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ABSTRACT

Differential cross sections have been measured for the elastic
and inelastic scattering of 104 MeV alpha-particles from 90,92Zr•
The experimental da ta are analyzed in terms of coupled channels on
the basis of a flexible anharmonic vibrator model and using different
parametrizations of the radial shape of the extended optical potential.
The results favour the squared Saxon-Woods type for the real part.
Additionally to a radial momentum analysis of the real potentials a
semimicroscopic folding model has been applied for extracting isoscalar
quadrupole and hexadecapole transition rates.

ZUSAMMENFASSUNG

Streuung von 104 MeV Alphateilchen an 90,92Zr

Die differentiellen Wirkungsquerschnitte für die elastische und
unelastische Streuung von 104 MeV Alphateilchen an 90,92Zr wurden gemessen.
Die experimentellen Daten wurden mit der Methode der gekoppelten
Kanäle auf der Basis eines flexiblen anharmonischen Vibrationsmodells
und mit verschiedenen Parametrisierungen der radialen Form des
deformierten optischen Potentials analysiert. Die Resultate favorisieren
die quadratische Saxon-Woods-Form für den Realteil. Neben der
Analyse der radialen Momente der Potentiale wurde ein halbmikroskopisches
Faltungsmodell benutzt, um isoskalare Quadrupol- und Hexadekapol
Obergangsraten zu gewinnen.
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1. INTRODUCTION

For a 10ng time a1pha-partic1e scattering is known to be important
and we11-estab1ished too1 for studies of the general mechanism of
reactions between comp1ex nuc1ear partic1es and for exp10ring interesting
nuc1ear structure properties. In recent years, there has been a
considerab1e progress (see ref. 1) which is due to (i) an increased
precis10n of the measurements, in particu1ar at higher a1pha-partic1e
energies, (ii) an improved understand1ng of the reaction mechanism2,3
(also in terms of a microscopic descr1ption), and due to (iii) more
refined methods4,5,6 for the theoretica1 analysis of the experimental
cross sections. The recent methods do not on1y overcome some restric
tions and constraints of ear1ier procedures, they are also ab1e to
revea1 sma11 isotopic variations of the radial shapes of the optica1
potentials (ref1ecting those of the under1ying matter distributions).

One of the more general resu1ts of recent e1astic a1pha-partic1e
scattering investigations shows that the overall radial shape of the
real part of the a1pha-partic1e scattering optica1 potential is signifi
cant1y better represented by a squared Saxon-Woods-form (SW2) rather
than by the standard Saxon-Woods (SW) parametrization7,8. These pheno
meno10gica1 findings can be justified by the fo1ding model approach9

generating the real part of the optica1 potential by a convo1ution of
the nuc1ear matter distribution and an effective a1pha-partic1e-bound
nuc1eon interaction. The question, however, whether the phenomeno10gica1
squared Saxon-Woods form has to be extended also to the shape of (per
manent1y or dynamica11y) deformed optica1 potentials is not sufficient1y
investigated (see e.g. in ref. 16). The co11ective model provides the
radial form factors for the nuc1ear excitation induced by scattering as
derivatives of the radial shape of the diagonal optica1 potential
(main1y determined by the e1astic scattering a10ne). All procedures9

for extracting isosca1ar transition rates from ine1astic a1pha-partic1e
scattering basica11y re1y on the particu1ar parametrization of the tran
sition potentials. In view of the interest in comparing consistent1y
the strengths of e1ectromagnetic, (p,p') (n,n') and (a,a') excitations
which invo1ve proton and neutron transition matrix elements in a
different way, it seems worthwhi1e to study to which extent different
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alternative models influence the theoretical descriptions of the
experimental results and how they affect the extracted values
of the transition rates.

In this paper we report on experimental studies of 104 MeV
alpha-particle scattering from low-lying levels of 90,92Zr• The elastic
alpha-particle scattering from the Zr isotopes has been already exten
sively studied by several authors6,8,10,14 using different improved
parametrizations of the optical potential. Therefore, this particular
case appears quite adequate to proceed to more detailed studies of
the deformed optical potential by inelastic scattering. The measured
elastic and inelastic differential cross sections are the basis of
extensive coupled channel calculations specifying the transition potentials
in terms of a somewhat generalized (rather flexible anharmonic) vibrator
mode1 11 . Such a description includes also the possibility of direct
hexadecapole transitions to the 4~ states. In addition to studies
of the shape of the transition potentials the determination of B(I4)
values presents a further motivation and is of particular interest for
the discussion of a possible hexadecapole motion in spherical nuclei 12 ,
core excitation models and coupling to giant hexadecapole states.
Additionally, to the analysis on the basis of a phenomenologically
deformed interaction potential a semi-microscopic folding model is invoked
for deducing the deformed optical potential from a deformed nucleon
distribution. The values of the isoscalar transition rates as found
by the various alternative procedures are discussed.

2. EXPERIMENTALS

The measurements of the differential cross sections of alpha-particle
scattering from the groundstates, 2+1 and 4+ 1 levels of 90,92Zr used
the 104 MeV alpha-particle beam and the scattering facilities at the
Karlsruhe Isochronous Cyclotron. The targets were self-supporting
foils of 3,8 mg/cm2 (90Zr ) and 4.5 mg/cm2 (92Zr ), respectively. The
alpha-particle beam was monochromized in energy to about 60 keV. The
energy spectra of the scattered alpha-particles were measured by four
4 mm thick silicon surface barrier detectors rigidly mounted to the same
movable arm with a fixed angular distance between each other of 1.5°.
The overall energy resolution was approximately 150-200 keV FWHM. Particle
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identification was found not to be necessary due to the large negative
Q-values of (a,3He ) reactions and the large differences in the energy
loss of light ejectiles (p,t) transversing the silicon detectors.
In the forward scattering angles spectra there are contamination peaks
from 12C and 160 which beyond 0Lab ~ 30° walk out of the region of inte
rest. In detailed analyses of the energy spectra the line shapes were
fitted by an asymmetric Gaussian form and a continuous background.
The differential cross sections were taken in steps of 0.5° in a labora
tory angular range from 7°-54° for 92Zr , up to ca. 70° for 90Zr • The
angular distributions have a good angular accuracy (60 ~ 0.2) due to
a relatively large scattering chamber (0 = 130 cm) a small beam spot
and a beam divergence of ca. 0.1°. The absolute zero of the angular
scale has been determined by measuring sharp diffraction minima on both
sides of the incident beam. The quoted errors include the uncertainty
due to the finite angular acceptance (transformed into cross section
errors). Considering the uncertainties of the target thickness,
the detector solid angle and of the integrated beam current the absolute
scale of the cross sections is determined within ca. 10%.

3. ELASTIC SCATTERING

Dur studies of elastic scattering are looking for some indications
of isotope differences in alpha-particle scattering from 90Zr and
92Zr • In Fig. 1 the measured elastic cross sections are displayed (to
gether with theoretical curves explained below). In the lower part
the quantity

do/dn(92Zr)-do/dn(90Zr)
do/dn(92Zr )+do/dn(90Zr )

(3.1)

vs. C.M. scattering angle is plotted indicating a slightly increased
size of 92Zr • A detailed analysis should apply one of the recently
introduced "model-independent" procedures, e.g. the Fourier-Bessel method4

which avoids constraints due to apre-chosen simple function form of the
shape of the optical potential and additionally provides realistic estimates
of the uncertainties (Details of the method and a demonstration of the
procedures are given in ref. 4 and 13). A reasonable application of the
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Fourier-Bessel method, however, requires sufficiently precise data
extending beyond the diffraction region. Unfortunately, the measured
92Zr data prove to be not of the required quality so that a
Fourier-Bessel analysis has been performed only for the 90Zr case.
Fig. 2 shows the resulting (real) Fourier-Bessel potential and demon
strates that the SW2 form is a good overall substitute. The values
of the best-fit parameters (depth Vo' half way radius rv A1/ 3 and
surface diffuseness a ), the volume integrals per nucleon pair (Jo/4A)
and of the goodness o~ the fits, x2 per degree of freedom, are compiled
in Table 1 for the SW as well as for the SW2 parametrization. In all
cases the imaginary part of the optical potential was parametrized
by the usual SW shape (Wo' rw A1/ 3 and aw) for which some arguments
are given in ref. 14. The optical model calculations used the computer
code MODINA15•

1*10
q

- (SW> Fig. 1

1*103 -- -- (SW>2 Elastic scattering of 104 MeV
da _.- (SW>2 + FB alpha-particles from 90,92Zr
iRr 1.102 and optical model calculations

E~~j with different radial shapes
1.101 of the real part: Saxon-Woods

(SW) form - squared Saxon-
1*100 Woods form (SW2)-Fourier-
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Vo ry ay Wo rw aw J/4A //F
(MeV) (fm) (fm) (MeV) (fm) (fm)

90Zr SW 131.1 1.255 0.766 21.09 1.55 0.62 321.4 3.95
SW2 165.1 1.354 1.276 20.84 1.54 0.64 307.1 2.48

F8 22.60 1.44 0.86 289.7 1.25

92Zr SW 126.3 1.24 0.845 21. 7 1.57 0.67 311. 1 7.22

SW2 151.6· 1.37 1.397 18.95 1.62 0.615 293.4 5.22
Table 1 Optical potentials for 90,92Zr (a,a)90,92Zr at Ea = 104 MeV

SW: Vo·f(r) + i Wo g(r )a 2 a
SW2: Vo(f(ra )) +i Wo g(ra)
F8 : Real Fourier-Bessel potential + i W g(r)o a

with f(ra) = {1 + exp((ra- ry'A1/ 3)/ay)}
and g(ra) = {1 + exp((ra-rw' A1/ 3)/aw)}
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Fi g. 2 The real part of the (a+90Zr) optical potential: Result
of the Fourier-Bessel method compared to the best-fit SW2
potential (hatched area represents the error band of the FB
potential). The inset shows the yalues of the radial moments

MKand their uncertainties.
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4. INELASTIC SCATTERING

In the framework of the collective model the non-diagonal
part Ucoupl of the complex interaction potential providing the coupling
of different nuclear states is deduced from an extended optical
potential

UCr ) = -VofCr ) - i W g(t) ,Cl Cl 0 Cl (4.1l

deformed by the angular dependence of the half-way radius. e.g.

- -
R (rCl ) = Ro (1 + L Cl A~ YA~(rCl)) (4.2)

and expanded into powers (t) of L ClA YA (r )
A~ ~ ~ Cl

The coupling between various 'channels is given by the matrix elements

<9.IIUcoupll9.'I'> = !A(9.,I,9.'I',LJ).!uL(t)(r) <IIIQL(t)llll> (4.3)
L t

where the factors A(9.,I,9.'I' ,LJ) (depending on the partial waves of the
incoming (9.) and scattered (9.') particles, the nuclear spins 1,1', the
channel spin J and multipolarity L) are purely geometrical. The reduced
matrix elements of the operators QL(t) (operating only on target coordi
nates and built up by the ClA-operators coupled to the multipolarity L)
determine the strength of the transitions while the radial form factors
uL(t) = vL(t) + i wL(t) are defined as derivatives (t) of the shapes
f(r ) and g(r ).Cl Cl

We restrict our consideration to the case of a coupling of the
low lying states 0+,2+1 and 4+1, and to the second order: t = 2.
Then, we have to consider the following matrix elements ("deformation
parameters") 11

(i) Single step quadrupole transitions

<0 11 Q2 (1) 11 2+1> = ß02

<211IQ/1l114+1> = ß24 (~

(4.5)
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(ii) Single step hexadecapole transition:

(iii)Two-step hexadecapole transition

We do not use the simplifications of a harmonie quadrupole vibrator
model

(4.5a)

and take 802 , 824 and 804 as free parameters (and 8'04 = Iß02 824 ) so that
there is a flexible way (anharmonie vibrator model) to specify independently
the strengths of different transitions. In fact, the model dependence
is considerably reduced and the anharmonic vibrational model works just
as a convenient formalism covering quite general cases. In contrast to
the DWBA which takes into account only the couplings to the groundstate,
the coupled channel calculations include automatically the competition of
various excitation paths. In general, the real as well as the imaginary
part of U(t ) are assumed to be nonspherical. Complex coupling proves to

Ct

be important for inelastic alpha-particle scattering. In the following
calculations the imaginary part of U(r ) is described in the tra-

Ct

ditional manner by a deformed Saxon-Woods shape with a geometry
(g(t , R , a )) independent from the real part. Table 2 compares the

Ct w w
results (best fits to the experimental cross sections) obtained with
the two different alternatives of f(r ). The SW2 form proves to be generally

Ct

superior, not only for the diagonal potential, but also for describing
the inelasti'c excitations (compare partial //F). The values
of the two deformation parameters 802 and 804 are rather sensitively
determined by the experimental data (824 proves to be less sensitive)
and do not significantly differ in both approaches. The improvement
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seems to be due to the somewhat modified shape of the transition
potentials (see Fig. 3). For the coupled channel calculations the
Karlsruhe version of the code ECIS 17 has been used.

vlll,
IMeVI

200

150

100

50

o

I
I
I
I
I
/
I
/

/
/

./

5

90Zr /lrO:Jrmonic Vibrotionol
Model

0+-2+-4+

, - ISWI' formlaclor
\ -- fSWI formlador,
\

Fi g. 3 Comparison of first order radial form factors as found by the
coupled channel analysis of the differential cross sections
for 90Zr(a,a') scattering.

There is considerable interest26 ,27 in comparing electromagnetic nuclear
excitation (involving isovector as well as isoscalar components) and
isoscalar excitation of the total nucleon distribution as induced by
(a,a') scattering. However, it is by no means clarified in which way
the deformation parameters of the complex interaction potential are
related to the corresponding quantities of the nucleon distribution of
the probedtarget nucleus. An "extended" folding model has been proposed 18

in order to disentangle the properties of the probing alpha-particle
and of the probed target nucleus. The procedure essentially consists in
writing the real part of the extended optical potential (eq. 4.1) by folding
an effective alpha-particle-bound nucleon interaction Veff(ra , r) over a
deformed Fermi nucleon distribution p(r)



Z 2 --2--- - . -2
Target Shape Vo ry ay Wo rw aw B02 B04 B24 Jo/4A Xt/F x OfF x 2+/F x 4+/F

(MeV) (fm) (fm) (MeV) (fm) (fm) (10-2) (10-2) (10-2) (MeV fm3)

SW 128.9 1.25 0.77 20.3 1.55 0.62 6.0+0.2 2.8+0.3 0.43+0.1 301.2 3.8 3.6 7.4 2.9
90 -

Zr
SW2 159.2 1.36 1.27 19.8 1.54 0.64 6.3+0.3 2.2+0.3 1.4+0.4 299.8 4.8 4.4 7.1· 3.2- - -

SW 121.3 1.24 0.85 20.3 1.57 0.67 8.2+0.4 3.0+0.3 .7 +0.3 296.6 10.0 10.0 15.8 3.0
2 - - -

9 Zr
SW2 153.3 1.36 1.42 18.5 1.63 0.56 6.0+0.3 2.6+0.3 2.4+0.5 288.6 7.0 8.0 8.72 3.3- - -

Table 2 90,92Zr(a,a'): Extended optical potential with SW and SW2 radial shapes.

I
co

Z 2 2 2 I
Target Wo rw aw B02 B04 B24 Xt/F xO/F x2+/F x 4+/F

(MeV) (fm) (fm) (10-2) (10- 2) (10-2)

90Zr 27.3 1.44 0.705 8.6+0.5 5.5+0.5 5.0+0.8 18.4 46.6 9.1 1.9

92Zr 27.5 1.47 0.705 10+0.4 5.0+0.6 6.4+0.9 10.2 15.2 7.0 2.5

Table 3 90,92Zr(a,a'): Results of the folding model procedure
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Fig. 4 ?0,92Zr (a,a') : Experimental differential cross sections and
results of the theoretical analysis on the basis of a deformed
folding model for the real part of the optical potential.

The approach has been successfully applied in several cases (see
for example ref. 19,20). A simple Gaussian form is chosen for the
effective interaction

(4.7)

where Vo = -40 MeV and ~o = 1.95 are derived folding the effective nucleon
nucleon interaction over the alpha-particle density distribution,
and AR = 0.996 is a parameter adjusted20 by elastic alpha-particle
scattering on 40Ca and absorbing some uncontrolled uncertainties.
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The deformation of p(t) is introduced (similarity to eq. 4.2) by the angular
dependence of the half way radius.

(4.8)

The value of c and of the surface diffuseness a of the Fermi distributiono m
are taken from electron scattering results (c = 1.06 fm, a = 0.5 fm
and 0.63 fm for 92Zr , respectively). When fit~ing the exper~mental cross
sections only the (phenomenologically parametrized) imaginary part and the "matter
deformation parameters" (corresponding to the matrix elements given
by eqs. 4.5) are adjusted (see Table 3). Though the resulting x2/F values are
obviously larger than in the phenomenological approach, we observe again the not
unexpected effect of increased values of the "matter deformation" as
compared to the "potential deformation". Recent elastic alpha-particle
scattering studies have shown3 that a density-dependent effective inter-
action Veff is required when the data extend to larger angles beyond
the diffraction region. A density independent effective interaction and
the neglect of exchange effects are limits of the present folding approach
in describing the data. Moreover, it should be noted that there is a
difference in handling the complex coupling in the phenomenological and
the folding model procedure due to different deformation of the imaginary
parts. For sake of simplicity of the folding model calculations
the deformation parameters of the nucleon distribution are taken as
deformation parameters of W(t ). Some exploratory calculat10ns with indepen-

a
dent deformation indicate that this inconsistency just tends to
increase the value of Wo (see Table 3).

5. ISOSCALAR TRANSITION RATES

Several procedures9 have been worked out for deducing isoscalar
transition rates

(5.1)

from alpha-particle scattering. The problem of explicit folding model
calculations for extracting the transition density PL(r) can be bypassed
by the analysis of radial moments (RMA) of the optical potential when
exploiting the identity for folded potentials22 (with a density independent
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effective interaction)

JU(t )rLyLM(t )d3r Jp(t)rLYLM(~)d3r
a a a a =

JU(t ) d3
r J p(t) d3ra a

er written more specifically in terms of the results provided by the
preceding analyses

JVL(r ) rL
+
2 d r J PL(r)rL+2dra a <x _ _ -"----.--__

Jo(V) - A

There, the transition potential VL of multipolarity L is just given by

v =Iv(t)(r)<IIIQ(t)III'>
L t L a L

(5.2)

(5.3)

(5.4)

Table 4 compiles the obtained values derived with SW2 real form factors
and compares the RMA procedure with the results of the explicit folding
model analyses (where PL is provided by derivatives of a Fermi distribution).
The rates GL = B(ISL)/Bsp are given in single particle units using r

o
=I.2 fm

for the radius parameter. In the case of 90Zr the values are compared to
electromagnetic results24 and the (a,a') result25 extracted by a less
reliable DWBA procedure (Bernstein procedure) from measurements at
E = 31 MeV~a

Table 4 Isoscalar quadrupole and hexadecapole transition rates GL
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6. CONCLUDING REMARKS

The present studies give some evidence that a squared Saxon-Woods
shape 1s an improved parametr1zation not only for the elastic alpha-particle
scattering potential (real part), but also for a deformed interaction
potential the derivatives of which provide the transition potentials in
inelastic scattering excitations. Of course, the problem remains, how
to remove the model dependence due to the prechosen functional form of
the form factors. There are recent attempts23 to avoid such constraints by
extending "model independent" procedures like the Fourier-Bessel method.
For the particular cases studied (0+ - 2~ transitions in 50Ti and 52Cr),
it turns out that "vibrational" form factors are quite well justified.
If these results can be overtaken to the cases studied here, the RMA
method should give quite reliable B(IS)-values as the unknown underlying
effective interaction need not to be specified. It may be assumed to be
rather complicated, composed of different components and also absorbing
exchange effects. Strictly, such an implicit folding model interpretation
is based on a density independent effective interaction. But it has
been shown 14 that the influence of density dependence on the integral quan
tities like the volume integral Jo is negligible. Due to the surface dominance,
higher order radial moments should be affected even less.

A reliable determination of isoscalar transition rates is of consi
derable importance in view of possible differences of the deformation para
meters for different transition mechanisms. This question has been discussed
recently 26,27 and effects up to 25% might be expected, for single
closed-shell nuclei and depending on the core-polarization of the nucleus
considered. The case of hexadecapole transitions is of particular
importance since alpha-particle scattering is most sensitive to that
type of nuclear excitations. The present studies provide further evidence
for hexadecapole motion in spherical and quasispherical nuclei, completing
the systematics given in ref. 12. In general, there seems to be a consider
able amount of (a,a') data indicating L=4 transitions. Unfortunately, due
to lack of precision and due to the application of less certain methods of
the analysis (li,ke inadequate first-order calculations) many data are
not adequate for a meaningful comparison. It is our feeling that the

general problem is far to be solved, but the results of this paper can
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be understood as a step towards an improved procedure and more accurate
values of the transition probabilities.
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