KfK 3351 April 1983

Extraktive Phasenverteilung des Uranylnitrats mit Tri(n-butyl)phosphat

I: Das System UO₂(NO₃)₂-TBP-H₂O-HNO₃

B. Kanellakopulos, P. Dressler, D. Ertel Institut für Heiße Chemie Projekt Wiederaufarbeitung und Abfallbehandlung

Kernforschungszentrum Karlsruhe

KERNFORSCHUNGSZENTRUM KARLSRUHE

Institut für Heiße Chemie

Projekt Wiederaufarbeitung und Abfallbehandlung

KfK 3351 PWA 100/82

Extraktive Phasenverteilung des Uranylnitrats mit Tri(n-butyl)phosphat I: Das System $UO_2(NO_3)_2$ -TBP-H₂O-HNO₃

B. Kanellakopulos, P. Dressler, D. Ertel

Kernforschungszentrum Karlsruhe GmbH, Karlsruhe

Als Manuskript vervielfältigt Für diesen Bericht behalten wir uns alle Rechte vor

> Kernforschungszentrum Karlsruhe GmbH ISSN 0303-4003

.

Der Verteilungskoeffizient des Uranylnitrats wurde im System $UO_2(NO_3)_2$ -TBP- H_2O -HNO₃ als Funktion der Uranbeladung ($10^{-2} - 10^{-5}$ M/l) und der HNO₃-Konzentration (0.0 - 12.4 M/l) der wässrigen Phase untersucht.

Extractive Phase Distribution of Uranylnitrate with Tri(n-butyl)phosphate

I: The system UO₂(NO₃)₂-TBP-HNO₃

Summary

The distribution coefficients of UO_2^{2+} in the system $UO_2(NO_3)_2$ -TBP-H₂O-HNO₃ have been measured for small uranium concentrations (from 10^{-2} to 10^{-5} M/l) and for HNO₃ concentrations from 0.0 to 12.4 M/l in the aqueous phase.

INHALTSVERZEICHNIS

		SEITE
1.	Einleitung	1
2.	Experimentelles	
2.1	Das verwendete Uran	2
2.2	Umrechnungsfaktoren	2
2.3	Bestimmung des U-235	3
2.4	Ausgangssubstanz und Reagenzien	3
2.5	Durchführung der Versuche	4
3	Der Verteilungskoeffizient des Uranyl-	5
	nitrats in Abhängigkeit der TBP-Konzen-	
	tration	
• •	Literatur	8
	Abbildungen	9 - 18
	Tabellen	19 - 36

1. Einleitung

Die bisher in der Literatur erschienenen Daten über das Extraktionsverhalten des sechswertigen Urans im Purex-Prozeß beschränken sich meistens auf relativ hohe Uranbeladungen der wäßrigen Phase ($= 10^{-2}$ Mol/l), wie in der von G. Petrich und Z. Kolarik im Jahre 1981 publizierten Sammlung von Purex-Verteilungsdaten /1/ deutlich demonstriert worden ist (Abb. 1). Der Grund dafür ist eher auf die analytischen Probleme, die mit der Bestimmung von sehr kleinen Uran-Mengen zusammenhängen, zurückzuführen, als auf Mangel an technischer Bedeutung der kleinen Uran-Beladung in der wäßrigen Phase. Denn bei der Extraktion in den HA-Kolonnen nimmt die Urankonzentration beim wäßrigen Ausgang ständig ab. Andererseits ist eine genaue Kenntnis des Verhaltens des Urans und anderer Actinoide im Extraktionsprozeß bei kleinen Konzentrationen auch dann erforderlich, wenn die Transuranelemente aus radioaktiven Abwässern möglichst quantitativ abgetrennt werden sollten, um die Endlagerungsprobleme zu reduzieren. Es ist den Autoren bewußt, daß diese Arbeit keinerlei neue Erkenntnisse in der allgemeinen Theorie des bewährten Purex-Prozesses zufügt. Vielmehr wird der Versuch unternommen eine systematische Untersuchung des Einflusses der zwei wichtigen Versuchsparameter, Säure und Urankonzentration der wäßrigen Phase, auf den Verteilungskoeffizienten des Urans zu untersuchen und die erhaltenen Ergebnisse phanomenologisch auf eine verständliche Art graphisch zu erfassen. Diese systematische Studie sollte weiterhin als ein kleines, einführendes Hilfswerk für junge Studenten und Techniker dienen, die im Gebiet der Extraktion Erfahrung sammeln wollen.

In der vorliegenden Arbeit wurde eine systematische Untersuchung des Systems $UO_2(NO_3)_2$ -Tributylphosphat-H₂O-HNO₃ bei kleinen Uran-Beladungen der wäßrigen Phase durchgeführt. Sämtliche Versuche wurden bei Raumtemperatur (20[±] 0,5 °C) durchgeführt.

2. Experimentelles

2.1 Das verwendete Uran

Um möglichst quantitativ und gleichzeitig schnell, zuverlässig und experimentell einfach die Urankonzentration messen zu können, verwendeten wir Uranylnitrat mit an ²³⁵U stark angereichertem Uran, dessen isotopische Zusammensetzung folgende war:

Isotopische	Zusammensetzung	des	verwendeten	Urans
Uran -	Isotop	đ	% Gewic	ht
235			92.34143 [±]	0.0031
238			6.63708 ±	0.0030
236			0.26855 [±]	0.0006
234			0.75294 [±]	0.0006
		= 1	100.00000 ±	0.0018

Die Werte stellen den mittleren Wert aus 6 massenspektrometrischen Analysen, die im Europäischen Institut für Transurane durchgeführt worden sind /2/. Die im IHCH durchgeführten RFA und χ -spektroskopischen Analysen des verwendeten Urans ergaben einen mittleren Wert für den U²³⁵-Anteil von 92.58 \pm 0,25 %, der in guter Übereinstimmung mit dem aus massenspektroskopischen Analysen ermittelten Wert steht.

Die aus der massenspektroskopischen Analyse ermittelten Werte ergeben ein Atomgewicht des verwendeten Urans von 235.19427.

2.2 Umrechnungsfaktoren

Die in den Tabellen des Anhangs aufgeführten Uran-Konzentrationsdaten können durch folgende Umrechnungsfaktoren ineinander umgerechnet werden: $235_{U} (g/1) \times 1.082938 = \text{gesamtes Uran } (g/1)$ $235_{U} (g/1) \times 0.004608247 = \text{gesamtes Uran in M/1}$ $U0_{2} (N0_{3})_{2} \cdot 6H_{2}0 \times 0.433831 = \text{Gewicht des } 235_{U}$

2.3 Bestimmung des U-235

Das U-235 wurde γ -spektrometrisch mittels eines Ge(Li)-Bohrloch-Detektors und eines 2000-Kanalanalysators gemessen. Dabei wurde die 185,7 Kev-Linie des U-235 verwendet (Abb. 2). Die registrierten Impulse aus 15 Kanälen wurden zusammenaddiert und der entsprechende Untergrund abgezogen. Die Meßzeit betrug je nach Uran-Menge der Probe einige Sekunden bis zu mehreren Stunden. Da der Nulleffekt relativ niedrig ist, spielt die Meßzeit keine dominierende Rolle, wie aus Abb. 3 zu ersehen ist.

Die mit noch guter Meßgenauigkeit zu erfassende Uran-235-Konzentration lag bei ca. 0.1 µg U-235 pro ml. Abb. 4 und 5 zeigen die Eichkurven bei niedrigen U-235 Konzentrationen sowie den Zusammenhang zwischen Impulsrate der Meßanordnung und registrierter Uran-235-Menge. Wie Abb. 5 demonstriert, bleibt die Linearität über einen sehr breiten Bereich der Uran-Konzentration erhalten, was die experimentelle Arbeit erleichtert: starke Verdünnungen sind nicht erforderlich und die damit verbundenen Meßfehler können vermieden werden.

2.4 Ausgangssubstanz und Reagenzien

Für sämtliche durchgeführten Versuche wurde $UO_2(NO_3)_2 \cdot 6H_2O$ verwendet, das von E. Dornberger, IHCH, in analytisch reiner Form hergestellt wurde. Die verwendeten TBP, n-Dodekan und HNO₃ waren p.a. Reagenzien der Fa. Merck, bzw. Fluka. Das TBP zeigte keine nachweisbare Menge von Dibutylphosphat (gaschromatographische Untersuchungen). Das H₂O war entionisiertes bzw. destilliertes Wasser.

-3-

2.5 Durchführung der Versuche

Für jeden Versuch wurde das erforderliche UO₂ (NO₃)₂·6H₂O mittels einer analytischen Waage separat eingewogen und in 2 ml HNO₃ mit der entsprechenden Molarität in einem 5 ml Fläschchen gelöst. Die Tributylphosphat/Dodekan Lösung (hergestellt durch Einwiegen des TBP unter Berücksichtigung seiner Dichte bei der Raumtemperatur) wurde mit Salpetersäure derselben Konzentration durch mechanisches Schütteln gesättigt. Nach Trennung der Phasen durch langes Stehen, bzw. Zentrifugieren wurden 2 ml der angesäuerten TBP/Dodekan-Lösung in die Uranylnitratlösung zugegeben und der verschlossene Glasbehälter 45 Minuten lang maschinell geschüttelt, um einen guten Kontakt der beiden Phasen zu erzielen. Das Gleichgewicht stellt sich schon nach einer Zeit von weniger als 10 Minuten ein, wie aus entsprechenden Versuchsreihen ermittelt werden konnte.

Nach Trennung der Phasen durch Stehen für mehrere Stunden wurde je 1 ml der beiden Phasen in ein dünnwandiges Reagenzglas abpipettiert und die U-235-Menge im Ge (Li)-Bohrlochdetektor gemessen. Stark konzentrierte Uran-Lösungen ≥ 30 mg/ml wurden entsprechend verdünnt, um die Totzeit des Detektors herabzusetzen.

Die Verwendung von jeweils neu eingewogenen Uranylnitrat-Mengen bringt den Vorteil, daß bei jedem Versuch nach der Messung eine Stoffbilanz in den beiden Phasen durchgeführt werden kann. Die Summe der spezifischen Konzentration in den beiden Phasen stimmte mit der eingegebenen Menge stets überein (= 99,8 %). Damit konnte eine zusätzliche Kontrolle über die Zuverlässigkeit der Meßdaten erzielt werden. Weiterhin wurde jede radiolytische Zersetzung des TBP, Lichteinwirkung bei schwachen Säurekonzentrationen, Pipettierfehler, usw., die eventuell die Meßdaten bei Verwendung von lang liegenden Stammlösungen beeinflussen könnten, durch die Verwendung von frischen Proben weitgehend eliminiert.

Der Verteilungskoeffizient des Uranylnitrats in Abhängigkeit der <u>TBP-Konzentration /3-10/</u>

Der Extraktionsmechanismus des Uranylnitrats mit Tri-(n-Butyl)-Phosphat aus der wäßrigen in die organische Phase ist:

$$[UO_{2}^{++}]_{aq} + 2 [NO_{3}^{-}]_{aq} + 2 [TBP]_{org} \xrightarrow{K_{U}} [UO_{2}(NO_{3})_{2} \cdot 2TBP]_{org}$$
(1)

Salpetersäure wird ebenfalls mit TBP extrahiert:

$$[H^{\dagger}]_{aq} + [NO_3]_{aq} + [TBP]_{org} \xrightarrow{K_{H}} [HNO_3 \cdot TBP]_{org}$$
(2)

Als Verteilungskoeffizient D_U ist definiert:

$$D_{U} = \frac{[UO_{2}^{++}]_{org}}{[UO_{2}^{++}]_{aq}}$$
(3)

Für schwache $UO_2(NO_3)_2$ -Konzentrationen gegenüber denjenigen der HNO_3 ist aber[NO_3^]=[H^+]

Aus G1. (1) und (2) ist:

$$K_{H} = \frac{[HNO_{3} \cdot TBP]_{org}}{[H^{+}]_{aq} \cdot [HNO_{3}]_{aq} \cdot [TBP_{fr}]_{org}}$$
(4)

und

$$K_{U} = \frac{\left[UO_{2}(NO_{3})_{2} \cdot 2 \text{ TBP}\right]_{\text{org}}}{\left[UO_{2}^{++}\right]_{aq} \cdot \left[NO_{3}^{-2}\right]_{aq} \cdot \left[\text{TBP}_{fr}\right]^{2}_{\text{org}}}$$
(5)

wobei TBP_{fr} das freie TBP in der organischen Phase bedeutet:

$$[TBP_{fr}] = [TBP_{o}] - 2[UO_{2}^{++}]_{org} - [H^{+}]_{org}$$

$$(TBP_{o} = Anfangskonzentration)$$
(6)

Durch Kombination von Gl. (4) und (5) ergibt sich

$$D_{U} = \frac{K_{U} \cdot [H^{+}]_{aq}^{2} \cdot [TBP_{0}]_{org}^{2}}{1 + K_{H} \cdot [H^{+2}]_{aq}}$$
(7)

Weil aber für kleine $[U]_{aq}$ -Konzentrationen gegenüber $[H^+]_{aq}$,

$$[H^{+}]_{aq} = [NO_{3}]_{aq} \text{ gilt, ist}$$

$$D_{U} = C \cdot [TBP_{C}]_{org}^{2}$$
(8)

Aus Gl. (8) ist zu ersehen, daß der Verteilungskoeffizient D_U des Urans als Funktion der TBP-Konzentration in logarithmischem Maßstab eine Gerade mit der Steigung 2.00 darstellen muß. Dies ist in Abb. 6 demonstriert. Die Steigung der Gerade in Abb. 6 beträgt ca. 1.93 und nähert sich stark dem theoretischen Wert von 2.00. Die in Abb. 6 aufgetragenen Meßdaten beziehen sich auf kleine Uran-Beladungen der wäßrigen Phase (< 10^{-3} Mol/l).

Die Steigung der Gerade im log D_U -vs-log [TBP]_{org}-Diagramm hängt stark von der Urankonzentration der wäßrigen Phase ab, wie aus Abb. 7 zu ersehen ist.

In Abb. 8 sind die experimentell erhaltenen Daten der Verteilungskoeffizienten des Uranylions in Abhängigkeit der Uranbeladung der wäßrigen Phase für verschiedene HNO_3 Konzentrationen aufgetragen. In Anwesenheit von H⁺-Ionen erreicht der Verteilungskoeffizient bei sehr kleinen Urankonzentrationen in der wäßrigen Phase einen konstanten Wert. Die Verteilung des Uranylions zwischen wäßriger und organischer Phase bei verschiedenen HNO_3 -Konzentrationen der wäßrigen Phase ist in Abb. 9 aufgetragen. Mit zunehmender Urankonzentration der wäßrigen Phase nimmt die Urankonzentration in der organischen Phase zu und erreicht einen konstanten Wert der dem $UO_2(NO_3)_2.2TBP$ Komplex entspricht.

Trägt man die Werte der Verteilungskoeffizienten bei kleinen $[U]_{aq}$ -Werten aus Abb. 8 als Funktion der HNO₃-Konzentration in der wäßrigen Phase auf, so entsteht Abb. 10. Der Verteilungskoeffizient des Urans nimmt mit zunehmender Säurekonzentration der wäßrigen Phase linear zu, erreicht ein maximum bei $[H^+]_{aq}$ 5.8 und sinkt wieder mit zunehmender $[H^+]_{aq}$ -Konzentration ab. Für Säurekonzentrationen der wässrigen Phase größer als 10 M/l bildet sich eine zweite organische Phase, so daß das gesamte System aus drei Phasen besteht.

Literatur

- 1) G. Petrich, Z. Kolarik Report KfK 3080 (1981)
- Massenspektrometrische Analyse von Dr. L. Koch und Mitarbeiter, Europ.Inst.für Transurane
- 3) R.L. Moore Report AECD-3196 (1951)
- 4) K. Alcock, S.S. Grimley, T.V. Healy, J. Kennedy, H.A.C. McKay Trans.Farad.Soc. <u>52</u> (1956) 39-47
- 5) T.V. Healy, H.A. McKay Trans.Farad.Soc. 52 (1956) 633-642
- 6) D.G. Tuck J.Chem.Soc. (Dalton) (1958) 2783-89
- 7) T.V. Healy, J. Kennedy J.Inorg.Nucl.Chem. 10 (2959) 128-136
- P. Leroy Rapport CEA-R 3207 (1967)
- 9) K. Naito Bull.Chem.Soc. Japan <u>33</u> (1960) 363-371
- 10) A. Coulon Rapport CEA-R 2882 (1966)

Abb.1: Literaturdaten für den Verteilungskoeffizienten von $UO_2(NO_3)_2$ zwischen wäßriger und organischer (30% TBP in Dodekan) Phase bei verschiedenen HNO₃ Konzentrationen /1/.

Abb.2: X -Spektrum von U-235

Abb.3: Einfluß der Meßzeit für verschiedene U-235 Mengen.

Abb.5: Impulsrate für die 185.7 keV - Linie des U-235 als Funktion der U-235 Menge.

Abb.6: Verteilungskoeffizient von $UO_2(NO_3)_2$ in Abhängigkeit der TBP-Konzentration in der organischen Phase bei kleinen U-Beladungen der wäßrigen Phase (U_{aq} 10⁻³ M/1; H[±]_{aq} = 0.50 M/1).

Abb.7: Verteilungskoeffizienten von UO₂(NO₃)₂ in Abhängigkeit der TBP-Konzentration der organischen Phase bei verschiedenen U-Beladungen der wäßrigen Phase

Abb. 8: Verteilungskoeffizienten von $UO_2(NO_3)_2$ bei verschiedenen Säurekonzentrationen der wäßrigen Phase (offene Symbole sind Literaturdaten /1/).

Abb.9: Die Uranylnitratverteilung zwischen organischer und wäßriger Phase bei verschiedenen Säurekonzentrationen.

Abb.10: Der Verteilungskoeffizient von UO₂(NO₃)₂ in Abhängigkeit der Säurekonzentrationen in der wäßrigen Phase bei kleinen Uran-Beladungen

Tabelle 1: Eichung

Eingesetzte Menge ²³⁵ U	gemessenes 235U		
(µg)	(µg)		
1.62	1.60		
3.42	3.42		
4.99	5.00		
8.22	8.30		
11.36	11.29		
16.24	17.20		
24.34	24.40		
32.69	32.71		
40.87	41.30		
49.04	49.20		
81.74	82.50		
114.62	116.21		
163.46	162.59		

Meßzeit (sek)	Min.	(µ/ml) 235 _U	Abweichung ۵ %
1. (Eingese	etzte Menge: 33.05 μ	g/ml)	
64	1.066	32.540	-1.56
128	2.133	32.749	-0.91
160	2.666	33.041	-0.02
256	4.266	32.957	-0.28
320	5.333	33.041	-0.02
1024	17.066	33.088	+0.11
1178	19.633	32.046	-0.01
2560	42.666	33.116	+0.19
46500	775.00	33.067	+0.05
2. (Eingese	tzte Menge: 65.32 μ	g/ml)	
128	2.133	65.246	-0.11
256	4.166	65.227	-0.14
512	8.533	65.311	-0.01
1024	17.066	65.318	±0.00
2579	42.983	65.430	+0.16

Einfluß der Meßzeit auf die gemessene 235U Menge

١

Meßzeit (sek)	Min.	(µ/ml) 235 ₀	Abweichung ∆ %
3. (Eingese	tzte Menge: 4310.0 μ	g/ml)	
16	0.266	4038.0	-6.21
32	0.533	4030.8	-6.74
64	1.066	4303.3	-0.15
256	4.266	4307.6	-0.05
512	8.533	4308.1	-0.04
1619	26.963	4309.8	-0.004

ł.

Einfluß der Meßzeit auf die gemessene ²³⁵U Menge

 ${\rm D}_{{\rm U}}$ in Abhängigkeit der TBP - Konzentration in Dodekan

 $[H^{+}]_{aq} = 0.0 m/l$

TBP (Vol.%)	[²³⁵ U] _{org} (µg/ml)	[²³⁵ U] _{aq} (µg/ml)	DU	[U ^{total}] _{aq} (M/1)
5	23.20	5375	$4.316 \cdot 10^{-3}$	2.090.10 ⁻¹
10	86.10	5423	1.587.10 -	2.499.10 ~
20	259.0	5089	$5.089 \cdot 10^{-2}$	2.345.10 ⁻²
30	1870.0	8630	$2.166 \cdot 10^{-1}$	3.977.10 ⁻²
30	636.3	5718	1.112.10 ⁻¹	2.634.10 ⁻²
30	473.0	5047	9.371.10 ⁻²	2.325.10 ⁻²
30	176.2	3448	5.110.10 ⁻²	1.589.10 ⁻²
30	52.17	2100	$2.484.10^{-2}$	9.677.10-3
45	685.0	4740	1.445·10 ⁻¹	2.184.10 ⁻²
60	982.0	4547	2.159.10 ⁻¹	2.095.10 ⁻²
80	1195.0	4447	2.687.10 ⁻¹	2.049·10 ⁻²
90	1297.0	4289	3.024.10 ⁻¹	1.976.10 ⁻²
100	15970.0	11430	1.397.10 ⁰	5.267.10-2
100	4962.0	9264	5.356·10 ⁻¹	$4.269 \cdot 10^{-2}$
100	1461.0	4214	3.467.10 ⁻¹	1.941.10 ⁻²

TBP (% Vol)	(M/l)	[²³⁵ U] _{org.}	[²³⁵ U] _{aq}	D _U
		(mg/ml)	(mg/ml)	
0.05	1.832.10-3	<0.0003	4.980	<6·10 ⁻⁵
0.10	$3.665 \cdot 10^{-3}$	0.00133	4.897	$\frac{1}{2.71 \cdot 10^{-4}}$
0.20	7.330.10 ⁻³	0.00398	5.309	7.50.10-4
0.30	1.099.10 ⁻²	0.00868	5.545	$1.57 \cdot 10^{-3}$
0.45	$1.649 \cdot 10^{-2}$	0.01723	5,042	$3.43 \cdot 10^{-3}$
0.60	$2.199 \cdot 10^{-2}$	0.02442	5.322	$4.58 \cdot 10^{-3}$
0.90	3 297.10 ⁻²	0 0558	5 117	$1.09 \cdot 10^{-2}$
1.20	$4.398.10^{-2}$	0.1090	5.274	$2.07 \ 10^{-2}$
1.60	5.861 10 ⁻²	0 1727	4.788	$3.61.10^{-2}$
1.80	6.597.10 ⁻²	0.2134	4.846	4.40.10 ⁻²
2.40	8.79 10 ⁻²	0.3396	4.764	$7.13 \cdot 10^{-2}$
3.00	1.099.10 ⁻¹	0.5540	4.807	1.15.10 ⁻¹
3 20	1 172.10 ⁻¹	0.5450	4.348	$1.253 \cdot 10^{-1}$
5,30	1.942.10 ⁻¹	1.179	3.862	3.052.10 ⁻¹
6 00	$2.199.10^{-1}$	1.520	3,893	$3.904 \cdot 10^{-1}$
10.00	$3.664 \cdot 10^{-1}$	2.403	2.619	$9.175 \cdot 10^{-1}$
15 00	$5.497 \cdot 10^{-1}$	3 230	1 813	$1,781.10^{\circ}$
15.00	$5.947 \cdot 10^{-1}$	3.188	1.943	1.640.10 ⁰
30.00	1.099.10 ⁰	4.295	0.951	4.516.10 ⁰

D_U als Funktion der TBP-Konzentration in Dodekan $[H^+]_{aq} = 0.500 \text{ m/l HNO}_3$

Tabelle ⁵

30% TBP in Dodekan

 $[H^{+}] = 0.00$

[²³⁵ U] _{org} (mg/ml)	[²³⁵ U] _{aq} (mg/ml)	DU	[u ^{total}] _{aq} (M/1)
1.870	8.630	0.216	$3.977 \cdot 10^{-2}$
0.6363	5.718	0.111	2.634 \cdot 10 ⁻²
0.1762	3.448	0.051	$1.588 \cdot 10^{-2}$
0.0522	2.100	0.024	9.677·10 ⁻³
0.0173	1.300	0.013	5.990·10 ⁻³
0.0047	1.058	0.0044	4.875·10 ⁻³
0.0039	1.016	0.0038	4.681·10 ⁻³
· · ·			

 D_U in Abhängigkeit der TBP - Konzentration in Dodekan

 $[H^+]_{aq} = 0.026 \text{ m/l}$ Hydrazin = 0.059 m/l

TBP (Vol.%)	[²³⁵ U] _{org} (µg/ml)	[²³⁵ U] _{aq} (µg/ml)	D _U	[U ^{total}] _{aq} (M/1)
0	35.0	1014.0	$3.451 \cdot 10^{-2}$	4.672.10-3
10	398.0	650.7	$6.116 \cdot 10^{-1}$	$2.998 \cdot 10^{-3}$
20	706.7	353.0	2.002 <i>·</i> 10 ⁰	$1.627 \cdot 10^{-3}$
30	819.6	207.4	3.952.10 ⁰	9.557.10-4
45	945.1	131.0	7.214·10 ⁰	6.036 10-4
60	941.9	95.1	9.904·10 ⁰	4.382.10-4
80	941.0	65 - 8	14.476·10 ⁰	3.032.10-4
90	952.1	57.4	16.587.10 ⁰	2.645.10-4
100	94658	44.4	21.324·10 ⁰	2.046.10-4
100	932.8	50.9	18.326.10 ⁰	2.345.10-4

Tabelle 7

30%	TBP	in	n-Dodekan
[H ⁺]	= (0.03	B HNO ₃

[²³⁵ U] org (mg/ml)	[²³⁵ U] _{aq} (mg/ml)	DU	[U ^{total}] _{aq} (M/1)
21.7646	26.5727	0.819	1.224.10 ⁻¹
10.0657	17.1797	0.586	7.916.10 ⁻²
4.6819	11.5602	0.405	$5.327 \cdot 10^{-2}$
1.1286	5.3543	0.211	$2.467 \cdot 10^{-2}$
0.5363	3.6571	O.146	1.685.10-2
0.30554 0.05469	2.6116 0.77184	0.117 0.0708	$1.203 \cdot 10^{-2}$ 3.556 \cdot 10^{-3}
0.034684 0.008999	0.57631 0.15349	0.0602	2.655.10 ⁻³ 7.073.10 ⁻⁴
₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩		an a	

Analyse: $[H^+]_{aq} = 0.0297 \text{ M/l}$

 $[H^{+}] = 0.06 HNO_{3}$

[²³⁵ U] org (µg/ml)	[²³⁵ U] _{aq} (µg/ml)	DU	[U ^{total}] (M/1)
237.123	1270.648	0.186	5.855.10 ⁻³
50.948	331.246	0.154	$1.526 \cdot 10^{-3}$
41.500	266.567	0.155	1.228.10 ⁻³
26.855	173.695	0.154	8.004.10-4

30%	$\mathbf{T}\mathbf{B}\mathbf{P}$	in	n-Dodekan

[H⁺] = 0.100 m/l HNO₃

[²³⁵ U] _{org} (mg/ml)	[²³⁵ U] _{aq} (mg/ml)	D _U	[u ^{total}] (M/1)
33.0078	30.2460	1.091	1.393.10 ⁻¹
30.4613	29.7888	1.022	1.372·10 ⁻¹
30.1660	28.3100	1.065	1.303·10 ⁻¹
28.0777	28.2426	0.994	1.304·10 ⁻¹
27.9432	25.8385	1.081	1.190.10 ⁻¹
25.4202	25.6716	0.990	1.183.10 ⁻¹
29.3459	25.3596	1.157	$1.168 \cdot 10^{-1}$
24.6307	22.2131	1.108	1.135.10 ⁻¹
21.6520	19,4367	1.112	$8.956 \cdot 10^{-2}$
20.2932	19.2678	1.053	8.879.10 ⁻²
16,9023	16.3162	1.035	$7.518 \cdot 10^{-2}$
14.3883	15.5319	0.926	7.157.10 ⁻²
12.5732	14.3032	0,880	$6.590 \cdot 10^{-2}$
12.5803	13.7790	0.913	6.349·10 ⁻²
10.8825	12,6268	0.862	5.818·10 ⁻²
9.5243	11.3673	0.838	5.238.10 ⁻²
9.2986	11.3471	0.792	5.229.10 ⁻²
7.8072	9.8424	0.706	4.535·10 ⁻²
5.2244	8,5298	0.671	$3.929 \cdot 10^{-2}$
3.9155	6.3448	0.617	2.922·10 ⁻²
2.4005	4.4368	0.541	$2.044 \cdot 10^{-2}$
2.1172	4.2818	0.494	1.973.10 ⁻²

30% TBP in n-Dodekan

 $[H^{+}] = 0.100 \text{ m/l HNO}_{3}$

[²³⁵ U] _{org}	[²³⁵ U] _{aq}	DU	[u ^{total}] _{aq}
(mg/ml)	(mg/ml)		(M/1)
1.3172	2.8141	0.468	$1.296 \cdot 10^{-2}$
1.1259	2.6639	0.423	$1.226 \cdot 10^{-2}$
0.6762	1.6334	0.414	7.526·10 ⁻³
0.4612	1.2893	0.358	5.940·10 ⁻³
0.2645	0.7549	0.350	3.478.10 ⁻³
0.1610	0.4407	0.365	2.029·10 ⁻³
0.0561	0.1803	0.311	8.306·10 ⁻⁴
0.0526	0.1802	0.292	8.302.10-4

Analyse: $[H^+]_{aq} = 0.098 - 0.099 M/1$

30% TBP in Dodekan

 $[H^{+}]_{aq} = 0.50$

[²³⁵ U] org (mg/ml)	[²³⁵ U] (mg/ml)	DU	[u ^{total}] _{aq} (M/1)
13.1930	4.305	3.064	$1.983 \cdot 10^{-2}$
12.700	4.293	2.958	1.978·10 ⁻²
8.936	2.931	3.049	1.350·10 ⁻²
6.869	2.164	3.174	9.972·10 ⁻³
3.730	1.149	3.246	5.294.10-3
2.759	0.770	3.349	3.548·10 ⁻³
1.019	0.2938	3.468	1.353.10 ⁻³
0.524	0.1699	3.275	7.829.10-4
0.2045	0.0650	3,146	$2.995 \cdot 10^{-4}$
0.1030	0.0321	3.209	$1.479 \cdot 10^{-4}$
0.1000	0.0322	3.105	1.483.10 ⁻⁴

Analyse: 0.49 - 0.50 M/1

30%	TBP	in	n-Dodekan

 $[H^{+}] = 1.00 \text{ M/l HNO}_{3}$

[²³⁵ U] _{org} (mg/ml)	[²³⁵ U] _{aq} (mg/ml)	DU	[U ^{total}] _{aq} (M/1)
14.9253	2.2560	6.615	$1.039 \cdot 10^{-2}$
14.1585	2.1555	6.568	9.923.10 ⁻³
9.6308	1.4623	6.586	$6.738 \cdot 10^{-3}$
7.6570	1.1154	6.864	5.140.10-3
6.0609	0.8954	6.769	$4.136 \cdot 10^{-3}$
4.0/45	0.6497	7.195	2.993.10
4.0663	0.5536	7.345	2.551.10-3
2.6232	0.3526	7.439	1.624.10 ⁻³
2.7958	0.3389	8.248	1.562.10 ⁻³

Analyse: 0.99 - 1.00 M HNO_3

 $[H^{+}] = 2.0 \text{ M/l HNO}_{3}$

[²³⁵ U] _{org} (mg/ml)	[²³⁵ U] _{aq} (mg/ml)	D _U	[u ^{total}] _{aq} (M/1)
15.8439	0.90806	17.448	$4.184 \cdot 10^{-3}$
15.7336	0.96114	16.372	4.429.10 ⁻³
10.4568	0.62088	16.841	$2.861 \cdot 10^{-3}$
8.5644	0.46943	18.244	$2.163 \cdot 10^{-3}$
6.4887	0.33494	19.372	$1.543 \cdot 10^{-3}$
5.1072	0.27697	18.439	1.276.10 ⁻³
4.4561	0.23063	19.321	$1.062 \cdot 10^{-3}$
2.7914	0.15067	18.526	6.943.10-4

Analyse: 1.89 - 1.99 M HNO₃

[²³⁵ U] _{org}	[²³⁵ U] _{aq}	DU	[U ^{total}] _{aq}
(µg/ml)	(µg/ml)		(M/1)
$[H^{+}]_{aq} = 2.63$	- 2.59 m HNO ₃		
48180.4	2880.900	16.723	1.327.10 ⁻²
3629.0	134.685	26.944	6.206.10 ⁻⁴
1958.1	71.375	27.433	3.289·10 ⁻⁴
1351.3	45.520	29.685	2.097·10 ⁻⁴
1063.7	35.777	29.732	1.648·10 ^{÷4}
$[H^+]_{aq} = 2.97$	- 2.93 m HNO ₃		
6093.023	212.922	28.616	9.811.10 ⁻⁴
1828.6 3 7	66.694	27.418	3.073.10 ⁻⁴
1359.614	47.268	28.763	2.178.10 ⁻⁴
636.289	19.970	31.862	9.202.10 ⁻⁵
$[H^+]_{aq} = 3.90$	- 3.85 m HNO ₃		
5236.120	133.310	39.277	$6.143 \cdot 10^{-4}$
2416.558	56.766	42.570	2.615 \ 10^{-4}
968.396	2 4. 952	38.810	1.149.10 ⁻⁴
540.189	14.189	38.070	6.530.10 ⁻⁵
$[H^{+}]_{aq} = 4.94$	- 4.92 m HNO ₃	4.024 - 6.02 - 6.03 - 6.04 - 6.05 - 6.05 - 6.05 - 6.05 - 6.05 - 6.05 - 6.05 - 6.05 - 6.05 - 6.05 - 6.05 - 6.05	n ng gang uning ang ng n
40516.2	1297.7	31.221	5.976.10 ⁻³
7954.1	189.142	42.053	8.716.10 ⁻⁴
3340.73	65.430	51.058	3.015·10 ⁻⁴
1679.80	32.845	51.143	1.513·10 ⁻⁴

-32-

A

	55			в
$[H^{+}]_{aq} = 4.94$	- 4.92 m HNO ₃			
826.45	16.140	51.205	7.438·10 ⁻⁵	
652.27	12.717	51.291	5,860,10 ⁻⁵	
$[H^+]_{aq} = 5.11$	- 5.09 m HNO ₃		an an ann ann an Ann ann ann ann an Ann ann a	
9008.7	177.252	50.824	8.168.10-4	
4156.8	79.414	52.343	$3.659.10^{-4}$	
1886.7	37.517	50,282	$1.728 \cdot 10^{-4}$	
543.699	10.754	50.557	4.955.10 ⁻⁵	
$[H^+]_{aq} = 5.57$	- 5.53 m HNO ₃			
57552.0	3443.5	16.712	$1.586 \cdot 10^{-2}$	
10068.2	238.42	42.223	$1.099 \cdot 10^{-3}$	
4983.1	104.982	47.466	$4.837 \cdot 10^{-4}$	
2464.0	46.784	52.667	2.156.10-4	
1202 .2	23.532	51.086	$1.084 \cdot 10^{-4}$	
$[H^+]_{aq} = 6.15$	- 6.08 m HNO ₃		an an 20 an de 19 an de 19 an de 20 a company agrégation d'agrégit (Marine State State State State State State	a kini <u>unpersentingan sing</u> ara <u>n</u> k
10933.2	251.495	43.479	$1.158.10^{-3}$	
5637.8	116.056	48.578	5.348.10-4	
1992.2	39.056	51.008	$1.799 \cdot 10^{-4}$	
802.877	15.490	51.832	7.138.10 ⁻⁵	
$[H^+]_{aq} = 7.03$	- 6.99 m HNO ₃	en gemeinen Berr Burger ihn generalis vergezeiten Bild konge verken bij	ĸĸĸĸĸŔĸĸĊŶŎĸĿĸţĸġŎĬĬĬĊĸĸĬĊŎŖĸĬĬĨŎĸĸĬŎŎŎĬĬĬŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎ	indens signado en c
6770.9	174.958	38.700	8.062.10-4	
3663.1	101.062	36.246	$4.657 \cdot 10^{-4}$	
2047.7	51.098	40.073	$2.354.10^{-4}$	
923.220	23.018	40.108	1.060.10-4	
with the first sector sector and the sector se	and a second	and a second state of the		

[H ⁺] aq	$= 8.05 - 8.01 \text{ m HNO}_3$		
8193.9 3550.2	284.417 108.589	28.809 32.693	1.310-10 ⁻³ 5.004.10 ⁻⁴
1867.1 77 9. 515	58 .203 24.166	32.079 32.256	$2.682 \cdot 10^{-4}$ 1.113 \cdot 10^{-4}
[H ⁺]aq	$= 9.63 - 9.61 \text{ m HNO}_3$	an Manang ana ga shekaran a Shigan bu da ga shekaran shekaran s	
44134.7 8424.9	4028.2 437.603	10.956 19.252	1.856.10 ⁻² 2.016.10 ⁻³
3785.87 1979.65	183.823 92.954	20.595 21.297	8.470·10 ⁻⁴ 4.283·10 ⁻⁴
924.59	45.760	20.205	2.108.10-4
[H ⁺]aq	= 11.3 m HNO_3 ; [H ⁺] org	= 1.15	al Marken ye da yan aktor (ji - ya poyan da yakin Katiran yang katira katiran yang katira katiran yang katira k
6414,67	435.675	14.723	2.007.10-3
[H ⁺] _{aq}	= 12.4 m HNO_3 ; $[\text{H}^+]_{\text{org}}$	= 1.23	وار میکند. و سروان میکند از میکند به میکند بین میکند بین میکند بین میکند از این میکند و میکند.
6316,10	441.879	14.293	$2.036 \cdot 10^{-3}$

[U] _{org}	[U] _{aq}	[H ⁺] _{aq}	[H ⁺]org	DU	D H	[u ^{total}] _{aq}
(µg/ml)	(µg/ml)	(M/1)	(M/1)			(M/l)
				- 3		-3
3.900	1016.0	0.00	-	3.8.10 -2	-	4.681.10
8.000	149.93	0.030		5.33.10		6.909.10-4
4.075	68.56	0.032	~~	$5.94 \cdot 10^{-2}$	224	3.159.10-4
26.855	173.695	0.060	<u><</u> 0.012	1.54.10 ⁻¹	<u><</u> 0.200	8.004.10-4
41.500	266.567	0.062	<0.012	1.54.10 ⁻¹	<0.200	1.228.10 ⁻³
28.381	92.895	0.095		3.055.10 ⁻¹	unant.	4.280.10-4
10 781	37 389	0 095	-	$2.883 \cdot 10^{-1}$	-	$1,723,10^{-4}$
56 100	180,030	0.000		$3 116 10^{-1}$	-	8 306 10 4
50.100	180.030	0.100	_	5.110.10		0:300-10
52.600	180.200	0.100		2.918.10 ⁻¹	6 3	8.304.10-4
101.738	32.443	0.43		3.135.10 ⁰		$1.495 \cdot 10^{-4}$
62.752	20,608	0.43		3.045		9.496.10 ⁻⁵
78.962	11.028	0.83	4007	7.157	9000	5.082.10 ⁻⁵
						-5
69.830	9.740	0.83	-	7.169		4.448.10
2623.200	352.600	0.99	-	7.439	900 9	1.624.10
2791.400	150.670	2.00	~	18.526	60309	6.943.10-4
1351.300	45.520	2.60	829	29.685	9.2219	2.097.10-4
1063.700	35,779	2.63	0.60	29,732	0.228	1.648.10-4
636.289	19.970	2.93	0.63	31.862	0.215	9.202.10 ⁻⁵
						-5
540.189	14.189	3.85	0.80	38.070	0.207	6.530.10 -4
968.396	24.952	3.89	0.79	38.810	0.203	1.149.10
826.450	16.140	4,90	-	51,205	1000	7.438·10 ⁻⁵
652.270	12.717	4.92	622	51.291	1000 P	5.860.10 ⁻⁵

Abhängigkeit des Verteilungskoeffizienten D_U von der Säurekonzentration

[U] org (µg/ml)	[U] aq (µg/ml)	[H ⁺] _{aq} (M/1)	[H ⁺] _{org} (M/1)	DU	D H	[u ^{total}] _{aq} (M/1)
543.699	10.754	5.09	0.99	50.557	0.194	4.955.10 ⁻⁵
1886.700	37.517	5.11	0.96	50.282	0.173	1.728.10 ⁻⁴
2464.000	46.784	5.55	-	52.667		2.156.10-4
1202.200	23.532	5,53	-	51.086	-	1.084.10 ⁻⁴
802.877	15.490	6.08	1.06	51.832	0.174	7.138.10 ⁻⁵
1992.200	39.056	6.14	1.00	51.008	0.163	1.799.10 ⁻⁴
923.220	23.018	6.99	1.07	40.108	0.153	1.060.10-4
2047.700	51.098	7.02	1.04	40.073	0.148	$2.354 \cdot 10^{-4}$
779.515	24.166	8.01	1.09	32.256	0.136	1.113.10-4
1867.100	58,203	8.02	1.08	32.079	0.135	2.682.10 4
3785.870	183.823	۰ 9.61	6 25	20.595	_	8.470.10-4
924.590	45.760	9.63	82	20.205	-	2.108.10-4
6414.670	435.675	11.3	1.15	14.723	0.102	2.007.10 ⁻³
6316.610	441.897	12.4	1.23	14.293	0.099	2.036.10 ⁻³

Abhängigkeit des Verteilungskoeffizienten D_U von der Säurekonzentration