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ABSTRACT 

Molecular-dynamics calculations on krypton gas at 297 K 

have been performed taking into accountthree-body interactions. 

The purpese of this paper is to show (i) that the experimental 

structure data can be well described if we use the Axilrod­

Teller form for the three-body potential and (ii) that the 

three-body potential contribution to dynamic correlations is 

about one order of magnitude larger than to static correlations. 

The experimental determination of the dynamic correlation func­

tions can be done with sufficient accuracy by neutron scatte­

ring experiments and we expect that the ratio of error to effect 

for these functions is distinctly smaller than in the case of 

the structure data. The asymptotic time behaviour of the velo­

city autocorrelation function has also been investigated. 

It turned out that the long-time tail is strongly influenced 

by three-body forces. The famous t- 312 law has been observed 

in the calculation with the presence of three-body forces. 

Nichtadditive Kräfte in Vielteilchensystemen: Eine molekular­

dynamische Untersuchung für Krypton 

ZUSAMMENFASSUNG 

Es wurden molekulardynamische Rechnungen für gasförmiges 

Krypton bei einer Temperatur von 297 K unter Berücksichtigung 

von Dreikörperkräften durchgeführt. Dabei zeigte sich, daß 

experimentelle Strukturdaten dann gut beschrieben werden, wenn 

für die Dreikörperwechselwirkung das Axilrod-Teller Potential 

eingesetzt wird. Außerdem stellte sich heraus, daß dynamische 

Korrelationsfunktionen um eine Größenordnung auf Dreikörper­

kräfte empfindlicher sind als statische Korrelationsfunktionen. 

Dynamische Korrelationsfunktionen für Krypton könnten mit hinrei­

chender Genauigkeit mit Hilfe von Neutronenstreuexperimenten 

durchgeführt werden; wir erwarten, daß der Quotient aus Meß­

fehlern zu Effekt für solche Größen deutlich kleiner ist als für 



statische Größen. Es wurde außerdem das asymptotische Verhal-

ten der Geschwindigkeits-Selbstkorrelationsfunktion untersucht. 

Es stellte sich heraus, daß diese Funktion für große Zeiten stark 

von Dreikörperkräften beeinflußt wird. Das bekannte t- 312-

Gesetz konnte nur bei Anwesenheit von Dreikörperkräften be­

stätigt werden. 



CONTENTS Page 

Abstract, Kurzfassung 

I. Introduction ................................ " .. llt • o. 1 

I I. 

III. 

IV. 

V. 

VI. 

Model ..........•..•................................ 1 

Structure .......................................... 3 

Dynamic Correlations ......• 

IV.1 Density Fluctuations 

IV.2 Mean-Square Displacement 

Asymptotic Time Behaviour of the Velocity 

Autocarrelation Function ..•.. 

V.1 General Remarks ..•. 

V.2 Estimation of the Time-Region 

V.3 Results and Discussion ....... . 

• •• 6 

• 6 

••• 1 1 

• • 1 3 

1 3 

14 

•• 16 

S ununary ........................................... 3 1 

References .............................................. 32 



1 

I. Introduction 

It is well known that three-body interactions cannot be 

neglected in the correlation functions of noble gases. This 

has been discussed, for example, in Ref. 1 for liquid argon, 

and more recently, for krypton gas by Egelstaff and Teitsma2 ' 3 . 

Egelstaff and Teitsma performed careful diffraction experiments 

and analyzed their structure data in terms of the pair poten­

tial of Barker et al. 4 ; they believe that the differences be­

tween the experimental data and the calculated values are due 

to three-body interactions. In this paper we want to study 

krypton gas gy molecular. dynamics (MD). The advantage of this 

method compared to the methods used·in the analysis of Refs. 

2 and 3 is that we do not have to restriet our study to static 

properties and we are also able to investigate dynamic corre­

lations. The purpose of this paper is to show (i) that the ex­

perimental structure data given in Refs. 2 and 3 can be well 

described if we use, for the three-body potential, the Axil­

rod-Teller form 5 , and (ii) that the three-body contribution to 

dynamic properties is about one order of magnitude larger than 

to static correlations which are discussed in Refs. 2 and 3. 

It should be emphasized that the MD method allows one to study 

correlation functions without recourse to approximate theories 

such as the density expansion used in Refs. 2 and 3. 

II. Model 

The Hamiltonian used in the calculation is given by 

H = ( 1 ) 

A. being an on - off parameter wi th values 0 and 1. For the pair 

interaction v2 we have chosen the potential proposed by Barker 

et al. 
4

; the samepotential was used by Egelstaff and Teitsma2 

in their analysis. For the three-body interaction v
3 

we have 

chosen the Axilrod-Teller form5 
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= \) 
1+3cos81cos82cos8 3 ( 2) 

rij' ril' rjl and 0 1 , 82 , 8 3 are the sides and angles of the 

triangle forrned by the particles i,j,l. v3 (i,j,l) can be re­

pulsive and attractive, which depends upon the shape of the 

triangle forrned by the three atoms i,j, and 1. The pararneter 

\!was chosentobe 220.4 x 1o-84 crn9 erg (see Ref. 6). In the 

final analysis, MD results for krypton gas thernselves serve 

as justification for the validity of the chosen potential 

functions. It should be rnentioned that the Axilrod-Teller 

potential has been used wi th success in the analysis of argon 

data7 . 

MD calculations have been perforrned for the densities 

n = 2.884 x 1027 atorns/rn3 and n = 6.19 x 1027 atorns/rn 3 . For 

the MD rnodel, N = 128 krypton atorns were arranged in arbi­

trary positions in a cubical box of length L = 32.42 ~ (L = 
0 27 

27.64 A), thus providing a density of n = 2.884 x 10 atorns/ 

rn
3 

(n = 6.19 x 1027 atorns/rn3). The initial distribution of the 

velocities was chosen according to Maxwell's distribution. To 

avoid surface effects, periodical boundary conditions were irn­

posed on the systern. For this rnodel the classical Rarnilton 
-14 equations were solved by iteration [time step: 1.7 x 10 sec 

( -14 1.0 x 10 sec)]. The relative error in the inforrnation (po-

sitions and velocities) obtained from the iteration process is 

less than 10-6 . We varied the particle nurnber N and found that 

N does not produce any effect in the correlation functions if 

N ~ 128: The differences in the results for N = 250 and N = 
128 are one order of rnagnitude srnaller than the statistical 

error. The cut-off radi us r for the poten tials was chosen to c 
be 16 R (13.5 ~); we found that cut-off effects are ruled out 

if rc > 14 R (11 ~). No further nurnerical uncertainties appear 

in a MD calculation except the statistical error in the cor­

relation functions. More details concerning the behavior of MD 

rnodels are discussed in Refs. 8 and 9. 

Using Eq. (1) for the Harniltonian, two MD calculations 

for each density have been perforrned. One with (A=1) and another 
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without (A=O) three-body interactions. All calculations were 

made for T = 297 K according to the diffraction experiments 

(see Refs. 2 and 3). In the case of A=1 the computer time 

requirements are very large; using the IBM 3033, the CPU 

time was approximately five hours. 

III. Structure 

tor 

To test the model, we have computed the structure fac-

S(k) = 1 
N < L: 

i,j 
[ ,-+ (-+ -+ )] exp 1k • r. - r. > 

1 J 
( 3) 

-+ -+ 
where ri is the position vector of particle i and k the wave 

vector. Figure 1 shows the MD results for S(k) obtained from 

calculations with A=O and A=1. The calculations have been 

performed with high accu~acy: The statistical error10
r

11 is 

smaller than 1% for all k values in Fig. 1; the experimental 

errors 3 are also smaller than 1%. It can be seen from Fig. 1 

that the effects due to the three-body forces are relatively 

small, and the general agreement with the experimental data 

is also satisfactory for A=O. However, there are systematic 

deviations (which are greater than the errors) from the ex­

perimentally observed structure data for the calculations with­

out the presence of the three-body interactions. As can be seen 

frorn Fig. 1 these deviations can be described successfully by 

means of the Axilrod-Teller potential. In centrast to Monte 

Carlo results 2 we did not find that the principal peak height 

of the pair correlation function is suppressed by the Axilrod­

Teller potential. 

It should be emphasized that we have not considered short­

range three-body terms in the calculations. It follows from our 

analysis that this kind of interaction is not important at low 

densities; at low densities three-body collisions are obviously 

not probable. This pointwill be discussed in more detail in a 

forthcoming paper12 by means of the triplet correlation func­

tion. It is important to mention that the potentials (v 2 and v 3) 
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Fig. 1 Structure factor: (a) n = 2.884 x 1027 atoms/m
3

, 

(b) n = 6.19 x 1027 atoms/m3;solid curve, MD results for 

A=1 (with error bars); full circles, MD results for A=O 

(with error bars); crosses, experimental data (see Refs. 

2 and 3). The experimental errors are smaller than 1%. 

used in this study also give excellent agreement with the experi­

mental crystal energies and pressures 4 ' 13 and with phonon data
14

. 

In Refs. 2 and 3 the analysis concerning the three-body­

potential contribution have been done on the basis of the density 

expansion for the direct correlation function c(k) [see Ref. 2, 
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Eq. (2)], where c(k) is equal to [1-S- 1 (k)]/n. Using the ex­

perimental data for S(k) (see Ref. 3, Table I) we are able to 

check whether the density expansion is able to describe quan­

titatively well the structure data. If the density expansion 

[Ref. 2, Eq. (2)] is adequate, the quantity 

( 4) 

should be independent of the density. However, it turned out 

that C varies strongly (examples for k = 0.4 R- 1 
and 

T = 297 K are given in Table I of this paper) and, therefore, 

we can conclude that the· densi ty expansion can only be valid 

if we average over a sufficiently large density range. It is 

shown in Ref. 2 (Fig. 3) that in this case the linear part 
2 3 of c(k) can be extracted; the higher-arder terms (p , p , ••• ) 

are obviously cancelled if the data are avaraged over a suffi­

ciently large density range. 

TABLE I Check of the density expansion. We used the same 

units for the density as in Ref. 3. 

8(0.4) n c 

1 . 010 0. 520 0.0138 1 .006 0,799 

0.870 3.160 0.0012 0.856 3,474 

0.667 5.65 0.0055 0.624 6. 19 
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IV. Dynamic Correlations 

The complete information about the interaction between 

the particles of a many particle system can be extracted from 

static properties alone (see, for instance, Ref. 18). Because 

our MD model is able to describe very well tlle structure data 

of krypton gas, the MD model should also give reliable results 

for the dynamic correlation functions in that gas. Until now 

no experimental data were available for dynamic correlation 

functions. Therefore, the effects predicted here should be im­

portant for the construction of analytical models as well as 

serve a.s a guide for experimen talis ts. 

In this section we show that we can construct measureable 

time correlation functions which are much more sensitive to 

three-body interactions than structure data. 

The fourier transform of the microscopic nurober density of 

a system with N krypton atoms having positions t. (t), j = 1, ... , 
J 

N, is given by 

= 1 
;rn 

N 
2:: 

j=1 

,+ + 
e xp [ 1 k • r . ( t) J 

J 
( 5) 

To describe density fluctuations, the correlation function 

(intermediate scattering function) 

( 6) 

is of interest. From this we obtain the coherent scattering law 

S(k,w) by 

1 100 

S(k,w) = 2TI -ooF(k,t)exp(iwt)dt. ( 7) 
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Fig. 2 F(k,t). (a) free gas, (b) n = 2.884 x 1027 atoms/m3 ; 

-- \=1, ---- A.=O, (c) n = 6.19 x1o27 atoms/m3 ; -- \=1, 

A.=O. 

S(k,w) is proportional to the coherent differential scattering 

cross section 15 and can be obtained from neutron scattering ex­

periments. 

A great deal of analytical mddels for S(k,w) have been 

listed and tested in Ref. 16. Testing of models using our MD 

data lies out of the scope of this paper. Here we only want to 

discuss some general features in connection with three-body inter­

actions. 
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The effect due to v3 is more pronounced in F(k,t) than in 

S(k). Examples are given in Fig. 2 for k = 1.1 R- 1 ; for this 

wave vector the three-body-potential contribution to S(k) is 

negligible. It can be seen from Fig. 2 that the three-body­

potential contribution to F(k,t) is getting large with increa­

sing time t (the statistical error is smaller than 1%). Such a 

tendency means that v 3 will be most reflected in the low-fre­

quency region of S(k,w). However, the decay of F(k,t) with time 

is slow and the reliable determination of S(k,w) [see Eq. (7)J 

is only possible when F(k,t) is known for much larger time than 

was calculated and this can only be done by means of very large 

systems - larger than the systems used in this study. Because 

the long-time behavior o.f F (k, t) is too uncertain we hesi tate 

to draw any conclusion for S(k,w) form the MD data. 

Often-used models for the classical description of S(k,w) 

involve the knowledge of the even moments (see, for example ~ Ref. 

16) : 

n = o, 2, 4, .... ( 8) 

In particular, the moments up to four play an important 

role. Thus, in order to obtain a consistent picture we have not 
n 

only to describe correctly S(k,w) but also w S(k,w), n = 2, 4. 

The function 

R(k,w) 
4 = w S (k ,w) ( 9) 

is of considerable importance because w4 (k) is the first moment 

which involves explicitely the interaction potential 1 . 

MD results for R(k,w) and its Fourier transform 

R(k,t) ~ J:wR(k,w)exp(-iwt)dw ( 10) 

are shown in Figs. 3 and 4. In all cases the statistical error 

again is smaller than 1%. It can be seen that the effect of the 
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Fig. 3 2 7 3 R(k,t) and R(k,w), n = 2,884 x 10 atoms/m; 

A.=1, ---- A.=O. 

three-body interactions is relatively large. R(k,t) and R(k,w) 

are much more sensitive to three-body interactions than S(k) 

and F(k,t); the three-body-potential contribution to R(k,t) and 

its fourier transform R(k,w) is about one order of magnitude 

larger than to S(k). 

The experimental determination of S(k,w) and R(k,w) = w4S(k,w) 

can be done with sufficient accuracy [as accurate as S(k)J by neu­

tron scattering experiments (see, for example, Ref. 17) and we 

expect that the ratio of error to effect for these functions is 

distinctly smaller than in the case of S(k). Moreover, more experi­

mental information can be obtained for R(k,w) than for S(k) since 

R(k,w) not only depends on k (as in the case of the structure fac­

tor) but also on w. Thus, R(k,w) is more qualified for the check 
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of three-body potentials than S(k). 

In summary, we can conclude that the function R(k,w) is of 

considerable interest for the following reasons. 

(i) It forms an important model parameter (the fourth moment 

of the scattering law) . 

(ii) The three-body-potential contribution to R(k,w) is 

about one order of magnitude larqer than to the structure factor. 

(iii) The experimental determination of R(k,w) can be done 

with sufficient accuracy by neutron scattering experiments. 

-0 
~ .. -

--+-!, 
~ -0::: 

0.1 

-0.1 

-0.2 
4~--8~--1~2-4~--8~--1~2-4~--8~--1~2~ 

,........, 
u 
()) 

(/) 3 
(V) 

T 

~2 -
-0::: 

0 

Fig. 4 

t [ 10-13 sec ] 

0.5 0 0.5 0 
w [ 10 13 sec_, ] 

r/\ r V 
0.5 

R(k,t) and R(k,w) 1 n = 6.19 x 10
27 

atoms/m
3

; 

-- A=1 I ---- A=0 •. 
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The auto-correlation function Gs(r,t) classically gives 

the probability that an atom at position r~o at time t=O is 

at positionrat timet. The Fourier transform Ss(k,w) of 

Gs(r,t) can be measured by inelastic neutron scattering ex­

periments. Gs(r,t) is related to Ss(k,w) by 

The mean-square displacement <r2 (t)> can be obtained from 

Gs(r,t) without approximations by 

2 1 N + 2 
<r (t)> = <N L: C1\(t)- ri(O)J > 

i=1 
( 12) 

+ where r. (t) is the position of atom i at time t. MD results 
21 

for <r (t)> are represen te d in Fig. 5 (the statistical error 

is smaller than 1%) • It can be seen from Fig. 5 that there 

are systematic deviations from the pair-theory values. In 

particular, we can conclude the following! 

(i) The mobility of the atoms is smaller with the pre­

sence of three-body interactions. 

(ii) The three-body-potential contribution is smaller in 

the case of n = 6.19 x 1027 atoms/m3 . This might be due to the 

fact that the repulsive part of the pair potential is getting 

effective with increasing density leading to less-pronounced 

three-body effects because the relative three-body-potential 

contribution is getting small. 

We believe that the present experimental technique is 

sufficiently reliable (see, for example, Ref. 17) to allow 

quantitative comparison with our MD results for the mean-square 

displacement. <r2 (t)> has already been extracted for liquid ar-
19 17 . gon from neutron data ' ; the exper1mental results for the 
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Fig. 5 Mean-square displacement (a) free gas, (b) 

n == 2.884 x 1027 
atoms/m3 ; -- :\=1, --- .A==O, (c) 

n = 6.19 x1o27 atoms/m3 ; -- :\=1, --- :\=0. 

12 

double-differential scattering cross section have been Fourier 

transformed and it was possible to determine G (r,t) and 
s 

<r2 (t)>. 
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V. Asymptotic time behavior of the velocity auto-correlation 

function 

V.1 General remarks 

The principal difficulty in calculating transport coeffi­

cients (self-diffusion coefficient, heat conductivity, etc.) 

concerns the estimation of the asymptotic time behavior of 

correlation functions; the Green-Kubo formulas express the 

transport coefficients as integrals over corresponding time 

correlation functions. In the case of.· the self-diffusion co­

efficient D the velocity auto-correlation function (VAF) is 

the relevant time correlation function and we have 

00 

D rv 

J 
\jJ(t)dt ( 1 3) 

0 

where \jJ(t) is the VAF which is defined by 

\jJ ( t) = < ~(o) • v(t) > 1 < v(o) 2 > ( 14) 

-+ 
v(t) is the velocity at time t for one atom of the ensemble and 

the brackets < ••• > denote a statistical average. \jJ(t) can be 

determined very accurately by means of molecular-dynamics (MD) 

because in this case an independent calculation may be per­

formed for each of the N particles in the system. 

The asymptotic time behavior of the VAF has already been 
. . d b h h b 1 d w . . ht20 , 21 
1nvest1gate y MD for ard sp eres y A der an a1nwr1g 

and for a fluid of soft repulsive particles by Levesque and 

h 22 . -3/2 h As urst . Both stud1es led to the famous t decay of t e 

VAF for three-dimensional systems, and this law has also been 

deduced analytically by a great variety of apparently different 

starting points (see, for example, Refs. 23, 24 and 25). 

In Refs. 20, 21 and 22 only short-range (repulsive) poten­

tials have been used for the study of the long-time tail of the 

VAF. Till now the t- 3/ 2 law of the VAF has not yet been verified 

by MD on the basis of short-range and long-range interactions 
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although it is widely accepted that the dynamical properties 

of a system are considerably influenced by the long-range 

part of the pair potential (see, for example, Ref. 26), in 

particular, its effect on the VAF seems tobe getting large 
. th . . t . 2 7 1 h . t t . 1 Wl 1ncreas1ng 1me . Moreover, not on y t e pa1r po en 1a 

is distinctly reflected in time correlation functions but 

also three-body interactions. This has been demonstrated in 

Refs. 1 and 9; i t turned out i:hat ( as in t:he case of the long­

range part of the pair potential) the effects due to three­

body forces on ~(t) also seems tobe getting large with in­

creasing time (see Fig. 3 of Ref. 1). In conclusion, it is 

quite questionable whether the asymptotic time behavior of 

~(t) is completely described by short-range interactions 

alone. 

In this section we want to investigate by means of MD 

the long-time tail of the VAF for the realistic krypton many­

particle system described in section II. In cantrast to the 

studies represented in Refs. 20, 21 and 22, not only the 

short-range part of the pair potential but also its long­

range part and three-body in teractions have been considered. 

V.2 Estimation of the time-region 
------~--==~==-~~------------

The MD results are only valid29 for times t < T = L/c, 

where L is again the size of the box and c is the velocity of 

sound in the system; for timest'< T the boundary conditions 

should have no influence on the VAF. In the case of gaseaus 
. 27 3 27 krypton at the dens1ty n = 2.884 x10 atoms/m (n = 6.19 x 10 

atoms/m3 ) the characteristic timeT takes the value 9.5 x1o-
12 

sec ( 6 . 5 x 10-12 sec) . 

With such a model we were able to observe ~(t) within a 

time-region which is equivalent to that in Ref. 22 (soft repul­

sive potential simulation). The time scale in Ref. 22 is given 

in units of 

h = 0.032 
2 

ma ) 1/2 
48E: 
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where a and s are the pair potential parameter and m is the 

mass of an atom. Using for m, a and s the data of krypton 

(see Ref. 4) we obtained: 

h = 1.1 x 1o-14 sec 

In the case of n 27 3 = 2.88 x 10 atoms/m the time-region is 

0 ~ t ~ 9.5 x 1o- 12 sec 

Or in units of h: 

0 ~ t ~ 860 

The time-region in Ref. 22 (Table I) is (also in units of h) 

0 ~ t ~ 780 

Therefore, we can conc~ude that the time-region of our calcu­

lation is of the same order as in Ref. 22. 
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V.3 Results and Discussion 

First we have investigated the influence of the three­

body forces on the microscopic time behavior of the atorns 
-12 wi thin the time region of 3. 6 x 10 sec < t < T; we shall 

see below that this time region is irnportant for the deter­

rnination of the long-time tail of the VAF. For this purpose 

we have calculated the square forces F.
2

(t}, i=1, ... , N, 
l 

with and without the presence of three-body interactions. 

Typical exarnples are represented in the Figs. 6 and 7. Al­

though all atoms were in exactly the sarne state (positions 

16~~--------~------------~--~ 

12 

N 

~ 8 
u 

0 ...... 
'o 
~ 

..__. 

--
N,_ 
lL 

54 

4.4 5.2 

--~• t [10-12sec] 
F . 6 +2() . 1g. Microscopic square forces F. t for the dens1ty n = 
2. 884 x 1027 atorns/rn3 and particle 54~· -- with the presence of 

v3 , ---- without the presence of v3 . 
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3.6 4.4 5.2 
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Fig. 7 Microscopic square forces F. 2 for the density 
l 

n = 2. 884 x 1 o2 7 atoms/m3 and particle 9 7. -- wi th the pre-

sence of v3 ; ---- without the presence of V 3 • 

and velocities) at t=O, it can be seen from the Figs. 6 and 7 

that the temporal sequences of attractive and repulsive forces 

acting on the atoms are quite different from each other; in 

other words, the microscopical behavior of the atom9 is strongly 

influenced by the three-body forces. 

Figs. 8, 9, 10 and 11 show the results for the VAF. In all 

cases, the statistical error 30 of ~(t) is smaller than 1%. From 

Figs. 8, 9, 10 and 11 we observe the following: 
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---- without the presence of v
3

; ···· ~(t) = a
0
t- 3/ 2 + ß

1 
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(1) It can be seen that the effects due to the three-body in­

teractions v
3 

are not so significant in the correlation function 

~(t) (it is formed by averaging over N independent calculations) 

as we have found for the microscopic time behavior of the par­

ticles (Figs. 6 and 7); at first glance the curves without v
3 

are similar to those with v 3 . However, there are systematic 

deviations due to v 3 • It can be seen that these deviations are 

relatively large within the time-region of interest. For example, 

in the case of n = 2. 884 x 102 7 atoms/m3 (Figs. 8 and 9) the pair­

theory value at t = 6 x 10 12 sec is about three times (300%) 

larger than the v3-dependent value. 

(2) In contra~t to Figs. 8 and 9, in Figs. 10 and 11 a small 

oscillatory component is observed in the long-time tail which is 

greater than the errors; this is obviously a density-effect. 

(3) We know from Ref. 22 that ~(t) for a system consisting of soft 

repulsive particles (only the short-range part of the pair poten­

tial v 2 has been considered) decays like t- 3/ 2 . Figs. 8 and 10 

show (both, the short-range and the long-range part of v 2 are 

considered in the calculation) that the t- 3/ 2 term is superim­

posed by an additional term which seems to be slowly varying in 

time and is approximated in Figs. 8 and 10 by the constants ß1 
and ß2 , respectively. However, it can be seen from Figs. 9 and 11 

that with the presence of v 3 (and of course with the full pair 

potential) a pure t- 312 law is observed; the small oscillations 

at the density n = 6.19 x1o
27 atoms/m3 arenot important for this 

discussion because they appear as well with v
3 

as without v 3 • 

In order to decide whether the asymptotic region ~(t) has 

been reached we have analyzed our MD data by means of a well 

known sum rule of the force correlation function f(t) = 
< F(O) • F(t) > (F(t) is the force at time t for one atom of the 

ensemble) : 

()() 

< F(O) • F(t) > dt = 0 f 
+ + 

( 1 6) 

0 
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The integral from 0 to T (T is the limiting time in our MD cal­

culations) has been calculated by means of the MD data using 

the individual forces. In the region from T to oo, f(t) has been 

expressed by the laws for the long-time tails of \jJ(t) (in the 

case with ~ 3 : a
0
t- 312 ) using the well known identity f(t) = 

- 3 kBT m \jJ(t). It follows that 

A = 

()() 

f f(t) dt ~ 
T 

T 
-5/2 ( 1 7) 

So, if the asy.mptotic region has been reached, the inteqration 

of our MD data for f(t) from 0 to T must be identical to -A; 

this follows directly from the general expression (16). A care­

ful analysis of our data showed that this is definitely ful­

filled in the calculation with v 3 (Figs. 8 and 10). Thus, only 

in the calculation with v 3 the asymptotic region has been reach­

ed. Clearly, this behavior can lead to large effects in the 

diffusion coefficient D beaause the Green-Kubo integral (see 

Eg. 14) is formed from 0 to oo 

The long-time tails in Figs. 9 and 11 start approximately 
-12 at t = 4 x 10 sec corresponding to 5 - 6 two-body collisions; 

two-body collisions take place at distances where the repulsive 

part of v 2 is effective (in our case at distances smaller than 

4 R). In Ref. 22 much more collisions (~ 18) are needed in order 

to reach the asymtotic region. However, the calculation in Ref. 

22 has been done without v
3

, and v 3 can be repulsive at large 

distances 5 . Thus, in the calculation with v 3 the two-body colli­

sions are superimposed by "long-distance collisions", and this 

is obviously the reason why the asymptotic region is reached after 

a relatively short time, 

Pomeau showed31 that \jJ (t) ean be generally expressed by an infi­

nite serie with the terms t- 312 , t-714 , .... Within the time 

region of 4x1o- 12 sec< t < 9 x 10-12 sec the t- 3/ 2 law is ob­

viously fulfilled (see Fig. 9); all the other terms (t- 7 /
4

, ... ) 

are negligible. Because the exponents of all the higher order 

terms are larger than 3/2, we can conclude that also for 
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9 x 10- 12 sec< t < oo the terms with t- 714
, ••• do not contri­

bute to ~(t). Also from this point of view it is justified to 

state that we observe the asymptotic long-time tail of ~(t) in 

our calculation. It should be mentioned that our results for 

the diffusion coefficients (using the t- 3/ 2 law) are also sup­

ported by recent neutron scattering data
32

. 

(4) h -3/2 . T e value of the prefactor a of the t law lS 
-18 3/2 ° . 1.15 x 10 sec • In all calculatlons we did not find that 

a
0 

is dependent on the density and on v
3

, respectively. A 

nurober of other methods 25 (kinetic theory, generalized Landau­

Placzeck theory, hydrodynamics) leadalso to the conclusion 

that ~(t) decrease for large times like t- 3/ 2 . For example, 

within the kinetic theory the prefactor of the t- 3/ 2 law is 

given by 24 

( 1 8) 

where p = na3 ; a is the diameter of the particle. Ernst23 et 

al. restricted themselves on a hydrodynamical description and 

found that in this case the prefactor is given by the first 

term of Eq. (18): aD = aD 
0

p2 . Without going in detail 1 it is 
I 

easy to show that this hydrodynamical theory is not able to 

describe our prefactor 

4.25 times larger than 

a · it 0, 
2 

aD oP , 
viously have to consider rnore 

turned out that a is at least 
0 

(first term of Eq. (18)). We ob-

than one terrn in the infinite 

serie of the density expansion (18). It should be mentioned 

that also the experimental structure data of our krypton system 

cannot be described quantitatively if we restriet ourselves on 

the first terms in the density expansion of the direct correla­

tion function (see Table I); also here the higher order-terrns 

in the density expansion are not small compared with the first 

terrn of the infinite serie. 

The hydrodynarnical theory2 3 ( aD = aD 0 p
2 ) is not valid in the 

I 

critical region and we believe that the reason for the deviations 

between a
0 

and aD
10

p
2 

might be due to the critical behavior which 

we observe for both densities (the critical density is 6.5 x 1027 

atorns/m
3

) indicated by an increase of the structure factor S(k) 
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at low k (see Fig. 1). The anamalous increase in the life-time 

of time correlations 33 associated with critical fluctuations 

supports this assumption; clearly, an increase of the prefac­

tor a means an increase in the life-time of the velocity cor-o 
relations. It should be emphasized that the short-range (re-

pulsive) part of the pair potential alone cannot describe the 

typical features of critical fluctuations 34 and it is there­

fore not surprising that the prefactor of the t- 3 / 2 law of a 

t . . 1 22 . t. bl . th 2 sys em cons1sting of soft part1c es lS compa 1 e Wl aD 
0

p 
I 

which - as already remarked above - also does not involve cri-

tical fluctuations. 

(5) The Fourier transform of ~(t) is the frequency spectrum 

f (w) which is in the cas·e of the harmonic solid the frequency 

spectrum of the normal modes. f(w) can be determined experimen­

tally by neutron diffraction experiments using a extrapolation 

procedure 35 : 

f(w) 2m lim 
= 

kBT Q+O 

8 s(Q,w) 
Q2 

( 19) 

Ss(Q,w) is the incoherent dynamic structure factor. The fre­

quency spectrum f(w) is connected to the VAF by 

00 

f(w) 2 J jl(t) cos wt dt =-
'IT 

0 

where f(w) is normalized to unity: 

00 

J f (w) dw 

0 

= 1 

( 20) 

( 2 1) 

In order to obtain reliable results for f(w) we have extrapola­

ted our MD data for ~(t), which are given in the Figs, 9 and 11, 

by means of the t- 3/ 2 law. Figs. 12 and 13 show the results for 

the frequency spectrum in the case wi th v 3 • The MD resul ts for 

the calculations without v3 (see Figs. 8 and 10) have not been 

transformed because in these calculations the asymptotic time 

region seems not to be reached. 
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The frequency-dependence of f(w) for a free gas is des­

cribed by a deltafunction: f(w) ~ o(w). As can be seen from 

the Figs. 12 and 13 also our results are strongly peaked at 

w = 0. In particular, in the case of n = 2.884 x 10
27 

atoms/m
3 

the free-gas-characteristics are more pronounced that in the 

case of n = 6.19 x 1027 atoms/m3 . 

Gaskell and March 36 assumed that for f(w) an expansion 
. 1/2 
1n w around w = 0 exists: 

( 2 2) 

Using ~(t) = a t- 312 and Eq. (20) it is Straightforward to 
0 

show that the t- 312 law produces a term in f(w) which is pro-

portional to w112
• Thus, the leading term in Eq. (22) should 

be a 1w1/ 2 and the coefficient a 1 is given by 

= ( 2 3) 

Figs, 12 and 13 show that the shape of f(w) in the vicinity 

of w = 0 is well approximated by 

= f(O) - I~ a 
7T 0 

1/2 w (24) f(w) 

However, we do not observe a cusp and a negatively infinite 

slope of f(w) at w = 0 as predicted by the Eqs. (22) and (24); 

this conclusion has been drawn from the Figs. 14 and 15 which 

show f(w) at very small frequencies. The reason for this be­

havior is obviously due to the fact that the t- 312 law is not 

valid for the whole time region (0 ~ t ~ oo); ~(t) deviates 

strongly from the t- 312 law at small times obviously compen­

sating the negatively infinite slope of f(w) at w = 0 due to 

Eq. ( 2 4) • 
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VI. Summary 

Holecular dynamics calculations on krypton gas at 297 K 

have been performed taking into account three-body interac­

tions. The purpose of this paper was to show the following: 

(i) The experimental structure data can be well des­

cribed if we use for the three-body potential the Axilrod­

Teller form; the potentials used in this study also give 

excellent agreement with the experimental crystal energies 
4 13 . 14 and pressures ' and Wlth phonon data . 

(ii) The three-body-potential contribution to dynamic 

correlations is about one order of magnitude larger than 

that to static correlations. The experimental determination 

of the dynamic correlation functions can be done with suffi­

cient accuracy by neutron-scattering experiments and we ex­

pect that the ratio of error to effect for these functions is 

smaller than in the case of the structure factor. It would be 

most fruitful to perform neutron-scattering experiments and 

to compare the results with those predicted here. 

(iii) The asymptotic time behavior of the velocity auto­

correlation function has been investigated. It turned out that 

the long-time tail is strongly influenced by three-body forces. 

The famous t- 312 law has been observed in the calculation with 

the presence of three-body forces. 

Our next step is to systematically investigate three-body 

effects as a function of density. In particular, we shall in­

vestigate the influence of short-range three-body terms on 

atomic correlations which were obviously not important in the 

low-density case discussed here. 
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