KfK 3220 Dezember 1981

Numerical Results of a (2E, 2v)-Measurement for Fast Neutron Induced Fission of ²³⁵U and ²³⁷Np

R. Müller, A. A. Naqvi, F. Käppeler, Z. Y. Bao Institut für Angewandte Kernphysik

Kernforschungszentrum Karlsruhe

KERNFORSCHUNGSZENTRUM KARLSRUHE

Institut für Angewandte Kernphysik

KfK 3220

Numerical Results of a (2E,2v)-Measurement for Fast Neutron Induced Fission of $^{235}\mathrm{U}$ and $^{237}\mathrm{Np}$

R. Müller*, A.A. Naqvi**, F. Käppeler and Z.Y. Bao***

Kernforschungszentrum Karlsruhe GmbH, Karlsruhe

.

^{*} University of Tübingen, present address: Siemens AG, München

^{**} present address: University of Petroleum and Minerals, Dhahran, Saudi-Arabia

^{***} on leave from the Institute of Atomic Energy, Academia Sinica, Peking, China

.

(1) A set of the se

Als Manuskript vervielfältigt Für diesen Bericht behalten wir uns alle Rechte vor

Kernforschungszentrum Karlsruhe GmbH ISSN 0303-4003

ABSTRACT

Numerical results obtained from measurements of fragment properties in fast neutron induced fission of 235 U and 237 Np are given in tabular form together with figures and a short description of the experiment. A detailed presentation of experiment and data analysis and the discussion of the results is in preparation.

Numerische Ergebnisse einer (2E,2v)-Messung für die Spaltung von 235 U und 237 Np mit schnellen Neutronen

ZUSAMMENFASSUNG

Die Ergebnisse einer Messung der Fragmenteigenschaften bei der Spaltung von ²³⁵U und ²³⁷Np mit schnellen Neutronen werden zusammen mit einer Kurzbeschreibung des Experiments in Tabellen und Abbildungen dargestellt. Eine ausführliche Darstellung des Experiments und der Datenanalyse sowie eine Diskussion der Ergebnisse ist in Vorbereitung. This report summarizes the results of measurements which were carried out in collaboration between KfK and the University of Tübingen with the aim to obtain information on the scission point configuration by investigating the characteristic properties of the fission fragments. To this end we have measured the kinetic energies and velocities of correlated fragments from fission induced by fast neutrons of well defined energy. Neutrons as projectiles have the advantage that not much angular momentum is transferred which keeps the situation simple and that a direct comparison can be made to existing measurements with thermal neutrons. The latter is important as it illustrates how the scission configuration is influenced by the excitation energy of the nucleus at the saddle point.

Our measurements were carried out on 235 U and 237 Np. The even-even fissioning system (235 U+n) is best investigated at thermal energies (1,2,3,4) and additional information at higher neutron energies, that means, at higher excitation energies were highly desirable. (237 Np+n) is of interest because it is the neighbouring odd-odd system. So, a comparative study may reveal the influence of pairing effects.

Neutron energies of 0.50 and 5.55 MeV where chosen for 235 U and for 237 Np we used 0.80 and 5.55 MeV. The higher energy was just below the threshold for second chance fission and represents the highest possible excitation for a well defined compound system. The lower energies were selected to differ sufficiently from thermal energies and also with respect to a maximum neutron yield. In case of 237 Np the lower energy was slightly higher than for 235 U because of the fission threshold at 0.7 MeV. If one considers the respective fission barrier, these neutron energies correspond to the following excitation energies at the saddle point: $E_{exc} = 1.3$ and 6.3 MeV for (235 U+n) and 0.1 and 4.8 MeV for (237 Np+n).

A schematic view of the experimental set-up is shown in Fig. 1. Neutrons are produced by the 7 Li(p,n) and the 2 H(d,n)reactions. The charged particle beam from the Karlsruhe 3 MV Van de Graaff accelerator was pulsed to about 500 ps and therefore the beam pick-up signals could be used directly for the velocity determination of the fragments instead of a time zero detector. The samples were 100 μ g/cm² thick layers of UO₂ and NpO₂ evaporated on 30 μ g/cm² thick carbon backings. Sample masses and isotopic compositions are given in Table I. Large area surface barrier detectors (which were calibrated by ²⁵²Cf sources once a day) were used for fragment detection. Various shutters in the flight tubes shielded the detectors from fragments scattered from the walls. Typical fission rates were about 100 s^{-1} . For investigation of systematic uncertainties and for the determination of the time zero point to in the time-of-flight spectra, measurements were performed at four different fragment flight paths. Fission events were recorded in list mode on magnetic tape and simultaneously control spectra were accumulated in an on-line computer.

The calibration scheme of Schmitt et al. (5) was used to convert the detector pulse height signals to kinetic energies. However, a correction to the calibration constants given in Ref. (5) was necessary because the original ones lead to severe discrepancies of 2 MeV compared to the corresponding energies determined from fragment velocities. In the analysis also corrections for neutron momentum, fragment energy losses in the sample, resolution effects, geometric effects and flight path dependent distortions were considered.

The mean values of fragment properties and the related variances are important parameters which allow for a systematic comparison between data taken at different excitation energies and with different techniques. The mean values derived for $(^{235}U+n)$ and $(^{237}Np+n)$ are given in Tables II and III, respectively.

The quoted uncertainties are only due to statistics. In addition, the following systematic uncertainties have to be included in the determination of the overall uncertainties. The primary fragment masses and the total kinetic energy are derived from the fragment velocities. In evaluating the fragment velocities a systematic uncertainty of ~20 ps in the time-of-flight is caused to about equal amounts by uncertainties in the calibration of the time scale and in the definition of t_o. Flight path uncertainties of 0.15 mm are negligible for the longer flight paths but contribute significantly to the velocity uncertainty at 70 mm. Hence, typical systematic uncertainties for the long flight path are 0.07 % and 0.05 % for the velocities of the light and heavy fragments. Propagation of these uncertainties leads to uncertainties of 0.09 % in TKE*, 0.06 % in A_{L}^{*} and 0.04 % in A_{H}^{*} . The uncertainties of the secondary kinetic energies $E_{1,2}$ can be estimated from the calibration scheme of Schmitt et al. (5), assuming a negligible effect of the corrections to the calibration procedure. This might be justified because of their normalization to experimental values of $\bar{\nu}$ and $d\nu/dA$. Then uncertainties of 0.25 and 0.35 channels in the peak positions P_1 and P_2 of the 252 Cf calibration spectrum lead to uncertainties of 0.2 MeV in E_1 and E_2 . As all these systematic uncertainties are identical for all measurements, they can be neglected if our results for different neutron energies or for ²³⁵U and ²³⁷Np are compared mutually.

The following tables IV to IX summarize the distributions of fragment mass $P(A^*)$, fragment total kinetic energy TKE(A^{*}) and the average number of fission neutrons emitted per fragment $v(A^*)$. All distributions are given with respect to primary fragment masses A^{*} before neutron evaporation. The mass intervals in all tables are 0.5 amu for which the analysis was carried out. One must be aware, however, that the mass resolution in the experiment was limited to 2.1 amu. Therefore, the figures show the distributions in mass intervals of 1 amu. The uncertainties quoted in tables IV to IX are statistical uncertainties only. For the total kinetic energy and for $v(A^*)$ also the variances are included. However, $\sigma_{v(A^*)}$ is dominated by the mass resolution and is therefore only of limited value.

ACKNOWLEDGEMENTS

We would like to thank Dr. H.J. Maier from the University of Munich for the excellent sample preparation and Dr. F. Dickmann for helpful and stimulating discussions. We are grateful to Prof. G. Schatz and to Prof. F. Gönnenwein for their interest and support.

REFERENCES

- (1) J.C.D. Milton and J.S. Fraser, Can. J. Phys. 40, 1626 (1962).
- (2) G. Andritsopoulos, Nucl. Phys. <u>A94</u>, 537 (1967).
- (3) M. Derengowski and E. Melkonian, Phys. Rev. C <u>2</u>, 1554 (1970)
- (4) B. Hering, Thesis, University of Tübingen (1979).
- H.W. Schmitt, W.M. Gibson, J.H. Neiler, F.J. Walter, and T.D. Thomas, Proc. Symp. on Physics and Chemistry of Fission, IAEA, Salzburg, 1965, Vol. I, p. 531.

Mass (µg)		Isotopic Co	ompositio	n (at.%)		
	234 _U	235 _U	236 _U	238 _U		
150	0.168	99.505	0.027	0.300		
 150	237 _{Np}	238 _{Pu}	239 _{Pu}	240 _{Pu}	U	 Th
	99.52	<0.081	<0.015	<0.002	<0.1	<0.02

-5-

Table I Sample masses and isotopic compositions

Table II Mean values of fragment properties for fission of ²³⁵U at 0.50 and 5.55 MeV neutron energy. The quoted uncertainties are of statistical nature, total uncertainties are included in brackets.

neutron energy (MeV)	0.50 + 0.08	5.55 + 0.25	
excitation energ the saddle point	y at (MeV)	1.3	6.3	
primary fragment mass (amu)	A*L	96.44 <u>+</u> 0.03 (<u>+</u> 0.07)	97.11 <u>+</u> 0.09	
variance (amu)	σ _A *	5.49 <u>+</u> 0.02 (<u>+</u> 0.05)	6.37 <u>+</u> 0.06	
secondary	 A _L	95.00 <u>+</u> 0.05 ^{a)}	95.63 <u>+</u> 0.10	
masses (amu)	σA _T	5.33 ± 0.025	6.14 <u>+</u> 0.07	
	А _н	138.54 ± 0.05 a) 137.18 <u>+</u> 0.11	
	σ _{A_H}	5.12 <u>+</u> 0.025	5.96 <u>+</u> 0.07	
fragment		1.4201 <u>+</u> 0.0007	1.4089 <u>+</u> 0.0011	
velocities	v _H	0.9813 + 0.0007	0.9856 <u>+</u> 0.0014	
	σv	0.0518 + 0.0004	0.0676 <u>+</u> 0.0009	
	L	(<u>+</u> 0.0005)	
variances	σv	0.0698 + 0.0003	0.0740 <u>+</u> 0.0006	
(cm/ns)	·H	(<u>+</u> 0.0005)	
	$r_{v_L v_H}$	-0.561 + 0.006	-0.622 + 0.009	
		(<u>+</u> 0.008)		
total kinetic	 TKE* (2E)	170.35 ± 0.05^{b}	169.42 ± 0.07^{b}	
energy (MeV)	TKE* (2v)	170.40 ± 0.15	169.55 <u>+</u> 0.22	
		(<u>+</u> 0.25)		
variance (MeV)	⁰ ण४२*	10.05 + 0.03	9.98 <u>+</u> 0.03	
	IKE	(<u>+</u> 0.05)		
	< 0, * * * * * * * * * * * * * * * * * *	7.60 <u>+</u> 0.03	8.57 <u>+</u> 0.04	
	IND	(<u>+</u> 0.06)		
	$<\frac{dTKE*}{dA*}>(\frac{MeV}{am})$	$\frac{V}{1}$) 1.20 + 0.01	0.80 <u>+</u> 0.02	
		(<u>+</u> 0.03)		

Table	II	(continued)
		(oonernaca)

number of neutrons emitted per fragment	ν L dv		1.44 <u>+</u> 0 1.02 <u>+</u> 0	.08 ^{a)} .08 ^{a)}			1.48 ± 0.05 1.71 ± 0.07
	$\frac{dA^{*}}{dA^{*}}$	amu^{-1})	0.039 <u>+</u> 0	.006 ^{a)}			0.046 <u>+</u> 0.006
	$\frac{dv_{H}}{dA*}$	(amu ⁻¹)	0.079 <u>+</u>	0.006 ^{a)}			0.074 <u>+</u> 0.006
	< dv _T < dv _T	>(A*) (MeV ⁻¹)	-0.131 <u>+</u>	0.01			- 0.135 <u>+</u> 0.010
peak-to- valley ratio in P(A*)	P/V		450 <u>+</u>	70			30 <u>+</u> 2
gradients with	∆TKE* ∆E _n	*			-0.180	<u>+</u> 0.006	
energy	$\frac{\Delta v_{L}}{\Delta E_{n}}$ ((MeV ⁻¹)			0.010	<u>+</u> 0.02	
	$\frac{\Delta v_{H}}{\Delta E_{n}}$ ((MeV ⁻¹)			0.14	<u>+</u> 0.02	

a) results of this work combined with radiochemical data. The respective uncertainties include the normalization

b) adjusted to TKE* (2v) via energy calibration scheme.

-7-

Table III M	²³⁷ Np at 0.8 and 5.55 MeV neutron energy. The quoted						
U	ncertaintie	s are of	statistical	nature.	۰۰۰۰ ۱۹۹۰ - ۱۹۹۰ ۱۹۹۰ - ۱۹۹۰ - ۱۹۹۰		
neutron ener	gy (MeV)	0.80	<u>+</u> 0.05	5.55 <u>+</u> 0.25			
excitation e the saddle p	energy at ooint (MeV)	0.1		4.8			
primary fragment mass (amu)	A* L	98.66	<u>+</u> 0.06	99.12 <u>+</u> 0.05			
variance (amu)	σ _A *	5.80	<u>+</u> 0.05	6.59 <u>+</u> 0.05			
secondary fragment	AL	97.07	$\pm 0.06^{a}$	97.53 <u>+</u> 0.06			
masses (amu)		138.21	$\frac{1}{2}$ 0.07 $\frac{1}{2}$ 0.06 ^a)	137.01 <u>+</u> 0.06	 		
	^о а _н	5.59	<u>+</u> 0.07	6.36 <u>+</u> 0.09			
fragment velocities (cm/ns) variances	v _L v _H ^σ v _L σv _H	1.3997 0.9874 0.0591 0.0742	$\begin{array}{r} + & 0.0013 \\ + & 0.0010 \\ + & 0.0009 \\ + & 0.0007 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$			
total kineti energy (MeV)	c TKE* (2E) TKE* (2v) ^σ TKE*	175.050 174.803 10.385	$(+ 0.12^{b})$ (+ 0.37) (+ 0.09)	172.422 ± 0.12^{b} 173.532 ± 0.35 10.432 ± 0.08			
number of neutrons emitted per fragment	$\frac{\nabla_{\rm H}}{\nabla_{\rm H}}$ $\frac{d \nabla_{\rm L}}{dA^{*}} (amu)$ $\frac{d \nabla_{\rm H}}{dA^{*}} (amu)$	1.59 ^a 1.14 ^a ^{.1})0.046 ^{.1})0.046	.) .) <u>+</u> 0.005 <u>+</u> 0.007	1.59 ± 0.08 1.87 ± 0.08 0.048 ± 0.005 0.043 ± 0.008			
peak-to- valley- ratio_in_P(A	 P/V *)	670	<u>+</u> 125	· 31 <u>+</u> 3			
gradients wi excitation	th $\frac{\Delta TKE^*}{\Delta E_n}$	-0.	559 <u>+</u> 0.				
energy	$\frac{\frac{\Delta v_{L}}{E}}{\sum_{n}}$ (Me	v ⁻¹)	0.0 <u>+</u> 0.08				
	$\frac{H}{\Delta E_n}$ (MeV	y ⁻ ') 0.	155 <u>+</u> 0.08				

a) results of this work combined with radiochemical data. The respective uncertainties include the normalization.

adjusted to TKE*(2v) via energy calibration scheme.

-8-

Table IV The primary fragment mass yield P(A*) in fast neutron induced fission of ²³⁵U

٠

	EN=0.5 MEV	EN=5.5 MEV
MASS	MASS VIELD(%)	MASS VIELD(%)
118.0	0.017	0.251
118.5	0.019	0.156
1 119.0	1 0.007	0.297
119.5	0.015	0.167
120.0	0.023	0.125
120.5	0.023	0.201
121.0	0.008	0.280
121.5	0.005	0.151
1.122.0		
122.5		
1 123.0		
1 123.5	0.03/	
1 124-0		
1 124.5		
1 125.0		
1 120.5		
1 120.0		0.473
		0.842
1 127.5		
		1.672
1 120.0		1, 382
1 120.0	1 1.251	2.092
1 129.5	1.673	1,958
1 130.0	2.083	2.952
1 120 5	2.603	2,976
1 131.0	2.896	3.223
1 131.5	3.368	3.898
1 132.0	4.107	4.290
132.5	4.721	5.480 1
1 133.0	5.881	5.189
133.5	5.741	5.668
1 134.0	6.119	4.898
1 134.5	6.177	5.631
1 135.0	5.773	5.786
135.5	5.793	6.064
136.0	5.912	5.835
136.5	5.694	6.239
137.0	5.984	5.860
137.5	6.232	5.041
1 138.0	6.469	6.205
138.5	6.579	5.612
139.0	6.327	5.950
1 139.5	6.720	6.177
140.0	6.431	5.763
140.5	5.882	6.306
141.0	5.596	5-498
141.5	5.482	5.261
142.0	5.687	4.429
142.5	5,344	1 2•1 40 1

States.

Table IV, continued

×

	TOTAL EVENTS	TCTAL EVENTS 12652.	
1 162.5	0.0	0.0	
162.0	1 0.0	1 0.0	I
161.5	1 0.0	0.0	ł
161.0	1 0.0	0.0	1
1 160.5	0.0	0.0	1
160.0	0.014	0.023	1
1 159.5	0.014	0.0	1
1 159.0	0.009	0.0	1
1 158.5	0.013	0.0	1
1 158-0	0.005	0.045	i
157.5	0.011	0.047	İ
157.0	0.023	0.064	i
1 156-5	1 0-043	0.162	i
156.0	C.088	0.329	i
1 155-5	0.109	0.255	i
	1 0,132	0.337	i
1 154-5	0,153	1 0.276	i
1 154-0	1 0.200	0.269	i
1 152 5	1 V•217 1 Λ_246	i 0_401	i
1 152 0		1 0.798	i
1 152.5		1 0.593	
1 152 0			1
+ 171+U			
1 150.5			
1 150+0			1
1 150 0		1 1.380	5
1 149.5		1 1, 276	1
140+7 140 A	1 1 469		
1 140.U			i
1 14/00			1
1 14/00			1
1 140+7			1
1 145.0		! 4•110 ! 2 011	
1 142.2			
			1
1 144.5	5.137		}
1 144.0	2.620		· 1
143.2		4.074	
1 143.0	5.590	4.830	
		1 4 830	1

	EN=0.8 MEV	EN=5.5 MEV
MASS	MASS YIELD(%)	MASS YIELD(%)
119.0	0.0	0.293
119.5	0.015	0.220
120.0	0.015	0.168
1 120.5	0.0	0.199
121.0	0.015	0.188
121.5	0.0	0.157
122.0	0.015	0.241
122.5	0.030	0.262
123.0	0.045	0.220
123.5	0.030	
1 124.0	0.061	
1 124.5	0.076	
1 125.0	0.076	
122.0	0.107	
1 120.0	0.455	
		1 193
1 127 5		
1 128-0		1,581
1 128.5	1.379	1,916
120.0	1.652	2.481
1 129.5	2.182	2,921
1 130.0	2.561	3,109
1 130.5	3.167	3.319
1 131.0	3,788	4.094
1 131.5	4,470	4.491
1 132.0	4.712	4.439
1 132.5	5,500	4.889
133.0	5.682	5.350
133.5	6.273	5.245
134.0	6.136	5.737
134.5	6.652	6.188
135.0	6.394	5.968
135.5	5.955	5.873
136.0	6.364	5.832
136.5	6.485	5.748
137.0	6.348	6.051
137.5	5.818	6.428
138.0	6.182	5.978
138.5	6.121	5.800
139.0	5.318	5.434
1 139.5	5.530	
	6.197	
1 140.5	5.682	
141.0U 141 E		Ι 4.172 Ι Γ Γ.ΛΩΩ Ι
141+7 142 A		
+ 172+V 147 F	1 7•340 5 A01	
1 1/2 0	1 9+071 1 5_121	3,884
143.5	4.197	3.947

Table V Primary fragment mass yield P(A*) in fast neutron induced fission of ²³⁷Np

• •			
144.0	3.742	1 3.727	
144.5	4.197	3.424	
145.0	3.439	3.267	
145.5	3.182	3.172	1
146.0	3.470	2.670	
146.5	2.894	2.523	Į.
147.0	2.621	2.429	ļ
147.5	2.197	2.471	ļ
148.0	1.894	1.989	
148.5	1.576	1.591	1
149.0	1.227	1 1.707	ļ
149.5	1.121	1.298	1
150.0	1.121	1.026	
150.5	0.848	1.194	ļ
151.0	0.909	1.036	
151.5	0.939	0.995	
152.0	0.606	0.701	1
152.5	0.652	0.743	ļ
153.0	0.439	0.607	ļ
153.5	0.409	0.544	I
154.0	0.273	0.387	
154.5	0.182	0.377	
155.0	0.152	0.272	
155.5	0.242	0.220	- I
1 156.0	0.121	0.241	
156.5	0.076	0.251	ļ
157.0	0.136	0.178	
157.5	0.106	0.063	- I
158.0	0.045	0.115	ł
158.5	0.0	0.126	1
1 159.0	0.015	0.063	
159.5	0.0	0.063	I
160.0	0.0	0.042	ļ
160.5	0.0	0.021	
161.0	0.0	0.052	ļ
161.5	0.015	0.0	I
162.0	0.0	0.0	ļ
162.5	0.0	1 0.0	
1	TOTAL EVENTS	I TOTAL EVENTS	I
1	13200.	19103,	

Table V, continued

Table VI The total kinetic energy TKE(A*) in fast neutron induced fission of 235 U. The statistical uncertainty and the variance $\sigma_{\rm TKE}$ are also included(all values in MeV).

	EN=0.5 MEV			EN=5.5 MEV		
MASS	TKE(A)	ERROR	SIG.TKE	TKE(A)	ERROR	SIG.TKE
118.0	146.30	2.62	8.10	160.30	1.66	9.46
1118.5	156.20	3.19	11.29	159.80	1.96	8.41
119.0	174.60	4.76	10.41	156.70	1.45	8.71
1 119.5	171.20	3.11	8.66	160.80	1.75	8.48
120.0	161.80	2.15	7.98	158.00	2.49	9.82
120.5	168.80	1.95	7.84	159.80	1.99	10.25
121.0	167.30	3.48	7.12	161.80	1.67	10.11
121.5	158.20	5.37	9.28	162.90	1.32	8.04
122.0	169.50	3.16	12.22	156.50	1.51	6.59
122.5	166.70	2.17	12.12	161.20	1.35	8.39
123.0	171.50	6.09	10.53	171.00	2.18	11.23
123.5	169.40	1.99	9.21	160.40	1.96	12.60
124.0	176.30	1.84	8.90	165.90	1.55	11.99
124.5	169.90	2.34	10.72	163.20	1.99	11.72
125.0	168.30	0.19	8.80	169.60	2.21	
125.5	172.70	1.83	10.13	167.70	1.87	11.49
126.0	1 173.00 1	1.80	9.94	1 170.30	1.56	
126.5	171.40	0.11	10.81	173.10	1.40	
127.0	176.00	1.03	11.23		1.09	
127.5	178.10	0.76	9.89	1 175.60	0.88	
1 128.0		0.60	10-78			
128.5		0.42	9.10	174+90 177 50		
129.0	182.50	0.32	8.69		0.03	
129.5		0.30	9.0L	1 178.30		
1 130.0		0.20		1 190 40		
1 130.5	181.70			100.40 170.70	0.55	
1 121.0				1 177 40	0.44	9.94
	1 100.50			1 178 30	0.35	8.16
1 122.0	179.60	0.17	9.00		0.34	8.91
1 132.0	179.20	0.16	9.33		0.34	8.86
1 133.5	1 178-60	0.14	8.43	176.60	0.33	8.74
1 134.0	1 178.30	0.14	8.51	1 176.80	0.36	8.88
1 134-5	177.60	0.13	7.92	177.00	0.29	7.81
1 135.0	1 176.90	0.14	8.15	175.60	0.29	7.84
135.5	175.40	0.14	8.04	173.70	0.27	7. 33
136.0	174.10	0.13	7.98	172.10	0.34	9.00
136.5	173.80	0.13	7.37	1 173.70	0.29	7.96
1 137.0	172.70	0.13	7.52	172.60	0.32	8.50
137.5	172.50	0.12	7.39	171.30	0.33	8.08
138.0	171.70	0.12	7.28	170.30	0.27	7.65
138.5	171.20	0.11	7.19	170-20	0.28	7.70
139.0	170.90	0.12	7.32	170.80	0.23	6.51
139.5	169.90	0.12	7.40	169.80	0.24	6.98
140.0	169.20	0.12	7.23	169.50	0.26	7.01
140.5	168.70	0.12	6.88	169.30	0.26	
141.0	168.20	0.11	6.32	167.60	0.28	1.48
1 141.5	167.50	0.11	6.45		0.29	
142.0	1 166.70	0.11	6.43		0.30	
142.5	165.70	0.12	6.82	1 102.30	0.25	0.05

143.0	165.80	0.11	6.41	1 164.70	0.28	6.79	!
143.5	165.00	0.12	6.58	164.40	0.30	6.48	ļ
144.0	164.90	0.11	6.44	164.70	0.30	6.90	ļ.
144.5	164.70	0.12	6.68	1 165.20	0.32	6.35	ļ
145.0	164.40	0.11	6.29	164.80	9.28	5.59	Ļ
145.5	164.30	0.13	6.78	162.20	0.22	5.39	ļ
146.0	162.80	0.14	6.64	162.20	0.29	6.85	
1 146.5	161.50	0.16	6.49	1 161.40	0.43	7.74	I.
147.0	160.90	0.18	6.54	162.10	0.46	7.84	1
1 147.5	160.70	0.15	5.74	161.40	0.50	8.23	Ł
1 148.0	160.30	0.16	5.87	161.00	0.37	5.45	1
148.5	159.10	0.22	6.59	160.90	0.44	7.28	1
149.0	158.80	0.24	6.83	160.40	0.39	6.32	1
149.5	158.80	0.23	6.80	158.90	0.61	7.20	1
150.0	159.00	0.22	6.10	159.20	0.53	6.86	1
150.5	158.60	0.24	6.03	1 156.80	0.65	7.43	1
151.0	157.60	0.25	5.74	1 156.20	0.60	7.08	1
151.5	156.60	0.31	6.03	155.70	0.76	7.02	
1 152.0	155.50	0.33	5.23	158.00	9.70	6.90	1
152.5	155.80	0.47	6.50	158.90	0.71	6.62	I
1 153.0	156.40	0.69	7.39	157.10	0.73	7.56	1
1 153.5	154.60	0.56	7.04	155.60	0.82	5.48	
1 154.0	155.10	0.57	6.16	1 156.00	1.20	6.90	Ł
154.5	155.20	0.51	4.57	156.70	1.21	7.06	1
1 155.0	155.80	0.75	6.39	1 154.20	1.43	9.28	1
1 155.5	152.40	0.92	7.69	155.10	1.04	6.40	1
156.0	151.40	1.10	8.27	153.20	1.16	8.00	
156.5	151.80	0.98	4.91	165.10	0.0	0.0	
1 157.0	152.90	1.25	4.82	1 154.40	2.48	6.89	
157.5	147.80	0.82	2.45	1 151.70	2.13	4.96	ł.
1 158.0	143.70	4.33	7.48	153.10	4.73	12.93	1
158.5	148.00	1.90	5.30	1 0.0	0.33	0.0	L
1 159.0	146.30	1.64	3.11	0.0	0.32	0.0	1
1 159.5	146.80	0.0	0.0	1 0.0 1	0.33	0.0	L
1 160.0	140.40	0.67	1.87	1 167.50	0.0	0.0	L
160.5	0.01	0.41	0.0	1 0.0 1	0.53	0.3	I.
161.0	1 0.0 I	0.50	0.0	1 0.0 1	0.52	0.0	1
161.5	1 0.0 Í	0.58	0.0	149.50	0.64	0.0	L
1 162.0	0.0 1	0.63	0.0	1 0.0 1	0.46	0.0	Ł
162.5	142.50	1.16	0.0	1 0.0	1.39	0.0	1

Table VII The total kinetic energy TKE(A*) in fast neutron induced fission of 237 Np as a function of primary fragment mass A*

• •	EN=0.8 MEV			EN=5.5 MEV		
MASS	TKE(A)	ERROR	ISIG.TKE	TKE(A)	ERROR	ISIG.TKE
119-0	 0_0	0.0	1 0.0		1.34	10.05
119.5	1 163.16	0.0	1 0.0	1 162.80	1.36	8.78
120 0	1 146-53	0.0	0.0	165.76	1.40	7.93
120.0		0.0	0.0	168.16	1.49	9.18
121.0	165.53	0.0	1 0.0	1 169.65	1.47	8.81
121 5		0.0	1 0.0	1 164.55	2.37	12.97
122-0	1 177.35	0.0	0.0	1 167.08	1.85	12.55
122.5		3,30	6.61	174.33	1.45	10.25
123.0	172.48	3.96	9.69	1 165.89	1.32	8.54
123.5	187.31	3.19	6.38	167.47	1.25	9.98
124.0	171.42	5.21	1 14.73	171.09	1.56	12.65
124.5	177.55	3.87	1 12.23	175.24	0.87	7.86
125.0	180.13	2.52	7.96	173.49	0.94	9.63
125-5	177.59	1.95	9.15	174.65	0.97	10.49
126.0	183.39	1.32	6.74	174.70	0.98	11.89
126.5	179-86	1.18	9.17	176.15	0.73	10.15
127.0	1 180.57	1.31	9.61	176.81	0.69	10.45
127.5	183.97	0.98	9.74	177.30	0.61	10.63
128.0	184-37	0.65	8.17	179.20	0.56	9.81
128.5		0.67	8.97	1 178.40	0.56	10.68
129.0	182.42	0.58	8.51	179.75	0.48	10.48
129.5	184.02	0.56	9.48	179.31	0.44	10.50
130.0	184.46	0.46	8.54	1 180.09	0.41	10.01
130-5	183.74	0.41	8.39	179.70	0.38	9.69
131.0	184.01	0.41	9.12	179.41	0.40	11.22
131.5	182.96	0.39	9.42	179.43	0.33	9.66
132.0	183.15	0.36	9.04	178.51	0.32	9.21
132.5	182.84	0.32	8.57	178.73	0.31	9.46
133.0	182.71	0.33	9.11	177.75	0.30	9.55
133.5	181.75	0.29	8.41	177.66	0.30	9.52
134.0	181.28	0.31	8.88	178.24	0.27	8.95
134.5	180.91	0.28	8.42	177.33	0.26	8.99
135.0	179.47	0.30	8.63	176.44	0.28	9.51
135.5	179.41	0.30	8.38	176.07	0.27	9.09
136.0	178.76	0.29	8.33	176.17	0.28	9.27
136.5	177.92	0.30	8.82	175.69	0.26	8.64
137.0	177.91	0.29	8.42	174.99	0.24	8.32
137.5	176.76	0.29	8.05	173.67	0.25	8.90
138.0	175.40	0.29	8.25	173.36	0.24	8.27
138.5	174.75	0.28	8.03	172.17	0.24	8.15
139.0	174.74	0.30	7.94	171.75	J.26	8.45
139.5	173.26	0.30	8.12	1 171.08	0.25	8.13
140.0	172.74	0.26	1 7.37	170.94	0.26	8.17
140.5	172.89	0.27	7.37	170.23	0.25	1 7.74
141.0	172.28	0.27	7.43	170.46	0.27	
141.5	170.97	0.28	1 7.73	1 169-32	0.24	
142.0	170.68	0.27	1 7.13	1 168.95	0.25	
142.5	170.37	0.29	1 7.62	1 108.08	U •28	
143.0	169.49	0.29	1 /.51	1 168.02	0.29	1 1.0 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
142 5		0.20	I 6.44	1 100.1/ 1	0 . 10	1 0.3/

144.0	168.46	0.32	7.08	166.79	0.28	7.42	ļ
1 144.5	167.34	0.33	7.68	166.67	0.30	7.72	1
1 145.0	167.72	0.34	7.22	166.55	0.31	7.87	1
1 145.5	166.65	0.36	7.29	166.21	0.32	7.78	1
1 146.0	166.37	0.34	7.30	164.91	0.32	7.33	1
1 146.5	166.05	0.39	7.67	164.58	0.36	7.89	1
1 147.0	166.04	0.42	7.82	164.16	0.36	7.79	1
1 147.5	164.93	0.45	7.64	164.23	0.38	8.21	1
148.0	165.11	0.47	7.42	162.68	0.37	7.23	1
148.5	164.31	0.50	7.16	163.05	0.44	7.70	1
149.0	162.82	0.56	7.07	163.51	0.43	7.71	Į.
1 149.5	162.68	0.62	7.55	162.71	0.51	8.09	1
1 150.0	161.91	0.52	6.27	161.99	0.57	7.91	1
1 150.5	161.33	0.67	7.09	162.28	0.56	8.46	1
1 151.0	162.93	0.78	8.51	160.73	0.54	7.66	
1 151.5	161.82	0.61	6.78	161.57	0.56	7.70	1
1 152.0	161.45	0.78	7.01	163.23	0.66	7.67	1
1 152.5	160.04 1	0.79	7.36	158.51	0.62	7.43	1
1 153.0	160.31	0-82	6.21	160.45	0.82	8.80	1
1 153.5	160.92	0.72	5.30	1 158.60	0.92	9.37	1
1 154.0	158.79	1.29	7.75	154.75	0.92	7.93	
154.5	158.37	1.19	5.85	156.29	0.92	7.83	1
1 155.0	160.51	0.96	4.31	158.42	0.89	6.44	1
155.5	157.38	0.81	4.55	156.12	1.18	7.63	1
1 156.0	155.42	2.29	9.15	1 155.02	1.13	7.67	1
156.5	159.87	2.19	6.92	156.95	1.14	7.92	1
1 157.0	157.20	1.72	7.31	158.45	1.09	6.36	1
157.5	154.59	0.90	3.36	156.15	1.81	6.26	
158.0	156.92	1.46	3.58	163.74	1.55	7.25	1
1 158.5	1 0.0 1	0.0	0.0	155.51	1.25	6.10	I.
159.0	139.23	0.0	0.0	157.88	1.38	4.78	1
159.5	0.0	0.0	0.0	148.97	1.54	5.32	ł
1 160.0	1 0.0 1	0.0	0.0	152.83	3.12	8.84	1
160.5	0.0	0.0	0.0	1 155.80	2.98	5.96	!
161.0	0.0	0.0	0.0	143.76	3.73	11.80	1
161.5	1 0.0 1	0.0	0.0	1 0.0 1	0.0	0.0	İ.
162.0	0.0	0.0	0.0	0.0	0.0	0.0	I.
162.5	I 0.0 I	0.0	0.0	0.0	0.0	0.0	1

Table VIII The average number of neutrons emitted per fragment $v(A^*)$ in fast neutron induced fission of 235 U. The statistical uncertainty Δv and the variance σ_v are also included.

1	EN=0.5 MEV			EN=5.5 MEV		
MASS	NU(A)	ERROR	SIG.NU	1 NU(A)	ERROR	SIG.NU
1 73		0.0	0.0	2.38	0.0	0.0 1
1 74	-0.99	0.0	0.0	0.0 1	0.0	0.0 1
75	0.08	0.79	2.23	-6.59	0.0	0.0
1 76	-1.19	0.89	2.52	0.0	0.0	0.0 1
77	-0.32	0.91	3.03	-0.17	0.83	2.50
1 78	0.92	0.41	2.13	0.95	0.81	3.13
79	-0.94	0.38	2.97	-0.70	0.39	2.29
80	0.02	0.28	2.69	0.99	0.41	2.65
1 81	0.33	0.26	3.17	0.95	0.33	2.27
82	0.58	0.19	2.70	0.42	0.25	2.34
83	0.56	0.14	2.57	1.09	0.24	2.42
84	0.72	0.12	2.95	1.21	0.23	2.67
85	0.73	0.11	3.03	0.46	0.22	2.84
86	0.91	0.09	2.94	0.77	0.16	2.61
87	0.93	0.08	2.90	1.69	0.19	3.06
88	1.08	0.07	3.07	0.83	0.18	3.22 1
89	1.23	0.06	2.93	1.52	0.12	2.66
90	1.24	0.06	2.99	1.40	0.14	2.82
91	1.26	0.06	3.20	0.96	0.13	3.02 1
92	1.40	0.06	3.17	1.23	0.13	
93	1.30	0.06	3.28	1.68	0.11	
94	1.43	0.06	3.24			
1 95	1.42	0.05			0.11	
96	1.54	0.05	3.33		0.12	
97		0.06	1 3.42	1 1 4 7 1	0.12	3.29
1 98				<u>1</u> +42 1 27	0.12	3.14
1 99					0.12	
			1 2 35		0.12	
1 101			1 2 5 2 .	1 1 66 1	0 13	
1 102				1.75	0.15	3.45
1 105	1.89		1 3,53	1.52	0.17	3.39
1 105	1.93	0.11	3.65	1.72	0.18	3.21
1 106	2.01	0.16	1 3.96	2.56	0.21	3.14
1 107	1 1.80	0.24	4.17	2.49	0.25	3.23
1 108	2.39	0.36	3.66	1.99	0.32	3.08 1
1 109	3.12	0.60	4.62	1.78	0.47	3.47
1 110	3.20	0.70	3.07	2.22 1	0.47	2.79
1 111	2.07	0.61	3.07	2.20	0.47	3.13
1 112	1.32	1.24	4.96	2.34	0.49	2.76
1 113	1.07	1.16	3.67	2.97	0.47	2.51
1 114	-1.03	0.72	2.29	3.62	0.33	1.82
1 115	1.76	0.69	2.30	1.85	0.74	3.30
1116	0.96	1.05	1 2.98	3.11	0.68	3.65
1 117	1.97	0.78	2.48	2.48	0.70	3.86

1 118	2.25	1.04	2.93	1.78	0.72	3.90
1 119	0.23	0.87	2.89	0.77	0.87	3.91
1 120	-2.52	1.46	4.63	3.08	0.60	3.35
1 121	2.66	0.98	3.11	3.61	0.47	2.55
1 122	1.16	0.92	3.70	1.97	0.62	3.49
1 123	1.27	0.65	3.25	0.95	0.51	3.39
1 124	-0-05	1.16	5-05	1.12	0.65	3.82
1 125		0.47	3.66	1.25	0.52	3.80
1 126	-0.03	0.32	3.25	1.18	0.36	3.45
1 127	-0.27	0.24	4.10	1.33	0.27	3.56
1 128	-0.18	0.16	3.99	1.77	0.23	3.42
1 129	0.16	0.11	3.74	1.00	0.22	3.92
1 130	0.12	0.09	3.83	0.26	0.19	1 3.90 1
1 131	0.0	0.09	4.07	0.91	0.18	4.02
132	0.31	0.07	3.95	0.82	0.15	3.77
133	0.67	0.07	3.82	1.08	0.15	3.80
1 134	0.78	0.07	3.90	1.07	0.14	3.75
1 135	0.73	0.07	3.96	1.91	0.13	3.50
136	0.84	0.07	3.92	1.53	0.14	3.81
1 137	0.81	0.06	3.95	1.53	0.15	4.02
138	1.15	0.07	4.02	1.75	0.15	4.15
1 139	1.13	0.07	4.14	1.81	0.14	3.84
1 140	1.23	0.07	4.07	2.04	0.15	3.95
1 141	1.06	0.07	4.15	2.28	0.15	3.73
142	1.37	0.07	4.02	1.54	0.16	3.99
143	1.30	0.07	4.09	1.70	0.17	3.98
1 144	1.27	0.08	4.07	1.98	0.19	3.93
1 145	1.48	0.08	4.03	2.44	0.17	3.73
146	1.54	0.10	4.15	1.85	0.25	4.47
147	1.26	0.11	4.09	3.39	0.24	3.90
148	1.73	0.13	4.17	2.23	0.22	3.56
149	1.78	0.15	4.27	1.45	0.33	4.31
1 150	1.62	0.18	4.42	3.44	0.32	3.69
151	2.10	0.20	3.16		0.33	
1 152	2.32	0.28	3.93	2.90	0.47	1 4.29 1
1 153	1.76	0.41	5.04	3.07	0.53	3,00 7,00
1 154		0.50	4.13			3.40 I 3.70 I
1 155	1.48	0.58			0.04	2+17 1 70
1 156		0.63	3.21	3.20	V •40	L+10 / 17
1 157		1.10			1.39	
1 150	3.07 4.70	2.01	J → 80			
1 127 1	$ 0 \cdot 19 $	1.40	1 7 • 1 4 1			
1 160 - 1				U.U 4 07	0.0	
1 161	1 U+U 7.25	0.0				
1 162				7.74		
	, VAV I					

Table IX The average number of neutrons emitted per fragment ν (A*) in fast neutron induced fission of ²³⁷Np. The statistical uncertainty $\Delta \nu$ and the variance σ_{ν} are also included.

	EN=0.8 MEV			EN=5.5 MEV		
MASS	NU(A)	ERROR	ISIG.NU	1 NU(A)	ERROR	SIG.NU
1 73	0.0	0.0	1 0.0	0.0 1	0.0	I U∎O İ
1 74	1 0.0	0.0	0.0	1 0.0 1	0.0	0.0 1
75	0.0	0.0	1 0.0	1 0.0 1	0.0	0.0 1
1 76	0.0	0.0	0.0	0.01	0.0	0.0 1
77	-0.82	0.0	1 0.0	i -0.06 i	1.49	3.34
78	1.21	1.36	1.36	-0.16	1.13	2.77
79	-0.94	1.02	1 1.78	I -0.56 I	1.13	3.73
1 80	-1.86	1.03	4.10	0.06	1.08	2.41
81	-0.25	1.02	2.68	1 0.08 1	0,50	3.55
82	1.12	0.74	2.11	0.24 1	0.74	3.84
83	0.44	0.41	1 2.55	1 0 . 40 I	0.56	3.22
84	0.97	0.46	3.15	1 0.39 i	0.47	3.41
85	0.99	0.42	1 2.44	I 1.13 H	0.40	3.27 1
86	1.31	0.27	2.87	1.43	0.31	3.04
1 87	1.28	0.26	1 2.73	1.37	0.26	2.92
88	1.25	0.24	1 2.62	1.20	0.21	3.02
89	1.17	0.21	1 2.70	1.35	0.21	3.47
1 90	1.36	0.18	2.67	1.46	0.20	3.21
91	1.37	0.15	2.77	1.58	0.17	2.94
92	1.51	0.14	1 2.77	1.62	0.14	3.29
93	l 1.58	0.13	2.81	l 1.35	0.15	3.38
94	1 1.46	0.13	2.88	1.36	0.14	3.39
95	1.46	0.12	2.69	1.33	0.13	3.37
95	1.45	0.10	1 2.87	1.48	0.12	3.45
97	1.55	0.11	1 2.95	1.74	0.12	3.45
98	1.74	0.11	2.97	1 1.56	0.11	3.59
99	1.70	0.11	1 2.89	1.69	0.11	
1 100	1.66	0.10	1 3.03	1.55	0.11	
101	1.75	0.11	1 3.01	1.73	0.11	3.67
1)2	1.65	0.10	1 2.96		0.11	3.09
1 1 3 1	1.95	0.10	3.03		0.11	
1 1 2 4	1.92	0.10	3.26	1 2.01	0.10	
105	1 1.94	0.12	1 3.10	1 2.07 1		3+/4 3-03
136	2.36	0.12	1 2.88		0.12	3.03 1
1)7	2.31	0.14	2.93	2.35	0.12	1 3•09 I
108		0.15	1 3.24		0.13	1 3+14 1 1 3 44 1
139	1 1.85	0.20	1 2.96	2.34 1		3.00
		0.23	1 3.09	I I.90 1	0 20	1 3 0 4 1 1 1 2 1 1
		0.42	I J+44			J+24 2 14
112	I I.86		1 2.90		0.20	2 72
	I 4.02 I 4.52	U•/4	1 2 04		0.26	
	I 4-55 I -0.02			1 2.50 1	0 4 4 0	ו ברבים
				, 3.eri	0.46	3.64
1 1 1 7				i 3.00 i	0.53	
1 11 1	I U.U.I	V • U	I V. V	I J.UV I	0.00	1 00 eC

1 110		0.01			1 1 1 9	0.54	2.91
1 118	1				1 2 37	0.49	3.49 1
119	1				1 2 28		3.57
1 120							3.37
1 121	1	0.10			1 Z+30		4 26 1
1 122	ļ	-1.33					4 00 1
1 123	1	1.95	1 3.69	2.09	1 1.03		
1 124	1	0.95		3.04			3.01
1 125	1	0.48	0.91		1 2.25		3.00 I
126	1	0.72	0.61	3.39	1 1.90	0.34	3.00 5
127	ł	-0.25	0.39	2.75	1 1.51		4+11 +
128	ł.	0.81	0.21	3.58	1 1.15		4.29
129	1	0.60	0.23	3.56	1 1.22	0.231	4.10 (
130	ł	0.46	0.18	3.38	1 1.11	0.18	4.39 .
131	1	0.67	1 0.15	1 3.54	1 1.34	0.18	4.24 1
132	4	0.52	1 0.14	3.49	1.46	0.15	4.26
133	ł	0.66	0.12	3.41	1 1.50	0.14	4.34
134	I.	0.88	0.12	3.51	1.19	0.14	4.42
135	1	1.01	0.12	3.67	1.68	0.13	4.37
136	1	1.11	1 0.13	1 3.66	1.84	0.13	4.42
137	1	1.50	1 0.13	3.62	1 2.18	0.13	4.39
138	1 I	1.18	0.13	3.77	1 1.90	0.13	4.37 1
139	1	1.30	0.14	3.79	2.22	0.13	4.41
1 140	1	1.15	0.14	1 3.74	1.88	0.14	4.49
141	i i	1.11	0.14	3.63	1.83	0.14	4.34
1 1 + 2	1 I	1.15	0.14	4.04	1.81	0.14	4.50
143	ł.	1.41	0.16	3.89	1 2.32	0.15	4.53
1 144	1	1.13	0.17	3.59	1 2.29	0.17	4.60 I
145	Î.	1.58	0.17	3.82	2.27	0.18	4.12
1 146	Ì	1.30	0.19	1 3.77	1 2.20	0.17	4.43 1
1 147	Ì	1.17	0.21	3.88	2.00	0.20 1	4.43 1
148	Î.	0.63	0.26	4.05	1 1.89	1 0.20 1	4.19
1 149	i.	1.81	0.33	3.89	1 1.78	0.23 1	4.61 1
150	İ	1.66	0.34	4.80	2.43	1 0.27 1	4.60 1
1 151	i	1.96	0.43	3.99	1 2.83	0.32 1	4.64
1 152		1.84	1 0.44	3.93	1 1.98	0.33	4.21
1 153	i	1.92	0.48	3.73	1 1.98	0.36 1	5.16
1 154	i	2.29	0.68	1 3.53	1 3.59	0.49	4.07 1
1 155	i	1.54	0.69	3.88	1 2.46	0.48	4.44
1 156	i	1.88	1 1.08	3.51	0.0	0.0	0.0 1
1 157	i	3.92	0.88	4.88	1 0.0	0.0	0.0 1
1 158	i	8.30	1 2.82	5.95	0.0	0.0	0.0
1 159	i	0.0	0.0	0.0	0.0	0.0	0.0
1 160	1	0.0		0.0	0.0	0.0	0.0
1 161	i	0.0				0.0	0.0
1 162	i	0.0		0.0	0.0	0.0	0.0
1 153	Ì	5.0		1 0 0	1 5.0	i 0.0 i	2.3
		, , , ,	• • • • • • • • • • • • • • • • • • •				

FIGURE CAPTIONS

- Fig. 1 Schematic view of the experimental set-up.
- Fig. 2 Primary fragment mass yields P(A*) in fast neutron induced fission of ²³⁵U.
- Fig. 3 Primary fragment mass yields P(A*) in fast neutron induced fission of ²³⁷Np.
- Fig. 4 Distributions of the total kinetic energy TKE(A*) in fast neutron induced fission of ²³⁵U.
- Fig. 5 Distributions of the total kinetic energy TKE(A*) in fast neutron induced fission of ²³⁷Np.
- Fig. 6 The variance of the total kinetic energies in fast neutron induced fission of ²³⁵U.
- Fig. 7 The variance of the total kinetic energies in fast neutron induced fission of ²³⁷Np.
- Fig. 8 The average number of neutrons emitted per fragment $v(A^*)$ in fast neutron induced fission of ^{235}U .
- Fig. 9 The average number of neutrons emitted per fragment $v(A^*)$ in fast neutron induced fission of ${}^{237}Np$.

Fig.,1

-22-

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

, ,

