FR2-In-pile-Versuche zum LWR-Brennstabverhalten mit elektrisch beheizten Brennstabsimulatoren

M. Prüßmann, E. H. Karb, L. Sepold Hauptabteilung Ingenieurtechnik Projekt Nukleare Sicherheit

Kernforschungszentrum Karlsruhe

KERNFORSCHUNGSZENTRUM KARLSRUHE

HAUPTABTEILUNG INGENIEURTECHNIK PROJEKT NUKLEARE SICHERHEIT

KfK 3255

FR2-In-pile-Versuche zum LWR-Brennstabverhalten mit elektrisch beheizten Brennstabsimulatoren

M. Prüßmann

E.H. Karb

L. Sepold

Kernforschungszentrum Karlsruhe GmbH., Karlsruhe

Als Manuskript vervielfältigt Für diesen Bericht behalten wir uns alle Rechte vor

Kernforschungszentrum Karlsruhe GmbH SSN 0303-4003

Zusammenfassung

Der vorliegende Bericht faßt die Ergebnisse der In-pile-Versuche mit elektrisch beheizten Brennstabsimulatoren zusammen. Die Simulatorexperimente wurden als Referenzversuche zu den In-pile-Versuchen mit Nuklearstäben unter gleichen Randbedingungen, im selben Versuchskreislauf (DK-Loop des FR2-Reaktors) durchgeführt. Mit den Referenzversuchen sollte untersucht werden, ob die Mechanismen des Brennstabversagens bei elektrisch beheizten Simulatoren die gleichen wie bei den Nuklearstäben sind. In beiden Versuchstypen wurde die 2. Aufheizphase eines Kühlmittelverlust-Störfalls simuliert.

Acht Transientenversuche mit Simulatoren wurden durchgeführt. Darin wurde der Stabinnendruck im Bereich von 20 bis 120 bar als Parameter variiert. Die Berstdaten, wie Bersttemperatur und Berstdruck, fallen in den Bereich der Nuklearstabdaten. Das gleiche gilt für die Berstdehnungen sowie für die Stabverformungsprofile der Simulatoren. Somit läßt sich kein Einfluß der nuklearen Parameter auf das Brennstabversagen erkennen.

FR2 In-pile Tests on LWR-Fuel-Rod Behavior with Electrically Heated Fuel Rod Simulators (BSS Series)

Abstract

This report summarizes the results of the in-pile tests with electrically heated fuel rod simulators. These simulator experiments were performed as reference tests to the nuclear tests under identical boundary conditions and in the same test loop (DK loop in the FR2 reactor) that was used in the nuclear tests. The objective of the reference tests was to answer the question if the mechanisms of fuel rod failure were different for electrically heated simulators from those for nuclear fuel rods. Both type of tests were to simulate the 2nd heatup phase of a LOCA.

A total of eight transient tests within the BSS series were performed. As parameter the rod internal pressure was varied between 20 and 120 bar. The burst temperatures and burst pressures lie in the range of the burst data obtained with the nuclear test rods. The same holds for the burst strains and deformation profiles of the simulators. Thus, the test program did not reveal an influence of the nuclear parameters on fuel rod failure.

In	naltsverzeichnis	Seite
1.	Einleitung	1
2.	Aufbau des Brennstabsimulators (BSS)	2
3.	Daten der Brennstabsimulatoren	4
	3.1 Allgemeine Daten der BSS	4
	3.2 Hüllrohrvermessung	4
4.	Versuchsablauf	9
5.	Versuchsdaten	10
	5.1 Messung der Versuchsdaten	10
	5.2 Kühlmitteldaten	12
	5.3 Prüflingsleistung	12
	5.4 Prüflingsinnendruck	23
	5.5 Hüllrohrtemperaturen	23
	5.6 Berstdaten	24
6.	Zerstörungsfreie Nachuntersuchungen	25
	6.1 Durchstrahlung der Stäbe	25
	6.2 Fotodokumentation	28
	6.3 Vermessung der Prüflinge	28
	6.3.1 Rißabmessung und Rißlage	28
	6.3.2 Durchmesseränderung und Umfangsdehnung 6.3.3 Krümmung des Stabes und Exzentrizität	29 33
	der Beule	•
	6.3.4 Volumenzunahme des gebeulten Stabes	35
7.	Zerstörende Nachbestrahlungsuntersuchung	38
8.	Literatur	39
n h a	ng I: Meßwerte vor Auslösung der Transienten, BSS 12, BSS 21 bis 26 und BSS 28	151 - 159
nh a	ng II: Schnittpläne für die Probenherstellung in den Heißen Zellen, BSS 12, BSS 22 bis BSS 28	161 - 168

Verze	ichnis der Abbildungen	Seite
1.	Aufbau des Brennstabsimulators (BSS)	40
2.	Schematischer Aufbau des Brennstabsimulators (BSS)	41
3.	Vermessung von Hüllrohren der BSS-Versuchsstäbe	42
4.1- 4.7	Circumferential Cladding Thickness Distribution (as Received) Presented as Differences from the Nominal 0,725 mm, Tests BSS 21, 22, 23, 24, 25, 26, 28	43 - 49
5.	DK-Loop am FR2. Stark vereinfachtes Kreislauf- schema	50
6.	Versuchsablauf, Schema	51
7.	Cladding Thermocouple (Schematic)	52
8.	Prüflingsleistung NA und axiales Leistungsprofil $\dot{q}_{(z)}$, Versuche BSS 12, 21 - 26 und 28	53
9.1- 9.7	Druck im Prüflingsplenum Versuche BSS 12, 22 - 26 und 28	54 - 60
10.	Schema zur Definition von Bersttemperatur und Berstdruck	61
11.1- 11.8	Axiales Temperaturprofil Versuche BSS 12, 21 - 26 und 28	62 - 69
	Hüllrohrtemperaturen T 131 bis T 136 Versuche BSS 12, 21 - 26 und 28	70 - 77
13.	Temperaturdifferenzen der Hüllthermoelemente mit unterschiedlicher Platinhülse bei 600 bis 900 °C (Transiente)	78
14.	FR2 In-Pile Single Rod Tests in Steam Burst Temperature vs. Burst Pressure	79
15.1- 21.3	Neutronenradiografie und Winkellagen nach Versuch BSS 12, BSS 22 bis 26 und BSS 28	80 - 100

•

		Seite
22.	X-Ray Photograph of Ruptured Zone BSS 12	101
23.1- 24.7	Views of the Ruptured Zone BSS 12, BSS 22 bis 26 und BSS 28	102 - 115
25.	Typical spiral profile; posttest measured rod diameters of test A 2.2	116
26.1- 32.2	Polarmessung 1 und 2 BSS 12, BSS 22 bis 26 und BSS 28	117 - 130
33.	Circumferential Strain and Axial Power Profiles of the Electrical Rod Simulators	131
	Axial Profile of Circumferential Strain Test BSS 12, BSS 22 - 26, BSS 28	132 - 138
	Cross Section, Max. Circumferential Strain Test BSS 12, BSS 22 - 26, BSS 28	139 - 146
36.	Details of Rupture B, BSS 22	147
37.	FR2 In-Pile Tests, Max. Circumferential Strain vs. Burst Temperature	148
38.	Relative Volume Increase vs. Relative Circumferential Elongation	149
39.	Rod Volume Increase vs. Internal Rod Pressure Drop	150

.

	Verze	ichnis der Tabellen	Seite	<u> </u>
	1.	Daten der Brennstabsimulatoren	- 6	
	2.	Weitere BSS-Daten	7	
	3.	Abmessungen und Widerstände der BSS	8	
	4.	Anordnung der Hüll-Thermoelemente in den Versuchen BSS 21 - 26 und BSS 28	11	
	5.1- 5.8	Daten der Versuche BSS 12, 21 - 26 und 28	13 -	20
	6.	Results from Tests with Electrical Simulators	26	
	7.	Rißlage der BSS-Stäbe	28	
	8.	Ovalität im Beulbereich der BSS-Versuchsstäbe	30	
	9.	Circumferential strain data from rod diameter measurements, BSS 12, 22 - 26 und 28	32	
1	0.	Umfangsdehnung im Beulbereich der BSS- Versuchsstäbe	33	
1	1.	Krümmung der BSS-Versuchsstäbe	36	
1	2.	Exzentrizität der Beule bei den BSS- Versuchsstäben	36	
	3.1- 3.8	Tabelle der Meßwerte vor Auslösung der Transiente BSS 12, 21 - 26 und 28 (Anhang I)	151 -	159

1. Einleitung

Bei den im Rahmen des Projektes Nukleare Sicherheit abgewikkelten In-pile-Versuchen zur Untersuchung des Brennstabverhaltens bei Kühlmittelverlust-Störfällen in Leichtwasserreaktoren /1,2/ wurden neben den Versuchen mit vorbestrahlten
und nicht vorbestrahlten Nuklearstäben auch Referenzversuche
mit elektrisch beheizten Brennstabsimulatoren (BSS) durchgeführt. Zielsetzung war die Schaffung einer Basis für den Vergleich zwischen den Versagensmechanismen nuklear und elektrisch
beheizter Stabsimulatoren, die unter gleichen thermohydraulischen Bedingungen getestet wurden. Zu den 39 Nuklearstabversuchen wurden insgesamt acht BSS-Versuche unter weitgehend
gleichen Kühlmittelbedingungen im DK-Loop des FR2-Reaktors
gefahren. Der Reaktor war während der Versuche mit BSS außer
Betrieb.

Die Hüllrohre der elektrisch beheizten BSS entsprechen denen der Nuklear-Prüflinge und damit denen von Druckwasserreaktor-Stäben. Die beheizte Länge der BSS beträgt wie bei den Nuklearstäben 50 cm.

Der vorliegende Bericht faßt die Ergebnisse der Versuche mit elektrisch beheizten Brennstabsimulatoren zusammen. Insbesondere werden die Nominal- und die gemessenen Daten der Simulator-Prüflinge, die wichtigsten Meßwerte der Transientenversuche einschließlich des jeweiligen vorangegangenen Stationärbetriebes sowie wichtige Ergebnisse der in den Heißen Zellen nachuntersuchten Prüflinge dokumentiert.

In den folgenden Kapiteln wird zunächst das Heizstabkonzept, der Aufbau des BSS und der Versuchsablauf beschrieben.

2. Aufbau des Brennstabsimulators (BSS)

Die Abb. 1 zeigt den unteren Bereich des BSS vom Fußstück bis zu den in Kupfer übergehenden stromführenden Teilen. Das Fußstück des BSS entspricht in den radialen Abmessungen der Fußausführung des Nuklearstabes. Es ermöglicht im iDFR eine bewegliche Fixierung des BSS in axialer Richtung. In der Abb. 2 ist der schematische Aufbau des BSS im Bereich der Heizzone dargestellt.

Das Heizelement des beulfähigen BSS besteht im wesentlichen aus 2 konzentrischen Rohren, die gegeneinander mit MgO-Pulver elektrisch isoliert sind.

Das stromführende innere Rohr, der sog. Heizleiter hat eine beheizte Länge von 50 cm. Die Wandstärke des Heizleiters nimmt jeweils nach der Mitte der beheizten Zone hin ab und ist so durch 7 Leistungsstufen dem axialen Leistungsprofil der Nuklearstäbe angenähert. Zur mechanischen Stützung ist das innere Heizleiterrohr mit verdichtetem MgO-Pulver gefüllt.

Auf dem stromführenden äußeren Rohr, dem sog. Heizleitermantel aus Werkstoff Inconel 600, sind aus ${\rm Al}_2{\rm O}_3$ gefertigte Ringpellets angeordnet. Die Pellets simulieren den Brennstoff und dienen gleichzeitig als elektrische Isolation zwischen Heizleitermantel und dem indirekt beheizten Zry-Hüllrohr des BSS.

Die Stromzuführung und -rückführung erfolgen zentral am oberen Ende des BSS. Der Strom gelangt über einen ca. 5 m langen Kupferrundstab, der mit dem Endstopfen (Ni) oberhalb der Heizzone verbunden ist, zum stufenförmigen Heizleiter (Inc. 600) und wird über den unteren Endstopfen (Ni), den Heizleitermantel (Inc. 600) und über das oberhalb der Heizzone anschließende Rückleiterrohr (Cu) wieder zurückgeführt. Die Stromzuführung und -rückführung im oberen Teil des BSS sind gegeneinander mit ${\rm SiO}_2$ -Schlauch elektrisch isoliert.

Zwischen dem Zirkaloy-Hüllrohr und den Al $_2$ 0 $_3$ -Ringpellets einerseits und dem Heizleitermantel und den Pellets andererseits befindet sich jeweils ein Spalt von nominal (kalt) 0,05 mm.

Das Plenumvolumen des BSS wurde dem Plenumvolumen des Nuklearstabes angeglichen; es beträgt insgesamt 25 cm³ einschließlich der Toträume der Druckmeßeinrichtung. Das obere Plenum befindet sich am Ende der Ringpelletsäule, verläuft als Ringspalt über den Bereich der Druckfeder und endet 550 mm weiter oben an der Nahtstelle der BSS-Edelstahlrohraufhängung durch Verlöten des Ringspaltes. Der freie Raum unterhalb des Heizers im Fußstück des BSS stellt das untere Plenum dar. Das Plenum ist mit Helium gefüllt. Dieses wird über eine Druckaufgabestation an den Anschluß am Kopfende des BSS geleitet und von dort über eine fest installierte Kapillare an der Rohraufhängung in das obere Plenum. Der Einfülldruck wird entsprechend den Versuchszielen eingestellt.

An der Zirkaloy-Hülle im Bereich der Heizzone wird an sechs Stellen die Temperatur gemessen. Zur Verwendung kommen Thermoelemente, die wie bei den Nuklearstäben auf dem Hüllrohr angebracht sind.

Die erforderliche Heizleistung von ca. 3 kW für den beulfähigen BSS wird durch eine Stromversorgung von max. 100 Amp. und einer Spannung von ca. 30 Volt erreicht.

Aufgrund des Temperaturgangs des elektrischen Widerstandes des BSS wird die Leistung über der Temperatur nicht konstant bleiben. Deshalb wurde eine automatische Regelung vorgesehen, die diese Anderungen ausgleicht. Stellgröße ist die Versorgungsspannung, Regelgröße die elektrisch ermittelte Leistung. Die Sollwert-Einstellung geschieht über den Handsteller des digital einstellbaren PID-Reglers und über den Transduktor.

3. Daten der Brennstabsimulatoren

3.1 Allgemeine Daten der BSS

Die wichtigsten Daten der BSS sind in Tabelle 1 und 2 zusammengestellt, während die Tabelle 3 die Daten des elektrischen Heizstabes enthält, die zur Bestimmung des elektrischen Gesamtwiderstandes erforderlich sind.

3.2 Hüllrohrvermessung

Für die Auswertung der FR2-In-pile-Versuche, insbesondere zur Beurteilung von Rißlage und Ausmaß der Beule, wurden vor der Fertigstellung der Brennstabsimulatoren die Zirkaloy-Hüllrohre einer Sondervermessung unterzogen.

Die Sondervermessung wurde nach dem Ultraschallverfahren an der rechnergeführten Meßbank im Institut für Material- und Fest-körperforschung (IMF) vorgenommen und ist in /3/ beschrieben, ebenso wie die statistische Auswertung der Außen- und Innen-durchmesser sowie der Wandstärke der Hüllrohre.

Die Hüllrohre wurden auf einer Länge von 500 mm im Bereich der beheizten Zone – 210 mm von der Fußspitze beginnend – alle 20 mm in 26 Meßebenen exakt vermessen wie auf der Abb. 3 dargestellt. Ausgangspunkt für die Messungen am Umfang des Hüllrohres war die Kerbe am Konusteil des Fußstückes, die den Meßpunkt = 0° Umfangswinkel darstellt. Die Vermessung erfolgte alle 18° im Uhrzeigersinn bei Ansicht vom Fußstück.

Im Computer-Ausdruck wurden die Meßwerte Außen-, Innendurchmesser, Wandstärke und Meßebenenabstand von der ersten Meßebene "0" als Absolutmaß in mm angegeben.

Die Abb. 4.1 – 4.7 zeigen die Umfangsverteilung der Wanddicke der Hüllrohre vor dem Versuch, dargestellt als Abweichungen in μm im Nominalmaß 725 μm , in der Höhe der späteren Rißstelle. Für die geborstenen Stäbe wurden dabei die Mittelwerte der Wanddickenabweichungen von vier Meßebenen zugrundegelegt, die dem Riß am nächsten lagen, während bei dem nicht geborstenen Stab (BSS 21) die Mittelwerte aus allen Meßebenen angegeben wurden. Die Lage des Risses auf dem Umfang wurde ebenfalls in die Abbildungen eingezeichnet.

Tabelle 1: Daten der Brennstabsimulatoren

<u>Hülle</u> Werkstoff: Zirkaloy-4		
Durchmesser außen	mm	10,75 + 0,05
Durchmesser innen	mm	$9,30 \pm 0,04$
Wandstärke	mm	0,725
Länge (vom unteren Plenum bis	mm	807
Obergang Titan-Edelstahl- Verbindung)		
Ringpellets .	А	1203
Durchmesser außen	mm	9,2 [±] 0,01
Durchmesser innen	mm	$6,1 \pm 0,03$
Länge	mm	10,0
Anzahl Anzahl		54
Unteres Isolierpellet	- F	¹¹ 2 ⁰ 3
Durchmesser außen	mm	9,2
Durchmesser innen	mm	6,1
Länge	mm	22
Anzah1		1
Freie Gasvolumen		
	3	,
Oberes Plenum (abzügl.Feder)	cm ³	8,1
Unteres Plenum	cm ³	6,1
Ringspalte (Heizer-Ringpellet- Hüllrohr)	cm^3	1,2
Kapillare,Druckaufnehmer, Kopfstück	cm ³	9,45
Füllgas .		100 % Helium
Plenumsfeder (Druckfeder)		
Außendurchmesser	mm	7,8
Durchmesser des Drahtes	mm	0,8
Anzahl der Windungen		33
Federvolumen	${\sf cm}^3$	0,377
Blocklänge der Feder	mm	26
Kraft im Einbauzustand	N	19

Tabelle 2: Weitere BSS-Daten

Gesamtlänge des Heizstabes

Elektrischer Heizstab			
Länge der beheizten Zone	mm	500	
Maximale Stableistung	W/cm	50	
Mittlere Stableistung	W/cm	46,9	
Anzahl der axialen Leistungsstufen		7	
Anschlußleistung	W	3000	
Erforderliche Spannung	γ .	30	
Maximale Stromstärke	A	100	
Heizleiter (7-stufiges Leistungsprofil)	Inconel	600	
Durchmesser außen	mm	3,5	
Durchmesser innen	mm	3	
Länge	mm	541	
Isolierkern (MgO-Füllung)	mm	2,84/2,99	Ø
Länge Isolierkern	mm	500	
<u>Isolierspalt</u> (Heizleiter-Heizleitermantel)	Mg0-F	üllung	
Durchmesser außen	mm	4,8	
Durchmesser innen	mm	3,5	
Heizleitermantel	Inconel	600	
Durchmesser außen	mm	6,0	
Durchmesser innen	mm	4,8	
Länge bis Cu-Übergangsstück	mm	5.95	
Längenmessungen nach Stabaufbauzeichnung			
Nr. T02D-1-263			
Heizerteil einschl. Federbereich	mm	599	
Cu-Stab (Stromzuführung)	mm	4889	
CU-Rohr (Stromrückführung)	mm	4904	
		E 4 0 0	

mm

5490

Tabelle 3: Abmessungen und Widerstände der BSS, Stabreihe 2

Teil Nr.	Bezeichnung	Lage		d _a	d _i	1	F	V	\mathcal{S}_{t}	R = § ·1/F
141.		von	nm) j bis	(mm)	(mm)	(mm)	(mm ²)	(mm ³)	$\left(\frac{\text{m}\Omega\tilde{\text{m}}\text{m}^2}{\text{mm}}\right)$	(mΩ)
1 ^{c)}	Heizleiter Zone 1	0	38,5	3,5	2,84	38,5	3,28	126	1,07	12,56
2	Heizleiter Zone 2	38,5	90,0	3,5	2,90	51,5	3,01	155	1,07	18,31
3	Heizleiter Zone 3	90,0	167,0	3,5	2,96	77,0	2,74	211	1,07	30,07
4	Heizleiter Zone 4	167,0	334,0	3,5	3,00	167,0	2,57	429	1,07	69,53
5	Heizleiter Zone 5 ≘ 3	334,0	411,0	3,5	2,96	77,0	2,74	211	1,07	30,07
6	Heizleiter Zone 6 ≘ 2	411,0	462,5	3,5	2,90	51,5	3,01	155	1,07	18,31
7	Heizleiter Zone 7 ≘ 1	462,5	501,0	3,5	2,84	38,5	3,28	126	1,07	12,56
8	Heizleitermantel	- 40	555	6,0	4,80	595	10,17	6053	1,07	62,60
9 ^d)	Oberer Endstopfen	501	561	3,5		60	9,62	577	0,268	1,67
10	Unterer Endstopfen	- 40	0	3,0	- -	40	7,07	283	0,268	1,52
11	Cu-Stab ^a)	561	5450	4,5	-	4889	15,90	77800	0,04	12,30
12	Cu-Rohr ^{b)}	555	5434	9,0	5,2	4879	42,36	206700	0,04	4,61

ΣR ≈ 274 mΩ

a) als Verlängerung des oberen Endstopfens

b) als Verlängerung des Heizleitermantels

c) Bezugstemperatur 425 °C für Teil 1 - 8

d) Bezugstemperatur 350 $^{\rm O}$ C für Teil 9 - 12

4. Versuchsablauf

Der Versuchsablauf mit BSS-Prüflingen ist identisch mit dem bei Nuklearprüflingen. Der In-pile-Versuch beginnt mit einigen Stunden Stationärbetrieb des Kreislaufes. Dabei sind das Absperrventil (Ve 108) zwischen Überhitzer und In-pile-Strecke (siehe Abb. 5) und das Entspannventil kleinen Querschnitts (Ve 111) offen, das Entspannventil großen Querschnitts (Ve 128) ist geschlossen. Der Kreislauf wird dabei mit folgenden Daten betrieben:

Massenstrom:	110 - 12	20 kg/h
Druck:	60	bar
Dampftemperatur am Ein- tritt zur Teststrecke:	290 - 30	00 °C
elektr. Prüflingsleistung:	50	W/cm *)

Der Innendruck wird in der Endphase des Stationärbetriebes endgültig eingestellt.

Zur Auslösung der Transiente wird bei konstanter elektrischer Prüflingsleistung das Absperrventil Ve 108 geschlossen und gleichzeitig das Entspannventil Ve 128 geöffnet. Damit wird der Kühldampfstrom unterbrochen, die Temperatur des Prüflings steigt an (siehe Abb. 6). Gleichzeitig sinkt der Druck im Kühlkanal rasch ab, da Enthitzer, Kondensator und Abgassystem weiterarbeiten.

Unabhängig davon, ob der Prüfling im Verlauf der Transiente platzt oder nicht, wird bei einer vorher bestimmten Hülltemperatur die elektrische Prüflingsleistung abgeschaltet. Die Hülltemperatur beginnt daraufhin langsam zu sinken. Nach Erreichen einer weiteren Temperaturmarke (ca. 740 °C) wird der Kühldampfstrom wieder eingeschaltet; die

^{*) 50} W/cm beim BSS führen zum gleichen Hülltemperaturverlauf wie ca. 40 W/cm beim Nuklearstab

Hülltemperatur sinkt schnell ab, ähnlich wie beim Abschrecken (Quenching) durch Fluten im wirklichen Reaktor. Die beiden erwähnten Temperaturmarken ergeben sich aus dem angestrebten Referenztemperaturverlauf. Dieser Referenztemperaturverlauf entstammt einer für den heißesten Stab in einem DWR (Druckwasser-Reaktor) durchgeführten Berechnung.

5. Versuchsdaten

5.1 Messung der Versuchsdaten

Der Stabinnendruck wird am kalten Ende des Prüflings kontinuierlich gemessen. Die Meßeinrichtung besteht aus einem Mikro-DM-Druckaufnehmer, der über eine Kapillare von 1,6 mm lichter Weite mit dem Plenum verbunden ist. Die Meßverzögerung durch die Kapillare wurde in Vorversuchen mit Helium bestimmt. Sie ist kleiner als 10 ms und kann gegenüber der Zykluszeit der Datenabfrage von 500 ms vernachlässigt werden. Der Meßbereich des Druckaufnehmers beträgt 0 - 175 bar Überdruck.

An der Stabhülle wird – am Umfang verteilt – an sechs axial verschiedenen Stellen in der aktiven Zone die Temperatur gemessen. Zur Verwendung kommen NiCrNi-Thermoelemente 1 mm Ø mit Inconel 600-Mantel und an der TE-Spitze aufgehämmerter Platin-Hülse zur Trennung der Werkstoffe Inconel und Zirkaloy, deren Bestandteile bei den im Versuch erreichten Temperaturen Eutektika bilden können. Bei den Versuchen der BSS-Serie erfolgte die Anschweißung der TE auf der Höhe der Meßstelle (Abb. 7, Version B). Die Anordnung der TE ist in Tabelle 4 angegeben. Der axiale Abstand zwischen zwei Meßstellen beträgt 4 bis 6 cm.

Tabelle 4: Anordnung der Hüll-Thermoelemente in den Versuchen BSS 21 bis 26 und BSS 28

(alle TE Version B)

TE-Bez.	axiale (Soll-M	Lage (a)	Umfangslage ^(b) BSS 21 BSS 22 BSS 23 BSS 24 BSS 25 BSS 26 BS						BSS 28
	BSS 22 - 26 und BSS 28	BSS 21			D33 23	D33 24	D33 23	233 20	D33 28
T131 T132 T133 T134 T135 T136	180 mm 220 mm 260 mm 300 mm 360 mm 420 mm	170 mm 210 mm 250 mm 290 mm 350 mm 410 mm	216° 156° 96° 36° 336° 276°	359 ⁰ 299 ⁰ 239 ⁰ 178 ⁰ 119 ⁰ 59 ⁰	313 ⁰ 253 ⁰ 193 ⁰ 133 ⁰ 73 ⁰ 13 ⁰	265° 205° 145° 85° 25°	165° 105° 45° 345° 285° 225°	292° 202° 162° 102° 342° 282°	16° 316° 250° 196° 136° 76°

- (a) Abstand von Unterkante Heizzone
- (b) Winkel von Nullmarkierung im Uhrzeigersinn bei Ansicht des Stabes von unten

Von den vielen Größen, die für den Betrieb des Versuchskreislaufs gemessen und verarbeitet werden, interessieren für die Auswertung vor allem Temperaturen, Druck und Massenstrom des Kühlmittels; sie werden zur Bestimmung der sog. thermischen Prüflingsleistung verwendet.

Alle Meßwerte werden digitalisiert, zur zentralen Anlage CALAS*) übertragen und auf Band gespeichert. Die Abfragefrequenz beträgt während der Transiente 2 Datensätze pro Sekunde, während des Stationärbetriebs 2 Datensätze pro Minute.

Die Tabellen 5.1 bis 5.8 zeigen als Übersicht ("Quick-look-Blatt") wichtige Meßwerte der BSS-Versuche und einige von den Meßwerten abgeleitete Daten. Die wesentlichen Meßdaten im Stationärbetrieb als Ausgangswerte für die Transiente sind im Anhang I (Tabelle 13.1 bis 13.8) aufgelistet.

5.2 Kühlmitteldaten

Die Kühlmitteldaten in den BSS-Versuchen unmittelbar vor Auslösung der Transiente können dem Anhang I entnommen werden.

5.3 Prüflingsleistung

Zur Interpretation der Versuchsergebnisse, vor allem zur Nachrechnung des zeitlichen Temperaturverlaufs ist die Kenntnis der Prüflingsleistung erforderlich. Die Bestimmung der Leistung erfolgt mit mehreren Verfahren:

- Thermische Leistung
- Leistung aus Temperaturanstieg
- elektrische Stableistung
- a) "Thermische Leistung NTH": Die Gesamtleistung des Prüflings wird durch Messung der Kühlmittelaufheizung im Stationärbetrieb bestimmt. Gemessen werden der Kühlmittelmassenstrom

^{*)} \underline{C} omputer \underline{A} ided \underline{L} aboratory \underline{A} utomation \underline{S} ystem

LEISTUNG							
Reaktorleistung					./.	MW	
Flußdichteformfaktor $\emptyset_{Pr \text{ max}}/\overline{\emptyset}_{Pr}$./.	Abbra	Abbrand		MWd/t	
he ung	mittlere thermische	NTH			36,56	W/cm	
ische istung	aus Temperaturanstieg bei 650 °C		47,0	bi s	53,5	W/cm	
spezif Stable	aus Aufheizung um 300 K		51	bis	60	W/cm	
	mittlere elektrische	NEL			48,47	W/cm	

INNENDRUCK P74	Laufzeit (s)	Druck (bar)
bei Beginn der Transiente	0	71,10
Maximum	22,30	72,15
beim Temperaturmaximum von T 132	42,70	62,61
BERSTDRUCK	47,20	54.21 bar

Meßstelle . T	131	132	133	134	135	136
Meßebene in cm von UK Brennstoff	20	25	30	35	40	45
Temperatur bei Transientenbeginn O sec	370	372	378	376	383	380
bei max.Innendruck nach 22,3 sec	686	681	685	676	678	663
rel.Maximum nach 42,7 bis 47,2 sec	853	839	824	830	837	836
beim Bersten nach 47,2 sec	853	832	817	830	837	836
abs.Maximum nach 78,5bis 85,9 sec	825	771	835	956	971	979
BERSTTEMPERATUR (extrapoliert und korr	igiert	.) 83	2 +	10 K	842	°C

1								,	
REILE	Mitte	Riß	von	UK	Brennstoff	(aus	Neutr.Radiografie)	25,5	cm
						,			

TEMPERATURANSTIEG		
Maximum T 131 bei 410 °C nach 4,5 sec		25,7 K/s
bei 650 °C T 131 bis T 136	10,6 bis	12,3 K/s
Dauer der Aufheizung um 300 K T 131 bis T 136	20,9 bis	24,1 sec
Dauer der Aufheizphase bis 920 °C bei T 136		66,1 sec

In-Pile-Versuche zum Brennstabversagen Daten des Versuchs: BSS 12 vom: 25,4,78 Tabelle 5.1

grandle and						40. 5 A. 4. W	
LEIST	UNG		g.,				
Reakt	orleistung	NR				MW	
	elektrische	NEL		4	48,3		/cm
s tune	mittlere thermische	NTH	·	4	19,4	W	//cm
tlere	aus Temperaturanstieg bei 650 °C		54,8	bis	60,4	l W	l/cm
mittlere Stableistung	aus Aufheizung um 300 K		59,0	bis	64,5	5 W	/cm
Satisfication of the last of t	er Peaking-Faktor der Stableistung	N _{max}	/∏		1,035	>	
INNENI	DRUCK P74	Lauf	zeit	(s)	Druck	(bar)
bei Be	eginn der Transiente		0		,		
Maximu	ım						
bei Te	emperaturmaximum von T		4				
BERSTI	DRUCK Der Stab war undicht						bar
HÜLLRC	OHRTEMPERATUR in OC						
Meßste		131	132	133	134	135	136
Meßebe	ene in cm von UK Heizzone	18	22	26	30	36	42
Temper	atur bei Transientenbeginn O sec	358	374	377	374	370	375
bei m	nax.Innendruck nach sec	-	-	-	-	-	<u>-</u>
rel.M	laximum nach bis sec	_	_	-	-	-	-
beim	Bersten nach sec		_	-	-		-
abs.M	aximum nach 61,3 sec	975	1002	1007	1010	958	934
BERSTT	EMPERATUR (extrapoliert und korri	giert)	+	K		OC
BEULE	Mitte Riß von UK Heizzone (aus	Neutr	r.Rad	ograf	ie)		- cm
TEMPER	ATURANSTIEG						
Maximu	m T 134 bei 422 ^O C nach 5	,1 se	2 C			29,0	K/s
bei 65	0 °C T 131 b	is T 1	36	12,	bis	14,0	K/s
Dauer	der Aufheizung um 300 K T 131 b	is T 1	136	17,3	bis	19,1	sec
Dauer	der Aufheizphase bis 920 °C b	ei T 1	34			48,0	s e c
		كرجف يوج السمور			50		

IN-PILE-VERSUCHE ZUM BRENNSTABVERSAGEN.

DATER DES VERSUCHS: BSS 21 VOM: 13.9.1979

Tabelle 5.2

LEISTUNG							
Reaktorleistung	NR					MW	
elektrische	NEL		4	8,3	V	V/cm	
mittlere thermische aus Temperaturanstieg bei 650 °C aus Aufheizung um 300 K	NTH		4	9,7	į	W/cm	
aus Temperaturanstieg bei 650 °C		48,5	bis	56,	3	√/cm	
aus Aufheizung um 300 K		48,0	bis	54,	5 (√/cm	
Axialer Peaking-Faktor der Stableistung	N _{max}	/ N	1,0	35			
INNENDRUCK P74	Lauf	zeit	(s)	Druci	k (bar	^)	
bei Beginn der Transiente		0	ورواند والمساورة والم	5	58 , 2		
Maximum	í	23,3		5	9,0		
bei Temperaturmaximum von T 136		16,6	سيا حاوز بساحة الحالي	52,4			
BERSTDRUCK	Ę	3,9		4	bar		
HÜLLROHRTEMPERATUR in ^O C *) nach !	53,9 s	ec T	131 =	681	°C		
Meßstelle T	131	132	133	134	135	136	
Meßebene in cm von UK Heizzone	18	22	26	30	36	42	
Temperatur bei Transientenbeginn O sec	364	371	373	374	374	385	
bei max.Innendruck nach 23,3 sec	691	692	695	697	687	678	
rel.Maximum nach 46,6 sec	855	860	860	858	846	828	
beim Bersten nach 53,9 sec	855 **	852	841	810	833	836	
abs.Maximum nach 97,1 bis 101,1 sec	883	866	954	896	1010	1006	
BERSTTEMPERATUR (extrapoliert und korri	giert) 852	· +	10 K	86	2 ⁰ с	
BEULE Mitte Riβ A von UK Heizzone (aus	Neut	r.Radi	ograt	fie)	22	cm	
TEMPERATURANSTIEG							
Maximum T 133 bei 405 ^O C nach 4,3	S	e c '			23,6	K/s	
bei 650 °C	is T 1	36	10,8	bis	12,8	K/s	
Dauer der Aufheizung um 300 K T 131 b	is T 1	36	21,0	bis	24,0	sec	
Dauer der Aufheizphase bis 920 ^O C b	ei T 1	36			77,8	sec	

IN-PILE-VERSUCHE ZUM BRENNSTABVERSAGEN

DATEN DES VERSUCHS: BSS 22 VOM: 3.9.1979

Tabelle 5.3

LEISTUNG						
Reaktorleistung	NR					MW
elektrische	NEL			48,3		W/cm
mittlere thermische aus Temperaturanstieg bei 650 °C aus Aufheizung um 300 K	нти			56,9		W/cm
aus Temperaturanstieg bei 650 °C		44,8	bis	53,3		W/cm
트 aus Aufheizung um 300 K		46,0	bis	53,5		W/cm
Axialer Peaking-Faktor der Stableistung	N max	/N		1,03	5	
INNENDRUCK P74	Lauf	zeit	(s)	Druc	k (ba	r)
bei Beginn der Transiente		0		9	3,7	
Maximum	2	0,1		9	4,7	
bei Temperaturmaximum von T 134	3	6,7		8	1,0	
BERSTDRUCK	3	6,7		81,0		bar
HÜLLROHRTEMPERATUR in ^O C		·				
Meßstelle T	131	132	133	134	135	136
Meßebene in cm von UK Heizzone	18	22	26	30	36	42
Temperatur bei Transientenbeginn O sec	360	367	376	380	384	377
bei max.Innendruck nach 20,1 sec	655	650	657	669	645	628
rel.Maximum nach 36,7 sec	779	777	802	807	777	752
beim Bersten nach 36,7 sec	779	777	802	807	777	752
abs.Maximum nach 69,3 bis 74,0 sec	999	967	898	803	968	953
BERSTTEMPERATUR (extrapoliert und korri	giert)	805	+ 1	0 K	81	5 OC
BEULE Mitte Riß von UK Heizzone (aus	Neutr	^.Radi	ograf	ie)		29 , cm
TEMPERATURANST1EG						
Maximum T 134 bei 415 ^O C nach 4	1,5 se	2 C			23,6	K/s
bei 650 °C	is T 1	36	9,8	bis	12,1	K/s
Däuer der Aufheizung um 300 K T 131 b	is T 1	36	21,0	bis	25,3	sec
Dauer der Aufheizphase bis 920 °C b	ei T 1	35			58,	6 sec

N 1T-1979 PNS 4237-85.53

LEISTUNG		·				
Reaktorleistung	NR				-	MW
elektrische	NEL			48	,3 V	V/cm
mittlere thermische	нти			46	,4	W/cm
Stapler thermische aus Temperaturanstieg bei 650 °C aus Aufheizung um 300 K		51,9	bis	5 6	,7	W/cm
aus Aufheizung um 300 K		51,5	bis	5 6	,5	d/cm
Axialer Peaking-Faktor der Stableistung	N _{max}	/N		1,	035	
INNENDRUCK P74	Lauf	zeit	(s)	Druci	k (bai	^) [*]
bei Beginn der Transiente		0	· · · · · · · · · · · · · · · · · · ·		25,7	
Maximum	3	39,9			26,3	
bei Temperaturmaximum von T 134	5	0,5			25,0	
BERSTDRUCK	5	0,5		25,0 bar		
HÜLLROHRTEMPERATUR in OC						
Meβstelle · T	131	132	133	134	135	136
Meßebene in cm von UK Heizzone	18	22	26	30	36	42
Temperatur bei Transientenbeginn O sec	357	366	373	384	382	384
bei max.Innendruck nach 39,9 sec	873	878	884	884	865	860
rel.Maximum nach 50,5 sec	933	935	944	950	-	-
beim Bersten nach 50,5 sec	933	935	944	950	939	919
abs.Maximum nach 55,2 bis 56,5 sec	940	932	938	946	962	943
BERSTTEMPERATUR (extrapoliert und korri	giert)	948	+	10 K	958	ОС
BEULE Mitte Riß von UK Heizzone (aus	Neutr	r.Radi	ograt	fie)	25,	8 _{cm}
TEMPERATURANSTIEG	-					
Maximum T 133 bei 394 ^O C nach 3	,7 s e	e C '			24,3	K/s
bei 650 ^O C T 131 b	is T 1	36	11,	7 b i s	13,0	K/s
Dauer der Aufheizung um 300 K T 131 b	is T 1	36	20,	3 bis	22,2	sec
Dauer der Aufheizphase bis 920 ^O C b	ei T 1	34			45,0	s e c
	-	-		127/7	يترجيها بالمصواة	

IN-PILE-VERSUCHE ZUM BRENNSTABVERSAGEN

DATEM DES VERSUCHS: BSS 24 VOM: 5.9.1979

LEISTUNG						
Reaktorleistung	NR		-	•		MW
elektrische	NEL		4	8,2		W/cm
mittlere thermische	нти		5	0,6		W/cm
Stable aus Temperaturanstieg bei 650 °C aus Aufheizung um 300 K		45,6	bis	54,	8	W/cm
eg aus Aufheizung um 300 K		44,0	bis	55,	5	W/cm
Axialer Peaking-Faktor der Stableistung	N _{max}	/N	New Johnson Commission Commission	1,035		
INNENDRUCK P74	Lauf	zeit	(s)	Druci	k (ba	r)
bei Beginn der Transiente		0	4-Haire	1	18,6	
Maximum	2	0,0		1	19,9	
bei Temperaturmaximum von T 133	2	9,3		1	11,9	
BERSTDRUCK	3	0,6		105,5		bar
HÜLLROHRTEMPERATUR in OC		<u> </u>				
Meßstelle . T	131	132	133	134	135	136
Meßebene in cm von UK Heizzone	18	22	26	30	36	42
Temperatur bei Transientenbeginn O sec	370	374	369	377	375	386
bei max.Innendruck nach 20,0 sec	661	662	659	661	651	633
rel.Maximum nach 29,3 bis 30,6 sec	768	749	739	743	753	729
beim Bersten nach 30,6 sec	768	749	737	742	753	729
abs.Maximum nach 68,5 bis 79,1 sec	1009	914	800	901	1018	967
BERSTTEMPERATUR (extrapoliert und korri	giert	737	+	10 K	7 4	7 °C
BEULE Mitte Riß von UK Heizzone (aus	Neut	r.Radi	ograf	fie)	26,	,5 cm
TEMPERATURANSTIEG					i	
Maximum T 133 bei 394 ^O C nach 3	,7 s	ec '		2	5,1	K/s
bei 650 ^O C T 131 b	is T 1	36	10,0	bis	12,5	K/s
Dauer der Aufheizung um 300 K T 131 b	is T 1	36	20,6	bis	26,5	sec
Dauer der Aufheizphase bis 920 ^O C b	ei T 1	35			54,3	s e c

LEISTUNG						
Reaktorleistung	NR					ч и
elektrische	NEL			48,2		//cm
Staplere thermische aus Temperaturanstieg bei 650 °C aus Aufheizung um 300 K	нти			14,6	Ņ	N/cm
aus Temperaturanstieg bei 650 °C		46,6	bis	53,7	⁷ k	V/cm
±±g aus Aufheizung um 300 K		49,5	bis	53,5	5 h	√/cm
Axialer Peaking-Faktor der Stableistung	N max	/ N		1,(35	
INNENDRUCK P74	Lauf	zeit	(s)	Druck	(bar	·)
bei Beginn der Transiente		0		108	3,6	
Maximum	1	8,1		109	9,2	
bei Temperaturmaximum von T 131	3	4,0		88	3,8	
BERSTDRUCK	3	4,0		88	bar	
HÜLLROHRTEMPERATUR in ^O C						
Meßstelle T	131	132	133	134	135	136
Meßebene in cm von UK Heizzone	18	22	26	30	36	42
Temperatur bei Transientenbeginn O sec	367	370	373	375	:377	379
bei max.Innendruck nach 18,1 sec	629	622	632	635	635	628
rel.Maximum nach 33,4 bis 34,0 sec	771	799	777	758	763	755
beim Bersten nach 34,0 sec	771	799	777	755	763	755
abs.Maximum nach 78,6 bis 83,2 sec	905	837	909	995	1017	1008
BERSTTEMPERATUR (extrapoliert und korri	giert) 785	+ 1	0 K	7.9	0 C
BEULE Mitte Riß von UK Heizzone (aus	Neut	r.Rad	iograf	ie)	20) c.m
TEMPERATURANSTIEG						
Maximum T135 bei 415 ^O C nach 4	, 5 s	ec ,			24,4	K/s
bei 650 ^O C T 131 b	is T	136	10,3	bis	12,2	2 K/s
Dauer der Aufheizung um 300 K T 131 b	is T	136	21,3	bis	23,3	sec.
Dauer der Aufheizphase bis 920 ^O C b	ei T			6	2,5	sec

IN-PILE-VERSUCHE ZUM BRENNSTABVERSAGEN

DATEM DES VERSUCHS: BSS 26 VOM: 8.11.1979

Tabelle 5.7

LEISTUNG						
Reaktorleistung	NR					MW
elektrische	NEL			48,2		W/cm
Staplers aus Temperaturanstieg bei 650 °C aus Aufheizung um 300 K	NTH			54,9)	W/cm
aus Temperaturanstieg bei 650 °C	·	48,5	bis	55,2		W/cm
ties aus Aufheizung um 300 K		47,5	bis	55,0		W/cm
Axialer Peaking-Faktor der Stableistung	N _{max}	/N		1,0	35	
INNENDRUCK P74	Lauf	zeit	(s)	Druci	k (ba	r)
bei Beginn der Transiente		0			21,7	
Maximum		10,0			22,3	
bei Temperaturmaximum von T 131	Ę	59,3			21,4	
BERSTDRUCK	6	50,7	*		20,4	bar
HÜLLROHRTEMPERATUR in OC	0104 N 15, N. V. 14.					
Meßstelle . T	131	132	133	134	135	136
Meßebene in cm von UK Heizzone	18	22	26	30	36	42
Temperatur bei Transientenbeginn O sec	354	366	368	372	373	374
bei max.Innendruck nach 40,0 sec	861	858	851	844	824	810
rel.Maximum nach 59,3 bis 60;7 sec	960	969	968	938	901	909
beim Bersten nach 60,7 sec	957	969	968	938	901	909
abs.Maximum nach 74,6 bis 75,3 sec	988	1013	1010	979	950	961
BERSTTEMPERATUR (extrapoliert und korri	giert) 95	7 +	10 K	96	7 °C
BEULE Mitte Riß von UK Heizzone (aus	Neut	r.Radi	iograf	ie)	1	8 _cm
TEMPERATURANSTIEG						-
Maximum T 132 bei 385 ^O C nach 3	8 , 8 s	e c			24,0	K/s
bei ·650 °C T 131 b	is T	136	10,8	bis	12,6	K/s
Dauer der Aufheizung um 300 K T 131 b	is T	136	20,8	bis	24,2	sec
Dauer der Aufheizphase bis 920 ^O C b	ei T	131		-	50,0	sec
	المسينجسة		وعجب بسبيب	277		

IN-PILE-VERSUCHE ZUM BRENNSTABVERSAGEN

DATER DES VERSUCHS: BSS 28 VOM: 12.11.1979

Tabelle 5.8

mittels Blende zwischen Prüfling und Enthitzer, die Kühlmitteltemperaturen T 115 vor und T 116 nach dem Prüfling
mit Thermoelementen. Zur Bestimmung von Dichte \S und spezifischer Wärme c $_p$ des Kühlmittels werden dessen Temperatur
und Druck vor und hinter der Teststrecke (T5/P60 und T6/P61)
gemessen und gemittelt. Die angegebene mittlere Thermische
Leistung" NTH ist auf die aktive Prüflingslänge von 50 cm
bezogen.

Alle zur Leistungsbestimmung erforderlichen Rechenoperationen werden on-line von der EDV-Anlage CALAS ausgeführt.

Die mittlere thermische Leistung ergab sich in den Versuchen BSS 12 bis BSS 28 zu

```
NTH = 36,6 W/cm (BSS 12), 49,4 W/cm (BSS 21),
49,7 W/cm (BSS 22), 56,9 W/cm (BSS 23),
46,4 W/cm (BSS 24), 50,6 W/cm (BSS 25),
44,6 W/cm (BSS 26), 54,9 W/cm (BSS 28).
```

b) "Leistung aus Temperaturanstieg NA": Diese Methode erlaubt nach dem Versuch eine Abschätzung der lokalen Stableistung an den Stellen, die mit Thermoelementen bestückt sind. Es wird der während der Transiente gemessene Verlauf der Hülltemperatur verglichen mit den gerechneten Anstiegswerten für verschiedene Stableistungen (a) und daraus auf die Stableistung geschlossen. Da die Vergleichsrechnungen für das glatte Hüllrohr erfolgten, muß der Einfluß der Thermoelementkabel nachträglich durch Korrekturfaktoren berücksichtigt werden: Die angeschweißten TE und die an einer Meßstelle vorbeiführenden Kabel der weiter unten angebrachten TE vergrößern die aufzuheizende Masse und die wärmeübertragende Oberfläche des Hüllrohrs so, daß der Temperaturanstieg bei gleicher Leistung langsamer als am glatten Hüllrohr erfolgt.

⁽a) Rechnungen des IKE Stuttgart mit WALHYD-2D (D. Steiner)

Nach /4/ und /5/ muß bei idealem metallischen Kontakt die aus dem gemessenen Anstieg bestimmte Leistung um etwa 1 % pro TE-Kabel erhöht werden, beim obersten Thermoelement T 136 insgesamt um 5 % (bei 30 - 50 W/cm). Da diese Zahlen nur mögliche Bereiche darstellen, sind alle NA-Werte in diesem Bericht nicht korrigiert.

Die Leistungen aus dem Temperaturanstieg für die BSS-Versuche sind in den Tabellen 5.1 bis 5.8 als Zahlenwertbereiche, in der Abbildung 8 als Punkte über dem Profil der elektrischen Stableistung aufgetragen.

Die Streuung der aus dem Temperaturanstieg bestimmten Leistungswerte spiegelt die lokalen Unterschiede der Hüllrohraufheizung azimutal und des Kontakts zwischen Hülle und vorbeilaufenden TE-Kabeln wieder.

c) "Elektrische Stableistung": Bei den elektrisch beheizten Brennstabsimulatoren ist die Stableistung bei bekannten Werten für Spannung und Stromstärke eindeutig zu bestimmen. Nach Berücksichtigung der Verluste in der Zuleitung ergibt sich der in den Tabellen 5.1 bis 5.8 aufgeführte Wert NEL als spezifische elektrische Stableistung. Dieser Wert enthält noch den Leistungsanteil des Anschlußstückes von ca. 70 Watt. Die mittlere spezifische Leistung der 50 cm langen Heizzone ist

$$\dot{q} = 0.97 \text{ NEL (W/cm)}$$

Die Heizzone wurde für ein stufenförmiges Leistungsprofil gefertigt (siehe Kapitel 2) mit einem Leistungsverhältnis

$$\frac{\dot{q}_{\text{max}}}{\ddot{q}} = 1,066$$

Diese Werte führen bei dem eingestellten Wert NEL = 48,3 W/cm zu

$$\frac{1}{9}$$
 = 46,9 W/cm und zu

$$q_{max} = 50 \text{ W/cm}$$

in der mittleren Zone des Heizleiters (siehe Abb. 8)

5.4 Prüflingsinnendruck

Der zeitliche Verlauf des Innendruckes, der nach der Entspannung des Kühlmitteldruckes gleich dem auf die Hülle wirkenden Differenzdruck ist, wird im Plenum gemessen. Die zeitlichen Druckverläufe der BSS-Versuche sind in den Abb. 9.1 bis 9.7 wiedergegeben.

Auf den Übersichtsblättern (Tabelle 5.1 bis 5.8) sind jeweils vier Druckwerte angegeben: (1) der bei Transientenbeginn im Prüfling herrschende Druck, der vorher bei Stationärbetrieb - also warm - eingestellt wurde, (2) der höchste gemessene Wert, (3) der Druckwert zur Zeit des relativen Temperaturmaximums und schließlich (4) der Berstdruck. Als <u>Berstdruck</u> wird der Druck definiert, bei dem ein Abfall mit mehr als 10 bar/s beginnt; die zugehörige Zeit seit Transientebeginn wird gemäß Abb. 10 Berstzeitpunkt genannt.

5.5 Hüllrohrtemperaturen

Die zeitlichen Verläufe der Hüllrohrtemperatur während der Transiente sind in den Abb. 11.1 bis 11.8 und 12.1 bis 12.8 dargestellt. In den Abb. 11 sind die axialen Hülltemperaturverläufe für einige ausgewählte Zeitschritte zusammen mit den Lagen der Rißstellen eingetragen. Die Abb. 12 zeigen die Verläufe der Hüllrohrtemperaturen T 131 bis T 136 kontinuierlich über der Zeit.

Bei O s unterscheiden sich die Anzeigen der verschiedenen TE eines Prüflings wenig. Man erkennt die Aufheizung des Dampfes von etwa 20 K beim Strömen durch den Kühlkanal vom untersten TE (T 131) bis zum obersten (T 136). Der kurze Temperaturabfall bei t = 2 s resultiert aus dem kurzfristig zunehmenden Kühlmittelstrom beim Entspannen des Kreislaufes. Die fortschreitende Deformation zeigt sich meist am verlangsamten Temperaturanstieg. Zum Ende der Verformung, d.h. kurz vor dem Stabbersten, beginnen die Hülltemperaturen auseinanderzulaufen.

Der Temperatureinbruch unmittelbar nach dem Bersten der Hülle erklärt sich daraus, daß es beim Platzen der Hülle zu einer Strömung von relativ kaltem Füllgas vom Stabplenum zur Rißstelle kommt und außerdem die starke Vergrößerung des Spalts zwischen Pellets und Hülle den thermischen Widerstand verstärkt hat. In der Regel lassen die Temperaturverläufe nach dem Bersten den ungefähren Ort der maximalen Verformung bzw. des Risses erkennen: Die Meßstellen, die den größten Temperatureinbruch nach dem Bersten zeigen, liegen der Berststelle am nächsten.

Mit Erreichen der Maximaltemperatur wird die Leistung durch Stromabschaltung zurückgenommen. Das Zuschalten der Dampfkühlung (Quenching) im weiteren Versuchsablauf bringt die Hülltemperatur auf das Ausgangsniveau zurück.

Als Bersttemperatur wird die auf die Beulstelle gemäß Abb. 10 extrapolierte Hülltemperatur zum Zeitpunkt des Berstens bezeichnet. Auf den Übersichtsblättern der Tab. 5.1 bis 5.8 ist zu diesem Temperaturwert als einzigem eine "Korrektur" angegeben, alle anderen Temperaturangaben stellen den direkten Meßwert dar. Eine Korrektur ist deswegen erforderlich, weil die Befestigungsart der Thermoelemente zu Meßwerten führt, die niedriger als die wahre Hüllrohrtemperatur sind. Versuche zur Bestimmung des Meßfehlers ergaben die leistungsabhängigen Korrekturwerte von Abb. 13 für die beiden TE-Versionen A und B; benutzt wird die jeweilige mittlere Kurve. Bei den hier beschriebenen Versuchen waren nur Thermoelemente der Version B eingesetzt. Bei der Extrapolation der Bersttemperatur aus den Meßwerten T 131 bis T 136 kann eine azimutale Temperaturverteilung nicht berücksichtigt werden.

5.6 Berstdaten

Die Berstdaten aus den BSS-Versuchen sind in Tabelle 6 zusammengefaßt und aufgelistet.

Die aus den Versuchen mit Nuklearstäben und BSS-Prüflingen ermittelten Bersttemperaturen als Funktion des Berstdruckes sind in Abb. 14 gemeinsam dargestellt. Die Ergebnisse der elektrisch beheizten Prüflinge stimmen mit denen der nuklear beheizten überein, ein Einfluß der Beheizungsart auf diese Berstdaten ist nicht erkennbar.

Weitere Versuchsergebnisse werden aus den Nachbestrahlungsuntersuchungen der Prüflinge in den Heißen Zellen gewonnen. In den folgenden Kapiteln wird über die Ergebnisse der zerstörungsfreien und zerstörenden Nachuntersuchung berichtet.

6. Zerstörungsfreie Nachuntersuchungen

6.1 Durchstrahlung der Stäbe

Nach Ausbau des Prüflingseinsatzes aus dem FR2 werden Durchstrahlungen in der Neutronenradiografieanlage (NERA) des FR2 vorgenommen. Es werden mehrere axial überlappende Aufnahmen des Prüflings sowie Aufnahmen unter verschiedenen Einstell-winkeln gemacht. Bei den NERA-Aufnahmen steht der Prüfling noch innerhalb des Dampfführungsrohres und befindet sich dabei wie beim Versuch in senkrechter Stellung.

Die Neutronenradiografien des getesteten Brennstabprüflings geben einen ersten Eindruck von der Verformung der Stabhülle, d.h. von Form und Größe der Beulstelle. Dadurch können auch erste Angaben über die Rißlage gemacht werden.

Auf der Röntgenaufnahme des Stabes ist die Stabhülle deutlicher zu erkennen als auf den Neutronenradiografien. Dies zeigt Abb. 22 am Beispiel des Versuchsstabes BSS 12.

Test No.	Heatup rate at 923 K	Time to burst	Burst Tempe- rature	Maximum cladding temperature	Burst pressure	Maximum pressure	Maximum total circumferential strain	Volume increase of heated zone	Calculated engineering burst stress
	K/s	S	K	K	bars	bars	%	%	MPa
BSS 12	12,2	47	1115	1262	54	72	35	73	34,77
BSS 21	12,9	a)		1293		iansa	ome		PM
BSS 22	12,9	54	1135	1293	42	59	64	117	26,81
BSS 23	12,0	37	1088	1282	81	95	40	46	51,95
BSS 24	12,6	51	1231	1245	25	26	30	19	16,04
BSS 25	12,3	31	1020	1301	106	120	29	35	67,67
BSS 26	12,1	34	1068	1290	89	109	42	65	56,96
BSS 28	12,6	61	1240	1296	20	22	34	- 23	13,08

a) Rod leaked, no burst

IT 1981

Die Neutronenradiografien der geborstenen Simulatoren die nach dem jeweiligen Versuch aufgenommen wurden, sind zusammen mit den Lageplänen der Aufnahmerichtung in den Abb. 15.1 bis 21.3 wiedergegeben.

Da die Zry-Hülle wenig neutronenabsorbierend ist, ist sie nicht so kontrastreich abgebildet, wie das den Stab umgebende Dampfführungsrohr aus Edelstahl. Doch läßt sich die Aufweitung der Hülle meist erkennen. Die Berststelle liegt grundsätzlich im Bereich der stärksten Aufweitung. Ausnahmen sind die Stäbe der Versuche BSS 22 und BSS 26. Beim Stab BSS 26 liegt der Riß ca. 75 mm unterhalb der max. Aufweitung (Abb. 34.6). Dies läßt sich durch höhere azimutale Temperaturunterschiede an der Berststelle im Vergleich zur Stelle max. Dehnung erklären.

BSS 22 weist als einziger Versuchsstab des gesamten Versuchsprogramms zwei Risse auf: Riß A liegt ca. 50 mm oberhalb, Riß B unterhalb der max. Aufweitung (siehe Abb. 23.2 und 34.2). Das den Stab umgebende Führungsrohr hat vermutlich im Versuch BSS 22 die Aufweitung des Hüllrohrs begrenzt, d.h. das Hüllrohr gelangte zum fast vollständigen Anliegen am Führungsrohr im Bereich der stärksten Verformung. Das zeigen die Hüllrohrquerschliffe der Abb. 35.2 und 35.3, die eine größte Umfangszunahme von 64 %, also nahe der größtmöglichen Dehnung von ca. 67 %, ergeben. Das Anliegen der Hülle am wesentlich kälteren Umgebungsrohr während des Verformungsprozesses muß für die Ausbildung von zwei Rissen im Beulbereich verantwortlich gewesen sein. Es läßt sich vermuten, daß zunächst ein Riß an einer Stelle max. Dehnung entstand, der durch das Anliegen der Hülle am umgebenden Rohr sofort wieder kurzzeitig verschlossen wurde, noch bevor der innere überdruck abgebaut war. Dadurch konnte sich die Hülle weiter verformen, bis sie an einer zweiten Stelle riß. Welcher der beiden Risse zuerst entstand, kann mit Sicherheit nicht gesagt werden. Man könnte vermuten, daß es Riß B (Abb. 24.2 und 36) war, weil er der kleinere und damit besser verschlieβbare der beiden Risse ist und weil er außerdem an einer Stelle größerer Dehnung, d.h. näher dem Umgebungsrohr liegt.

6.2 Fototdokumentation

Bevor mit der Messung der Prüflinge in den Heißen Zellen begonnen wird, werden von jedem Prüfling Fotografien des gesamten Stabes sowie Detailaufnahmen von der Beulstelle des Stabes unmittelbar nach der Demontage des Prüflings aus dem Dampfführungsrohr gemacht.

Die Abb. 23.1 bis 23.7 geben die Ansichten der Beulstelle der BSS wieder. Die Abb. 24.1 bis 24.7 zeigen Detailaufnahmen.

6.3 Vermessung der Prüflinge

Die Vermessung der Prüflinge in den Heißen Zellen umfaßt:

- Rißvermessung mittels Maßstab,
- Durchmesserbestimmung durch Wendelschrieb,
- Bestimmung der Stabkrümmung durch mehrere Mantelschriebe auf dem Umfang.

6.3.1 <u>Rißabmessung und Rißlage</u>

Die Rißlagen der BSS-Versuchsstäbe sind in Tabelle 7 aufgelistet. Die Winkellagen der Tabelle 7 wie auch an anderer Stelle in diesem Bericht sind von der Nullmarkierung (Kerbe am Prüfling) aus im Uhrzeigersinn bei der Stabansicht von unten zu verstehen. Die axiale Rißlage wurde mit Hilfe eines Maßstabes bestimmt.

Tabelle 7: Rißlage der BSS-Stäbe

	BSS12	BSS A	22 B	BSS23	BSS24	BSS25	BSS26	BSS28
Riβ-Anfang (mm von UKF)	238	212	162	281	278	249	190	188
Riβ-Ende (mm von UKF)	280	225	164	304	292	282	218	196
Riβ-Länge (mm)	42	13	2	23	14	33	28	8
Riß-Breite max. (mm)	8,5	0,8	0,1	7,8	3,2	9,6	9,0	1,2
Riß-Winkellage zur Kerbe	*)	330 ⁰	345 ⁰	156 ⁰	55 ⁰	225 ⁰	190 ⁰	310 ⁰

^{*)} Stab hat keine Kerbe

Die azimutalen Rißlagen sind in den Abb. 4.1 bis 4.7 in die Diagramme der vor der Bestrahlung bestimmten Wandstärkenverteilung über dem Umfang eingezeichnet. Die Wandstärke ist darin 18^{0} -weise als Abweichung vom Sollwert in (µm) angegeben. Die angegebene Wandstärkeverteilung gilt für die Rißebene, ist aber auch für den gesamten vermessenen Bereich von 50 mm in Stabmitte repräsentativ, da sich auf dieser Länge die Wandstärke axial unwesentlich verändert.

Die azimutalen Rißlagen sind in Bezug auf die Ausgangs-Wandstärken nicht systematisch. Die Rißlage wird generell nicht als Folge des azimutalen Wandstärkeprofils, sondern als Folge der azimutalen Temperaturverteilung angesehen.

6.3.2 Durchmesseränderung und Umfangsdehnung

Das axiale Durchmesserprofil wird mittels Wendelschrieb aufgezeichnet. Auch für die Ermittlung der Umfangsdehnung der Hülle werden die Wendelschriebe für die Axialbereiche herangezogen, die keine wesentliche Ovalität aufweisen.

Ganz allgemein kann der Stab bezüglich des axialen Verformungsprofils in drei Bereiche eingeteilt werden:

- 1) Bereiche außerhalb des Risses, in denen der Stabquerschnitt kreisförmig ist (Ovalität < 50 μm),
- 2) Bereiche nahe dem Riß, die eine deutliche Ovalität aufweisen,
- 3) der Rißbereich.

Die drei Bereiche sind in Abb. 25 verdeutlicht. Sie zeigt einen typischen Wendelschrieb eines Versuchsstabes (hier Nuklearsteb A2.2).

Im Bereich kleiner Ovalität ist die Umfangsdehnung gleich den Durchmesserzunahmen. Im Bereich der deutlichen Ovalität wird der Stabquerschnitt als Ellipse angenommen und deren Umfang mit Hilfe des maximalen und minimalen Durchmesserwertes bestimmt. Im Riß-bereich wird der Umfang aus Querschliffbildern ermittelt.

Tabelle 8: Ovalität im Beulbereich der BSS-Versuchsstäbe

Versuch		BSS 12		BSS 22		BSS 23		BSS 24		BSS 25		BSS 26		BSS 28	
Hüllrohr Nr.		keine		102		103		104		105		106		108	
Polar- schrieb	Nr.	1	2	1	2	1	2	1	2	1	2	1	2	1	2
Abstand v.UKF	mm	235	283	212	226	276	310	275	296	244	286	186	223	186,5	197,5
D _{min}	mm	13,67	13,89	16,55	16,15	13,09	13,29	12,84	12,48	13,28	13,04	13,39	13,79	13,70	13,58
D _{max}	mm	14,39	14,49	17,83	16,63	14,13	14,61	13,20	12,88	13,36	13,68	13,95	14,27	14,27	14,05
Ovalität	mm	0,72	0,60	1,28	0,37	1,04	1,32	0,36	0,40	0,08	0,64	0,56	0,48	0,57	0,47

Zur Bestimmung der Ovalität, D_{max} - D_{min}, in einzelnen Ebenen nahe der Rißstelle werden sogenannte Polarschriebe aufgezeichnet (Durchmesserbestimmung ohne Längsvorschub des rotierenden Stabs). Die so ermittelten Ovalitäten sind in Tabelle 8 zusammengestellt, die Abb. 26.1 bis 32.2 zeigen die Polarschriebe der BSS-Stäbe.

Die axialen Verläufe der Umfangszunahmen (Dehnungsprofile) der BSS-Prüflinge sind in der Abb. 33 zusammen mit dem axialen Leistungsprofil, in den Abb. 34.1 bis 34.7 einzeln wiedergegeben.

Aus den Dehnverläufen der Simulatorstäbe ergibt sich, daß

- sich die bleibenden Durchmesserzunahmen, wie bei den Nuklearstäben, über den gesamten Bereich der Heizzone erstrecken,
- die Umfangszunahmen an den Rißstellen mit Ausnahme des BSS 22 und BSS 26 am größten sind,
- an den TE-Befestigungsstellen lokale Einschnürungen entstehen können, die teilweise größer als bei den Nuklearstäben sind (BSS 12, 22, 26),
- die Aufweitung der Hülle zu den Enden hin wie bei den Nuklearstäben kegelförmig abnimmt,
- das axiale Leistungsprofil einen starken Einfluß auf das axiale Dehnprofil hat. (Alle BSS-Hüllen sind im Bereich der maximalen Leistungsprofile zwischen 165 und 335 mm oberhalb der Unterkante Heizzone am stärksten gedehnt.)

Die bleibenden Durchmesserzunahmen sind in Tabelle 9 aufgelistet.

Da die Umfangsdehnung im Rißbereich nicht kontinuierlich gemessen werden kann, wird sie in diesem Bereich aus Schliffbildern bestimmt (siehe Abb. 35.1 bis 35.8). Die Ergebnisse der Umfangsmessung und der prozentualen Umfangszunahme $\Delta U/U_0$ sind in Tab. 10 zusammengestellt. Die Maximalwerte der Umfangszunahmen der Stäbe BSS 12, 22 bis 26 und 28 sind demnach: 35,3 %, 63,8 % 40,1 %, 30,3 % 28,5 %, 42,0 % und 34,4 %

IT-1981

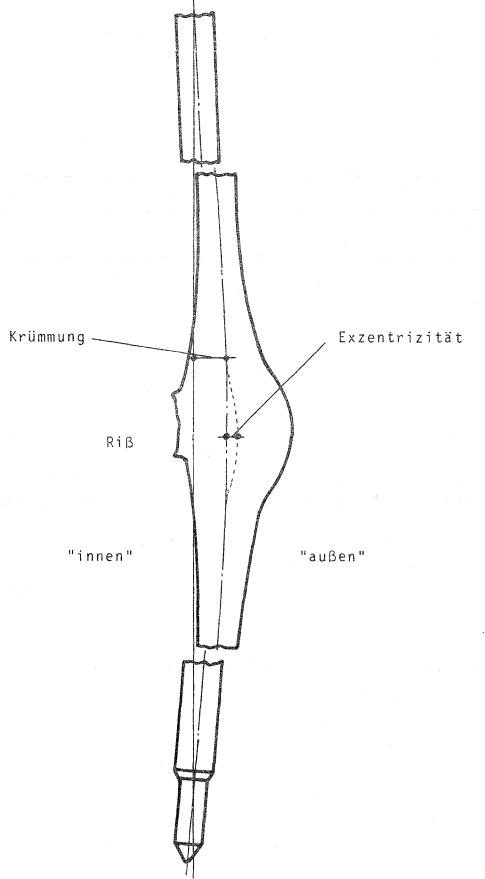
	Test BSS 12		Test BS:		Test BS:		Test BSS	5 24	Test BSS 25		Test BSS 26		Test BSS 28	
	mm ^(a) from UKF	Δ <u>U</u> (b) 0 (%)	mm from UKF	∆ <u>U</u> 0 (%)	mm from UKF .	∆ <u>U</u> U o (%)	mm from UKF	∆ <u>U</u> U (%)	mm from UKF	∆ <u>U</u> U 0 (%)	mm from UKF	<u>∆</u> U U o (%)	mm from UKF	<u>∆U</u> U o (%)
Ĺ.	0 70 107 160 175 185 235 238 280 290 330 345 365 390 415 435 470 490 520	0 5 10 15 20 25 30 (34) 30 25 20 25 20 15 10 5 0	0 27 55 85 102 132 145 155 158 160 162 164 170 212 230 240 308 315 326 335 410 455	0 5 10 15 20 25 30 35 40 45 50 (61) (61) (53) 50 45 40 35 40 35 40 15 10	0 80 150 182 260 272 276 310 318 330 335 350 440 500	0 5 10 15 20 25 (30) 25 10 5 0	0 190 256 268 272 275 296 300 308 335 500	0 5 10 15 20 (21) (18) 15 10 5 0	0 152 170 192 220 249 282 300 320 338 390 500	0 5 10 15 20 (24) 20 15 10 5	0 110 150 162 168 180 186 223 252 270 295 302 308 393 440 465 500	0 5 10 15 20 25 (27) (30) 35 40 35 20 15 10 5 0	0 140 155 165 168 175 186 188 196 202 208 210 218 300 500	0 5 10 15 20 25 30 (30) (29) 25 20 15 10 5
	max.at. 262	35 %	max.at. 17o	64 %	max.at. 293	40 %	max.at. 284	30 %	max.at. 264	29 %	max.at 280	42 %	max _l at 191	34 %

⁽a) UKF = bottom of heated Zone

⁽b) $U_0 = \pi d_0$, where $d_0 = 10,75 \text{ mm}$

⁽c) rupture opening between the two elevations in parentheses

Diese größten Umfangszunahmen der Hülle aus den BSS-Versuchen sind in Abb. 37 zusammen mit den Versuchspunkten der Nuklearstabversuche eingetragen. Man erkennt, daß die BSS-Werte im Bereich der Nuklearstabdaten, bestrahlt und unbestrahlt, liegen.


Tabelle 10: Umfangsdehnung im Beulbereich der BSS-Versuchsstäbe

Versuch		BSS12	BSS2	BSS22		BSS24	BSS25	BSS26	BSS28
Hüllrohr	Nr.	keine	10 Riß A	102 Riß A Riß B		104	105	106	108
unteres Rißende	U mm	45,6	53,1	54,1	42,8	40,9	41,8	42,9	43,9
	<u>∆U</u> U _O %	35,0	57,2	60,2	26,7	21,0	23,8	27,0	30,0
Mitte Riβ	U mm	45,7	-	52,7	47,3	44,0	43,4	46,1	45,4
KID	$\frac{\Delta U}{U_0}$ %	35,3	_	56,1	40,1	30,3	28,5	36,8	34,4
oberes	U mm	45,3	54,4	51,4	43,9	39,8	41,9	44,0	43,5
Rißende	<u>∆U</u> %	34,1	61,1	52,2	30,0	17,9	24,2	30,4	28,6

Die "Einbrüche der Dehnung durch die TE-Meßstellen deuten darauf hin, daß die zusätzliche wärmeabführende Oberfläche und die wärmespeichernde Masse der TE lokal zu geringeren Hüllrohrtemperaturen gegenüber der Umgebung führt.

6.3.3 Krümmung des Stabes und Exzentrizität der Beule

Zur Feststellung der Krümmung des Stabes und der Beulenlage zur Stablängsachse wird die Lage von Hüllrohr-Mantellinien an in der Regel drei Umfangswinkelpaaren (z.B. $0^{\rm O}/180^{\rm O}$, $60^{\rm O}/240^{\rm O}$, $120^{\rm O}/300^{\rm O}$) abgetastet und aufgezeichnet. Die aus diesen Mantelschrieben ermittelten Stabachsen im Beulbereich werden mit den Stabachsen außerhalb der Beulbereiche verglichen. Die Differenz der beiden jeweiligen Werte wird als "Exzentrizität der Beule" angegeben (siehe

SCHEMA

(Schema). Ebenfalls aus den Mantelschrieben wird die Stabkrümmung abgeleitet. Sie wird als Auslenkung der Stablängsachse von der geraden Verbindungslinie ihrer Endpunkte verstanden (s.a.Schema).

Die max. Krümmung und die Krümmung im Beulbereich sind für die BSS-Versuchsstäbe in Tabelle 11, die Exzentrizität der Beule in Tabelle 12 wiedergegeben. Die max. Krümmungen der Versuchsstäbe liegen zwischen 1 und 4 mm. Die Krümmungen im Beulbereich sind etwa von der gleichen Größe. Sie sind meistens der Rißstelle in etwa gegenübergelegen. Gleiches gilt für die Umfangslage der Exzentrizität der Beule. Jeweilige Ausnahme ist der Stab BSS 28.

6.3.4 Volumenzunahme des gebeulten Stabes

Um die Volumenvergrößerung des verformten Versuchsstabes zu erfassen, wurde das Volumen aus den Wendelschrieben ermittelt. Dabei wurde der Stab in genügend kleine Abschnitte eingeteilt und das Volumen der Abschnitte aus den Außendurchmessern berechnet. Für die Hüllrohrmaße und das Brennstoffvolumen wurden dabei die Ausgangswerte verwendet. Die Summe der Einzelvolumina stellt das vergrößerte Volumen V_1 dar. Der relative Volumenzuwachs ergibt sich dann zu

$$\frac{\Delta V}{V_{O}} = \frac{V_{1} - V_{O}}{V_{O}} = \frac{V_{1}}{V_{O}} - 1$$

wobei V_1 = Leervolumen des Stabes nach dem Versuch V_0 = Leervolumen des Stabes vor dem Versuch.

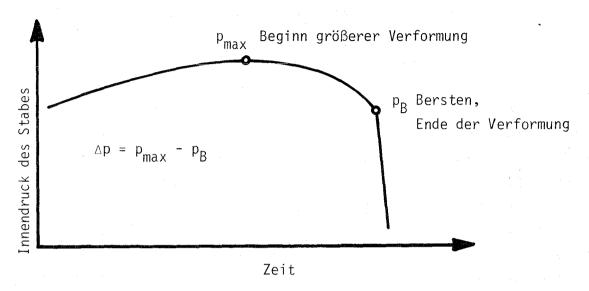
In Abb. 38 ist der relative Volumenzuwachs über der maximalen Umfangsdehnung für diese Versuche zusammen mit den übrigen Punkten des Vorhabens aufgetragen. Darin ist die Streuung der BSS-Werte um die Approximationskurve der Nuklearstabwerte etwas größer als die der Daten, die aus den Nuklearstabversuchen (bestrahlt und unbestrahlt) ermittelt wurden.

Tabelle 11: Krümmung der BSS-Versuchsstäbe

Versuch		BSS12	BSS21	BSS22	BSS23	BSS24	BSS25	BSS26	BSS28
Hüllrohr	Nr.	keine	101	102	103	104	105	106	108
maximale Krümmung	mm	3,2	***	1,8	1,0	2,3	2,5	3,6	2,4
Abstand von UKF	mm	490		250	500	340	200	470	350
Lage zur Nullmarke	Grad	* 0		155	300	240	45	220	170
Krümmung im Beulbereich	mm	1,0		1,5	0,8	1,8	1,8	1,7	0,6
Abstand vom UKF	mm	260		220	290	285	265	205	190
Lage zum Riß **	Grad	135		170 Riβ A	180	175	170	145	70

^{*} Lage zum Riβ, keine Nullmarke vorhanden ** kleinster Winkel

Tabelle 12: Exzentrizität der Beule bei den BSS-Versuchsstäben


Versuch		BSS12	BSS21	BSS22	BSS23	BSS24	BSS25	BSS26	BSS28
Hüllrohr .	Nr.	keine	101	102	103	104	105	106	108
Abstand von UKF	mm	260	***	220	290	285	265	205	190
Lage zum Riß **	Grad	175	·	160 Riβ A	176	160	165	130	10
Lage zur Nullmarke	Grad	*		170	20	105	30	60	320
Exzentri- zität	mm	0,75		0,50	0,48	0,25	0,32	0,42	1,2

^{*} keine Nullmarke vorhanden

^{**} kleinster Winkel

^{***} nicht geborsten

In Abb. 39 wurde die relative Volumenzunahme in Abhängigkeit von der Innendruckänderung während der Verformung dargestellt, und zwar sind die BSS-Punkte in das Diagramm der Nuklearstabergebnisse eingetragen. Die Innendruckveränderung ($p_{max}-p_{B}$) während des Balloonings der Hülle ist in folgendem Schema veranschaulicht.

Schema: Innendruckverlauf während der Hüllverformung

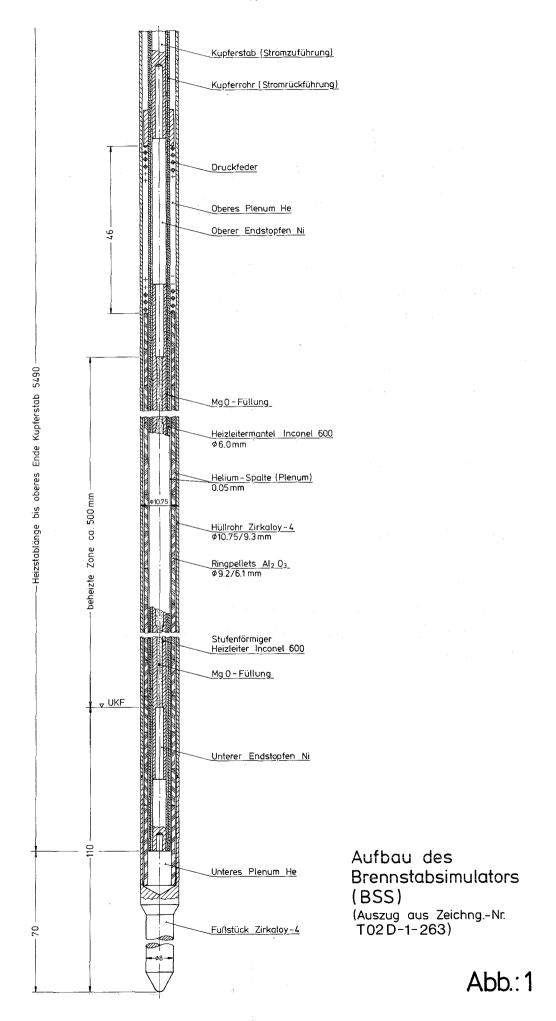
Die BSS-Werte liegen in dieser Darstellung in gleicher Weise um die Approximation aus den Nuklearstabdaten verteilt wie die Nuklearstabwerte.

7. Zerstörende Nachbestrahlungsuntersuchung

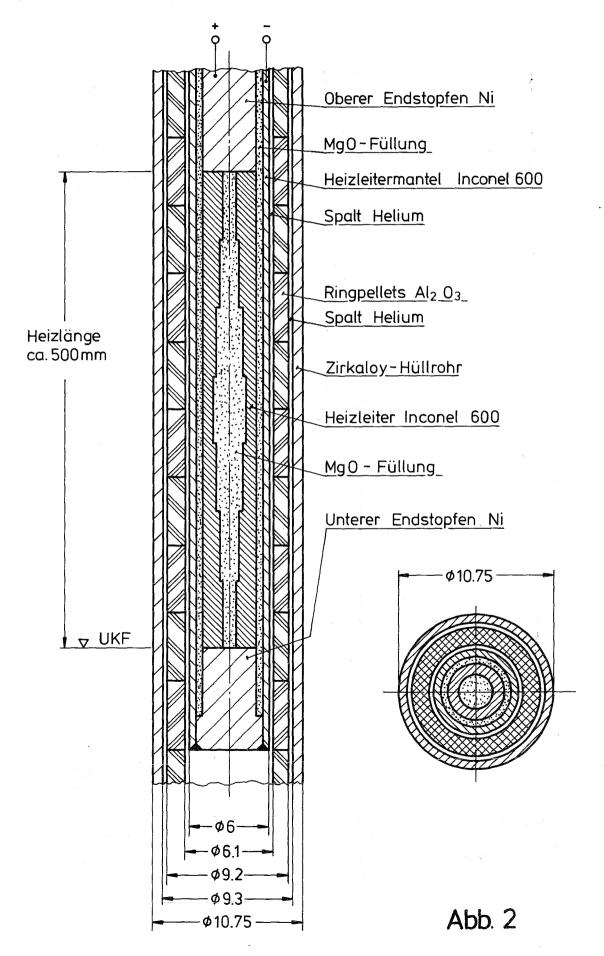
Die zerstörenden Nachbestrahlungsuntersuchungen der Brennstabprüflinge des In-pile-Versuchsprogramms werden vom Institut für Material- und Festkörperforschung des KfK bearbeitet.

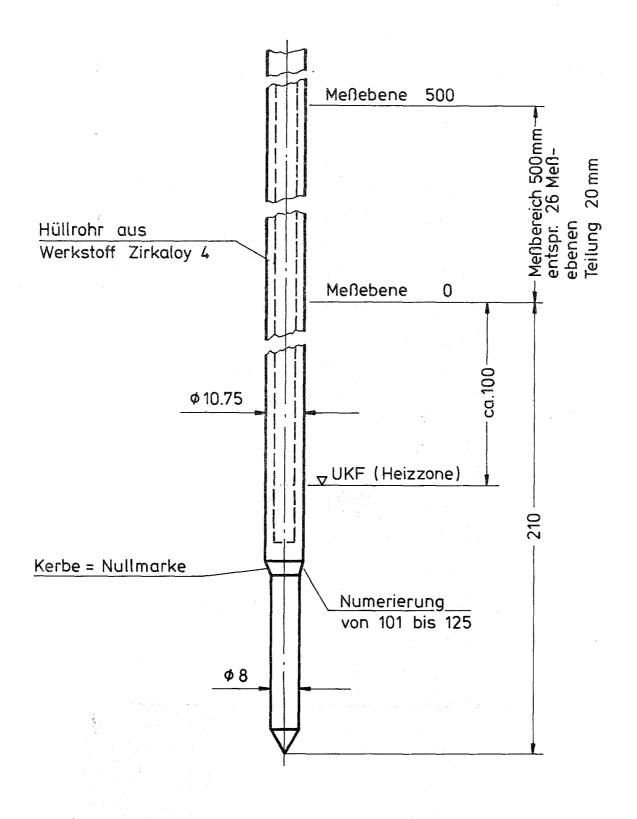
In der Regel werden von jedem Prüfling an drei bis vier Stellen Proben für Querschliffe angefertigt. Die Querschliffbilder der Berststellen werden u.a. zur Bestimmung der Umfangsdehnung verwendet (siehe Kapitel 6.3.2 Durchmesseränderung und Umfangsdehnung). Anhand der Schliffbildaufnahmen des Zry-4-Gefüges werden weiterhin Aussagen über den Gefügezustand, die Wandstärkeabnahme, den Oxidationszustand, eine evtl. chemische Wechselwirkung zwischen Pellet und Hülle, sowie die maximal erreichbare Hülltemperatur gemacht. Die über das Gefügebild abgeschätzten Zirkaloy-Temperaturen werden mit den korrigierten Meßwerten verglichen. Querschliffbilder der Stelle maximaler Umfangsdehnung der elektrisch beheizten Prüflinge zeigen die Abb. 35.1 bis 35.7. Die Schnittpläne der BSS-Stäbe sind als Anhang II beigefügt.

8. Literatur

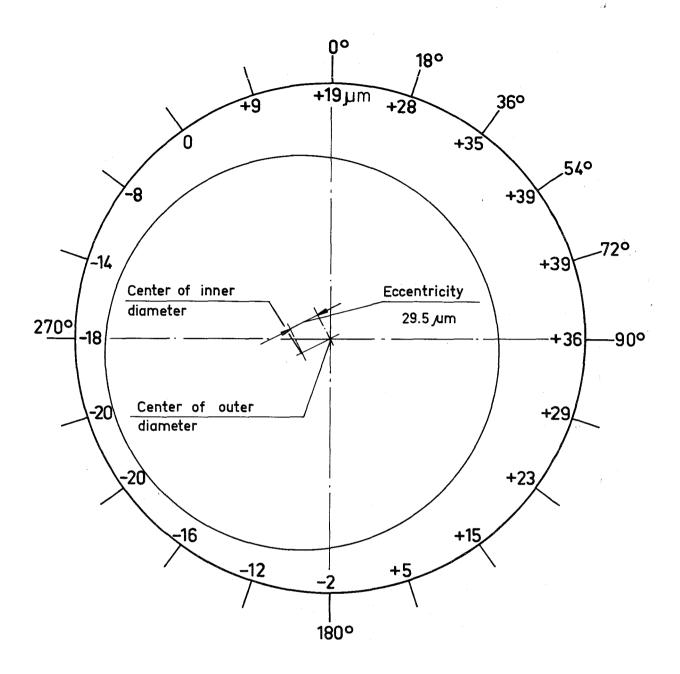

- /1/ E.H.Karb et al.:

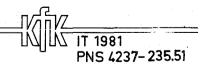
 KfK In-Pile Tests on LWR Fuel Rod Behavior During the Heatup Phase of a LOCA, KfK-Bericht 3028 (1980)
- /2/ E.Karb:
 In-Pile Tests at Karlsruhe of LWR Fuel-Rod Behavior
 During the Heatup Phase of a LOCA
 Nuclear Safety, 21-1, 26 (1980)
- /3/ H.Lukitsch, K.Wagner: private Mitteilung (1979)
- /4/ K.Wagner:
 private Mitteilung (1980)
- /5/ A.Scherer:
 private Mitteilung (1980)
- /6/ R.H.Chapman:


 Multirod Burst Test Program, Progress Report for

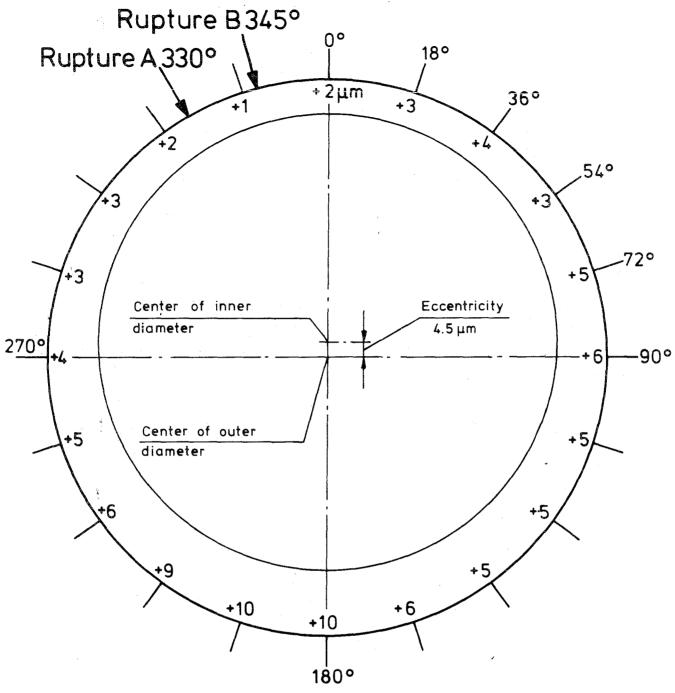

 January March 1978, NUREG / CR-0225, ORNL / NUREG /

 TM-217, August 1978


FR2 In-Pile-Tests
Schematischer Aufbau des Brennstabsimulators (BSS)

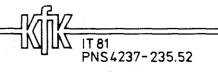


Vermessung von Hüllrohren der BSS-Versuchsstäbe Abb. 3


Measuring plane : average between 0 and 500 mm from UKF

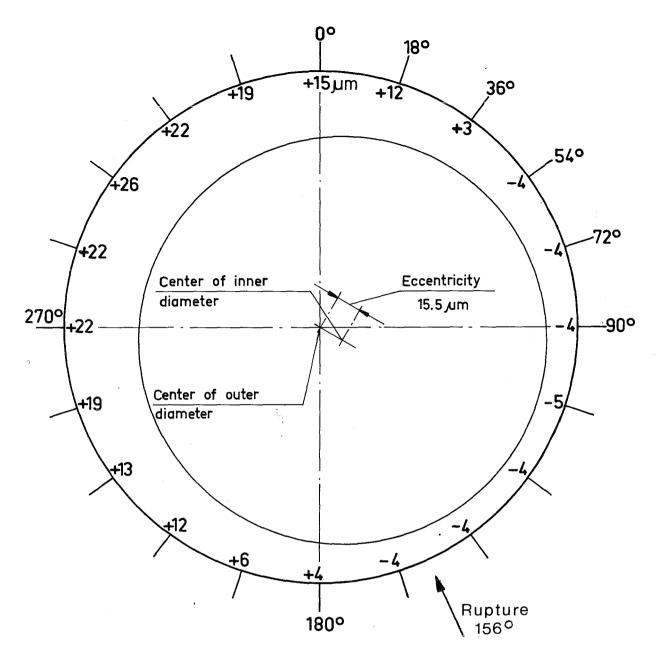
TEST BSS 21 Rod 101

FR2 In-pile tests


Circumferential cladding thickness distribution (as received) presented as differences from the nominal 0.725 mm

Measuring plane: average between 140mm and 200mm from UKF

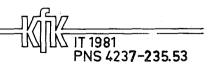
Midplane rupture A: 219mm from UKF Midplane rupture B: 163mm from UKF


TEST BSS 22 Rod 102

FR2 In-pile tests

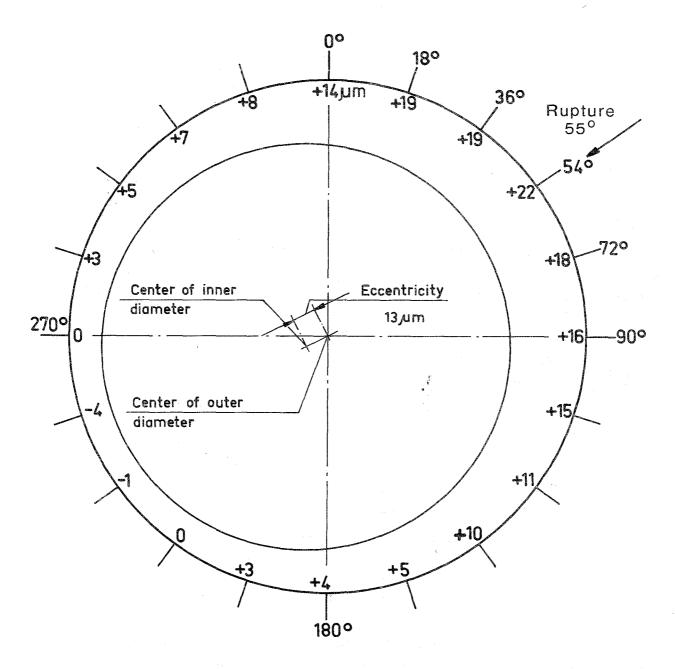
Circumferential cladding thickness distribution (as received) presented as differences from the nominal 0.725 mm

Abb. 4.2



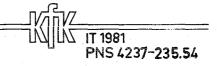
Measuring plane : average between

260 mm and 320 mm from UKF

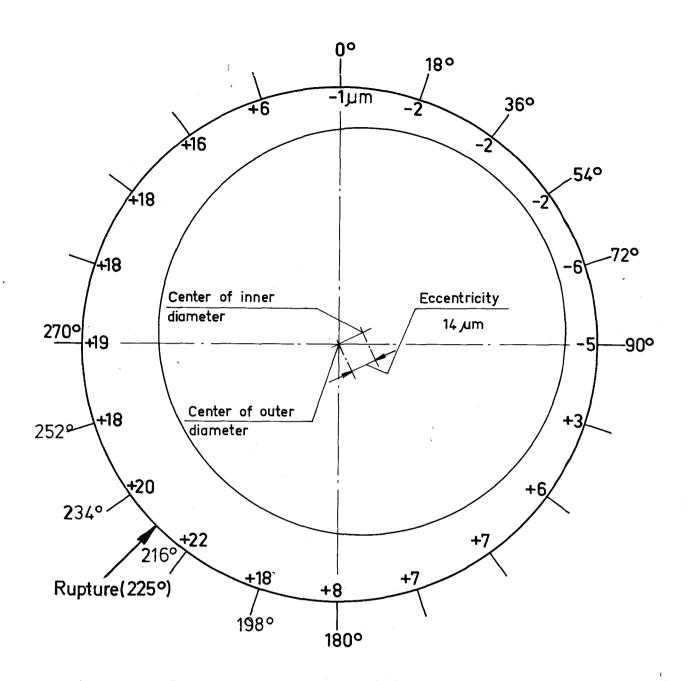

Rupture midplane: 190 mm from UKF

TEST BSS 23 Rod 103

FR2 In-pile tests

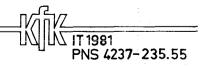

Circumferential cladding thickness distribution (as received) presented as differences from the nominal 0.725 mm

Measuring plane: average between 120 mm and 200 mm from UKF


Rupture midplane: 258 mm from UKF

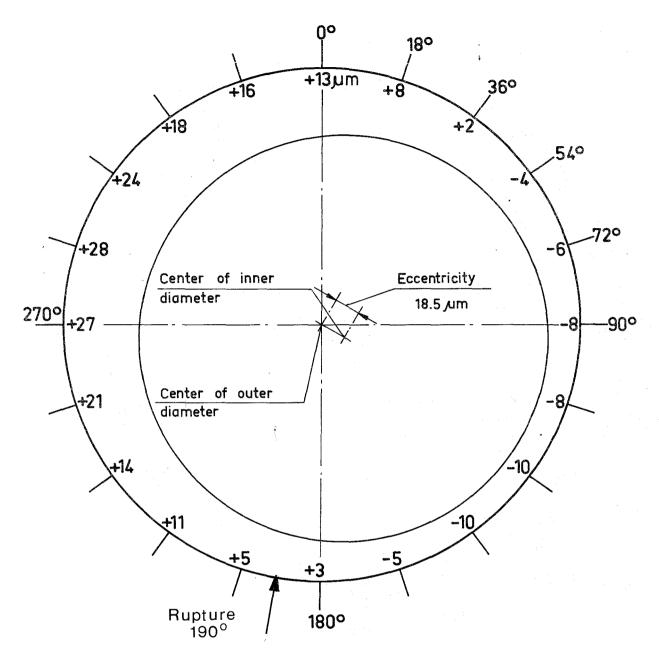
TEST BSS 24 Rod 104

FR2 In-pile tests


Circumferential cladding thickness distribution (as received) presented as differences from the nominal 0.725 mm

Measuring plane: average between 220 mm and 320 mm from UKF

Rupture midplane: 265mm from UKF


TEST BSS25 Rod 105

FR 2 In-pile tests

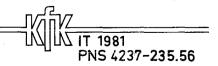
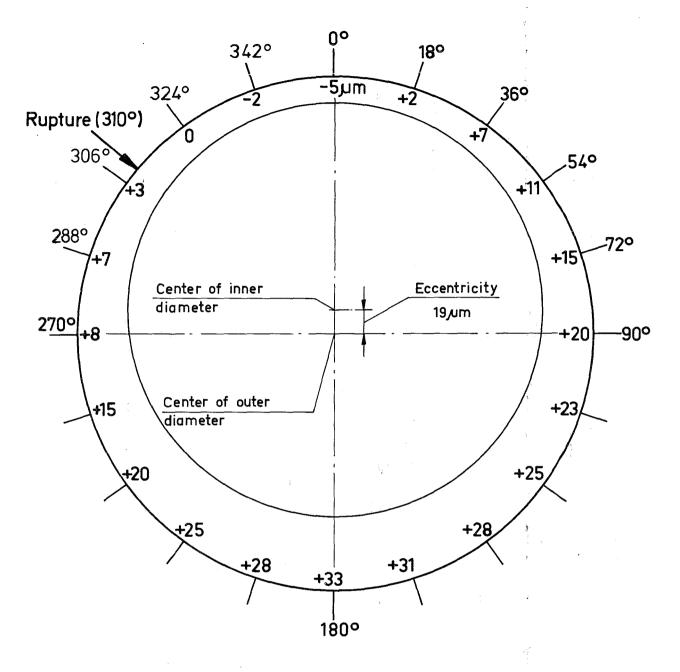
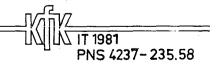

Circumferential cladding thickness distribution (as received) presented as differences from the nominal 0.725 mm

Abb. 4.5

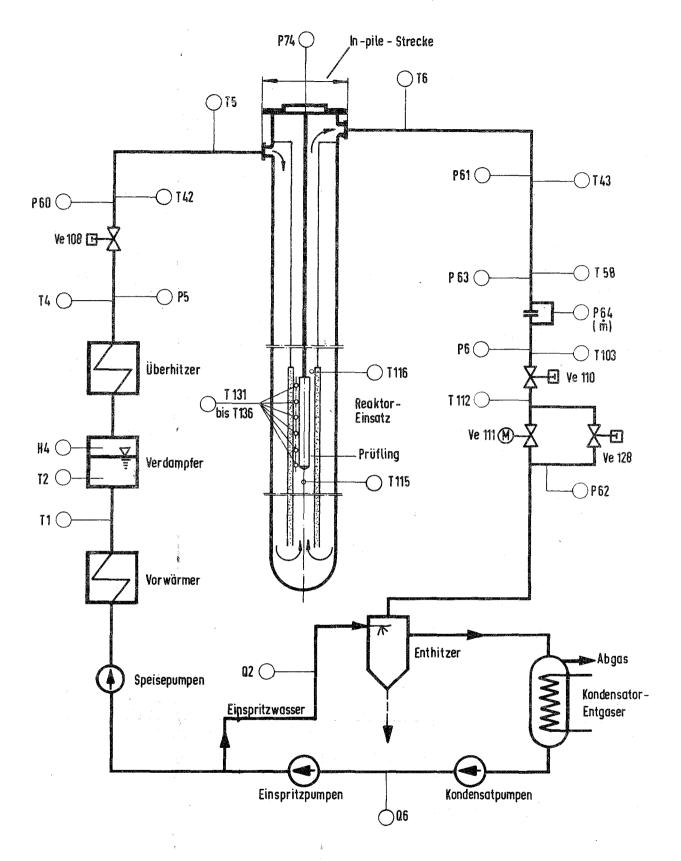


Measuring plane: average between 160 mm and 240 mm from UKF Rupture midplane: 200mm from UKF

TEST BSS 26 Rod 106

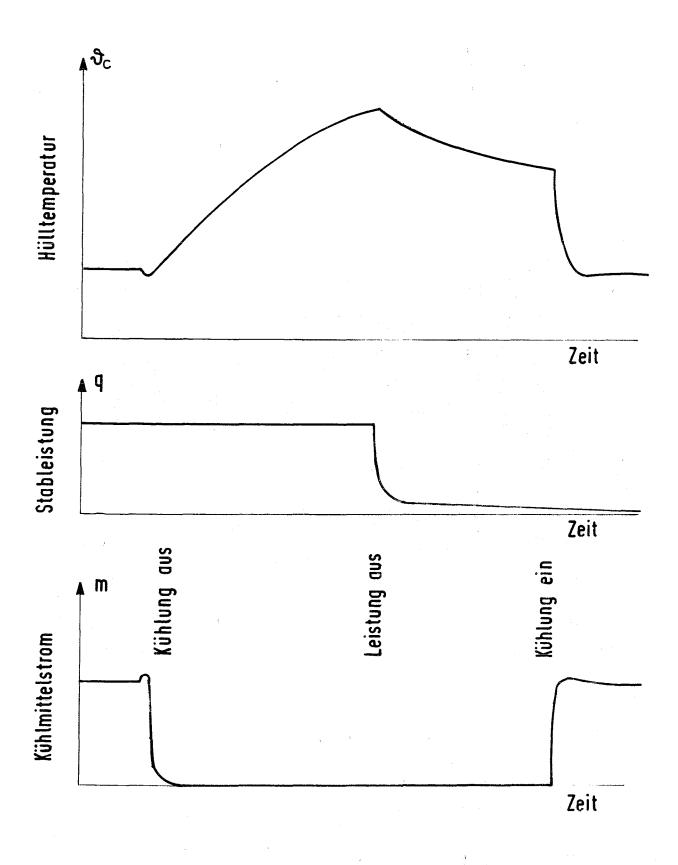


FR 2 In-pile tests
Circumferential cladding thickness distribution (as received) presented as differences from the nominal 0.725 mm



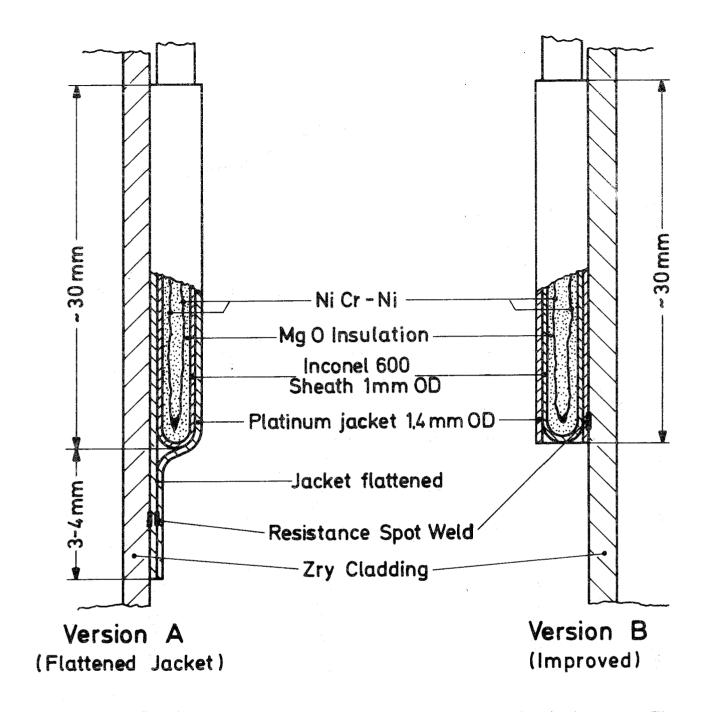
Measuring plane: average between 140mm and 220mm from UKF Rupture midplane: 180 mm from UKF

TEST BSS 28 Rod 108



FR 2 In-pile tests
Circumferential cladding thickness distribution (as received) presented as differences from the nominal 0.725 mm

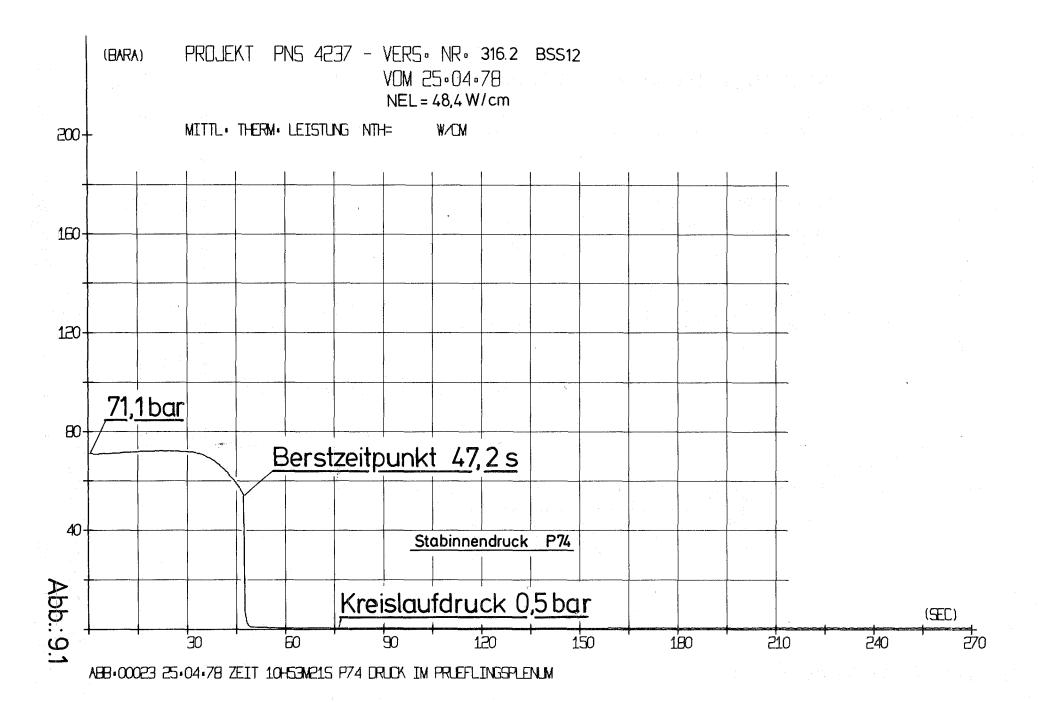
IT - 1977 PNS 4237 - 87

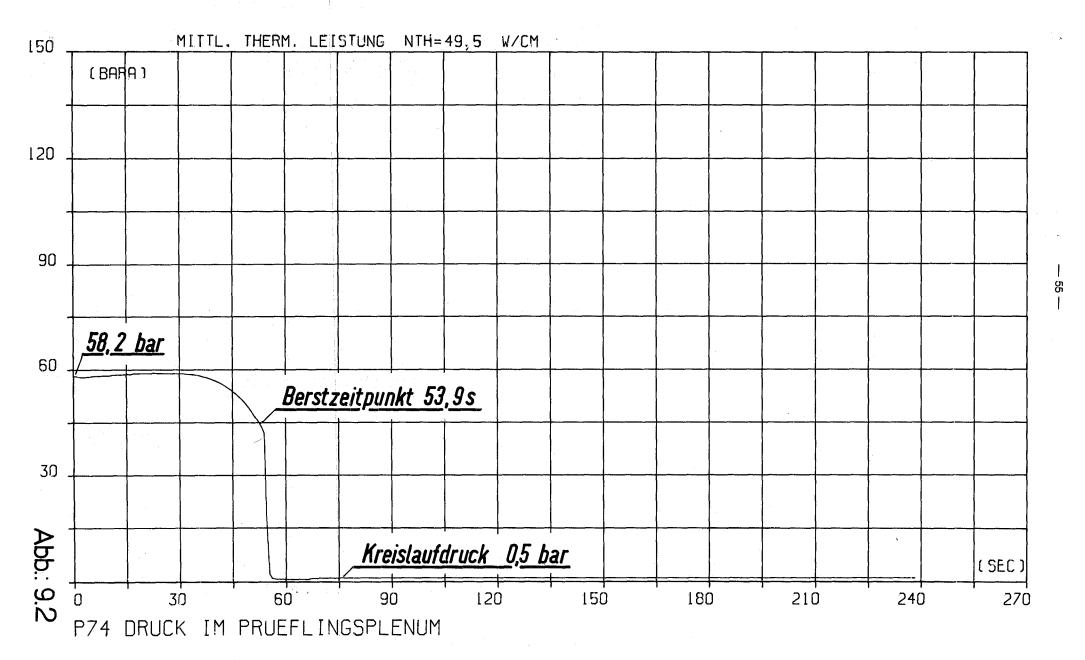

DK-Loop am FR2. Stark vereinfachtes Kreislaufschema Abb.: 5

IT - 1977 PNS 4237 -59.1

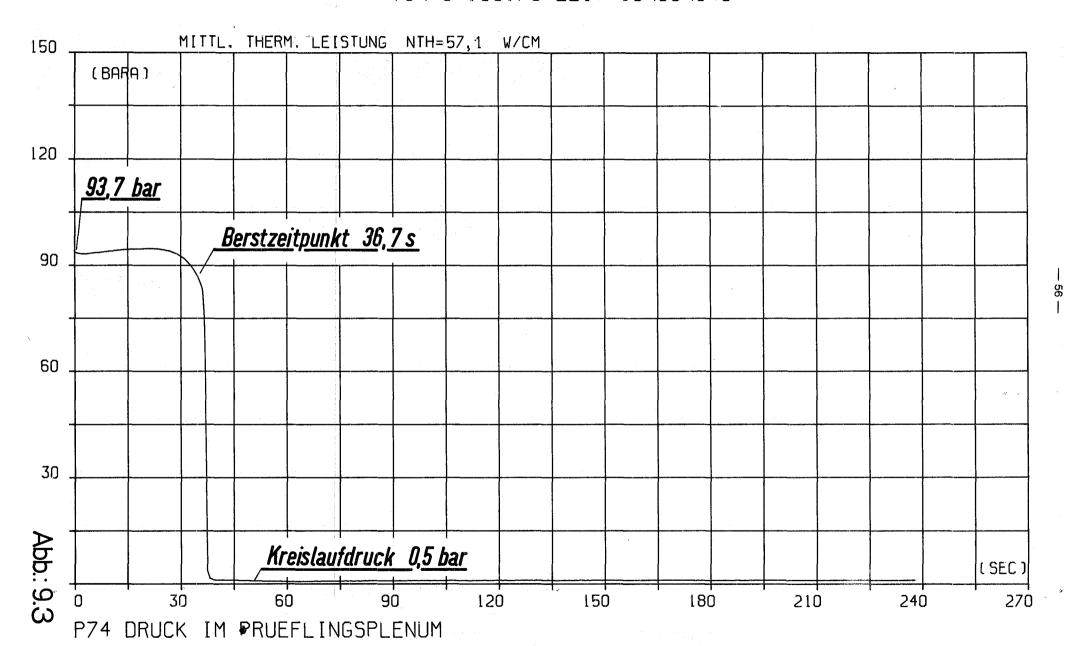
Versuchsablauf, Schema

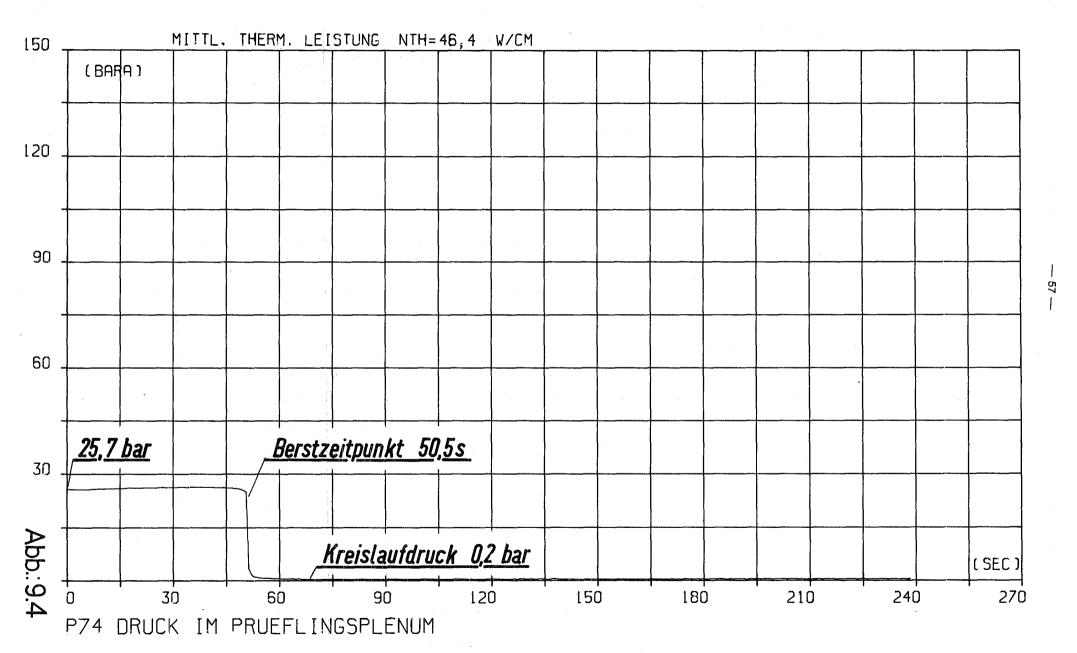
Abb.: 6

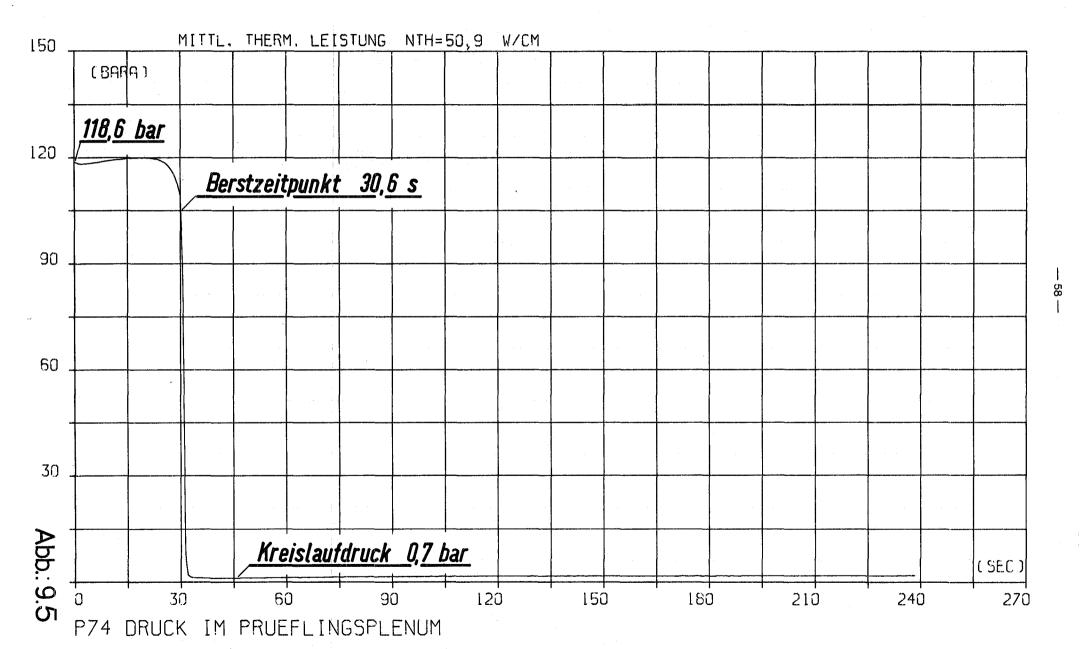




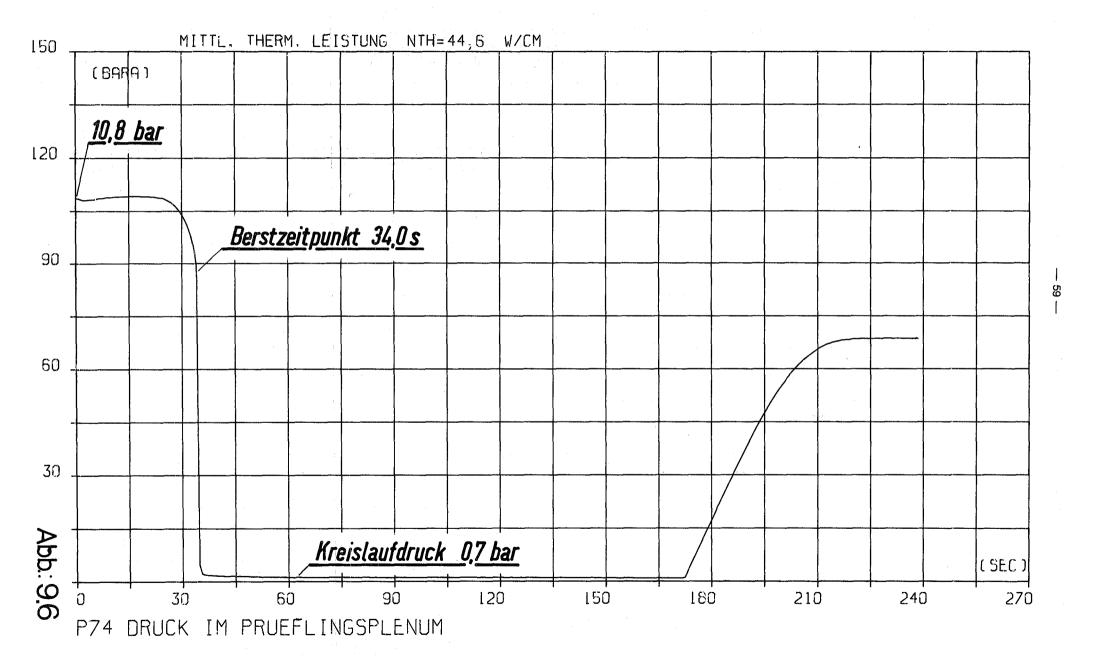
FR2 In-Pile Tests:
Cladding Thermocouple (Schematic)


Abb. 7

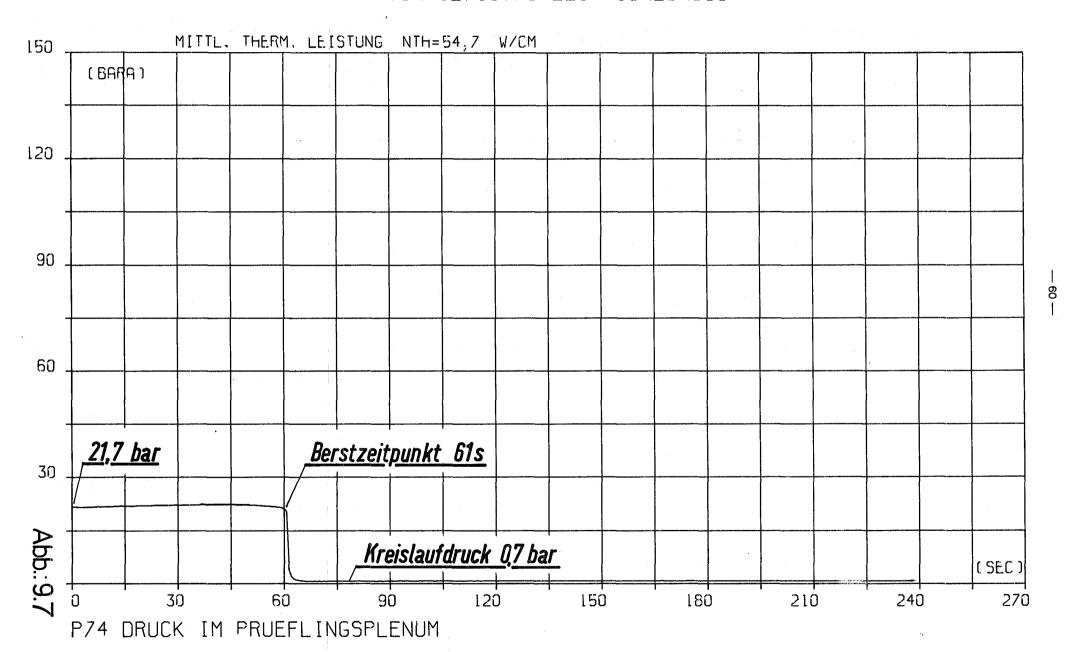


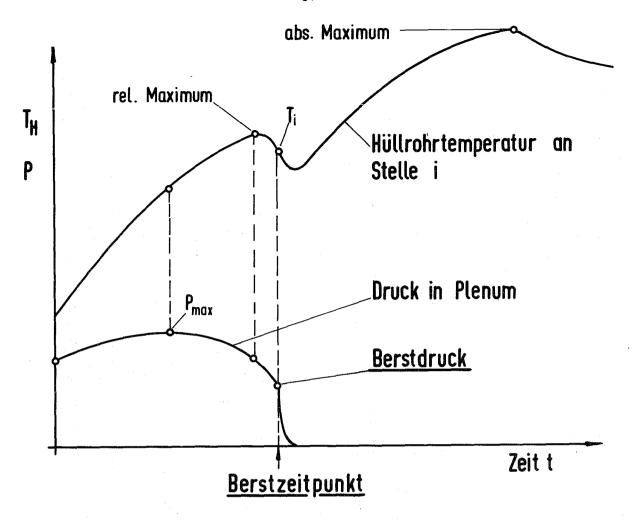


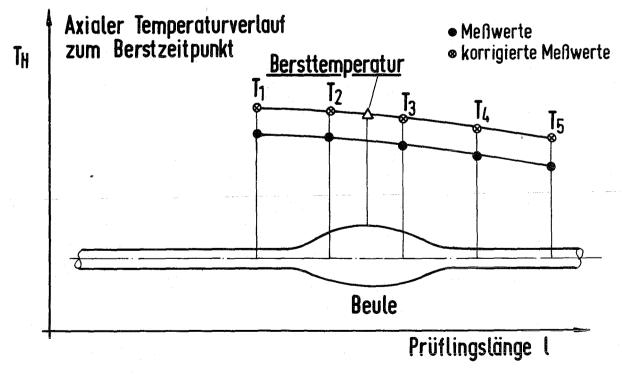
PRØJEKT PNS 4237 - VERS. NR. ; BSS 23 VØM 04,09,79 ZEIT 16H05M54S



PROJEKT PNS 4237 - VERS. NR. : BSS 24 VOM 05.09.79 ZEIT 16H13M36S



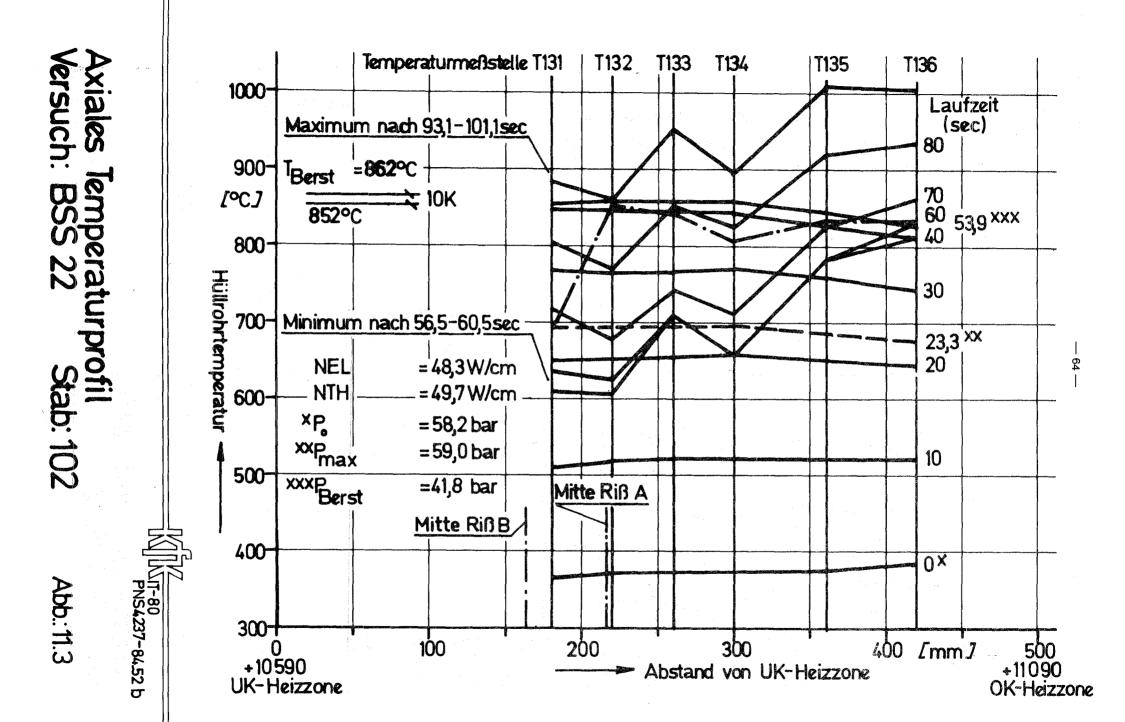
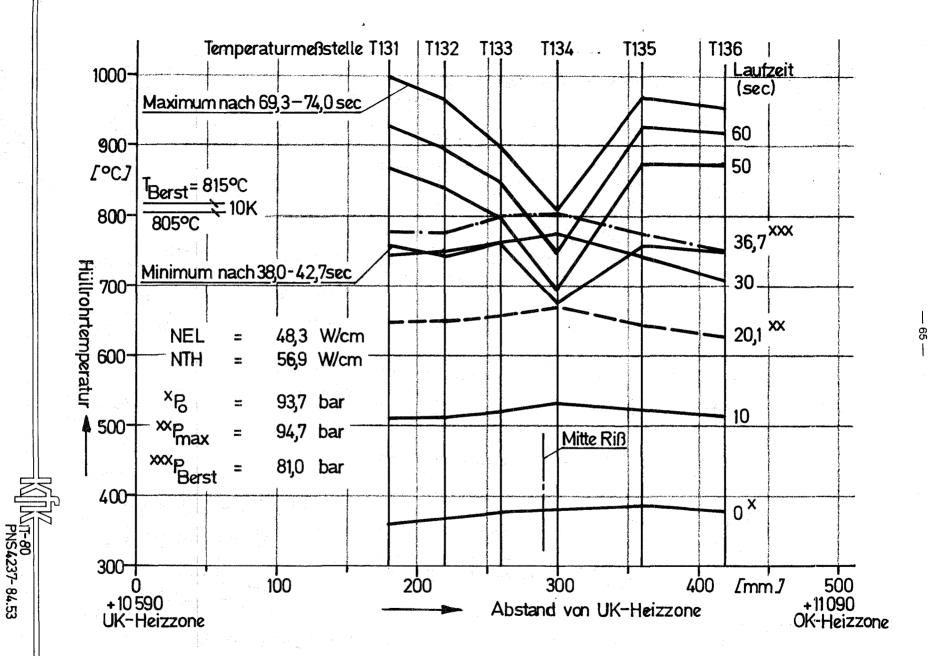
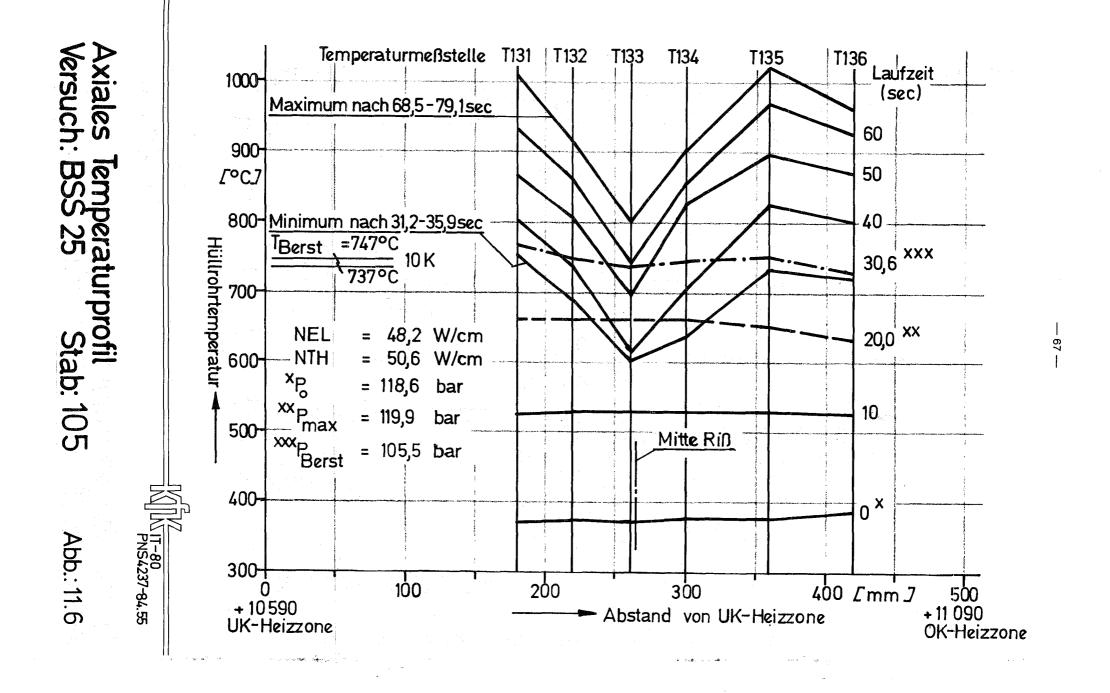
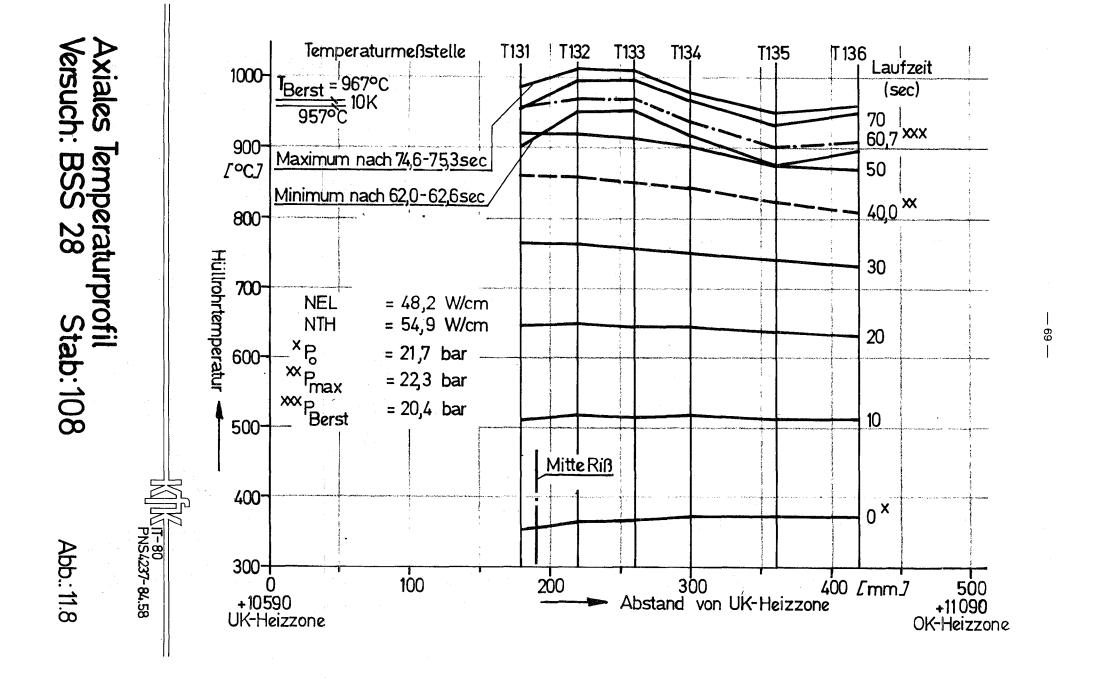


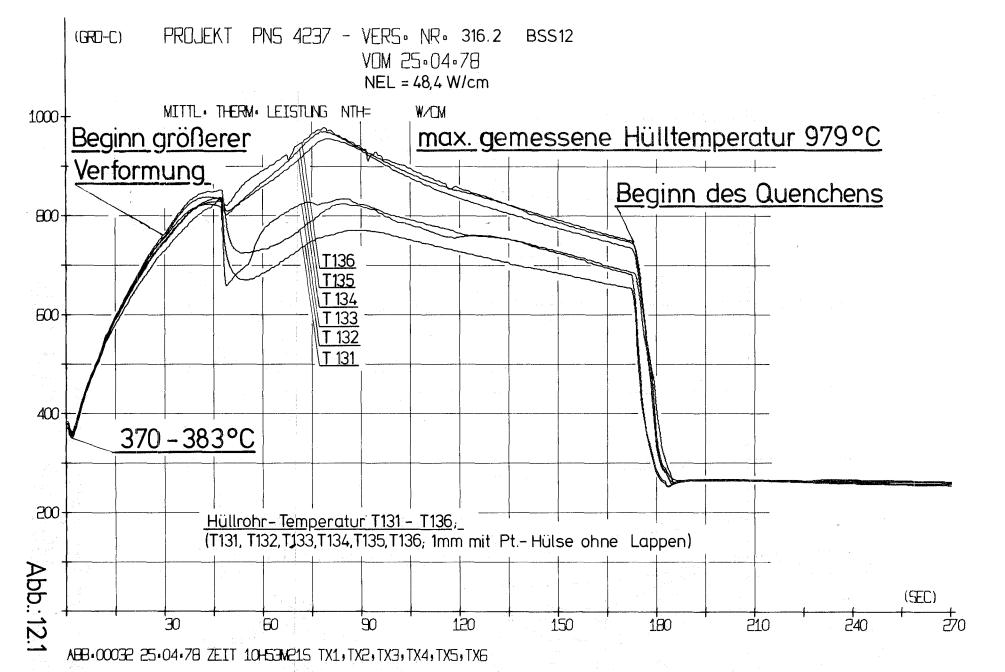

PROJEKT PNS 4237 - VERS, NR. : BSS 26 VOM 08,11,79 ZEIT 16H42M30S

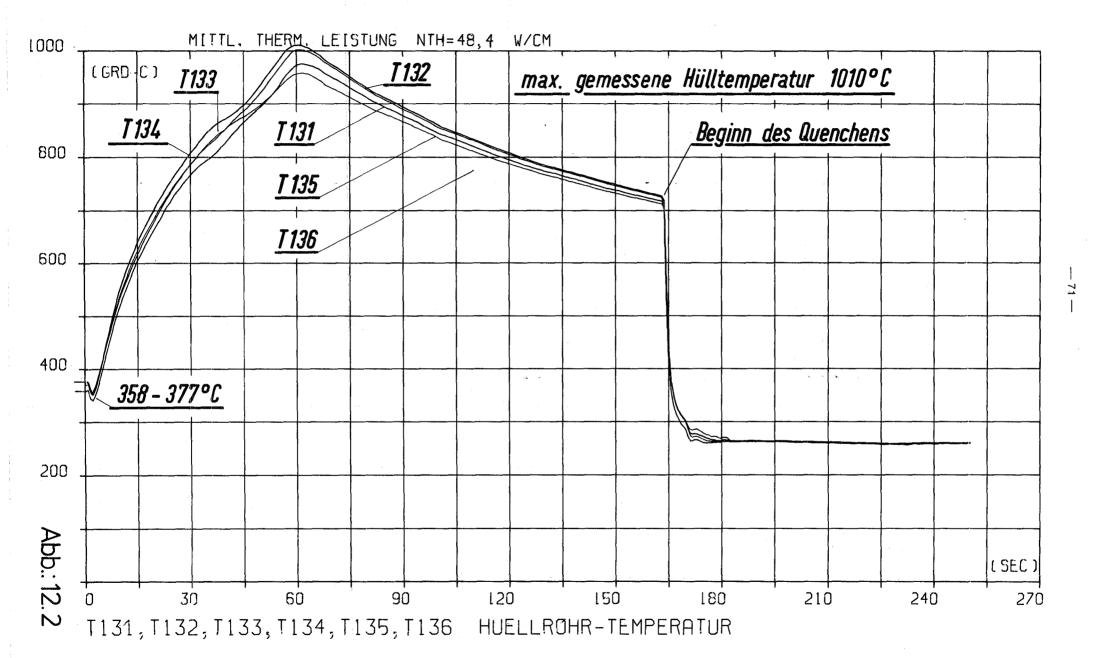
PROJEKT PNS 4237 - VERS, NR. : BSS 28 VOM 12.11.79 ZEIT 16H28M56S

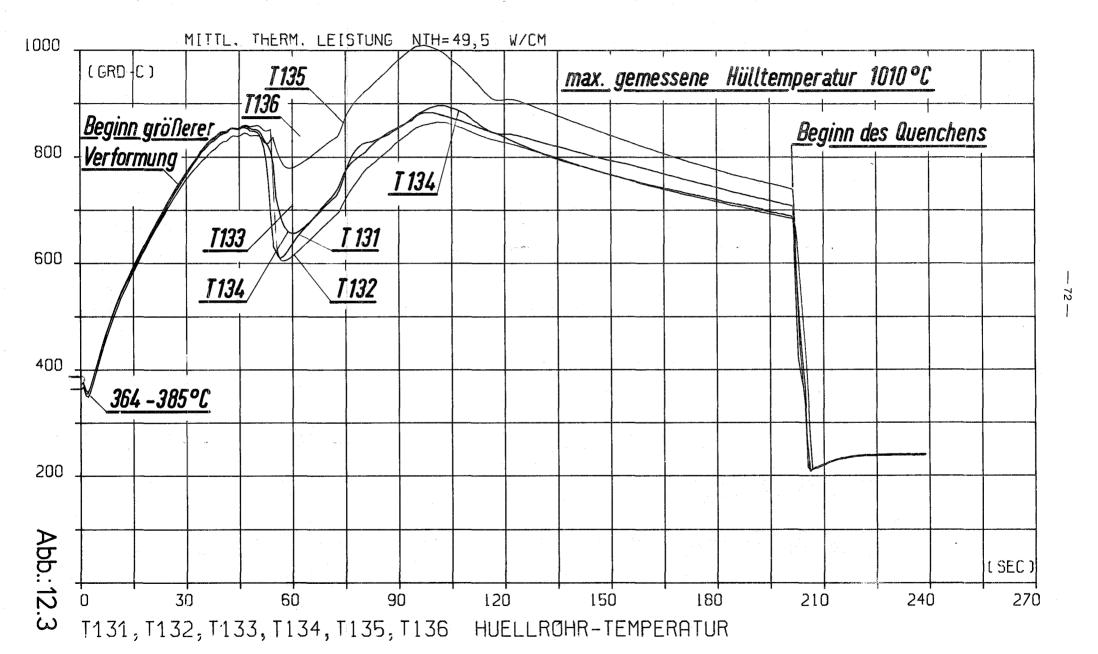
IT-1977 PNS-4237-91,1

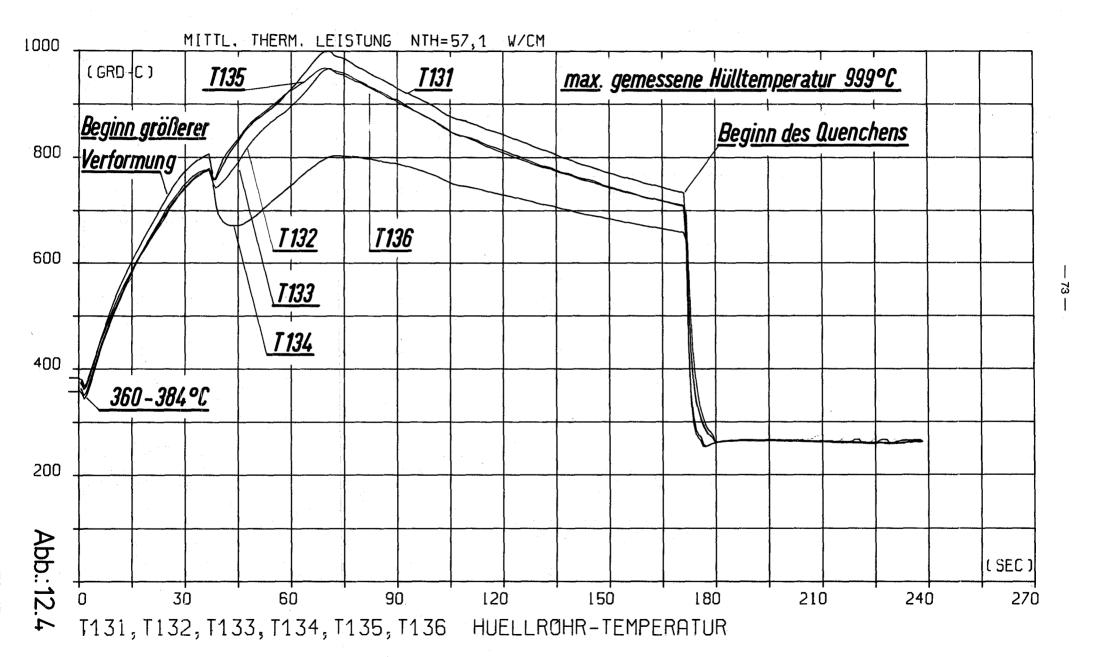
Schema zur Definition von Bersttemperatur und Berstdruck Abb.: 10

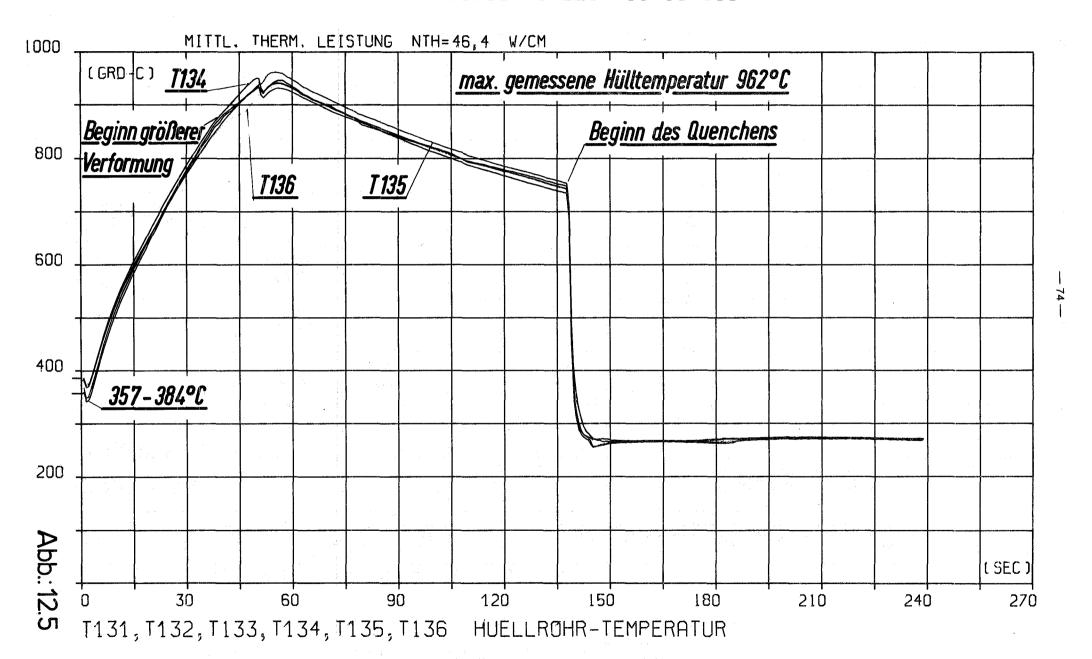





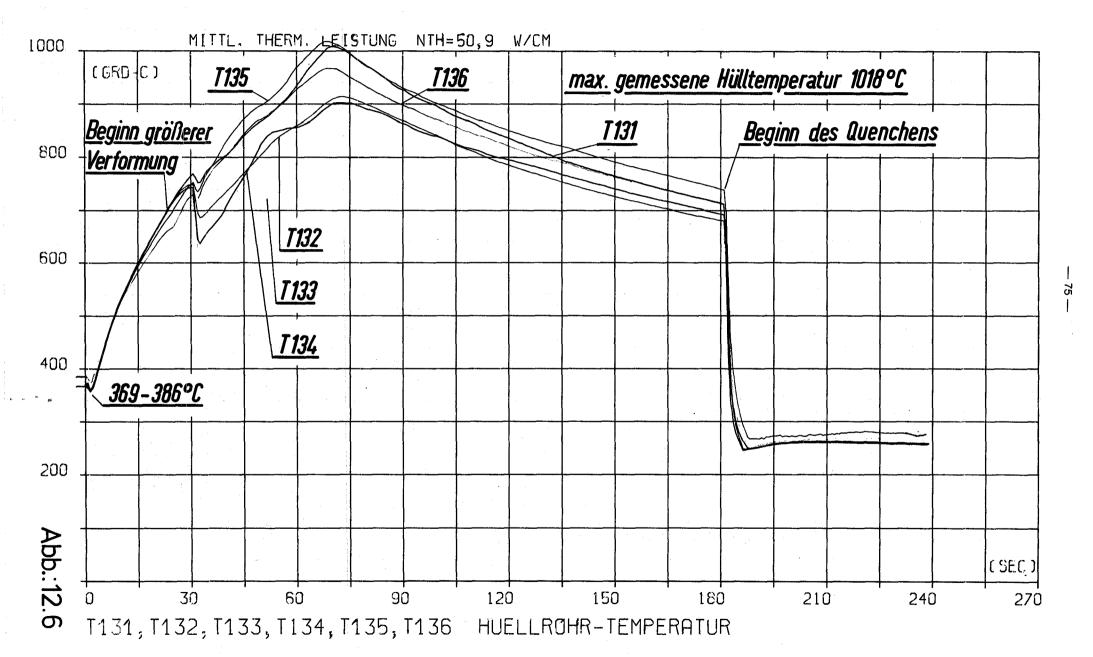

Abb.: 11.4

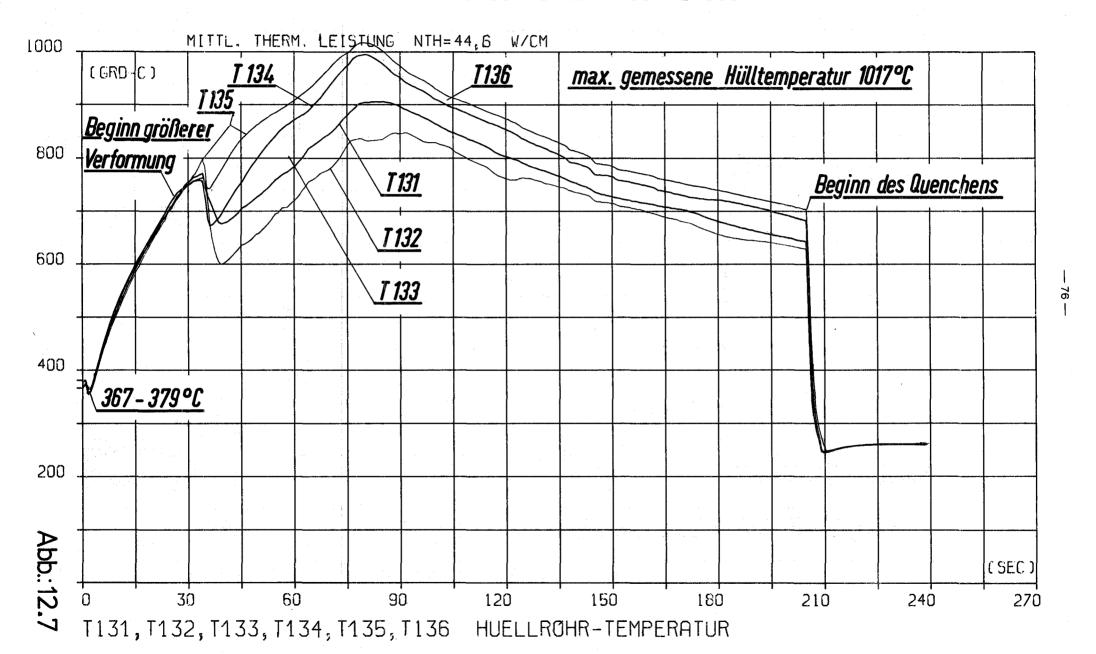


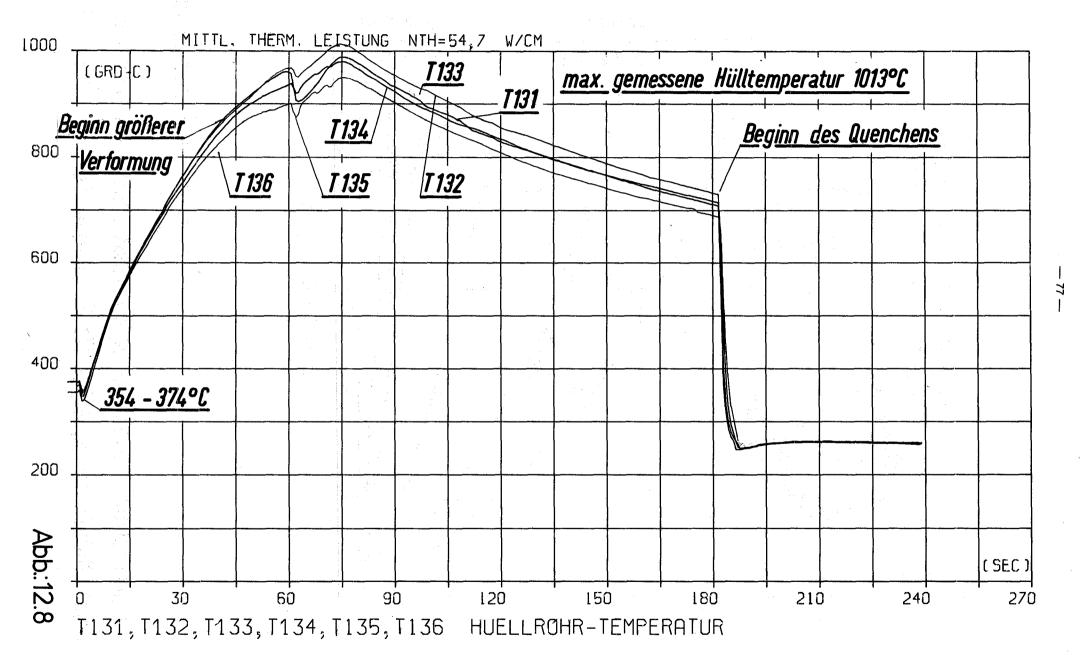


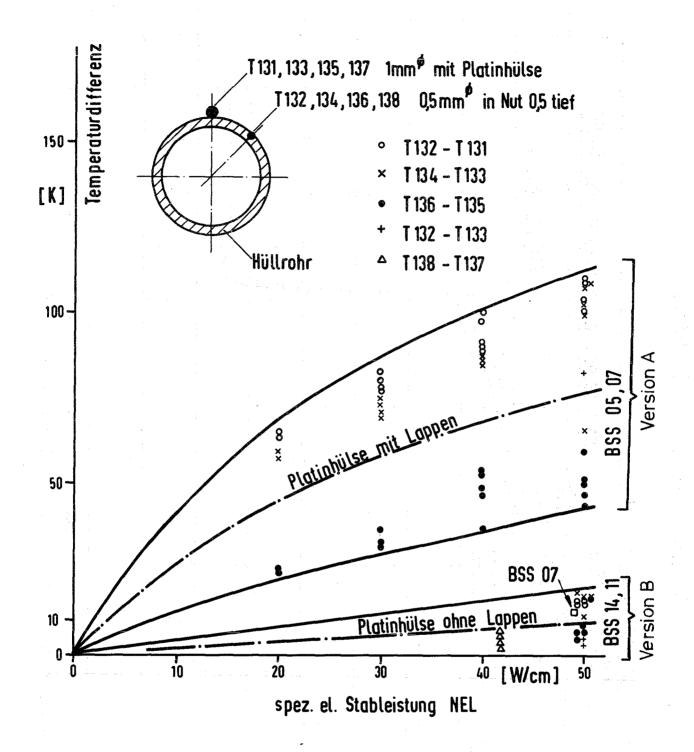


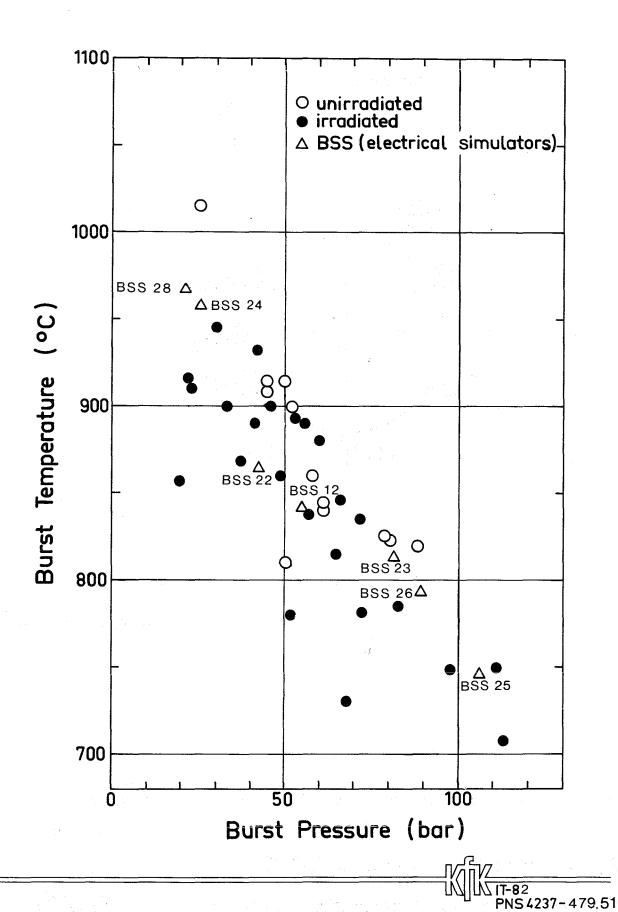


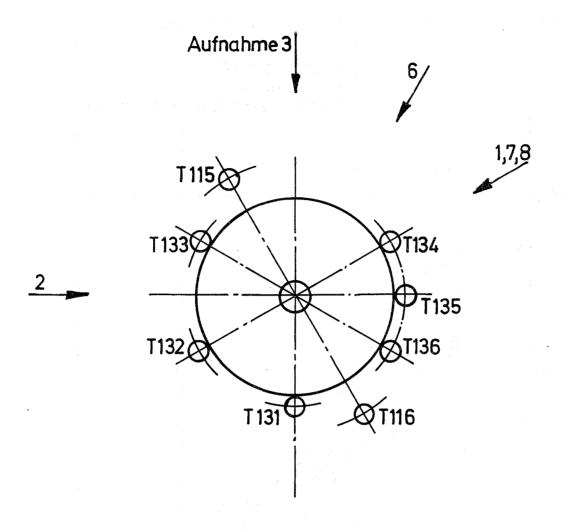



PRØJEKT PNS 4237 - VERS, NR. : BSS 23 VØM 04,09,79 ZEIT 16H05M54S


PRØJEKT PNS 4237 - VERS, NR. BSS 24 VØM 05.09.79 ZEIT 16H13M36S



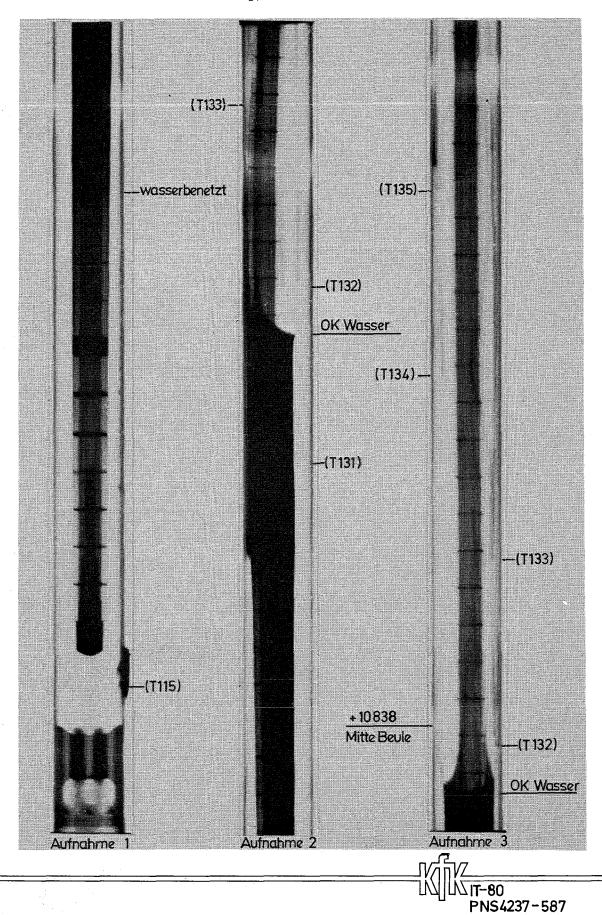

PRØJEKT PNS 4237 - VERS, NR, = BSS 28 VØM 12.11.79 ZEIT 16H28M56S


Temperaturdifferenzen der Hüllthermoelemente mit unterschiedlicher Platinhülse bei 600 bis 900°C (Transiente) Abb.: 13

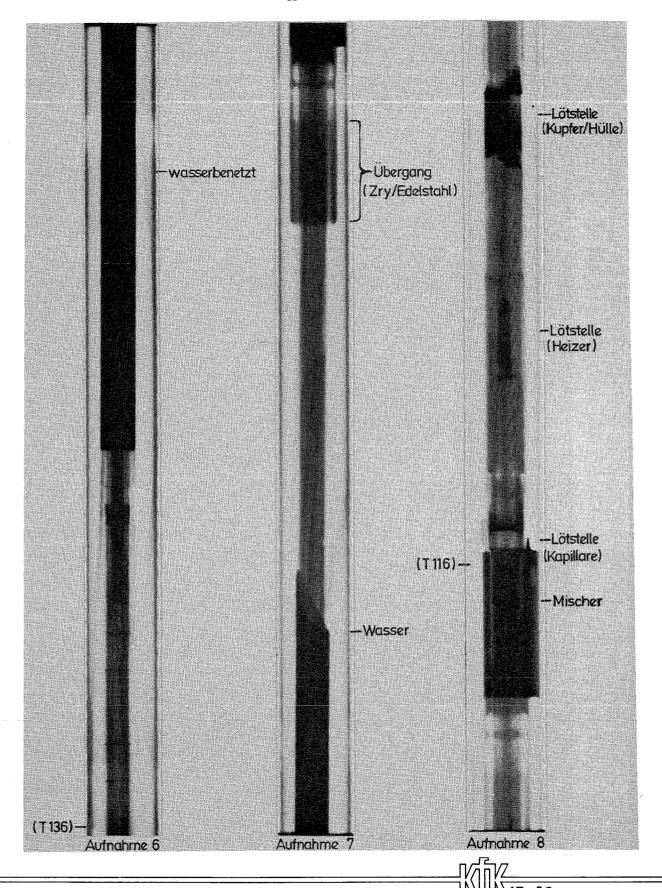
FR2 In-Pile Single Rod Tests in Steam.

Burst Temperature vs. Burst Pressure

Abb. 14

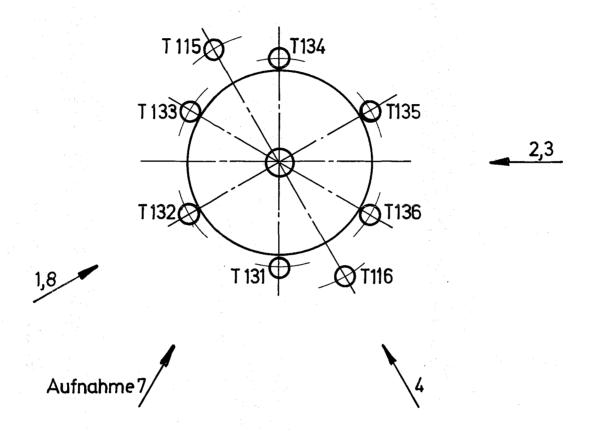


IT-80 PNS 4237-476.101


FR2 In-pile Versuche. BSS12

Winkellagen der Neutronenradiografie-Aufnahmen

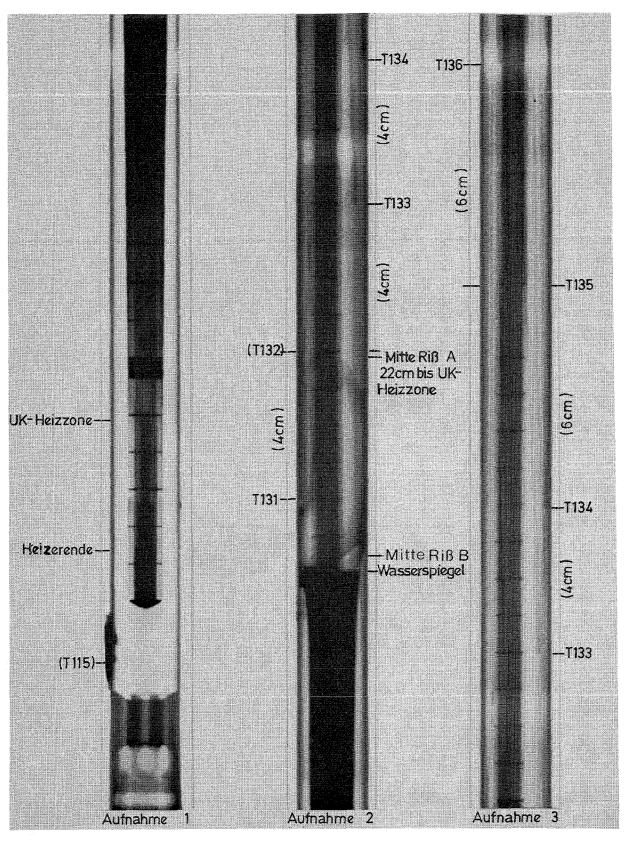
Abb.: 15.1


FR2 In-pile Versuche. Neutronenradiografie nach Versuch BSS12 Abb.:15.2

FR2 In-pile Versuche.

Neutronenradiografie nach Versuch BSS12 Abb.:15.3

PNS 4237-588



V/ VIT-80 PNS4237-476.52

FR2 In-pile Versuche. BSS22

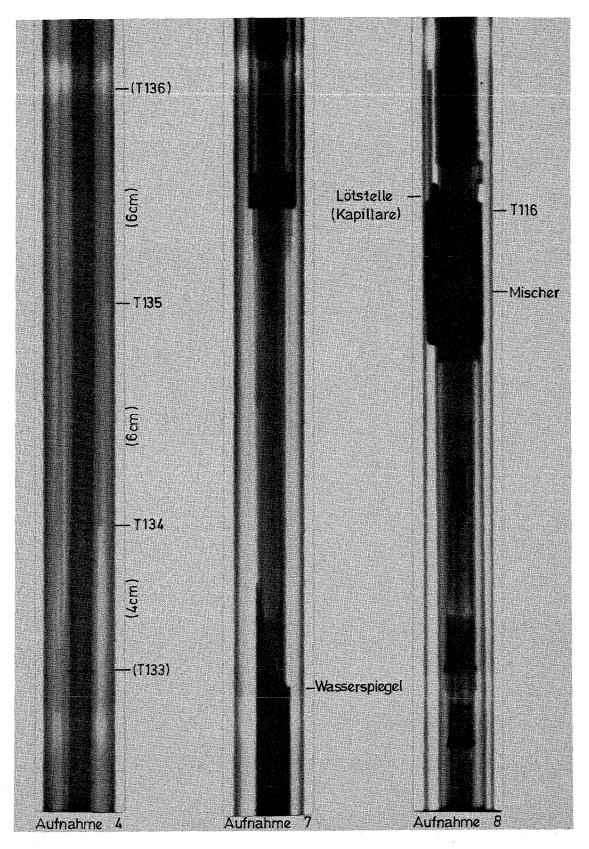
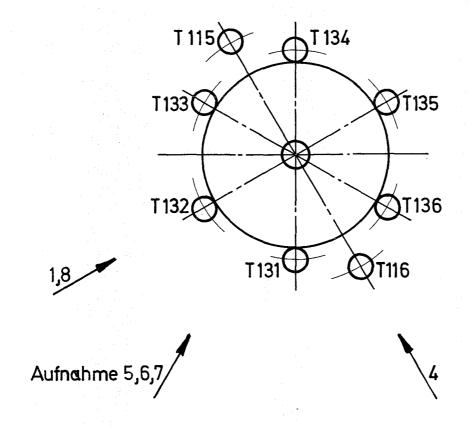

Winkellagen der Neutronenradiografie-Aufnahmen

Abb.: 16.1

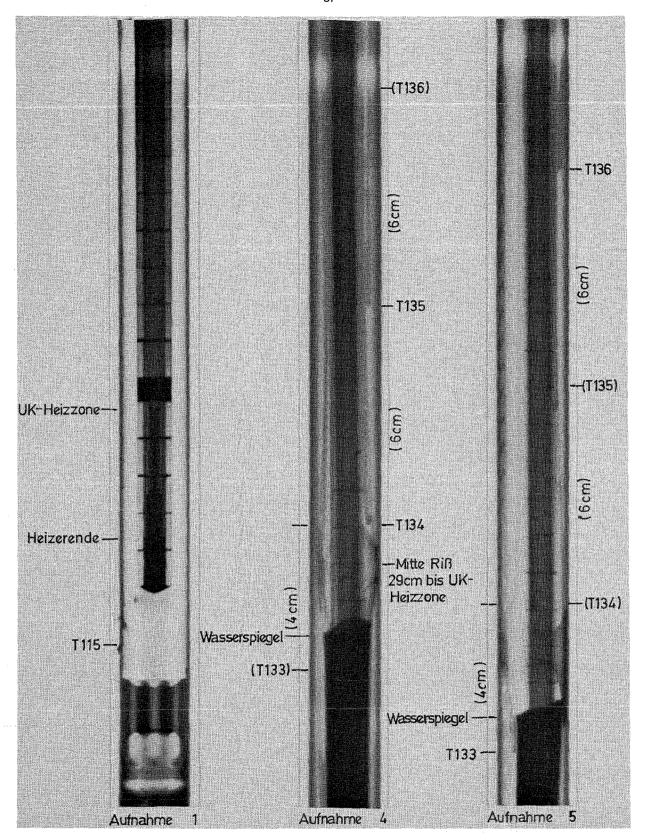
7/ 17-80 PNS 4237-589

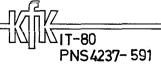

FR2 In-pile Versuche. Neutronenradiografie nach Versuch BSS22 Abb.:16.2

NS4237-590

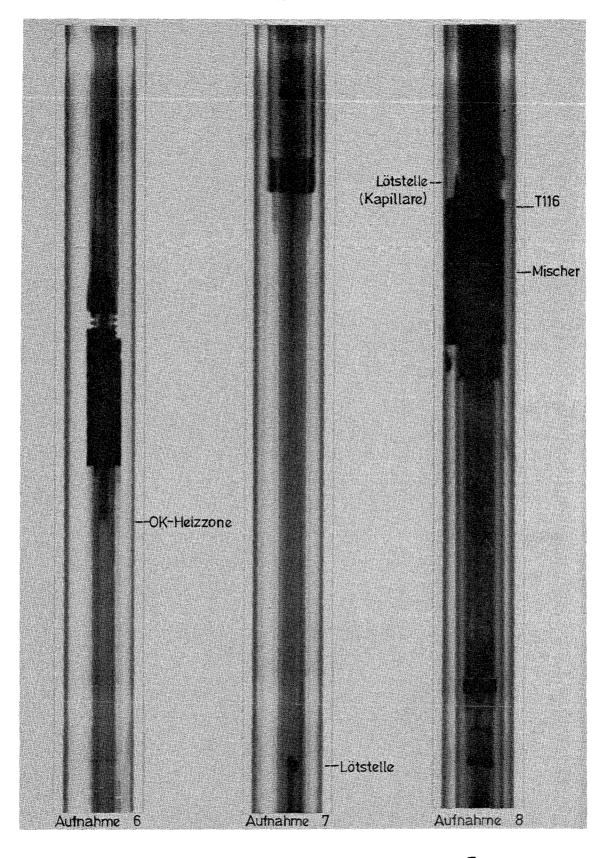
FR2 In-pile Versuche.

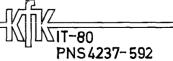
Neutronenradiografie nach Versuch BSS22 Abb.: 16.3

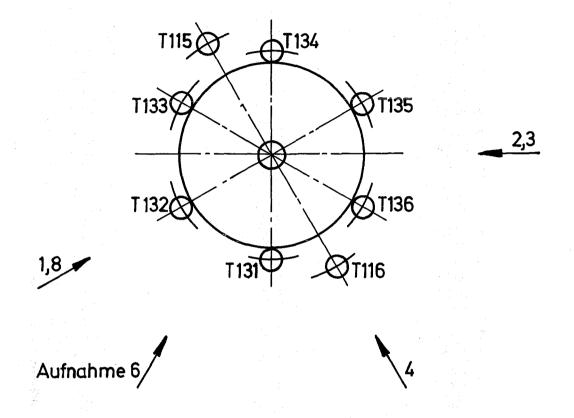



VI NIT-80 PNS 4237-476. 53

FR2 In-pile Versuche. BSS 23

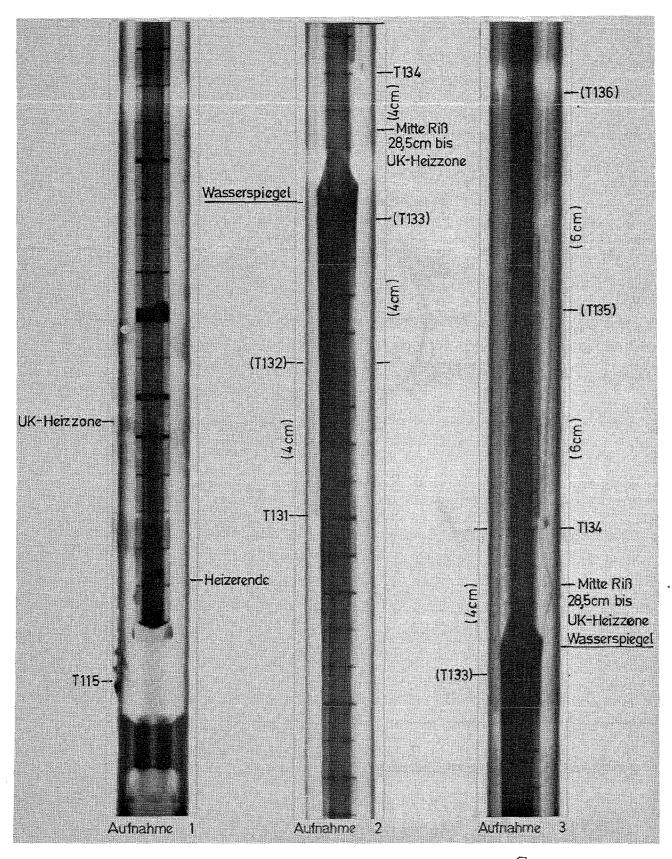

Winkellagen der Neutronenradiografie-Aufnahmen


Abb.: 17.1

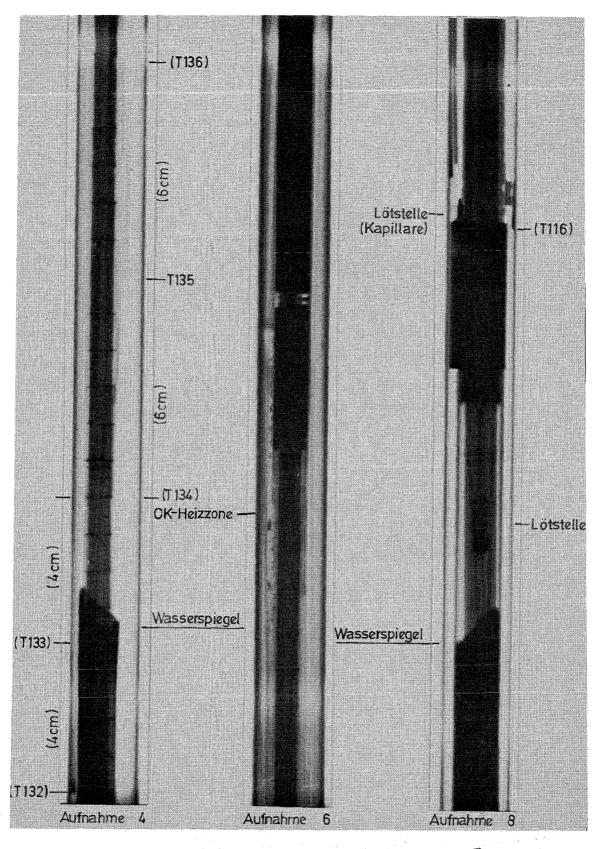


FR2 In-pile Versuche. Neutronenradiografie nach Versuch BSS 23 Abb.: 17.2

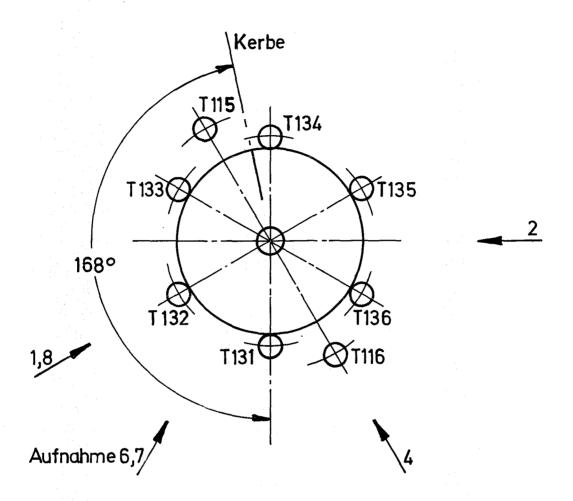
FR2 In-pile Versuche. Neutronenradiografie nach Versuch BSS23 Abb.:17.3



IT-80 PNS 4237-476.54

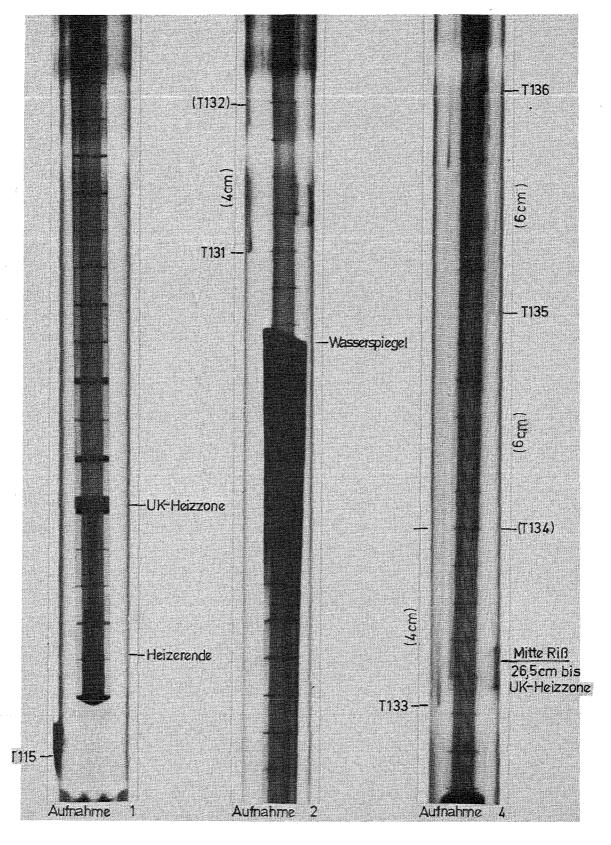

FR2 In-pile Versuche. BSS24

Winkellagen der Neutronenradiografie-Aufnahmen


Abb.: 18.1

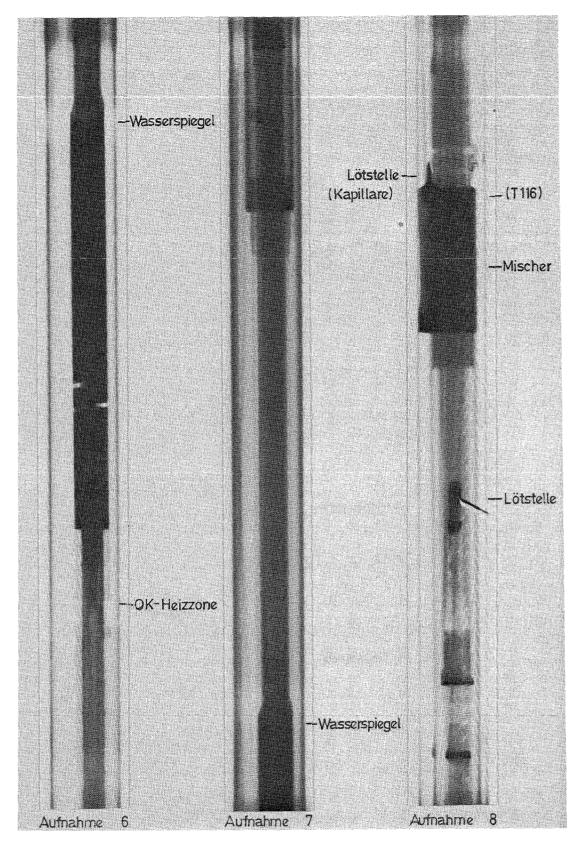
FR2 In-pile Versuche.
Neutronenradiografie nach Versuch BSS24 Abb.:18.2

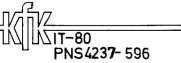
FR2 In-pile Versuche. Neutronenradiografie nach Versuch BSS24 Abb.: 18.3

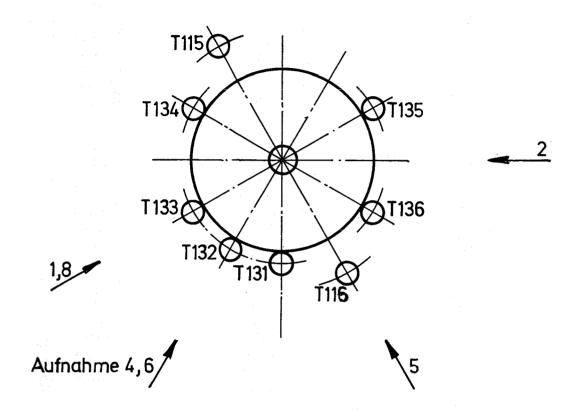


MIT-81 PNS4237-476.55

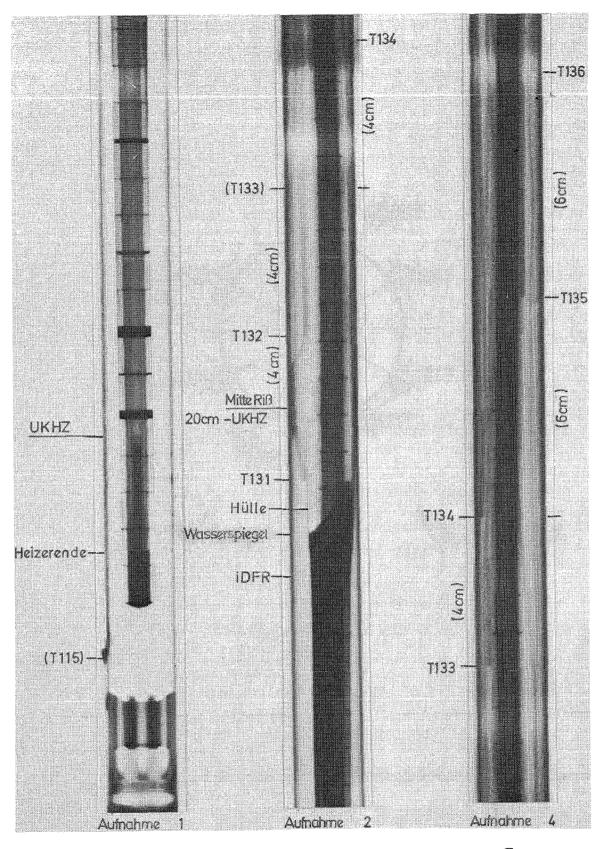
FR2 In-pile Versuche. BSS 25

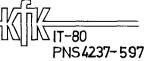

Winkellagen der Neutronenradiografie-Aufnahmen


Abb.: 19.1


IV NIT-80 PNS4237-595

FR2 In-pile Versuche. Neutronenradiografie nach Versuch BSS25 Abb.:19.2


FR2 In-pile Versuche. Neutronenradiografie nach Versuch BSS25 A**b**b.:19.3



FR2 In-pile Versuche. BSS 26

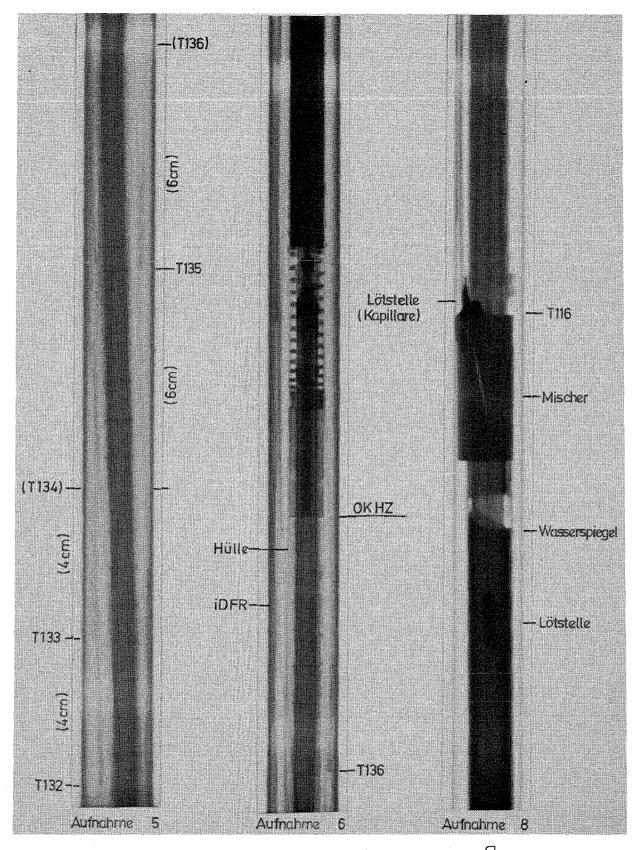
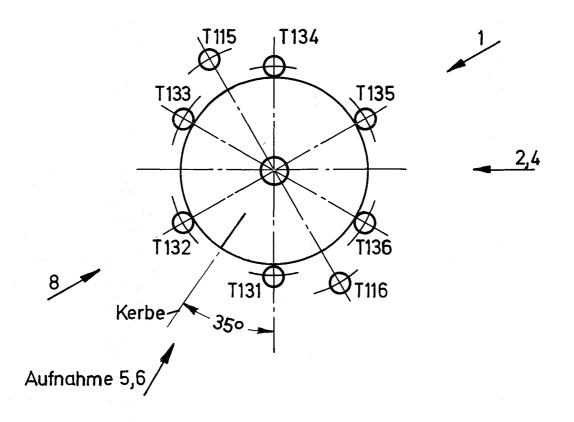

Winkellagen der Neutronenradiografie-Aufnahmen

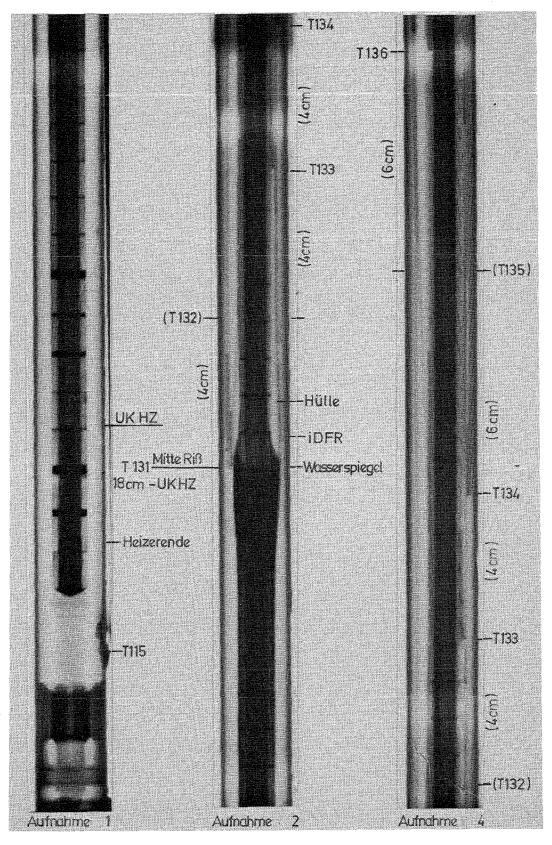
Abb.: 20.1



FR2 In-pile Versuche. Neutronenradiografie nach Versuch BSS26 Abb.:20.2

1/2 | 1/2 |

FR2 In-pile Versuche. Neutronenradiografie nach Versuch BSS26 Abb.: 20.3



IT-81 PNS 4237- 476.58

FR2 In-pile Versuche. BSS 28

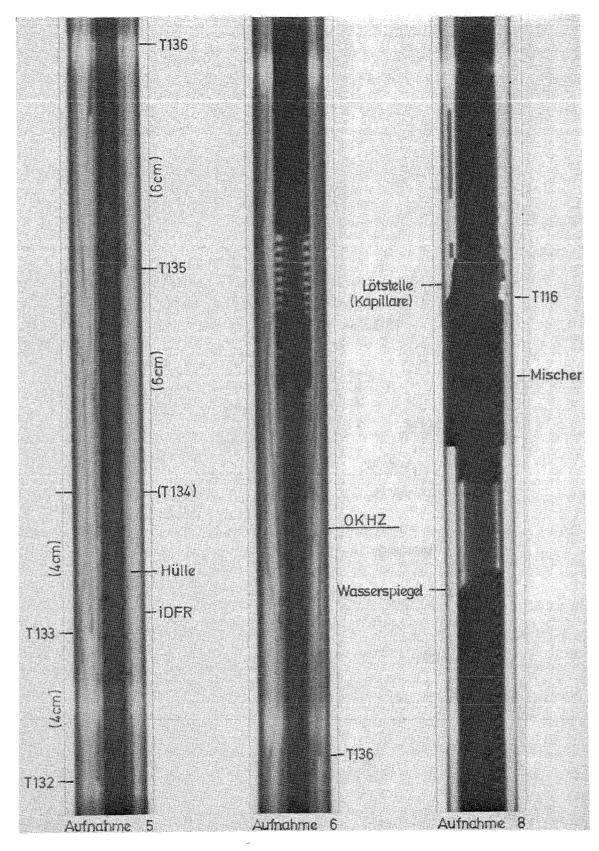
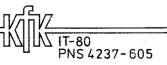
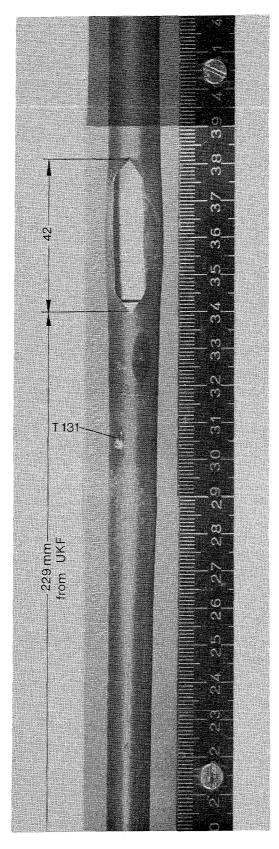

Winkellagen der Neutronenradiografie-Aufnahmen

Abb.: 21.1

7/Z 1/√2|T-80 PNS4237~599


FR2 In-pile Versuche. Neutronenradiografie nach Versuch BSS 28 Abb.: 21.2

VZ VIT-80 PNS 4237-600


FR2 In-pile Versuche. Neutronenradiografie nach Versuch BSS 28 Abb.: 21.3

Shroud		
Cladding—		
Balloon-		—Al ₂ O ₃ pellets
Thermocoup		

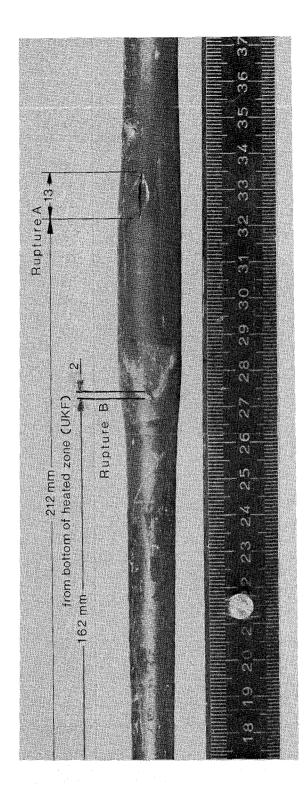
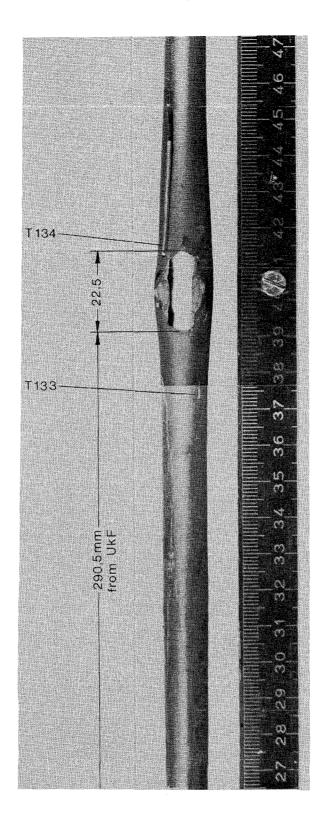
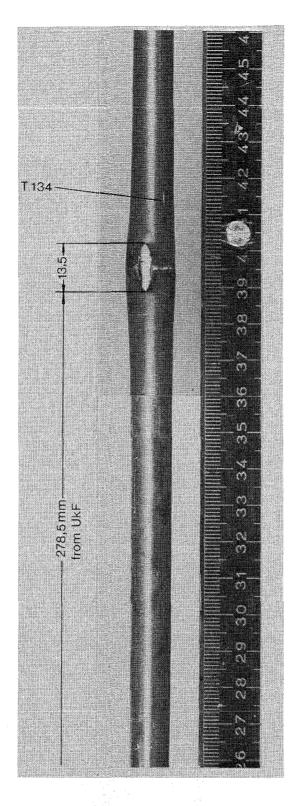
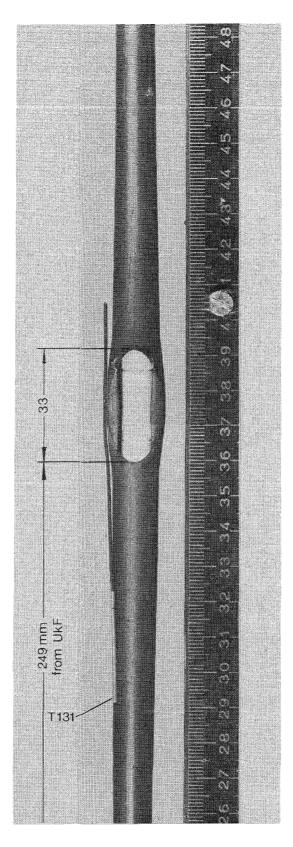

FR 2 In-Pile Tests. X-Ray Photograph of Ruptured Zone

Abb. 22

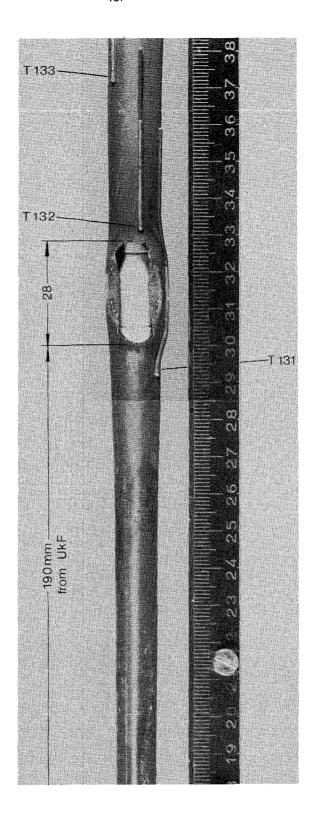

FR 2 In-Pile Tests. Test BSS 12
View of the Ruptured Zone Abb. 23.1

23.2

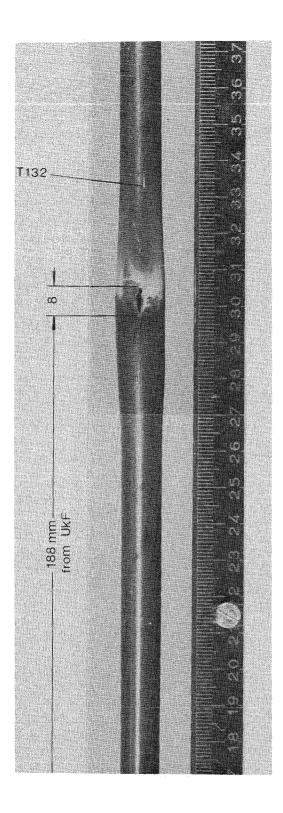

FR 2 In-Pile Tests. Test BSS 22 View of the Ruptured Zone


FR 2 In-Pile Tests. Test BSS 23

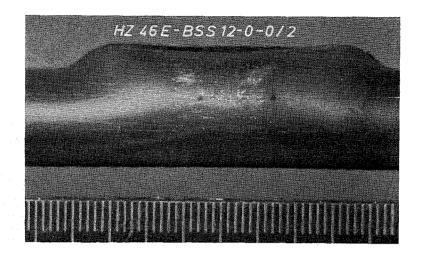
View of the Ruptured Zone 23.3

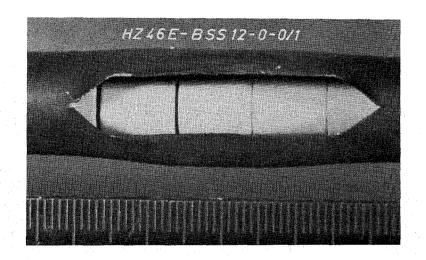


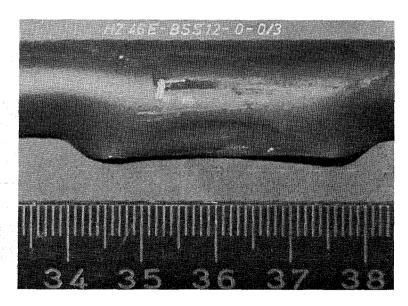
FR 2 In-Pile Tests. Test BSS 24
View of the Ruptured Zone 23.4



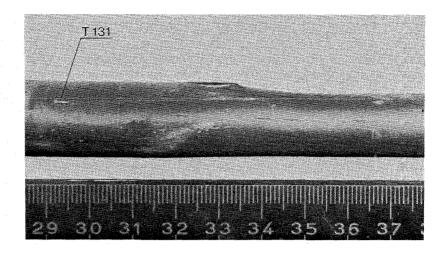
FR 2 In-Pile Tests. Test BSS 25
View of the Ruptured Zone 23.5

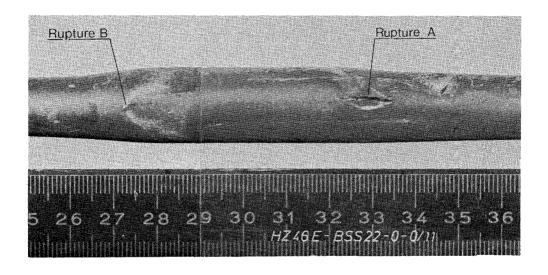


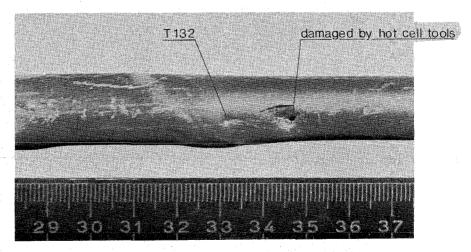

FR 2 In-Pile Tests. Test BSS 26 View of the Ruptured Zone 23.6



FR 2 In-Pile Tests. Test BSS 28
View of the Ruptured Zone 23.7

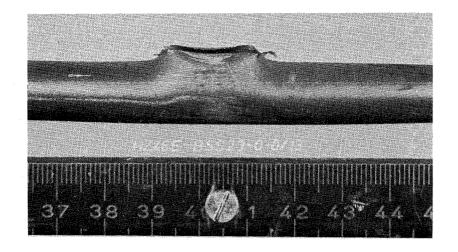


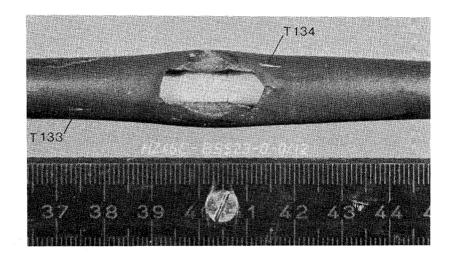


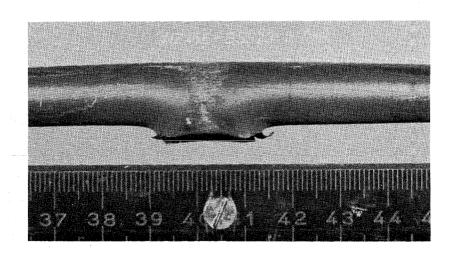


FR2 In-Pile Tests.
Views of the Ruptured Zone

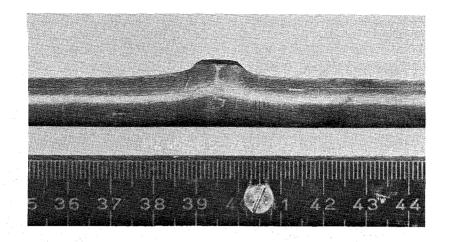
Test BSS 12

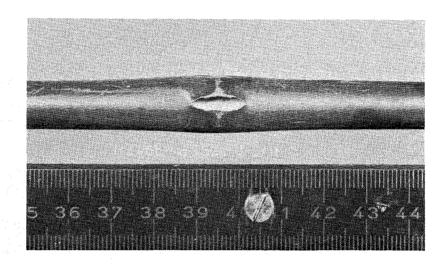


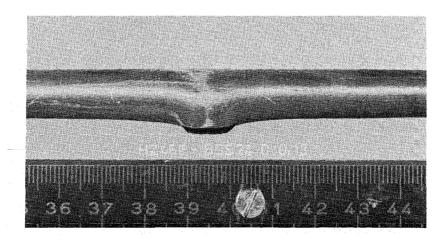




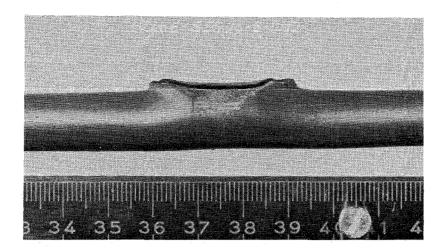
FR 2 In-Pile Tests. Test BSS 22 Views of the Ruptured Zone

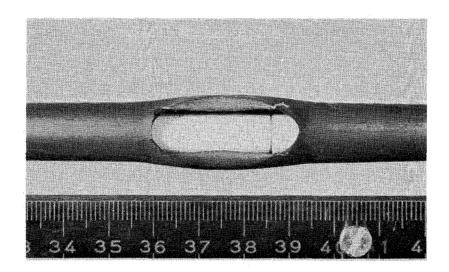


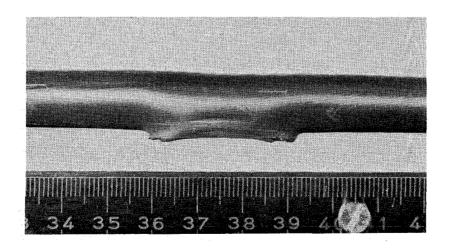




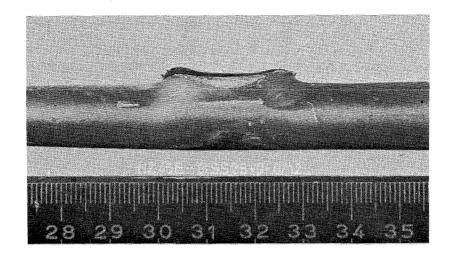
FR 2 In-Pile Tests. Test BSS 23 Views of the Ruptured Zone

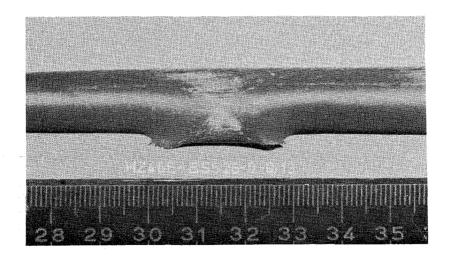




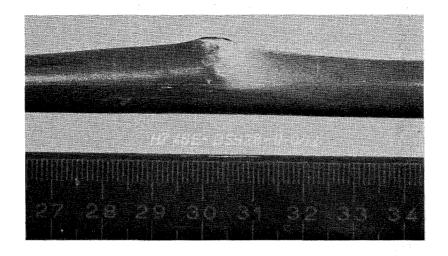


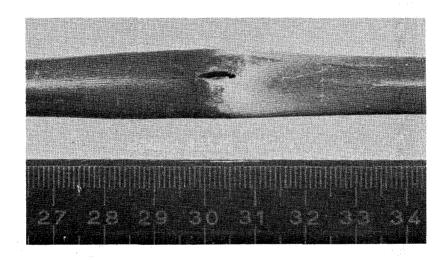
FR 2 In-Pile Tests. Test BSS 24 Views of the Ruptured Zone

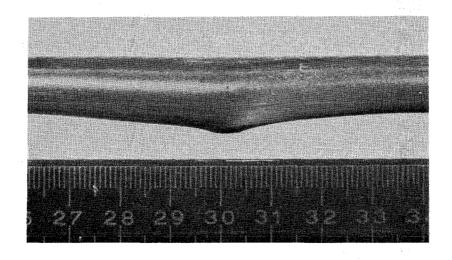




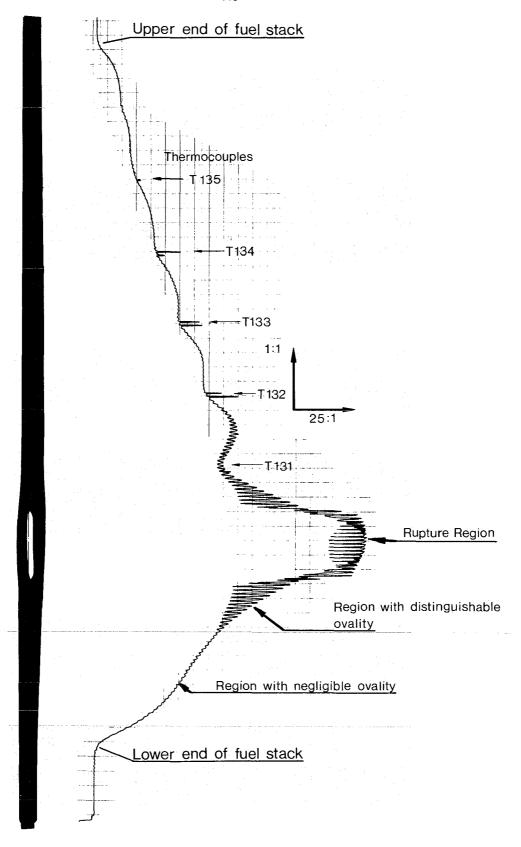
FR 2 In-Pile Tests. Test BSS 25 Views of the Ruptured Zone





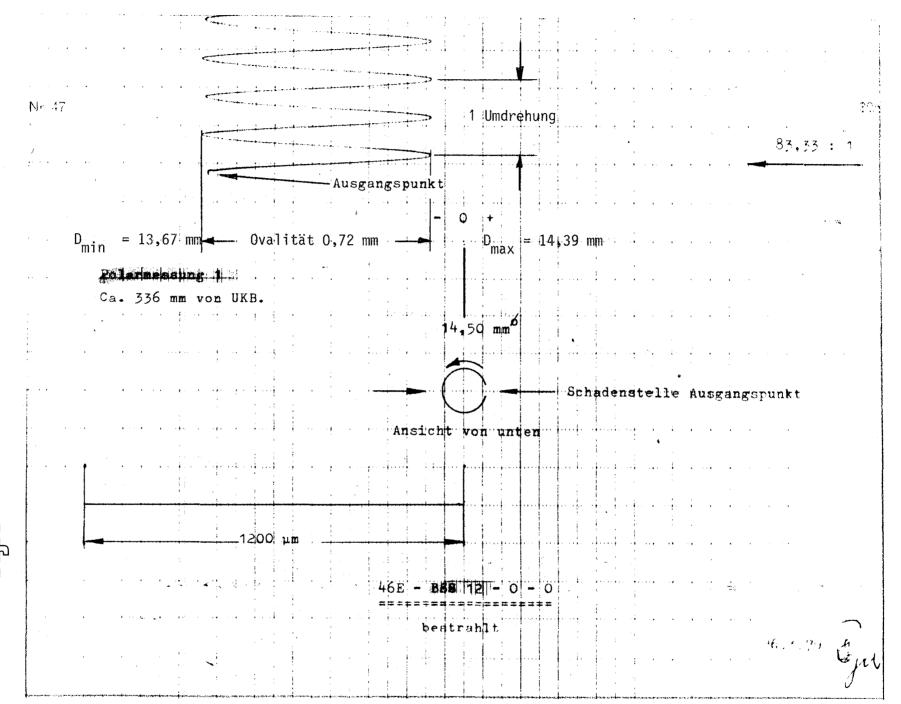


FR 2 In-Pile Tests. Test BSS 26 Views of the Ruptured Zone

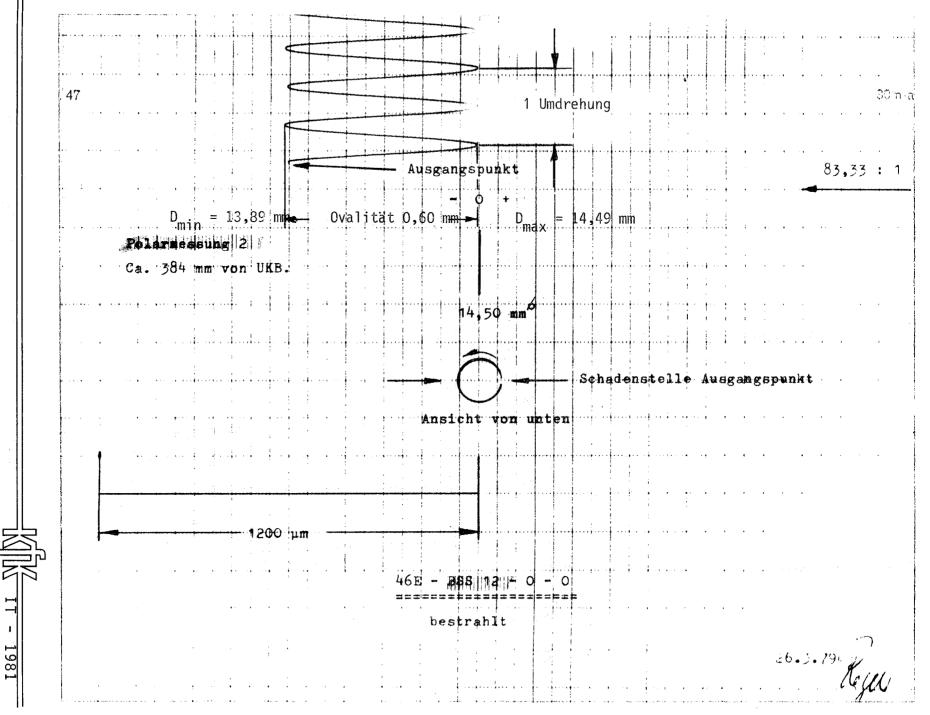


7/ N iT-80 PNS4237-607

FR2 In-Pile Tests. Test BSS 28 Views of the Ruptured Zone


24.7

FR 2 In-Pile Tests.


Typical spiral profile; posttest measured rod diameters of test A 2.2

IT 1980 PNS 4237-400

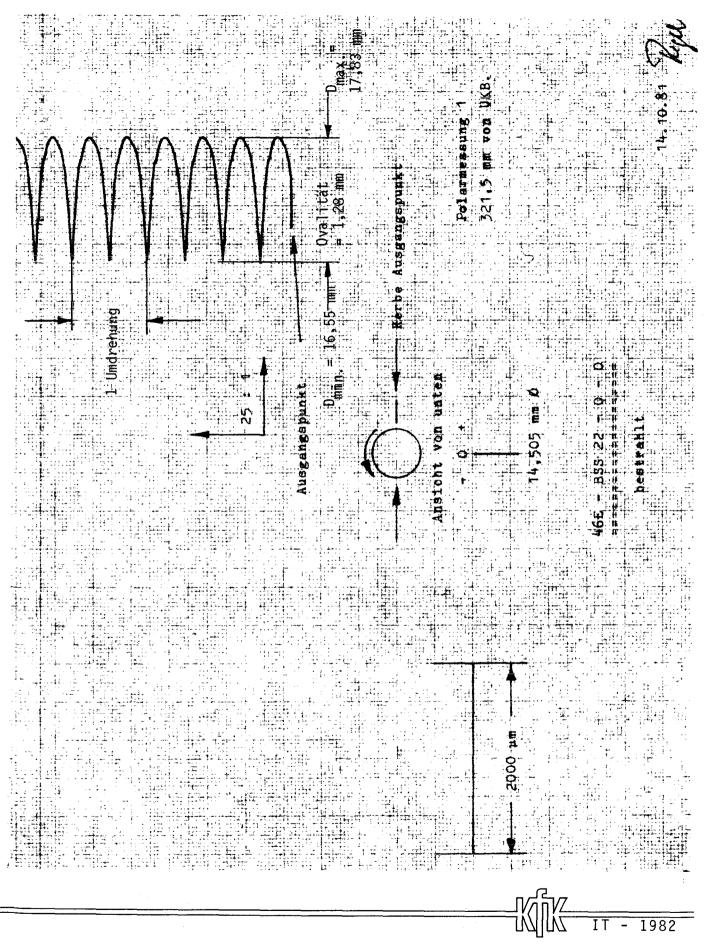
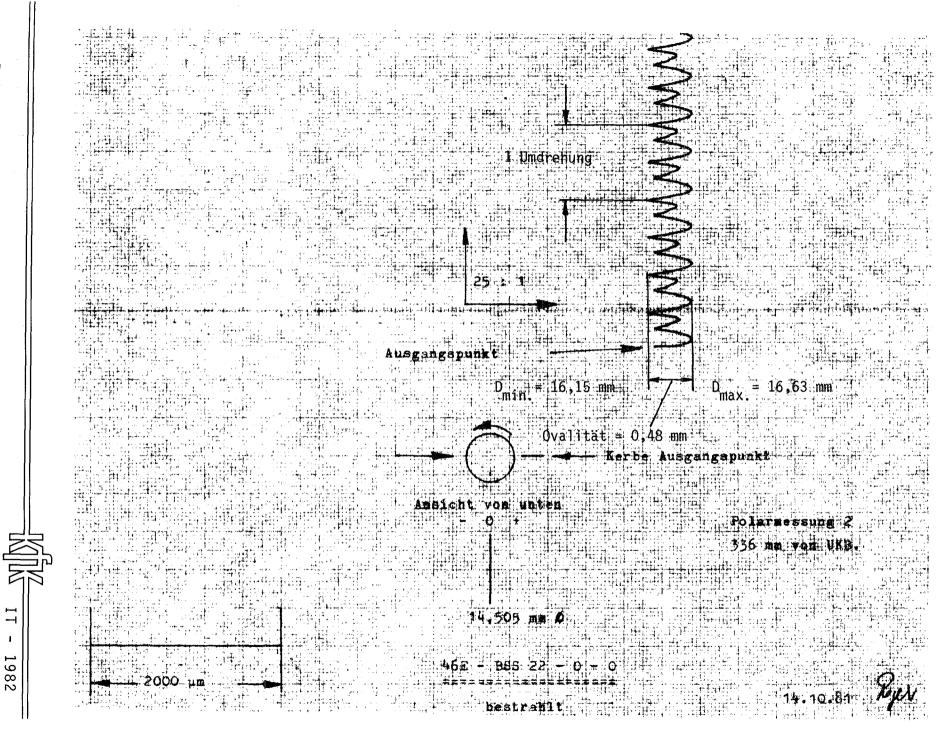

POLARMESSUNG 1 (235 MM VON UKB)
VERSUCH BSS 12 STAB NR.

Abb: 26.1



POLARMESSUNG 2 (283 MM VON UKB)
VERSUCH BSS 12 STAB NR.

Abb.26.2

POLARMESSUNG 1 (212 MM VON UKB) VERSUCH BSS 22 STAB-NR. 102

POLARMESSUNG 2 (226 MM VON UKB) VERSUCH BSS 22 STAB-NR, 102

Abb. 27.2

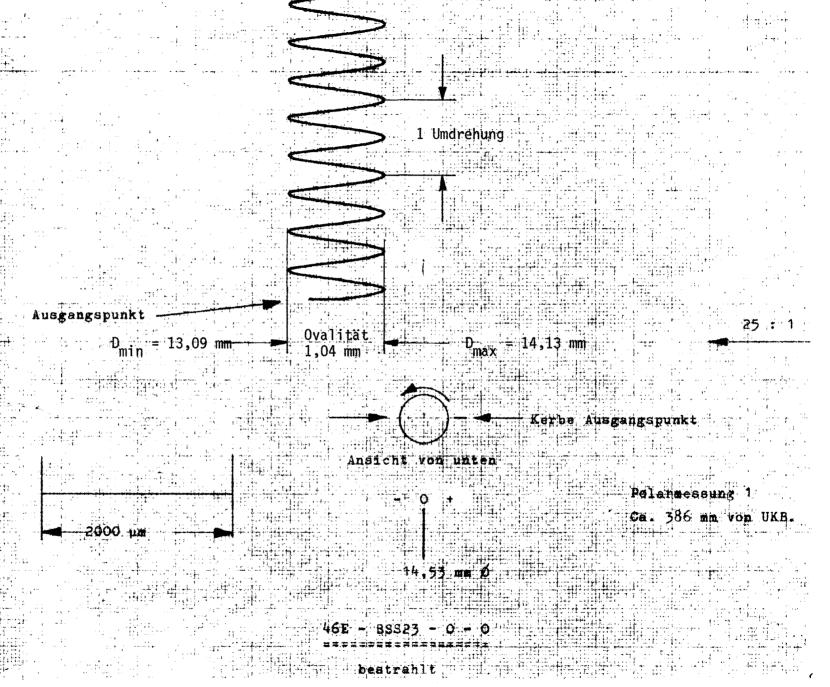
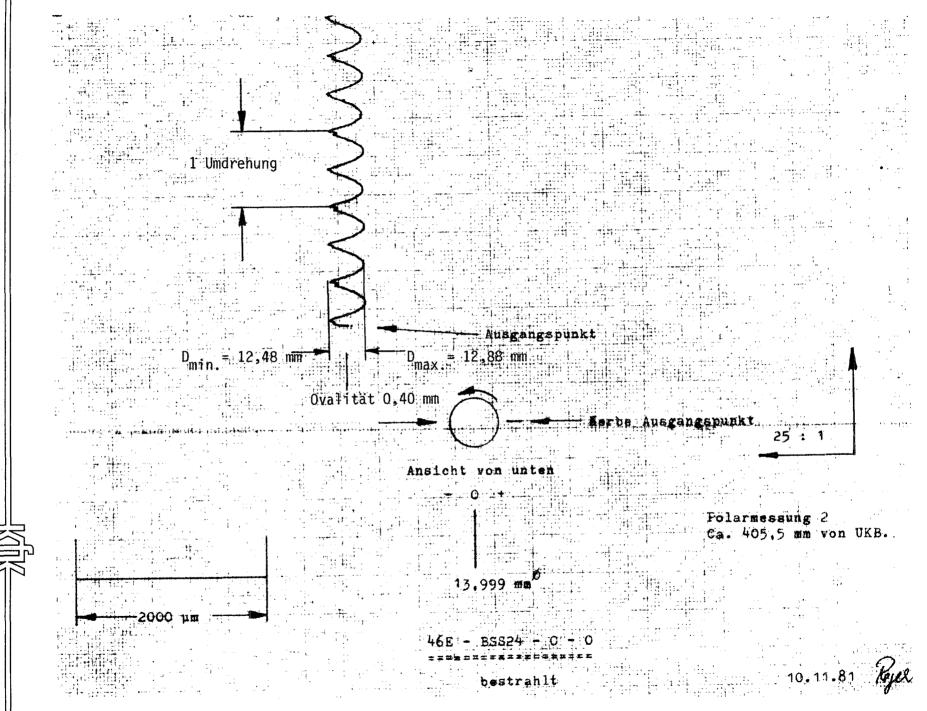


Abb. 28.1

POLARMESSUNG 2 (310 MM VON UKB) VERSUCH BSS 23 STAB NR. 103

.982

 $D_{\text{max}} = 13,20 \text{ mm}$ Ovalitat 0,36 mm

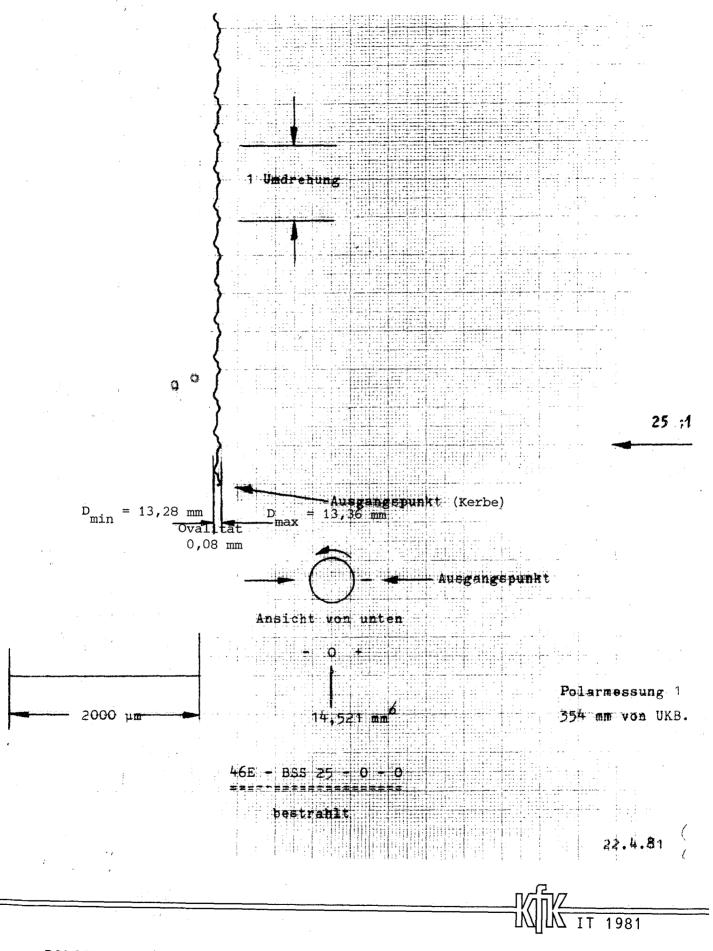

Polarmessung 1

46E - BS\$24 - 0 - 0

bestrahlt

0.11.81

Abb.29.1


POLARMESSUNG 2 VERSUCH BSS 24

(296 MM STAB-NR.

MM VON UKB)

104

Abb.29.2

POLARMESSUNG 1 (244 MM VON UKF) VERSUCH BSS 25 STAB NR. 105

Abb. 30.1

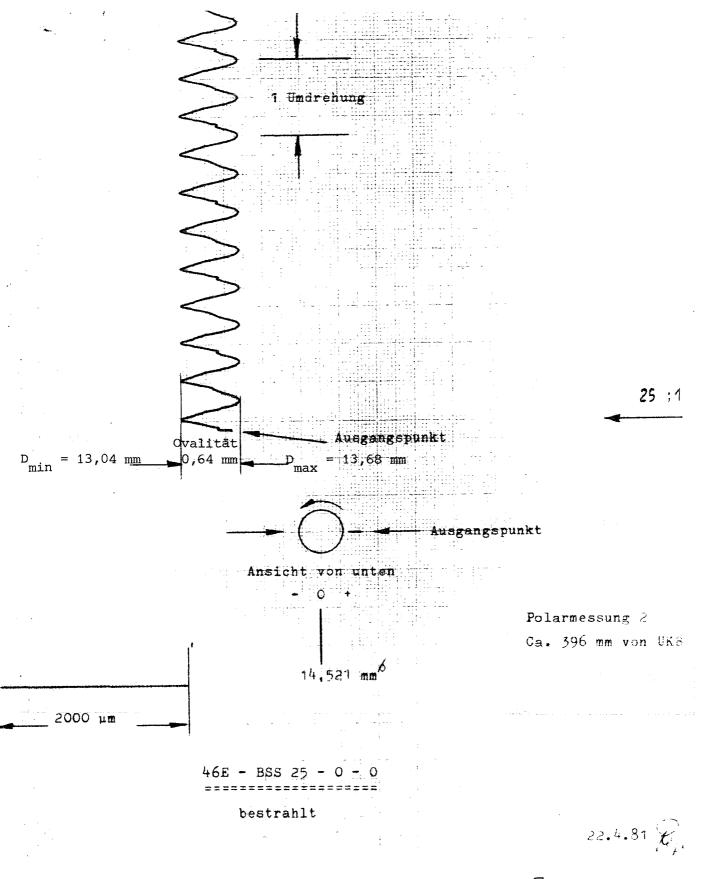
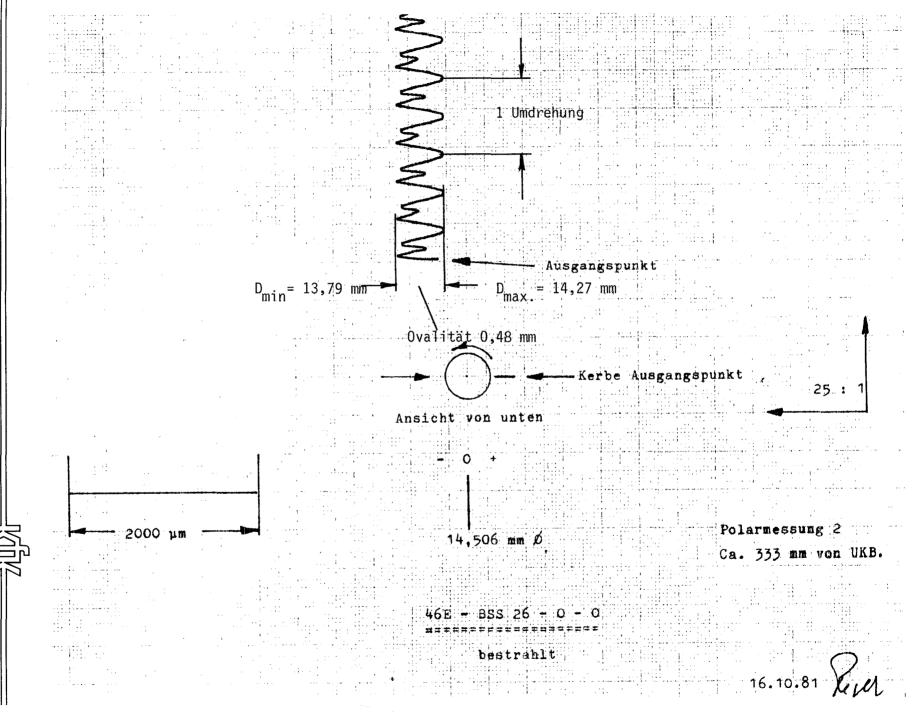
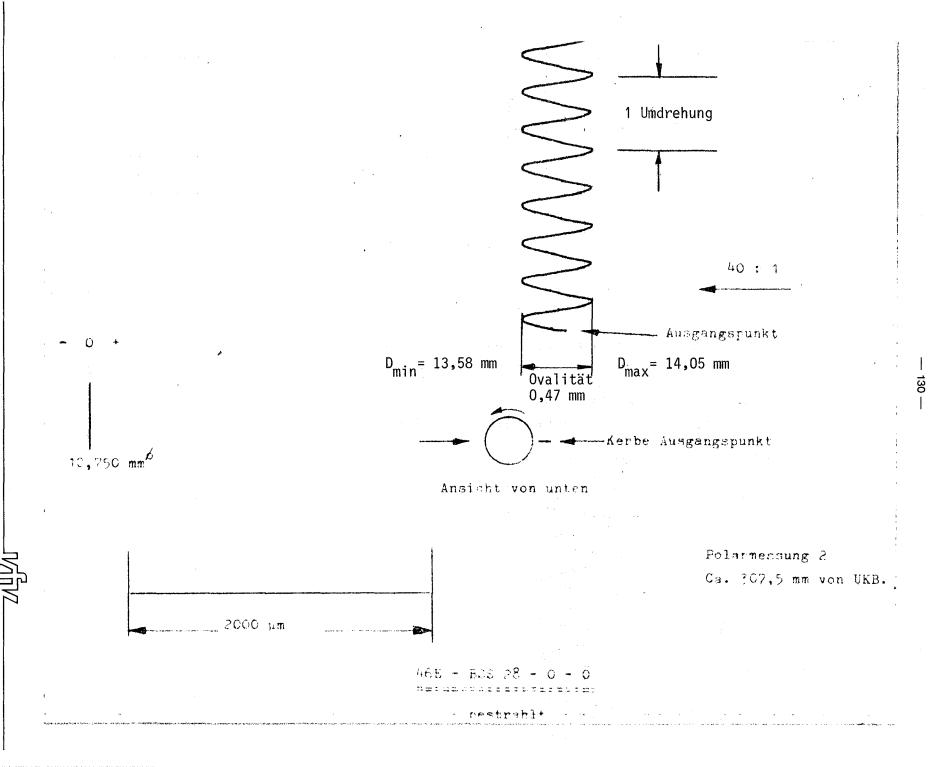
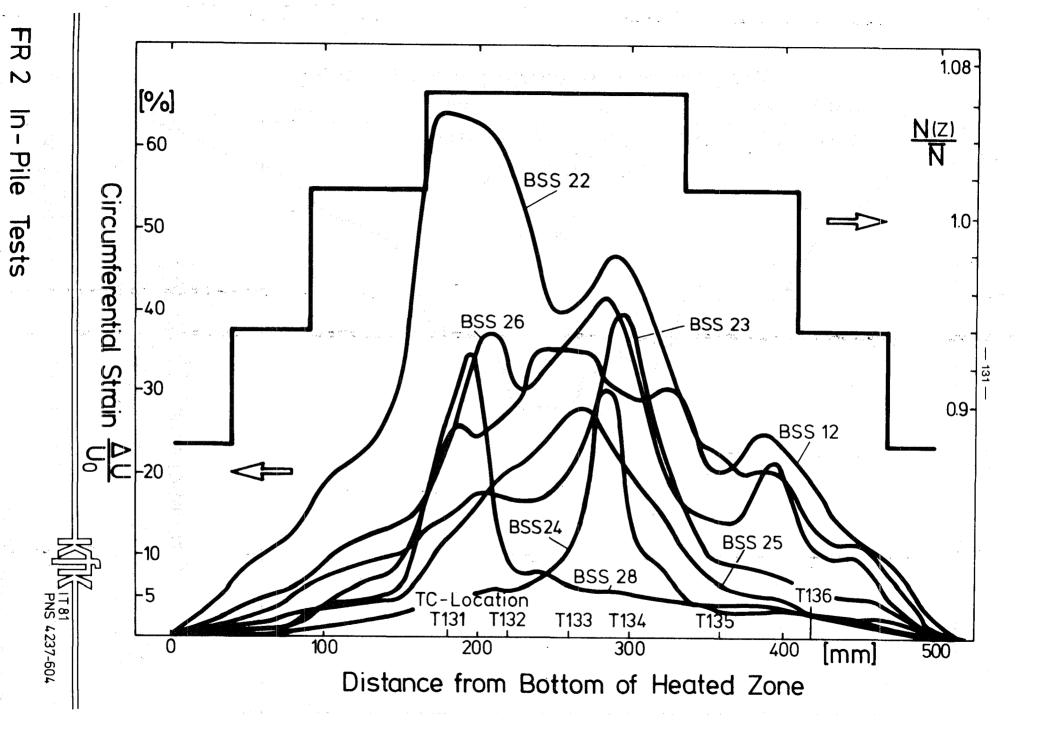



Abb. 31.1




POLARMESSUNG 2 VERSUCH BSS 26

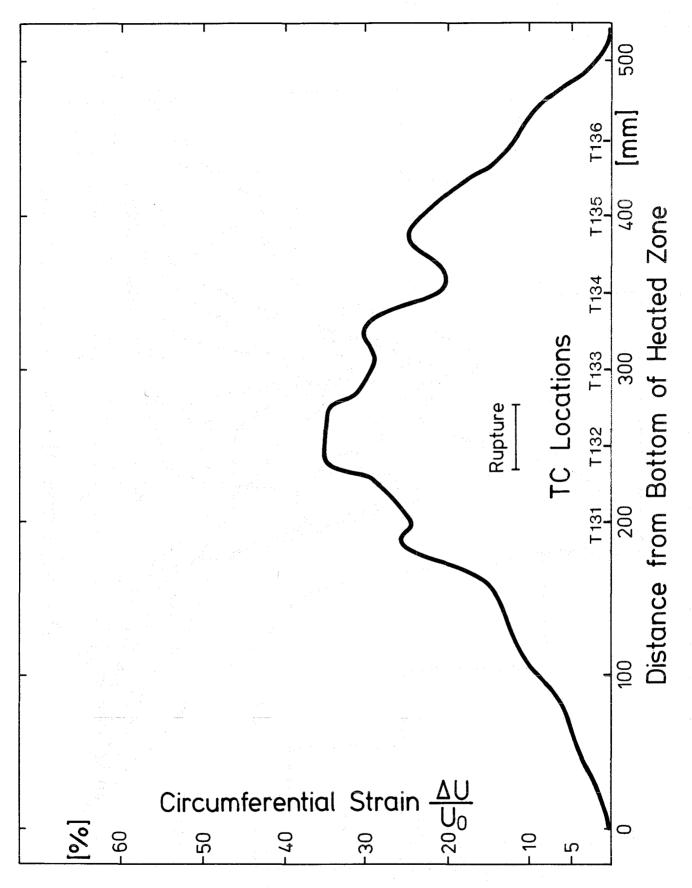
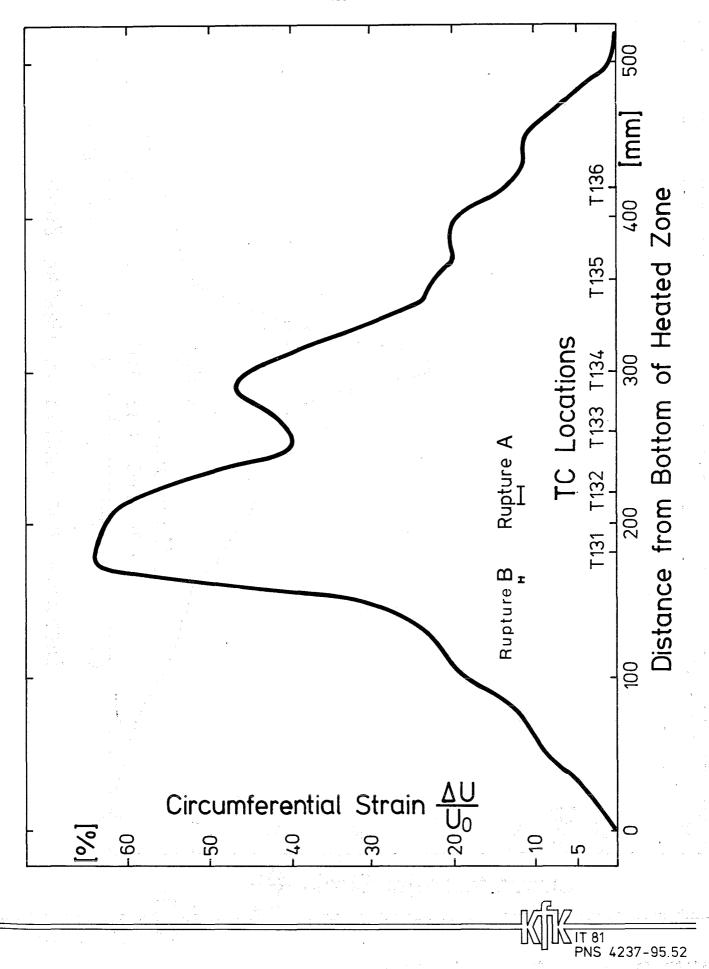
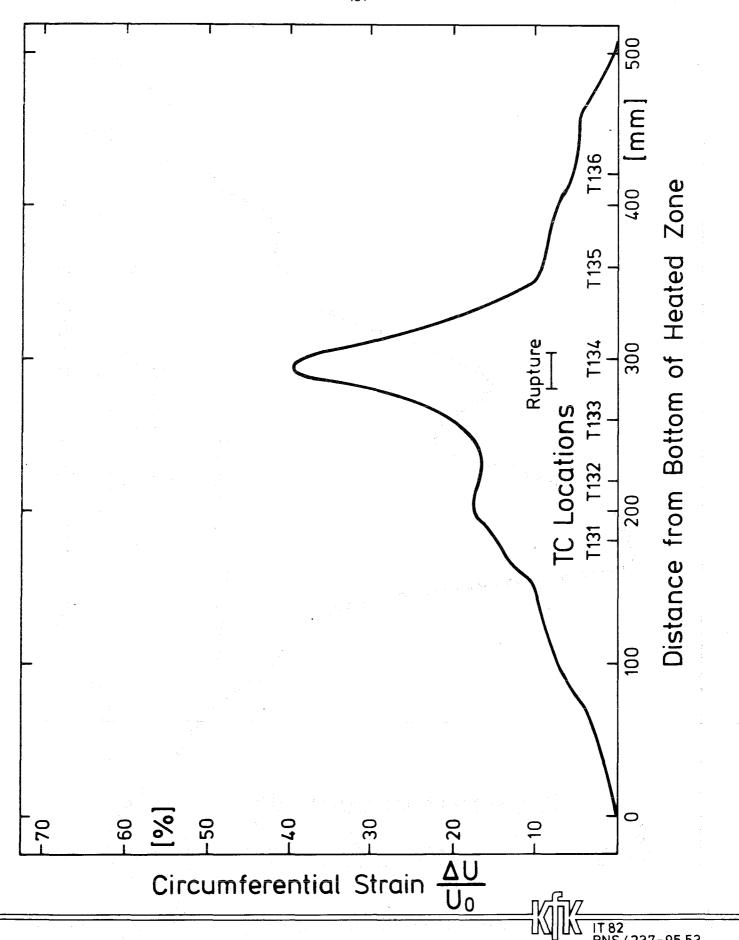

(223 MM VON UKB) STAB-NR. 106

Abb.31.2

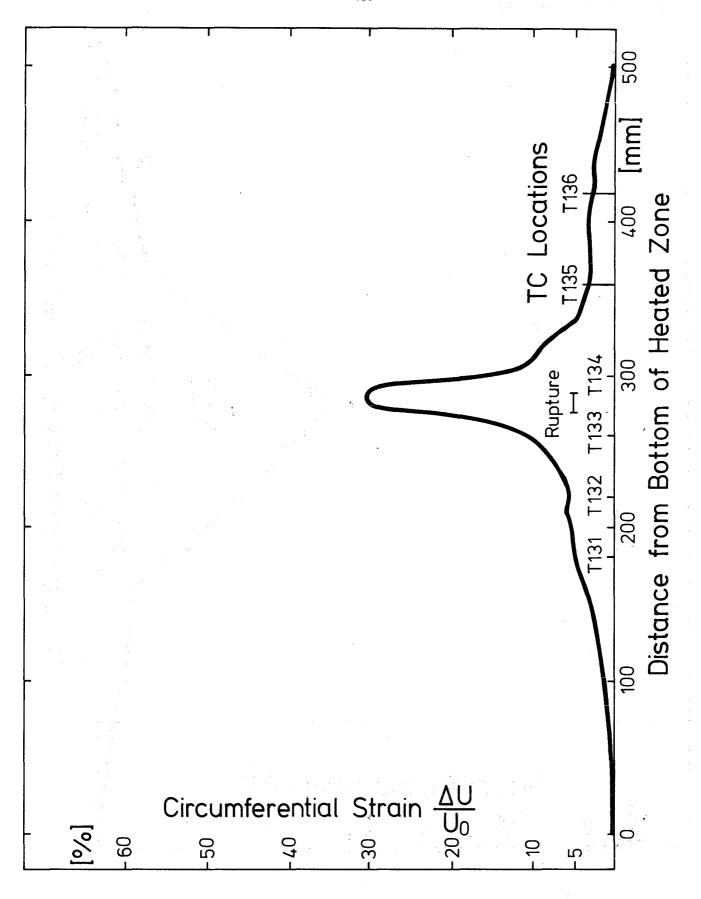
Abb.32.2




VZ VIT 80 PNS 4237-95.101

FR 2 In-Pile Tests

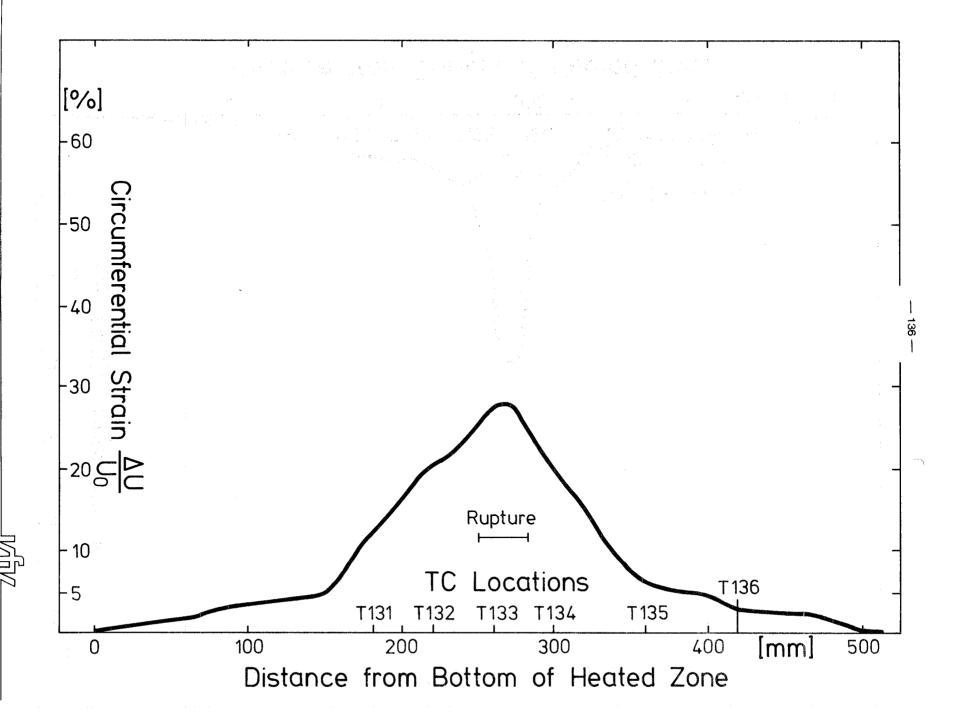
FR 2 In-Pile Tests

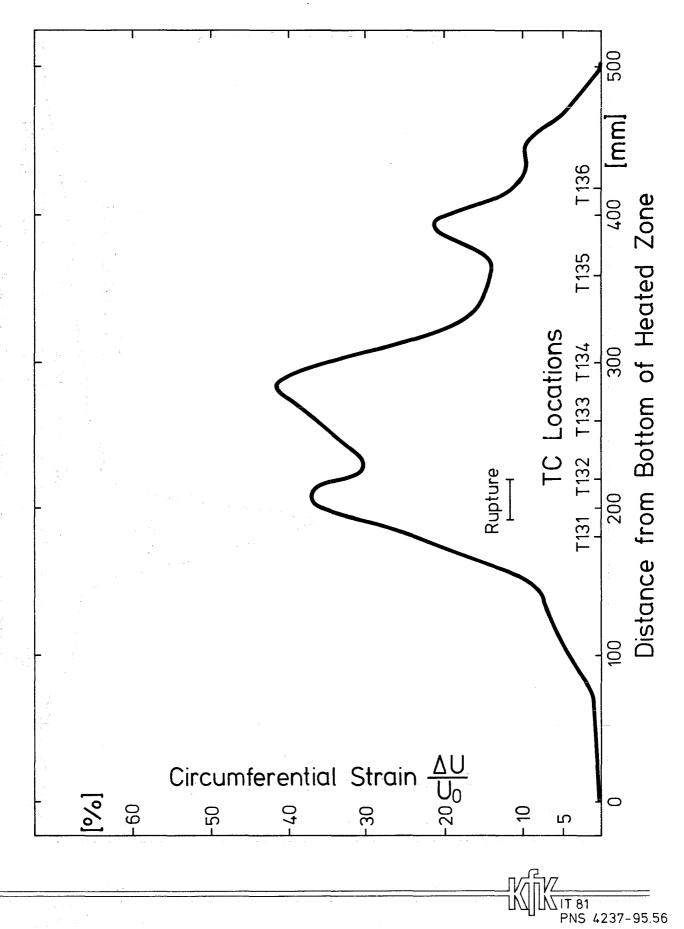

Axial Profile of Circumferential Strain, Test BSS 22

FR2 In-Pile Tests.

Axial Profil of Circumferential Strain, Te

Test BSS 23

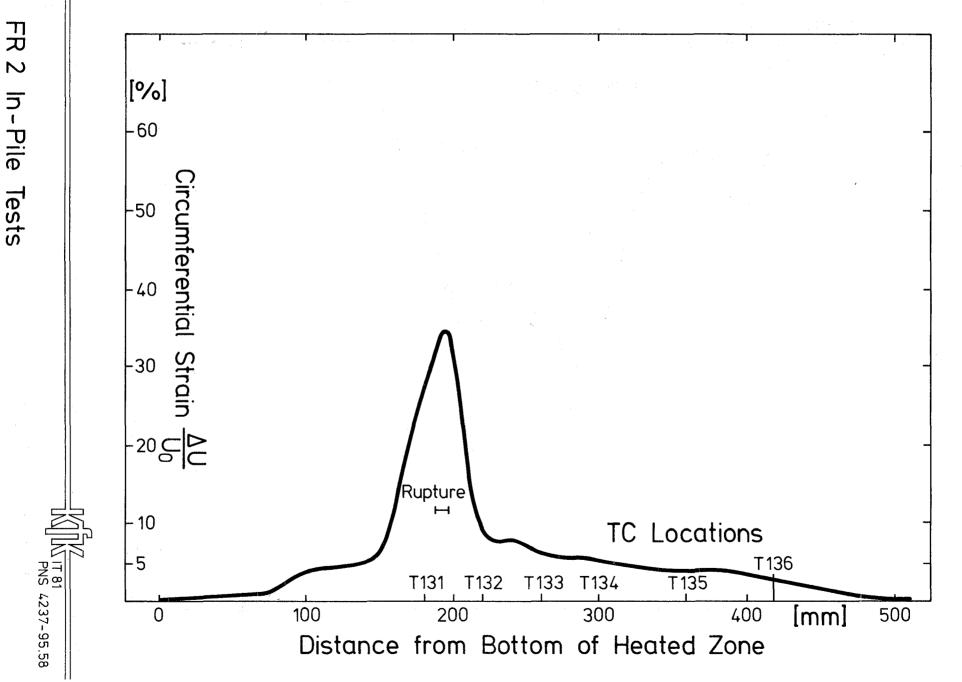


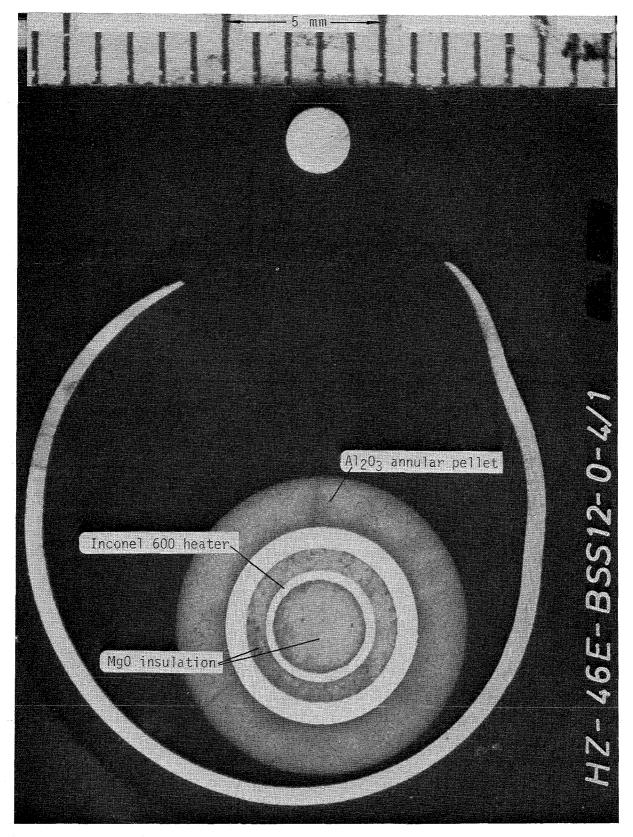

1 N N 1 81 PNS 4237-95.54

FR 2 In-Pile Tests

IT 81 PNS 4237-95.55

FR 2 In-Pile Tests

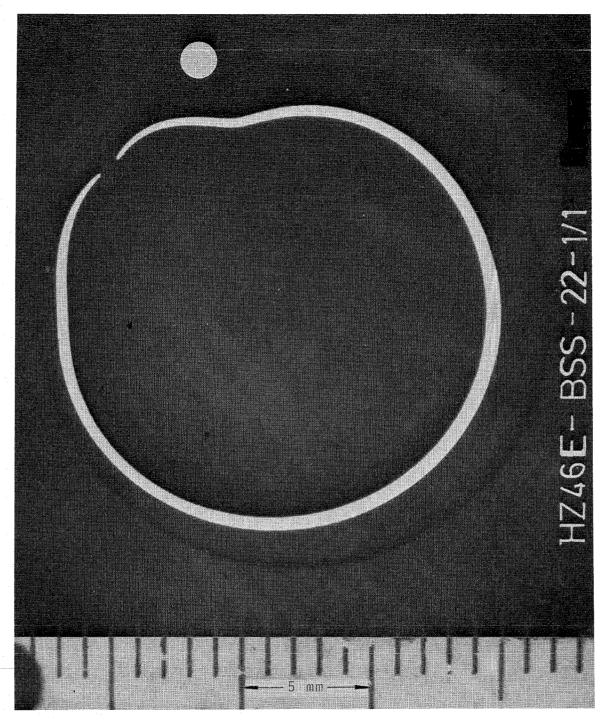



FR 2 In-Pile Tests

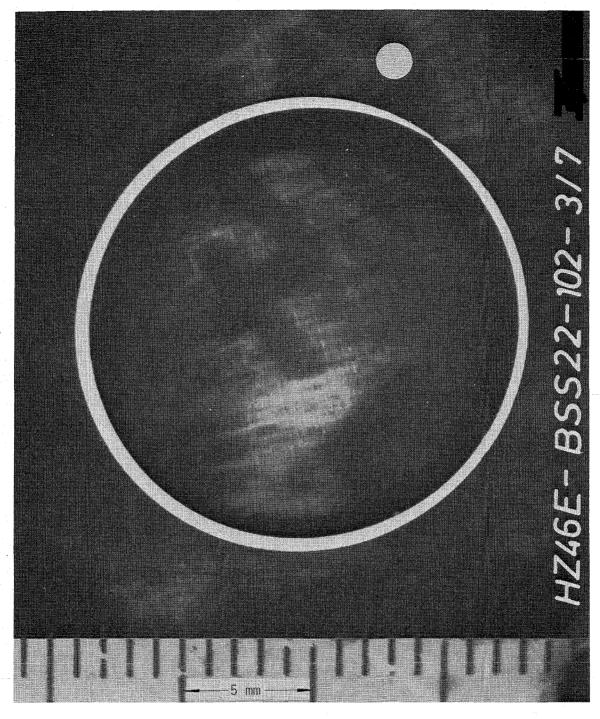
Axial Profile of Circumferential Strain, Test BSS 26

34.6

138

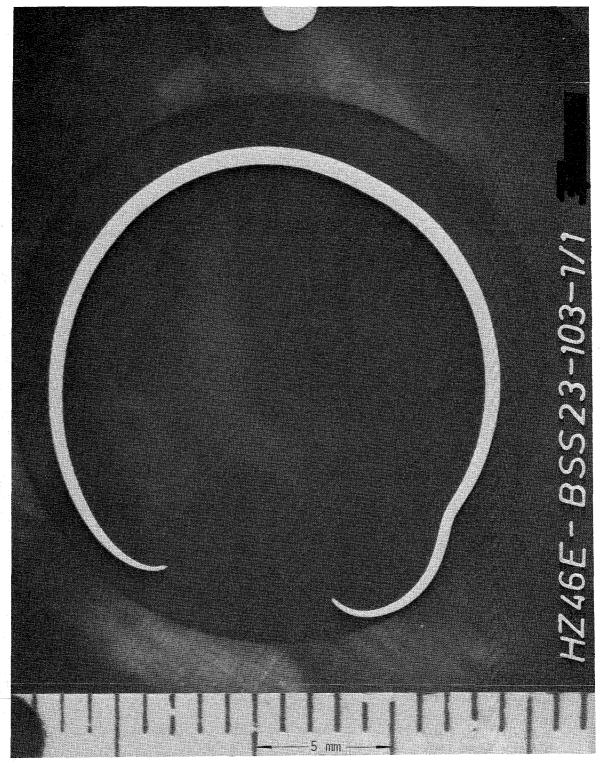


253mm from UkF



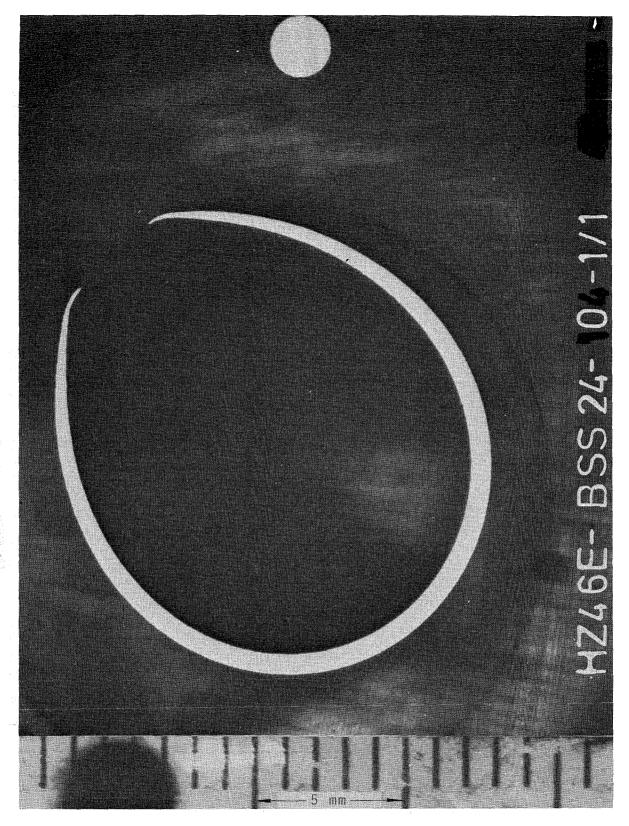
219 mm from UKF

FR 2 In-Pile Tests. Test BSS 22
Cross Section, Rupture A
56mm above max. circumferential strain


164mm from UkF

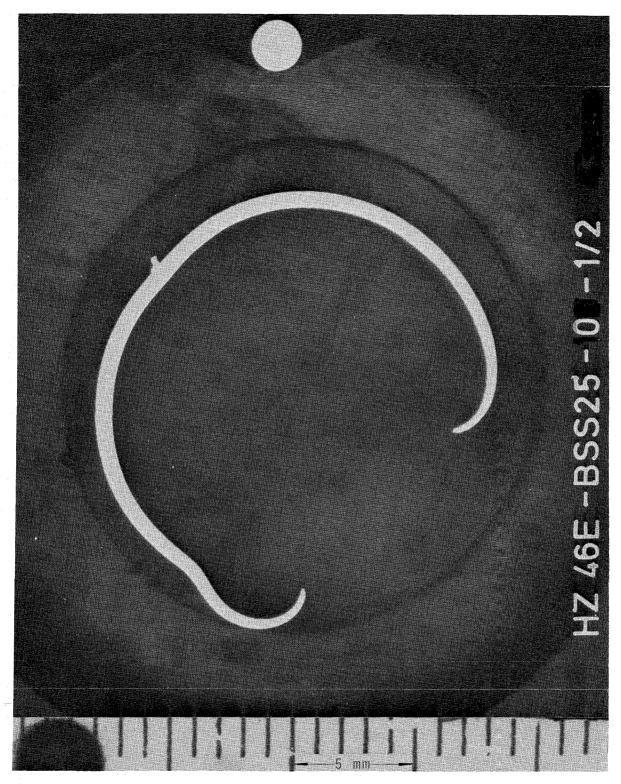
FR 2 In-Pile Tests. Test BSS 22

Cross Section, Rupture B


35.3

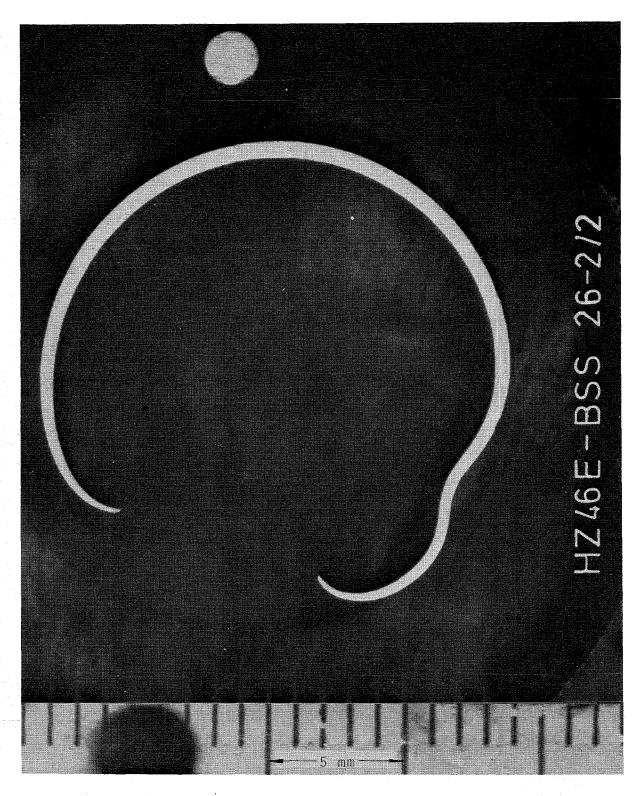
293 mm from UkF

FR 2 In-Pile Tests. Test BSS 23

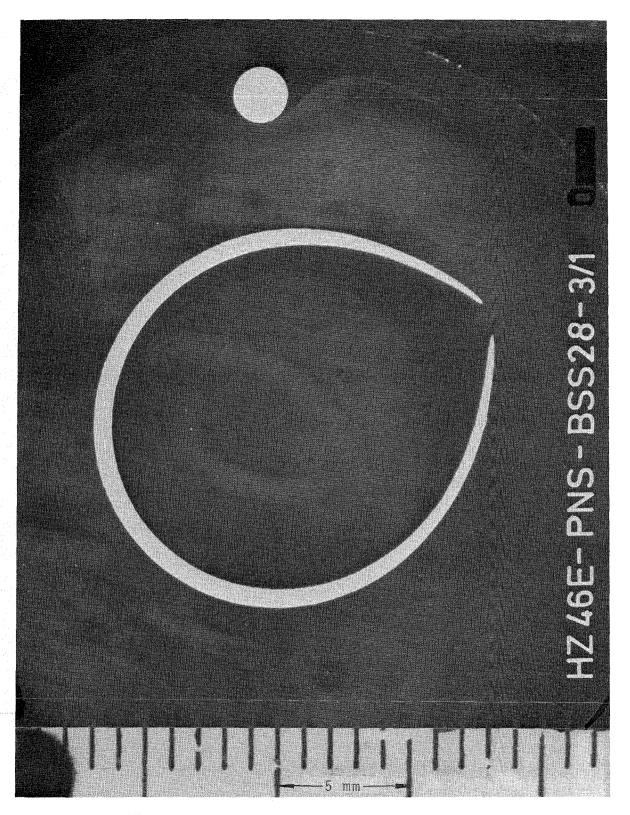


284mm from UkF

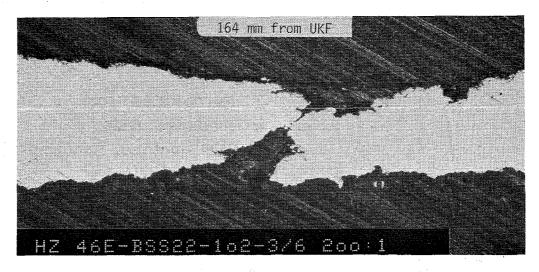
4237 - 691

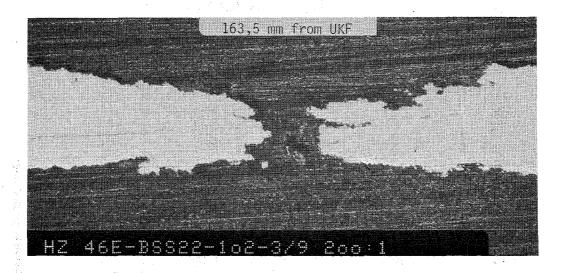

FR 2 In-Pile Tests. Test BSS 24

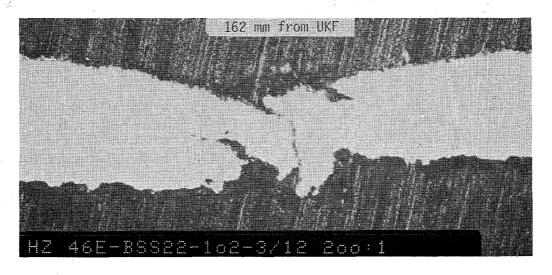
264 mm from UkF


FR 2 In-Pile Tests. Test BSS 25

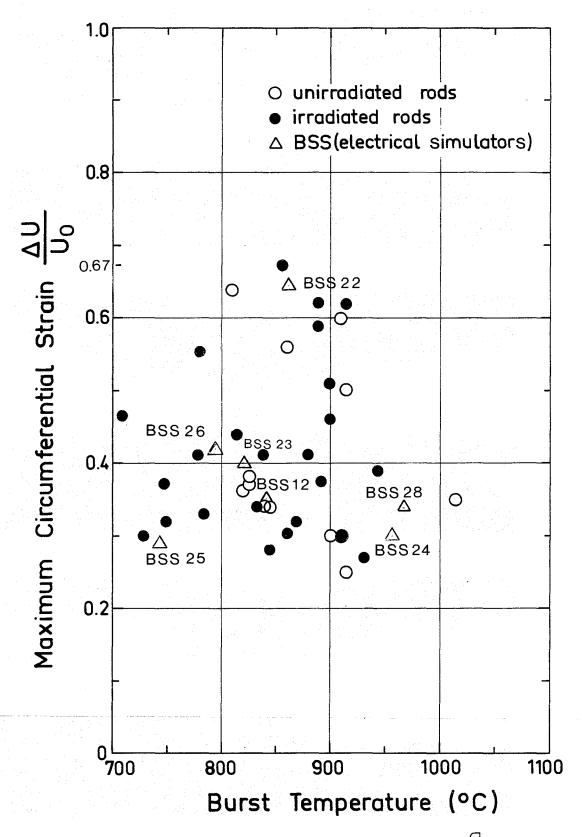
205mm from UkF

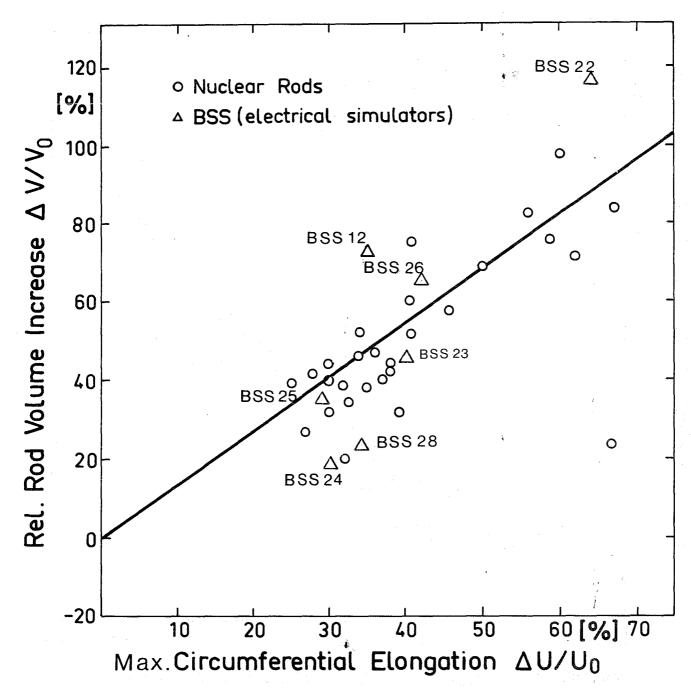

FR 2 In-Pile Tests. Test BSS 26 Cross Section, Max. Circumferential Strain

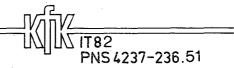



191 mm from UkF

FR 2 In-Pile Tests. Test BSS 28

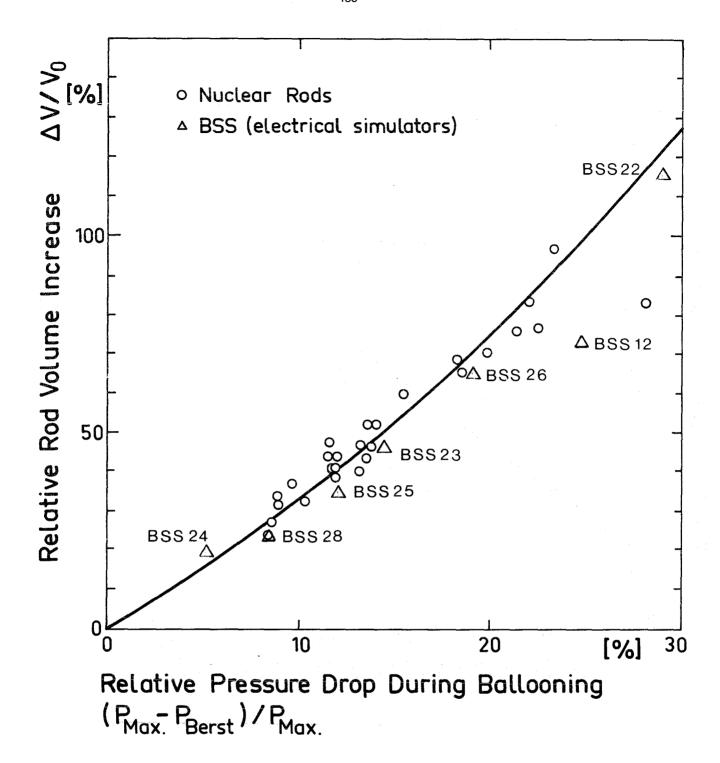



FR 2 In-Pile Tests. Test BSS 22 Details of Rupture B



NT NT-82 PNS 4237-480.51

FR2 In-Pile Tests.


Max. Circumferential Strain vs. Burst Temperature

FR2 In-Pile Tests
Relative Volume Increase of Burst Rods vs. Relative Circumferential Elongation

Abb. 38

IT 82 PNS 4237-232.51

FR 2 In-Pile Tests

Rod Volume Increase vs. Internal Rod Pressure Drop

ANHANGI

Meßwerte vor Auslösung der Transienten, Versuch BSS 12 bis BSS 28.

Tabelle 13.1: Meßwerte vor Auslösung der Transiente

Versuch Nr.: BSS 12 Datum: 25.4.78 Uhrzeit: 10.53.21

CALAS- Adresse	Meß- stelle	Meßstellenbezeichnung	CALAS- Meßwert
0	т 42	Temp. hinter Ve 108, vor RE	509 °C
1	T 5	Temp vor Reaktoreinsatz	496 °C
2	т 114	Temp. im Reaktoreinsatz	-
3	T 115	Temp. vor Prüfling	351 °C
4	т 116	Temp. hinter Prüfling	368 °C
5	т 6	Temp. hinter Reaktoreinsatz	364 °C
6	т 43	Temp. bei P 61	343 °C
7	т 58	Temp. vor Blende	341 °C
8	т 103	Temp. hinter Blende	337 °C
9	Т 112	Temp. vor Entspann-Ve 111	
10	т 131	Versuchstemperatur 1	370 °C
11	т 132	Versuchstemperatur 2	372 °C
12	т 133	Versuchstemperatur 3	378 °C
13	т 134	Versuchstemperatur 4	377 °C
14	т 135	Versuchstemperatur 5	383 °C
15	т 136	Versuchstemperatur 6	380 °C
16	P 60	Druck hinter Ve 108, vor RE	64 bar
17	P 61	Druck hinter Reaktoreinsatz	60 bar
18	P 63	Druck vor Blende	59 bar
19	P 6	Druck hinter Blende	60 bar
20	P 62	Druck nach Entspann-Ve 111	1,4 bar
21	P 74	Druck im Prüflingsplenum	71 bar
32	T 1	Temperatur hinter Vorwärmer	280 °C
33	т 2	Temperatur im Verdampfer	287 °C
34	T 4	Temperatur hinter Überhitzer	541 °C
35	T115/116	Temperaturdiff. Prüfling	19,6 K
	NEL	Elektrische Leistung	50,2 W/cm
37	TEI	D ₂ O-Eintrittstemperatur	
38-45	TBE 1-8	D ₂ O-Temp. Brennelement 1 - 8	49-50 °C
46	P 5	Druck hinter Überhitzer	66 bar
48	P 64	Differenzdruck Dampfblende	786 mbar
	ṁ	Dampfmengenstrom	118 kg/h

Tabelle 13.2: Meßwerte vor Auslösung der Transiente

Versuch Nr.: BSS 21 Datum: 13.9.79 Uhrzeit: 14.42.20

CALAS-	Meß-	Meßstellenbezeichnung	CALAS-
Adresse	stelle		Meßwert
0	T 42	Temp. hinter Ve 108, vor RE	508 °C
1	т 5	Temp vor Reaktoreinsatz	494 °C
2	т 114	Temp. im Reaktoreinsatz	296 °C
3	т 115	Temp. vor Prüfling	291 °C
4	т 116	Temp. hinter Prüfling	313 °C
5	т 6	Temp. hinter Reaktoreinsatz	357 °C
6	т 113	Temp. im Reaktoreinsatz	333 °C
7	т 58	Temp. vor Blende	337 °C
8	T 103	Temp. hinter Blende	333 °C
9	т 117	Druckrohrtemperatur	262 °C
10	т 131	Versuchstemperatur 1	358 °C
11	т 132	Versuchstemperatur 2	374 °C
12	т 133	Versuchstemperatur 3	377 °C
13	Т 134	Versuchstemperatur 4	374 °C
14	т 135	Versuchstemperatur 5	370 °C
15	т 136	Versuchstemperatur 6	375 °C
16	P 60	Druck hinter Ve 108, vor RE	62 bar
17	P 61	Druck hinter Reaktoreinsatz	58 bar
18	P 63	Druck vor Blende	57 bar
19	P 6	Druck hinter Blende	58 bar
20	P 62	Druck nach Entspann-Ve 111	1,3 bar
21	P 74	Druck im Prüflingsplenum	0,22 bar
32	T 1	Temperatur hinter Vorwärmer	278 °C
33	т 2	Temperatur im Verdampfer	286 °C
34	Т 4	Temperatur hinter Überhitzer	542 °C
35	T115/116	Temperaturdiff. Prüfling	21,6 K
37	NEL TEI	Elektrische Leistung D ₂ 0-Eintrittstemperatur	48,3 W/cm 49 °C
38-45	TBE 1-8	D ₂ O-Temp. Brennelement 1 - 8	48 - 49°C
46	.P 5	Druck hinter Überhitzer	63 bar
48	P 64	Differenzdruck Dampfblende	740 mbar
	m	Dampfmengenstrom	113 kg/h

Anhang

Tabelle 13.3: Meßwerte vor Auslösung der Transiente

Versuch Nr.: BSS 22 Datum: 3.9.1979 Uhrzeit: 16.43.10

CALAS- Adresse	Meß- stelle	Meßstellenbezeichnung	CALAS- Meßwert
0	T 42	Temp. hinter Ve 108, vor RE	510 °C
1	Т 5	Temp vor Reaktoreinsatz	497 °C
2	Ţ 114	Temp. im Reaktoreinsatz	298 °C
3	T 115	Temp. vor Prüfling	294 °C
4	Т 116	Temp. hinter Prüfling	317 °C
5	т 6	Temp. hinter Reaktoreinsatz	359 °C
6	т 113	Temp. im Reaktoreinsatz	334 °C
7	T 58	Temp. vor Blende	338 °C
8	T 103	Temp. hinter Blende	334 °C
9	т 117	Druckrohrtemperatur	262 °C
10	т 131	Versuchstemperatur 1	364 °C
11	Т 132	Versuchstemperatur 2	371 °C
12	т 133	Versuchstemperatur 3	373 °C
13	т 134	Versuchstemperatur 4	374 °C
14	т 135	Versuchstemperatur 5	374 °C
15	т 136	Versuchstemperatur 6	385 °C
16	P 60	Druck hinter Ve 108, vor RE	62 bar
17	P 61	Druck hinter Reaktoreinsatz	58 bar
18	P 63	Druck vor Blende	57 bar
19	P 6	Druck hinter Blende	57 bar
20	P 62	Druck nach Entspann-Ve 111	1,3 bar
- 21	P 74	Druck im Prüflingsplenum	58 bar
32	т 1	Temperatur hinter Vorwärmer	279 °C
33	т 2	Temperatur im Verdampfer	286 °C
34	т 4	Temperatur hinter Überhitzer	542 °C
35	T115/116 NEL	Temperaturdiff. Prüfling Elektrische Leistung	21,9 K 48,3 W/cm
37	TEI	D ₂ O-Eintrittstemperatur	48 °C
3'8-45	TBE 1-8	D ₂ O-Temp. Brennelement 1 - 8	47 - 49 °C
46	P 5	Druck hinter Überhitzer	64 bar
48	P 64	Differenzdruck Dampfblende	768 mbar
	m	Dampfmengenstrom	115 kg/h

Tabelle 13.4: Meßwerte vor Auslösung der Transiente

Versuch Nr.: BSS 23 Datum: 4.9.1979 Uhrzeit: 16.05.54

CALAS-	Meß-	W 0.1	CALAS-
Adresse	stelle	Meßstellenbezeichnung	Meßwert
0	T 42	Temp. hinter Ve 108, vor RE	511 °C
1	т 5	Temp vor Reaktoreinsatz	499 °C
2	Т 114-	Temp. im Reaktoreinsatz	301 °C
3	т 115	Temp. vor Prüfling	296 °C
4	Т 116	Temp. hinter Prüfling	322 °C
5	Т 6	Temp. hinter Reaktoreinsatz	362 °C
6	т 113	Temp. im Reaktoreinsatz	336 °C
. 7	T 58	Temp. vor Blende	340 °C
8	T 103	Temp. hinter Blende	336 °C
9	т 117	Druckrohrtemperatur	264 °C
10	Т 131	Versuchstemperatur 1	360 °C
11	Т 132	Versuchstemperatur 2	367 °C
12	Т 133	Versuchstemperatur 3	376 °C
13 "	Т 134	Versuchstemperatur 4	380 °C
14	т 135	Versuchstemperatur 5	384 °C
15	т 136	Versuchstemperatur 6	377 °C
16	P 60	Druck hinter Ve 108, vor RE	60 bar
17	P 61	Druck hinter Reaktoreinsatz	59 bar
18	P 63	Druck vor Blende	58 bar
19	P 6	Druck hinter Blende	58 bar
20	P 62	Druck nach Entspann-Ve 111	1,3 bar
21	P 74	Druck im Prüflingsplenum	94 bar
32	т 1	Temperatur hinter Vorwärmer	280 °C
33	Т 2	Temperatur im Verdampfer	287 °C
34	Т 4	Temperatur hinter Überhitzer	542 °C
35	T115/116	Temperaturdiff. Prüfling	24,4 K
	NEL	Elektrische Leistung	48,3 W/cm
37	TEI	D ₂ O-Eintrittstemperatur	47 °C
38-45	TBE 1-8	D ₂ O-Temp. Brennelement 1 - 8	47 - 48°C
46	,P 5	Druck hinter Überhitzer	65 bar
48	P 64	Differenzdruck Dampfblende	795 mbar
	m	Dampfmengenstrom	118 kg/h
			:

Tabelle 13.5: Meßwerte vor Auslösung der Transiente

Versuch Nr.: BSS 24 Datum: 5.9.1979 Uhrzeit: 16.13.36

CALAS- Adresse	Meß- stelle	Meßstellenbezeichnung	CALAS- Meßwert
0	т 42	Temp. hinter Ve 108, vor RE	510 °C
1	T 5	Temp vor Reaktoreinsatz	498 °C
2	т 114	Temp. im Reaktoreinsatz	301 °C
3	т 115	Temp. vor Prüfling	295 °C
4	т 116	Temp. hinter Prüfling	316 °C
5	т 6	Temp. hinter Reaktoreinsatz	362 °C
6	т 113	Temp. im Reaktoreinsatz	336 °C
7	т 58	Temp. vor Blende	339 °C
8	T 103	Temp. hinter Blende	334 °C
9	т 117	Druckrohrtemperatur	264 °C
10	т 131	Versuchstemperatur 1	357 °C
11	т 132	Versuchstemperatur 2	366 °C
12	т 133	Versuchstemperatur 3	373 °C
13	т 134	Versuchstemperatur 4	384 °C
14	т 135	Versuchstemperatur 5	382 °C
15	т 136	Versuchstemperatur 6	384 °C
16	P 60	Druck hinter Ve 108, vor RE	63 bar
17	P 61	Druck hinter Reaktoreinsatz	59 bar
18	P 63	Druck vor Blende	58 bar
19	P 6	Druck hinter Blende	58 bar
20	P 62	Druck nach Entspann-Ve 111	1,31 bar
- 21	P 74	Druck-im-Prüflingsplenum	26 bar
32	T 1	Temperatur hinter Vorwärmer	280 °C
33	т 2	Temperatur im Verdampfer	287 °C
34	т 4	Temperatur hinter Überhitzer	543 °C
35	T115/116	Temperaturdiff. Prüfling	19,5 K
37	NEL	Elektrische Leistung	48,3 W/cm
	TEI	D ₂ O-Eintrittstemperatur	46 - 47°C
38-45	TBE 1-8	D ₂ O-Temp. Brennelement 1 - 8	801 mbar
46	.P 5	Druck hinter Überhitzer	118 kg/h
48	P 64	Differenzdruck Dampfblende	, 10 kg/11
	m	Dampfmengenstrom	
	<u> </u>		<u> </u>

Tabelle 13.6: Meßwerte vor Auslösung der Transiente

Versuch Nr.: BSS 25 Datum: 6.9.1979

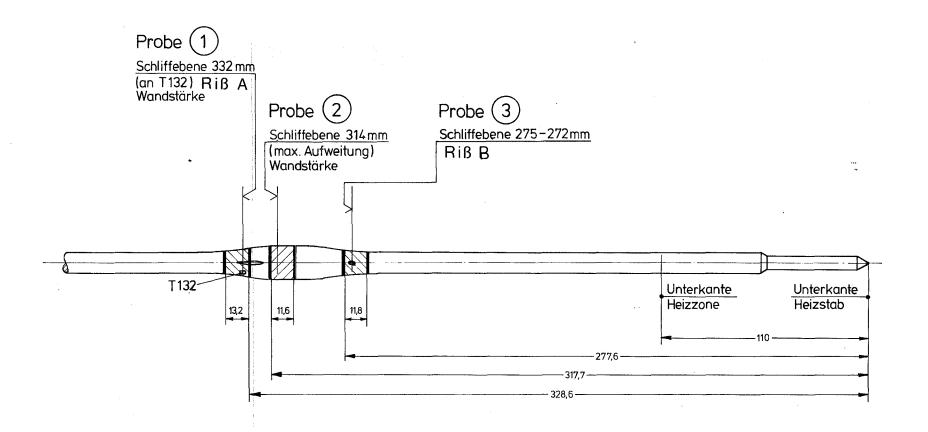
Uhrzeit: 15.47.24

CALAS- Adresse	Meß- stelle	Meßstellenbezeichnung	CALAS- Meßwert
0	т 42	Temp. hinter Ve 108, vor RE	510 °C
1	Т 5	Temp vor Reaktoreinsatz	498 °C
2	T 114	Temp. im Reaktoreinsatz	300 °C
3	T 115	Temp. vor Prüfling	295 ,°C
4	T 116	Temp. hinter Prüfling	318 °C
· 5	Т 6	Temp. hinter Reaktoreinsatz	361 °C
6	т 113	Temp. im Reaktoreinsatz	336 °C
7	т 58	Temp. vor Blende	338 °C
. 8	T 103	Temp. hinter Blende	334 °C
9	т 117	Druckrohrtemperatur	262 °C
10	Т 131	Versuchstemperatur 1	370 °C
11	т 132	Versuchstemperatur 2	374 °C
12	Т 133	Versuchstemperatur 3	369 °C
13	т 134	Versuchstemperatur 4	377 .ºC
14	т 135	Versuchstemperatur 5	375 °C
15	т 136	Versuchstemperatur 6	386 °C
16	P 60	Druck hinter Ve 108, vor RE	58 bar
17	P 61	Druck hinter Reaktoreinsatz	57 bar
18	P 63	Druck vor Blende	56 bar
19	P 6	Druck hinter Blende	56 bar
20,	P 62	Druck nach Entspann-Ve 111	1,31 bar
21	P 74	Druck im Prüflingsplenum	119 bar
32	T 1	Temperatur hinter Vorwärmer	280 °C
33	T 2	Temperatur im Verdampfer	286 ,°C
34	T 4	Temperatur hinter Überhitzer	543°°C
35	T115/116	Temperaturdiff. Prüfling	21,9 K
	NEL	Elektrische Leistung	48,2 W/cm
37	TEI	D ₂ O-Eintrittstemperatur	48 °C
38-45	TBE 1-8	D ₂ O-Temp. Brennelement 1 - 8	48 - 49°C
.46	P 5	Druck hinter Überhitzer	64 bar
48	P 64	Differenzdruck Dampfblende	801 mbar
	m	Dampfmengenstrom	117 kg/h
			. ¥

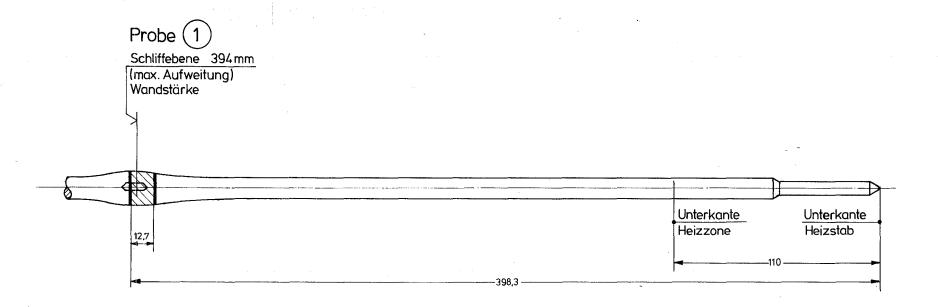
Tabelle 13.7: Meßwerte vor Auslösung der Transiente

Versuch Nr.: BSS 26 Datum: 8.11.1979 Uhrzeit: 16.42.30

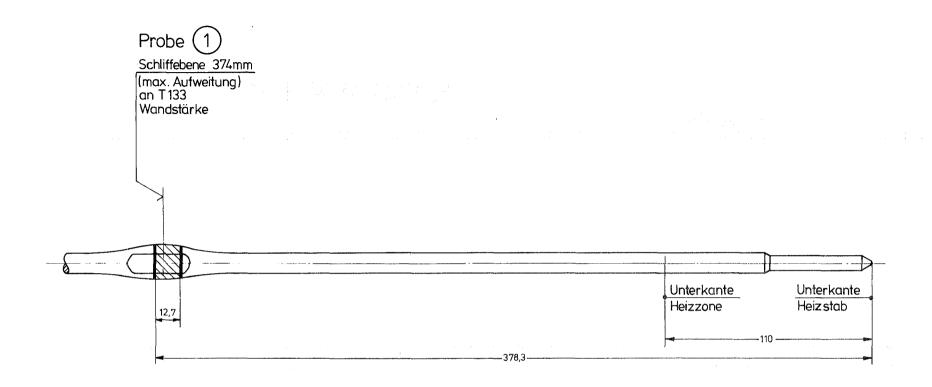
CALAS- Adresse	Meß- stelle	Meßstellenbezeichnung	CALAS- Meßwert
0	т 42	Temp. hinter Ve 108, vor RE	511 °C
1	T 5	Temp vor Reaktoreinsatz	499 °C
2	т 114	Temp. im Reaktoreinsatz	300 °C
3	T 115	Temp. vor Prüfling	296 °C
4	Т 116	Temp. hinter Prüfling	316 °C
5	т 6	Temp. hinter Reaktoreinsatz	362 °C
6	т 113	Temp. im Reaktoreinsatz	336 °C
7	т 58	Temp. vor Blende	340 °C
8	T 103	Temp. hinter Blende	336 °C.
9	т 117	Druckrohrtemperatur	263 °C
10	т 131	Versuchstemperatur 1	367 °C
11	Т 132	Versuchstemperatur 2	370 °C
12	т 133	Versuchstemperatur 3	373 °C
13	т 134	Versuchstemperatur 4	375 °C
14	т 135	Versuchstemperatur 5	377 °C
. 15	т 136	Versuchstemperatur 6	379 °C
16	P 60	Druck hinter Ve 108, vor RE	61 bar
17	P 61	Druck hinter Reaktoreinsatz	57 bar
18	P 63	Druck vor Blende	56 bar
19	P 6	Druck hinter Blende	56 bar
20	P 62	Druck nach Entspann-Ve 111	1,3 bar
21	P 74	Druck im Prüflingsplenum	109 bar
32	т 1	Temperatur hinter Vorwärmer	279 °C
33	т 2	Temperatur im Verdampfer	285 °C
34	T 4	Temperatur hinter Überhitzer	542 °C
35	T115/116	Temperaturdiff. Prüfling	19,4 K
·	NEL	Elektrische Leistung	48,2 W/cm
37	TEI	D ₂ O-Eintrittstemperatur	50 °C
38-45	TBE 1-8	D ₂ O-Temp. Brennelement 1 - 8	49 - 50°C
46	.P 5	Druck hinter Überhitzer	63 bar
48	P 64	Differenzdruck Dampfblende	834 mbar
	m	Dampfmengenstrom	118 kg/h

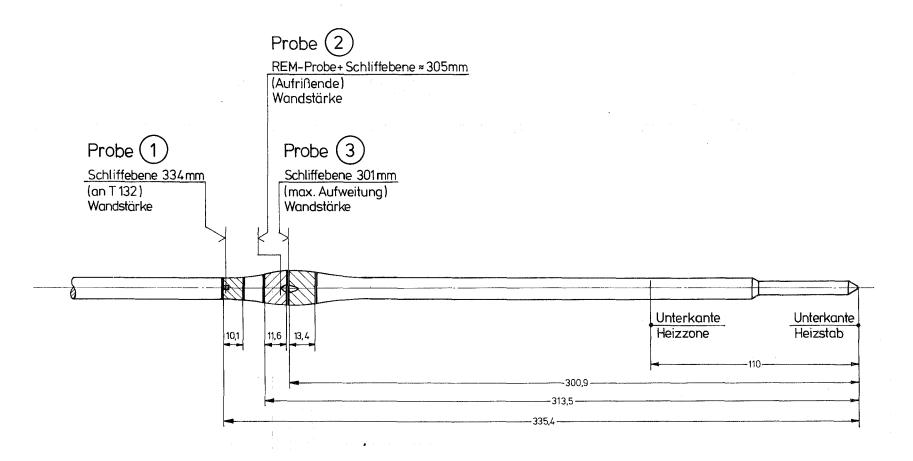

Tabelle 13.8: Meßwerte vor Auslösung der Transiente

Versuch Nr.: BSS 28 Datum: 12.11.1979 Uhrzeit: 16.28.56


CALAS- Adresse	Meß- stelle	Meßstellenbezeichnung	CALAS- Meßwert
0 •	т 42	Temp. hinter Ve 108, vor RE	509 °C
1	Т 5	Temp vor Reaktoreinsatz	496 °C
2	T 114	Temp. im Reaktoreinsatz	296 °C
3	T 115	Temp. vor Prüfling	291 [°] °C
4	Т 116	Temp. hinter Prüfling	315 °C
5	т 6	Temp. hinter Reaktoreinsatz	357 °C
6	т 113	Temp. im Reaktoreinsatz	331 °C
7	T 58	Temp. vor Blende	335 °C
8	T 103	Temp. hinter Blende	331 °C
9	т 117	Druckrohrtemperatur	261 °C
10	Т 131	Versuchstemperatur 1	355 °C
11	Т 132	Versuchstemperatur 2	366 °C
12	T 133	Versuchstemperatur 3	368 °C
13	Т 134	Versuchstemperatur 4	372 °C
1.4	T 135	Versuchstemperatur 5	373 °C
15	Т 136	Versuchstemperatur 6	374 °C
16	P 60	Druck hinter Ve 108, vor RE	62 bar
· 17	P 61	Druck hinter Reaktoreinsatz	58 bar
18	P 63	Druck vor Blende	58 bar
19	P 6	Druck hinter Blende	57 bar
20	P 62	Druck nach Entspann-Ve 111	1,3 bar
2.1	P 74	Druck im Prüflingsplenum	22 bar
32	т 1	Temperatur hinter Vorwarmer	279 °C
33	T 2	Temperatur im Verdampfer	286 °C
34	Т 4	Temperatur hinter Überhitzer	542 °C
35	T115/116	Temperaturdiff. Prüfling	23,7 K
	NEL	Elektrische Leistung	48,2 W/cm
37	TEI	D ₂ O-Eintrittstemperatur	49 °C
38-45	TBE 1-8	D ₂ O-Temp. Brennelement 1 - 8	48 - 50°C
46	P 5	Druck hinter Überhitzer	64 bar
48	P 64	Differenzdruck Dampfblende	742 mbar
	m	Dampfmengenstrom	114 kg/h

Anhang II


Schnittpläne für die Probenherstellung in den Heißen Zellen, BSS 12, BSS 22 bis BSS 28



ZZ IT 198

Danksagung:

Allen an den Versuchsdurchführungen und Auswertungen Beteiligten sei an dieser Stelle vielmals gedankt.

Besonderer Dank gilt den Herren G.Harbauer,
M.Hespeler, W.Knappschneider, W.Legner,
W.Leiling, B.Räpple, A.Scherer und K.Wagner
für die Mithilfe bei der Erstellung dieses
Berichtes. Für die Arbeiten bei der Auslegung
und Fertigung der Heizstäbe sei Herrn P.Schäffner,
für die Aufbereitung der CALAS-Meßwerte Herrn
A. Grünhagen und für die Durchführung der
konstruktiven Arbeiten zu den Versuchseinsätzen sei Herrn K. Baumgärtner besonders gedankt. Dank gesagt sei auch Herrn F. Schmitt
für die Betreuung des DK-Kreislaufes am FR2.