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ABSTRACT

Stereology as part of quantitative microstructural
analysis provides the tool to derive "spatial" microstruc-
tural parameters from quantities measured in two-dimensional
sections,. Those parameters form well defined micrastructural
factors not only quantitatively describing the microstruc-—
ture of multiphase materials but also being contained in
microstructure - field property - equations, which

- open a better scientific insight in the materials be-
haviour and its dependeunce on the microstructure

- enable to substitute direct property measurements by
calculating the properties from measured microstructural
data '

- provide a platform to produce tailor—made materials
with predicted properties and pre-calculated microstruc-—
tures to substitute elements, components, alloys and com—
pounds less available in the future.

INTRODUCTION

In materials science the interrelationship betweenmicro-
structure and properties become more and more important not only
for getting a better scientific insight into the material
and its behaviour but also for the need to develop tailor-
made materials in front of — and to substitute - less avail-
able elements-in the near future. And a secondary reason for
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looking quantitatively at microstructural effects on pro-
perties is to find out, whether one may substitute direct
property measurements under difficult conditions by a more
simple microstructural analysis. This ~ especially - was
the starting point in nuclear materials when considering
the porous fuel of a nuclear reactor: on the one hand be-
cause 1t has pores from the sintering process by which it
is manufactured, on the other hand pores are created by
fission gas formation during reactor operation. These pores
migrate following the temperature gradient which exists
across the fuel rod radius (fig. 1), altering the thermal
conductivity of the material. Due to the irradiation in-
fluence - and additionally the high temperature — the var-—
iation in thermal conductivity cannot be measured experi-
mentally. The only available sourcesof information are

17b-Mol7a=5-5/3 15 x

Fig. 1: Cross section of a UO2 fuel rod cladded by v
steel
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microstructures of the fuel, as shown in fig. 1, obtained
after different operation conditions as burnups, by cutting
and preparing the fuel rods in hot cells. The central
question with respect to nuclear safety is whether the heat
transfer from the fuel to the coolant could be decreased by
the porosity after a certain time of the reactor life to
such an extent that the fuel center enters its melting
point. If this would happen, it would be the start of a
reactor core melt accident - and it was the start for the
work presented here to investigate the effect of second
phase inclusions on the properties as the thermal conductiv-
ity of a two phase material. In this context pores are only
a special case of second phase inclusions.

MICROSTRUCTURE—PROPERTY—EQUATIONS

Compiling the literature one may make use of the
analogy between the field equations of all field properties such
as thermal and electrical conductivity, dielelectri~
cal constant, and magnetic permeability. There are about
40 equations describing the effect of the microstructure
on the field properties of two-phase materials,one of the
first derived 1in 1821. To select those which could form a
reliable basis to enter the present problem all equations
have been tested under direct plaussible limiting condi-
tions as these for example:

~ if the concentration of one phase becomes zero the over-—
all conductivity has to become identical with the con-
ductivity of the other phase

- if the conductivity of one phase approaches infinite the
overall conductivity has to remain finite , because
this case refers to porous materials

Three equations stood the treatment:

- the Maxwell eguation /5/
- the Bruggeman equation /1,2/ and’
~ the Niesel equation /6/

presenting the following course for deriving the equation
of the effective conductivity of a two-phase material as a
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function of its microstructure: a homogeneous electrostat-
ic. field in a single phased material is assumed as shown
in fig. 2. :
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Fig.2: Primary field and stray field superimposition

To consider the effect of a second phase on the properties
of a material, one has to introduce second phase particles
in it. Here - first time — stereoclogy has to be taken in-
to account: the irregular shaped particles of the second
phase have to be substituted by modelled particles, which
may be treated

- physically in the sense of field effects as stray fie1d§h

. . oo T
- stereologically so that measured parameters from two-
dimensional polished sections may be transformed mathe-
matically into parameters valid three-dimensionally.

Spheroid inclusions are appropiated best for this purpose.
By introducing them into the homogeneous material - as

done in fig.2 —a stray field is influenced and super-
imposed on the original field. As a consequence of this
derivation the model is fixed to spheroidal inclusions. For
them, both - the original as well as the stray field - may
be described quantitatively by the respective field equa-
tion. Superimposing the two fields by combining the field
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energies additively, the effective field and field properties
result /7/. It also follows from the derivation that the
field alteration depends on

~ the concentration
- the shape and
- the orientation

of the inclusions, which appear as the microstructural
parameters in equation |

1 1
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governing the microstructural effects on the effective
conductivity of a two-phase material (¢;) which addition-
ally depends on the conductivities of its phases (¢y, ¢Dp).
In this context the concentration factor (cp) refers to

the volume content of the included phase, the shape factor
(Fp) is physically identical with the well known depolariza-
tion factor /12/ and the orientation factor (cosqu)refers
to the mean of the cosinus squares of the angles formed by
the rotation axes of the spheroids and the direction of the
field as shown in fig. 3 /7/.
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Field Direction

Fig.3: Orientation angle between field direction and
spheroids rotation axis (z)

In the case where the ratio between the conductivities of
the phases (¢p/¢M) becomes very small, the general equa-
tion simplifies to the following form

2. .2
e
D~ D

Q)C = @M(l_cD)

where again the three microstructural parameters appear,
this time concerning the concentration, shape and orienta-
tion of pores. In facty besides these three quantitative
microstructural parameters, two other — qualitative -
microstructural data govern the overall property being
tacitly involved in the equations derivation, which are:

- the number of phases present in the material .and

- the geometrical arrangement of the phases,
which may correspond to a matrix or inteconnecting
phase type microstructure.

Summarizing we have therefore to take into account five
parameters to describe a material's microstructure suffi-
ciently with respect to its field properties.
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Fixing one of them in the general microstructure — property
equation 1 — as for example the number of phases to be two-
the equation's solution provides two values, forming property
bounds versus concentration when plotted in a respective
diagram as shown in fig. 4. These bounds are called first
order bounds when based on the fixation of one - and only
one - of the five defined microstructural parameters. As-
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Fig. 4: Bound formation and property shifting
schematically with respect to equation 1
and its underlying model microstructure

suming a two phase materialy the first order bounds corre-—
spond to the utmost bounds given by Kirchhoffs law for
parallel and series array of the phases. We get closer
second order bounds /3/ by assuming a two phase iso-
tropic material - fixed number of phases and fixed orienta-
tion — and third order bounds by supposing

~ that the material is two phased
- that the material has an isotropic microstrué.
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ture (orientation)
- that one phase forms the matrix.

Obviously the bounds become closer and therefore the prop-
erty determination becomes increasingly more accurate with
increasing information and accuracy about the material's .
microstructure, which may be obtained by quantitative mi-
crostructural analysis including stereology (compare fig.9).
This is where and why stereology holds a key position in
microstructure-property—correlations.

DETERMINATION OF MICROSTRUCTURAL PARAMETERS

As a consequence of the theoretical derivation the pha-
se concentration factor in the equations refers to the vol-
ume content of one phase whilst - as mentioned above = the
shape factor is identical with the depolarization factor
when including spheroids in a homogeneous field /12/. As
such it was derived as a function of the axial ratio &) of
the spheroid as shown in flg 5, where z is the rotation
axis generally. The third microstructure parameter, the
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Fig. 5: The shape fact%r (F) as a function of the
axial ratios C;) of spheroids




PROC 3RD EUR SYMP STEREOL 2ND PART 13

orlentatlon factor, also is a function of the ax1a1 ratio
(—)an ,— additionally - of the areal axial ratio & ,)

or ( ,) of ellipses measured in sections taken perpendic-
ular fo the field direction (compare also fig. 6):
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Fig. 6; Areal axial ratios of inclusions in sec-

tions taken parallel and perpendicular
to the field direction
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As can be seen i,om fig. 6 the difference between

the areal axial ratios of sectioned ellipses in sections
taken perpendicular to the field direction and those taken
statistically through the material increases with in=
creasing orientation.

The actual task now arising from the theoretically ob-
tained definitions of the microstructural parameters is to
calculate spatial - that means three dimensional - quanti-
ties from areal quantities measured in two-dimensional sec-
tions. This may be_.done by stereological relationships es-—
pecially available for the case of spheroids, which was one
crucial reason to prefer this model.

The areal axial ratios of a real material are deter-—
mined as demonstrated in fig. 7 by measuring the area and
the perimeter of the real features /11/. The adaption to
the model is achieved substituting the real features by
ellipses with a respective area to perimeter ratio.The trans-—
formation of their mean axial ratio into the one of the re-
fering spheroid is solved stereologically and pointed out

oblate Spheroid,

sectioned Ellipse

Fig. 7: The determination of substituting
ellipses in cross sections
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graphically in fig.8.Here one has to notice thatone does
not know whether the sectioned ellipses belong to an oblate
or prolate spheroid. Therefore we have to take into account
both which leads to two possible spatial axial ratios re-
sulting in two shape factors and so returning to the bound
concepty mnow, however, related directly to the real mate-—
rial and of higher order. - The explained determination
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Fig. 8: The transformation of ellipsoidal to
spheroidal axial ratios

of axial ratios also provides the orientation factor by
measuring the areal ratios once in sections taken statisti-
cally through the material and another set taken perpendic-
ular to the field direction (compare equ. 3 and fig. 6). So
finally the phase concentration factor has to be deter-
mined, say the volume content of the inclusion which
follows stereologically direct from the measured areal
fraction due to the well known Delesse principle /13/.

By using model materials consisting of spheroidal
pills as used in pharmacy embedded in a resin matrix phase,
preparing cross sections of it, measuring and calculating
their stereological quantities and comparing them with the
known nominal quantities, the error for the relevant
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quantities (axial ratios, volume content) was estimated to
be about 5% (table 1) /9/. .

Table 1: Comparison of nominal quantities with their‘h
corresponding values determined by quanti-"
tative microstructural analysis

Quantity | Nominal | Measured | Rel.Err.(%)
Mean axial ratio (@7B) 12494 1,2027 388
in the plane (B7a) 08119 08541 519
Volume content W 0,2180 02212 1,46
Mean axial length a 60254 | 59103 1.94
' a_ 8572 75254 13,90

Major axis - - -

e d 8,231 80697 199
| b= 5,290 5,9819 11,32

Minor axis . -
: b 6190 6,2572 108
Rel. content of obl. and Nz 02121 0,913 10,87
prol. spheroids N, 07879 | 08087 264
Mean axial ratioc - | (z/x) | 11785 1,2001 1,83

In fig. 9 the steps necessary to determine the micro-
structural parameters with respect to microstructure—
property—correlations are summarized. Quantitative micro-
structural analysis starts by statistical and selected
sectioning of the material, which then has to be polished
and etched to contrast the microstructural features /10/.
By transforming their optical pictures to a monitor the
contrasted phases can be measured electronically as done
by automatic image analysers. The measured quantities - ‘
form the input to a first stereoldgical computer program,
transforming the data from a two into the three dimensional
state. A progressing stereological program provides the
microstructural factors which fit into the microstructure-
property-relationship,’ contained in a third computer N
program. This finally provides the properties of the mate—
rial in dependence on its microstructure.

[
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Fig. 9: Sequence of steps in quantitative micro-
structure analysis

COMPARISON OF MEASURED AND CALCULATED QUANTITIES

To check the reliability of the procedure and its
underlying microstructural model in fig. 10 electrical
conductivities of graphite-silver-composites have been com—
pared with corresponding bounds. Due to its two-phase and
isotropic but no more defined microstructure, second order
bounds should hold for the electrical conductivity - as
they do in the frame of an engineering approach. In the
case of "Bamica'" spheres, a special ceramic embedded in
an alumina matrix phase, the dotted lines in fig. 11
should represent in the region and slope of the thermal
conductivities, which - again - is sufficiently ful -
filled by the experimental data. - In fig. 12 UOp-almost
spherical particles in different metal matrices scatter
around the theoretical curve due to the deviations from
speroidicity, but lucidly follow the calculated slope. -
Finally, in fig. 13 the thermal conductivity of graphite
fibre reinforced resin demonstrates plenty agreement
between both the measured values and the calculated curve,
which-together with additional comparisons/4,7/- permits to
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Fig.10: Electrical conductivities (x) of Ag-C-composites
at room temperature and first (-) and second

order bounds (——-) [4/

conclude that in this context stereology is neither an
impressive mathematical tool to play with, nor — as in the
starting period of the discipline - mainly treated by

"pure stereologists'" - because of its handicap of resulting
either in an inexact representation of real structures

or of an exact representation of unreal models.

Stereology nowadays has to - and does - provide
progress in materials science and practise and is —
therefore - a key to the gates of tomorrow.
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Fig. 13: Thermal conductivities (x) of graphite fiber-
phenolic matrix phase — composites at room
temperature and corresponding theoretical
curve /4/ ‘
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