Anlehnung an Richtlinien für den Transport, als aus Gründen der Kritikalität im Endlager entstanden zu sein, und es ist kein Grund zu sehen, im Falle des Bundesendlagers einen ähnlich niedrigen Wert pro Gebinde oder pro m³ Volumen zu fordern. Wenn Kritikalitätsrechnungen überhaupt eine Begrenzung erforderlich machen, dann erscheint es eher sinnvoll, eine Begrenzung der durchschnittlichen Konzentration in einer Lagerkammer vorzusehen.

Für einen Wert von 15 g Kernbrennstoff würden sich bei einer Isotopenzusammensetzung von ca. 70 % Pu_{fiss} (ca. 21g Gesamt-Pu) unter den obigen Randbedingungen

- 4.1 Gebinde (200-1-Fässer) /t SM

ergeben.

3.4.4 Aktivität und Wärmeleistung

Die Resultate der Berechnung der Aktivität und Wärmeleistung sind in Tabelle 3.4/2 bzw. 3.4/3 zusammengestellt. Der zeitliche Verlauf von Aktivität und Wärmeleistung ist zusammen mit den Beiträgen der einzelnen Actiniden in Fig. 3.4/1 bzw. in Fig. 3.4/2 gezeichnet.

Die Aktivität der Pu-haltigen Abfälle sinkt in den ersten 100 Jahren um mehr als eine Größenordnung durch den Zerfall von Pu-241 ab, danach zwischen 100 und 10⁵ Jahren um ca. 3 Größenordnungen mit der Halbwertzeit des Am-241 und des Pu-239.

									IHCH-H-	30/21
ELEMENT (*) Menge (g/t sm)		NUKLID	AKTIVITAET (CI/T SM)							
			1 A	3 A	5 A	ZERFAL 7 A	LSZEIT 10 A	20 4	100 A	1000 A
U	370.	U-GESANT		0.0022	0.0026	0.0027	0.0028	0,0033	0.0065	0.0102
NP	-	NP-237					1.E-5	6.E-5	0.0008	0.0055
PU	84.9	PU-GESAMT PU-238 PU-239 PU-240 PU-241 PU-242		1060 21-8 2-95 4-94 1030 0-017	968 21.5 2.95 4.94 938 0.017	881 21.2 2.95 4.94 852 0.017	766 20.7 2.95 4.94 738 0.017	483 19.1 2.95 4.93 456 0.017	27.7 10.2 2.95 4.89 9.7 0.017	7.34 0.0081 2.87 4.44 - 0.017
AH	-	AH-241		0.0	3.15	6.0	9.8	18.9	30.1	7.2
GESAP	т			1060	971	887	776	502	57.8	14.5

TABELLE 3.4/2 AKTIVITAET VON FESTEN, SCHWAGHAKTIVEN ALPHA-ABFAELLEN DER MOX-FABRIKATION (DWR-BRENNSTOFF, ABBRAND 33 GWD/T SM)

*) ACTINIDEN-GEHALT: 1.0 \$ PU, 0.14 \$ U VOM DURCHSATZ (BEZOGEN AUF U-NEU)

TABELLE 3.4/3 WAERMELEISTUNG VON FESTEN, SCHWACHAKTIVEN ALPHA-ABFAELLEN DER MOX-FABRIKATION (DWR-BRENNSTOFF; ABBRAND 33 GWD/T SM)

							_	[HCH-H-8	0/22
ELEMENT (*)	NUKL (D			WAERA	IELEISTUNG	(W/T SM)			
MENGE		ZERFALLSZEIT							
(G/T SM)		1 A	3 A	5 A	7 A	10 A	20 A	100 A	1000 A
U 1370.	U-GESAMT		6.28-5	6.65-5	7.0E-5	7.5E-5	9.1E-5	1.8E-4	2.9E-4
PU 84.9	PU-GESANT		1.0	0.98	0.97	0.95	0.89	0.58	0.23
	PU-238		0.72	0.71	0.70	0.69	0.63	0.34	0.0003
	PU-239		0.091	0.091	0.091	0.091	0.091	0.088	
	PU-240		0-15	0.15	0.15	0.15	0.15	0.15	0.14
	PU-241		0.032	0.029	0.026	0.023	0.014	0.0003	-
	PU-242		0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	
AH -	AM-241		0.0	0.105	0.20	0.33	0.63	1-00	0-24
GESANT			1.00	1.09	1.17	1.28	1.52	1.58	0.47

*) ACTINIDEN-GEHALT: 1.0 \$ PU, 0.14 \$ U VOH DURCHSATZ (BEZOGEN AUF U-NEU)

Fig.3.4-2 Wärmeleistung einzelner Actiniden im festen schwachaktiven &-Abfall (&-LAW) (WA nach 3a; Actiniden : 1%Pu; 0,14%U)

3.5 Reaktorbetriebsabfall (MAW)

3.5.1 Allgemein

Beim Betrieb von Leichwasserreaktoren fallen routinemäßig kleine Volumina mittelaktive und große Volumina schwachaktive Abfälle an. Im Zusammenhang mit den hier betrachteten Abfällen wurden die mittelaktiven Abfälle der DWR wegen des höheren Nuklidinventars ausgewählt. Die Nuklidzusammensetzung wurde aus einigen Angaben der Reaktorbetreiber über die gemessene Aktivität an γ -Strahlern abgeschätzt.

3.5.2 Menge

Zur Abschätzung der Mengen an MAW aus dem DWR-Betrieb wurde von folgenden Vorgaben ausgegangen:

- DWR 1300 MW
- jährliche BE-Entladung 35 t
- Rohabfall 2.4 m^3/a
- Aktivität ≤ 300 Ci/m³
 dementsprechend 720 Ci/a bzw. ca. 20 Ci/t SM.

Für die Fixierung der Abfälle in 200-1-Rollreifenfässern mit verlorener Betonabschirmung (VBA 1.2 m³) wird ein Volumenänderungsfaktor 2 angenommen /20/. Damit errechnet sich ein spezifischer MAW-Anfall von

- 0.82 m³ (VBA)/t SM.

3.5.3 Aktivität und Wärmeleistung

Für die Ermittlung der Aktivität und Nuklidzusammensetzung wurde von einer Gesamtaktivität von 300 Ci/m³ Rohabfall und einer Kühlzeit von 4 Monaten ausgegangen. In Tabelle 3.5/1 wurde die prozentuale Gammaverteilung aufgeführt und daraus auf die Menge geschlossen.

Nuklid	Halbwerts-	An	Masse				
	zeit	[8]	$\left[\text{Ci/m}^3\right]$	[Ci/t SM]	[g/t SM]		
Mn-54	312 d	5	15	1	1.3E-4		
Co-58	71 d	10	30	2	6.3E-5		
Co-60	5.3 a	35	105	7	6.2E-3		
Sb-124	60 d	5	15	1	5.7E-5		
Cs-134	2.1 a	15	45	3	2.4E-3		
Cs-137	30.1 a	30	90	6	0.07		
Summe			300	20			
Cs-134 Cs-137 Summe	2.1 a 30.1 a	15 30	45 90 300	3 6 20			

Tabelle 3.5.1 Aktivität von mittelaktivem Reaktorbetriebsabfall (Kühlzeit 4 Monate)

Es errechnet sich eine Gesamtaktivität von

 \leq 30 Ci/Gebinde bzw. \leq 25 Ci/m³ (VBA)

Die Wärmeleistung liegt bei

≤ 0.2 W/Gebinde.

Der zeitliche Abfall der Aktivität des Reaktorbetriebsabfalls (MAW) ist in Fig. 2.2-1 und die Zerfallskurve der Aktivität pro Volumeneinheit des kontaminierten Abfalls in Fig. 2.2-2 und die Wärmeleistung in Fig. 2.2-3 eingetragen.

TABELLE	3.5/2	AKTIVITAET UND WAERMELEISTUNG VON MITTELAKTIVEM						
		REAKTORBETR I EBSABFALL						
		(DWR; JAEHRLICHE BRENNSTOFFENTLADUNG 35 T SM)						

IHCH-H-91/1

.

NUKLID	ZERFALLSZEIT								
	0.3 A	1 A	3 A	5 4	7 A	10 A	20 A	100 A	
AKTIVITAET	(CI/T	SM)							
MN-54	1.0	0.57	0.11	0.0044	0.0004				
CO-58	2.0	0-17	0.000	1					
CO-60	6.8	6.2	4.8	3.7	2.8	1.9	0.51	. 1	
SB-124	1.0	0.053	-						
CS-134	3.1	2.5	1.3	0.64	0.33	0.12	0.0042	-	
CS/BA-137	6.0	11.4	10.9	10.4	9.9	9.3	7.4	1.15	
SUMME	20	20.9	17.0	14.7	13.1	11.3	7.9	1.15	
WAERMELEIST	UNG (W	T SM)							
C 0-58	0.012	0.001	-						
CO-60	0.11	0.095	0.073	0.056	0.043	0.029	0.0078	-	
CS-134	0.032	0.025	0.013	0.0065	0.0033	0.0012	-		
CS/BA-137	0.007	0.029	0.027	0.026	0.025	0.023	0.018	0.0029	
SUMME	0.17	0.15	0.114	0.089	0.071	0.053	0.026	0.0029	

.

.

/1/ H. O. HAUG

"Anfall, Beseitigung und relative Toxizität langlebiger Spaltprodukte und Actiniden in den radioaktiven Abfällen der Kernbrennstoffzyklen." KfK-2022 (1975)

/2/ H. O. HAUG

"Some aspects and long-term problems of high-level and actinide-contaminated spent fuel reprocessing wastes from the U-Pu and Th-U fuel cycles." Proc. Symp. "Management of Radioactive Wastes from the Nuclear Fuel Cycle", IAEA, Vol II (1976) 233-42

/3/ H. O. HAUG

"Relative toxicity and long-term problems of actinide bearing wastes from fuel reprocessing." Proc. Symp. "Waste Management '76", Tucson, Oct. 3-6, (1976) 262-71

/4/ H. W. WIESE

"Stand der im KfK verfügbaren Methoden und Daten zur Vorhersage des Verhaltens von Leichtwasserreaktor-Brennstoff im nuklearen Brennstoffkreislauf." KfK-Nachrichten 11, Nr. 3 (1979) 76-80

/5/ U. FISCHER, M. MARZO

"Theoretische Analyse abgebrannter LWR-Brennstoffe auf der Basis neuer Kerndaten und Vergleiche mit Experimenten." Reaktortagung 1980, Berlin 25.-27. März (1980) 461-4 /6/ H. W. WIESE

"Einfluß einiger methodischer Verbesserungen am Abbrandund Zerfallsprogramm KORIGEN auf charakteristische physikalische Eigenschaften entladenen LWR-Brennstoffs." Reaktortagung 1980, Berlin 25.-27. März (1980) 465-8

- /7/ A. G. CROFF, M. A. BJERKE, G. W. MORRISON, L. M. PETRIE
 "Revised uranium-plutonium cycle PWR and BWR models
 for the ORIGEN computer code."
 ORNL/TM 6051 (1978)
- /8/ US ERDA

"Alternatives for managing wastes from reactors and post-fission operations in the LWR fuel cycle." Report ERDA - 76-43 (1976) Vol 2

/9/ I. L. JENKINS et al.

"The characterization of activities associated with irradiated fuel element claddings." European Applied Research Reports, to be published (1980)

/10/ K. H. NEEB

unveröffentlichte Ergebnisse (1980)

/11/ W. OCHSENFELD, H.-J. BLEYL

"Betriebserfahrungen in der Versuchsanlage MILLI zur Wiederaufarbeitung von Kernbrennstoffen." Atomkernenergie-Kerntechnik 33 (1979) 251-4;

- /12/ E.J. WHEELWRIGHT et al.
 "Partitioning of long-lived nuclides from radioactive
 waste FY 1975 Annual Report".
 Report NR-CONF-001 (1976) 152-206
- /13/ R.E. LEUCE, W.D. BOND
 "Status of reprocessing methods for actinide partitioning"
 Report NR-CONF-001 (1976) 133-146
- /14/ T. DIPPEL, H. KARTES, U. RIEGE "Verfestigung von actinidenhaltigen Abfällen in keramischer Matrix". KfK-3030 (1981)
- /15/ H. FROTSCHER
 private Mitteilung (1980)
- /16/ P.-G. MAURER unveröffentlichte Daten (1980)
- /17/ W. HEMPELMANN private Mitteilung (1980)
- /18/ W. OCHSENFELD, H.-J. BLEYL "Neue Ergebnisse in der Versuchsanlage MILLI aus Experimenten zur Wiederaufarbeitung von Kernbrennstoffen". KfK-2615 (1978) 139-59

/19/ M. KELM, R. KÖSTER

"LAW- und MAW-Abfallströme aus einem Referenzentsorgungszentrum zur Wiederaufarbeitung von abgebrannten LWR-Brennelementen nach dem PUREX-Prozeß mit einem Durchsatz von 1000 Jahrestonnen". KfK-2880 (1980)
- /20/ R. BACHMANN, H. DYROFF, F.K. FLEISCHMANN, H. WITTE Systemstudie "Radioaktive Abfälle in der Bundesrepublik Deutschland". SRA 6 (1977) 19-21
- /21/ H.O. HAUG

"Zerfallsrechnungen verschiedener mittelaktiver und actinidenhaltiger Abfälle des LWR-Brennstoffkreislaufes. Teil II. Radiotoxizitätsvergleich". KfK-3222 (1981) 5. Abkürzungen

LWR	Leichtwasserreaktor
DWR	Druckwasserreaktor (englisch PWR)
SWR	Siedewasserreaktor (englisch BWR)
SBR	Schneller Brutreaktor
MOX	Mischoxidbrennstoff
WA	Wiederaufarbeitung
BE	Brennelement
SM	Schwermetall (U + Pu)
FP	Spaltprodukte
ACT	Actiniden
ZP	Zerfallsprodukte
HAW	hochaktiver Abfall
MAW	mittelaktiver Abfall
HSM	Hüll- und Strukturmaterial
FKS	Feedklärschlamm
MLLW	wässriger mittelaktiver Prozeßabfall
a – LAW	leichtaktiver Alphaabfall (brennbar)
MZK	Maximal zulässige Konzentration
JAZ	Grenzwert der Jahresaktivitätszufuhr
ALI	Annual Limit of Intake
ARI	Jährlicher Radiotoxizitätsindex
ICRP-2	International Commission on Radiological Protection,
	Publication No. 2
1. SSVO	1. Strahlenschutzverordnung
StrlSchV	Strahlenschutzverordnung (1976)
US-CFR	US Code of Federal Regulations
ORIGEN-73	Oak Ridge Isotope Generation and Depletion Code ORIGEN
KORIGEN-79	Karlsruher Version von ORIGEN (mit Jahreszahl)
VBA	Verlorene Betonabschirmung

— 66 —