KfK 3417 November 1982

The ¹⁸⁰Lu Beta Decay to the ¹⁸⁰Hf 8⁻ Isomeric State and the r-Process Formation of ¹⁸⁰Ta^m

G. Walter, H. Beer, W. Kurcewicz, R. Kirchner, R. Roeckl, D. Schardt Institut für Angewandte Kernphysik

Kernforschungszentrum Karlsruhe

KERNFORSCHUNGSZENTRUM KARLSRUHE

Institut für Angewandte Kernphysik

K£K 3417

The 180 Lu Beta Decay to the 180 Hf 8⁻ Isomeric State and the r-Process Formation of 180 Ta^m

G. Walter, H. Beer, W. Kurcewicz⁺, R. Kirchner⁺⁺, R. Roeckl⁺⁺, D. Schardt⁺⁺

Kernforschungszentrum Karlsruhe GmbH, Karlsruhe

- ⁺ On leave of absence from Institute of Experimental Physics, University of Warsaw, Warsaw, Poland
- ++ Gesellschaft für Schwerionenforschung mbH
 Darmstadt, Federal Republic of Germany

Als Manuskript vervielfältigt Für diesen Bericht behalten wir uns alle Rechte vor

Kernforschungszentrum Karlsruhe GmbH ISSN 0303-4003

ABSTRACT

The fractional decay of 180 Lu (T_{1/2} = 5.7 min) to the 8⁻ isomeric state 180 Hf^m (T_{1/2} = 5.5 h) is investigated, applying multi nucleon transfer reactions between a 11.7 MeV/u 136 Xe beam and a tantalum/tungsten target, on-line mass separation and γ -ray spectroscopy. The branching ratio of Lu β -decays to the 8⁻ 180 Hf^m state is estimated to be 5.7 % which leads to the interpretation of a dominant formation of 180 Ta^m by r-process nucleonsynthesis.

Der¹⁸⁰Lu Beta Zerfall zu dem Isomer in ¹⁸⁰Hf und die r-Prozeß-Bildung von ¹⁸⁰Ta^m

Zusammenfassung

Der partielle Zerfall von 180 Lu (T_{1/2} = 5,7 min) zu dem 8⁻ isomeren Zustand 180 Hf^m (T_{1/2} = 5,5 h) wurde unter Anwendung von Multinukleon-Transferraktionen zwischen einem 11,7 MeV/u 136 Xe Strahl mit einem Tantal/Wolfram Target, on-line Massenseparation und γ -Strahl-Spektroskopie untersucht. Das Verzweigungsverhältnis des 180 Lu β -Zerfalls zum 8⁻ 180 Hf^m Zustand wurde zu 5,7 % abgeschätzt. Dies führt zu der Interpretation, daß 180 Ta^m vorwiegend über die r-Proze β -Nukleosynthese gebildet wurde.

INTRODUCTION

According to the recent investigations of Beer and Ward (1) and Beer and Macklin (2) the extremely small solar abundance of 180_{Ta}^{m} can be explained by small neutron capture and/or B-decay branchings in the common neutron capture nucleosynthesis of the s- and/or r-processes. The essential point of the arguments refers to an isomeric state in 180 Hf^m which has an allowedhindered beta decay to ¹⁸⁰Ta^m. In this way a branching is established large enough to account for the small solar abundance of 180 Ta^m (2.46 x 10⁻⁶, Si = 10⁶). In Fig. 1 the s- and r-process synthesis paths to generate ¹⁸⁰Ta^m are illustrated. They differ in the way the isomeric state in ¹⁸⁰Hf^m is populated. In s-process nucleosynthesis, this population is due to neutron capture in 179 Hf and was determined [2] to be (1.24 ± 0.06) %. In post r-process nucleosynthesis, ¹⁸⁰Lu can have a fractional β -decay branch f_m^{180} to the 180 Hf^m isomeric state. Beer and Macklin [2] have estimated that in order to reproduce the solar $180_{\text{Ta}}^{\text{m}}$ abundance totally by the r-process, f_{m}^{180} should be as large as 2.5 % provided the fractional ß-decay branch h from 180 Hf^m to 180 Ta^m amounts to 0.34 % (see Fig. 1). It is the aim of this paper to present a measurement of f_m^{180} and to discuss the conclusions with respect to nucleosynthesis formation of ¹⁸⁰Ta^m.

EXPERIMENTAL METHOD

The difficulty in measuring f_m^{180} is that nuclear reactions suitable for producing 180 Lu will in general yield 180 Hf^m simultaneously, therefore, one has to detect weak decay branches

of the short-lived nucleus 180 Lu in the presence of large quantities of its long-lived daughter activities of interest, 180 Hf^m. For example, the relatively extensive decay scheme of 180 Lu, obtained by Swindle et al. (3) via the 180 Hf(n,p) 180 Lu reaction is incomplete with regard to transitions to the 8⁻ 180 Hf^m isomeric state because this state is also populated by the 179 Hf(n, γ) 180 Hf^m reaction due to the presence of 179 Hf in the natural hafnium target.

In the present investigation, a 11.7 MeV/u 136 Xe beam from the UNILAC was used for irradiation of a tantalum/tungsten target (4) positioned inside the ion source of the GSI on-line mass separator (5) One of the mass-separated beams was collected on an aluminium foil in front of a Ge(Li) detector for on-line and subsequent off-line γ -counting.

It is important to note that the overall efficiency of the on-line mass separator depends upon both the chemical properties and the half-life of the isotope of interest. Both lutetium and hafnium isotopes are released from the ion source, however with different overall-efficiencies. (The release of hafnium appears to contrast with earlier 136 Xe on tantalum-tungsten experiments (4,6), in which 181 Hf and 182 Hf have not been observed in the mass-181 and mass-182 beams, respectively. The different behaviour is most probably due to target ionsource modificiations). The idea of the present determination of f_m^{180} is to deduce this quantity from a γ -ray measurement on a mass-180 sample and to correct for the part of the 180 Hf^m activity, which is <u>not</u> due to ¹⁸⁰Lu decay in this sample, but collected as ¹⁸⁰Hf^m. This isobaric contamination is estimated by a separate measurement of ¹⁷⁷Hf^m which is shielded against any β -decay. In doing this, we have to rely upon the following approximate assumptions:

- Production cross sections are taken for 177 Hf^m (37/2⁻) and 180 Hf^m(8⁻) to be 5.4 ± 0.5 mb and 6.1 ± 0.3 mb as measured [7] for 8.5 MeV/u 136 Xe on tungsten reactions, and for 180 Lu to be 0.27 mb as estimated (4,7) for 9.1 MeV/u 136 Xe on tantalum-tungsten reactions. We assume thereby, that the cross section ratios determined in these experiments remain unchanged under the conditions of the present experiment, that is for 11.7 MeV/u 136 Xe energy and for the actual target containing a sandwich array if thin tantalum and tungsten foils of 34 mg/cm² and 14 mg/cm² total thickness, respectively.
- We assume identical overall-efficiencies for 51-min ¹⁷⁷Hf^m and 5.5-h ¹⁸⁰Hf^m, whereas the "fractionation" effect due to difference in overall-efficiency between ¹⁸⁰Lu and ¹⁸⁰Hf^m will be determined experimentally.

The determination of the fractional ¹⁸⁰Lu decay required, therefore, two measurements. First the ¹⁷⁷Hf^m($T_{1/2} = 51$ min) nuclei are collected and their activity is counted by the characteristic γ -line at 277 keV. Then the reaction products of mass 180, ¹⁸⁰Lu and ¹⁸⁰Hf^m, are measured. The ¹⁸⁰Lu nuclei are counted on-line with a Ge(Li) detector via the strongest γ -ray line at 408 keV. The ¹⁸⁰Hf^m nuclei which are produced directly in the transfer reaction as well as by ¹⁸⁰Lu decay

- 3 -

during the collection period are measured through the 332 keV γ -line. For the number of counts $C_{\rm Hf}^{177}$, $C_{\rm Lu}^{180}$ and $C_{\rm Hf}^{180}$ from the activated $^{177}_{\rm Hf}m$, $^{180}_{\rm Lu}$ and $^{180}_{\rm Hf}m$ nuclei the following relations can be specified under the above-mentioned approximations:

$$C_{\rm Hf}^{177} = N_{\rm Hf}^{177} g_{\rm Hf}^{177} \epsilon_{\rm Hf}^{177} \frac{1}{\lambda_{\rm Hf}^{177}} (1 - e^{-\lambda_{\rm Hf}^{177} T_{\rm b}^{\prime}}) (1 - e^{-\lambda_{\rm Hf}^{177} T_{\rm c}^{\prime}}) e^{-\lambda_{\rm Hf}^{177} T_{\rm w}^{\prime}} (1)$$

$$C_{Lu}^{180} = N_{Lu}^{180} g_{Lu}^{180} \cdot \varepsilon_{Lu}^{180} [T_b - \frac{1}{\lambda_{Lu}^{180}} (1 - e^{-\lambda_{Lu}^{180}} T_b)]$$
 (2)

 $C_{Hf}^{180} = g_{Hf}^{180} \epsilon_{Hf}^{180} \frac{1}{\lambda_{Hf}^{180}} (1 - e^{-\lambda_{Hf}^{180}} T_{b}) (1 - e^{-\lambda_{Hf}^{180}} T_{c}) e^{-\lambda_{Hf}^{180}} T_{w}$

$$[N_{Hf}^{180} + N_{Lu}^{180} f_{m}^{180} S_{Lu}^{Hf}]$$
(3)

$$S_{Lu}^{Hf} = \frac{\lambda_{Hf}^{180}}{\lambda_{Hf}^{180} - \lambda_{Lu}^{180}} = \frac{e^{-\lambda_{Lu}^{180}T_{W}} - e^{-\lambda_{Lu}^{180}(T_{b}+T_{w})}}{e^{-\lambda_{Hf}^{180}T_{w}} - e^{-\lambda_{Hf}^{180}(T_{b}+T_{w})}} - \frac{\lambda_{Lu}^{180}}{\lambda_{Hf}^{180} - \lambda_{Lu}^{180}}$$
(4)

where C and N designate numbers and rates, respectively, of radioactive nuclei collected on the aluminium foil for a given current of ¹³⁶Xe projectiles, G is the number of γ -disintegrations of the analyzed line per decay, ε the Ge(Li) efficiency of the γ -line. T_b is the time of collecting the mass-separated beam on the aluminium collector, with the ¹³⁶Xe beam irradiating the tantalum-tungsten target. T_w is the waiting time between end of collection and start of counting for the ¹⁷⁷Hf^m and ¹⁸⁰Hf^m samples. λ stands for the decay rate and T_c is the Ge(Li) counting time. The wanted unknown fraction of ¹⁸⁰Lu nuclei which decay to ¹⁸⁰Hf^m is designated by f_m^{180} .

 $N_{\rm Hf}^{180}$ can be related to $N_{\rm Hf}^{177}$ by means of the production cross sections $\sigma_{\rm Hf180}^{\rm m}$ and $\sigma_{\rm Hf177}^{\rm m}$ under the assumption that the target thickness does not vary with time (4)

$$\vec{N}_{Hf}^{177} = \frac{\sigma_{Hf177}^{m}}{\sigma_{Hf180}^{m}} N_{Hf}^{180}$$
(5)

and N_{Hf}^{180} is related to N_{Lu}^{180} by:

$$N_{\rm Hf}^{180} = F \frac{\sigma_{\rm Hf180}^{\rm m}}{\sigma_{\rm Lu180}} N_{\rm Lu}^{180}, \qquad (6)$$

where σ_{Lu180} is the ¹⁸⁰Lu production cross section and F a factor which takes into account that ¹⁸⁰Hf^m is suppressed compared to ¹⁸⁰Lu in the mass-180 beam. From eqs. (1) to (5) we find the following relation for f_m^{180} :

$$f_{m}^{180} = \left[\begin{array}{c} \frac{c_{Hf}^{180} \lambda_{Hf}^{180}}{q_{Hf}^{180} \epsilon_{Hf}^{180} (1 - e^{-\lambda_{Hf}^{180} T_{b}}) (1 - e^{-\lambda_{Hf}^{180} T_{c}}) e^{-\lambda_{Hf}^{180} T_{w}}} \\ \frac{(\sigma_{Hf180}^{m} / \sigma_{Hf177}^{m}) c_{Hf}^{177} \lambda_{Hf}^{177}}{q_{Hf}^{177} \epsilon_{Hf}^{177} (1 - e^{-\lambda_{Hf}^{177} T_{b}^{'}}) (1 - e^{-\lambda_{Hf}^{177} T_{c}^{'}}) e^{-\lambda_{Hf}^{177} T_{w}^{'}}} \right] \\ \cdot \frac{\epsilon_{Lu}^{180} q_{Lu}^{180} [T_{B}^{-} \frac{1}{\lambda_{Lu}^{180}} (1 - e^{-\lambda_{Lu}^{180} T_{b}})]}{c_{Lu}^{180} (1 - e^{-\lambda_{Lu}^{180} T_{b}})}$$
(7)

Eq. (7) is correct for the ideal condition of a constant 136 Xe beam intensity during the collection time T_b and before, so that the nuclei of interest are in saturation in the target catcher, before the collection period starts. If the time

-5-

dependence of the 136 Xe beam $\phi(t)$ and the release properties of the ion source were known, eq. (7) could be corrected for beam time fluctuations.

For the present evaluation, we did not apply such a correction, but derived simple time-averaged values from the measured (5) 136 Xe beam current (see Table 1).

The factor F defined in eq. (6) can be determined from measured quantities using eqs. (1), (2) and (5)

$$F = \frac{\sigma_{Lu180}}{\sigma_{Hf177}^{m}} \cdot \frac{c_{Hf}^{177}}{c_{Lu}^{180}} \cdot \frac{g_{Hf}^{180}}{g_{Hf}^{177}} \cdot \frac{\varepsilon_{Lu}^{180}}{\varepsilon_{Hf}^{177}} \frac{\varepsilon_{Lu}^{180}}{\varepsilon_{Hf}^{177}} \frac{[T_{B}^{-} \frac{1}{\lambda_{Lu}^{180}} (1 - e^{-\lambda_{Lu}^{180} T_{b}}]}{\frac{1}{\lambda_{Hf}^{177}} (1 - e^{-\lambda_{Hf}^{177} T_{b}}) (1 - e^{-\lambda_{Hf}^{177} T_{c}}) e^{-\frac{177}{Hf} T_{w}}}$$
(3)

RESULTS AND DISCUSSION

The measured γ -ray spectra are shown in Fig. 2. In Table 1 the relevant quantities from the measurement and from literature are summarized, yielding f_m^{180} =6.0 % and F = 0.23%. The latter value corresponds to overall efficiencies of approximately 5 % for 180 Lu and 10⁻⁴ for 180 Hf^m.

In this calculation it is assumed that $g_{Lu}^{180} = 0.5$ [8] represents the fraction of total ¹⁸⁰Lu decay via the 408 keV γ line, but as in the ¹⁸⁰Lu decay scheme of ref. [8] no branching to the ¹⁸⁰Hf^m isomeric state is indicated we have

to assume that this fraction f_m^{180} was neglected. If it is taken into account we have to replace $g_{Lu}^{180} \longrightarrow g_{Lu}^{180} (1-f_m^{180})$ in eqs. (2), (6) and (8). This leads to $f_m^{180} = 5.7$ % and $F = 2.2 \times 10^{-3}$. The present result is of importance as it allows now the decision of whether ${}^{180}\text{Ta}^{\text{m}}$ is of s- or rprocess origin.

In ref. (2) it was demonstrated that the s-process might give only a negligible amount of ${}^{180}\text{Ta}^{\text{m}}$ compared to r-process formation. In this discussion the fractional ß-decay from ${}^{180}\text{Hf}^{\text{m}}$ to ${}^{180}\text{Ta}^{\text{m}}$ was taken to be 3.4 x 10⁻³ assuming an allowed-hindered ß-decay. Under this assumption the presently determined fractional ${}^{180}\text{Lu}$ decay to ${}^{180}\text{Hf}^{\text{m}}$ allows the calculation of the r-process abundance $N_r ({}^{180}\text{Ta}^{\text{m}})$:

$$N_{r}(^{180}Ta^{m}) = N_{r}(^{180}Hf) \frac{h}{1-h} \cdot \frac{f_{m}^{180}}{1-f_{m}^{180}}$$
(9)
where $N_{r}(^{180}Hf) = N_{o}(^{180}Hf) - \frac{\sigma N_{s}(^{180}Hf)}{\sigma(^{180}Hf)}$ (10)

 N_r (¹⁸⁰Hf) represents the r-process abundance of ¹⁸⁰Hf which is calculated [2] by subtracting the s-process abundance

$$N_{s} = \sigma N_{s} ({}^{180} Hf) / \sigma ({}^{180} Hf)$$
(11)

from the solar abundance N (180 Hf). σ is the Maxwellian averaged capture cross section of Hf reported in ref. (2).

From the present f_m^{180} result and the N_r (¹⁸⁰Hf) value (2) of 0.029 (Si=10⁶), we have estimated N_r (¹⁸⁰Ta^m) \approx 5.95 x 10⁻⁶

(Si=10⁶). Therefore the solar abundance of 180 Ta (2.46 x 10⁻⁶, Si=10⁶) can obviously be explained by r-process nucleonsynthesis.

Finally, we would like to stress that the present rough <u>estimate</u> of the ¹⁸⁰Lu \longrightarrow ¹⁸⁰Hf branching is based on assumptions concerning production cross section ratios and separation efficiencies. Furthermore, time fluctuations of the ¹³⁶Xe beam intensity during the collection period have not been taken into account as well as possible differences in the intensities of mass separated ¹⁷⁷Hf^m and ¹⁸⁰Hf^m beams due to accumulation of these isotopes in the ion source during pre-collection irradiations.

It is challenging to improve our understanding of the ${}^{180}_{\text{Ta}^{\text{m}}}$ formation by <u>remeasuring</u> the branching f_{m}^{180} under improved conditions, and by additionally determining the ${}^{180}_{\text{Hf}^{\text{m}}} \longrightarrow {}^{180}_{\text{Ta}^{\text{m}}}$ decay parameters, in order to verify h = 3.4 x 10⁻³.

If it should turn out that h is really as high as 3.4×10^{-3} and $f_m^{180} = 0.057$ then ${}^{180}\text{Ta}^{\text{m}}$ is overproducted by a factor of 2.4 This could mean that additionally to the formation of ${}^{180}\text{Ta}^{\text{m}}$ some process of destruction (i.e. thermalization of the isomeric and ground state) has to be considered.

The authors wish to express their gratitude to C. Bruske, K. Burkard and W. Hüller for operating the on-line mass separator, and to Profs. N. Kaffrell, W.-D. Schmidt-Ott and their colloboration in jointly using the separator.

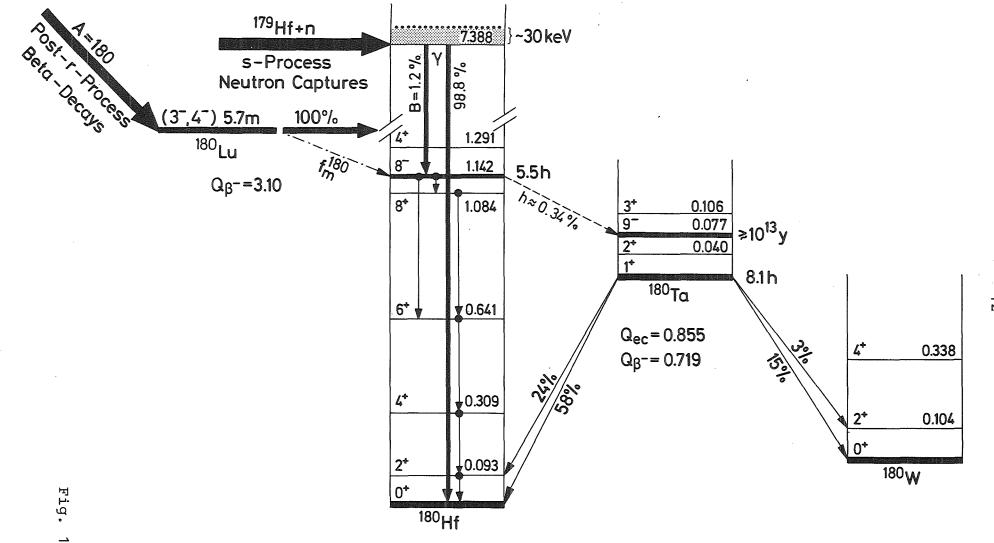
The critical comments of Dr. O. Klepper are gratefully acknowledged.

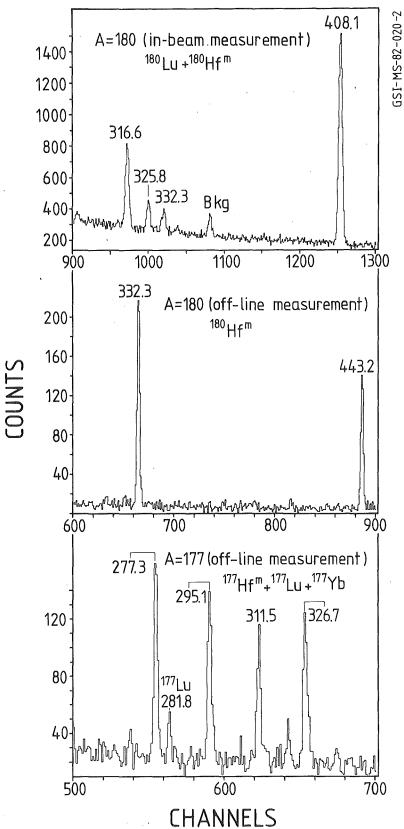
-8-

TABLE I

***	177 _{Hf} m	180 _{Hf} m	180 _{Lu}
+)			
^T 1/2 ⁺⁾	51 min	5.5 h	5.7 min
λ(s ⁻¹)	2.2652.10-4	3.5007.10 ⁻⁵	$2.0267 \cdot 10^{-3}$
$E\gamma$ (keV) +)	277	332	408
g ⁺)	0.75	0.944	0.50
ε	8.6.10 ⁻²	7.4.10 ⁻²	1.1.10 ⁻²
Average beam current			
(particle•nA)	10.7	14.0	14.0
T _b (s)	6192	11014	11014
T _w (s)	2951	13467	-
T _c (s)	7200	3600	
^{om} H£177 (mb)	5.4 <u>+</u> 0.05 ⁺⁺⁾		
σ ^m (mb) Hf180		6.1 <u>+</u> 0.3 ⁺⁺⁾	
σ_{Lu180}^{m} (mb)			0.27 ⁺⁺⁾

+) From Ref. (8)


++) The production cross sections were measured at
 ¹³⁶Xe energies of 8.5 MeV/U and 9.1 MeV/U (see text)


REFERENCES

- (1) H. Beer and R.A. Ward, Nature 291, 308 (1981)
- (2) H. Beer and R.L. Macklin, Phys. Rev. C (in press)
- (3) D.L. Swindle, T.E. Ward, P.K. Kuroda, Phys. Rev. <u>C3</u> 259 (1971)
- (4) R. Kirchner et al., Nucl. Phys. <u>A378</u> (1982) 549
- (5) C. Bruske, K.H. Burkard, W. Hüller, R. Kirchner,
 O. Klepper, and E. Roeckl, Nucl. Instr. Meth. <u>186</u>
 (1981) 61
- (6) E. Runte et al., GSI Scientific Report, unpublished
- (7) I. Zychor et al., Hafnium and Lutetium Isomers produced in heavy-Ion Collisions of 7.6 MeV/u ⁴⁰Ar, 8.5 MeV/u ⁸⁴Kr and 8.5 MeV/u ¹³⁶Xe on ^{nat}W Targets, to be submitted for publication in Radiochim. Acta.
- (8) Table of Isotopes, 7th ed., ed. C.M. Lederer andV.S. Shirley (Wiley, New York, 1978).

FIGURE CAPTIONS

- Fig. 1 The nuclear level structure along the A=180 isobaric chain of significance to the stellar nucleosynthesis of ${}^{180}\text{Ta}^{\text{m}}$ (>10 13 yr). The most important quantities are the fractional branchings into ${}^{180}\text{Hf}^{\text{m}}$ (5.5 h) through both: 30 keV neutron capture by ${}^{179}\text{Hf}$ (denoted by B) for the s-process and the β -decay of ${}^{180}\text{Lu}$ (denoted by f_{m}^{180}) for the r-process. These are then followed by the possible β -decay branching, h from ${}^{180}\text{Hf}^{\text{m}}$ into the isomer ${}^{180}\text{Ta}^{\text{m}}$. We have also shown the spins, parities, and energies (in MeV) of many levels as well as their relevant decay properties and half lives (when known).
- Fig. 2 Parts of the γ-ray spectra measured at mass 180 (in-beam and off-line) and mass 177 (off-line). Two Ge(Li) detectors with efficiencies of 12 and 40 % were used for the γ-ray in-beam and off-line measurements, respectively.

- 13 -

Fig. 2