nd

Fault Tree Analysis

G. Weber

KfK 3384
Institut fiir Datenverarbeitung in der Technik

Juli 1982

jagnosis
a

a
Projekt Nukleare Sicherheit

Failure D

D
L
-
)
L2
.
©
'
=
=
S
i
o=
L))
N
7))
| e
-
L
O
w
.
O
i
o
B
L))
h'e

KERNFORSCHUNGSZENTRUM KARLSRUHE

Institut flir Datenverarbeitung in der Technik

Projekt Nukleare Sicherheit

KfK 3384

Failure Diagnosis
and

Fault Tree Analysis

G. Weber

Kernforschungszentrum Karlsruhe GmbH, Karlsruhe

Als Manuskript vervielféltigt
Fur diesen Bericht behalten wir uns alle Rechte vor

Kernforschungszentrum Karlsruhe GmbH

ISSN 0303-4003

Abstract

With the increased complexity of many current systems, safety and
reliability considerations are becoming increasingly importantant.
Various methods and techniques employed for design, construction

and operation of nuclear reactors, reprocessing plants, chemical
plants etc. lead to more safety and reliability. This is due to a
great extent to an increase of reliability and maintainability on
the component level. However, this increase may be offset by a
considerable complexity of the system. Here methods of reliability
engineering are required. A systematic approach to the problems

is needed. Thus reliability engineering uses a number of strategies,
among them the techniques of reliable design (e.g. redundancy)

and techniques of failure diagnosis (e.g. automatic search for failed
units).

In this report a methodology of failure diagnosis for complex systems

is presented. Systems which can be represented by fault trees are con-
sidered. This methodology is based on switching algebra, failure diagnosis
of digital circuits and fault tree analysis. Relations between these
disciplines are shown. These relations are due to Boolean algebra and
Boolean functions used throughout. It will be shown on this basis that
techniques of failure diagnosis and fault tree analysis are useful to
solve the following problems:

- Describe an efficient search of all failed components if the system
is failed.

- Describe an efficient search of all states which are close to a system
failure if the system is still operating. '

The first technique will improve the availability, the second the reliabi-
lity and safety.

For these problems, the relation to methods of failure diagnosis for
combinational circuits is required. Moreover, the techniques are demonstrated
for a number of systems which can be represented by fault trees.

Fehlerdiagnose und Fehlerbaumanalyse

Zusammenfassung

Mit der steigenden Komplexitdt von zahlreichen Systemen sind heutzutage
Sicherheits- und Zuverlassigkeitsiliberlegungen von steigender Bedeutung.
Verschiedene Methoden und Techniken, die bei Entwurf, Konstruktion und
Betrieb von Reaktoren, Wiederaufarbeitungsanlagen, chemischen Anlagen
U.s.w. eingesetzt werden, ergeben mehr Sicherheit und Zuverldssigkeit.
Dies ist insbesondere auf eine Erhdhung von Zuverldssigkeit und Instand-
haltbarkeit auf der Komponentenebene zuriickzufiihren. Jedoch kinnen diese
Verbesserungen durch eine erhebliche Komplexitdt des Systems zumindest
abgeschwdcht werden. Darum sind Methoden der Zuverlissigkeitssicherung
erforderlich. Eine systematische Behandlung dieser sicherheitsrelevanten
Probleme ist notwendig. So verwendet die Zuverlassigkeitssicherung eine
Anzahl von Strategien. Typische Beispiele sind die Behandlung von Zuver-
ldssigkeitsfragen beim Entwﬁrf (z.B. Verwendung von Redundanz) und der
Einsatz von Fehlerdiagnose (z.B. automatische Erkennung von ausgefallenen
Einheiten). In diesem Bericht soll eine Methodologie der Fehlerdiagnose
fur komplexe Systeme dargestellt werden. Die Methoden sind anwendbar auf
Systeme, die durch Fehlerbdume dargestellt werden konnen. Die Methologie
beruht auf Oberlegungen aus Schaltalgebra, Fehlerdiagnose von digitalen
Schaltnetzen und Fehlerbaumanalyse. Die Beziehungen zwischen diesen Dis-
ziplinen werden aufgezeigt. Die Beziehungen beruhen insbesondere auf der
Boole'schen Algebra und den Boole'schen Funktionen, die im ganzen Bericht
verwendet werden.

Es kann auf dieser Basis gezeigt wekden, daB Techniken der Fehlerdiagnose
und Fehlerbaumanalyse nilitzlich sind, fo]gende Probleme zu behandeln:

- Eine effiziente Suche aller ausgefallenen Komponenten (wenn das System
ausgefallen ist), soll ausgefiihrt werden.

- Eine effiziente Suche aller Zustande, die in der Ndhe eines Systemaus-
falls sind (wenn das System noch intakt ist), soll ausgefiihrt werden.

Die erste Technik wird die Verfligharkeit erhohen, die zweite die Zuver-
lassigkeit und Sicherheit.

Fiir diese Probleme ist die Beziehung zu Methoden der Fehlerdiagnose

kombinatorischer Schaltnetze erforderlich. Die angefiihrten Techniken werden
fiir eine Anzahl von Systemen demonstriert, die durch Fehlerbdume dargestellt
sind.

Figqures

1. Major gate types

2. Karnaugh-map

3. Parity bit generator

4, Combinational Circuit

5. Graphic Representation

6. Redundant Circuit

7. Example (Top down)

8. Example (Bottom up)

9. Illustrative Example of Fault Tree
10. Cubical Representation
11. AND-Gate with s-a-1 fault
12. Bridge Fault
13. Combinational Circuit
14. Fault Table
15. Simplified Fault Table
16. Combinational Circuit
17. Combinational Circuit
18. Irredundant Circuit
19. Network
20. System $j
21. System Sp
22. AND-OR-network
23. AND-OR-network
24. Karnaugh-map
25. Schematic Diagram of Device
26. Fault Tree
27. Standby System
28. Fault Tree

29.
30.
31.
32.
33.
34.
35.

Residual Heat Removal Fault Tree

Block Diagram for Nitric Acid Cooler
Input-output Models

Flow Diagram for Nitric Acid Cooler Process
Fault Tree for Nitric Acid Cooler

Subtree

ITlustrative Example of Fault Tree

CONTENTS

0. Introduction

1. Introduction to Switching Algebra

2. Introduction to Failure Diagnosis

3. Fault Trees

4. Diagnosis Procedures

5. Tests for two Types of Faults

6. Examples with various Fault Trees

Reference

41
53
61
69

83

111

INTRODUCTION

The design, construction and operation of complex systems (nuclear reactors,
reprocessing plants, chemical plants etc.) has to meet requirements regarding
safety, reliability and availability. Here methods of reliabiliy engineering
are required. A systematic approach to these problems is needed. Thus relia-
bility engineering uses a number of strategies, among them the techniques

of reliable design (e.g. static and dynamic redundancy) and techniques of
failure diagnosis (e.g. automatic search for failed units, design for diag-
nosability).

In this report a methodology for complex systems is presented. Systems which
can be represented by fault trees are considered. The following subjects are
significant for our approach:

Concepts of switching algebra including some questions of representation.
This leads to the representation by prime implicants and min cuts (sect. 1).
Basic concepts of failure diagnosis are introduced (sect. 2). Concepts of
fault tree analysis are introduced: coherence, min cuts (sect. 3). Diagnosis
procedures are 1ntroduced'which may be applied to systems represented by fault
trees: A test which leads to a prompt failure diagnosis for a failed system.
A test which finds all states adjacent to system failure. The first test in-
creases availability, the second test increases safety (sect. 4).

Then a discussion of the corresponding concepts of failure diagnosis of com-
binational circuits is given (sect. 5). Finally, a number of examples demon-
strates the use of the introduced methods for nuclear and other technologies.
Results of diagnosis and conclusions on the efficiency of test methods are
presented (sect. 6). |

While a1l methods mentioned have been used extensively either for computer
science or for safety questions a unified approach was not yet available.

Introduction to Switching Algebra

1.1 Basic Concepts

1.2 Basic Properties

1.3 Switching Functions

1.4 Representations of Boolean Expressions

1.5 Prime Implicants and Coverage

1.6 Methods to obtain Prime Implicants

1.7 Algorithms to find a simplified sum-of-products Representation

1.8 Cubical Representation of Boolean Functions

Introdu¢tion to Switching Algebra

We give some basic concepts for switching algebra. This technique
is closely related to Boolean algebra. It is useful for

- failure diagnosis and
- fault tree analysis.

1.1 Basic concepts

We assume the existence of a two-valued switching-variable "x"
which can assume the values 0 and 1. (Note, that 0, 1 are not
the real numbers.) No other values are possible here.

A switching algebra is an algebraic system consisting of the

set {0,1}, two binary operations called 'disjunction'(inclusive OR),
"conjunction’ (AND); and one unary operation called 'negation’
(NOT).

We write + (v) for OR, - (A) for AND, - for NOT.

The definitions of the following relations (AND, OR, NOT, etc.)
are given in Fig. 1 (see /1/).

A1l the gate definitions exept NOT can easily be generalized to
allow any input number,

A set G of gate types is called 'complete' if any combinational
function can be realized by a circuit that contains gates from

G only. Examples of complete sets are {NAND} , {NOR} , {AND, NOT},
{ OR, NOT }, {AND, OR, NOT} ..

We use the set {AND, OR, NOT} as complete set G.

Circuit

Name symbol Equation
|z !
x) — 0 2= XXy
AND 3—— 0 or|
*2 ‘ 0 z=x, N Xy
1 :
]
=4 ‘
—3 0 I=x+ X
X .
OR ! >—— 1 or
2 . 1 2=x VX
l .
Z ;
NOT x —w— 1 =%
0 ,
X X] oz
¥ i 00 |1
NAND 2 Do 011 =¥
- 1 0 1
‘ 1 1 0 '
N) oz
x—F% 0 0 1
NOR \’l }‘ 01][O0 =0
S 1o]fo :
1110 :
W X |z '
X —A Y 00710
EXCLUSIVE -) :)AD— 1 =0 D x,
OR "2 1
0

—_—
—_ O -

Fig. 1

Major Gate Types

1.2 Basic Properties

We mention a few basic properties of‘switching algebra. They
are also sufficient for a set of axioms. Note that there are
also other sets of axioms.

Let x,y,z,... be variables. Then we use the following pairs of
identities:

Idempotency
X+ X=X
X+ X =X

Note the difference from arithmetic where no idempotency law exists.

Commutativity

X+y=y+Xx
XYy =Yy X

1

Associativity

(x +y)+2=x+(y+ i)

(x - y)-z=x"("2z)
Distributivity

X - (y+2)=x-y + x-2
X+y -z =(x+y)(x+2)

Note the difference from arithmetic.

Complementation

=0

-+

x| x|

X
X .
Note the difference from arithmetic.

From the Basic Concepts (1.1) and Basic Properties we can deduce
many theorems. Two important theorems are the theorems of De Morgan:

x|
«|

X+y =

|
+
«<|

X~y =

1.3

—_—f —

We can use truth-tables to prove De Morgan's theorems:

X y X y X+ Yy X +y Xy

0 0 1 1 0 1 1

0 1 1 0 1 0 0

1 0 0 1 1 0 0

1 1 0 0 1 0 0
Note

For n variable we can write

n
(a) j{: Xj = Xp+ Xy e X
1:1 Disjunction,
or \V, X sum-term
\' To= X VX, v VX
i=1
n
(b) l Xp F Xp Xt Xy Conjunction,
i=1 Boolean monomial,

product-term

or

>s
JX
1}
x
3
>
>
N
>
>
>
=

—
il
P2

This can be represented by an AND-gate or OR-gate with n inputs.

Switching Functions

We introduce the concept of switching function, extending the
switchihg algebra to functions of binary variables. The switching
function is a Boolean function. Thus it is clearly related to the
structure function.

Def.: A 'switching function'

¢

. F (x1’ x2’ ceey xn)

of n two-valued variables Xps Xos toos X (x1 = 0,1) is a correspon-
dence which assigns for each of the 2" combinations one value of {0,1}.

— —

The switching function can be represented using

(a) a truth table

(b) maps

(c) graphic representations, diagrams, fault trees

(d) Boolean expressions, structure functions.

Clearly, for a high number of variables, (a) and (b) become extremely
large. E.g. we will habe for n variables 2N rows in the truth table.

Example:
We will introduce all representations (a) - (d) for an example:

(a) Truth table
A parallel parity-bit generator /2/: This unit must produce an
output 1 if and only if an odd number of its inputs have value 1.
Take the example of three-bit code words, i.e. the circuit has three
inputs X1s Xos Xg and its output f must be equal to 1 if 1 or 3 of
the inputs are 1. We can immediately constructthe truth table:

row X1 'x2 Xg f Number of inputs = 1
0 0 -0 0 0 0, even

1 0 0 1 1 1, odd

2 0 1 0 1 1, odd

3 0 1 1 0 2, even

4 1 0 0 1 1, odd

5 1 0 1 0 2, even

6 1 1 0 0 2, even

7 1 1 1 1 3, odd

Table I, truth table

(b)

(c)

Map

We give a map-representation, based on the truth table.

Xp %o 00 01 11 10
Xq 0 1 0 1
0
1 1 0 1 0
Fig. 2: Map
Graphic Representation
OR
AND AKD AKD
- HOT M
X1
X2
Fig. 3: parallel parity-bit generator

(d) Boolean Representation (Boolean polynomial).

For this circuit we get as Boolean representation:

f (Xl’ Xps Xg) = X Xy X3 Vo Xy Xy Xg VX Xy Xg VX Xy Xg
ie. f=1 if either x1 and Xo and X4 are = 1 or

exactly one input is = 1.

It is possible to represent switching functions using different
techniques. Each will lead to the same truth table.

Canonical forms

We recall that truth-tables are a means for representing switching func-
tions (Boolean functions). We also mentioned that Boolean expressions may
be written as Boolean polynomials. Now we give some considerations which
are

- closely related to truth tables and are
- easily generalized for switching algebra (Boolean algebra).

Assume, we have a function f (Xl’ Xos «oos Xn) represented in a truth table.
Then we get two representations which are called 'canonical forms' which
will be discussed next:

- the disjunctive normal form (dnf)
- the conjunctive normal form (cnf).

Disjunctive normal form

We introduce the concept of ‘minterm'. A minterm is a conjunction (pfoduct)

of n variables:
p (xl, Xgs * * ", xn)

Each variable may be either complemented or uncomplemented. The charac-
teristic property of a minterm is that it assumes the value 1 for exactly
one combination of the variables.

Then we can write any Boolean function as a disjunction of minterms,
called disjunctive normal form (dnf):

Flxps X ™ v s xg) = \/ Ci Py (Xpo Xpo m 7 ta Xy)

where the constant c, is defined as follows:
¢; = 1 denotes the minterms which in a disjunction generate the function

f (Xl’ Xos * * v Xn)’ c; = 0 is related to all other minterms.

Relation to truth-table

For each row j where f (xl, Xos * 0 s xn) = 1, we get a minterm
pJ (Xl: X29 Tty Xn)

If in this row we have

Xy = 0 Y:
| we write in pj (xl, Xos 0 vy xn).
Xy = 1 x1
Now we get a disjunction of minterms by (Xg5 X5 > %)
which is equal to the given function f (Xl’ Xps * " " xn):
£ (Xl’ Xps © * s xn) = V pJ. (Xl’ Xo s s Xn)
Jerq
where j goes over all rows where f=1, i.e. 1 is the set of all
row-numbers where f = 1.
Note:
anl '
f (Xl’ x29 "',xn) = Y C_i P1- (X19 ng eee g Xn) = .V pj(xl,Xz,---,Xn)
1"0 JEY‘l

—_11 —

Examgle

We refer again to Table I (parity-bit generator).
It can be seen that f (xl, Xos x3) = 1 for the set rye ry = %1,2,4,7 }.

We get the minterms pj:

Decimal notation

row 1: 001 = Pp = X3 X5 X3 1
. . <—->' - -

row2: 010 Po = Xq X5 Xg 2

row 4 100 = Py = Xy Xp X5 4

row 7 111 =——— Py = Xy Xy X5 7

The disjunctive normal form is

39P1 pj = X)Xy X3V X] Xy X3 V X)Xy Xg VX Xy Xg

or, in decimal notation f (xl, Xos x3) = }E:(l, 2, 4, 7)

Note:

1.

This,Form is a sum-of-products-form (sop), if we consider the dis-
Junction as sum, the conjunction as product, a special form of a
Boolean polynomial.

There are some noteworthy properties of the dnf: There is only one
dnf for a given Boolean function f (Xl’ X sy xn), equivalent to
the dhique truth table.

o o

A1l terms are disjoint, Py " Py = 0 for j # k.

Assume the contrary, i.e. each variable of pj which is uncomplemented
(complemented) in pj must also be uncomplemented (complemented) in pj.
Thus pj and Py cannot be different, i.e. j = k.

- 12 —

Relation to Boolean Expressions

To obtain the disjunctive normal form for any given Boolean function
a simple procedure can be used. This procedure will also be useful
for further considerations. It can be shown that this procedure always

leads to a result /1/.
Step 1: Expand the given function to a sum of products form which
needs no brackets.

Step 2: Examine each product term. If it is a minterm, retain it,
and continue to the next term.

Step 3: In each product which is not a minterm check the variables
that do not occur. For each X that does not occur multiply
the product by (x; + Yi).

Step 4: Multiply out all products and eliminate redundant terms.

Example
Determine the dnf for the following function
f (xs ¥, 2) = Xq * X, (x1 *Xq x3)

This function could be represented graphically as follows:

OR
75 AND
X
2 OR
) AND
X1 X3

Fig. 4 Combinational Circuit

— 13 —

Steg 1:

f (xl, x2, x3) = x3 + x1 x2 + x1 x2 x3

Step 2:

X . .
1 x2 x3 15 a minterm

Step 3:

£] %)+ X) 4+ 5
(Xps %55 X3) = X3 (%y + %) (X + X)) + % Xy (X3 % Xg) + % Xy Xg

Step 4:
f - X X X, K, + %y X, X
(xq5 Xos Xg) = X; X, Xg %) Ry Kg + X Xy X + %) Xy Xy + X)X, Xg
+ Xy Xy Xg

Note |
A similar discussion is possible for 'maxterms'. A maxterm is a dis-
Junction (sum) of n variables. The conjunction of maxterms is called

a conjunctive normal form. This will not be of much use for problems

discussed here.

— 14 —

1.4 Representations of Boolean Expressions

It is useful to have several alternative representations for
Boolean expressions /3/. Assume again we have a switching func-
tion given as follows:

Fig. 5 Graphic Representation

The tree representation (Fig. 5b) is probably most graphic, we
can easily see the predecessors, sucessors etc. We can write the
expression also using the usual Boolean operations,

f=(gar)vp)a(svi)

We also want to introduce a representation which will be needed
for some methods (as discussed in 1.7.). We introduce the following
notation for Fig. 5b:

For branches between vertices we give
1 if the branch goes to the right
2 if the branch goes to the left.

Thus we get (Fig. 5¢):

Fig. b5c

E.g. for r we can write 122, for the gate rAp we can write 12
(as 'coordinates'). We can represent the tree as a data structure,
called the 'full left list matrix' /3/:

Here in collumn 1 is the number of predecessors,
in collumn 2 the type of operator or operand,

in collumn 3,4,-.- the numbers giving 'coordinates'.
Collumn 1 2 13 14 5
2 A
2 v 1
0 p 1 1
2 A 1 2
0 q 1 2 1
0 r 1 2 2
2 \ 2
0 S 2 1
1 - 2 2
0 t 2 2 1

It is sometimes convenient, to simplify the full left 1ist matrix to a
left 1ist matrix, dropping the coordinates:

collum 1 2
2 A
2 v
0 P
2 A
0 q
0 | r
2 Y
0 S
1 -
0 t

It can be shown that, if a binary relation such as A, is written

in front of its two operands in the form A X y (instead of xay),
then by sonsistent use of such a notation ('prefix notation') no
parentheses are necessary. As polish equivalents of Boolean connec-
tives, we get (/3/, /4/):

Boolean Polish - Reverse Polish
X =X X o=
XANY As Xs Y Xs ¥Ys A
XV y Vo X, ¥ Xs ¥Ys V
x® y @.% Y Xs Y5 @

Thus our tree may be written in a Lucasiewicz- or parenthesis-free-nota-
tion (also called Polish notation):

(a) Polish Notation, prefix notation

(As Vs Ps As Qs 's Vs S, =, t)

(b) Reverse Polish Notation, postfix notation

(t’ =s Sy, Vy, Qs rs A Ps V"/\)

Note:

- The reverse Polish notation requires that the operators are written
in reverse order. Since all operators needed here are related to
commutative operations, the order of the variables is not affected.

- If the operators cover more than two variables this should be indi- _
cated, e.g.xAyAzcan be written A(3), x, y, z.

It will be seen in sect. 1.7 how the left 1ist matrix and the reverse
polish notation is of direct relevance to problems of switching theory
and fault tree analysis.

1.5 Prime Implicants and Coverage

A switching function f (Xl’ Xos o+ xn) is said to cover another
function g (xl, Xos *o o) Xn)’ denoted
f2g

if f assumes the value 1 whenever g does. Thus, if f covers, then
it has a 1 in every row in the truth table in which g has a 1.

Example:

Let f = X1 ® Xo (Exclusive OR)
917 X% 9 T XK
X X% | f Xp % |91 | 9%
0 0 0 0 O 0 0
1 0 1 1 0 1 0
0 1 1 0 1 0 1
1 1 0 1 1 0 0

Thus: . i) 9 | and f2 9o

If f covers g and g covers f, then f and g are equivalent.

Example:

Let f = Xy @ Xo and

g = 9, v g

Then f and g are equivalent.

Let f(x .,xn) be a switching function and h (Xl’ Xos **"s xn)

1> g
be a product of literals (conjunction). If f covers h, then h is said
to imply f, or h is said to be an implicant of f. The implicant is de-
noted h-=f,

EXamp1e: 9 and 95 are implicants of f.

— 18 —

Definition: A prime implicant p of a function f is a product term
which is covered by f such that the deletion of any literal from p
results in a new product which is not covered by f. In other words:
p isa prime implicant if and only if p implies f but does not imply any
product with fewer literals which also implies f. The set of all prime

implicants will be denoted { pi}-

Example:
Xy is a prime implicant of

f = Xy + xz + yz
since it is covered by f but neither X nor y alone implies f.

A combinational circuit is 'redundant' if it is possible to remove
Tines and/or gates in such a way that the resulting circuit is equiva-
lent. A combinational circuit which is not redundant, will be called

irredundant. ,’L\\

Example:
\ i
X IZ X3
Fig. 6 Redundant Circuit

This circuit is redundant.
Fre(xp %) (x5 + X3) = %) X3+ %
Every circuit may be represented as a sum-of-products form /1/.

Theorem: Every irredundant sum-of-products (sop) equivalent to f is a
union of prime implicants of f:

Proof: Let f* be an irredundant sop-expression equivalent to f, and
suppose that f contains a product term p which is not a prime impli-
cant. Since p 1is not a prime implicant, it is possible to replace it
with another product term which consists of fewer literals. Hence f con-
tains redundant literals, which contradicts our initial assumption.O

1.6 Methods to obtain Prime Implicants

We discuss some methods to obtain prime implicants. Many methods

use explicitly the representation of Boolean functions by min-terms.
This is true e.g. for the Quine-Mc Cluskey method and others, given
in the literature e.g. /5/, /6/.

It seams to be more important, to have a method which may be used for
a Boolean function represented without using min-terms. This will also
prove useful for fault trees /7/.

Nelson's Algorithm

The following remarks are in order:

- F is a Boolean function which already has been transformed into a
sum-of-products form.

= If in this algorithm a Boolean expression E is 'complemented', this
means not only applying the complement to the expression, but also
repeatedly using De Morgan's rules, i.e.

E = xy + yz Tleads to

E=xy +Yz =%xy *yz = (X+y)(y+72)

Algorithm 1

Step 1 Complement. F.
Obtain F applying De Morgan's rules.
Expand F into a disjunctive normal form.
Drop zero products (x x = 0),
repeated literals (x x = x),
make absorptions (x + xy = Xx).
This result 15251

Step 2 Comp1 ementg
Obtain @ applying De Morgan's rules.
Expand @ into a disjunctive normal form.
Drop zero products,
repeated literals,
make absorptions.
The result iSE;Pi,'the sum of all prime implicants, and

only of prime }mp11cants.D

Step 1 F = Xg Xo + Xy Xg Xp + X3 Xz

Complement:

F = (21 + Xp) (%) # §3 + §4) (23 + Xy)
Expand and simplify:

¢ = Xp Xy Xp + Xq Xg ¥ X5 Xg

Step 2 Complement

d = (x1 * Xy * x4) (x1 + x3) (x2 + x3)
Expand and simplify:

2P = Xy Xy + Xy Xg + Xy X3 ¥ Xz Xy

It is often useful to éimp]ify the Boolean functions needed in
Algorithm 1 by factoring.

Example:
F = x1x2 + X, x3 x4 + x3 x4

may be rewritten (factored) as

F=x X, + Xg (x2 Xg + 24)

Then the algorithm may be done with a considerable amount of saving
operations /8/.

Algorithm 2 (with factoring)

Step 1 Factor anywhere possible in F.
Complement F.
Obtain F applying De Morgan's rules.
Expand F into a disjunctive normal form.
=0),
repeated Titerals (xx = x),
make absorptions (x + XYy =

Drop zero products (xx

X).

The result is 55.

Step 2 Factor anywhere possible in & .

Complement o, .
Obtain & applying De Morgan's rules.
Expand & into a disjunctive normal form.
Drop zero products,

repeated literals,

make absorptions.

The results th:pi, the sum of all prime implicants, and
i
only of prime implicants.D

Examplie:

Step 1 F = x1 x2 + x2 x3 x4 t X3 Xg

Factor: F Xy Xo + (x2 Xg x4) X3

Complement:

Fr=(xg+ iz) (xp + 24) Xg + X3)
Expand and simlify:

D = x1 x2 x4 + x1 x3 + x2 x3

Step 2
Factor: &= X4 (x2 Xg * x3) + Xo Xg
Compliement:

D= i1 (xy X, + 23) . Xy Xg

Expand and simplify:
2Py =Xy Xy Xy Xz + Xy Xg + Xg Xy
.‘l

Notice the savings in the number of terms if F and®has been factored.

1.7 Algorithms to find a simplified sum-of-products representation (sop)

The algorithms to find a simplified s-o-p-representation can be used
for the Nelson-Algorithm, Algorithm 1. For some special cases, i.e.
Boolean functions which can be represented using AND and OR alone
(but without complements; see sect. 3.3) these algorithms even give
all prime implicants /9/.

Top-Down-Algorithm (Fussell's Algorithm)

We assume a switching network represented by a logical diagram.

Algorithm 3

Step 0

Step 1

Step 2

Step 3

Step 4

Start at top Ao'

Search for predecessors of Ai (i =1,2,...)
Define predecessors of Ai'

1
(A7» A2) = pred (A.).

If Ai is an OR-gate, we get

1 2 _ 1 ,2
Ai + Ai = Ai’ rename Ai’ Ai

If Ai is an AND-gate, we get

al
1 1

. A? = A., rename A!, A?
i i i

Multiply out all identified terms to obtain a sum of
products. If the sum-of-products contains still gates
(A;) go to step 1, else go to step 4.

The sum-of-product expression (consisting of components)
can be simplified:

Drop repeated literals,

make absorbtions. o

This switching network can be
represented in a form which

contains all gates and inputs
but is closer to graph theory.

Start at A
(0}

A0 AND-gate

(g + Ag) Xy + (%) + Ag) %y

x1 x2 + A3 x2

+ x1 x4 + A3 x4

If repeated literals are dropped and if absorptions are made, we get

D o= Xy Xy X X F Xy Xy

Bottom-Up-Algorithm (Bennett's Algorithm)

The Bottom-up-algorithm is a development of Bennett's algorithm which
leads to a sum of products representation.

We recall that the reverse polish notation (left 1ist matrix) intro-
duced in sect. 1.4 is used /10, 11/.

We have again the tree which was also used for our top-down-algorithm.

Fig. 8 Example

We can characterize all branches and thus get a full left list matrix:

q — ~—(
Ao 2 A AAT
A2 2 A 1

0 Xy 11
0 Xo 12
A1 2 v 2
A3- 2 A 21
0 X3 211
0 Xo 212
0 Xy 22
0

Full left 1ist matrix

(Xps Xps Xgs A 5 Vs Xys Xgs Vs A)
reverse polish notation

Now we describe the bottom-up-algorithm. Note, that here only AND and OR-
operators are assumed. Complements are assumed to be with the variables
only.

A general form of this algorithm which will be useful for large and
complex trees will be discussed later /10,11/.

Bottom-up-algorithm

Algorithm 4

Step 1 Left list matrix L given
Step 2 Take next item from L

Step 3 If item Operator, go to 4, else if item Operand, go to 5.

Step 4 If the operator is AND (1), withdraw the last 1
items in the list (stack) and make a conjunction,
else 1if the operator is OR (1), withdraw the last
1 items in the 1ist (stack) and make a disjunction.

Step 5 Push operand down into list (stack).

Step 6 Check if terms like
X Xy X X, X+ XY

are in the result and drop/simplify.

Step 7 Evaluate the already withdrawn terms to obtain s-o-p-
expressions. Go to 2.

Step 8 If L is empty, a s-o-p-expression for the whole Boolean
function is obtained. o

Example 1
2 A
2 v Left Tist matrix L
0 X4 Note: We present a number of lists (stacks) showing
o | x the mechanism of Algorithm 4, and a number of
2 reduced trees, illustrating the bottom-up-method.
2 v
2 A
0 Xq
0 Xo
0 X1

_— 27 —

Steps 2-5
List | Operand | Reduced tree
X3 X2 0 %3
X2 1
X1
Xq Xp + X Xg
Xp + Xy Xq
20 %4
X, Xg + %
X, Xyt Xy Xq
Xp ¥ Xy Xg Xo + X
X Xy + Xp Xy
Xy Xy X+ Xy Xg Xy

Steps 6-8 give

=Xy X + X X ¥ X X3’, the s-o-p-expression.

— 28 —

ExamE1e 2

We discuss a further example which leads to a generalization of the
bottom-up algorithm. We have the following fault tree from the pub-
lished literature /11,24/.

TOP EVENT] 1001

1002 L 1003

1004 1005 1016 1017

1024

1019

1007 1012 1013 1018

Fig. 9 ITlustrative Example of Fault Tree

This fault tree is also used as an example for our section 6
(Applications of Failure Diagnosis). This fault tree is also part
of the studies on hardware simulation /23/.

Note:

To simplify the representation of our left-Tist matrix, we make the
following convention:

(a) Operands may be written in the same line as the operators if
no ambiguity arises. ’

(b) If not otherwise indicated the number 1 (ina (1), v (1))
is equal to 2.

E. g.
AND
*1 %2 X3
is written:
3 A
0%y
0 X5 or more concisely A (3) X1s X5 Xg
0 X3

We divide the tree into two left-lists (subtrees).
Note: For all primary events we write numbers (1,2,..,15) only.

Left-Tist £ Left-1ist E,

\ v

v 1 v 1

A(3) 11 8,9,13 A 11

)) A(3) 111 6,14,15

v 121 112

A 1211 5,11 A 12 4,12
16 1212 (Here the simplified v 2

10 122 ;;;?;gg does not A 2 1

7 211

v 2 v 212

A 21 A 2121 12,15

Vv 211

A 2111 A 2122 8,13
v 21111 10,14 h 2e

3 2 2

3 21112 v 222 2,6

1 112

6 12

A

v 1 3,5

Left-1ist E

1
3,5 3+56 23+ 2*5
2 2 10,14
3
1
6
(1) (2) (3)
2:3+ 2.5 2:3+ 2.5 2.3 + 2.5
10 + 14 3.-10 + 3-14 1+ 3-10 + 3:14
3 1 6
1 6
6
(4) (5) (6)
2:3 + 2°5 2.3+ 2.5 + 16 5,11
1.6 + 3-6:10+3-6:14 + 3-6+10 + 3-6-14 16
10
(7) (8) (9)
5.11 16 + 5-11 10.16 + 5.10-11
16 10
10
(10) (11) (12)
10.16 + 5.10-11 16-16 + 5.10-11 10-16 + 5.10-11
8, 9, 13 8.9.13 + 8.9.13
(13) (14) (15)

From (8) and (15) we get

¢>E1

+ 8-9.13 + 10-16 + 5-10-11

=2:3+2.5+ 16 + 3-6-10 + 3-6.14

(s-o-p-expression)

Left List E,
3 3-2 + 36
2,6 2+6 7
12,15
8,13
(1) (2) (3)
32 + 3:6 32 + 36 3.2 + 3-6
7 7.12:15 + 7-8-13 +7.12:15 + 7-8-13
12.15
8-13
(4) (5) (6)
6,14,15 6,14,15 | 6.14-15
1 11 1
4,12 4.12 4.12
(7) | (8) (9)
1°6-14- 15 1.6-14-15
4.12 + 4.12
(10) (11)

From (6) and (11) we get

¢>E2 = 2.3+ 36 +7-813+ 7-12-15 + 1-6-14-15 + 4.12

(s=-o0-p-expression)

— 32—

Now we obtain the Boolean function for the whole tree (Fig. 9)
in a few steps:

1. Allocate primary events to the set of common/non-common events;

2. Multiply & and ¢

E >

By 2

3. Drop/simplify all terms of type X X, X X, X + XY.

We introduce a technique which makes this step with a reasonable
amount of calculation /11/.

1. Search for primary events which are common to E1 and E2 (c) and
not common to E, and E, (non-C).

1 C non-C
4
5
6
7
8
9
10
11
12
13
14
15
16

— 33 —

Divide primary events into the following subsets:

Events from E1 Events from E2

Sets which

contain only Cla CZa

C-events

Sets which
contain | Clb C2b
C and non-C
events

Sets which
conta1n C1C C2
only non-C

c

events

We get for E1 the following sets (corresponding to product terms):

C

1 {2,5 ¢y, = {3,6,10}, ¢4 = {10,16}, Cpy = {2,3}

R]
!

{3.6,14}, ¢, = {5,10,11}, c;; ={8,9,13}, ;5 = {16}

15 16

Similarly, for E

2:
C,y = {36}, Cyp = 14,12}, €5 = {1,6,14,15}
Gy = 17.8.13}, C,p = {7,12,18}, ¢, = {2,3}.

4.

Allocation of Cik to subsets Cla’ Clb’ C1c etc.

{‘314’ C15° C18} C O

{tr Ci Cyb ¢
{013’ C16’} T
and

{C1> Co) C Gy
{ €23 Cou t < Iy
{ €227 Cos § c G

Now, each subset of E1 is related to
We write for this Cartesian product:

Cla X Coa = Cpq (G UChe) UCyg
Cla X Cop = Cpq (C3UCy)UCH,
Cra X Coc = Cg (GppUlyp) Ulyg
Cip X CGa = Cqp (G UCye) UCH
Cib X Cop = Cyp (CpaUCy) Uy,
Cip X Coe = Cpp (GppUGe) ULy,
Cic * Coa = Cp3 (G Ul UG
Cic X Cop = Cp3 (Cp3UCyg)UCsg

Cic X Cpo = Cp3 (Cyp Ulyg) UCyg

each subset of EZ2.

(C

21U Cp)U Cyg (Chqu C

26)

(Co3U Cyg) U Cyg (Co3UCop)

(CypUChg) UCyg (Chp UCyg)

(C

(C

(C

(C

(€

(C

21 Y Cop)

23 UCoy)

22U Co5)

uc

21Y Cr6)

23U Cop)

22 UCs5)

Ucy, (CyyUC

UCy, (C5UC

Ucy, (C,pUC

26)

24)

25)

We get the following s-o-p expressions, where

- the absorbed terms are without index

- the remaining terms get an index j (j=1,2,...)
to be identified for further calculations.

c1a X c2a

la 2b

X c

la 2¢

C1b X C2a

C1p X Cp

C1a (CpgUcpedUcyg (CyUcpe)Ucyg (chyUCpp)

236 + 2.3+ 3-6-14 + 2:3:6-14 + 1-3:6 + 1-2:3:6

€14

2+3-
+ 1.

2:5:
+ 3

1.2.

+ 3-

(1) (4) (8)

(cy3U Cop)U cyg (Ch3U cyp)U cqg (Cx3U Cop)

1-6-14-15 + 2-3-7-8-13 + 1.3:6-14-15 + 3:6:7-8-13-14
6-14-15 + 1.6-7-813
(2) - (9)

(cpUcyglUcyg (cypU eyl cyg (ChnU Cy5)

+3-4:12 + 2.3:7-12.15 + 3.4:6-12-14 + 3-6-7-12-14-15
+4:6:12 + 1:6-7-12:15

(11) (12)

(cxqUcaglUcyy (coqUcyglUeyy (cpqUcpg)

.36 + 2:5-3 + 3.6-10 + 2-3.6-10 + 8:9-13-3:6 + 8.9-13-2.3

(3) (18)

(cpzUcyy)Ucyy (cpqUcy,)Ucyy (cpgUcy,)
1-6-14-15 + 2-5:7-8-13 + 8:9-13-1.6-14-15 + 3.6-10-1:6-14-15
6-10-7-8+13 + 8:9-13.7
5-6-14.15 + 2-5.7-8-13 + 1.6-8-9.13-14-15 + 1+3-6- 101415
(5)
6:7-8-10+13 + 7-8-9-13
(19)

Clb X c2c
= ¢y {eppUcpplUegy (ChnU CopdU g7 (C5pU €55)
= 244512 + 2-5:7.12+15 + 2.3-4-6-10 + 3-6-7-10-12-15
(7) (6)
4+ 4.8-9-12-13 + 7.8:9-12-13-15
: (20)
Clc X C2a
= Cy3 (€p1U Cyg)Ucyq (cpqUcyg)
= 3.6-10+16 + 2+3-10-16 + 5-10-11-3-6 + 15-10-11-2.3
- 3.6-10-16 + 3-5:6-10-11
c1c X o
= 13 (cgUcyy)Ucyg (cy3uUcyy)
- 10-16-1-6-14:15 + 10-16-7-8-13 + 5-10.11-1-6-14-15
+5-10-11-7-8-13
= 1.6-10-14-15-16 + 7-8:10-13-16 + 1-5:6-10-11-14-15
(10)
+5.7-8.10-11-13
(15)
Clc X C2c

= c13 (CpU cyp)U cyq (cppU Cpp)
= 10-16'4°12 + 10-167-12+15 + 5:10-11+4-12 + 5-10-11-7-12+15

4-10-12-16 + 7-10-12-15-16 + 4-5-10-11-12 + 5-7-10-11-12-15
(17) (16) (14) (13)

These results can be obtained by an algorithm (see /11/). We will here
simply Tist the s-o-p-expression fordp, &,

which is a unique (irredundant) cover by prime implicants (see also
sect. 1.5, minimal cuts).

Table of prime implicants

Index Index
J Term pj J Term pj
1 2-3 11 1.4.6-12
2 1-6-14-15 12 1:-6-7-12-15
3 3:6-10 13 5.7.10-11-12-15
4 3:6-14 14 4.5-10-11-12
5 2+5-7-8-13 15 5-7-8.10-11-13
6 2:5-7-12-15 16 5.7-10-11-12-15
7 2:4-5-12 17 4.5-10-11-12
8 1-3-6 18 3:6-8:9:13
9 1:6-7-8-13 19 7-8:9+13
10 7-8-10-13-16 20 4-8:-9.12-15

A1l terms for

the s-o-p-expression of ®

1.8 Cubical Representation of Boolean Functions

We defined a switching function as a correspondence which
assigns for each of the 2" combinations of Xl’ x2, Tt X

one value of fO,l}. E.g. for a switching function

f (Xl’ Xos x3) = Xy Xt Xy Xg

3

for each of 27 = 8 combinations of x., Xps X5 & value of { 0,1}

1 3

is assigned (Fig. 10).

Xq x2 x3 f (Xl’ xz, x3)
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1 x1 Xo
1 0 0 0 Xq 0001111
1 0 1 0
1 1 o0 1 0 01 0 /’I\
1 1 1 1 :)’
1 0 (1 1
Fig. 10 a Truth Table | Fig. 10 b Map
Py = 11-
X on m
| p, = - 11
Prime Implicants
001 3 ‘\ me
101
X2

//;; 110
CZ O &

000 100 X1

Fig. 10 ¢ Cubical Representation

Thus the set of all 2" combinations of

P.

X ese g X
i X1 %20 > %n

with the corresponding values (1,0) is called a cubical representation
of f (Xl’ Xos *evs xn). E.g. the set all all 23 combinations of

X1s Xps Xg
with the corresponding values (1,0)(see Fig. 10) is called a cubical
representation of

f (Xl’ X s x3) = Xy Xt Xy Xg
(see also Fig. 10).
Each subset of the 2" combinations generated by fixing some variables,
while others take values (1,0) is called a subcube.
Examples
1. We obtain a subcube of Fig. 10c, fixing Xq = 0, while Xqs X MAY
take values 1,0.
2. We obtain prime implicants of f (Xl’ Xy x3) fixing Xp = 1, Xy = 1,
while X5 may take values 1,0 (p1 = X xz), and fixing Xp = 1,
Xq = 1 while Xy may take values 1,0 (p2 = X x3).

3. MWe obtain minterms fixing Xy %o Xg5 also called a O-dimensional
subcube.

— 40 —

Adjacent Subcubes

Let P be a prime implicant which is represented as subcube. Then
each subcube which differs in exactly one variable (say the kth
variable) from P; will be called the adjacent subcube p?k /1/.

Of course, this concept can be generalized. But this will be suffi-
cient for our purposes.

Example

{ 1 2 3
Py = XX ; 1 1 = | (prime implicant
: represented as
% subcube)
Adjacent subcubes |
Plk k=1 0 1| -
) k =2 0 -
p2 = x2 x3 - 1 1
i
Adjacent subcubes
Py - - 0| 1
=2 - 1 0
Note:

If a prime implicant P; consists of 1 literals, the number

X
of adjacent subcubes P;p is 1 (k = 1,2,-++,1).

—_—41 —

Introduction to Failure Diagnosis

2.1 Types of Faults
2.2 Basic Concepts of Failure Diagnosis
2.3 Boolean Difference and Tests

2.4 Interpretation of Redundancy

— 42 —

2.1 Types of Faults

We assume Combinational Circuits. There are various types of
failures /12/:

- permanent faults

- intermittent faults.

We only deal with permanent faults. If they are present, they
will remain (until a repair is done). The permanent faults fall
into two classes:

1. Classical faults, i.e.
- stuck at zero (s-a-o)
- stuck at one (s-a-1)

where a failed item behaves as if it had always the value 0 or 1.

Example:

Fig. 1la Fig. 11b

The circuit of Fig. 1lla has for X, a s-a~1-fault (Fig. 11b).

Note

It will be our purpose to model all faults as logical faults.
Thus the problem of failure diagnosis becomes a logical problem
which is usually independent of the technology used. The same
fault model is applicable to various technologies /12/.

Non-classical faults
- e.g. Bridge faults

- and others.
Example:
1 1y 29
bridge
IR Y1 %%
Fig. 12a Fig. 12b

It can be seen that the bridge-fault leads to Boolean expressions
for

215 2,
which differ from Fig. 12a. We will not deal explicitly with these

faults (/12/). Note that non-classical faults have no evident rela-
tion to systems represented by fault trees.

2.2.

— 44 —

Basic Concepts of Failure Diagnosis

Now some basic notions for failure diagnosis of combinational
circuits will be given /1/, /12/. Let C be a combinational
circuit which realizes the function

f = 'F (Xl’ X29 eo e g Xn)

Let o be an arbitrary fault in the combinational circuit, where
a number of variables change the output f to fq .

Def. If fy #= f for at least one input x
the fault adetectable.

s X ’ xn, we call

12 Xopseee

If fy = f for all inputs Xqs X2""’Xn’ we call the fault o
undetectable.

Def. If for two faults o, ao!,and for all inputs,

f = fal,,

o

we call these faults functionally equivalent. There are in general

equivalence classes of faults. A fault can be identified up to

an equivalence class.
Example:
Let C be the following combinational circuit:

!

\

Fig. 13 Combinational Circuit

which realizes the function

Let f denote the fault free output and let f. denote the output
of this circuit in presence of faultq.

Denote by

o mO the fault of wire m, s-a-0

o

my the fault of wire m, s-a-1,

stmilarly n,» p,s 9, (i =0,1).

The truth-table for this circuit is shown in Fig. 14. Here all
possible single faults aare indicated.

Input £ fa

— 46 —

We observe (fig.15) that

= collums f , f , f are identical for all possible inputs,
Mo My 0

i.e. they are equivalent (cannot be distinguished), similarly

fo,f i ,
p, o, are equivalent

- there is no fault which is undetectable.

[t is possible to simplify the fault table, which will be done below,
but which is of Tittle practical value.

Def. A test for fault ais an input (xl, X
input the output fy is different from f.

0r Tt xn) if in response to this

Example:

Input Possible faults
X1]%2| *3 {"‘o’ "o? po} | M| ™ {pl’ql}
0 j0}oO 1
0 |0} 1 1
0 j1140 1
0 J1 11 1 1
1 jolo 1
1 J]0]1 1 1
1 j110
1 J11]1 1

Fig. 15 Simplified fault table

2.3

We note:

- the only test for {mo, n» P, bis 1113

- q, can be tested by 000 or 010 or 100;

- omy can be tested by 011, provided there is no response for 001 and 101;

= ny can be tested by 101, provided there is no response for 001,011

- { Pqs ql} can be tested by 001, 011, 101, provided there is a response
for all three inputs.

Note: A fault table (Fig. 15) is a table in which there is a row for
each possible test and a collumn for every fault. A "1" is entered at

the intersection of the i-th row and the j-th collumn if the fault corre-
sponding to the j-th collumn can be detected by the i-th test.

The problem of finding the minimal test set is closely related to the
problem of finding a minimal cover of a Boolean function (by prime im-
plicants). We will come back on a similar technique in section 5.

Boolean Difference and Tests

Assume a circuit C which realizes the .oolean function

f (x1’ XZ, M Xn)o
Letk be a fault in which input Xs is s-a~o. Then the function realized
by this faulty circuit is
| fok = (Xps Xpo ees Xigs 0o Xigge s)

= f (0;)

Similarly, if X is s-a=1, the function realized by the faulty circuit is
f*: f (xls Xz, vy X_i_lg l’ X_itl’-o., xn)
f (1i)

The Boolean difference method is an algebraic procedure to determine a
complete set of tests to detect a given fault /1/.

Def. The Boolean difference of function f (xl, Xos® s Xn) with
respect to its variable X, is defined as

ARG

d x.
i

X]_’ XZ’ N X'i—l’ 0, X'i+]_’ ceey xn)
@f (xls X2, MY x.i_la 0, x.i+19 Tty Xn)
where@denotes the exclusive OR. It will be convenient to denote the
Boolean difference as
d f (x)
—_— = f(oi)@‘f (11)
d x.
i
Rules:
1. If f (oi)er (11) = o for all variables, the fault related to X
is undetectable (redundant).

2. We get all tests for s-a-o-faults if

d f (x)

d X;

3. We get all tests for s-a-1-faults if

x. o 4F(x) o

1
dX-
1

I.e. if we have input combinations x which fulfil the conditions (2), (3),
we have tests for the respective faults of Xy

— 49 —
Example 1

X, X
X 4

X1 %9 3

Fig. 16 Combinational circuit

We are interested in possible failures related to X3 The Boolean
difference with respect to x, is

3

df(x) .

=/ = f(o3)€Bf(13)

d Xq
= (X T X)X = X K X X X X Xy
For a s-a-o fault at X3 we get with

df(X) - v X . ¥ Y. =

X3 T = Xy Xy Xg Xg ¥ Xy X3 Xy ¥ Xy Xy Xy =]
d X3

Thisexpression is equal to one if any of the product terms is equal
to one. Thus we get as tests:

(X 2%y Xg%,) = {(0,0,1,1) , (1,%,1,0), (*,1,1,0)}

The DONT CARE-sign "¥" tells that we are free to choose o or 1.

For a s-a-1 fault at x, we get with

3
d f(x) . X. X ié Xy * xi Xy Xy + X5 X3 Xy = 1,

as tests
(x1 Xy Xq x4) = (0o, 0, 0, 1), (1,%, 0, 0), (%, 1, 0, 0)

— 60 —

Example 2:

L

Fig. 17 Combinational Circuit

Is an error at input x, detectable?

2
d f (x) _
= = (o) f (1,)
d X5
= xl-o® xl-'l'
= 0,

i.e. an error at input Xo is not detectable.

Note:
Some interesting developments of the Boolean difference are:

- There are various rules which make the application for subsystems

(subcircuits) easier.
- There is a generalization of Boolean difference for multiple faults.
- The Boolean difference is only for relatively small systems.

There are many methods for failure diagnosis available /1/, /12/.
We will deal with a few methods in sect. 5.2 and 5.3 of this report.

2.4

Interpretation of Redundancy

Sometimes, an interpretation of redundancy is desirable, which
is not directly related to the detectability of failures.

Assume, we have a circuit which consists only of inputs, out-
puts and gates (AND, OR, NOT) and is acyclic (contains no
directed circuits).

This type of combinational circuit is sometimes called
'wellformed' /2/ and will be considered here.

Definition:

Let N (Z) be a set of (wellformed) networks, which realize a given
(Multioutput) combinational function

7 = (Z]_’ 22, S Zm)
where Zl = f]. (Xla X2’ tt an)
22 = f2 (Xla X2’ tt 0 xnz)

z - fm (X13 Xzs"'sx)

A network N &N (Z) is redundant if it is possible to remove
lines and gates from N in such a way that the resulting network
N' is in N (Z), and still realizes the same switching function.

A network which is not redundant will be called irredundant.

Note
A wellformed circuit can be defined recursively. We only mention

one of its properties: A wellformed circuit is acyclic, i.e. it has
no closed Toop or feedback /1/. Also the fault trees (sect. 3.1) are
wellformed circuits.

— 82 —

Examples:
1. f (xl, x2) = Xy Xyt Xy X, (N)
Since
Xy Xy X X, = Xp (%, * YZ)
= X
we ;an delete lines and gates related to Xo Only
f (xl, x2) = X (N")

is needed. This 1is equivalent to saying that the circuit (N)
is redundant.

2. A circuit, represented as a sum of prime implicants (without
complements).

z=f (xl, x2,‘x3)

AT

Xo X3 X1 %3

Fig. 18 Irredundant circuit

Xl X2

As can be seen in section 3.3 ('coherence'), no line or gate can be
omitted, if the circuit z has to realize the same Boolean function.
This circuit is irredundant.

3. Fault Trees

3.1 Definition of Fault-Trees
3.2 Structure Function

3.3

3.4

Coherence of Systems and Minimal Cuts

A few Results on Coherent Structure Functions

— 54 —

3.1 Definition of Fault-Trees

We define a fault-tree and discuss a few properties of
fault-trees, also indicating some relations to switching
theory /13/.

Definition

A fault-tree is a finite directed graph without (directed)
circuits, Each vertex may be in one of several states. For
each vertex a function is given which specifies its state in
terms of the states of its predecessors. The states of those
vertices without predecessors are considered the independent
variables of the fault-tree.

Some general properties of a fault-tree:

- The vertices without predecessors are the inputs to the
fault-tree, representing the components. We are interested
in the state of every other vertex, but in particular with
the state of one vertex without successors, an output ver-
tex which we identify with the state of the system as a
whole. The graphical term 'vertex' here is roughly synonymous
with 'item' and generally denotes any level in the system,
whether a component, sub-system or the whole system.

- We specialize to only two states per vertex. This makes all
of the functions Boolean functions. We call one of the two
states 'functioning', 'false' or 0, and the other 'failed',

"true' or 1.

- Note, that this difinition of a two-state fault-tree is
equivalent to a combinational network with one output.

- The no-circuit condition in the grabh is equivalent to the
condition that the current output of a switching circuit
is entirely determined by current inputs, without memory
of previous inputs or internal states.

3.2 Structure Function

We introduce the concept of structure function. It is of central
importance for all problems of fault tree analysis /14 /, /15/,
/16 /. 1t can be seen that it is closely related to the concept
of switching function (see sect. 1.3).

We assume a system S, which has n components which can be in two
states

- functioning

- failed.

Also the system S can be in two states, either functioning or failed.
The components are the vertices without predecessors of our fault
tree definition. The function which specifies the state of a’

vertex in terms of its predecessor is a Boolean function (AND, OR,
NOT). The states of the top vertex can be given by a structure fupc-
tion.

Definition of Structure-Function

Let Xps Xos wee X be Boolean variables which can assume the values
0,1, where o if component i is functioning
Xi %1 1 if component i is failed.

The assumption that 1 corresponds to failure is used throughout this
paper and is useful for fault tree analysis. The Boolean variable X5
indicates the state of component i, whereas the state vector

X = (X13 Xos »ovs Xn)

indicates the state of the system.
The Boolean function

@ (Xl’ x2’ RN Xn)
is called structure function and determines completely the state

of the system S in terms of the state-vectors:

o if system S is functioning

(b()(l’ XZ, ...’Xn) =
1 if System S is failed.

3.3

We note:

The structure function is related to the switching function as follows:
They belong to two isomorphic algebraic systems. We call two algebraic
systems isomorphic if they are identical up to the symbols used for
operationsand elements. Thus we can use all concepts and methods from
switching algebra for fault tree analysis (and vice versa).

Coherence of Systems and Minimal Cuts

We introduced in sect. 1.1 the concept of completeness, especially refer-
ring to the set of operations

{ AND, OR, NOT } .

This (and other complete sets) are usually used in switching algebra. In
fault tree analysis we find quite frequently the set

{ AND,OR } ,

which is not complete.(See examples in section 6.) We want to define
coherence and show its relation to a simplified s-o-p representation,
the minimal cut-representation. Note that failure diagnosis is not
restricted to coherent systems (sect. 2 and 5) /14/, /15/, /16/.

Definition:

A system is called coherent if and only if

(a) a structure function exists which is nondecreasing in each variable, i.e.

@ (Y)>a(x) if

Yy > Xx where
Yi > x5 (=1, 50,
(b) the relations hold
® (o) = o where o = (0, 0, -+-, b)

o
e
| o=
"
i

1 where 1= (1, 1, -+, 1).

This means:

(a) If a system is functioning, then no transition of a component
from failure to function can cause a system failure.

(b) If all components are functioning, the system is functioning.
If all components are failed, then the system is failed.

Examples:

L. ®(x) = X] Xp V Xy Xa V Xy Xg, representing a 2/3-system,

is coherent.
2. P(Xx) = X, X v'?l X, representing an exclusive - OR - gate.

(Fig. 1) is not coherent, since

(0, 1)< (1, 1) does not imply®(o, 1)< &H(1, 1).

3. Examples of coherent aﬁd noncoherent fault trees are given in sect.6.

Minimal Cut Cj

Let M = {Ki’ K < Kn} be the set of components of a coherent system S.

L
A subset V of M such that S is failed if all components belonging to V are
failed and all componenets not belonging to V are not failed, is called a

'cut'. A cut is 'minimal' if no proper subsets exist which are also cuts.

We call such a cut 'minimal cut' (Cj)'

For each minimal cut it is possible, to find a combination of Boolean
variables

X = (xl, Xos """ s xn).
E*amp1e:
Network minimal cuts
m G |- K o)
{Kgs Ky }
B ‘5 B 1K1e Kgo Kg
K9 Ky {Ko2 K> K5}

Fig. 19 Network

— 68 —

Structure function
d (1, 1,0, 0,0) = 1 (failed)

but ®(0, 1,0, 0,0) = 0 (not failed)

We write all components as Ki (i =1, 2, ..., n).
If a component Ki belongs to Cj we can use the notation Kié’cj'
For each minimal cut Cj we can use a structure function:

0<.¢ (CJ) = A X.i = lei X-i
K € €4 RRat
The first expression is a conjunction of all Ki belonging to Cj'

The second expression is a multilinear form in Xs e

Example:

let €, ={K1, Kz}. Then,

A

OQ(Cl) 3 Cl X; =x1/\x2 = X)X

Note that every min cut is a prime implicant without complements.
It is possible to express a coherent function using a sum of min cuts.

Example: For the network (Fig.19) shown above, we get

(x) = Xy Xo V Xg Xg V Xy Xg Xp V Xy Xg Xg

or,as multi-linear-form:

d(x) = 1-(1- X1 x2) (1- X3 x4) (1- X1 %4 x5)

© (1= x5 Xg x4)

— 59 —

3.4 A few Results on Coherent Structure Functions

We mentioned in sect. 1.5 that every irredundant sum-of-products
representation of a switching function is a union of prime impli-
cants of this function. In section 3.2 we introduced the structure
function which is isomorphic to the switching function. Moreover,
we introduced the concept of coherence and the min cuts.

If the structure function is coherent, the representation by prime
impTlicants greatly simplifies. We quote a theorem which Teads to
this simplification.

Theorem

A coherent structure function®(x) can be represented as a s-o-p
2
= P,
P VIR
J =

of prime implicants, where this representation is unique and can
be written using the concept of q?n cuts

o(x) = D, fn/xi

j=1 KleCj

where KiE.Cj are the components belonging to Cj’xi the Boolean
variables describing the states (functioning, failed) of the com-
ponents /16, 17/.

Note, that there

- is only one (minimal) cover, and there

- are only essential prime implicants which may not be replaced
by any other prime implicants.

This has the following consequences for the search for minimal cuts.
The algorithm 3 (top-down-algorithm) or 4 (bottom-up-algorithm)
Teads to all min-cuts. Algorithms 1ike 1,2 (using the complement)
are not needed for this type of search. It may be also interesting
to note that the problem of testing considerably simplifies if
coherent structures are given. One of the simplifications will be

~ evident in sections 4 and 5 (search for min-cuts instead of prime
implicants for coherent structures).

4.

Diagnosis Procedures

4.1 Diagnosis Procedure 'a’

4.2 Diagnosis Procedure 'b'

Some Diagnosis Procedures

Assume a system where for each relevant component a component failure
is automatically detected. E.g. some systems of the Automated Labora-
tory for the WAK allow this type of failure detection /18, 19/.

The possible size of a fault table (dictionary and the use of Boolean
differences (see sect. 2))is soon impractical. Thus, a method is
needed which

- skips redundant information,

- decreases alarms which unnecessarily contribute to system
unavailability

- may be used for realistic systems.

We discuss the following two types of tests:

(a) A test which Teads to a prompt failure diagnosis for a failed
system. This test is based on a structure function with minimal
cuts. '

The test aids to increase the availability of the system.

(b) A test which finds all states adjacent to system failure but
only these. This test is based on a structure function with
minimal cuts.

The test aids to increase the safety but the unavailability due
to repair remains moderate.

Both tests can be used for systems which are not coherent as well
(see sect. 5). |

— 63 —

4.1 Diagnosis Procedure 'a’

1. Given a system S in fault tree representation or series-
parallel representation with structure function ®, where

¢

d = :E:: pj.

Jj=1
2. If a min cut Fﬁ'is equal to l, there is system failure.

3. For all min cuts of ®, test patterns (minterms) can be
generated which uniquely determine whether a min cut is
a cause for a system failure or not. This systematic
account is called 'Diagnosis Procedure a' (Set of a-tests).

The relation to failure diagnosis concepts will be shown in sect. 5.
It can be seen that no failure dictionary is needed. We give an
example for 'Diagnosis Procedure a', (also called a-test).

Example:

a-tests search for min cuts of f

min cut p, min cut p
1 2
! ! | f

i ! il
Xy b— X3

fault tree

X9 Xt

x] x2 X3 XL

Fig. 20 System S1

® Structure function f = f (X1 Xps Xg5 %)

Minterms

I
(@]

X X4 X

27374

— O

- O

lloo

ooll

By the a-test we can determine, whether min cuts lead to
not. Every min cut which has value 0, is not a cause for

comp. i intact
comp. i failed

system intact
system failed

0
Xy X, =
172 1
0
Xoq X, =
374 1

min cut 1,2

min cut {3,4}

intact

failed

intact

failed

system failure or
system failure 1%,

The min cut which has value 1 is the cause for system failure. A search for

components is not needed. The entire cut needs repair.

1"} In some cases also a direct search for the responsible cut may be

possible, simply searching for the cut which has value 1.

4.2 Diagnosis Procedure 'b'

1. Given a system S in fault tree representation or series parallel
representation with structure function ®, where

d = Zpk'
K=1

2. If amin cut Py is equal to 1, the system fails.

3. For all min cuts Py adjacent subcubes p?k can be found which refer
to states of a coherent system where only one more component has
to fail to cause a system failure.

4. Test patterns can be generated uniquely determining the states
adjacent to system failure. This systematic account is called
'Diagnosis Procedure b' (set of b-tests).

The relation to failure diagnosis will be discussed in sect. 5.
We give an example for Diagnosis Procedure a (also called b-test).

Example:
Search for min cut?

® ! i f
:L |

s AN
mE i |
— H X4
X2 e i
: Xp - X1 X2 X] X2 X3
|
|
I
min cut Py min cut Py

Fig. 21 System S

Structure function f

f = f (Xl’ xza X33 X4’ X
f = Xq Xo + x3 x4 Xp
b-test

Let P; be prime implicants (min cuts)

) 1
Pp = X1 %)
X _

P1k k =1 0

2 1

Pp = X3 X3 %5)

X = -
p2k k =1

2 -

3 -

We obtain all states of the
system failure:

1. component 1 failed:
¢omponent 2 failed:

2. component 4 and 5 failed:
component 3 and 5 failed:

component 3 and 4 failed:

5)

Pik be adjacent subcubes

2

(in min cuts)

to the P,

3

4

5

12345
Minterms

01000
10000

00011
00101
00110

system 52 which are adjacent to

P11
P12
P21
P22

X

P23

= --110

By the b-test we can locate all states which are adjacent to system-
failure. Then it is possible to prevent system failure replacing the

failed components.

Clearly, all the techniques from a and b-Tests, also in
relation with search for prime implicants (or min cub)
can be applied for automatic diagnosis of systems. This
will be shown in more detail in our next section.

Tests for Two Types of Faults

5.1 General Assumptions

5.2 Tests for s-a-0-Faults

5.3 Tests for s-a-1-faults

5.4 Examples for Tests

5.5 Existence of Tests

5.6 Relation to Diagnosis Procedures

Introduction

We discuss tests for two types of faults which occur in combinatio-
nal networks:

- the stuck at one fault (s-a-1)

- the stuck at zero fault (s-a-0).

Other faults are not considered. Combinational networks are related

to fault trees due to the isomorphism of switching function and struc-
ture function. We concentrate here on two tests which use prime imp-
Ticants (or min cuts). They were developed in /1, 17/. These tests have
been introduced on an informal basis in sect. 4 (Diagnosis Procedures
a,b).

5.1 General Assumptions

We assume a two-level network (AND-OR-Type), or a network which

can be transformed into an equivalent two-level network (i.e. with-
out deletion of real failures and/or introduction of new failures).
In Fig. 22, the AND-OR-type network is shown:

Fig. 22 AND-OR-network

We assume that this is an irredundant network which is equivalent
to an irredundant sum of prime implicants. Thus, the switching
function f can be written

1
Fixps %, ooy X)) = ;éi P,

where P denotes the ith prime implicant, 1 is the number of prime
implicants of the irredundant sum.

5.2

Each AND-gate is equivalent to one prime imlicant. Here we need an
algorithm to search for prime implicants (see sect.l). If the system
is coherent, a search for min cuts is sufficient (see sect. 1.7).

A circuit which consists of r wires may have as many as

2r distinct single faults (s-a-0, s-a-1), and 3"-1 multiple faults
(single, double, ..., r-tuple faults). This is due to the binomial
theorem /1/:

3 (2 + 1

OM-S

(> 1™, where 177 = 1.

Tests for s-a-0 Faults

We discuss the tests for s-a-0 faults, which correspond to the 'Diag-
nosis Procedure a'.
A s-a-0 fault at any of the inputs of the jth AND-gate causes the out-
put of this gate to be s-a-0, regardless of the value of the remaining
variables. Such a fault eliminates the corresponding prime implicant pj
from the function f: 1

IS

i=1

To check whether a given prime implicant P, has completely vanished,
it is sufficient to have one minterm aj as input which is covered by
that prime implicant pj and by no other prime implicant /17/.

For all 'essential prime implicants' such a minterm exists, this is
especially true for min cuts (unique representation). The requirement
that a minterm aJ must be one that is covered by the prime implicant p
and by no other prime implicant Py (i * j) is essential. We note, that
a complete set of tests for s-a-0 faults for a s-o-p-network consists
of n tests corresponding to the 1 prime implicants in f.

To test the jth AND-gate for s=-a-0 faults, it is necessary and sufficient
to have as input one minterm aj such that

1

— ar
1= S
) 14

The systematic account of minterms aj to test the AND-gates for s-a-0
is referred to as a set of a-tests. It can be shown that all single and
multiple stuck-at-faults can be detected by this method.

We give an algorithm for generéting the (minimal) a-tests.

We introduce the covering matrix E.

Pq p2 ----- ,pj Pn
/ - 3
]
ml |
]
m2 |
i
E = [}
]
l -
P iJ
1
m
k
N _)

The covering matrix shows for all minterms m, if they are covered by
prime implicants.

If m, s covered by pj, we have eij =1,

m; is not covered by pj, we have eij = 0.

Algorithm 5

Step 1 Construct a covering matrix E whose collumn headings are pj,
and whose row headings are m, -

Step 2 Delete all rows which contain two or more 1's.
Step 3 Is there a pj which cannot be covered?

Step 4 Choose for every pj in E one minterm aj.
Thus we get the minterms

5.3 Tests for s-a-1 Faults

We discuss the tests for s-a-1 faults, which correspond to the
"Diagnosis Procedure b". A s-a-1 fault at any of the inputs of
.th
the j
the output of the gate becomes independent of the variable as-

AND-gate causes the prime implicant not to vanish. But
sociated with a s-a-1 fault.

Example:

Let the 1input Xy of AND-gate
s-a-1. This is for

k =1 1 e Xo = X3 = XyXpXg + Xy XpX3
k =2 Xq e 1 e Xg = XpXoXg + Xy XpXq
k =3 X4Xo 1 = XyXpXg * Xy XpXq
th . .th e s
To test the k™ input the j~ AND-gate for s-a-1-faults, it is

necessary and sufficient to have as input one minterm bjk such that

- (4 v AL
jk € ka E P;)= pjk ' p
i=1 i=1

where

p?k is a subcube adjacent to P (see sect. 1.8) and P, is the jth prime

implicant.

The systematic account of minterms bjk to test all AND - gates for
s-a-1 faults is called a set of b-tests. It can be shown that all
single and mutiple stuck-at-faults can be detected by this method.

— 74 —

Before giving the Algorithm a few remarks seem in order (see
also Examples given below).

- Pairwise intersection: Assume a cubical representation
(sect. 1.8.). For terms like 11--and-11-the pairwise
intersection is 111-.

- Prime intersection: If intersecting with other terms leads

to no further intersection, we have a prime intersection.

- Prime tests: The prime intersections are related to prime
tests.

- Prime test chart: A chart with collumn headings pgk and with
row headings bjk (prime tests) is called prime test chart.

With these remarks we can state our Algorithm.
Algorithm 6
. X .

Step 1 List all pjk for all j = 1,2, ..., 1 and
k=1, 25 cees rj where 1 is the number of
prime implicants and rj the number of literals
in the jth prime implicant. Thus we get all
adjacent subcubes.

X X X .
Step 2 For every Pig 2 pjt delete Pis form list.

Step 3 Find all pairwise intersections of the terms that

are now contained in the list. Whenever an intersec-
tion is nonempty and contains a minterm for which

f = 0, checkmark the intersected terms. This step
lists the minterms for which f = 0 which are con-
tained in 2 or more adjacent subcubes.

Step 4 Repeat Step 3 until no new terms are generated. The
terms generated in step 3 and those checkmarked in
step 2 are called prime intersections. Steps 3 and 4
thus indicate those minterms which simultaneously test
as many subcubes as possible.

Step 5 From the Tist of prime intersections construct a list
of prime tests by selecting arbitrarily an input com-
bination bjk for which the value of the function is 0.

Step 6 Construct a prime test chart where the collumn headings
are p?k (found in step 2) and the row headings prime
tests (found in step 5). A sign (x) is inserted at the
intersection of any one row and collumn if the corre-

sponding prime test is covered by p?k. We get
€
X -
bk Pik ?I P;

Step 7 Select a set of prime tests that check each of the
p?k - terms, i.e. find a cover for the prime test
chart. UJ

5.4 Example for Tests (s-a-0 and s-a-1-faults)

Given the following network:

| f

‘a2 'm "m om
X3 X Xy X3 Xj, X, Xj Xg X,
Fig. 23

This can be represented as a sum of prime implicants:

Reil

=
Al

=T

f = = X X X
pJ X3X4‘+ X2X3X4 +,X1X4X5 + X1X2X4X5

™M

1]
—

J

— 76 —
a-Test (s-a-0-faults)

It can be seen that each prime implicant covers at least
one minterm which is not covered by any other prime im-
plicant (see also Karnaugh-map, Fig. 24).

We write as covering matrix with headings
- Py (collums)
- m, (rows):

" Py Py P3 Py

X XoX3XgXs _11- -100- 1--11 00-10

01000 0
11000 0
00010 0
00110 1
10110 1
01110 1
11110 1
01001 0
11001 0
10011 0
11011 0
00111 1
10111 1
01111 1
(RRRN 1

o O O O O O — - O O O O O - —

0
0
0
0
0
0
0
0
0
1
1
0
1
0
1

O O © O O O O O O O O — — O o

Covering Matrix

Step 1 Construction of covering matrix

Step 2 Delete all rows which contain more
than one 1 (rows checkmarked by a$%).

Step 3 There is no pj which cannot be detected by a minterm.

Note: These tests (a;) are necessary and sufficient to test for all
s-a-o-faults.

— 77 —

Step 4 We choose for every pj one minterm aj, e.g.

fa} = {11110, 11000, 10011, 00010}
Pp P, P3Py

Note: These tests (aj) are necessary and sufficient to test
for all s-a-0-faults.

Finally, we show a Karnaugh-map with prime implicants P
and minterms aj.

X1 XoXg P2
X4X5 000 001 011 010 110J///111 101 100

O

00

: oo |l o
vl (@ ||)] o o | o

Py Fig. 24 Karnaugh Map

Note:
A1l the circled minterms belong to the minterms of f with

€

a'sp\j"" 51
i=1

1=
LN

The minterms which are covered by more than one P have been
deleted from the covering matrix E.

b-Test

Step 1

o
~No
1

(s-a-1-faults)

From prime implicants pj we find all adjacent
subcubes p?k.

= =100~

p4 = 00-10

Step 2

1--10
10-10
01-10
00-00
00;11

For every p?s - p?t delete p?s

We get p?z
X
P1
X
P33
X
P31

--01- D
--10- D
1--10 D
0--11 2

X
P22
X
P23
X
Pg1

X
Paq

-110-
-110-
10-10
00-11

Step 3

Step 4

Step 5

—'79 —

Thus our new 1ist is

p§1 -000-
Ppy o -110-
Prg -101-
P3, 1--01
P11 10-10
by, 01-10
pZB 00-00
Pas 00-11

We find pairwise intersections, e.g.

X X _ _ _ _ _
P33 (\ Py, = =101- N 01-10 = 01010.

We get:
01010, 11101, 10001, 00000

The prime intersections (where intersection leads to no
further terms) are

10-10, 00-11
01010, 11101, 10001, 00000

To find a test from the intersection 00-11, note that this
intersection covers two minterms

00011 and 00111

since 00111 ¢ =~-11~- = Pqs only
00011 is admitted as a test.

We get as prime tests (minterms)

00011, 10010
01010, 11101, 10001, 00000

— 80 —

Step 6 The prime test chart is given next:

X
ij -000- -110- -101- 1--01 10-10 01-10 00-00 00-11

b3y

00011 X

10010 X

01010 X X

11101 X X

10001 X X

00000 X , X

Note:
These tests (bjk) are necessary and sufficient to test for all
s-a-1-faults. We give no representation with Karaugh-map here.

The method of covering a prime test chart is similar to the
covering of a fault table. But almost always, the size of a
prime test chart is small compared with the corresponding fault
table (see sect. 2.2).

5.5 Exixtence of Tests

Theorem: The set T of a-tests and b-tests detects all multiple
faults in the two-Tevel AND-OR-network, where all

¢

a-tests are of the type 3 € pj . ,] 51
i=1
1#J

(4
b-tests are of the type b, e pi, l i P,
Jk Jk =g 1

and all

5.6

Proof: We consider only the inputs Xy If‘any s-a-0 or s-a—1;

occurs in one of the inputs, it will be detected by the tests T.
If any inpUt is SQaf1, its effect is to add a subcupe p?k to the
switching function. This subcube can only be deleted (i.e. the
subcube will be with an undetectable fault s-a-1) if a s-a-0-
faults on an input to the same AND-gate occurs.

This s-a-0 fault cannot be "masked" by another s-a-1 fault

at the gate:

From x1.x2..1i1.. 012.. an we get the vanishing of the

prime implicant, therefore it will be detected by an a-test.

A s-a-0 at an input to an AND gate causes the prime implicant

pj to vanish. The pj is tested by a single a test. If, however,
this a test (minterm) is included at the same time in an adjacent
subcube added to the switching function as a result of some s-a-1
fault, it will not detect the "vanished" prime implicant. The
s-a-1, however, will be detected by the b-tests.

In all other situations the a test will detect all s-a-0 faults.
The a-tests and b-tests together detect all multiple faults, but

not necessarily a or b-tests alone. []

This proof has been presented in /1/. Here the proof has been
simplified to some extent.

Relation to Diagnosis Procedures

To apply our concepts correctly to Diagnosis Procedures
(introduced in sect. 4) some relations will be outlined:

There is a close correspondence between

1. a-Tests (for s-a-0 faults) and a-Diagnosis Procedures
(for failure diagnosis of systems represented by fault trees),

2. b—Tests (for s-a-1 faults) and b-Diagnosis Procedures (for
diagnosis of subcubes adjacent to system failure).

Clearly, all the techniques from a and b-Tests, also in
relation with search for prime implicants (or min cubes)
can be applied for automatic diagnosis of systems. This
will be shown in more detail in our next section.

— 83 —

Examples with Various Fault Trees

6.1 Subsystem of Automated Laboratory

6.2 Standby System with Motor

6.3 Failure of Reéidual Heat Removal System
6.4 Nitric Acid C061er

6.5 An illustrative Fault Tree

6.1 Subsystem of Automated Laboratory

Here we regard the photometer and conductivity measurements,
which have been discussed in more detail in /18/, as a first

example (Fig. 25).
Wasser Alkohol
zur Reinigung zur Reinigung

Ho0 CH30H Abluft
'dh 2
Vi
“D}@] V3
A — B
@ = 1 IUj F7% Leitfahigkeits-
//,/,% mefizelle >D .
ruck-
luft
phg— "
V2
Vi
a
L&
PUL U v7
L2 5D k
ruck -
..... ’ | m VB luft
EKUVZ 1 Y A
Mehkivette IPTRl

Probentransfer (PTR)

Fig. 25 Vereinfachtes Apparateschema (Schematic diagram of automated

photometry and conductimetry system /18/).

In a schematic diagram this device is shown. Then a subtree
leading to the event "Error in a photometer measurement" is
show. From the related structure function we get

- a-tests and
- b-tests.

Component failures (Inputs), Fig. 26.

Vib, V2B, V3a as well as PU1 (full), V8a, L4 indicate failures

in the components of the device. Note that for the analysis step
No. 5 (cuvette filled) (see /18/, /19/) two min cuts may lead to

a measurement error. Note that this event only reduces availability
(not the safety) of this device. A fast diagnose is desirable to
reduce unavailability.

Measurement error
of photometer

£ £

| |
V1b V2b V3a PUT VBa L&
(filled)

X1 X9 X3 Xy, Xg X

Fig. 26 Fault Tree

The structure function is:
® = X XoXg + XgXcXe
We get as a-tests:

p. 123456 123456
3; Mlmmm —eml 1]

111000 1 0
000111 0 1

If two min cuts are possible causes of measurement error,
we can exactly locate the failed component.

We get as b-tests:

Py = XqXoXq 123456 123456
111---

X - o e

Phy k=1 011 by, 011000
101-=-- 101000
110--~ 110000

Py = XgXpXg —==111

X - -

Poy k=1 011 by, 000011
~--101 ~ 000101

---110 000110

Thus we can detect all states which are adjacent to system failure.
This is still much better than stop the device for any single failure,
which considerably decreases unavailability. Moreover, this leads to
a systematic search for all states adjacent to system failures in the

whole operation of the device.

6.

2

Note: This test set can be used for the whole photometry and
conductivity measurement subsystem (see also /18/).

Efficiency: For n = 6 inputs we have

i multiple faults (including single faults), i.e.
391 = 7.28 + 10°

A1l are automatically contained in the Lists for a-tests and b-test.

A Standby System with Motor

This system is reproduced in the literature /20/. It has been used
for fault tree analysis.

: Push buttons
Switchl
__oq./‘--

Battery‘_'— SWI‘Ch 2

-

Motor

Fig. 27 Standby system

We describe this system shortly: Assume, the system is a standby
system that is tested once every month. It consists of a battery,
two switches in parallel, and a motor. To start the motor, two push
buttons are pressed to close the two switch contacts 1 and 2. To
stop the motor at the end of test, two push buttons are depressed.
Perjodically, say every six months, the operator must recharge the
battery and perform routine maintenance on the motor.

We have the following fault tree which describes the failure of the
motor to start on request.

f
A
X1 X2
B
C_ N | F
)l(y XB
X3 Xy X5 Xg L4
Xq H
(Battery
discharches)
X0 1 *12 X133 X4,

Fig. 28 Fault Tree

X12

— 89 —

Next we give the structure function.
By a top-down algorithm we find the min cuts.

f = Xq o+ B + Xo

= x1+C+F+x2‘

= x1+D E+")(7+G.+’x2
= Xy + D E+ Xy 4 Xg o H+ Xg#+ Xy
=X F Xy Xg + Xg +D .« E + Xg ° H
= Xy + Xy o+ Xy + Xg

t Xy o Xp ok Xg oo Xk Xg ot Xp o+ Xg ¢ Xg
1o ¥ X9 X1p X9 ® Xy
X137 X9 * X4

We give a list of the min cuts, also describing the related
failure combinations. |

10

12

13

Min Cut Set

{1}
{2}
{7}
{8}
{3,5}

{3,6}

{4,5}

(4,6}

{9,101}

{9,111}

{9,12}

{9,13}

{9,14}

Description of failure combination

Motor fails to start

Inadequate maintenance of motor
Dead battery (primary failure)
Operator fails to recharge battery

Switch 1 contacts fail to close
Switch 2 contacts fail to close

Switch 1 contacts fail to close
Secondary failure of switch 2

Secondary failure of switch 1
Switch 2 contacts fail to close

Secondary failure of switch 1
Secondary failure of switch 2

Battery operates sufficiently long
to discharge
Secondary failure of switch 1

Battery operates sufficiently long to
discharge
Switch 1 contacts fail to open

Battery operates sufficiently long to
discharge
Operator fails to depress push button

Battery operates sufficiently long to
discharge
Switch 2 contacts fail to open

Battery operates sufficiently long to
discharge
Secondary failure of switch 2

List with failure combinations

a-Test

Prime Implicants

2 3 4 5 6 7 8 91011121314

1 .

— N M < IO

2 3 45 6 7 8 91011121314

1

Minterms

w

[}

L [}

3 [72]

— o]

. —

(~] (8]

Y (7]

[]

<) L

— (8]

(o) = -

< e

- 2 ©

wv . " Y4
o O O O O O o o
o O O O O O o o
o O O O O O O o
o O O O O O O O
O o O O o o o o
o O O O O o O O
O O O «— O O O O
O O — O O O O O
O O O O O ~— O «—
O O O O «— O «— O
o O O O O O «— <=
O O O O «— «— O O
O — O ©O O O O o
— O O © O O o o
— N N < W0 W M~ 0

[$)
o
> s
S @
Q <
0O
2 wn
o
O T
o O O O <«
O O O «— O
O O - O O
O — O O o
— O O O o
o= — T < @
o O O o o
o O o O o
o ©C O O o
(4N]
o O O o o
o O O O o
-—
o O o o o
<
Q
O O O O O @ 4
o
=
O O O O O 9w
Y O — N ™M
~— — =

precisely located.

The cuts Py causing the defect can be

b-Test

P1sP2sP3sPy are single Failures: b-test not applicable

1T 2 3 45 6 7 8 9 10121314

Ps = X3%, I I
X
Pok K= - -0 -1 - - -
2 - -1 -0 - - -
Pg = X3%g SR B B
X
X, k=1 T T
6k "3 - =l = =0 - -
Py =Xge % - - = 11 - -
X
p kst =% -0 1 - - -
Tk 2 - = =10 - - -
Pg = Xg%g SR B
X
p kst . - = =0 - 1 - -
8k 2 - - -1 -0 - -
P9 = X9¥10 tr- - - -
X
Pok k=1 0 1 - - - =
2 1 0 - - = =
P10 = XgXq1 0 -1 - - -
-
X kel 0 -1 - - -
ok ’ R S
P11-= %9%42 - -1 -
X
Plik k=1 0 - - 1 - -

1

2 3 4 5 6 7 8

9 10 11 12 13 14

faults, 1i.e.

322 1 = 3,138 . 10'0,

P1o = XgXq3 b= te
X

p k=1 0 - - -1 -
12k 2 1" = - - 0 -

P13 = XgXq4 oo
-)

p k=1 0 - - - -1
13k 2 1T - - - -0

Efficiency: For n = 22 inputs we have 3" multiple

A11 these faults are adtomatica]]y covered by the 1ists
for a-tests and b-tests.

6.3 Failure of a Residual Heat Removal System (RHR)

We have this System /21/, represented by a fault tree.
The undesired event is "RHR- Toss of isolation".

RUR

Fig. 29 RHR fault tree: restructured TOP.
(RHR, Residual Heat Removal)

The structure function is:

® = AZ ® A4 . A10 42 Min CUtS
+ A, « Ag ¢ A 4 " "
z 78 10 - 84 Min Cuts
n H
+ A2 e 9 . A10 14
+ A2 « 10 A10 14 " "
+ A2 ° A4 o 21 6 " "
+ A, o Ag o 21 2 v
2 '8 = 12 Min Cuts
+ A2 e 9 . 21 2 " "
+ A2 « 10 - 21 2 " "
96 Min Cuts
where A2 =1 + 2
A4=((3+4)5+6) o 7
A8 =7 +8
A1O= 11 « (12 + 13 +((14 + 15)16 + 17 + 19 + 20) «18) .

For simplicity, we restrict the tests to A10(F023 OPEN).

Structure function for A10

Arg F023 OPEN
= A At Ay Ay + Ay
App = 11012
App = 11 - 13
Apg = A+ 11+ 18
Ay =R+ 17 CONTROL SIGNAL TO F023

Mg = Ag 16

Mg = 14 + 15 INTERLOCK 2 PERMISSIVE

I
1t

11((14 + 15)16 + 17)18

13
A17 =11 « 18 « 19
A18 =11 .18 « 20
A10 = 111241113+11((14+15)16+17)18+111819+11.18+20
= 111241113411 14¢1618+11215+1618+111718+11-18-19+11.18-20
a-Test

Min Cuts ¥ 11 12 13 14 15 16 17 18 19 20

~N oYy O BN -
i U e G
]
]
]
—_
—_
]

Minterms a. 1112 13 14 15 16 17 18 19 20

]
1 ' 10000000 0 Ay
2 1 010000000 Aty
3 1 001 010100
4 1000110100 As
5 1 00000110 0
6 1 000000 1 10 Ay
7 1 0000001 0 1 Arg

A6

Ars

Mg

Here is also information on subsystems (A16’ A15, A14) avaible.

We get more details than the mincuts alone.

321

10

-1 =1.046 « 10 "~ .

A1l these faults are automatically covered by the lists for a-tests and b-tests.

b-Test
X .
pj and pjk Minterm bjk
111213 14 15 16 17 18 1920 11 12 13 14 15 16 17 18 19 20
P = X440 Y- - - - ="
P k=1 01 - - - - - - - - 0010000000 0
2 10 = = = - = - - - 1 0000 0O0U0O0 0
P2 = X44%13 1 -1 - -
phy - k=1 0 - 1 = = - - = - - 0010000000
2 1 =0 - = = = - - - 1 00000000 O
p3 = X11X14X16X18 1 - = 1 - 1 = 1 = =
P k=1 0 - = 1 =1 - 1 - - 0001010100
2 | - =0 -1 -1 - - 1 00001010 0
3 | = -1 =0 -1 - - 1 00100010 0
3 = -1 -1 -0 - - 1 001010000
Py = XX95¥9g%9g 1 - - - b =T
P k=1 0 - - =1 1 -1 - - 0000110100
2 { - - =01 -1 - - 1 000010100
3 | = - =10 -1 - - 1 000100100
4 - - =11 -0 - - 1 000110000
p5 = X11X17X18 1 - = = - - 1 1 - -
Pry= k = 1 0 - - = = - 1 1 - - 0000001 100
2 { = = - = =01 - - 1 000000100
3 I 1 000001200 O
P6 = X11%48%9 -
Py K = 1 0 - = =~ = = ~ 1 1 = 0000000110
2 S A 1 00000001 0
3 | = - - - - - 10 - 1 00000010 O
P77 *11%18%20 I T
phy k=1 0 - - = = = =~ 1 - 1 000000001 01
2 | = = - = - =0 -1 1 0000000 0 1
3 I 1000000100
Efficiency: For n = 21 inputs we have 3N-1 multiple faults, i.e.A

HRO 3
(HOT)

6.4 Nitric Acid Cooler

We consider a subsystem from chemical industry which cools in
a process hot nitric acid (HNO3) with a temperature feedback
and a pump-shut-down feedforward. This has been analyzed by
Lapp and Powers /22/.

COOLING WATER
(OUTLET)

ool o _ o .

BAAAYAYAYAYAYA o | B = |
| TEMPERATURE (REACTOR)

! @ SENSOR
|
|

TEMPERATURE

b 7 @ CONTROLLER

L

COOLING

WATER

Fig. 30 Block diagram for nitric acid cooler

1. We 1ist the components of this system giving:

- possible inputs and outputs and
- possible failures

These may be translated into a fault table. But we will have
a simpler way to deal with diagnosis by means of a-tests and
b-tests.

2. Then we give a flow diagram for the possible processes including
faults.

3. This leads to a non-coherent fault tree.

4, We get then the usual prime implicants and tests (again for a subtree).

— 99 —

@ TEMPERATURE @

. SEHSOR &

-2 { T
h

Fig. 31 Input-Output Models

$S320Ud 42[007 pLOY OLJLLN 40} weaberq moL4 g€ ‘b4

L11{0) -10
S SS
L Pump shuidown 7 ™ e
DI IV IIIY4 men o 0
f b reversed valve
aclion
=10
¥
P9 f
+1
P10

{valve)e

/]'

S

Ext.fire ,

loc. III,/

VDY

®

-1
reversed
action

+1

confroller broken

' &

valve

d

Loss of 7

A

/;irpres&

(L.

con&uuer

gclion
reversed

semsorbroken

+1 P1
M2
M3
+1

a

{valvea}

<1

+1] T
12
a
/
g?;x{?}f:e’ (:)
//loc.ljjf/
/2L

— 00 —

1 2094 80 § 1 39vd mO 1
Ol INO YAIFHVEL Ol 1IN0 Yzasxuvyl
]

]
0ALVAILOVHI

€1 2MIAT Tvwind 144 LMIAD Twwidd

131 Lu2AT Twnldd

— 101 —

$03A3 IVUIES 1

IUIAI TUWINS

1 BaGuna IL¥d
]

L[€3]}

VADAVHIRD LW3d Aud

W2 Benivyddwid

oIJv Jludis woim

IR0 (1o} ¢ 3¥ 3814 o) 12 (10} 14 ITICLLHTD
¥ILVA SW1100d 40071 TGEAN0I ' ' 1 i 1
#l 3ISWIVIIG JHNIVEILUBL 1] 1]]
1 1] [}] 1 1]
1 1 i i [] i)
4 §] 1 1 1 H
i ' i
¥o ¥0 o
-4 u3auns AIvd [4 Yaguwne 33vD ¥3GuNa AIVD
; ! 13 MDA TVMING t
€3 WISVINIAL 19 #OI&DY d3$YIAIY G3IVATLIVHI
S3ouvERnLsIa 5u123344% (1- 40 311083403 2007 1043803
SISSV4 B0 SADHYNAZ o) SIDEWEENISIC H 3YNIVYI4NIT
4007 10UaN0D Trueos ' 1
] t i [
1 4
]
i 1
anNY B0
14 wIawtn 33v2 [wIGHOHE JLVD
! AT TUsIg] .
€3 JNISVIURN1 4007 : !.u::.. g 14 Ju1gY3vIBA
ICYIRGD UONCURL (4277083800} $236VAUNASIY
$5v4 SIMVBUNISIQ 39ASIUY IV w07 S3SSV4 WO BIBOVWD
Y TR0 [3007 304IR0D
§ t
i 1 1
1
‘ T 3994 w0 ¢ T 29vd ®O 2V 1 3%vd w0 €1 ony
03 1IN0 YISuVEL 04 100 EIiSaVEL 03 400 WBISHYS 11 u3ISUDA $IVD
§] ! 1 (1 3u2A7 TWWIGE v 4342 Tenied 4 MSAS Teuisd 1 6 iazal TwWidd JuIAS TWWIEd
oy Sm1gvIud2d [EIE7REL T wALSAS 1-) 914 HOIAIY 03SY3AIY [1383] 14 SMITYIISG 36071 azsome 11 3wl ©3693a3d 1 3ATVA
] 23 wSuniS10 4001 308LE0D 0ROGEONS O1DY i UITIOUIN0D U1y laswunaliswul 1081800 RONCURE 1 [
$258v4 8O $BSAVY EBAIVIBANIE Jiusla 30 JBNTIVS 1 1 40 3507 21374¥0D $5¥é $3JUVEUNISIA 1 1
[] 4007 2083203 i %118 WROGHNES dund " 1 i TVatoa 8 s
1 i] 1]]] 3 1 i
§ i ' ' ' ' i 1 1 [
— '] 1 $
%0 %0 80 20
_ & usluma 33vD 91 waguin IIVS o1 vatuna 31v2 ?1 @aguna 33vD
' . 1 $ 2u3A3 TWMING 1 L IM3AZ TVNINE]
on 2uISVINIA gw DWILIDIAY QIEUBALY S BATYA ((1-) 4) 3AWA BEOOANS JEAd 0014 QI JI8LIM
_ S30VAUNISIQ 833%v0BALE 1S 1 081803 YRIVA 8 4798 02 37Iva
$I5594 B0 GIJWwRHD 1 i 211000 %L WO 1 WB3GAE RROQLHAE
§ 007 WOBLIOD '] u-..anu_“._ BIY 201] aI>y dtedln
' 1 |] 1
— s i 1 [' H
H 1 1
— asny w03 say
] ulRMNn IV I3 ¥3AuON 31w (41 BISHOA IIYH
. i 1 61 1m3AZ Tvwisd i $1 IM3IAI IvMINE L83A3 TYHiBd 1 2u3A2 TVRING
On Sm1SY3uI3A 4001 9w WisviEdae (81~) 014 ®BLEAB {810} g1+) 12 [TIG
ICALHOD HONOUKL $22UvEUNISIC 3 RROVINNE TIIV T uv 39ld IV] [
— $5Y4 3234v0ENi510 S358Y4 WO SIBNYD ' JI81IR 40 FUOIIVA 1 i]
TYeEOn 4007 T0UINGD -1 uiln EXCALANE Jund 1 3 1
[i] [1]]
i ' 1] ' ’ ' 1
| _ :
%0 0
- $ -nn!.. FI) $ uIemna IIvd
1
3LvaaNd 13 SHIgvIddN1
i usiva SuI1003 4007 7023803
ul 35Y383E0 WONOURL S8V
[" SIDHVRUNISIA IV
1
! ' ¢
-
]
60

Fig. 33 Fault Tree for Nitric Acid Cooler

618¢

67

— 102 —

6'S A1

X10 |
A2 A3@Gl3

AB G14

. ga%m. A5 6%, X

X3 X¢

| GUFL\AB

]

A9

Xy X2 Xy

A7 is

Fig.34 Subtree

— 103 —

Structure function of a non-coherent structure

(We use the top down algorithm, which here gives all prime implicants,
but not for non-coherent structures in general.)

o = A2 + x10 + A3
= Agp + Ayt Xt Xy o Ag
= Ay . Yg +'K; ' Xg (EXOR)

a-Test

Prime Implicants

P4 12345678910
1 T---10---=-
2 -1 -=-10--- -
3 -=1-=-0-=---
4 e N
5 0000-1--- -
6 --0001----
7 e e e e oo 1
8 - 11 - -
9 e e e e 1 -1 -
Minterms

as 12345678910
1 TO000710

2 010010

3 001000

4 000100

5 000011

6 110001

7 000000000 1
8 1100
9 1010

*)

b-Test for G5'

— 104 —

of nitric acid cooler

12345678910 12345678910
Py = XqXgXg 1-=-=-10---- 32168 4 2 Decimal
X
P1k k=1 0=-==-10=-=~-- 010010 18
2 1 =-==00---- 100000 32
3 f-==-11==-- 100011 35
Pp = XoXeXg -1 -=-10----
pgk k=1 =-0--10=-=-- 100010 34
-1 --00--- - 010000 16
3 -1-=11-===- 010011 19
Py = Xg¥ S I I
P3y k=1 =--0--0---- 000100 4
2 e e e] 001001 9
Py = Xg%g - -1 -0----
Pak k=1 ---0-0-~-- 001000 8
L BT S 000101 5
Pg = XqXoXgXsXe 0000-1----
pgk k=1 1000-1=---~- 10000 1 33
2 0100-1---- 010001 17
3 0010-1=~--- 001011 1
4 0001 =-1=---- 000111 7
5 0000-0-=-- - 000010 2
Pg = §3§4§5X6 --0001----
pgk k=1 ==1001-=--- 011001 25
2 -=0101---- 100101 37
3 -=-0011=--- 110011 51
4 --0000- - - - 110000 48

We use a decimal numbering to check, if any of the bjk is also

included in more than one adjacent cubcubes. If this is not the

case, all adjacent states can be identified.

— 1056 —

78910 12345678910
Pk k =1 01 - - 0000000100
2 10- - 0000001000
Pay k=1 0-1- 0000000010
2 1 -0 - 0000001100
Pg = X1g
Note: * For Pg> which is a single failure, no adjacent
subcubes exist.
Efficiency: For n = 24 inputs we have 3N- multiple

faults, i.e. 32% 1=2.824 . 101,

A11 these faults are automatically covered by the lists for a-tests
and b-tests.

— 106 —

6.5 An illustrative Fault Tree

We are presenting a fault tree which has been already analyzed
in sect. 1.7. (see /11/).

This fault tree is used for some research in simulation, where
the system is not represented by software, but by hardware

(e.g. with a s-o-p-representation, using diode logic /23/, /1/).
It is important to check this hardware in two respects:

- It 1is necessary to validate that the diode logic represents
the original fault tree (This will not be discussed here).

- It is also necessary to test, whether there are any s-a-0
or s-a-1-faults in the diode logic. If there were any faults,
this could seriously affect the simulation result.

Here is another, more direct application of the a-tests and
b- tests.

The min-cuts for the following fault tree have been calculated
by the bottom up algorithm (sect. 1.7).

TOP EVENT| 1001

1002 1003

]
| O]
~ny

1004 1005 1016 1017

1007 1012 — 1013 1018 1019 1024

Fig. 35 Illustrative Example of Fault Tree.

— 107 —

Assume, we can get the outputs from E1, E2 separately. Then
we get the following tests:

o = 2¢3 + 205 + 146 + 3610 + 3+6¢14 + 89413 + 1016 + 5+10:11
1

(similary we get o).
2

List
No. min cut

1 23

2 25

3 16

4 34610
5 3614
6 89413
7 10-16

8 51011

a-Tests (subtree E1)
Min Cuts Pj 1 2 3 4 5 6 7 8 9101112 13 14 15 16

1 S N T
2 - 1T -=-1-=- - - === - - - = -~
3 T - - = =-1 - = - - - - = - = -~
4 - -1 - =1 =-=- -1 = = - - - -
5 - -1 --1-=-=-=- - - -1 - -
6 - - - - - - =11 - =- -1 - - -
7 T B T R T
8 - - - -1t - =-=-=-11 - - - - -
Minterms aj 2 3 45 6 7 8 9101112131415 16
1 c *+100O0O0OO0OOCOCOTOTOTOD0TO0TO
2 61001 0O0OOOOOUOTO0TO0CO0O
3 1T 00O0O0OT1TO0OO0OCOOOOTOOO0DO
4 0o o0o10010O0O0CTO0OOUOTU OO 0T@D
5 0o 017001 0O0O0OO0OTOCOTONIT 0O
6 0o 0 000 0O0OT1T1T O0O0O0OT1TUO0OCO0TO
7 0o 00 0O0OOOOTYTOOUOTU OO 1
8 o00O0T1TO0OOCO0OTOCTTOOOT® OO

Similary, we get a-tests for subtree E2_

— 108 —

b-Tests (subtree E1)

X
pj and pjk ajk

1

234567891011 1213 14 15 16

1234567891011 121314 15 16

p1 -11
I - - - - 01
S| U 10
p2 -1 =--1 ‘
-0 - -1 00 1
-1 --0 01 0
p3 1"'"—_1
0 - - - -1 0 1
1----0 1 0
pg -t 1---1
0--1---1 0 1 1
1-=-0---1 1 0 1
1--1---0 1 1 0
P (I e
0-=-1==== = = = 1 0 1 1
1 =~0---- - - =1 1 0 1
(R - -0 1 1 0
Pg 11- - - 1
01 - - - 1 01 !
10- - - 1 10 1
11- - -0 11 0
Py 1 - - - - =
0 - - - - - 1 0 1
1 - - - - -0 1 0
Pg 1----11
0----11 0 11
| === =01 1 01
f === =10 1 10

Similarly, we get b-tests for subtree Es.

— 109 —

Efficiency: For n = 20 inputs we get 3" 4 multiple faults, i.e.
320_ 1 - 3.487 . 10°.

A1l these faults are automatically covered by the lists for a-tests

and b-tests.

— 111 —

References

/1/

/2/

/3/

/4/

/5/

/6/

/7/

/8/

/9/

Z. Kohavi, SWitching and Finite Automata Theory
Mc Graw-Hill Book Company, New York 1978

J. P. Hayes, Computer Architecture and Organization
Mc Graw-Hill Book Company, New York 1978

K. E. Iverson, A Programming Language
John Wiley and Sons Inc., New York 1962

B. Girling, H.G. Moring

Logic and Logic Design

Intertext Books, International Texbook
Company Limited, 1973

V. T. Rhyne, et al.

A new Technique for the Minmization of Switching Functions
IEEE-Trans. on Computers

Vol. C-26, pp. 757 -763 (1977)

M. Davio, J.-P. Deschamps, A. Thayse
Discrefe and Switching Functions

Mc Graw-Hill Book Company,

New York 1978

R. J. Nelson, Simplest Normal Truth Functions
J. Symbolic Logic, Vol. 20 pp. 105-108, (1954)

B.L. Hulme, R. B. Worrell

A Prime Implicant Algorithm with Factoring
IEEE-Trans. on Computers

Vol. C-24, pp. 1129-1131 (1975)

J. B. Fussell, W. E. Vesely
A new Methodology for obtaining

Cut Sets for Fault Trees

Trans. Amer. Nucl. Soc., Vol. 15, pp. 262-263,
June 1972

— 112 —

/10/ R. G. Bennetts
On the Analysis of Fauit Trees
IEEE Trans. on Reliability
Vol. R-24, pp. 175-185 (1975)

/11/ K. Nakashima, Y. Hattori
An Efficient Bottom-up Algorithm for Enumerating
Minimal Cut Sets of Fault Trees
IEEE-Trans. on Reliability, Vol. R-28 pp. 353-357
(1979) ‘ :

/12/ M. A. Breuer, A. D. Friedman,
Diagnosis & Reliable Design of Digital Systems
Pitman Publ. Ltd., London, 1977

/13/ J. D. Murchland, G. G. Weber
A Moment Method for the Calculation of a Confidence
Interval for the Failure Probability of a System
Proceedings of 1972 Annual
Reliability and Maintainability Symposium, San Francisco,
pp. 565-577

- /14/ R. E. Barlow, F. Proschan

Statistical Theory of Reliability and Life Testing
(Probability Models)

Holt, Rinehart and Winston Inc., New York, 1975

/15/ U. Hofle-Isphording
Zuverldassigkeitsrechnung
Springer Verlag, Berlin, 1978

/16/ VDI Richtlinie 4008/Blatt 7
Strukturfunktion und ihre Anwendung
(Entwurf), Verein Deutscher Ingenieure, Diisseldorf 1979

/17/ S. C. Lee, Modern Switching Theory and Digital Design
Prentice-Hall Inc., Englewood C1iffs,
New Jersey, 1978

/18/

/19/

/20/

/21/

/22/

/23/

/24/

/25/

— 1183 —

I. Kohavi, Z. Kohavi,

Detectionof Multiple Faults on Combinational
Logic Networks

TEEE-Trans. on Computers, Vol. C-21, pp. 556-568
(1972)

G. G. Weber

Untersuchung des Zusammenhangs zwischen Fehlerbaumanalyse
und Storfallanalyse am Beispiel des Photometer-Leitfahig-
keitsmeBstandes, KfK 2909, Februar 1980,
Kernforschungszentrum Karlsruhe

D. Stockle,
Unpublished Results

H. E. Lambert

Fault Trees for Decision Making in Systems Analysis

(Ph., D. - Thesis), UCRL-51829, University of California,
Livermore, 1975

S. L. Salem, G. E. Apostolakis, D. Okrent
A new Methodology for the Computer-Aided
Construction of Fault Trees

Ann. of Nucl. Energy, Vol. 4, pp. 417-433,
Pergamon Press 1977

S. A. Lapp, G. J. Powers

Computer Aided Synthesis of Fault Trees .
IEEE-Trans. on Reliability, Vol. R-26, pp. 2-13, 1977
and

S. A. Lapp, G. J. Powers

Update of Lapp-Powers Fault-Tree Synthesis Algorithm
IEEE-Trans. on Reliability, Vol. R-28, pp. 12-15, 1979

S. Fenyi
UnpubTlished Results

K. Nakashima

Studies on Reliability Analysis and Design of

Complex Systems,

PhD- Thesis, KYOTO UNIVERSITY, Kyoto Japan, March 1980

/26/

- 114 -

W. Gorke,
Generating Tests for Functional Expressions in
Self-Diagnoses and Fault-Tolerance, Proceedings,

Mario Dal Cin, Elmar Dilger (Eds.)
Attempo Verlag, Tiibingen 1981

